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Abstract 

 

What Transformers Might Know About the Physical World: T5 and the 

Origins of Knowledge 

 

By Haohan Shi 

 

We find that knowledge of animals and objects' physical properties does 

not depend on direct or indirect perceptual experience. Rather, such 

knowledge can emerge from inferential processes driven by the statistical 

properties of language. Here we investigate the latent knowledge of the T5 

encoder-decoder model with respect to various physical properties of 

animals and objects. Such networks represent model organisms for the 

origins of knowledge in a learning system without innate knowledge or 

access to perceptual information. We proposed and evaluated three 

hypotheses about what T5 might know about the physical world: 1) that T5 

might understand physical dimensions much like humans understand these 

dimensions, 2) that it has no understanding of the perceptua l dimensions 

of experience, and 3) that it understands some dimensions of experience 

better than others and potentially uses the better-understood dimensions to 

understand the less well-understood dimensions. The results from Study 1-

4 show that knowledge of the size, weight, and shape—but not color—

agrees closely with that of humans. Moreover, agreement with human 

judges increased with the network's size, suggesting that disagreement with 

humans might ultimately disappear as the size of the networks is increased. 

However, Study 5 shows that T5's understanding of size might rely on its 

understanding of weight, which supports our third hypothesis regarding 

T5's understanding of dimensions in  physical world. 
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Chapter 1 

 

Introduction 

 

There are essentially three accounts of the origin of knowledge (Anderson, 1989). 

According to Nativism, concepts and beliefs are hard-wired into the brain (Samuels, 2002). 

According to Empiricism, knowledge is acquired from the storage of perceptual experience. A 

third possibility, Rationalism, holds that knowledge is acquired from reasoning, that is, mental 

operations acting on stored representations that derive implications from that knowledge. In 

human learning, the mental operations implied by these positions are not mutually exclusive. 

Knowledge of the physical world may emerge from perceptual experience constrained by 

innate processing capabilities and extended through reasoning. However, certain knowledge 

would seem to depend on direct perceptual experience, such as knowledge of an object's 

appearance. Recent evidence suggests that this may not always be the case. 

Kim, Elli, and Bedny (2019) investigated congenitally blind individuals' knowledge of 

the visual properties of animals. Surprisingly, blind individuals' judgments about the relative 

size, height, shape, and skin texture of a wide range of animals largely agreed with that
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of sighted individuals. A possible explanation for the findings is that the bind people relied on 

sighted people's language about animals to make judgments about their perceptual properties. 

This possibility predicts that agreement between blind and sighted people should be highest for 

perceptual properties that are relatively easy to verbalize, like color. As it turns out, it was for 

this very perceptual property—color— that agreement between the sighted and non-sighted 

participants was lowest, suggesting that the relatively high agreement between blind and 

sighted individuals was not simply due to remembering comments of sighted people. 

Kim et al. raise another possible explanation for the relatively high agreement between 

blind and sighted individuals. In particular, blind people might use knowledge of an animal's 

taxonomic category—which they learned through language—to draw inferences about an 

animal's perceptual properties. The explanation is supported by findings showing that children 

can use knowledge of natural kinds to draw inferences about invisible properties, such as 

animals' insides (Gelman & Wellman, 1991; Keil; 1989). While this hypothesis seems entirely 

reasonable, it leaves unexplained the difference in performance between properties like shape 

and color. An inference account still depends on language. If language is used to acquire 

knowledge of taxonomic categories, then why would it not be used for answering questions 

about color? Perhaps, as suggested by Kim et al., and claimed by John Locke (1924), blind 

individuals know more about properties such as shape than color because blind individuals 

have perceptual experience with shape though the sense of touch. Perhaps it is this indirect 

experience with the perceptual world that allows blind individuals to be able to draw successful 

inferences from about shapes, sizes, heights, and textures, and its absence that explains why 

inferences about color are far less accurate.  

We evaluate the knowledge about physical world that can be drawn from language 

using a remarkable new class of language learning models that not only acquire a sophisticated 



Introduction                                                                                                                                                   3 

 

 

understanding of language, such as syntax (Ganesh, Sagot & Saddah, 2019; Goldberg, 2019; 

Hewitt & Manning, 2019; Peters et al., 2018; Tenney, et al. 2019), but also seem to acquire 

general knowledge about the world (Petroni et al., 2019; Da & Kasai, 2019). In this research, 

we used the recently introduced Text-To-Text Transfer Transformer (T5) (Raffel, et al. 2020). 

Here we propose three hypotheses about what T5 might know about the physical world.  

In the first hypothesis, T5 understands the physical dimensions just like humans do. In this case, 

T5 not only can assess how different entities differ along one dimension, but it also understands 

differences between different dimensions. An understanding of how dimensions differ is a 

relatively deep idea. For example, a system like T5 might indicate that a plate weighs more 

than an acorn, and  it might also judge that a plate is larger than an acorn. Knowing the 

difference between weight and size depends on recognizing that weight and size are entirely 

different aspects of the physical world. Based on the data above, we do not know whether T5 

actually differentiates these dimensions. It is possible that it simply associates plates with 

"more" of any dimension, rather than specifically "more weight" (heavier) or "more size" 

(larger). To test whether a system understands the difference between dimensions, it is 

necessary to not only assess whether it is able to correctly rank order entities with respect to 

various dimensions. It also requires investigating whether the entities are correctly rank ordered 

when the values of the dimensions are pitted against one another. For example, while a balloon 

is larger than an apple, an apple weighs more than a balloon. Presenting a system with such 

carefully constructed pairs can allow us to fully evaluate the extent of its knowledge. In the 

second hypothesis, T5 has no understanding of physical dimensions like size and weight. This 

would be implied if the rank order of entities in terms of these dimensions did not differ from 

chance rank orderings. In the last hypothesis, T5 understands some physical dimensions better 

than others, and it may use the better-understood dimensions to understand the less well-

understood dimensions. This would be indicated by situations in which the system appears to 
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correctly rank order entities with respect to one dimension, but it ultimately fails to do so when 

controlling for another dimension.  

1.1 Related Works 

Understanding common sense has always been an important goal for natural 

language processing (NLP) researchers, and many datasets have been created for 

language models to trained on to reach this goal.  PIQA is a dataset created for physical 

commonsense reasoning in natural language (Bisk et al., 2019). It includes statements 

about the physical word, such as To separate egg whites form the yolk using a water 

bottle, you should… A model is expected to choose the most sensible solution, 

specifically a) Squeeze the water bottle and press it against the yolk. Release, which 

creates suction and lifts the yolk. b) Place the water bottle and press it against the 

yolk (Bisk et al., 2019). T5-11B has an outstanding performance on the dataset after 

fine-tuning. ReCoRD is a reading comprehension dataset requiring commonsense 

reasoning (Zhang et al., 2018), and T5-11B has 93.4% accuracy rate on the dataset 

(Raffel et al., 2019). Note that all of the existing commonsense datasets were able to 

focus on complex commonsense reasoning and require extra training the pre-trained 

language models on downstream tasks.  

Shortly after Kim, Elli, and Bedny's study on congenital blind adults' knowledge in 

animal appearance, Lewis, Zettersten, and Lupyan (2019) used vector distances between 

representations of animal words and related target words (e.g., shark-skin vs. shark-feathers) 

to mimic tests performed in the human study. They found that the semantic representations 

learned from language significantly correlate with human judgements on animal shape, skin 

texture, and color (Lewis, Zettersten, & Lupyan., 2019).  

In this paper, we aim to explore T5 's knowledge in basic commonsense like 
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size, weight, shape, and color, and we want to see its pre-trained performance without 

being further finetuned on the task and the dataset.  

 

Figure 1: Two main parts of a transformer: Stacks of encoders and decoders that contextualize word 

embeddings. Words are processed in parallel in the encoder and sequentially in the decoder. 

 

1.2 Transformers 

A transformer architecture is a type of statistical learning system that includes multiple 

layers of feed forward networks preceded by an attentional mechanism that determines the 

degree to which the "meaning" of a word in a sequence of words is "colored" by the meaning 

of other words in the sequence. Training is driven by ambiguity resolution: words in the input 

sequence are masked and the network attempts to predict the word or set of words behind the 

mask. Training is computationally intensive and can take several weeks to complete. 

Fortunately, previously trained networks can be freely downloaded. 

In this research, we used the recently introduced Text-To-Text Transfer Transformer 

(T5) (Raffel, et al. 2020). T5 is in a certain sense an old model because it uses the transformer 
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architecture first proposed in Vaswani et al. (2017). In its original formulation, a transformer 

has two main parts: a sequence of encoders and a sequence of decoders. The idea behind an 

encoder and decoder is made most transparent in language translation problems. The encoders 

are used to read in and "comprehend" the sentences from one language (e.g., French), while 

the decoders "generate" text in the second language (e.g., English). One of the many 

innovations in T5 is that it extends this basic idea to a range of language tasks: translation, 

grammaticality judgments, sentence similarity assessment, summarization, and question 

answering. It can also complete a sentence, as shown in Figure 1.   

The processing begins with the encoder and involves accessing embeddings for each of 

the input words (or word tokens). A word embedding is essentially a point in a semantic space. 

Over the layers, the embeddings are modified by the encoders depending on the other words in 

the input. For example, in the phrase Run a campaign, contextualization allows the meaning of 

the word run to take on the meaning suited to campaigns, as opposed to, for example, miles. 

The ability to contextualize word embeddings is one of the key ways these models differ from 

those that produce static, context-free embeddings, such as Word2vec (Mikolov, et al., 2013) 

or Glove (Pennington, Socher, & Manning, 2014).  The contextualization process occurs in 

real-time and is bidirectional, entailing that the process uses words on both sides of the target 

word. Contextualization depends on self-attentional mechanisms present in each encoder (and 

decoder). Self-attention reflects the degree to which a word is linked to other words in a 

sentence. The strength of this connection determines the impact each word will have on a word 

embedding. Several self-attention weight matrices are learned for each encoder. The self-

attention matrices direct the encoder to weigh connections between verbs and their 

complements, pronouns and their referents, and ambiguous nouns and other nouns. Having 

multiple self-attention matrices—or heads—allows the encoder to capture the full range of 

dependencies in a sentence. 
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The encoders map an input sequence into a continuous abstract representation. The 

decoders then take that continuous representation and generate words in a step-by-step manner, 

using the previous step's output as input on the current step. In addition, the decoders' output 

is constrained by attentional vectors formed from the output of the top encoder. The inclusion 

of both encoders and decoders is one of the ways T5 differs from several other recently 

transformer-based models, such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019), 

which include only the encoder part of the transformer. T5 model comes in several sizes, as 

specified in Table 1.  

Table 1 shows the five T5 models, along with BERT-Large and RoBERTa-Large for 

comparison.  

Model Parameter

s 

# layers # heads 

T5-Small 60M 6 8 

T5-Base 220M 12 12 

BERT-Large 336M 24 16 

RoBERTa-Large 355M 24 12 

T5-Large 770M 24 16 

T5-3B 3B 24 32 

T5-11B 11B 24 128 
 

Table 1: Model size variants 

 

T5-small is significantly smaller than BERT-Large and RoBERTa-Large. T5-Large is 

approximately the same size as these two other networks. T5-11B is quite large, containing 11 

billion parameters and requires approximately 40GB of memory on a GPU. The model can also 

be run on a CPU on a system having 120GB of RAM.  

A second major innovation of T5 is the manner in which it is trained. In BERT and 

RoBERTa, the target for an individual mask is associated with a single word piece. In T5, the 

target for a mask can be several words. For example, given the original sentence is An elephant 

is larger than a goat, T5 might be presented with the string An elephant is <X> a goat, with 
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the target being several words, namely <X> larger than <Y>. Multiword targets are made 

possible through the use of the stack of decoders.  

   All versions of T5 were trained on a cleaned version of the common crawl called the 

Colossal Cleaned Common Crawl (C4). The training corpus is over two times larger than 

Wikipedia. The largest version of the model, T5-11B, achieved state-of-the-art performance 

results on the GLUE, SuperGLUE, SQUAD, and benchmarks, which involve natural language 

processing tasks such as sentiment analysis, question answering, grammaticality judgments, 

paraphrase detection, selection of plausible causes and results, textual entailment detection, 

intended meaning detection, and reading comprehension with commonsense reasoning (Raffel, 

et al. 2020). As already stated, the reason why T5 succeeds on these tasks is likely due to its 

ability to acquire knowledge of both language and the world.  

If we find that a model like T5 is unable to learn physical perceptual properties of the 

world, it will provide modest support to the proposal that a learning system devoid of any 

perceptual senses is unable to capture perceptual properties of the world. On the other hand, if 

T5 is able to capture certain properties of the physical world, it would suggest that physical 

senses are not a prerequisite for perceptual knowledge and that properties of the perceptual 

world can be acquired from language alone, contra Lock.  

 We investigated T5’s knowledge of animal size, weight, shape, and color, as well as 

objects size and weight. It is certainly possible that T5 could show limited evidence of such 

knowledge, but far below that of human judgments. Under these circumstances, it would be 

good to know if the limit is a fundamental property of these statistical systems or else, possible, 

simply a function of the size of the system. To address this question, T5's knowledge was 

investigated for different model sizes. If the knowledge increases with model size, it would 
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suggest that any limits in its knowledge might be a simple matter of the model's capacity rather 

than an inherent limitation of the architecture.
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Chapter 2 

 

Experiment 

2.1 Study 1: T5's Knowledge of Animal Size 

In Study 1 we attempted to replicate judgments of humans about the relative size of 

animals reported in Kim, Elli, and Bedny (2019). In Kim et al., blind and sighted participants 

were presented with index cards with the names of animals on them. For the bind participants, 

the names were printed in Braille. Their task was to order the cards from smallest to largest. 

The relative ordering of the blind and sighted individuals were nearly identical. In the current 

study, we assessed T5's knowledge of size by generating cross-entropy loss scores to statements 

such as A cat is smaller than a bear and compared these scores to those in which the order of 

the animals was reversed, e.g., A bear is smaller than a cat. To the extent that T5 has knowledge 

of size, then loss scores should be lower for orderings that agree with the relative ordering of 

sizes made by humans. To help establish the generalizability of T5's knowledge, comparative 

size statements were expressed using three different comparative size adjectives: smaller, 

larger, and bigger.

In addition, we investigated the impact of providing a small amount of linguistic context 
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on T5's judgments. In the context condition, the key sentence was preceded with a few 

sentences introducing the topic of animals. Specifically, T5 was first presented with the 

sentences Animals live outside. They breathe and drink water. They also differ in size, before 

being presented with the comparative statement A cat is smaller than a bear. The context was 

included because prior pilot work with another transformer, XLNet (Yang, et al., 2020), 

suggested that performance of these networks may be improved when context is provided to 

"warm them up. " 

This study would help us to investigate if T5 have at least some knowledge about how 

entities differ along one dimension, which could help us to evaluate the hypothesis that T5 does 

not have any knowledge about physical dimensions. 

2.1.1 Methods 

Materials The list of animals (n = 15) was the same as those investigated in (Kim, Elli, & 

Bedny, 2019) as shown in Table 2.   

 

Animal Names 

mosquito 

bee 

butterfly 

toad 

pigeon 

raven 

cat 

koala 

turkey 

sheep 

donkey 

cow 
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    bear 

rhino 

elephant 

 

Table 2: List of animals (from the smallest to the largest) 

import torch 

from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration 

 

T5_PATH = 't5-11b' 

 

DEVICE = torch.device('cpu') 

 

t5_tokenizer = T5Tokenizer.from_pretrained(T5_PATH) 

t5_config = T5Config.from_pretrained(T5_PATH) 

t5_mlm = T5ForConditionalGeneration.from_pretrained(T5_PATH, 
config=t5_config).to(DEVICE) 

 

input_ids = t5_tokenizer(text = 'A cat is <extra_id_0> than a bear', 
return_tensors='pt').input_ids.to(DEVICE) 

labels = t5_tokenizer('<extra_id_0> smaller <extra_id_1> </s>', 
return_tensors='pt').input_ids.to(DEVICE) 

outputs = t5_mlm(input_ids, labels = labels) 

 

print(outputs.loss.item()) 
 

Figure 2: A python implementation printing out cross-entropy loss of A cat is smaller than a bear with a mask 

on the token smaller 

 

Procedure Comparative sentences (n = 210) were generated with different pairs of animals 

and three kinds of degree adjectives (smaller, larger, bigger), e.g. A cat is smaller than a bear. 

T5 was credited with understanding the relative size difference of two animals when the cross-

entropy loss was lower for the correct ordering. A snippet of python code printing out cross-

entropy loss is shown in Figure 2. Correct understanding was coded with a 1 and incorrect 

understanding with a 0. In this and the following analyses, we used the HuggingFace 
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implementation of T5 (Wolf, et al., 2020). 

 

Figure 3: Accuracy of T5 models on animal size with context sentences. Error bars are 95% confidence 

intervals. 

2.1.2 Results and Discussion 

The results indicate that T5 has knowledge of the relative size of animals. The overall 

mean accuracies for different versions of T5 are shown in Figure 3. The results suggest that 

T5-large and T5-11B have access to perceptual information about size, as indicated by 

accuracies that differed from chance by binomial test, p = 5.16e-25 and  p = 9.13e-69. However, 

there is no evidence that T5-small has access to this information, p = .652. Difference in 

performance across the models was confirmed by a main effect of model-type, F(1,312)=4257, 

p < .0001. Interesting, accuracy was higher when there was a preceding context than not, 

F(1,312)=128, p < .0001, suggesting that such systems may benefit from a short priming of the 

topic. There was also an effect of adjective type, F(2,624)=7.51, p = .001. However, this effect 

occurred only in the absence of context, with accuracy being higher for the small than large 

and big. Overall, we conclude that the results were largely the same across adjectives, 

especially when there was a preceding context, suggesting that the knowledge is not tied to a 

particular linguistic expression. Crucially, knowledge of relative size of animals is very robust 

in T5-11B, implying that networks with transformer architectures may be able to approach 

blind individuals' understanding of this dimension of experience. The results suggest that T5 
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has some knowledge about the physical world, and thus the second hypothesis that T5 has no 

understanding of the physical world is rejected. 

2.2 Study 2: T5's Knowledge of Animal Weight 

In Study 2, we investigated if T5 understands another dimension – weight. If T5 does 

have knowledge about weight, then we can construct pairs with items having inconsistent 

weight and size to evaluate the first hypothesis. The design and implementation of Study 2 was 

analogous to Study 1, except that instead of size, we investigated T5's knowledge of weight, a 

perceptual property that presumably depends on haptics, but is likely also informed by size. 

Weight was not examined in Kim, Elli, and Bedny (2019), but we could use relative size as an 

indicator of the correct responses. 

2.2.1 Methods 

Material The analyses used the same list of 15 animals as in Study 1. 

Procedure We ranked the animals in the list from the lightest to the heaviest based on their 

size. The texts were generated in the same way as in Study 1 except that we replaced the 

adjectives with "weighs more" and "weighs less". A context was preceding each text, 

specifically: Animals live outside. They breathe and drink water. They also differ in weight. 

Afterwards, T5 was presented with sentences like A raven weighs more than a bee. 

   The procedure of comparing cross-entropy loss in Study 1 was performed to generate 

accuracy scores. 
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Figure 4: Accuracy of T5 models on animal weight with context sentences. Error bars are 95% confidence 

intervals. 

 

2.2.2 Results and Discussion  

The results indicate that the larger versions of T5 have world knowledge about the 

relative weight of animals. The overall mean accuracies for the differently sized models are 

shown in Figure 4. The results were highly similar to those of size. Accuracy scores for T5-

large and T5-11B differed from chance, p = 3.47e-33  and  p = 9.03e-12, but accuracy scores 

for T5-small did not, p = .945. Weight represents a type of force. The results raise the possibility 

that large transformer models like T5-11B may learn visual information about the world and 

invisible information like forces, which could prove crucial in identifying and reasoning about 

causes and results (Wolff & Shepard, 2013). As stated above, we cannot conclude that T5 

understands different dimensions yet since animal size and weight are linearly correlated – a 

heavier animal will have a larger size. It is possible that T5 only understands that one animal 

is "more" than the other.  

2.3 Study 3: T5's Knowledge of Animal Shape 

In Study 3 we investigated T5's knowledge of animal shape. Unlike size and weight 

which can be reduced to a single dimension and referred to by an adjective, shape is inherently 
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multidimensional and more difficult to describe. Instead of focusing on a single dimension, T5 

was presented with sentences describing each animal with respect to a range of shape-related 

adjectives like long, short, thin and thick. For example, T5 evaluated the acceptability of 

sentences like A giraffe is long or A sloth is thick. The result was an animal-by-shape-dimension 

matrix of cross-entropy scores. The dimensionality of the matrix was reduced and submitted to 

k-means clustering. In Kim et al. (2019), people's sorts of animal names were used to place 30 

animals into one of 8 categories with respect to shape. We created 8 clusters from the animal-

by-shape-dimension matrix and evaluated the degree to which these clusters agreed with those 

produced by participants in Kim et al. Given the superior performance of T5-11B, we focused 

on only that variant for the following analyses. 

2.3.1 Methods 

Materials The analyses used the list of 30 animals that were used in animal shape card 

sorting task (Kim, Elli, & Bedny, 2019). Their names are shown in Table 3. 

Animal Names 

dolphin 

shark 

killer whale 

bat 

pigeon 

crow 

swan 

flamingo 

beaver 

skunk 

sloth 

panda 

polar bear 

grizzly 



Experiment                                                                                                                                                 17 

 

 

gorilla 

mammoth 

elephant 

hippo 

rhino 

pig 

boar 

sheep 

goat 

zebra 

deer 

llama 

giraffe 

lion 

panther 

cheetah 

 

Table 3: List of animal names used in Study 3 and Study 4. 

Dimension Pole 1 Pole 2 

length long short 

straightness straight curved 

thinness thin thick 

squareness circular square 

orientation vertical horizontal 

roundness rounded angular, pointed 

 

Table 4: List of animal shape adjectives. 

Procedure We introduced 13 different adjectives describing animal shape as shown in Table 

4. The texts were generated in the pattern that contains a noun (animal) and an adjective 

(shape), e.g. The shape of a giraffe is vertical. With 30 animals, 30 texts were generated for 

each adjective. A context preceded each text: specifically, Animals live outside. They breathe 
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and drink water. They also differ in shape. We used T5 to predict the adjectives and took the 

cross-entropy loss as a raw score for each text. The dimensionality of resulting cross-entropy 

matrix was reduced to three dimensions using the IVIS dimensionality reduction framework 

(Szubert et al., 2019), which does a better job of preserving both local and global structure than 

linear projection methods such as Principal Components Analysis (PCA) and other non-linear 

dimensionality reduction methods such as t-SNE (Maaten & Hinton, 2008). The reduced space 

was partitioned into 8 clusters using the k-means++ algorithm available in scikit-learn 

(Pedregosa, et al., 2011). 

 

 

Figure 5: Text plot of animals clustered with respect to shape as determined by  T5. 

 

2.3.2 Results and Discussion 

The results indicate that T5-11B has knowledge of animal shapes. Agreement between 
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the eight human and T5 clusters was achieved by identifying the most common cluster label 

generated by T5 for each human category, counting the number of times that label occurred 

within each human category and dividing by the sum of the counts by the number of animals. 

This measure indicated that the clusters produced from T5 overlapped 70% with those of 

humans. Assuming a chance level of agreement of .399 (based on simulations), the clusters 

produced from T5's scores differed from chance by binomial test, p = .001. A textplot of one 

of the solutions produced from T5 is shown in Figure 5. 

2.4 Study 4: T5's Knowledge in Animal Color 

In this study we investigate T5’s knowledge of animal colors. Unlike shape, languages 

like English make it relatively easy to refer to color. However, animals are not uniform in color, 

as exemplified by zebras, killer whales, and giraffes. Given the multi-dimensional nature of 

animal colors, Kim, et al. (2019) measured knowledge of animal colors in terms of eight color-

combination categories, as they had done with shape. As a consequence, we measured 

knowledge of animal colors in the same way we did in Study 3. T5 evaluated sentences such 

as A gorilla is yellow or A gorilla is black. The resulting matrix of cross-entropies was reduced 

in dimensionality and partitioned into eight clusters. Finally, we measured the degree of overlap 

between the clusters formed by humans in Kim et al. (2019) and those produced by T5. 

2.4.1 Methods 

Materials The analyses used the same list of 30 animals as in Study 3, and the animal names 

are shown in Table 3. 

Procedure We introduced 6 different adjectives that can be used to describe the color of the 

animals in the list (black, white, brown, grey, yellow, blue). The texts were generated in the 

same way as in Study 3, except that the adjectives describing shapes were replaced with 

adjectives describing colors. With 30 animals, 30 texts were generated for each adjective. We 
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used T5 to predict the adjectives and took cross-entropy loss as a raw score for each text. 

 

Figure 6: Text plot of animals clustered with respect to color as determined by T5. 

 

2.4.2 Results and Discussion 

T5 demonstrated less knowledge about color than the other perceptual dimensions. 

Agreement between the eight human and eight T5 clusters was 60%, differed from chance 

(.399), p = .021, but not as strongly as what was observed for the other perceptual dimensions. 

A textplot of the solution produced by T5 with respect to color is shown in Figure 6. Several 

of the clusters seem intuitive, such as the cluster containing animals that are black (bats, 

panthers, crows, and gorillas) and white (swan, polar bear), but several others are less clear, 

such as the cluster containing hippos, sloths, and pigeons. We conclude that T5 has relatively 

limited knowledge of animal colors.  

2.5 Study 5: T5's Knowledge in Object Weight and Size 
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In study 1 and study 2, T5 demonstrated its knowledge in animal's weight and size. In 

the case of animals, weight and size are linearly correlated, and thus a larger animal will have 

a larger weight. However, the linear correlation does not hold in many other cases. For example, 

a balloon can be larger than an apple, but an apple is heavier than a balloon. This raises the 

question whether T5 really knows about animal size and weight or it just compares objects 

based on a general sense of  "more". In Study 5, we created a list of pairs of objects based on 

the contrast of their weight and size. For example, magnet and leaf are a pair: magnet is "more" 

in terms of weight, while leaf is "more" in terms of size. For each pair, an analysis similar to 

Study 1 and Study 2 were conducted to see if  T5 had knowledge in the objects' weight and 

size.  

2.5.1 Methods 

Material  A list of 15 pairs of objects was created as shown in Table 3. 

Larger Smaller 

Lighter Heavier 

straw fork 

napkin watch 

paper knife 

bed sheet laptop 

leaf magnet 

feather ice cube 

sail car 

beach ball bowling ball 

tissue spoon 

flag laptop 

parachute motorcycle 

spider web apple 

balloon brick 

envelope  stone 
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shirt glass 

 

Table 4: Pairs of objects. 

Procedure Comparative sentences (n = 120) were generated with different pairs of objects 

and six kinds of degree adjectives, namely larger, smaller, (weighs) more, (weighs) less. T5 

was credited with understanding the relative size or weight differences of two objects when the 

cross-entropy loss was lower for the correct ordering. Correct understanding was coded with a 

1 and incorrect understanding with a 0. A context sentence was added preceding each 

comparative sentence, specifically Different objects have different sizes for larger/smaller 

comparison and Different objects have different weights for weighs more/weighs less 

comparison. 

 

Figure 7: Accuracy of T5-11B on object weight and size with context sentences. Error bars are 95% confidence 

intervals. 

 

2.5.2 Results and Discussion 

The overall mean accuracies for weight and size are shown in Figure 7. The results 

indicate that T5 has knowledge of the relative weight but poor knowledge of the relative size 

of the objects with inconsistent weight and size. The results suggest that T5-11B has access to 

perceptual information about weight, as indicated by accuracies that differed from chance by 
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binomial test, p = 8.43E-06. However, T5-11B understands perceptual information about size 

in an opposite and incorrect way, p = .01612. Overall, we conclude that the knowledge of 

relative weight of objects is very robust in T5-11B, but its knowledge of relative size of objects 

seem to rely on its knowledge of relative weight. This can be an evidence opposing to our 

conclusion in study 1 that T5-11B has knowledge of relative size of animals, which rejects the 

first hypothesis that T5 understands different dimensions. This leaves us the third hypothesis 

that T5 understands certain physical dimensions better than other dimensions, and it potentially 

uses the better understood dimensions to understand the less well understood dimensions.
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Chapter 3 

 

General Discussion 

 

In this research we investigated the perceptual knowledge of a model organism having 

extensive experience with language, but no direct or indirect experience with physical 

quantities in the world. Remarkably, this fully disembodied organism demonstrated high levels 

of sensitivity to physical features of the world. The results establish that the information needed 

to learn perceptual features of animals is present in language. The results suggest that the 

model's success is not due to the simple retrieval of pieces of statements about the perceptual 

characteristics of animals. If performance was merely a matter of memory retrieval, the 

systems' awareness of the colors of animals should have been much stronger than was observed. 

Seemingly, the results largely mirror the results found in Kim, Elli, and Bedny (2019), with 

agreement between sighted and blind participants highest for size, then shape, and then 

relatively poor for color. Results from Study 1 and Study 2 show that T5 can correctly rank 

order animal size and weight. However, these results can only indicate that T5 understands 

some dimension of the physical world, which rules out the second hypothesis that T5 

does not understand any dimension in physical world.  Results from Study 5 show that T5 
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cannot correctly rank order object size if the objects have inconsistent weight and size. This 

implies that T5 is not able to assess different entities along different dimensions, which rules 

out the first hypothesis and leaves us the third hypothesis – T5 understands some dimensions 

better and uses the better-understood dimensions to understand the less well understood 

dimensions.  As the accuracy of size ordering in Study 5 is low and statistically different from 

chance, we can reasonably imply that T5's perception of size is based on its perception of 

weight which is shown to be T5's robust physical world knowledge in Study 2 and Study 5. 

The pattern of results suggests that statistical systems such as T5 may offer a powerful model 

organism for mining the conceptual system. 

In this research, we aimed to replicate some of the studies in Kim et al.’s work (2019), 

but we failed to do so in Study 3 and Study 4 due to T5's incapability of doing classification 

without being fine-tuned. In Study 3, we used adjectives describing shape to evaluate T5's 

knowledge of the shape of different animals. However, the subjects did not have access to these 

adjectives but directly sorted the animals based on their shape. Similarly, T5 did not sort the 

animals but evaluated each color associated with different animals. In future studies, human 

data should be collected on tasks similar to T5's tasks, so that the potential confounding 

variables can be eliminated. In Study 5, we used only 15 pairs of objects, which is a small 

dataset compared to the 105 animal pairs used in Studies 1 and 2. We would like to create more 

such pairs for T5 investigate the generalizability of the results. Throughout the research, we 

only tested T5’s knowledge in animals and objects’ physical properties, but there exists many 

other outstanding language models. Even though T5 fails on the object size task in Study 5, 

other models might succeed. Therefore, more models should be tested in future work. 

  Why does T5 understand weight better than size? One possibility is that weight is a 

dimension that enters into our understanding of "power" and "stability", and that these notions 
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might have more causal impact than relative size. Another possible account is that weight is 

more reliable than size. In general, weight reflects quality of an object, and quality is a 

relatively stable dimension. It is possible to "make up" size without modifying quality, but it 

would be impossible to "make up" quality. Take the sponge for example: one can squeeze a 

sponge and make it much smaller than the original size, but its quality would not change.  

 The current study provides evidence showing that knowledge of the physical world 

does not inclusively come from perceptual experience. Instead, physical properties like weight 

and shape can be derived from language alone.  
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