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Abstract 

 

The Application of Satellite Remote Sensing in Time-series Study of Associations between 

PM2.5 and Pediatric Asthma/Wheeze Emergency Department Visits in Metropolitan Atlanta  

By Xueying Zhang 

 

An increase in emergency department visits for respiratory diseases was observed in 
association with the short-term exposure of ambient air pollution. This association was 
investigated among children from 5 to 17 years old due to their immature and sensitive 
respiratory system. Traditional air pollution studies have limitations of collecting data with 
inadequate coverage and coarse resolution. The satellite remote sensing (RS) technique 
may help resolve this problem. This study examined the association between RS modeled 
air pollution and pediatric asthma/wheeze emergency department (ED) visits in 
metropolitan Atlanta during 2001 through 2007. After controlling for meteorological and 
holiday effects,  a 10 µg/m3 increase in three-day moving average PM2.5 was positively 
associated with ED visits, rate ratio (RR) = 1.026, 95% confidence interval (CI) = 1.014, 
1.040. The seasonal specific RR is 1.024 (95% CI =0.998, 1.031) for warm season (May 
through October), and 1.043 (95% CI = 1.023, 1.064) for cold season (November through 
April). Compared to previous SOPHIA studies, our study obtained slightly different RR with 
a small range of differences from 0 to 2.9%, and the effects of two seasons were somewhat 
inconsistent with past SOPHIA studies. In conclusion, the modeled ambient PM2.5 exposure 
is associated with exacerbation of pediatric asthma and wheeze in Atlanta; RS provides high 
resolution exposure data, which will contribute to the precision of epidemiological studies.  
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BACKGROUND 

Particulate matter is regarded as one of three most important pollutants in ambient air, 

with ozone (O3) and nitrogen oxides (NOx) (Burtscher and Schuepp 2012). The 

toxicology of particulate particles is strongly associated with their size (Dockery et al. 

1993).  Due to its tiny sizes, most particulate matter with aerodynamic diameter lower 

than 2.5 µm (PM2.5) are able to penetrate the bronchioles into epithelia and lead 

damages to lung endothelial cells(Giere et al. 2006). Animal and human toxicological 

studies supported that hypothesis (Konczol et al. 2012; Konczol et al. 2013; Li et al. 2003; 

Zanini et al. 2013). Nowadays, the world-wide increase of air PM2.5 has become a global 

fast-growing health threat.  In the 8 years‟ follow-up of Harvard Six Cities Study (Laden 

et al. 2006), a significant raise of mortality was observed with each 10 μg/m3 increase in 

ambient PM2.5 (RR= 1.14, P-value= 0.0003). Within their study results, cardiovascular 

mortality was positively and significantly associated with daily average PM2.5 

concentrations; this associations were also positive but weak with respect to lung cancer 

mortality and respiratory diseases mortality (P-value=o.1 for lung cancer, P-value= 0.63 

for respiratory diseases). Correspondingly, in a recent acute study conducted by Andrew 

W. Correia, with every 10 μg/m3 decrease in the PM2.5 concentrations, the average life 

expectancy will increase by 0.35 years in the U.S. (SD = 0.16 years, P = 0.033)(Correia et 

al. 2013). Considering the high risk of human health, PM2.5 is under tracked by the U.S. 

government currently (Nel 2005). The U.S. Environmental Protection Agency (EPA) has 

built different air pollution surveillance systems with which gave great convenience to 

researchers. With these surveillances, researchers can extract the air pollution data they 

were interested under different study purposes. For example, Environmental Protection 

Agency Aerometric Information Retrieval System [AIRS](Laden et al. 2006), air quality 

data for CDC National Environmental Public Health Tracking Network(Wilhelm et al. 

2008), and Air Quality System Technology Transfer Network(EPA) 2009), etc. These 
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surveillance systems included daily or even hourly PM2.5 data in a large geographical 

range. Besides, some studies had their own PM2.5 measurements. From the exposure 

data collected with either surveillance systems or researchers themselves, we know the 

regional and temporal emission, composition, and kinetics of PM2.5, which were 

extremely various in spatially and temporally.(Wallace et al. 2003) So the adverse health 

effects related to the PM2.5 were also dynamical at the dimension of locations and time. 

When facing of this complex situation, epidemiologists took advantages of flexible 

methology to represent air pollution as study exposure and designed different studies to 

investigate the regional and temporal association between PM2.5 and adverse health 

outcomes. (Tecer et al. 2008) People in difference ages have distinguished sensitivities 

toward air pollution exposure.  And children‟s high sensitivity of air pollution is 

determined by their continuing process of lung growth, incomplete metabolic systems, 

immature host defenses and activity patterns.(World Health Organization 2005) Then 

recent epidemiological researches focus on the health effects of air pollution on 

potentially sensitive population sub-groups such as children in order to better 

understand the mechanisms of action and identify the most susceptible population 

groups for the purpose of protecting and improving children‟s health(Darrow et al. 2012; 

Samoli et al. 2011; Schwartz and Neas 2000; Silverman and Ito 2010; Strickland et al. 

2010). In their findings, the positive and obvious associations between PM2.5 and 

children‟s exacerbation of respiratory problems were in an agreement with the 

established toxicological studies (Baccarelli and Kaufman 2011; Karakatsani et al. 2012; 

Samoli et al. 2011). More pediatric asthma and wheeze cases occurred if PM2.5 

concentrations increase. The study strategies of obtaining the valuable results were 

varied with researcher‟s study designs, for example, the regression models used in 

analyzing the associations were built with different exposure of interests and other 

covariates in different studies‟ regions. The regional effects were studied based on where 
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the exposure and outcome data were collected from, researchers fitted regressions 

models based on their study purpose and selected covariates based the characters of 

their data. And the temporal effects from PM2.5 exposure were studied separately from 

long-term effect to short-term effect. The associations between PM2.5 and health 

outcomes maybe confounded by people‟s living locations, seasons and meteorological 

factors (Mustafic et al. 2012; Samet et al. 2000). In the studies of long-term effect, birth 

cohorts were frequently used to analyze how the air pollution give occurrences to the new 

cases of asthma among young children (Gruzieva et al. 2013; Jung et al. 2012). The birth 

cohort is defined as a cohort which the study population being born at a particular same 

time(Kenneth J. Rothman 2008). By this way, the effect of exposure in the cohort that 

exposed on a special time could be compared with people who have not exposed during 

that time. The adverse health effect could be the over-one rate ratio or mortality. The 

short-term effect was studied with different epidemiological methods. As the air 

pollution exposure is easy to identify with existed surveillance systems and advanced 

technique, we can link today‟s health data with this day‟s air pollution data, to assess 

whether a short, harsh exposure will also lead to the changes of diseases‟ risks. For 

example, the risk of heart failure hospital visits increased 1.28% (increases of 95% 

confidence interval, 0.78%-1.78%)  with every 10 μg/m3 increase 0f PM2.5 in the same 

day(Dominici et al. 2006).  In hospital-based study, the health outcomes are usually 

recorded as binary variables (e.g. 1= asthma, 0=not) in an individual patient‟s hospital 

record, but in a population scale, the degree of how serious health problems it is will be 

reflected by the daily counts of emergency room (ED) visits. Because of the Nation‟s 

rapid demographic changes, rising numbers of uninsured patients and difficulties in 

making appointment, EDs has become more popular because of their convenience and 

accessibility (Neelon et al. 2013). Otherwise, for diseases as acute as asthma, ED patient 

is an ideal source population for epidemiological studies. The hospital ED visits are 
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considered as Poisson distributed. In the study of binary outcomes in a rare situation 

and the baseline number is constant, Poisson regression is usually recommended (Zou 

2004). Poisson regression model is one type of generalized linear models (GLM)(P. 

McCullagh 1989). The GLM is expressed through the link function, which is constructed 

by a known monotonic function that transforms the expectation of the responses to a 

scale on which they are set to link with independent variable. The Poisson regression 

model corresponded to the GLM with log link. The Poisson regression can be used to 

estimate the relative risk on time scale, so that with it we can calculate the risk of 

primary outcome‟s exacerbation comparing between different levels of exposures, 

adjusting for potential temporal and spatial factors. Studies involved with Poisson 

regression were shown various levels of associations between short-term air pollution 

exposure and childhood asthma‟s exacerbations (Strickland et al. 2011; Wu et al. 2012). 

Case Cross-over design is another common type of GLM model. In case-crossover design, 

the cases are compared with themselves between periods of exposure and non-exposure, 

or different exposure levels. Therefore, self-matching of cases avoids the selection bias in 

selecting study controls then increase efficiency(Maclure 1991). According to the 

Faststats report(CDC), in present, about 26 million people in U.S. has asthma and one 

third of them are children under 18 (7.1 millions)(Centers for Disease Control and 

Prevention 2012). The national mortality of asthma was 0.3 per 100,000 among children 

5-14 in 2010(Centers for Disease Control and Prevention 2010). Approximately 297,000 

(12%) children aged 0-17 years old have asthma in Georgia. In average, 113 asthma 

deaths per year in the whole state from 2001 to 2007 (The Georgia Department of 

Community Health 2010). The Atlanta metropolitan area‟s air pollution and its 

association with pediatric asthma has been studied previously, include time-series 

analysis, the impact from Olympic Games, etc. (Friedman et al. 2001; Tolbert et al. 2000) 

Details on previous time-series studies were discussed in later sections. City of Atlanta is 
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a good candidate for study the adverse health effects caused by air pollution because of 

its established hospital admissions network, large diverse population, distinguished cold 

season and warm season, and severe air pollution bring by the fast growing urban 

construction. What is more, regional effects may also confound the results in large-scale 

study. So by studying with a single city, we can avoid the bias caused by the variation of 

exposure-response effects among cities. In modern air quality relevant epidemiological 

studies, the pollution data were usually collected by EPA or other ground air pollution 

monitoring networks. Therefore, the coverage of pollution data was limited to the areas 

where EPA ground monitors located. As to operate and maintain such networks are very 

expensive (Liu et al. 2005), we need a cost-effective, easy-to-do way to obtain valid air 

pollution data. Moreover, the preponderance of health studies suggests that there is no 

PM exposure threshold over which adverse health effects will occur (Chow et al. 2006). 

What is more, even within a city, air quality was a mixed situation of the intensity and 

spatial distribution of human activity and emission, the distribution of pollutants were 

also decided by the regional emission, urban planning and the regional meteorological 

factors(Kurtzweg 1973). Then to understand the effects of fine particles on exacerbation 

of children‟s respiratory syndrome, it is necessary to obtain PM2.5 concentrations on a 

board-wide basis, with a high spatial resolution. 

As a approach of collecting data without a direct contact, the techniques of satellite 

remote sensing (RS) have the potential to revolutionize the discipline of epidemiology 

and its application in epidemiologic study.(Hay 2000) In the study of air pollution, RS 

helps increasing the coverage of pollution measurements. At the places where air quality 

data is not available from on-site monitors, RS models can be used to estimate pollutants‟ 

concentrations. (Liu et al. 2005) For example, aerosol optical depth (AOD) data retrieved 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor were used to 

estimate ground-based particulate matters collected by US Environmental Protection 
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Agency (EPA) monitoring networks (Engel-Cox et al. 2004). In the approach of assessing 

data in a small domain, satellite observations of AOD, a measurement of light extinction 

by aerosols in the total atmospheric column (Stohl et al. 2006), are used to calculate 

domain-level concentrations of fine particulate matter (PM2.5). With this technique, we 

can obtain a point estimate of PM2.5 concentrations, and take use of it to investigate 

whether there is a significant association between PM2.5 exposure and childhood 

respiratory syndrome ED visits in this small area. We can also perform an analysis 

adjusting for other considerable variables in the predictive model, such as metrological 

factors. As another air pollution related respiratory syndrome, pediatric wheeze was also 

considered as an adverse health outcome of air pollution. The first study objective is to 

evaluate the association between pediatric asthma and wheeze ED visits and ambient air 

pollutions with predictive Poisson Regression Model. The quantitative association 

between pediatric asthma/wheeze and air pollution has been studied by different 

epidemiologists. However, few of them use highly modeled PM2.5 concentrations (Jerrett 

et al. 2005). The literature review helped verifying the validation of modeled PM2.5 

concentrations. Akinbami conduct a study with a sample (N=34,073) from 2001–2004 

National Health Interview Survey and the 2-month average air pollutant data from EPA 

Aerometric Information Retrieval System (AIRS).(Akinbami et al. 2010) Their study 

reported that for PM2.5, every increase of 5 µm/m3 caused the rate of pediatric asthma 

was insignificantly increased by 2%, with 95% confidence interval (0.97, 1.06); Restrepo 

had studied the association between asthma hospital admissions and ambient air 

pollutant in New York City. (Restrepo et al. 2006) In their findings in New York City, 

one-hour maximum PM2.5 was significantly associated with daily hospital asthma 

admissions (RR = 1.055, 95% CI = 1.008, 1.103).Moreover, the similar positive 

association between PM2.5 and pediatric asthma/wheeze was also found in Lewis‟ 

study.(Lewis et al. 2004) They built a cohort of 298 children with asthma and record 
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their daily respiratory symptoms for 14 days of each season over 11 seasons from 1999 to 

2002. The single pollutant logistic regression models they fit  shown that children living 

in the Southwest area of Detroit had elevated odds of wheeze in response to an 

interquartile range change in PM2.5, while this association was not observed among 

children living on the Eastside of Detroit. Therefore, the geographic differences of 

exposure-outcome responses were important when we are going to compare the results 

among studies with different databases. And the PM2.5 increase the risk of pediatric 

asthma in various degrees for separated cities even that their studies analyzed the 

associations with same model design (Stieb et al. 2009).  Therefore, in our study, the 

modeling consequences were compared with previous studies with same health database 

(SOPHIA). This is also a good way to evaluate the consistency between ground PM2.5 

concentrations and modeled PM2.5 concentrations, which is the second study objective. 

In addition to Lewis‟ study, the well-established link between the asthma ED visits to 

PM2.5 pollution may also not constantly cross the metropolitan Atlanta area.  
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DATA SOURCES 

1. Emergency Department (ED) Visits 

We obtain children‟s asthma and wheeze emergency department visits data from 40 

cooperated hospitals in metropolitan Atlanta recorded during 2001–2007, conducted as 

a part of the Study of Particles and Health in Atlanta (SOPHIA)(Tolbert et al. 2000). 

Using the International Classification of Diseases, 9th Revision, we defined emergency 

department visits for pediatric asthma as all visits with a code for asthma (493.0–493.9) 

or wheeze (786.09 before October 1, 1998; 786.07 after October 1, 1998) among children 

aged 5 to 17 years(Centers for Disease Control and Prevention 1979). We also identified 

emergency department visits for acute respiratory infections (codes 460.0–466.0) that 

did not have a code for from metropolitan Atlanta hospitals during 2001–

2007(Strickland et al. 2010). To calculate rate ratios (RRs) among ED visits, we 

considered each visit was independent. Such as, the ED visits counts were the number of 

admissions, no distinguish between primary visit and secondary visit.  

In our study, the participants were originally recorded with the zip code of their living 

address. To lower analysis bias caused by over-flowed zero values in the dataset, and also 

for the convenience of analysis, we regroup the 192 zip code districts to 101 grid cells 

with same totally number of visits counts as the zip code-based dataset. Those grid cells 

are in a same size, which were 12km x 12km squares. The geographic transformation 

strategy was that: If there are one or more zip code areas whose central points located in 

one grid cell, then the all ED visits in those zip code areas were aggregated into this grid 

call. The distribution of grid cells is presented in figure 1. 

2. PM2.5 data 
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The original PM2.5 ground measurements are the 24-h average EPA PM2.5 concentrations 

collected from the federal reference monitors (FRM) are downloaded from the EPA‟s Air 

Quality System Technology Transfer Network, contained data from 2001 to 2007. The 

AOD data we used were provided by NASA from MODIS satellite, MAIAC AOD products 

(Emili et al. 2011). A linear mixed effect model with day-specific random intercepts, AOD 

slopes, temperature slopes, and wind speed slopes was developed because AOD, 

temperature, and wind speed are all time-varying parameters. Then the model that used 

to spatially allocate stationary PM2.5 sources to a regional grid-cell as: 
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METHODS 

The first place study purpose was designed to examine short-term effects of PM2.5 on the 

exacerbations of pediatric asthma/wheeze and, in particular, to build predictive model to 

estimate the effects‟ variability with exposure of interests and considerable covariates. 

The pediatric asthma/wheeze emergency department visits by zip code were matched 

with our exposure estimates for each 12 km x 12km grid cell it fell into. The statistical 

analyses of these time series data involved two steps.  Firstly, a statistical model was 

evolved time-series to describe the temporal patterns of the ED visits. In the time-series 

analysis, we analyzed whether the childhood asthma will get exacerbate after short-term 

exposure of PM2.5 by using a statistical model which was constructed with terms of 

seasonal and temporal pattern of ED visits, temperature and weekend effect. Based on 

the design of case-crossover study, the association between PM2.5 and childhood asthma 

emergency department visits were evaluated with Poisson generalized linear models. 

Due to the many zero values in the data, the mean of study outcomes was larger than 

variances. And this over-dispersion may cause big concerns when using Poisson 

regression, which is called inflates type I error (Soyseth et al. 2012).So we put a “pscale” 

option in the model to reduce the type I error.  Since the  PM2.5 in our study was a 

continuous parameter, the exponential of the regression coefficient stands for the rate 

ratio of any observation on a given day with one unit higher air pollution level compared 

with a day with a lower air pollution level, adjusting for confounders(Schwartz and 

Morris 1995). The dependent variable was the grid-specific daily count of childhood 

asthma visits. In analysis, we used both grid-specific daily PM2.5 concentrations and 

three-day moving average PM2.5 (the average of concentrations today [lag 0], yesterday 

[lag 1], and 2 days ago [lag 2]) as the exposure of interest. (Strickland et al. 2010) 

However, 45.1% observations were missing values in grid specific PM2.5. And the Pearson 

Correlation Analysis shown that the grid specific PM2.5 and three-day moving average 
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were highly correlated (Correlation Coefficient = 0.9, P-value<0.0001). Otherwise other 

potential indicators were also considered to replace the three-day moving average as the 

main predictor in models. For example, on the line graph of daily average ED visits and 

daily PM2.5 concentrations, the line of ED visits was correlated very well with one day‟s 

lag of PM2.5 concentrations (Insert figure). So we made a hypothesis that the PM2.5 with 

one day‟s lag may be another good predictor of exposure. However, without enough valid 

days, the spearman correlation test and Poisson regression model disproved this 

hypothesis. To avoid the statistical fallacy caused by over-inflated missing values, the 

regression models were using three-day moving average as a the main exposure. We 

added 13 individual variables as predictive variables in the statistical model analysis.  

These variables include temperature, dew point, day, day of week, holiday, month, year, 

which were tested in previous SOPHIA studies(Strickland et al. 2011; Tolbert et al. 2000). 

Interactions between months and daily maximum temperature spline were considered.  

The following terms were included in the full model: today‟s maximum temperature, 

squared and cubic terms; 2-day average minimum temperature (yesterday and the day 

before yesterday), squared and cubic terms; 3-day moving average dew point„s linear, 

squared and cubic term; day of year; month; year; day of week and weekend effect; 

interactions between month and year, month and the linear, squared, cubic terms of 

maximum temperature.  Separated models are set for warm season (May to October) and 

cold season (November to April). When operating seasonal models, the spline “day of 

year” changes to “day of season”. Meteorological variables were collected in Atlanta 

Hartsfield-Jackson International Airport. The covariates‟ definitions are followed by 

table 1. 

LN(Childhood Asthma & Wheeze ED Visits)=β0 + β1 Exposure + β21 Max Temperature+ β22 

Max Temperature2+ β23 Max Temperature3+ β31 Two-Day Average Min Temperature+ β32 
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Two-Day  Min Termpreature2+ β33 Two-Day  Min Termperature3+β41 Three-Day Average 

Dew Point+β42 Three-Day Average Dew Point2+β43 Three-Day Average Dew Point3+β5 Day 

of Year+β6 Month+β7 Year+β8 Weekday_Holiday+β9 Month*Year+β10 Month*Weekday 

_Holiday +β111 Month*Max Temperature+β112 Month*Max Temperature2+β113 Month*Max 

Temperature3+ β12 Grid + E 

The literature review helped verifying the validation of modeled PM2.5 concentrations. To 

make the satellite modeled data mostly comparable with the previous study results, the 

selected studies for comparisons were also based on SOPHIA data. All quantitative 

analysis were conduct in SAS 9.3, the statistical significant standard was uniformly 0.05 

in our study.  
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RESULTS 

As the main exposure of interests, PM2.5 concentrations that generated with satellite 

remote sensing technique was reviewed about the temporal and regional distribution 

patterns (table 2, figure 2). The predicted PM2.5 concentrations were normally 

distributed and slightly right skewed (figure 3).  The RS data was available only in “cloud 

free” days, so the only 54.9% observations have valid predicted PM2.5 data, according to 

the calculation results of valid N/ (7 years x 365 days x 101 grid cells + 1 Feb 29th).  

Warm season‟s (May through October) average predicted grid PM2.5 was significantly 

higher than cold season‟s (November through next year‟s April) (P-value < 0.0001).  

According to the one-way ANOVA test, at least one pair of the comparisons between two 

years‟ predicted grid PM2.5 concentrations was significant (P-value<0.0001). The 

distribution of three-day moving average PM2.5 concentrations, as well as its seasonal 

pattern and yearly pattern were similar to the predicted PM2.5 with large amount of 

missing data (figure 4). These two formats of PM2.5 concentrations were highly 

correlated (Spearman Correlation Coefficient = 0.90, P-value <0.0001). And the typical 

lifetime of PM2.5 is larger than 3 days.(Peter H.McMurry)  So we can use the three-day 

moving average to replace the predicted grid PM2.5 as the main predictor in the following 

analysis. 

 

Table 3 contains a descriptive analysis of the daily pediatric asthma/wheeze ED visits for 

both warm and cold seasons across all 101 grid cells. 66.2 % daily grid-specific pediatric 

asthma/wheeze observations were 0 values. So the ED visits distributions were 

extremely right skewed, daily grid means was lower than its standard deviation. (Kimes 

et al.) The grid cell‟s average daily pediatric asthma/wheeze was less than one 

(mean=0.77, SD=1.65); Cold season has significantly more ED visits than warm season 

(P-value < 0.0001), and the numbers of ED visits were also shown an increasing 
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tendency from 2001 to 2007 , but this increase might due to the growth of total 

population in Atlanta city. 

Geographic distributions of PM2.5 were shown by table 4 and figure 2. Because of the 

population density and traffic emission, the PM2.5 concentrations are high in the central 

area of city. Grid cell with ID “41” had an abnormal high pollution concentration due to 

the coal-fired power plant within the area. As similar as the distribution of PM2.5, the 

daily asthma/wheeze visits were also squeezed in the grid cells close to the downtown 

Atlanta (figure 5). But it should be cautious to interpret the distribution since the 

population is not evenly distributed as well. 

Table 5 presents the estimated percent increase in ED visits for a 10 mg/m3 increase for 

both short term PM2.5 by cause of admission and associated 95% confidence intervals 

through the whole study area. Overall, for every 10 mg/m3 increase of predicted PM2.5 

exposure there is a 1.015 times increase of rate in pediatric asthma/wheeze (95% CI = 

1.000 to 1.029).  The cold season resulted in stronger association between predicted 

PM2.5 and pediatric asthma/wheeze visits, which is 2.4% increase of rate with every 10 

µg/m3 PM2.5 concentrations. With same change of predicted PM2.5, the change of rate in 

cold season was 1.5 times greater than the rate‟s change in warm season. The significant 

(alpha=0.05) effect were observed in the models built with predicted PM2.5, lag 2 day‟s 

effect and three-day moving average with overall data and predicted PM2.5, lag1 day‟s 

effect in cold season. Detailed discussion followed in the next section. 
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DISCUSSION 

Satellite remote sensing gives epidemiology advantages to fit log-linear model with high-

resolution data coverage.(Fan et al. 1999; Houlahan et al. 2000) In this study, we have 

identified significant effects of ambient PM2.5 in a large, multi-year metropolitan study of 

air pollution and ED visits. Unique features of this study include application of satellite 

remote sensing technique in generating the PM2.5 concentrations, and transferring the 

zip code level hospital visits data to multiple grid cells, which covered about 200,000 

visits in total from 2001 to 2007 in Atlanta; We assessed the association between short-

term exposure to ambient PM2.5 and grid cell specific exacerbation of pediatric 

asthma/wheeze. A positive association between asthma/wheeze hospital emergency 

department visits and PM2.5‟s concentrations were identified. But this association was 

less consistent with Atlanta‟s warm season and cold season. To evaluate our study effects, 

we compare our own study results with the studies using same data source (SOPHIA) to 

test the validation of modeled PM2.5.   

In 2000, Tolbert modeled multiple air pollutants, which in include PM2.5, coarse PM, 

PM10 ozone, NO2 , SO2 , CO, polar VOCs, 10-100 nm particulate matter count and 

surface area, and PM2.5‟s components, with more than 2 million ED visits in Atlanta for 

the period January 1, 1993-August 31, 2000, using Generalized Linear Model with 

Poisson regression.(Tolbert et al. 2000)  In their results, the rate of adult asthma 

increased 0.9% with daily average PM2.5 increase by 10 µg/m3, but this association is not 

statistical significant (P-value = 0.81). Peel‟s SOPHIA study received similar effects with 

Tolbert‟s study. They selected 5 pollutants (PM, ozone, NO2, CO, and SO2) and link it 

with given day‟s ED visits data. For PM2.5, the data was only selected from 1 August 1998 

to 31 August 2000. 4 million emergency department visits from 31 hospitals in Atlanta 

were analyzed in the model. The PM2.5 concentrations were positive but also 
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insignificantly associated with overall asthma ED visits (RR=1.005, 95% CI= 0.977, 

1.033).(Peel 2005) In Strickland‟s 2010 study, over 90,000 ED visits of pediatric asthma 

were retrieved from SOPHIA and analyzed with ambient air pollutant 

concentrations.(Strickland et al. 2010) The models used by Strickland had controlled for 

meteorological factors, seasonal asthma trends, month, weekend and holiday. The main 

exposure of interest in their model was three-day model average of ground PM2.5. With a 

interquartile range increase of main exposure, the rate of pediatric asthma increase by 

2.0% for the overall data, 4.3% for the warm season (May through October), 0.5% for the 

cold season (November through April). However, the results of associations‟ Wald Chi-

square Test were not constant cross the seasons. The 95% CI of rate ratio in cold season 

included null but the other two were not. Strickland also considered lag effect of 

exposure. In their study results, with an interquartile range increase of three-day moving 

average PM2.5 with 1 day‟s lag, the rate of pediatric asthma ED visits increase by 2.4%, 95% 

CI ranges from 1.004 to 1.045. When it is turn to our study, smaller effects were found. 

Our model was uniformly use grid cell‟s daily pediatric asthma/wheeze ED visits as the 

dependent variables. The dependent variables were moderated separately with grid cell 

PM2.5, 1 day lag, 2 day lag, 3 day lag, IQR of grid cell PM2.5, three-day moving average 

PM2.5 and its IQR as study exposure of interest. In our study, the effects of PM2.5 on 

pediatric asthma/wheeze are positive with all modeling results. RR=1.025 in the 

predicted PM2.5 model, which means the rate of pediatric asthma/wheeze increases 2.5% 

if the PM2.5 increase 10 µg/m3. This raise of PM2.5 concentrations causes 1.6% increase of 

rate in warm season, and 2.4% increase of rate in cold season. When using three-day 

moving average as the main exposure, our model gave us very close, positive results to 

Strickland‟s: the rate increases 2.6% with every 10 µg/m3 increase of three-day moving 

average PM2.5 in overall, the effects change by 1.4% in warm season and by 4.3% in cold 

season. The interquartile range increase of main exposure leads to 2.3% increase of rate, 
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1.1% for warm season and 2.5% for cold season. Only the overall RR and cold season RR 

get statistical significant results in analysis. Nevertheless, there are some conflicts 

between our results and Strickland‟s study. In their study, the PM2.5 cause stronger effect 

in cold season rather than warm season. But the RR in warm season in our study is lower 

than the RR in cold reason. The conflict indicates that except for more adjustments of 

models, the measurement limitation in remote sensing technique should be considered 

in this situation.  

In general, our results in a harmony with those in previous SOPHIA studies. 

Quantitatively, the effect‟s estimates are difficult to compare because we assessed the 

pollutants with in different ways, and in our study, the ambient PM2.5 concentrations 

have been assigned to grid cell level but the others didn‟t. We observed several positive, 

statistical significant associations between ambient PM2.5 concentrations and the rate of 

pediatric asthma/wheeze in Atlanta. Those findings are likely to be confounded by some 

temporal asthma risk factors such as pollen if high pollen days in corresponds with high 

pollution days.  Second-hand smoke maybe a risk factor of asthma, exposure to 

environmental tobacco smoke has been linked to more frequent exacerbation of asthma 

in children who have diagnosed with the diseases with established study 

results.(Chilmonczyk et al. 1993) Besides, age could be an effect modifier in respiratory 

diseases studies. So our study population was restricted to specific age groups (children) 

and pollutant (PM2.5), to reduce the bias from tobacco use and age distribution. We 

cannot exclude that all the unmeasured confounders to some extent may bias the 

associations. The meteorological factors we adjusted in model were primarily decided by 

literature review and private communication with SOPHIA scholars.  So that there is a 

limitation of our study that since we should consider the variation of doe-responses 

effects across the city, but the demographical factors can confounded the effect between 

PM2.5 and pediatric asthma /wheeze. Atlanta is a city with a high immigration rate. 
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Because of the genetic distinguishes among different races, children in different races 

have different sensitivities to air pollution. For example, Non-Hispanic black children 

were more likely to have ever been diagnosed with asthma (18%) than Hispanics(Centers 

for Disease Control and Prevention 2012) Moreover, socioeconomic status (SES) is 

another factor that commonly considered in pediatric asthma studies. (Kozyrskyj et al. 

2010; Pope et al. 2009) For children already diagnosed with asthma, the utilization rate 

of prophylactic medications, hospitalization rate and the rate of readmission were higher 

among children with low family income than high family income children in earlier 

time‟s studies (Auger et al. 2013; Braaback et al. 2011; Kozyrskyj et al. 2010). Family 

income is also help in explaining the increased prevalence of asthma among Black 

compared with White children, adjusting for other individual disparities. (Akinbami et al. 

2009; Gold and Wright 2005) Furthermore, the ethnicities and household income were 

not evenly distributed in our study area, according to the data provide by U.S. census 

bureau.(Bureau 2010) Being lack of appropriate method to obtain accurate demographic 

information for each grid cells, we put the indicator variable of locations in the 

epidemiological model and create the case-crossover model, to adjust the demographic 

characteristics inner grid cells. However, with the reasons above, we need considered 

demographic variations in the future‟s study. Another limitation exits in the model 

selection. In our study, 66.2% of ED visits daily observations were 0 values (N= 170789). 

So the standard deviation of ED visits (1.65) is larger than its mean (0.77), which is not a 

perfect Poisson distribution. 
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CONCLUSION 

In conclusion, ambient PM2.5 exposure is associated with exacerbation in pediatric 

asthma and wheeze in Atlanta. Findings from quantitative models support previously 

published reports that studied with time-series analysis, with same or not same data 

source. Cold season is a risk factor of pediatric asthma and wheeze. The results obtain 

with satellite moderated exposures are very similar to the modeling results from ground 

PM2.5 measurements. But we get a stronger effect between ambient PM2.5 and pediatric 

respiratory syndrome. The previous SOPHIA studies were pooled all the data to a city 

scale, but we can adjust the model to a smaller domain. The satellite remote sensing is 

expected to be used in more environmental epidemiology studied in the future. 
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TABLES  

Table 1: Definitions of Adjusted Predictors (Except for the PM2.5) in Poisson Log-linear 

Regression Model 

 Type 
Data 

Source 
Variable Description 

Maximum 

Temperature 
Continuous USEPA Today‟s Maximum Temperature in Celsius 

Two-Day 

Minimum 

Temperature 

Continuous USEPA 

(Today „s Minimum Temperature +yesterday‟s 

minimum Temperature )/No. of valid data in 

today and yesterday 

Three-Day 

Average Dew 

Point 

Continuous USEPA 

(Today „s dew point+ lag 1 day‟s dew point + lag 2 

day‟s dew point)/No. of valid data in today and 

past two days. 

Day of Year Continuous - 
Number of days in a given study year earlier then 

the study day (include the study day). 

Day of Season Continuous - 
Number of days in a given study season earlier 

then the study day (include the study day). 

Weekday & 

Holiday 
Continuous/Categorical - 

1=Sunday, 2= Monday, 3=Tuesday, 

4=Wednesday, 5=Thursday, 6=Friday, 

7=Saturday and 8=Official Holidays from Federal 

Government 

 

Table 2: Descriptive Analysis of Grid PM2.5 and Its Three-Day Moving Average from 2001 

to 2007 

PM2.5 concentrations 

Overall Warm Season Cold Season 

Valid* 

N 

Mean 

[SD] 

25th–75th 

percentile Valid* 

N 

Mean 

[SD] 

25th–75th 

percentile Valid* 

N 

Mean 

[SD] 

25th–75th 

percentile 

Daily Grid PM2.5 (RS) 141735 15.21 [6.98] 9.90 - 19.40 69025 18.50 [7.06] 13.50 - 22.60 72710 12.08 [5.27] 8.25-15.00 

Three-day Moving 

Average 
214358 15.09 [6.39] 10.17 - 19.02 103742 18.50 [6.35] 14.20 – 22.30 110616 11.89 [4.50] 8.50 – 14.43 

Daily Grid PM2.5 

(RS)  by Year 

2001 17916 15.74 [7.41] 10.20 – 20.20 7888 17.81 [7.76] 11.30 – 23.00 10028 14.12 [6.69] 9.60 – 17.00 

2002 15473 15.71 [6.60] 10.70 – 20.20 7207 20.11 [6.03] 16.10 – 23.70 8266 11.87 [4.29] 8.80 – 14.20 

2003 19874 14.22 [6.56] 9.65 – 18.00 9837 17.45 [6.33] 13.35 – 20.05 10037 11.05 [5.06] 7.60 – 13.50 

2004 19502 14.42 [6.30] 9.60 – 18.05 8998 18.08 [6.17] 14.12 – 21.35 10504 11.28 [4.44] 7.83 – 14.20 

2005 21289 16.06 [7.35] 10.40 – 20.30 10854 20.09 [7.11] 15.20 – 23.83 10435 11.86 [4.82] 8.40 – 14.70 

2006 24131 15.34 [6.50] 10.20 – 19.90 12542 18.09 [6.68] 13.10 – 22.95 11589 12.37 [4.76] 8.60 -15.40 

2007 23550 15.04 [7.71] 8.90 – 19.30 11699 18.14 [8.22] 12.20 – 22.90 11851 11.98 [5.72] 7.57 – 15.45 

Three-day 

Moving Average 

by Year 

2001 28069 15.81 [6.77] 10.65 – 19.80 12703 18.49 [7.17] 12.12 – 23.25 15366 13.60 [5.52] 9.75 – 16.65 

2002 26161 15.48 [6.05] 10.65 – 19.78 12041 19.77 [5.41] 16.55 – 23.23 14120 11.82 [3.72] 9.35 – 13.90 

2003 30961 14.41 [6.17] 9.70 – 17.70 15476 17.85 [5.81] 14.40 – 20.35 15215 10.92 [4.26] 8.00 – 12.90 

2004 29965 14.40 [5.86] 9.67 – 17.90 13967 18.09 [5.60] 14.75 – 20.95 15998 11.18 [3.84] 8.25 – 13.80 

2005 32030 15.86 [6.73] 10.80 – 19.90 15806 19.98 [6.39] 15.60 – 23.20 16224 11.83 [4.11] 8.70 – 14.20 

2006 34197 15.01 [5.88] 10.55 – 19.10 17225 17.72 [6.14] 12.61 – 22.20 16972 12.26 [4.05] 9.30 – 14.77 

2007 33245 14.78 [6.97] 9.10 – 19.03 16524 17.95 [7.13] 12.80 – 22.50 16721 11.64 [5.16] 7.80 – 14.60 
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Table 3: Descriptive Analysis of Pediatric ED Visits from 2001 to 2007 

ED visits  
Overall Warm Season Cold Season 

Valid N Mean [SD] Valid* N Mean [SD]  Valid* N Mean [SD]  

Daily Grid ED visits 258156 0.77 [1.65] 130088 0.70 [1.55] 128068 0.85 [1.74] 

Daily Grid 

ED visits  

by Year 

2001 36865 0.60 [1.30] 18584 0.54 [1.23] 18281 0.67 [1.36] 

2002 36865 0.69 [1.49] 18584 0.62 [1.38] 18281 0.76 [1.59] 

2003 36865 0.71 [1.45] 18584 0.63 [1.32] 18281 0.80 [1.56] 

2004 36966 0.70 [1.41] 18584 0.64 [1.33] 18382 0.77 [1.48] 

2005 36865 0.89 [1.93] 18584 0.83 [1.86] 18281 0.96 [1.99] 

2006 36865 0.88 [1.87] 18584 0.80 [1.74] 18281 0.96 [1.99] 

2007 36865 0.95 [1.96] 18584 0.87 [1.84] 18281 1.04 [2.06] 

 
 
 
 
 
 
 
 
Table 4: Geographic Distribution of Mean and Standard Deviation of Three-Day Moving 

Average Ambient PM2.5 Concentrations 

Grid 

Cell 

ID 

Three-day 

moving average 

Grid 

Cell 

ID 

Three-day 

moving average 

Grid 

Cell 

ID 

Three-day 

moving average 

Grid 

Cell 

ID 

Three-day 

moving average 

Grid 

Cell 

ID 

Three-day 

moving average 

 Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 

1 15.81 6.35 21 15.41 6.39 41 27.48 6.48 61 14.63 6.37 81 14.90 6.30 

2 15.47 6.23 22 14.93 5.99 42 15.25 6.53 62 15.12 6.35 82 15.22 6.44 

3 16.21 6.64 23 14.77 6.05 43 14.70 6.48 63 15.50 6.52 83 14.85 6.22 

4 14.85 5.99 24 14.70 5.80 44 15.02 6.40 64 14.60 6.10 84 14.91 6.39 

5 14.96 6.21 25 15.80 6.54 45 14.77 6.47 65 14.75 6.48 85 14.58 5.91 

6 14.92 5.90 26 15.27 6.42 46 14.36 6.20 66 14.91 6.32 86 16.06 6.49 

7 14.59 6.05 27 15.63 6.51 47 15.01 6.51 67 14.67 6.26 87 15.75 6.51 

8 15.37 6.24 28 15.65 6.63 48 14.00 5.98 68 14.60 6.25 88 15.77 6.64 

9 14.62 5.99 29 15.93 6.48 49 14.87 6.45 69 14.56 5.94 89 15.31 6.60 

10 15.81 6.40 30 15.56 6.56 50 13.66 5.85 70 14.98 6.28 90 14.92 6.00 

11 15.37 6.23 31 14.97 6.33 51 14.67 6.34 71 14.69 6.29 91 14.63 5.92 

12 14.85 5.81 32 14.96 6.37 52 15.06 6.39 72 14.53 5.94 92 15.14 6.15 

13 15.35 6.38 33 15.44 6.50 53 14.72 6.27 73 15.44 6.46 93 13.97 5.91 

14 15.45 6.29 34 14.15 6.01 54 14.62 6.20 74 14.64 5.92 94 14.78 5.90 

15 14.71 6.30 35 14.78 6.32 55 13.46 6.04 75 14.72 6.01 95 15.01 5.98 

16 14.85 6.20 36 14.68 6.36 56 14.92 6.44 76 14.99 6.10 96 14.93 5.95 

17 14.98 6.16 37 14.45 6.25 57 14.85 6.31 77 14.72 6.37 97 14.76 5.94 

18 15.42 6.22 38 14.66 6.07 58 14.50 6.37 78 17.80 6.39 98 14.84 5.79 

19 15.27 6.26 39 14.67 6.30 59 14.23 6.31 79 14.89 6.33 99 14.98 5.99 

20 15.63 6.34 40 14.98 6.16 60 14.38 6.40 80 14.93 6.41 100 15.08 5.96 

            101 14.18 6.16 
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Table 5:  Rate Ratio and 95% Confidence Intervals from Poisson Log-Linear Regression 

Models for Increases in Three-Day Moving Average Ambient PM2.5 Concentrations. 

Main Exposure 
Overall Warm Season Cold Season 

RR (95% CI) RR (95% CI) RR (95% CI) 

Grid-specific PM2.5 10 ug/m3 1.015 (1.000, 1.029) 1.016 (0.997, 1.035) 1.024 (1.002, 1.047) 

Lag 1 day 1.012 (0.999, 1.025) 1.001 (0.983, 1.019) 1.029 (1.008, 1.050) 

Lag 2 day 1.016 (1.002, 1.030) 1.016 (0.997, 1.035 1.019 (0.998, 1.040) 

Lag 3 day 0.011 (0.998, 1.024) 1.006 (0.989, 1.024) 1.010 (0.990, 1.003) 

IQR 1.014 (1.001, 1.028) 1.014 (0.997, 1.031) 1.016 (1.001, 1.032) 

Three-day moving average 

10 µg/m3 (continuous) 

 

1.026 (1.014, 1.040) 1.014 (0.998, 1.031) 1.043 (1.023, 1.064) 

IQR 1.023 (1.012, 1.035) 1.011 (0.998, 1.025) 1.025 (1.014, 1.037) 
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FIGURES 

Figure 1: Geographic Distribution of 101 Study Grid Cells 

 

Figure 2: Distribution of Daily Grid Cells PM2.5 Concentrations from 2001 to 2007 
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Figure 3 

 

 

Figure 4 

 

 

 

 



33 
 

Figure 5: 

 


