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Abstract 

Identifying Variants in Neuroligin Pathway Genes Using Next Generation Sequencing 
Technologies 

 
By Karyn Meltz Steinberg 

 
The fields of population genomics and evolutionary quantitative genetics provide a 
framework in which one can best pursue the heritable component of complex human 
phenotypes. A central challenge lies in the comprehensive ascertainment of all the 
relevant genomic variation, irrespective of their population frequency, in a large 
collection of human samples. Autism Spectrum Disorder (ASD) is a complex human 
neurodevelopmental disorder, characterized by a high heritability and a nearly 4:1 male 
excess. Applying this comprehensive genomic variation detection paradigm poses two 
main challenges. The first lies in developing and applying technologies that can 
efficiently detect the relevant genomic variation. The second lies in applying these 
methods in the context of a testable genetic hypothesis that might elucidate the etiology 
of ASD. Here I report on a series of studies that have pursued both of these challenges. 
While sequencing technologies have advanced rapidly in the past decade, the ability to 
rapidly isolated target DNA for sequencing has lagged. I first describe a novel technique 
for isolating target DNA for downstream resequencing applications. This protocol, named 
Microarray-based Genomic Selection, is able to efficiently select user-defined sequence 
that is then hybridized to resequencing arrays. Two experiments that used Microarray-
based Genomic Selection for resequencing are described.  In the first experiment the 
technology was used to isolate all of the exons on the X chromosome, while the second 
experiment used it to isolate specific genes in the neuroligin pathway that are 
hypothesized to contribute to ASD. Advantages and limitations of MGS are discussed. To 
address the genetic basis of ASD, I first selected X-linked neuroligin pathway genes 
thought to harbor ASD susceptibility alleles that may help explain the male excess in 
ASD. Using samples of male individuals with ASD obtained from the Autism Genetic 
Resource Exchange (AGRE), I performed paired-end multiplexed sequencing on the 
Illumina Genome Analyzer to comprehensively sequence the genomic regions containing 
the neuroligin pathway genes. This study identified a series of candidate variants that 
may contribute to ASD susceptibility. Finally, I will highlight the importance of using 
quantitative evolutionary genetics when analyzing and interpreting sequence data. 
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QUANTITATIVE GENETICS AND COMPLEX HUMAN DISEASE 

A central challenge of contemporary human genetics lies in identifying and 

characterizing the genetic variation that underlies the heritable component of complex 

human phenotypes. The tools and concepts of population genomics that aim to 

understand the forces that influence allele frequencies provides a framework in which 

this research program can be pursued. Human geneticists have been highly successful 

in identifying the genetic basis of Mendelian disorders that are caused by very rare 

mutations in one or a few genes. These highly penetrant, rare alleles can be identified 

through traditional family-based linkage analysis and with the completion of the 

human genome project and the broad availability of genomics technologies, these 

approaches have become routine.  

In contrast, human geneticists have faced considerably more difficulty 

mapping genes that contribute to heritable complex diseases 1. Limitations in both the 

cost and throughput of existing DNA sequencing technologies, combined with the 

potential of high-throughput genotyping at sites known to vary in the human genome, 

let to the development of the whole genome association studies paradigm. These 

studies were only powered to detect common variants that might contribute to 

common disorders.  Large scale whole genome association studies, such as the 

HapMap Project 2 and the Wellcome Trust Case Control Consortium, identified a few 

common alleles that are associated with diseases such as Crohn’s Disease 3 and 

hypertension 4.  Yet, these alleles contribute only a small fraction of the total variance 

observed in these traits.  Additionally, researchers have failed to find any genome-



 

 

3 
wide statistically significant common alleles of large effect for many complex 

disorders, such as bipolar disorder.  In total, these findings imply that there are no 

common alleles of large effect underlying complex human disease traits. This is an 

important although perhaps underappreciated finding about the genetic structure of 

these complex human disorders. Yet at the same time, these studies do suffer from 

limitations inherent in their design. This is in part due to the fact that methods like 

whole genome association lack the power (and the ability to experimentally) detect 

multiple, low frequency alleles with moderate phenotypic effect 5.  Clinical 

heterogeneity and poor phenotyping pose further challenges in pinpointing the genetic 

contribution to complex traits. 

 

Evolutionary Quantitative Genetics 

Evolutionary quantitative genetics provides a statistical framework that may 

provide insight and help us identify the causes of these complex human traits.  The 

phenotypic distribution of a quantitative trait is a function of both the genotypes 

present in a population and the effects of the environment that are usually difficult to 

measure or observe over long periods of time. Barton and Turelli provide a summary 

of the challenge we face: 

“The fundamental difficulty is that the phenotypic distribution of the few 
characters we observe depend on genotype frequencies over many loci, a problem 
analogous to that in thermodynamics, where bulk properties reflect the hidden 
motions of many molecules…[and] while the immediate response to selection is 
predictable, long-term changes depend on genetic parameters about which we 
know very little” (Barton and Turelli 6, pp. 347-8). 

 



 

 

4 
Much as in thermodynamics, the hope is that the application of a statistical 

model can provide insights without requiring specific measurements of every 

genotypic and environmental effect in the given population. The genetic contribution 

to a complex quantitative trait can be estimated as the sum of all of the effects from 

segregating loci, which approximates a Gaussian distribution 7. Most quantitative 

genetic variation can be statistically attributed to the additive component of variation 

although the effects of epistasis and/or dominance can also contribute to genetic 

variation.  The process of mutation introduces new alleles to a population, and much 

of this variation is selectively neutral 8,9; however, very deleterious alleles are quickly 

removed from the population while positive selection can potentially fix beneficial 

alleles. The distribution of mean fitness of a phenotypic trait is Gaussian, and 

selection acts to shift the mean to the optimal fitness (Figure I.1). 

Understanding longer-term trends, as indicated by Turelli and Barton, is the 

real challenge and can be approached with different types of models. The first type of 

model is named mutation-selection balance. In this model, at equilibrium, genetic 

variation eliminated by selection is balanced by the variation introduced by mutation.  

If variation in a quantitative trait is maintained by mutation-selection balance, the 

distribution of allelic effects will be dominated by primarily rare alleles, each with 

extremely small effect 10,11.  This is paradoxical because there is ample empirical 

evidence of polygenic variation as well as evidence of stabilizing selection, which 

should eliminate this variation.  One explanation is that many genes affect many 

traits, and an individual trait is affected by many genes. Pleiotropically related traits 

are concomitantly acted upon by stabilizing selection, and variation in the trait in 



 

 

5 
question is simply a by-product of polymorphisms that are maintained for completely 

different reasons. This could account for both common and rare variation that is 

associated with quantitative characters. 

Alternatively, one may consider the role of fluctuating environments on the 

underlying patterns and levels of genetic variation. Gillespie modeled the effects of 

temporal and spatial fluctuations on the phenotypic distribution of quantitative 

characters.  His simulations suggest that alleles that have different additive effects in 

different environments as heterozygotes will have lower phenotypic variance than 

homozygotes who will have lower mean fitness than heterozygotes 12.  Therefore 

strong fluctuating natural selection could act to maintain variation in quantitative 

traits. Unfortunately, this hypothesis is difficult to test, and, in general, accounting for 

the effects of environmental stochasticity over long periods of time remains a 

challenge. 

Most quantitative characters are polygenic; however, the actual number of loci 

involved in any given trait is still largely unknown.  Sewell Wright’s work on guinea 

pig coat coloring led to the hypothesis that complex traits are controlled by many 

independent sets of loci acting together additively.  He demonstrated that alleles with 

small effects could impact changes in phenotype if there were large enough sets of 

loci 13.  On the other hand, early studies on Drosophila bristle number were 

suggestive of a relatively small number of loci with large effects that contributed to 

the trait 14.  The number of loci and the magnitude of allelic effects are of great 

importance when examining complex human disease.  The underlying hypothesis of 
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the number of alleles and the distribution of allelic effects guides the experimental 

design and subsequent analysis. 

Under this framework, we can treat complex human diseases as quantitative 

traits.  Yet, disease incidence data are discrete variables (affected and normal), and 

quantitative genetics models are based upon continuous variables.  Falconer 15 

developed theory to analyze heritability of disease susceptibility for polygenic, 

multifactorial diseases.  An individual’s liability is the likelihood of developing 

disease based upon the genetic contribution to disease susceptibility as well as 

external circumstances that affect disease susceptibility.  Liability is a graded scale, 

and the threshold is the point above that all individuals are affected and below which 

all individuals are normal (Figure I.2).   

The field of quantitative genetics provides models to answer questions related 

to how many loci contribute to complex traits, how selection affects the distribution 

of alleles related to complex traits and the role of environmental changes in shaping 

complex traits.  With Falconer’s work, disease data can be examined using a 

quantitative genetics framework.  This provides a foundation for the current genetic 

models of complex human diseases. 

 

Common Disease Common Variant (CDCV) Hypothesis 

The CDCV hypothesis predicts that most disease susceptibility variants are 

relatively common, few in number and have modest phenotypic effects 16,17. Common 

ancestral alleles that were previously positively selected may contribute to disease 

susceptibility due to changing environmental and selective pressures. For example, 
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the “thrifty gene” hypothesis proposes that the ability to store fat was advantageous to 

hunter gatherer populations who underwent periods of feast interspersed with famine 

18.  However, with the adoption of a high fat/high carbohydrate diet and sedentary 

lifestyle this trait contributes to the development of Type II Diabetes.  Empirical data 

suggest that the common, ancestral alleles in genes that are associated with Type II 

Diabetes contribute to disease susceptibility while the derived, rarer alleles are 

protective and show the signature of recent positive selection (reviewed in 19).  

In addition to selective forces, demographic processes have shaped the current 

allele frequency spectrum over many generations.  The human lineage has most 

certainly undergone major bottlenecks and expansions.  Data suggest that the 

European/Caucasian population has experienced bottlenecking and founder effects, 

while the Sub-Saharan African population expanded rapidly 19.  These demographic 

changes shape the genomic architecture of both protein coding regions as well as non-

coding elements 20.  

In a single disease locus model, Reich and Lander 21 modeled the allelic spectrum 

of common disease and demonstrated that with a high equilibrium disease allele 

frequency (approximately 0.2 for a common disease) and a mutation rate of 3.2 x 10-6 

per site, per generation, the modern allelic spectra is relatively simple even when 

taking into account the rapid expansion of the human lineage approximately 100,000 

years ago.  They explain the modern allelic spectra quantitatively by accounting for 

the “half-life of the ancestral allelic spectrum,” or in other words, how quickly 

ancestral alleles are replaced by modern alleles in the approximately 3000 generations 

since the human population expansion.  Because their model assumes that the 
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population is in equilibrium state both rare and common diseases have a diverse 

allelic spectra, but rare diseases reach this equilibrium faster than common diseases 

based on their “half life.”  However, this model does not account for the effects of 

genetic drift, population substructure or changing selection pressures.  It also assumes 

that all of the disease alleles are selectively equivalent which is unlikely for a 

complex trait attributed to many genetic loci.  Additionally the assumption that the 

population is in an equilibrium state is not likely the actual state of the human 

population given such a drastic demographic change in recent evolutionary history 19.  

Despite these shortcomings, the Lander-Reich model provided one rationale for 

studies such as the HapMap Project 2 as well as Genome Wide Association Studies 

(GWAS).  

Using a selection model stochastically based on individual genotype, Peng 

and Kimmel test the Reich/Lander model with forward time simulations.  Their 

model assumes an infinite allele model 22 and that the fitness of an individual is based 

upon the fitness at all disease susceptibility alleles.  Their simulation results support 

the common disease common variant hypothesis.  One caveat is that they simulated 

mostly rare diseases with allele frequencies close to or at equilibrium for the 

Reich/Lander model.  Additionally their model does not hold up under a model of 

polygenic disease caused by rare alleles at numerous loci that can each cause disease 

singlehandedly (see Smith and Lusis’ discussion of genetic heterogeneity 23).   

Although these simulations provide support for the CDCV hypothesis, the 

empirical evidence is contradictory. Large case-control GWA studies focusing on 

SNPs with minor allele frequencies (MAF) greater than 5% have identified a few 
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common variants associated with common diseases such as Type I Diabetes 3 .  Yet, 

these common variants account for only about 5% of the heritability of these diseases.  

That leaves the majority of genetic variability unexplained by common variation. 

Thus one reasonable conclusion is that rare variation must be significantly 

contributing to heritability for complex human disease traits. 

 

Common Disease Rare Variant (CDRV) Hypothesis 

The alternative hypothesis, the CDRV hypothesis, predicts that disease 

susceptibility is a result of multiple, rare alleles with moderate to large phenotypic 

effect 5,24.  Non-synonymous sequence variation may be individually rare, but, as a 

class, affected individuals may have variants that are at the same locus. Pritchard 25 

modeled complex disease using a coalescent simulation, assuming a multilocus model 

with a constant population size where the current population is at equilibrium.  

Susceptibility alleles are in mutation-selection balance, and selection acts 

independently at each disease susceptibility locus.  The model predicts that the 

majority of genetic variance can be attributed to loci with high overall mutation rates, 

but at loci where the mutation rate is low common variation can explain susceptibility 

to disease.  This model also generates numerous mildly deleterious alleles that rarely 

reach high frequencies in a population, which are acted upon by weak purifying 

selection.  Like Reich and Lander, Pritchard assumes that the human population is at 

equilibrium, which is unlikely.  Yet, the empirical evidence is overwhelmingly in 

support of the CDRV hypothesis. 
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If the central challenges in human genetics are to be addressed, the 

comprehensive detection of all classes of genomic variation is seemingly the optimal 

method to pursue.  Ideally, we would sequence the entire human genome of large 

numbers of individuals.  While sequencing technologies have experienced a dramatic 

improvement in accuracy and cost, this experiment is still not practical for large 

populations. Direct sequencing of portions of genomes, on the other hand, is 

becoming technically feasible. Like all sequencing based approaches, in principle, it 

can easily identify rare as well as common variants. While the statistical power to test 

any single rare variant is low 26, grouping of rare variants into classes can provide 

sufficient numbers to assess their role in complex disease traits 27.   

Systems biology assumes that most genes will function within complex 

networks, and mutations in strongly connected genes may lead to the same or similar 

phenotypes that potentially result in genetically heterogeneous syndromes 28. One 

plausible hypothesis supposes that genes within a particular pathway work together as 

a single biological module and that genes controlling predisposition to a human trait 

may be primarily involved in the physiological pathway that regulates that trait.  For 

example, Henneh et al 29 found that distinct allelic haplotypes for the DISC1 gene and 

its binding partner NDE1 were over-transmitted in females with schizophrenia.  

Additionally, Lesnick et al 30 demonstrated the contribution of axon guidance 

pathway genes in Parkinson Disease.  These authors concluded that although 

mutations in single genes within this pathway would show only slight phenotypic 

effects, the combined effects of mutated genes could explain severe phenotypes of 

complex diseases.  The genomic pathway approach, where a set of candidate genes is 
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chosen from various linkage analysis studies or gene-gene interaction data sets, 

represents a major paradigm shift away from traditional candidate gene studies 30.  

Investigating multiple genes within a physiological pathway may elucidate the 

underlying genetic architecture of complex traits such as autism spectrum disorders. 

 

AUTISM AS A COMPLEX TRAIT 

Autistic Disorder [OMIM 209850] is a pervasive developmental disorder 

(PDD) characterized by a lack of reciprocal social relations, poor verbal 

communication skills, and repetitive behaviors presenting clinically within the first 

three years of life.  PDDs include Autistic Disorder, Rett Syndrome, Childhood 

Disintegrative Disorder, Asperger’s Disorder, and PDD-NOS (not otherwise 

specified).  The term Autism Spectrum Disorder (ASD) is used to reflect the 

phenotypic and genotypic heterogeneity observed among PDDs (with the exception 

of Rett Syndrome, which is known to arise as a consequence of mutations at the 

MECP2 locus).  

 

Patterns of Inheritance 

ASD is highly heritable; using a broad definition of ASD, concordance rates 

among monozygotic twins are estimated as 91% and 10% for dizygotic twins 31-33.  

Additionally, sibling relative risk has been estimated to be approximately 4.5% 34. 

The distribution of allelic sharing for markers from a genome wide screen was most 

consistent with a model of multigenic inheritance of at least 15 susceptibility loci 35.  

Additionally, results from a complex segregation analysis of ASD were inconsistent 
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with the major-locus inheritance model, and the multifactorial threshold model was 

proposed to explain the inheritance patterns seen among ASD families 34.  The model 

makes three predictions about recurrence risks: (1) among second and third degree 

relatives they will decline rapidly, (2) they increase with multiple affected offspring, 

and (3) they are lower for relatives of the more frequently affected sex.  For example, 

in ASD the recurrence risk for siblings of affected males is 3.7% while the recurrence 

risk for siblings of affected females is 7.0% 34.  These statistics suggests that females 

with ASD have more severe disease phenotypes.  However, both the prevalence of 

disease and frequencies of susceptibility variants are expected to be extremely rare 

among females.  On the other hand, the prevalence of males with ASD is relatively 

common and males are expected to be highly informative in genetic studies of ASD.  

These studies highlight the considerable genetic heterogeneity of ASD. One plausible 

hypothesis predicts that that ASD may be caused by many, possibly rare 

susceptibility variants that are widely distributed throughout the genome. 

 

The X Chromosome and Cognitive Disorders 

There is a significant sex bias towards males for mental retardation and other 

cognitive disorders, such as ASD.  For example, in the general population the 

prevalence of X-linked MR is 2.6 cases per 1000 which accounts for more than 10% 

of all cases of MR 36.  The hemizygosity of males for virtually all X chromosome 

genes exposes recessive phenotypes.  Additionally, more than 500 of the genes 

located on the X chromosome are expressed in human brain 36, and the X 

chromosome appears to be enhanced for “cognition genes” 37.  Zechner et al 38 has 
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proposed that for the past 300 million years the X chromosome has played a role in 

the development of sexually selected traits and natural selection has favored X-linked 

genes that are related to higher cognitive abilities. The fourfold excess of males 

affected with ASD compared to females is consistent with a model of X linkage. 

The majority of the human male X chromosome does not recombine during 

meiosis; only small portions at the distal ends of each arm, the pseudoautosomal 

regions, recombine with homologous loci on the Y chromosome.  Gene content, 

predicted transcription of exons and the frequency of CpG islands are significantly 

lower than expected given the length of the X chromosome 39. Although the human X 

chromosome contains only 4% of all human genes, approximately 10% of all 

disorders with Mendelian inheritance are due to mutations in genes on the X 

chromosome 39.  There are at least 16 X-linked genes associated with mental 

retardation (MR), and mutations in genes that cause or contribute to MR could be 

targets of selection for human cognitive abilities 40.  Comparative genomics provides 

an ideal platform to examine the questions of human lineage specific selection.  

Genes that have undergone recent human specific positive selection may shed light on 

human specific biological processes and specializations. The human X chromosome, 

overall, shows an excess of positively selected genes when compared to our closest 

great ape relatives 41.  Other data suggest that genes related to brain function did 

evolve under positive selection 42.  

A study of 10 X chromosome genes that are associated with mental 

retardation found that nucleotide diversity in these genes was lower than in 

chimpanzees, which could signal positive selection, however, the ratio of 
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nonsynonymous to synonymous substitutions indicated a selective constraint on these 

genes in the great ape lineage 40.  This ratio is also significantly lower in brain-

specific genes when compared to tissue specific genes suggesting strong purifying 

selection 43.   Additionally, genes with maximal expression in the brain are highly 

conserved, most likely due to functional constraints of the nervous system, and are 

less likely to show any marks of positive selection 41.  It is likely that cognitive 

differences between humans and apes may be due to small changes in gene 

expression and regulation 44.  Indeed, genes that are differentially expressed in human 

brain tissue, when compared to chimpanzee brain tissue, are upregulated in the human 

lineage 45,46.  Non-coding regions, specifically non-coding DNA upstream of genes 

that may control expression and regulation, show higher rates of nucleotide 

divergence between humans and chimpanzees than coding and downstream non-

coding regions 47 suggesting that regulatory regions have diversified in the human 

lineage.  Resequencing candidate genes on the X chromosome may expose the 

underlying genetic architecture of ASD. 

 

SEQUENCING TECHNOLOGY DEVELOPMENT 

During the past decade, large industrial genome sequencing centers, using 

Sanger sequencing chemistries, have been able to automate these steps and increase 

throughput 50-fold while at the same time reducing costs 100-fold 48. This technical 

achievement has been remarkable. Yet today, we stand on the cusp of a revolution in 

DNA sequencing. Novel DNA sequencing chemistries that offer drastic cost 

reductions, increased data production and high accuracy are now available in single 
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instruments that require far fewer people and less laboratory space to operate 49. 

Collectively, these recent innovations are beginning to raise the question as to 

whether the traditional industrial genome sequencing model is reaching the end of its 

utility. We can think of sequencing technology in terms of their “generations.”  

Traditional Sanger sequencing was the first generation of technology, while second 

generation technology included advances in sequencing by hybridization 

(resequencing arrays), pyrosequencing and other massively parallel sequencing by 

synthesis methods.  The third generation of technology expands on the second 

generation with single molecule sequencing.  Here I review all three of these 

generations. 

 

First Generation Sequencing Technology 

In traditional Sanger sequencing the genome is fragmented and clonal libraries 

are produced to isolate and amplify single fragments.  Determining the fragment 

sequence with Sanger sequencing, also known as dideoxy sequencing, involves 

synthesis of a complementary DNA template using deoxynucleotides (dNTPs) and 

termination of synthesis using unnatural 2’,3’-dideoxynucleotides, ddNTPs, by DNA 

polymerase 50. Fragments are produced and separated by gel electrophoresis for 

analysis. This process has been automated by tagging each ddNTP with a different 

fluorescent dye. As labeled fragments pass through the DNA sequencer the dye is 

excited by a laser, and the resulting fluorescence emission of one of the four colors is 

used to determine basecalling and sequence assembly 51. The integration of multiple 

capillary arrays per instrument has allowed the sequencing to proceed in parallel 52. 
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Automated data quality assessment and sequence assembly algorithms are 

then used to reconstruct the original genome sequence. For large projects that 

sequence millions to billions of bases, error rates must be low to minimize errors in 

the final sequence. The Bermuda standard, the community accepted quality level for 

finished genome sequencing, is equal to an error rate of less than 1 error per 10,000 

bases sequenced (or 99.99% accurate). The accuracy of single reads is typically lower 

than this stringent requirement for Sanger sequencing.  To achieve very high 

accuracy, multiple reads of the same base are necessary. Phred quality scores are 

calculated for each sequenced base to determine the probability of a basecalling error  

(phred = -10 log10 * (error probability) 53,54). A phred score of 40 is accepted as the 

Bermuda standard.  Achieving a quality score of 40 for an entire genome with this 

technology usually requires a random ten-fold, or 10X, coverage; this increases the 

costs involved in whole genome sequencing. Currently, the approximate cost for a 

complete draft sequence at 4X coverage (corresponding to a Phred score of 20—far 

below the Bermuda standard) is approximately US $ 0.008 per base pair 55. While the 

industrial implementation of Sanger sequencing is still considered the “gold standard” 

of DNA sequencing, particularly for de novo genome sequencing and assembly, the 

relatively high cost of obtaining the final sequence suggests that this methodology 

will not prove sufficiently economical for routine whole genome resequencing 49. 

Furthermore, the vast infrastructure requirements and costs to even establish a 

genome sequencing center in the first place, preclude the ability of individual 

laboratories to perform routine sequencing on this scale. Consequently, the need for 
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ever greater sequencing throughput is driving the development of more efficient 

sequencing technologies. 

 

Second Generation Sequencing Technologies  

Resequencing arrays (RAs) are a second generation sequencing-by-

hybridization technology.  Overlapping oligonucleotide probes that are typically 25 

base pairs long are immobilized on an array and are tiled at a 1 base pair resolution. 

Each targeted base has 4 identical features for the forward strand and 4 features for 

the complementary strand.  Features are 25 bases long with position 13 as the query 

base that contains either A, C, G, or T and contains approximately 1,000,000 copies 

of the particular oligonucleotide.  Target DNA is fragmented, fluorescently labeled 

and then hybridized to the RA. The two features (one forward and one reverse) that 

are complementary to the test sequence will provide the brightest signal. If the sample 

DNA happens to be heterozygous at position 13, the two features with the appropriate 

complementary base will provide the highest signal.  

Resequencing array data is analyzed using the ABACUS (Adaptive 

Background genotype Calling Scheme) algorithm implemented in RATools 56.  

ABACUS is a fully automated statistical algorithm that determines individual 

base/genotype calls with high accuracy regardless of the nature of the site. The 

algorithm employs likelihood models for each of the possible base calls that are tested 

independently for the forward and reverse strands. A quality score is assigned based 

on the difference between the best fitting model and the second best fitting model for 

each genotype. In the initial application of Affymetrix RAs using ABACUS more 
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than 80% of genotypes were called with greater than 99.9999% accuracy.  To 

improve upon the 80% call rate, additional software was developed to perform more 

accurate, automated grid alignment 57.  

Pyrosequencing is a sequencing by synthesis technology where the sequence 

of the target DNA is determined through a series of four enzymatic reactions.  In the 

first reaction, a single nucleotide is added to the end of the sequencing primer; the 

four nucleotides are added one at a time.  If the complementary base is added, 

polymerase extends the primer; however, if a noncomplementary base is encountered 

the reaction pauses until the proper complementary base is added.  In the second step 

inorganic pyrophosphate is released which acts as a substrate for the ATP which is 

then converted to light by luciferase in the third reaction.  The light signal produced 

by luciferase indicates base incorporation and is detected with a photon detector and 

recorded on a pyrogram.  The sequence is then inferred by reading the signals across 

the pyrogram.  Finally, apyrase is used to remove the unincorporated nucleotides and 

ATP, and the process cycles through the next addition of nucleotides.  

Pyrosequencing has been used for de novo sequencing, resequencing, 

genotyping and sequence determination of secondary DNA structures (reviewed in 

58).  Pyrosequencing was introduced for whole genome sequencing by Roche454 on 

the FLX machine (http://www.454.com).  The 454 method fragments the entire 

genome to 300 base pair long fragments that are then ligated to adapters and 

individually captured on Sepharose beads.  The beads are then added to an oil 

emulsion and clonally amplified on the PicoTiterPlate that can amplify 300,000 

templates of a single DNA molecule.  As reagents and nucleotides are passed over the 
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plate the sequence can be inferred from the pyrogram.  Read lengths average about 

250 base pairs, which makes this technology ideal for bacterial and viral genome 

sequencing 59.   

The ABI SOLiD technology (http://www.solid.appliedbiosystems.com) 

utilizes a DNA preparation pipeline similar to Roche454 with adapter-ligated 

fragments and emulsion PCR with magnetic beads.  The beads are then loaded onto a 

slide with up to 8 chambers and primers hybridize to the P1 adapter sequence.  ABI’s 

technology differentiates itself from Roche454 and Illumina in the di-base probe 

chemistry; four fluorescently labeled di-base probes competitively ligate to the 

primer.  Multiple competitive ligation reactions, detection and cleavage are 

performed.  The extension product is removed and the template resets with a primer 

that is complementary to the second base position.  The competitive ligation 

reactions, detection, cleavage, and primer reset are performed for five more rounds 

allowing for each base to be interrogated by two different primers and ligation 

reactions.  According to ABI, the di-base probe chemistry which leads to two base 

encoding allows for a more accurate sequence in resequencing applications because 

base-calling errors can be distinguished from true polymorphisms or single base 

deletions. 

The Illumina technology 60 (http://www.illumina.com) uses a single molecule 

bridge amplification step that takes place on a flow cell that contains 8 sealed 

channels.  Multiple copies create clusters that contain approximately 1 million copies 

of the original fragment.  The flow cell with the clusters are then placed in the 

Illumina Genome Analyzer which then flows all four nucleotides simultaneously; 
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each base incorporation is a unique event which is captured during an imaging step.  

After imaging, the base is chemically removed and the nucleotides are flowed across 

the cell for the next incorporation.  Illumina now supports up to 75 base pair reads, 

paired end sequencing (75 base pair reads each direction), and multiplexed 

sequencing in which a unique 6 base tag is added to different samples allowing up to 

12 samples per lane 61. 

 Harismendy et al 62 assessed Roche 454, Illumina GA and ABI SOLiD 

technologies with regards to SNP discovery.  When compared to SNP calls from the 

Illumina Hap550 BeadChip, the genotype accuracy was 97.4%, 100%, and 99.7% for 

Roche454, Illumina GA, and ABI SOLiD, respectively.  When SNP calling was 

compared to independent Sanger sequencing, variant calling accuracy was 95%, 

100% and 96% for the three technologies above respectively.  The false positive rates 

were approximately 2.5%, 6.3% and 7.3% while the false negative rates were 3.1%, 

0% and 3% for the three technologies above respectively.  These data indicate that 

although Illumina has a higher false positive rate, accurate variant detection is 

superior to the other technologies.   

 

 

Third Generation Sequencing Technology 

Second generation sequencing by synthesis technologies are limited in their 

sequencing costs, complexity of library preparation and use of PCR amplification 63.  

To overcome these issues, single molecule sequencing, which does not rely upon 

PCR was introduced for whole genome sequencing.  Briefly, Poly(dT) 
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oligonucleotides are randomly attached to a glass slide which capture single stranded 

Poly(dA)-tailed template DNAs.  Sequencing cycles consist of adding polymerase 

and one labeled nucleotide at a time, rinsing, imaging and dye cleavage 63.   For 

Helicos BioScience technology (http://www.helicosbio.com), each molecule is 

independent allowing for asynchronicity in synthesis phases.  This translates into low 

rates of misincorporations and accurate homopolymer calling.  The average read 

length is between 23 and 27 bases with a 98% mutation detection rate 63.  In addition 

to Helicos’ technology, Pacific Biosciences (http://www.pacificbiosciences.com) has 

developed a single molecule real time sequencing technology and nanopore 

sequencing technology is on the horizon 64,65.   

   

SCOPE OF THE THESIS 

Sequencing technologies have advanced rapidly in the past decade. As a 

consequence, it is reasonable to suppose that we will be able to sequence the human 

genome for $1000 in the very near future.  However, for many applications such as 

diagnostic testing it may not be useful to sequence the entire genome.  It may be 

sufficient to target a subset of genes that contribute to the disease in question and 

resequence those loci.  Yet generating this target DNA efficiently and accurately is 

still a challenge in the field. 

In Chapter 1, I describe a novel technique for isolating target DNA for 

downstream resequencing applications.  This protocol, called Microarray-based 

Genomic Selection (MGS), is able to efficiently select user-defined sequence that is 

then hybridized to resequencing arrays (RAs).  In Okou, Steinberg et al 66 we 
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demonstrate that variant detection is highly accurate and that enrichment using this 

technology is sufficient for identifying clinically important variation in the FMR1, 

FMR2 and FMRNB region on the X chromosome. 

In Chapter 2, I describe an experiment that utilizes MGS to select all of the 

exons on the X chromosome for downstream resequencing on RAs (so called 

MGS/RA resequencing). In this experiment, MGS selected only a portion of  targeted 

DNA, and I will explore some possible reasons for its failure. 

In Chapter 3, I describe an experiment in which MGS was applied to select 

target DNA from X chromosome loci that have been associated with a complex trait, 

Autism Spectrum Disorder (ASD). Extremely high rates of genetic variation were 

observed that suggested that MGS/RA resequencing was generating too many false 

positive genotype calls. I will examine the reasons for its failure and the limitations of 

MGS as a technology. 

 In Chapter 4, I present the results from an experiment using the Illumina GAII 

to resequence genes in the neuroligin pathway that have previously been associated 

with ASD in a large clinical sample. 

 Finally, in the Conclusion, I discuss the future of detecting variants in genes in 

biological pathways and how population genetics must guide these experiments and 

analyses. 
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FIGURE LEGENDS 
 
Figure I.1. The effect of stabilizing selection on trait distribution. Extreme 
phenotypes in the original population are selected against leading to an increase in the 
frequency of the mean phenotype. 
 
Figure I.2. Distributions of the general population and of relatives of affected 
individuals. The threshold value of liability remains constant.  In the general 
population, affected individuals have a liability above the threshold (top), while in the 
population of relatives of affected individuals the mean is shifted.  The average 
liability among siblings of affected individuals is higher than the general population 
while the threshold is shifted demonstrating that affected sibs are at a higher risk of 
developing the disease 15. 
 
Figure I.3. Resequencing arrays.  Four forward strand and four reverse complement 
strand features are associated with every site.  One feature is a 25-base 
oligonucleotide where the 13th base is the query base. Features are then divided into 
56 equal pixels and scanned individually 56. 
 
Figure I.4. Pyrosequencing Chemistry.  In the Pyrosequencing enzyme reactions, 
when an added dNTP forms a base pair with the template DNA, it is incorporated via 
Klenow polymerase (-exo), which releases pyrophosphate (PPi).  ATP Sulfurylase 
converts PPi into ATP.  Luciferase production leads to a light signal, which is 
measured and then analyzed 58. 
 
Figure I.5. Illumina Genome Analyzer Workflow (adapted from www.illumina.com) 

a) Genomic DNA is fragmented and the ends are repaired to convert overhangs 
into blunt ends.  Then dATP adds “A” bases to the blunt ends to allow for the 
ligation of adapters.  After ligation, 300 base pair fragments are selected and 
amplified. 

b) These fragments are then added to the flowcell and bridge amplification is 
performed.  This creates millions of clusters with each cluster containing 
many copies of a single DNA fragment.  The sequencing primer is then 
attached. 

c) The flowcell is then placed in the Genome Analyzer.  All four fluorescently 
labeled nucleotides are flowed simultaneously.  After the first base is 
incorporated and read, the base is deblocked, and the process is repeated for 
the remaining bases in the read. 
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Figure I.1 

 
 

Population after selectionOriginal population

Stabilizing selection

against both extremes



 

 

25 
Figure I.2   
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Figure I.3  
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Figure I.5    
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ABSTRACT 

We developed a general method, named Microarray-based Genomic Selection 

(MGS), capable of selecting and enriching targeted sequences from complex eukaryotic 

genomes without the repeat blocking steps necessary for BAC-based genomic selection. 

We demonstrate that large genomic regions, on the orders of hundreds of kilobases, can 

be enriched and resequenced with resequencing arrays. MGS, when combined with a 

next-generation resequencing technology, can enable large-scale resequencing in single 

investigator laboratories. 
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Technological innovation in DNA sequencing offers the promise of a more 

comprehensive, cost effective, and systematic ascertainment of genetic variation.49,56,57,59,67 

A major bottleneck, however, lies in isolating the target DNA to be sequenced. Complex 

eukaryotic genomes, like the human genome, are too large to explore without complexity 

reduction using methods that directly amplifies specific sequences. Current approaches 

for target DNA isolation include short PCR68,69, long PCR56,57, fosmid library construction 

and selection70, TAR cloning71,72, selector technology73, and direct genomic selection with 

bacterial artificial chromosomes (BACs)74. PCR using primer pairs complementary to 

specific genomic regions of interest is still the most common method sample preparation, 

but it is difficult to scale to large genomic regions, is labor intensive, and when primers 

are multiplexed, is subject to failure or artifacts. Random clone-based methods offer the 

advantage of obtaining complete haplotypes, but remain relatively expensive to scale. 

Direct genomic selection, using BAC clones as hybridization “hooks”, has 

previously demonstrated the ability to isolate specific genomic regions without requiring 

specific amplification74, but its adoption has been limited. Because BAC clones consist of 

a great deal of highly repetitive sequences, a number of protocol steps are required to 

minimize the enrichment of these types of sequences. Furthermore, because a single BAC 

is the unit of selection, isolating discontiguous unique sequence regions from across the 

genome would require multiple BACs. Finally, the existing protocol depends upon the 

presence of restriction sites adjacent to the targeted regions of interest that produce sticky 

ends for the ligation of generic adaptors. This acts to limit coverage in regions lacking 

these restriction sites. While random shearing followed by repair was mentioned as a 

possible alternative approach, it was not demonstrated 74. 
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To address these challenges, we have developed a method, Microarray-based 

Genomic Selection (MGS), capable of isolating user-defined unique genomic sequences 

from complex eukaryotic genomes. The MGS protocol consists of five main steps: (1) 

Physical shearing of genomic DNA to create random fragments with an average size of 

300bp, (2) End repair of the fragments, that includes adding 3’-A overhangs, followed by 

ligation to unique adaptors with a complementary T nucleotide overhangs, (3) Fragment 

hybridization and capture using a custom high-density oligonucleotide microarray 

consisting of complementary sequences identified from a reference genome sequence, (4) 

Fragments bound to the probes are eluted, and (5) Selected fragments are amplified 

through one round of PCR using the adaptors as a single set of primers/template. Figure 1 

provides a schematic overview of the method, starting with genomic DNA and ending 

with finished sequence across the targeted regions. The complete protocol is outlined in 

detail in the Supplementary Methods. 

To demonstrate MGS, we captured and resequenced two X-linked genomic 

regions (Figure 2). The initial experiment examined a region 50Kb in size and included 

coding and non-coding sequences surrounding the fragile X mental retardation gene 

(FMR1). In a second, larger scale experiment we isolated and resequenced 304Kb of 

unique coding and non-coding sequences contained within a 1.7 MB genomic region that 

includes FMR1, FMR1NB and the AFF2 genes. Each custom MGS array consisted of 

~385,000 long oligonucleotide capture probes (50-93bp) covering the regions of interest 

and were manufactured by NimbleGen Systems, Inc. Capture probe sequences included 

both the forward and reverse strands manufactured on a standard commercially available 

microarray to our specifications (Supplementary Text Files 1-2). For the 50 Kb region, 
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there were four pairs of probes for every targeted base, while the 304 Kb region had one 

pair of probes for every 1.5 targeted bases. The capture oligonucleotides were between 50 

and 93 basepairs long and were designed to achieve optimal isothermal hybridization 

across the microarray. 

Twenty micrograms of whole genome amplified genomic DNA were processed 

for each sample using the MGS protocol. Upon eluting the selected target from the 

capture MGS chip, we obtained yields of between 700ng and 1.2 µg. The eluted sample 

was split into between 5 and 10 PCRs, each of which was carried out using high fidelity 

Taq polymerase at an optimal concentration of 3ng/µl of PCR template. We have been 

able to reuse the MGS capture chips at least one time with no apparent contamination or 

effect on data quality (data not shown). 

To assess MGS, we first sought to resequence a 50kb genomic region containing 

the FMR1 locus in cell lines derived from 2 patients with known FMR1 mutations: Tr91 

contains a disease causing point mutation (A>T) at position 146825745 on the X 

chromosome while DM316 harbors a large deletion of the FMR1 gene75,76. We designed a 

custom NimbleGen 50Kb resequencing array that covered the targeted regions, 

containing both coding and non-coding sequences in the vicinity of the FMR1 gene 

(Figure 2), and resequenced both patients in triplicate using MGS. Analysis of the TR91 

sequence identified the expected A>T point mutation when compared to the human 

genome reference sequence in all three replicates. Six additional variants were detected in 

TR91, 5 of which were successfully validated by independent sequencing (Agencourt 

Bioscience; see Supplementary Methods and Supplementary Table 1). As we expected, 

each of the three DM316 samples exhibited an absence of hybridization on the 
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resequencing array (RA) in the regions corresponding to the known deleted sequences 

(Supplementary Figure 1). 

A total of 304 Kb was selected from 10 individual genome represented by two 

populations of different ancestry: a European descent (ED) population (n=5) selected 

from the Centre d’Etude du Polymorphism Humain (CEPH) panel and an African descent 

(AD) population (n=5) selected from the HapMap (Coriell Cell Repository numbers 

provided in Supplementary Methods). MGS was replicated twice for each of the ten 

samples. Using quantitative PCR, we estimated that MGS enriched targeted sequences 

~1000-fold (Supplementary Figure 2). 

Our resequencing results provide three lines of evidence demonstrating the 

efficacy of our MGS protocol. First, our total basecalling call rate over all 20 replicates 

(10 samples each processed twice) was 99.1% (6,528,393 called out of 6,585,832 total). 

This very high level of coverage implies that our MGS protocol efficiently enriches for 

the variety of sequences contained in the genomic regions we targeted. Second, for each 

sample, we counted the number of bases called identically and differently between both 

replicates. The reproducibility of RA base calls was 99.98%. Third, for each sample, to 

assess accuracy of basecalls, we compared our RA basecalls with genotype calls 

generated by the HapMap project (www.hapmap.org). We initially observed 39 

discrepancies between RA and HapMap genotype calls. In order to identify the nature of 

the discrepancy, we had each of them independently resequenced via conventional ABI 

chemistry (Agencourt Bioscience, Beverly, MA). The resulting sequence data showed 

that 27 of the discrepancies agreed with our RA call, while 12 agreed with the HapMap 

genotype call. Hence, more than two thirds of the discrepancies we observed arose due to 
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errors in HapMap genotyping. Our final accuracy at segregating sites was thus 99.81% 

(Table 1). 

 The MGS protocol we describe uses routine enzymatic reactions and protocols 

that increase efficiency while minimizing risk of contamination and artifacts. The capture 

arrays are standard high-density long oligonucleotide arrays and are commercially 

available. The user can design the array to select multiple unique sequence fragments 

located throughout the genome for resequencing, or to comprehensively resequence 

genomic regions without the repeat blocking step necessary for BAC genomic selection. 

We are continuing to further pursue the tradeoff between probe density and sequence 

coverage and to increase the level of enrichment. Our current MGS microarrays contain 

~385,000 capture probes. Current state of the art microarrays containing 2.1 million 

features and arrays with 4.5 million probes will be available in the near future. We 

believe that obtaining high coverage from genomic regions on the scale of megabases 

will soon be feasible. 

Owing to the quality and comprehensive coverage of the data obtained, we 

believe that MGS will significantly contribute to a future where single investigator 

laboratories, using limiting infrastructure and requiring relatively few personnel, will be 

able to generate genome sequences at levels comparable to a conventional genome 

sequencing center. The ability of MGS to select multiple targets enables a comprehensive 

large-scale resequencing of user defined genomic regions that provide potentially 

important clues to the pathogenesis of complex diseases69 or to find human genetic 

variation and functional sequences in both coding and non-coding regions73. Our method 

is useful for candidate gene studies that have been limited by sequencing capabilities and 
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offers the opportunity to select hundreds of genes in known pathways for resequencing. 

MGS would be useful in other eukaryotic model systems (i.e. mouse, zebrafish, 

Drosophila) to speed the sequencing of regions known to contain induced mutations. 

Finally, while we chose to use RAs, our approach is quite general. With continuing 

improvements in levels of enrichment, MGS should be able to be incorporated into 

existing sample preparation pipelines for instruments from Solexa77 and 45459, enabling 

even greater throughput at lower costs in the near future. 
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SUPPLEMENTARY METHODS 

1. Array Design 

We used the UCSC Table Browser function with repeats masked on the latest 

human genome build (March 2006) to identify the unique sequences within a selected 

genomic region78. The CGG repeat sequence of FMR1 from the human genome reference 

sequence was included in the design. Since genetic variants in regulatory elements away 

from the coding sequences may influence the expression of a gene 79, unique sequence 

upstream and downstream of the target genes were also be included. We then selected 

among the unique sequence to obtain ∼50 Kb or 304 Kb of unique sequence. We 

excluded unique sequences 100 bp or less and in some cases, we added short (<100 bp) 

stretches of previously masked sequence, to avoid breaking up long stretches of genomic 

regions. 

 The FASTA format sequences were then provided to chip design engineers at 

NimbleGen to select oligonucleotides for the microarray-based genomic selection (MGS) 

array. Standard bioinformatics filters that check for genomic uniqueness against an 

indexed human genome (15mers) were used to select capture oligos. The capture 

oligonucleotides were between 50 and 93 basepairs long and were designed to achieve 

optimal isothermal hybridization across the microarray. No other optimization of oligos 

was performed. For the 50 Kb region, there were four pairs of probes for every targeted 

base, while the 300Kb region has one pair of probes for every 1.5 targeted bases.  

Resequencing arrays were designed from the FASTA format sequences provided 

to design engineers at Affymetrix (FMR1/FMR2) and NimbleGen (FMR1 only). 

Resequencing Arrays (RAs) query a given base by using overlapping oligonucleotide 
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probes, tiled at a 1-basepair (bp) resolution. The oligonucleotide probes, referred to as 

features, are typically 25 basepairs long. Both the forward and reverse strands are 

interrogated, so sequencing a single base requires a total of 8 features. A set of four 

features contains oligonucleotides identical to the forward reference strand, except at 

position 13 (the base to be queried), where there is either A, C, G, or T. The remaining 

four features are similarly designed for the complementary strand. When a labeled DNA 

sample, called a target, is hybridized to these eight features on the array, the two features 

complementary to the reference sequence (forward and reverse complement) will yield 

the highest signal. If, however, the target DNA contains a variant base at position 13, the 

two features complementary to that variant base will yield the highest signal. Given eight 

features for each base, interrogation of an L-length duplex strand would require 8L 

oligonucleotide probes.   

 

2. Sample Selection 

DNA samples were purchased from the Coriell Cell Repository 

(http://ccr.coriell.org) and included 10 individual genomes represented by two 

populations of different ancestry: a European descent (ED) population (n=5) selected 

from the Centre d’Etude du Polymorphism Humain (CEPH) panel with the Coriell Cell 

Repository numbers: NA07029, NA07048, NA10846, NA10851 and NA10860; and an 

African descent (AD) population (n=5) selected from the HapMap with the Coriell Cell 

Repository numbers: NA18500, NA18503, NA18506, NA18515 and NA18521. MGS 

was replicated twice for each of the ten samples. Other samples used in this study were 

extracted from cell lines representing fragile X patients with either disease causing point 
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mutation (A>T) at position 146825745 on the X chromosome (Tr91) or deletion 

(DM316) in the fragile X mental retardation (FMR1) gene 75,76.  

 

3. Adaptor and Primer Design 

All oligonucleotides used in this project were obtained from Invitrogen Corp. The 

adaptor was prepared by annealing the forward (21 bp) and reverse (22 bp) 

oligonucleotides to generate a 21 bp dsDNA fragment with single and double base “T” 

overhangs at the 3 prime and 5 prime end respectively (Supplementary Figure 3). 

Annealing of the oligos was performed by mixing both oligonucleotide to a final 

concentration of 1.5 µg/µl each oligo, heating to 95’C for 10 minutes in a heating block, 

turning off the heating block and allowing the mixture to slowly cool back to room 

temperature. The primers used for the enrichment were made by preparing a 20 µM of 

each oligonucleotide used for the adaptor. 

 

4. Genomic DNA preparation 

Whole genome amplification was performed on 100 ng of genomic DNA using 

the RepliG Kit (Qiagen Inc.). Following amplification, the unpurified samples were 

quantified using a spectrophotometer (NanoDrop). Twenty-five micrograms of each 

sample was aliquoted into sterile Eppendorf tubes for a final concentration of 100 ng / µl 

(250 µl). 
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5. Target DNA isolation 

Samples were sonicated (Misonix sonicator 3000) in Eppendorf tubes with a 

microtip probe using the following parameters: 3 pulses of 30 seconds each with 2 

minutes of rest and a power output level of two. After fragmentation, approximately 750 

ng of each sample was run on a 1.5% TAE agarose gel against 750 ng of a 1 Kb plus 

ladder to verify that fragments average 300 bp in size. The samples were then dried down 

in a SpeedVac at medium heat to 47 µl (75° C).  

 

6. Repairing Ends of Sheared DNA 

To the 47 µl fragmented DNA we added 8 µl of dNTPs (2.5 mM, TaKaRa), 8 µl 

of 10X T4 DNA Polymerase Buffer (NEB), 1 µl of 100X BSA (NEB), 1 µl 100mM ATP, 

14 µl of T4 DNA Polymerase (3U/µl, NEB), and 1 µl of T4 Polynucleotide Kinase 

(10U/µl, NEB). We then incubated in a thermocycler at 12°C for 20 minutes followed by 

37°C for 30 minutes and 70°C for 5 minutes. After incubation we directly added 2 µl of 

10X T4 DNA Polymerase Buffer (NEB), 2 µl 100mM dATP (Sigma), 3 µl of 50mM 

MgCl2, 8 µl of VWR H2O, and 5 µl of Taq DNA Polymerase (5U/µl, NEB). Samples 

were incubated in a thermocycler at 72°C for 45 minutes. After incubation we used the 

Promega Wizard® SV Gel and PCR Clean-Up System following the manufacturer 

protocol. Each column was eluted with 70 µl of water, the volume adjusted to 71 µl and 1 

µl removed to perform NanoDrop quantification. 
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7. Ligation of Adapters 

The following reaction(s) were performed in a 0.2 ml PCR tube. To the 70 µl 

repaired reaction 10 µl of 10X T4 DNA Ligase Buffer (NEB), 15 µl of Adapters (1.5 

µg/µl) and 5 µl of T4 DNA Ligase (2000U/µl, NEB) was added. This was incubated at 

room temperature for 2 hours. The insert to vector ratio was calculated in terms of insert 

ends to vector ends. The number of ends available for ligation in pmoles can be 

calculated as follows: 

  pmol ends/µg of DNA = (2 x 10^6) / (number of base pairs x 660) 

The ratio of adapter to DNA should be at least ~12:1. While this increases the chance of 

getting some adapter concatamer (which should not hybridize to the array), all of the 

fragments will likely get adapters, which is very important. When the ligation was 

complete, the sample was transferred to a 1.5 ml tube and 100 µl of VWR water was 

added. The Promega Wizard® SV Gel and PCR Clean-Up System was used following 

the manufacturer protocol. Each column was eluted with 50 µl of water and 1 µl was 

removed to perform NanoDrop quantification. 

 

8. Hybridization 

To the ligated sample we added a 5-fold amount (in µg) of human Cot-1 DNA 

(Invitrogen). The sample was dried in the Speed-Vac at medium heat (75°C) for 45 

minutes. The sample was vortexed for 3 minutes and drying continued to the pellet. The 

following reactions were performed in a 1.5 ml tube. To the pellet from dried sample 7.2 

µl of VWR water, 8.25 µl of 2X Hybe Buffer (NimbleGen) and 1.43 µl Hybe Component 

A (NimbleGen) was added. The samples were vortexed 3 minutes and then heated at 
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95°C for 10 minutes. The samples were quickly spun down and placed in the MAUI heat 

block at 42°C until ready to use.  Once the samples were applied to the chip surface, we 

began the mixer on program B and hybridized for 60 hours.  

 

9. Elution 

After hybridization, the MGS arrays were first prewashed at 42oC in NimbleGen 

Buffer 1 followed by two 5 min washes at 47.5oC with NimbleGen Stringent Buffer. The 

arrays were then washed at room temperature for 2 min with NimbleGen Buffer 1, 1 min 

with NimbleGen Buffer 2 and 30 seconds with NimbleGen Buffer 3. We placed the 

washed chip on the Hybriwheel (NimbleGen) at 100°C and secured with a Hybe Puck 

(NimbleGen). We added 400 µl of 95°C VWR water and incubated 5 minutes.  After the 

5 minute incubation we removed as much water as possible and pipetted it into a labeled 

1.5 centrifuge tube (placed on ice). We repeated this process one more time beginning 

with the addition of 400 µl of 95°C VWR water to the puck.  When this was complete, 

we added 350-400 µl of 95°C VWR water and removed it immediately and pipetted it 

into the 1.5 ml tube.  

After elution, the sample was placed in the Speed-Vac at medium heat (75°C) for 

45 minutes. The sample was vortexed for 3 minutes and drying continued until the 

sample was to the pellet. We then hydrated the pellet in 33 µl of VWR water and 

vortexed for 3 minutes. We performed NanoDrop quantification of single strand DNA 

(DNA -33) to determine the concentration of the sample (picogreen and ethidium 

bromide quantification are inefficient for single stranded DNA). Upon eluting the 
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selected target from the capture MGS chip, we obtained yields of between 700ng and 1.2 

µg. 

 

10. Amplification (LMPCR) 

From the NanoDrop quantification we determined the number of LMPCR 

reactions to carry out using 110 -150 ng of template per 50 µl reaction. For example, if 

the eluted sample has 960 ng of total DNA, then we had 8 reactions with 120 ng of 

template DNA per reaction to amplify the entire eluate. The expected yield is 4 - 8 µg of 

product / 50 µl reaction. It is important to use at least 110ng of template to maximize 

yield; 120ng is optimal. 

 To the 50 µl reaction we added 5 µl of 10X LA PCR buffer (TaKaRa), 5 µl of 2.5 

mM dNTPs mix (TaKaRa), 2 µl of 20 µM FWD LMPCR primer, 2 µl of 20 µM REV 

LMPCR primer, and 2 µl of LA Taq (5U/µl, TaKaRa), and VWR water to 50 µl. This 

reaction was incubated in a thermocycler at (1) 95°C for 2 minutes, (2) 95°C for 60 

seconds, (3) 58°C for 60 seconds, (4) 72°C for 60 seconds, (5) Repeat step 2 30 times (35 

cycles), then at 72°C for 5 minutes and finally hold at 4°C. 

All PCR reactions were pooled by sample and transferred into a 1.5 ml tube. We 

used the Promega Wizard® SV Gel and PCR Clean-Up System following the 

manufacturer centrifugation protocol. For spin steps we used 13000 g, and for the elution 

spin we used 16000 g and 1.5 minutes. Each column was eluted with 50 µl of water. 

Three to 5 µl were used to verify size distribution on 1.5 % TAE agarose gel 

against 500 – 750 ng of 1 Kb plus ladder and positive control (6 X xylene cyanol loading 

dye for samples). Then the samples were quantified using NanoDrop and sonicated. 
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11. Resequencing of selected DNA 

NimbleGen’s Comparative Genomic Sequencing protocol was used for the 50K 

RA. Briefly, 1 µg of sample was denatured at 98oC for 10 min in random primer buffer 

and labeled in the dark with Cy3-9mer primers (TriLink BioTechnologies) in the 

presence of dNTP mix and 100 units of Klenow (50U/µl, NEB) for 2 hours. To guarantee 

at least 20 µg of label sample for resequencing, 2 labeling reactions were done per 

sample (2 µg total). Labeled samples were purified using ethanol precipitation method 

and dried down to the pellet in the dark to avoid bleaching of the Cy3 dye. After 

rehydrating the pellets with 20 µl total of VWR H2O, ten to thirty micrograms of labeled 

DNA was mixed with NimbleGen’s Hybridization cocktail (2X hybe buffer and hybe 

component A) and denatured at 95oC for 5 min. The arrays were loaded and incubated 

overnight at 42°C on MAUI Hybridization System (BioMicro). The signal was detected 

by measuring Cy3-chrome fluorescence using Genepix 4000B (Molecular Devices 

Corp.). 

For Affymetrix RAs, 30 µg of enriched samples were digested to 20 to 100 bp for 

3 min in a 42µl reaction comprised of 10X Phor-All_Buffer (Amersham Biosciences), 

10X Acetylated BSA and 3 units of DNAse1 (Promega). Reactions were heated at 75° C 

for 10 minutes to inactivate the DNAse then to 95° C for 15 minutes to separate the 

strands. The reactions were then cooled at 4° C for 45 minutes. The fragmented DNA 

was labeled using 17.13 nmol of a biotinylated proprietary labeling reagent (Affymetrix), 

4.5 units of terminal deoxynucleotidyl transferase (Affymetrix) and terminal 

deoxynucleotidyl transferase buffer (Affymetrix) at a final concentration of 1X. The 
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reactions were brought to a volume of 60μl with nuclease free water (VWR). Each 

reaction was incubated at 37°C for 4 hours followed by heat- inactivation for 15 minutes 

at 95°C and stored at 4° C until ready to use.  

The labeled DNA samples were combined with 160 μl Hybridization buffer 

comprised of 1M Tris HCl pH 7.8 (Sigma), 5M TMACL (Sigma), 0.10% Tween 20 

(Pierce Biotechnology), 100 μg/μl of Herring Sperm DNA (Promega), 500ug/ml 

Acetylated BSA (Invitrogen), and 200pM biotinylated SNPHy948B (Invitrogen). The 

hybridization mix was then heated to 95°C for 5 minutes, equilibrated at 49°C and 

hybridized to the high-density oligonucleotide array at 49°C for 16 hours. All signal 

detection steps were performed using an Affymetrix fluidics. The arrays were washed in 

6X SSPE, 0.01% Tween 20 solution (wash A) 6 times at 25°C then in .6X SSPE, 0.01% 

Tween 20 solution (wash B) 6 times at 45°C. For signal detection, the arrays were 

incubated with stain 1 (6X SSPE, 0.01% Tween 20, 1X Denhardt’s solution (Sigma), and 

10ug/ml SAPE (Invitrogen), final concentration) for 10 minutes at 25°C, followed by 6 

washes with wash A at 25°C. Incubation with stain 2 (6X SSPE, 0.01% Tween 20, 1X 

Denhardt’s solution (Sigma), and 10ug/ml anti-streptavidin antibody (Vector), final 

concentration) was done for 10 minutes at 25°C. A second incubation with stain 1 was 

done for 10 minutes at 25°. The arrays were rewashed 10 times in wash A at 30°C and 

filled with a holding buffer (5M NaCl, 10% Tween 20, MES hydrate and MES sodium 

salt). They were stored at 25°C until they were ready to be scanned. The signal was 

detected by measuring Cy-chrome fluorescence using a G7 Genechip scanner 

(Affymetrix). For both the NimbleGen and Affymetrix resequencing arrays, all bases 

calls were made with the RATools program RA_PopGenCaller (http://www.dpgp.org/). 
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12. Validation Sequencing 

Discrepancies between RA data and HapMap data were evaluated using 

independent sequencing (Agencourt). PCR primers were designed using Primer 3 

(http://frodo.wi.mit.edu/). PCR Reactions were composed of 400 ng of sample DNA was 

mixed with 8 µl of dNTP mix (TaKaRa), 5 µl of 10X LA Taq buffer (TaKaRa), 1.5 µl 

LA Taq (TaKaRa), 0.8 µl of each forward and reverse primers and VWR water to 50 µl 

total reaction volume. DNA was amplified using the following parameters: 94°C for 4 

min, 30 cycles of 94°C for 20 sec, 58°C for 1 min, and 72°C followed by 72°C for 5 

minutes. This method was also used to validate discrepancies in the Tr91 RA data. The 

primers that amplified the SNP discrepancies are listed in Supplementary Table 2. PCR 

products were run on a 1% TAE agarose gel, excised from the gel and purified using the 

Promega Wizard® SV Gel and PCR Clean-Up System. 

 

13. Long PCR Control 

To minimize the number of amplifications, we used long PCR to amplify genomic 

regions that contain one or more unique sequence blocks tiled onto the variant 

resequencing array. A total of 14 primer pairs spanning 48 Kb (including the 39 kb 

FMR1 genome region) were used. Except for one primer close to the CGG repeat (20 bp) 

Long PCR primers were 31 to 34 base pairs long and were selected by using Amplify 

3.1.4 80 to ensure that they bound uniquely within a 48 kb region and had a primer 

stability value between 70 and 80. Primers had GC content between 45% and 60%.  

Amplification of genomic DNA was accomplished in 50 µl reactions carried out 
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in thin-walled polypropylene tubes using LA Taq (TaKaRa). The manufacturer’s 

recommendation was followed. LPCR amplification of the human samples employed 

either a standard or a modified mixture where 5% DMSO (or manufacturer GC Buffer) 

was added to aid the amplification of GC rich regions. The standard conditions for the 

LPCR were: (1) 94˚C for 2 minutes, (2) 94˚C for 10 seconds, (3) 68˚C for 1 minute per 

kb fragment size, (4) repeat to step 2, 30 times, and (5) final extension time equal to step 

3 plus five minutes. Each LPCR required a minimum of 200ng of human genomic DNA 

and most fragments were between 3.4 and 11 kb long. To obtain optimal performance 

across the microarray, we pooled equal molar concentration of PCR product, to ensure 

that an equal number of targets existed for each probe on the array. The primer sequences 

that amplified each fragment are listed in Supplementary Table 1. 

 

14. Quantitative PCR 

We performed quantitative PCR on sample DNA with two treatments: (1) whole 

genome amplified, ligated and then amplified using LMPCR protocol and (2) eluted from 

genomic selection with LMPCR. We used the iQ SYBR® Green Supermix (Bio-Rad) 

and the following primer pair:  

FW: ACAGTAGGGCTGTGCTTACTGC 

REV: CTCATTTTCAGCCTCAATCCTC  

The primers amplify 156 bases from exon 10 in the FMR1 gene. Reactions contained 

12.5 µl of 1X iQ SYBR® Green Supermix, 1 µl of FW Primer (10mM), 1µl of REV 

Primer (10mM), 9.5 µl of VWR water and 1 µl of DNA template (30 ng/µl) for a total 

volume of 25 µl. The standard curve was created using whole genome amplified DNA at 
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concentrations ranging from 500 ng/µl to 7.8 ng/µl. The reactions were performed in 

triplicate. The reactions were incubated in a Bio-Rad iQ5 Multicolor Real Time PCR 

Detection Light Cycler using the following parameters: (1) 94˚C for 3 minutes, (2) 94˚C 

for 10 seconds, (3) 58˚C for 30 seconds, (4) 72˚C for 30 seconds, and (5) Repeat steps 2-

4 for 40 cycles. From our quantitative PCR result we conservatively estimate at least 

1000X enrichment of DNA used for resequencing (treatment 2) when compared to whole 

genome amplified DNA that underwent LMPCR amplification (treatment 1). The DNA 

from treatment 2 has a cycle threshold of 15 while the cycle threshold for treatment 1 is 

25. If we assume that DNA doubles every cycle then enrichment can be calculated by 2N, 

with N equaling the difference between the cycle thresholds of the two treatments 

(Supplementary Figure 3). 
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Table 1.1 

Table 1 Assessment of 304kb RA data quality 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Replication Experiment 

Total number of bases called identically in both replicates 6,492,426 

Total number of bases called differently in both replicates 1115 

Percent of Bases Called Identically 99.98% 

 

Accuracy Estimation 

Total number of bases called identically 6280 

Total number of bases called differently (before validation) 39 

Total number of bases called differently (after validation) 12 

Accuracy at segregating sites 99.81% 
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Table 1.2 (Supplementary Table 1) Primer sequences used in independent sequencing 
validation of HapMap and Tr91 discrepancies. 
 

HapMap Samples  
rs16994908_FW2 CTTCACCATTTTTGCATGTACC 
rs16994908_REV TTGCAACCACATTTGAAGTGAC 
rs12688573_FW AAAGTCGCACAGATACCCTCTC 
rs12688573_REV CTTTTCTGTCTTGCCATTAGCC 
rs11117557_3_FW ACTGCATCTGCAGAGAAACAAC 
rs11117557_3_REV AACAGTTGTGAAACTACGTCAGG 
rs7052829_FW TTATGGGAAGAATCCACTCCAG 
rs7052829_REV_2 AGTAGCAGCAACAGCAACAAAG 
rs7052654_rpt_FW CAGGGCAGGGATGATTAGAG 
rs7052654_rpt_REV AGAAAGGAAGAGATGCATGGAC 
rs6626955_6_FW TCCCTTGTGTTCATGGAGTATG 
rs6626955_6_REV AACAGGAGCTTCTTCCTGATTG 
rs2761622_2_FW AAATGAAATGCACCTTCCAGAG 
rs2761622_2_REV GCACTTGTTTCACAGGTACAGC 
rs1805422_FW GTAGCAGTAGTGCGTTTGTTGG 
rs1805422_REV TTTCCTATAGCCAAACGTGTCC 
rs1265401_FW GGGTATGGGTTTAACATAGGACAG 
rs1265401_REV GACTTACGGGCTGCTTCTCAC 
rs1265397_FW GCATGCGTGTCTTACTCCATAG 
rs1265397_REV AAGCTCTGTCAGTGTGATGTGG 
rs25699_FWD GCCAGAGGCTATTTCCCTAACTTAC 
rs25699_REV TGATGACGAACTCTGGAATTTGAC 
rs4949_FWD AGAGTGCTTTTGTTGGGATGTAC 
rs4949_REV_2 attacacacataGGTGGCACTA 
rs1442280_FWD AGACATTGCAAACATCCAGAAC 
rs1442280_REV ATGCAGTCAGCCAGGTAATAGA 
rs16994869_FWD tgAACAGTCACTTGACATCCAAAG 
rs16994869_REV GATTGGAGGAGGCAGAGAAATAGT 
Tr91  
rs29284_int9_FW CTCTGGTACCTGACCAAAGGAG 
rs29284_int9_REV AAAGCAGTAAGCACAGCCCTAC 
rs29288_int13_FW CATGCCATTCATTCTTATGGTG 
rs29288_int13_REV AATCCTAACTCTCCAGGCCTTC 
rs25707_ex5_FW CCTGCCACAAAAGATACTTTCC 
rs25707_ex5_REV TTCTCCATTGCTCTTGCAAAC 
I304N_ex10_FW ACAGTAGGGCTGTGCTTACTGC 
I304N_ex10_REV CTCATTTTCAGCCTCAATCCTC 
rs29286_int12_FW GTGGCTTCATCAGTTGTAGCAG 
rs29286_int12_REV CACATACCCACAAACACTCCTC 
rs5904816_int14_FW GCACATCAAGGTTTGAACTTAGG 
rs5904816_int14_REV CAGAGACGTTTCAGGGGTAATC 
rs25704_ex17_FW GGAAGGTCATTTCCATGTATGC 
rs25704_ex17_REV AAAACCAAACCCCAACACTTC 
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FIGURE LEGENDS 
 
Figure 1.1. (Figure 1) Microarray-based genomic selection and resequencing of complex 
genomes. Sheared genomic fragments (A, B) are repaired and ligated to generic adaptors 
(C). Hybridization to a custom designed high-density oligonucleotide microarray allows 
the capture of the target DNA regions (D). The selected target is eluted (E) and amplified 
using a one step PCR and a single primer pair /template (F). We resequenced the 
amplified target with resequencing arrays (G) analyzed with RATools. 
  
Figure 1.2. (Figure 2) Genomic regions (50kb, 304kb) resequenced in the two MGS 
validation experiments. Targeted sequences included both coding and unique non-coding 
genome sequences. 
 
Figure 1.3. (Supplementary Figure 1) RA hybridization results for TR91 (A) and DM316 
(B) samples. The large absence of hybridization on the DM316 array is the result of a 
large deletion of much of the FMR1 locus. 
 
Figure 1.4. (Supplementary Figure 2) Results of quantitative PCR assay measuring the 
extent of enrichment after a single round of microarray-based genomic selection (MGS). 
 
Figure 1.5 (Supplementary Figure 3) Schematic showing design of adapter 
oligonucleotides used in the MGS ligation and later PCR amplification steps. 
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Figure 1.1 
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Figure 1.2 
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Figure 1.3 
(Supplementary Figure 1) 
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Figure 1.4 
(Supplementary Figure 2) 
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Figure 1.5 
(Supplementary Figure 3) 
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INTRODUCTION 

Recent advances in high throughput DNA sequencing technologies, which have 

applied novel-sequencing chemistries in highly parallel and miniaturized formats, have 

resulted in major advances in two areas 58,62,81. First, these approaches have fueled an 

exponential increase in the amount of DNA sequence obtained in a single experiment. 

Second, the cost per high quality base pair generated has been dramatically reduced. 

While these technological developments continue to move us closer to rapidly and 

inexpensively sequencing entire human genomes, clinical applications of whole genome 

sequencing will not be broadly adopted until accuracy and scalability in single, diagnostic 

laboratories improves.  Targeted capture and resequencing of protein coding regions, or 

exomes, is a viable clinical alternative to whole genome sequencing 82-85.  For example, 

exome sequencing is a method that could be used in cancer genetics to identify mutations 

in tumor tissue when compared to the patient’s germline sequence 86.  Additionally, 

complete exome resequencing in unaffected human populations can be expected to help 

determine which variants are truly associated with disease and which are normally 

present in the population. 87 

The conventional method of generating target DNA for sequencing using short 

PCR requires too many pairs of primers, it is too expensive, and too slow to efficiently 

amplify large target regions.  For example, a recent report of 22 tumor samples required 

over 135,000 primers and 3 million PCR reactions 69.  As described in the previous 

chapter, we developed Microarray-based Genomic Selection (MGS) to address issues of 

target DNA isolation in large resequencing studies 66.  MGS is able to isolate specific 

unique genomic sequence from complex, eukaryotic genomes by using capture 
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oligonucleotides bound to a solid surface.  Rather than focusing on a small candidate 

region implicated in a disease phenotype, here we evaluated MGS on a larger scale by 

first selecting and then resequencing all of the exons on the X chromosome (the X 

exome) in ten HapMap males (Coriell numbers listed in Methods).  

 

RESULTS 

We chose 7066 exons (ranging in size from 12 to over 9000 bases) to capture and 

resequence on resequencing arrays in ten male samples. Arrays were designed and 

manufactured by NimbleGen Systems, and probes were tiled every 5 bases.  Fasta files 

containing desired target sequences were provided to NimbleGen for array design.  

NimbleGen then used bioinformatics filters that assessed genomic uniqueness against an 

indexed human genome (15mers) to select oligos between 50 and 93 basepairs long. 

 

Statistical analysis of MGS probes 

Across all ten samples, approximately 30% of exons had basecalling rates over 

90% while approximately 74% of exons had basecalling rates over 70% (see Figure 2.1).  

While these results were promising there were a significant number of exons that had 

basecalling rates below 90%.  The causes of this failure could arise from two sources: the 

MGS array could have failed to select the exons that had low basecalling, or, 

alternatively, the MGS array could have selected the exon, but the resequencing array did 

not accurately call the bases.  To begin to tease these two confounding hypotheses apart, I 

performed univariate analyses to compare the 219 exons with the highest basecalling 

rates and the 216 exons with the lowest basecalling rates.  I compared basecalling with 
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three main variables: number of MGS probes, GC content of probes and MGS probe 

melting temperature (Tm).  The number of MGS probes acts as a proxy for exon length 

as the probes were tiled evenly every 5 bases regardless of coding sequence length. The 

results demonstrate that longer exons, exons with lower GC content and exons with lower 

melting temperature (Tm) all had higher basecalling rates (see Figure 2.2). 

 

Chip redesign 

To address the issue of Tm and GC content I redesigned an MGS array to have 

capture probes with an optimal Tm (mean Tm=70.8°C, range 56°C -89°C).  I then 

designed a 50 Kb NimbleGen resequencing array to contain 25 Kb of sequence that 

performed well in the initial experiment and 25 Kb of sequence that failed in the initial 

experiment.  We predicted three different possible outcomes.  If the initial experiment 

was solely a failure in target DNA capture by the MGS array and not influenced by 

resequencing on the RA, we expected that our redesigned capture array should have 

improved the capture efficiency and that this would be reflected by improved basecalling 

on the RA. Alternatively, if the experiment had failed because the RAs performed poorly, 

even in the presence of sufficient target DNA, we would have expected to continue to see 

poor base calling at those sequences that we previously failed to resequence. Finally, it is 

possible that both the capture and resequencing arrays failed in a similar fashion - that 

would lead to poor sequence data. We note if this latter hypothesis were true, we would 

not be able to distinguish the second or third hypotheses in the case of a negative 

outcome. 
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Each sample was prepared using the same MGS protocol and resequenced once.  

Average basecalling was 45% over the entire chip.  Exons that had previously high 

basecalling rates had high basecalling rates in this experiment, while exons that had 

previously failed also failed in this experiment.  These results suggest that adjusting for 

Tm could not fully eradicate the variance in probe performance.  There may be other 

variables for which we did not account that could be contributing to variance in probe 

success or failure.  Additionally, these results do not account for success or failures in the 

RA features, which may also be confounding these results.  RA probes were generated 

identically to MGS probes, although they were only 25 bases long and tiled at a 1 base 

resolution.  Therefore, it is impossible to resolve the confounding hypotheses that either 

or both the MGS and/or RA probes failed based upon these results.  Currently, the lab is 

pursuing new sequencing technologies, such as Illumina sequencing, paired with MGS 

target DNA isolation.  Results from these experiments may shed some light on whether 

redesigning MGS probes can decrease the variance in probe success and increase the 

amount of sequence generated over a large set of genomic targets. 

 

DISCUSSION 

The results from this X exome resequencing experiment indicate that standard 

MGS array designs from NimbleGen cannot accurately select small exons and those 

exons with high GC content and high Tm.  In addition, simply adjusting probe Tm could 

not increase target DNA selection alone.  To overcome these issues we are currently 

exploring probe designs generated by software designed by Viren Patel.  This software 

chooses probes of specific length and within a specific range of GC content and Tm.  The 
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program is also able to densely tile probes for smaller exons to increase the likelihood of 

capturing target DNA in these genomic loci.  In addition, a new protocol for eluting 

target DNA off of the array using NaOH may help to eliminate this temperature effect 

(data not shown). 

One study that examined long probes (45-85-mer) used for copy number detection 

demonstrated that probe performance was inversely correlated with probe uniqueness and 

positively correlated with length 88.  This study also identified that higher Tm is 

associated with lower probe performance while lower and more uniform Tm is associated 

with higher probe performance.  Another study of expression array probe performance 

demonstrated that the number of probes per gene significantly affected signal with a 

greater density of probes per gene giving a more reliable signal than fewer probes 89. 

A study by Hodges et al 90 demonstrates the difficulty in capturing exons with 

high accuracy and efficiency.  In attempting to select 44 MB of sequence (coding exons 

and adjacent splice sites) over 7 different arrays and sequence using Illumina, they were 

only able to achieve 237-fold enrichment and only 36-55% of the reads mapped within 

the exon boundaries. 

Ng et al 82 demonstrated microarray-based capture and highly accurate whole 

exome sequencing of 8 HapMap individuals and 4 individuals with an autosomal 

dominate Mendelian disease.  The sequence data from the HapMap individuals show a 

high concordance with heterozygous genotypes (greater than 99%), and the 

patient/proband data suggest that the causative gene could be identified using this 

method.  The ability to accurately identify heterozygous variants is vital to medical 
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genetics as many disease causing variants are likely to be rare and in the heterozygous 

state.   

The results from the univariate statistical analyses performed here are currently 

being used to further improve the probe design and MGS protocol for selecting and 

resequencing the X exome. 

 

METHODS 

We used the UCSC Table Browser function with repeats masked on the latest 

human genome build (March 2006) to identify the coding sequences on the X 

chromosome.  This amounted to 7066 exons ranging from 12 to 9638 bases. One pair of 

probes was tiled for every 5 targeted bases. The custom MGS arrays were designed and 

synthesized by NimbleGen Systems, Inc., and contained approximately 385,000 probes 

that were 50 to 93 basepairs long.  

DNA samples were purchased from the Coriell Cell Repository 

(http://ccr.coriell.org) and included 10 individual genomes represented by two 

populations of different ancestry: a European descent (ED) population (n=5) selected 

from the Centre d’Etude du Polymorphism Humain (CEPH) panel with the Coriell Cell 

Repository numbers: NA07029, NA07048, NA10846, NA10851 and NA10860; and an 

African descent population (n=5) selected from the Hapmap with the Coriell Cell 

Repository numbers: NA18500, NA18503, NA18506, NA18515 and NA18521. 

Samples were prepared using Microarray-based Genomic Selection as outlined in 

Okou et al 66.  Briefly, genomic DNA was amplified using whole genome amplification 

and then fragmented using a sonicator to 200-600 base pair fragments.  The ends were 
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then repaired and an A-tail was added on the 3’ ends.  Unique adaptors were then ligated 

to the 3’ overhangs.  Ligated fragments were hybridized to a custom MGS array 

composed of 2.1 million features for 60 hours.  Fragments that did not bind to the array 

were washed using a series of washes produced by NimbleGen Systems, Inc.  The array 

was then placed on the HybriWheel at 95oC and fragments that were bound to the probes 

were eluted.  These fragments were then amplified in one round of PCR using the unique 

adapters as primers. 

NimbleGen’s Comparative Genomic Sequencing protocol was used.  Exon 

sequences were tiled across 27 2.1 million-feature arrays containing probes 

approximately 25 basepairs long.  Briefly, 1 µg of sample was denatured at 98oC for 10 

min in random primer buffer and labeled in the dark with Cy3-9mer primers (TriLink 

BioTechnologies) in the presence of dNTP mix and 100 units of Klenow (50U/µl, NEB) 

for 2 hours. Labeled samples were purified using ethanol precipitation method, dried 

down to the pellet and rehydrated in water.  Ten to thirty micrograms of labeled DNA 

was mixed with NimbleGen’s Hybridization cocktail and denatured at 95oC for 5 min. 

The arrays were loaded and incubated overnight at 42°C on MAUI Hybridization System 

(BioMicro). The signal was detected by measuring Cy-3 chrome fluorescence using a 2 

micron scanner at NimbleGen, and the sequence was inferred using NimbleScan 

software. 

All analyses were performed using the R software package. 
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FIGURE LEGENDS 
 
Figure 2.1.  Basecalling metrics. The percent of bases called in a total of 7066 exons.  
30% of the targeted exons had over 90% basecalling while 74% of the targeted exons had 
over 70% basecalling. 
 
 
Figure 2.2.   Comparing MGS probes that failed or succeeded for a) GC content (mean 
failed = 71.4%, mean succeeded = 41.9%), b) Probes per exon (mean failed = 32.9, mean 
succeeded = 41.9%), and c) Probe melting temperature (Tm; mean failed = 91.2%, mean 
succeeded = 79.1%).  All p values < 2.2 x 10-16.  Failure or success was determined by 
basecalling rates across the targeted exon.  “Probes per exon” reflects the length of the 
targeted exon as probes were evenly spaced across targeted sequence. 



 

 

66 
Figure 2.1  
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Figure 2.2  
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CHAPTER 3 
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INTRODUCTION 

Autism spectrum disorder (ASD) is a highly heritable pervasive developmental 

disorder that affects four times as many males as females.  This epidemiological 

observation is consistent with that expected of a disorder influenced by X-linked 

susceptibility alleles. Because males only have one X chromosome, any recessive alleles 

that are hidden maternally are revealed in male offspring. Providing further support for 

this hypothesis, candidate gene studies have identified a number of X chromosome loci 

that contribute to ASD susceptibility 91-95.  

 

Association of autism and neuroligin pathway genes 

Two candidate genes recently associated with ASD are the neuroligin genes, 

NLGN3 and NLGN4X on Xq13 and Xp22.3, respectively (see Table 3.1 for a complete 

list of published mutations). In two multiplex families from Sweden, Jamain et al 94 

identified a mutation in NLGN3 leading to a change from a conserved arginine residue to 

a cysteine and a frameshift mutation in NLGN4X leading to a premature stop codon in 

two sets of affected sibpairs.  Laumonnier et al 96 also demonstrated that a deletion 

causing a premature stop codon in NLGN4X was associated with ASD in a French 

cohort, and Yan et al 97 demonstrated that missense mutations in NLGN4X were 

associated with ASD in a mixed American and Portuguese Caucasian cohort.  Mutations 

in NLGN3 and NLGN4X that have been found in autism patients lead to the retention of 

neuroligin proteins in the endoplasmic reticulum and, therefore, less protein on the 

surface of the cell 98.  Additionally, cells expressing the mutated form of NLGN3 had 

significantly decreased binding to neurexin1β and syntrophin-γ2, another scaffolding 
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protein in the post-synaptic domain 99,100, respectively.  On the other hand, a de novo 

mutation in the promotor region of NLGN4X in a patient with autism and nonsyndromic 

profound MR increased gene expression 101.  These data strongly support the hypothesis 

that altered binding and synapse function can contribute to ASD. 

Because the interactions between neuroligins and their binding partners are so 

critical to synaptic function, mutations in genes encoding neurexin and Shank3 may play 

a role in ASD. Neurexins are composed of three autosomal genes that are extensively 

alternatively spliced; neurexin1β which directly binds to the neuroligins is located on 

chromosome 2p16.3 102,103.  Missense mutations in the neurexin1β (NRXN1β) gene were 

associated with ASD in a population of American patients 102.  Recent studies of copy 

number variation (CNV) in ASD patients found a deletion of coding exons from NRXN1 

in multiple, independent probands and a set of affected sibpairs 104-106.  Results from 

another CNV study have demonstrated the significant contribution of rare exonic 

deletions of NRXN1 to ASD risk 106.  It appears that disrupting NRXN1 can lead to 

multiple cognitive phenotypes; deletions and duplications are associated with 

schizophrenia 107,108.  Additionally, linkage and gene expression studies suggest that the 

Contactin Associated Protein-like 2 (CNTNAP2), which is a member of the Neurexin 

family, is associated with autism and language disorders 109. The anchoring protein, 

Shank3, is encoded by a gene located on 22q13.3, a region that is often associated with 

microdeletion syndrome 110.  Mutations and deletions in the SHANK3 gene have also 

been found in multiplex families with ASD 111,112.  There is substantial evidence that 

genes in the neuroligin pathway, which regulates synapse function and development, 

contribute to ASD.  Examining genes in this pathway provides an opportunity to look at 
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sequence variants in multiple, related genes to look for patterns among affected 

individuals to identify susceptibility variants and possible genetic modifiers. 

 

Evolutionary history of neuroligins 

There are 5 total NLGN genes in the human genome.  NLGN4X lies within a 

region of the short arm that is homologous to a single block of chicken 1q, and NLGN3 is 

located on the long arm in a region almost completely syntenic to chicken 4p 39.  It has 

been hypothesized that human Xq represents a conserved region descended from the 

mammalian proto-X chromosome while the syntenic region from chicken 1q represents 

sequence that was added via translocation before the eutherian radiation (ibid).  

NLGN4X has a single copy Y homologue at Yq11.221 and is approximately 97.5% 

similar at the amino acid level 94. Like its homolog, NLGN4Y is expressed in the fetal 

brain, brain, prostate and testis 113, and expression in male brains is similar to NLGN4X 

expression 94.  NLGN4X was part of the pseudoautosomal region of the X chromosome; 

however the pseudoautosomal region has been moving in a stepwise manner distally 

through the short arm.  It has been estimated that movement that created the region 

encompassing NLGN4X occurred 38-44 Myr ago via a series of inversions 39; these dates 

correspond to the divergence of Old World from New World Monkeys.  

Neuroligins are composed of a highly conserved esterase domain with a variant 

transmembrane region 114.  They are postsynaptic cell adhesion proteins, anchored in the 

postsynaptic density by Shank3 proteins, and they bind to the presynaptic protein 

neurexin-1β 115-120 (Figure 3.1).  Binding between neuroligins and neurexins is controlled 

via alternative splicing mechanisms in both genes 121.  Neuroligins are necessary for the 
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maturation and function of proper synaptic activity 122, and some evidence suggests that 

expression of neuroligins is essential for the balance between excitatory and inhibitory 

synaptic activity. Mutations in neuroligin genes that result in altered levels of protein may 

change global circuitry and neuronal connectivity which could be a major contributing 

factor to the ASD phenotype 123.   

 

Mouse models 

A loss of function mutation in the murine ortholog of NLGN4X results in mice 

that have reduced reciprocal social interactions and communication similar to that of 

human ASD 124.  The R451C mutation in NLGN3, however, behaves as a gain of function 

mutation in the mouse causing impaired social interactions but enhanced spatial learning 

125.  Deletion of this locus did not result in these behaviors, and the gain of function 

mutation was associated with an increase in inhibitory synaptic activity. 

 

Further evidence of Xp22.3 involvement in cognitive disorders 

Perhaps the most convincing evidence of NLGN4X involvement in ASD comes 

from studies on females with ASD or autism-like behavioral phenotypes.  Three out of 

eight females with deletions at Xp22.3, which is the region containing NLGN4, showed 

features of autism suggesting a possible haploinsufficiency 92.  In a family with an 

interstitial deletion within Xp22.2-22.3, encompassing NLGN4X, the two offspring (one 

male and one female) had autistic like behavior and severe cognitive defects 126.  The 

female phenotype was variable (i.e. the mother was unaffected and the daughter affected) 

suggestive of skewed X inactivation.  Skewed X chromosome inactivation is common in 
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female X-linked mental retardation patients, and females with ASD were shown to have 

higher rates of skewed X chromosome inactivation than normal sibpairs 127.  Additionally, 

in a study of females with ASD, 15% of X-linked genes, including NLGN4X, escaped X 

inactivation 128.  It has also been demonstrated that Turner syndrome females that 

maternally inherited their X chromosome had more social-cognitive defects (especially in 

verbal tests), and Turner syndrome females that also had ASD all inherited the X 

maternally 129.  These results suggest that in females with ASD portions of the X inherited 

maternally that may contain recessive, ASD contributing alleles might be escaping X 

inactivation.  In males, these ASD susceptibility alleles of NLGN4X may contribute to 

disease phenotype due to recessivity.   

In light of the positive associations of the neuroligin pathway genes with ASD, 

there is still considerable debate as to the contribution of mutations in these genes to ASD 

as many studies failed to find associations of NLGN3 and NLGN4X mutations in 

individuals with ASD 130-134.  Some of these studies were only searching for previously 

reported mutations while others only sequenced the coding exons of these regions.  Many 

of the studies suffer from small sample sizes, often one or two families.  Studies that 

focused on common SNPs likely overlooked rare variants that underlie complex traits 

such as ASD.  Sequencing is the ideal technology to identify these rare variants in 

addition to common variants in a large sample population. 

These data taken all together suggest a hypothesis for at least some classes of 

ASD, mainly, that disregulation of the neuroligin pathway is important in the 

susceptibility to ASD. The experiments in this chapter use Microarray-based Genomic 

Selection (MGS) to select the unique coding and non-coding sequences from NLGN3, 
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NLGN4X, NRXN1β and SHANK3 in males with ASD from multiplex families with 2 or 

more affected males and control (unaffected) males.  Selected, enriched DNA was then 

sequenced using Affymetrix resequencing arrays (RAs). Okou et al 66 demonstrated that 

high quality DNA can be generated from MGS arrays as well as a high accuracy of 

sequences generated from the Affymetrix 300kb RA. Because previous attempts to 

identify common alleles with large effects in these regions have largely failed, we have 

focused on detecting relatively rare susceptibility variants with large effects.  Sequencing 

both the coding and non-coding DNA, rather than limiting efforts to coding exons, 

increases the probability of finding rare alleles that may contribute to this complex 

disorder. 

 

RESULTS 

Sample preparation by MGS and sequencing on resequencing arrays was 

completed for 64 cases and 64 controls for a total of 38.4 MB of sequence generated.  

The total average basecalling rate was 90.9%.  The following analysis focuses on 

NLGN3 and NLGN4X for the first 21 cases and 20 controls that had the highest 

basecalling rates (average basecalling rate=98.9%).  Single base variants were annotated 

using a novel bioinformatics algorithm, SeqAnt.  This software identifies the genomic 

position, amino acid change, dbSNP identification, phastCon score 135 and PANTHER 

score 136 for all variant bases in a given data file when compared to the reference file.  The 

phastCon program assigns a score based upon the level of conservation of that particular 

base across a multiple alignment of 44 species.  PANTHER is a database that scores 

protein changes at a specific location using information from homologous sequences to 
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annotate the overall biological function within the context of the functional divergence 

and molecular properties of that residue using a library of Hidden Markov Models 

(HMMs) 137.  One can then infer whether the amino acid change is more likely to change 

the protein function based on these scores. 

Most variants are rare 8 and resequencing technology is ideal to find these 

variants.  First, variants were partitioned into functional classes (UTR, silent, 

replacement, intron, intergenic) and compared within and between these classes (see 

Table 3.2).  Replacement sites are predicted to be the most rare and show the least 

polymorphism, while silent sites are predicted to be more common and exhibit high 

levels of polymorphism 138.  Nucleotide diversity (θ) and average heterozygosity per site 

(π) was calculated for each variant within these classes to characterize any heterogeneity 

in diversity by functional class.  It is expected that increased nucleotide diversity will 

correspond to a decrease in functional constraint.   

 Under the infinite sites neutral allele model most variants are expected to have 

frequencies less than 10% 139.  To test this model, the allele frequency spectrum was 

examined for all functional classes together as well as for each individual functional 

class.  Tajima’s D, a test statistic used to determine if the distribution of alleles fits the 

infinite sites model, was used.  It is expected that Tajima’s D will overall be negative 

indicating an excess of rare alleles, based on previous studies of human variation on the 

X chromosome 138, but will vary between functional classes depending on functional 

constraints. For example, replacement sites are predicted to have more rare variants than 

silent sites.  Additionally, an excess of rare replacement alleles among affected cases 
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compared to controls would be consistent with the hypothesis that these mutations 

decrease gene function 5. 

If rare sequence variants contribute to ASD these variants should be significantly 

more common among individuals with ASD than those without ASD whereas alleles 

found in both cases and controls are likely to be neutral.  I compared whether the SNPs 

found in ASPs are found in dbSNP or the control males; if the variants found in ASPs are 

deleterious they are not expected to be found in dbSNP or control males. 

Overall, sequences from both NLGN3 and NLGN4X have an excess of rare 

segregating sites as indicated by negative Tajima’s D in all functional categories.  

Although we expect negative D for the X chromosome 138, θ is significantly higher for all 

functional categories than expected in both cases and controls (see Table 3.3).  These data 

suggest a high rate of false positive SNP calling. 

To identify the source of the false positives I examined the individual RA 

fragments that contained the most variants.  An RA fragment is a fragment of DNA 

sequence containing unique sequence that is used for creating oligonucleotide probes.  

These fragments are similar to the fragments provided to NimbleGen for MGS array 

design.  Therefore, I was examining both the success of the RA as well as the efficiency 

of MGS in target DNA selection.  By using the BLAT function on the UCSC Genome 

Browser I was able to align fragments to the rest of the human genome and determine the 

percent identity (in other words, amount of sequence homology) between that fragment 

and other genomic loci. 

As seen in Table 3.4, when the sequence of an RA fragment was not highly 

homologous to the other neuroligin genes, fewer variants were identified and none of 
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those variants were validated as being the paralogous allele.  However, when the 

sequence of an RA fragment was highly homologous to the other neuroligin genes, many 

variants were detected and a substantial fraction of those variants were confirmed to be 

the paralogous allele.  None of the exonic variants identified in NLGN3 were validated 

and only 3 of the remaining variants in NLGN4X were validated.  Independent Sanger 

sequencing confirmed one replacement SNP and two silent variants; however, the 

replacement site is in a control (Table 3.4). 

 

DISCUSSION 

We sequenced the unique coding regions of four genes in the neuroligin pathway 

that have been previously associated with ASD: NLGN3, NLGN4X, NRXN1β and 

SHANK3 using RAs.  A preliminary bioinformatic analysis indicated that variants 

identified in the neuroligin genes could be due to cross-hybridization of sequence from 

paralogous genes to the MGS array, which resulted in false positive SNP calling.  

Independent ABI sequencing validated only 3 variants in NLGN4X; one replacement 

SNP in a control male and two silent SNPs in both cases and controls. 

These experiments highlight the limitations of genomic selection technologies.  

Highly homologous sequences will be difficult to accurately select and sequence due to 

the constraints of probe design and construction as well as the methods to elute fragments 

off of the arrays.  In this experiment, fragments were eluted off of the array using heated 

water after a series of stringent washes.  Probes, therefore, must have an optimal melting 

temperature (Tm) across all of the targeted sequences for successful elution.  This limits 

the length and uniqueness of probes; in this experiment probes were between 50 and 93 
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bases long.  However, there are stretches of sequence much greater than 93 bases in both 

of the X-linked neuroligin genes that are homologous to each other as well as NLGN4Y. 

NimbleGen currently uses a sodium hydroxide elution method for their capture 

arrays, which eliminates the limitations of Tm on probe length.  With longer probes it 

may be possible to select sequences from paralogous genes for downstream sequencing 

applications, depending on the degree of homology.  A recent study demonstrated that 

short sequence reads from highly homologous sequences could accurately be assembled 

for copy number variation detection 140.  Yet, it is unclear if single base variants could be 

correctly identified using this algorithm. 

Due to the limitations of microarray-based genomic selection, it may be more 

useful to explore technologies such as RainDance, a microdroplet, emulsion PCR 

technology that uses a library of unique PCR primers that can be processed in a single 

tube in a multiplexed fashion (www.raindancetechnologies.com).  This technology 

eliminates the issues associated with multiplexed hybridization and PCR and may be able 

to more accurately select targeted sequence from paralogous genes. 

 

METHODS 

Sample selection 

The Autism Genetic Resource Exchange (AGRE) collection is publicly available 

to the scientific community and contains genotype, phenotype and pedigree data on 830 

affected families. The 830 families can be divided into three categories: those that have 

two or more affected female sibpairs (56), those with two or more affected sibpairs that 

are different sexes (223), and families with two or more affected male sibpairs (551).  I 
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will exclude monozygotic twins (46) and those individuals that have diagnoses from 

known etiology (e.g. cytogenetic abnormalities, Fragile X) (4).  Of the 501 families that 

have two or more affected male sibpairs (ASPs) that are not MZ twins, 257 families have 

been genotyped at markers DXS9895 (Xp22.3) and/or DXS9902 (Xp22.2) near 

NLGN4X and 244 have not been genotyped at these markers (Table 3.5).   

Male ASPs were chosen as sample cases to test the hypothesis that there are X-

linked susceptibility factors.  Since two of the genes I am examining are X-linked, I 

restricted the samples to male ASPs to test the hypothesis that variants in these X-linked 

genes contribute to ASD.  I chose only male individuals that come from families that 

have two or more male ASPs that share identical maternal X chromosome markers near 

NLGN4X (n=101) to test the hypothesis that there are variants (common and/or rare) in 

the NLGN4X genomic region that contribute to ASD susceptibility.  If the two male 

siblings do not share the same genotype at these markers, ASD cannot be attributed to 

identical variants in NLGN4X.  On the other hand, male sibpairs that share the identical 

genotype at the two markers may share ASD susceptibility variants in NLGN4X.  I chose 

to use the markers surrounding NLGN4X rather than NLGN3 for two reasons: (1) 

NLGN4X is a better candidate gene, and (2) the distribution of markers around NLGN4X 

allows for a greater confidence of obtaining 2 male ASPs with identical genes. 

I focused on the 101 male ASPs with identical genotypes at DXS9895/9902. One 

male was randomly be chosen for resequencing if both affected siblings are equally 

affected; if they are not equally affected, I chose the male with autism, not quite autism 

(NQA) or broad spectrum in that order to maintain consistency.  Control males were 

randomly selected from the population of unaffected fathers of affected male sibpairs. 
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Array design 

I designed a 385,000 feature NimbleGen Genomic Selection to isolate target 

DNA.  The array contained all of the unique sequence for NLGN3 and NLGN4 and the 

coding regions of NRXN1β and SHANK3.  Alternative splice sites for all four genes 

were included on the array.  The latest build of the human genome on UCSC (March 

2006, Build 36) was queried for unique sequence in NLGN3 and NLGN4X using the 

RepeatMasker function 141.  Then, the coding sequences for NRXN1β and SHANK3 were 

obtained using the Table Browser interface set to output only exon sequences padded 

with approximately 500 base pairs on the 3’ and 5’ ends.  Once FASTA files for these 

four genes were generated from UCSC, a program containing a bioinformatics algorithm 

for chip design created by Viren Patel (available at 

https://hgxserver.genetics.emory.edu/zwicklab/tiki-index.php) generated fragments that 

are greater than 100 base pairs long. Fragments generated by this program are composed 

of unique sequence flanked by 50 base pairs of repeat sequence on the 3’ and 5’ prime 

ends.  The coordinates of the fragments as well as the FASTA file were then sent to 

NimbleGen array designers for engineering.  Capture probe sequences include both the 

forward and reverse strands, and oligonucleotides are between 50 and 93 basepairs long.  

I designed an 8µm, 300kb Affymetrix resequencing array (RA) that includes 

NLGN3, NLGN4X, NRXN1β and SHANK3. Chips were designed to include all of the 

unique sequence in the transcript for the X linked genes (NLGN3 and NLGN4X) and the 

coding regions, plus all alternative splice sites, of the autosomal genes (NRXN1β and 
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SHANK3). Sequences for this array design were generated identically to those for the 

genomic selection array.  However, fragments of unique sequence generated for chip 

design had to be greater than 50 base pairs and were only flanked by 12 base pairs of 

repeat sequence on the 3’ and 5’ ends.  Preliminary studies using RAs reliably 

resequenced 32 autosomal and 9 X-linked regions composed of approximately 50kb of 

unique sequence each 56.   

 

Target DNA selection and resequencing 

Target DNA from AGRE samples was prepared using the Microarray-based 

Genomic Selection protocol from Okou et al 66 (Chapter 1).  Resequencing arrays were 

hybridized using the standard Affymetrix Chip Hybridization protocol. All basecalls were 

made with the RATools program RA_PopGenCaller (http://www.dpgp.org/). 

Variants were confirmed using independent Sanger sequencing.  Briefly, unique 

primer sets were designed using a bioinformatics algorithm developed by David Cutler 

(https://hgcc.genetics.emory.edu/~ashetty/PrimerPicker.html) that allows the user to 

specify primer size, GC content, melting temperature, genomic interval of interest and 

desired amplicon size.  A list of primers used can be found in Table 3.6. 

All primers were obtained from Invitrogen Corp. and resuspended to a final 

concentration of 40 nM.  Approximately 400 ng of genomic DNA was combined with 1ul 

each of the forward and reverse primer, 8ul of dNTPs Mix (TaKaRa), 5ul of 10 LA 

Buffer (TaKaRa), 1.5ul of LA Taq (TaKaRa) and VWR water to 50ul.  PCR reactions 

were run at the following parameters: 94C for 4 minutes; 30 cycles of 94C for 20 

seconds, annealing temperature of primers for 1 minute then 72C for 1 minute; 72C for 5 
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minutes followed by 4C hold.  Annealing temperatures of the primer sets were 

determined by optimizing the primers using gradient PCR with a range of annealing 

temperatures to obtain a single band when run on a 1% TAE gel.  Products were sent to 

Agencourt Biosciences for sequencing. 

 

Analysis 

Analyses were performed using the Popgen software, SeqAnt, Microsoft Excel 

and the R software package. 
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Table 3.1.  Published Variants in NLGN3 and NLGN4X 

Gene Mutation rs Number Reference 

NLGN3 R451C  94 
NLGN3 222C>T; Y74Y  134 
NLGN3 2189G>A; T632A   131 
NLGN3 G(813-41)A  131 
NLGN3 G(1148+65)A rs2233441 131 
NLGN4X 5.8Mb deletion Xp22.33-p22.31  108 
NLGN4X deletion of exons 4-6  142 
NLGN4X 1186insT; premature stop D396X  94 
NLGN4X 1253del(AG); premature stop D429X 96 
NLGN4X G99S  97 
NLGN4X K378R  97 
NLGN4X V403M  97 
NLGN4X R704C   97 
NLGN4X deletion of exon 4  128 
NLGN4X A558 (Syn)  143 
NLGN4X 5.5Mb deletion Xp22.31-p22.13  144 
NLGN4X G34C rs2290488 131 
NLGN4X 1397C>T; T311T rs7049300 131 
NLGN4X 2241C>T; L593L rs3747333 131 
NLGN4X 2243C>G; L593L rs3747334 131 
NLGN4X G(1-54)A rs2290487 131 
NLGN4X 335G>A  101 
NLGN4X 1597A>G; K378R  145 
NLGN4X R87W  146 
NLGN4X 7.7Mb deletion Xp22.2-22.3  126 
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Table 3.2.  Number of segregating sites by functional category for NLGN3 and 
NLGN4X in cases and controls 
 

  NLGN3  
Cases 

NLGN3 
Controls 

NLGN4X 
Cases 

NLGN4X 
Controls 

Total Segregating 
Sites 148 134 1048 852 

UTR 8 4 29 19 

Silent 8 2 26 22 

Replacement 10 8 14 11 

Introns 119 115 959 788 

Intergenic 3 5 20 12 
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Table 3.3.  Comparing nucleotide diversity between cases and controls and between functional classesa. 

 

  Expected 
Valueb 

NLGN3  
Cases 

NLGN3 
Controls 

NLGN4X 
Cases 

NLGN4X 
Controls 

Total Nucleotide 
Diversity, θ (x10-4)  5.32 ± 1.82 15.83 ± 9.22 12.62 ± 7.25 15.83 ± 9.22 12.62 ± 7.25 

UTR 5.64 ± 2.70 20.64 ± 14.70 9.78 ± 9.63 27.68 ± 18.97 19.89 ± 14.27 

Silent 9.80 ± 5.00 41.70 ± 9.21 15.39 ± 4.53 170 ± 85.4 113 ± 21.45 

Replacement 1.86 ± 1.07 12.11 ± 10.13 10.62 ± 9.73 24.05 ± 7.85 7.37 ± 1.47 

Introns 5.29 ± 1.83 19.90 ± 9.22 22.85 ± 11.15 14.66 ± 9.11 11.66 ± 7.26 

Intergenic 6.14 ± 2.26 15.53 ± 9.23 12.08 ± 7.04 17.42 ± 8.45 14.45 ± 6.90 

 

aTotal nucleotide diversity defined as Watterson’s147 estimate of θ = 4Nμ, where N is the population size and μ is the per-site, per-
generation mutation rate. 
bExpected value based on sequence data from 8 X-linked loci in 40 unrelated, unaffected males. 
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Table 3.4.   Analysis of exonic segregating sites in NLGN3 and NLGN4X from RA data 
 

Gene Fragment 
Start 

Fragment 
End 

Size 
(bp) NLGN3a NLGN4Xa NLGN4Ya 

Number of 
Exonic 

Segregating 
Sites 

Validated 
as 

paralogous 
allele 

Validated 
as true 
variant 

NLGN4X 5820806 5822081 1275 78.9 - 96.5 24 7 0 

NLGN4X 5831028 5833725 2697 81.1 - 92.2 30 8 2 

NLGN4X 6078931 6079987 1056 0 - 92 2 0 1 

NLGN3 70283008 70285498 2490 - 0 0 8 0 0 

NLGN3 70289365 70292970 3605 - 0 0 1 0 0 

NLGN3 70300372 70302095 1723 - 71.2 71.2 3 0 0 

NLGN3 70303052 70304637 1585 - 78.7 80.3 4 0 0 

NLGN3 70305481 70306725 1244 - 89 87.1 8 0 0 

 
aValues represent percent identity to gene 
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Table 3.5. AGRE Sample selection 
 

 

Male ASPs with Identical Genotypes at 

DXS9895/9902

Male ASPs with Different Genotypes at 

DXS9895/9902

Male ASPs not Genotyped at 

DXS9895/9902

Male ASPs with Cytogenetic Abnormalities

or MZ Twins

Total Male ASPs

101

156

244

 

 50

551

Table 2: Selection of Male ASPs from the AGRE Collection
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Table 3.6.  Primers for independent ABI validation sequencing 
 
ID Primer Sequence 
3.1_FWD 5'-CCTTTCTGAAGCTGTGGTGCTTG-3' 
3.1_REV 3'-CGTTGGGCTCCTGGATGTAAGTAG-5' 
3.2_FWD 5'-TGCTTCTAACCATCACTCTGC-3' 
3.2_REV 3'-GCTCGCTACCTACCTCCTTTC-5' 
3.3_FWD 5'-AGGACTTAGCGGATAATGACG-3' 
3.3_REV 3'-GTAGCCTGTCAGTCCGTGAAC-5' 
3.4_FWD 5'-CGTCATCACCCAAATCCTCCATCC-3' 
3.4_REV 3'-TGTGACAACGTGAGGAGGCTG-5' 
3.5_FWD 5'-TGTGCTGGACACCGTGGATATG-3' 
3.5_REV 3'-GCGTAGAAGTAGGTAGGCGAGC-5' 
3.6_FWD 5'-TCGGGCTGAAACCAAGGGTC-3' 
3.6_REV 3'-ACGGTAGTAGAGGGCAGCGAAG-5' 
3.7_FWD 5'-TCTACTACCGTAAGGACAAACGG-3' 
3.7_REV 3'-GCTCTTAGCACTCATGGGTTG-5' 
3.8_FWD 5'-CGCTGCCCTCTACTACCGTAAG-3' 
3.8_REV 3'-AGCCTGGAGATTGGCTGTGC-5' 
3.9_FWD 5'-CGCCTACCTACTTCTACGCCTTC-3' 
3.9_REV 3'-TCCTTCCTAGTCCCGATGCTAAC-5' 
4X.1_FWD 5'-GGTAGGGCAGAGGGATAGGAAGG-3' 
4X.1_REV 3'-CGTCGCTCCTCTTCCTCAACATC-5' 
4X.2_FWD 5'-GCGTCATAAGTGGGATGTCATCTGG-3' 
4X.2_REV 3'-CAAACGCCCAGCAATCACTCC-5' 
4X.3A_FWD 5'-AGGTGAGCCTCAGTGTGTCG-3' 
4X.3A_REV 3'-AGGTTCCTCCACCAGACATGAC-5' 
4X.3B_FWD 5'-GTGATTGCTGGGCGTTTGGTG-3' 
4X.3B_REV 3'-TGGAGCAAATCAGTCCTGGATGAG-5' 
4X.4_FWD 5'-CCAACACGAAGATGAACGTACCCAG-3' 
4X.4_REV 3'-ACTTCTCCGTGTCCAACTTCGTG-5' 
4X.5_FWD 5'-GAGGACACAAACAAGTGGCAAGG-3' 
4X.5_REV 3'-AGCTCATCCAGCAGACCATCAC-5' 
4X.6_FWD 5'-GTGGCAAGGATAGTGATACCC-3' 
4X.6_REV 3'-AAGTACACTCGGATATTGGCAG-5' 
4X.7_FWD 5'-ATCTCTCTACACACTGCACAAGAGG-3' 
4X.7_REV 3'-TGGAGAGAGGCGGTTTCAGC-5' 
4X.8_FWD 5'-TTGTAGTTCTTGTTCCGCAGG-3' 
4X.8_REV 3'-AGCAAAAACGACACTAAATTGTGG-5' 
4X.9_FWD 5'-AGTAAGGATCTCTCATCCAGGTG-3' 
4X.9_REV 3'-GTTCTAGGTGGTCGTTGTGTG-5' 
4Y.1_FWD 5'-CACCTCACTTAGACAGCTTCGG-3' 
4Y.1_REV 3'-GTAGCATTTCGGATGCCAGTC-5' 
4Y.2_FWD 5'-TCACATGCTTGCGAAACAATC-3' 
4Y.2_REV 3'-CGTCACACCGTCCTCGTTATC-5' 
4Y.3_FWD 5'-TCACATGCTTGCGAAACAATC-3' 
4Y.3_REV 3'-GATGCCGAAGACATAGGGGAC-5' 
4Y.4_FWD 5'-ATCCAAACCAACCAGTTCCTC-3' 
4Y.4_REV 3'-GGTGTTTGGCGTCATAAATGG-5' 
4Y.5_FWD 5'-CACAACTTGAACGAGATATTCC-3' 
4Y.5_REV 3'-CCTAGTCACACGAAACATCTG-5' 
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FIGURE LEGEND 
 
Figure 3.1.  Neuroligin interacting with neurexin in the synaptic cleft.  Neuroligins are 
anchored in the post-synaptic density by Shank3 and bind to the pre-synaptic protein, 
Neurexin 1β. 
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Figure 3.1 
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INTRODUCTION 

In the previous chapter I described an experiment in which I selected target DNA 

from genes within the neuroligin pathway using Microarray-based Genomic Selection for 

downstream resequencing on arrays.  Due to the high sequence homology of these genes, 

MGS selected target DNA from both loci resulting in a high rate of false positive SNP 

detection.  Additionally, sequencing technology improved almost exponentially in the 

time since the start of the experiment.  For these reasons, I chose to use Illumina paired-

end multiplexed sequencing.  Multiplexed sequencing allows one lane of the Illumina 

flow cell to be “shared” by 12 different samples 61.  During the amplification step prior to 

cluster generation, a unique 6 base tag is attached to each of 12 samples (Figure 4.1).  

These 12 samples are then pooled in equimolar concentration and added to one lane of 

the Illumina flow cell.  After sequencing, the sequences from each sample are identified 

by their 6 base tag and parsed for downstream alignment and assembly. For targeted 

resequencing applications, sufficient depth of coverage can be achieved even when split 

among multiple samples. 

In this study I sequenced the exons, 5’UTR, 3’UTR and a portion of the 

surrounding intronic and intergenic regions of NLGN3, NLGN4X and NRXN1β in 144 

males with ASD from the Autism Genetic Resource Exchange (AGRE) collection.  These 

males are from families with 2 or more affected male sibpairs and share identical 

sequence from the Xp22.3 region with their affected brothers.  Using this selection 

criteria I am able to specifically test the hypothesis that maternally inherited variants at 

Xp22.3 contribute to autism in males but not in their mothers due to recessivity.  I am 
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also able to test the hypothesis that rare variants in genes from this important neurological 

pathway contribute to autism in males.  

 

RESULTS 

Evaluation of Mapping and Assembly Algorithms 

I sequenced approximately 85kb of long-range PCR products from 144 samples 

using Paired-End Multiplexed Sequencing on the Illumina Genome Analyzer II 

generating a total of over 12.2Mb of sequence.  Sequences were parsed by their 6 base 

index tag to identify individual samples from multiplexed lanes. 

To identify the best mapping, assembly and SNP calling pipeline, I analyzed my 

data with three different open source programs: MAQ 148, Bowtie 149 and BWA 150.  MAQ 

is an algorithm that rapidly aligns short reads to a reference based upon phred-like quality 

scores using a hash-table based method.  BWA is much like MAQ, although BWA is able 

to support gapped alignment for single-end reads and uses Burrows-Wheeler Transform 

151 and backward searching for exact matches.  Bowtie is an alternative algorithm that 

also uses Burrows-Wheeler indexing and backward searching. Aligned sequences were 

then assembled as shown in Figure 4.2; read statistics for two of the three alignments are 

in Table 4.1.  BWA does not report the number of paired end reads that mapped.  A 

paired end sequence is considered mapped when both sequences are mapped to a unique 

genomic location. Otherwise, it is considered unmapped. This stringent requirement 

accounts for the observed frequency of unmapped reads. 

 Consensus fasta files generated from all three pipelines were then analyzed using 

Popgen (v 2.0.5). I expected that approximately 5 out of every 10,000 bases on the 
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human X chromosome will be variant, and approximately 1 our of every 1,000 bases on 

human autosomes will be variant 138.  To assess the level of genetic variation observed in 

my samples, I first calculated Watterson’s estimate of theta 147 and then compared the 

amount of variation detected in our sample population with this expected frequency. 

Substantial deviations from this expectation could reflect real biological differences or 

could arise as a consequence of assembly and SNP calling errors. 

  All of the pipelines had higher than expected amount of variation (Table 4.2).  

The BWA pipeline had nearly ten times the expected amount of variation. This high level 

of variation probably arises as a consequence of sequence mismapping and, for this 

reason, I decided to not to pursue any further analyses using BWA. The variation 

detected from the MAQ haploid pipeline (0.0008) was closer to the expectation (0.0005), 

but the diploid pipeline was substantially higher (0.03 compared to 0.001 expected).  

Again, this is likely caused by mapping errors with MAQ’s alignment algorithm or poor 

SNP calling algorithm.  The Bowtie pipeline generated 2-6 times more variation than 

expected; however, I believe that the Bowtie pipeline provided the best data compared to 

the other two pipelines.  I chose to continue with Bowtie rather than MAQ based on the 

levels of variation detected for both haploid and diploid data as well as the fact that 

Bowtie uses a more sophisticated alignment algorithm than MAQ (as discussed in the 

Introduction). 

To improve upon the MAQ SNP calling algorithm utilized by the Bowtie pipeline 

and attempt to reduce the number of false positives, I used a novel SNP calling algorithm. 

This approach uses a population genetics based framework based on the value of theta,

€ 

θ = 4Neµ, where N is the effective population size, and μ is the per site mutation rate (see 
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Methods). The assembled Bowtie alignments were then analyzed using this novel SNP 

caller.  The resulting population genetic data that includes the number of segregating 

sites, Watterson’s estimate of θ 147 and Tajima’s D are presented in Table 4.3 for each 

gene region and each functional class.  The new SNP caller has reduced the number of 

false positives as indicated by values of θ that are between 1.2 and 2 times the expected 

values.  There are still likely some false positives, but the number of false positives is 

significantly less than the previous assemblies. 

 

Annotation of Single Nucleotide Variants 

I then annotated the single nucleotide variants using SeqAnt, a software program 

that compares sequences to the reference genome to determine if there is a change in 

amino acid, if the variant is in dbSNP, the evolutionary conservation (as determined by 

phastCon scores 135), and relative impact of amino acid change (as determined by 

PANTHER scores 136,137). I predicted that the best candidates for ASD susceptibility 

alleles are those variants found at highly conserved sites. 

To determine if our approach identified the common variation contained within 

the sequenced genomic regions, I compared the number of SNPs called in this experiment 

that had already been catalogued in dbSNP (Table 4.4).  If the average heterozygosity of 

the SNP in dbSNP was greater than 0.10, the SNP calling algorithm detected it in this 

experiment.  If the average heterozygosity was less than 0.10 it was detected 45% of the 

time.  These results suggest that this experiment successfully identified all of common 

variation in our samples. The only variants not detected were lower frequency ones that 

may not have been present in the samples that we sequenced. 
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 I identified 99 total variants in NLGN3, 121 variants in NLGN4X and 260 

variants in NRXN1β.  The exonic variants and non-coding variants with high phastCon 

scores for the two haploid NLGN genes are in Table 4.5.  Twelve out of the 99 NLGN3 

variants are highly conserved (phastCon scores > 0.90).  Three of these 12 intronic 

variants are common and found in dbSNP, while 9 are rare in this sample population 

(frequencies between 0.7% and 4.2%).  I identified 4 exonic variants (3 silent and 1 

replacement variants) that are not highly conserved and are found in dbSNP.  Two out of 

the 121 NLGN4X variants are highly conserved (phastCon scores > 0.90) and are found 

in the 3’UTR and intron.  The exonic and non-coding variants with high phastCon scores 

for NRXN1β are in Table 4.6.  Fifty-one out of 260 NRXN1β variants are highly 

conserved; 11 of these 51 are common and found in dbSNP.  None of the replacement 

variants are in dbSNP and range in frequency in this population from 0.7% to 11%.  The 

SIFT (Sorting Intolerant from Tolerant) algorithm predicts that 5 of the 7 replacement 

substitutions would be damaging to the protein 152. 

  

Indel Analysis 

Each of the assembly algorithms described first map sequences against a know 

reference sequence, and then perform an assembly. Mapping a sequence against the 

reference sequence is performed under conditions that require at most a set number of 

mismatches. In the case of Bowtie, the default value used is 2. As a consequence, the 

assembly process will not properly identify indel variation in individual samples. Instead, 

we predict that sequences at the end of indels will map successfully and sequences that 
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span larger indels will fail to map (exceed 2 differences). Thus, accurately identifying 

indels requires a different procedure. 

 To remedy this and to enable accurate indel identification, I developed an 

alternate procedure. First, reads that aligned to each individual PCR amplicon from the 

Bowtie alignment of a given individual were identified. Sequences from each fragment 

were then separately assembled de novo using the Velvet algorithm 153.  Velvet utilizes de 

Bruijn graphs, which are representations based on short (25-50bp) k-mers, to construct 

highly accurate contigs.  The contigs for an individual sample and the original reference 

sequence were then input into MUMmer 154,155 a program that rapidly aligns two DNA 

sequences using suffix trees to create a representation of the sequences.  The contigs were 

then stitched together based on the MUMmer alignment generating a new sequence for 

that sample for that particular amplicon.  The new sequences for all 144 samples were 

then individually aligned against the human genome reference sequence using ClustalW 

156.  The GDE file containing the aligned sequences was then parsed to generate a list of 

all indels.   

Previous studies on insertion and deletion rates in the human genome estimate 

that there should be approximately 1 indel every 10,000 bases 157.   Therefore, if I am 

sequencing approximately 85 kb per sample, each individual should on average have 8 or 

9 indels, or I should identify approximately 1,100 total indels.  I indentified almost 5,000 

total deletions, or an average of approximately 34 deletions per individual.  This is clearly 

much higher than expected and likely contains many deletions that are false positives due 

to mismapping of repetitive regions or low depth of coverage for that region.  I identified 
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105 total insertions, which may be an underestimate of the actual number of small 

insertions (Table 4.7).  

I then analyzed the 29 indels that were mapped to coding regions.  Twenty 

deletions were identified in NLGN4X and 9 deletions were identified in NRXN1β; there 

were no coding insertions and no coding indels in NLGN3.  After removing samples that 

had more than 1 deletion there were 4 samples with 4 different deletions (Table 4.8).  

Three of the deletions were in NLGN4X and 1 was in NRXN1β. These deletions all 

cause frameshifts and would truncate between 40 and 76% of the protein likely resulting 

in a deleterious phenotype. 

  

DISCUSSION 

In this experiment, I successfully sequenced all of the coding and a portion of 

non-coding regions from NLGN3, NLGN4X and NRXN1β from 144 affected individuals 

from the Autism Genetic Resource Exchange using paired-end, multiplexed Illumina 

sequencing.  I identified a number of replacement and silent variants as well as many 

highly conserved, non-coding variants.   

Non-coding regions, such as UTRs, may contain important elements for proper 

gene expression.  For example, microRNAs may target 3’UTR sequences and cause 

translational repression or cleavage of target messages 158.  The highly conserved 3’UTR 

variant identified in NLGN4X lies within two predicted miRNA binding sites, hsa-miR-

561 (predicted by miRANDA algorithm 159 and DIANA-microT 160) and hsa-miR-1287 

(predicted by MICROINSPECTOR 161).  However, these are not highly conserved and the 

base change does not dramatically change the amount of free energy.  One of the highly 
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conserved 3’UTR variants identified in NRXN1β (chr2: 50002181) lies within four 

predicted miRNA binding sites, hsa-miR-518b, hsa-miR-518c, hsa-miR-518d-3p, and 

hsa-miR-518e.  These are highly conserved and a fairly significant prediction based on 

the miRANDA algorithm 159.  Future experiments might include testing whether these 

miRNAs actually suppress expression. 

This study highlights the importance of understanding population genetics when 

analyzing results from a deep sequencing experiment.  By understanding the expectations 

of nucleotide diversity in different functional classes one can determine whether 

particular alignment and/or assembly algorithms are erroneous in basecalling.  

Additionally, it is important to understand the evolutionary conservation of a variant 

when pursuing validation strategies and functional assays.  One can prioritize those 

variants that are highly conserved across mammals, vertebrates, etc. as ones that may be 

contributing to the disease phenotype. 

Finally, the results from comparing the variants identified in this experiment with 

those already annotated in dbSNP suggest that much of the common variation in the 

human population has already been discovered.  A corollary is that if common variation 

were contributing to complex diseases whole genome association studies would have 

already made a significant genotype/phenotype association.  As discussed in the 

Introduction Chapter of this thesis, most association studies have failed to find alleles that 

significantly contribute to the genetic variance of any complex, common disease.  It is 

more likely that rare variants in relevant genomic pathways contribute to complex traits 

such as Autism Spectrum Disorder.  This study identified many rare variants in the 

neuroligin pathway genes that may contribute to ASD in males.  Further validation of 
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these variants is ongoing in a large sample of unaffected males from the NIMH as well as 

the affected brothers and unaffected fathers from the AGRE collection.  By obtaining an 

estimation of allele frequencies in the population I will be able to confidently assert that 

variants only found in the affected population are associated with the disease phenotype. 

 

METHODS 

Sample Selection 

The Autism Genetic Resource Exchange (AGRE) collection is publicly available 

to the scientific community and contains genotype, phenotype and pedigree data on over 

900 affected families.  Males from families with 2 or more male affected sibpairs (ASPs) 

that either share identical X chromosome markers, DXS9895 and DXS9902, or shared 

greater than 98% of 52 genotyped SNPs in the Xp22.3 region were chosen.  There were a 

total of 152 families that fit these criteria.  One male was randomly chosen for 

resequencing if both affected siblings were equally affected; if they were not equally 

affected, the male with autism, not quite autism (NQA) or broad spectrum were chosen in 

that order to maintain consistency.  A total of 144 samples were processed; 6 samples had 

global PCR failure while 2 were unavailable from AGRE at the time of this experiment. 

  

Primer Design 

Long-range PCR primers were designed using an in-house program developed by 

D. Cutler (https://hgcc.genetics.emory.edu/~ashetty/PrimerPicker.html).  We selected 

primers based on the following parameters: length between 29-32 bases, GC content 

between 45% and 60% and melting temperature of approximately 68°C.  Ideal fragments 
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were between 6 and 8 kb in length, although they ranged from approximately 2 kb to 

12kb.  Primers were tested in silico using the USCS PCR function as well as Amplify 1.3 

software.  All primers were obtained from Invitrogen Corp; a list of all primers used in 

this experiment can be found in Table 4.8. 

 

Long PCR 

DNA from the AGRE repository was aliquoted into a master plate; 5ul 

(approximately 500ng) of each sample was further aliquoted into PCR plates using the 

BioMek FX robot.  One plate was used per fragment.  To the DNA we added 1X LA Taq 

buffer (TaKaRa), 250 µM dNTP Mix (TaKaRa), 400nM of both forward and reverse 

LMPCR primers and 0.1 U/µl of LA Taq (TaKaRa).  If the fragment had a high GC 

content we used 1X GC Buffer (TaKaRa) in place of 1X LA Taq buffer. PCR parameters 

were as follows for 29 cycles: 94°C for 2 min, 94°C for 10 sec, and 68°C for 1 minute 

per kb (of fragment) with a final extension time of 5 min plus the time at step 3 at 68°C.   

Amplification was confirmed using 1% agarose 96 well E-Gels (Invitrogen).  If a 

sample failed it was removed from the plate and re-amplified.  If it failed again, it was 

eliminated from the experiment and noted.  We determined the concentration of each 

fragment using PicoGreen dsDNA Quantitation Kits (Invitrogen) and the Tecan Ultra 

Evolution plate reader.  An equimolar concentration of each fragment was then pooled by 

sample using the following formula:  

pM = μg x (pmol/660pg) x (10E6pg/1μg) x (1/N) 

where N is the number of nucleotides and 660pg/pM is the average molecular weight of a 

nucleotide pair; and then: 
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Volume to pool = (lowest pM value)/ (pM/volume) 

The total DNA concentration per sample was 10ug. Pooled amplicons were then purified 

using the Invitrogen PureLink PCR Purification Kit with the HC buffer. 

 

Fragmentation 

Pooled, purified samples were dried using a SpeedVac at 75°C for 45 minutes and 

then resuspended in 100μl of Tris EDTA and transferred into glass microtubes (Covaris).  

The samples were then sheared to approximately 300 bp using the Covaris E210 with the 

following parameters: Duty cycle of 20%, Intensity of 4, 200 cycles per burst for 60 

seconds.  Fragmentation was validated using DNA 7500 chips (Agilent Biosciences) and 

the Agilent Bioanalyzer software (see Figure 4.3). 

 

End Repair 

To convert the overhangs resulting from fragmentation into blunt ends, we 

performed end repair using the NEBNext DNA Sample Prep Reagent Set 1 (New 

England BioLabs) with 0.4mM dNTP mix (4), 5μl of T4 DNA Polymerase, 1μl of DNA 

Polymerase I (Klenow) fragment, 5μl of T4 Polynucleotide Kinase, and 1X T4 DNA 

ligase buffer.  The reactions were incubated in a thermal cycler for 30 minutes at 20°C.  

Following incubation, the reactions were purified using a QIAquick PCR purification Kit 

(Qiagen). 
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Add “A” Bases to 3’ End of DNA Fragments 

To the purified, blunt, phosphorylated DNA fragments we added 1X NEB 

Buffer2, 1mM dATP (NEB) and 3μl of Klenow fragment (NEBNext Set 1).  Reactions 

were incubated for 30 minutes at 37°C.  Following incubation, reactions were purified 

using a QIAquick MinElute Kit (Qiagen). 

 

Ligation of Adapters 

To the DNA we added 1X Quick Ligation Buffer (NEBNext Set 1), 10μl of Index 

PE Adapter Oligo Mix (from the Multiplexing Sample Preparation Kit; Illumina) and 5ul 

of Quick T4 DNA Ligase.  The reactions were incubated for 15 minutes at room 

temperature and then purified using the QIAquick PCR Purification Kit (Qiagen).  This 

protocol uses a 10:1 molar Adapter:DNA ratio based on the starting concentration of 

DNA. 

 

Size Selection and Enrichment 

We used the Size Select 2% E-Gels (Invitrogen) to remove all unligated adapters 

and to accurately select the 300bp band.  When the 300bp band was successfully 

removed it was then selectively enriched using PCR to amplify the amount of DNA in the 

library and attach the 6-base index tag into the adapter.  To 10ul of DNA we added 1X 

Phusion PCR Master Mix (Finnzymes; NEBNext Set 1), 1μl each of PCR Primer lnPE 

1.0 and PCR Primer lnPE 2.0 and 1μl of PCR Primer Index (from Mulitplexing Sample 

Preparation Kit; Illumina. PCR parameters were as follows for 30 cycles: 98°C for 30 

sec, 98°C for 10 sec, 65°C for 30 sec and 72°C for 30 sec with a final extension time of 5 
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min at 72°C.  Following incubation, samples were purified using a QIAquick PCR 

Purification Kit (Qiagen), and enrichment was confirmed using the Agilent BioAnalyzer 

and the Agilent 7500 DNA chip (see Figure 4.4). 

 

Cluster Generation and Paired End Multiplexed Sequencing 

Enriched DNA was denatured and diluted to a concentration of 4pM.  Cluster 

generation was performed in 2 steps using the Paired-End Cluster Generation Kits v1 

from Illumina and the following recipes: Amplification_only_v3 and 

PE_2P_R1prep_Linearization_CombinedBlocking_PrimerHyb_v2.  The flow cell was 

then transferred to the IGAII for sequencing.  Sequencing reagents from the Illumina SBS 

Sequencing Kit v2 were used with the following recipe: GA2_MP_36+7+36Cycle_v4.  

Images were transferred to the server for downstream basecalling using the Illumina 

Pipeline. 

 

Data Analysis  

Raw basecalling data generated by Illumina was used as input for the following 

mapping and alignment programs: MAQ, Bowtie and BWA.  To assemble and generate a 

consensus sequence file MAQ and Bowtie use the assembly algorithm from the MAQ 

software while BWA uses the algorithm from SAMTools.  The MAQ and Bowtie data 

were run with a prior heterozygosity probability value of zero (BWA does not currently 

employ a prior probability of heterozygosity).   

The new improved basecaller created by D. Cutler is based on a population 

genetics based framework.  For any individual’s sequence read data let  
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€ 

NA =Number of A calls 

€ 

NC =Number of C calls 

€ 

NG =Number of G calls 

€ 

NT =Number of T calls 
 
So that 

€ 

N = NA + NC + NG + NT  

And let e = the per read genotyping error 

The probability of the genotype given the data must be greater than 0.95 to call the 

genotype.   

€ 

Pr G∩Data{ } = 

€ 

Pr G |Data{ } ⋅Pr Data{ } which is equal to 

€ 

Pr Data |G{ } ⋅Pr G{ } 

Therefore 

€ 

Pr G |Data{ } =
Pr Data |G{ } ⋅Pr G{ }

Pr Data{ }
 

We assume that 

€ 

Pr Data |G{ } is multinomially distributed so that 

€ 

Pr NA ,NC ,NG,NT | A{ } =
N

NA ,NC ,NG ,NT

 

 
 

 

 
 ⋅ PA

NA ⋅ PC
NC ⋅ PG

NG ⋅ PT
NT  

 

Where for A homozygotes   

€ 

PA =1− e

PC =
e
3

PG =
e
3

PT =
e
3

 

    

And for AC heterozygotes  

€ 

PA = 0.5 − 2e
3

PC = 0.5 − 2e
3

PG =
e
3

PT =
e
3
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€ 

Pr Data{ } = Pr Data | G{ }
All 

genotypes

∑  

 
To determine the probability of the genotype (

€ 

Pr G{ }) assume that in a population at 

neutral equilibrium if we sequence k alleles the probability of the genotype is based on 

the value of theta, 

€ 

θ = 2Neµ, where N is the effective population size, and μ is the per site 

mutation rate.  The basecaller uses this population genetics based Bayesian framework to 

make calls such that the probability that a site is not segregating is equal to 

€ 

1−θ 1
ii=1

k−1

∑  

and the probability that there are j copies of the minor allele (the minor allele count) is 

equal to 

€ 

θ ⋅
j
k

+
k − j
k

 

  
 

  
 

For these analyses we set 

€ 

θ =1×10e−3  

For haploids 

€ 

Pr G{ } = Pr G | minor allele count{ } ⋅Pr minor allele count{ }
All possible
minor allele

counts

∑  

where 

€ 

Pr G | minor allele count{ }  is simply binomial sampling. 

For diploids 

€ 

Pr G{ } =
Number of 

heterozygotes 
given the minor 

allele count

∑ Pr G | minor allele count{ } ⋅Pr minor allele count{ } ⋅Pr Number of heterozygotes | minor allele count{ }
All possible
minor allele

counts

∑
 

where 

€ 

Pr Number of heterozygotes | minor allele count{ }where  is the Hardy-Weinberg 

exact probability 162. 
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The consensus sequences generated were analyzed separately using the PopGen 

program version 2.0.5 developed by D. Cutler and annotated using SeqAnt.  All statistical 

analyses were performed using the R software package.  
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Table 4.1 Paired-End read statistics for Bowtie and MAQ Alignments 

 Bowtie MAQ 

Mean Total Reads per sample 1,359,012 1,359,012 

   

Mean Mapped Reads per sample 874,903 912,463 

Mean Unmapped Reads per sample 484,109 446,549 

   

Mean Percentage Mapped per sample 64.38% 67.14% 

Mean Percentage Unmapped per sample 35.62% 32.86% 
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Table 4.2  Number of Segregating Sites, Theta and Difference from Expected values of theta for different pipelines for Haploid and 
Diploid Data 
 

  
Haploid 

(NLGN3 and 
NLGN4X) 

    Diploid 
(NRXN1β)     

  Segregating 
Sites θ (x10

-4
)  

Fold Difference 
from Expected 

Segregating 
Sites θ (x10

-4
)  

Fold Difference 
from Expected 

BWA/SAMTools  2519 71.7 ± 32.2  14 913 68.8 ± 28.6  7 

MAQ/MAQ  289 8.2 ± 3.8  1.6 3663 276.3 ± 113.7  30 

Bowtie/MAQ  454 12.98 ± 5.8  2 741 55.9 ± 23.1  6 
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Table 4.3 Variation in NLGN3, NLGN4X and NRXN1β by functional class 
 
a) NLGN3 

  Segregating 
Sites  Theta Tajima's D 

UTR 4 0.0004 -1.72 
Silent 0 0 0 

Replacement 0 0 0 
Introns 74 0.0007 -0.52 

Intergenic 21 0.0006 -0.27 
All Sites 99 0.0006 -0.41 

 

b) NLGN4X 

  Segregating 
Sites Theta Tajima's D 

UTR 14 0.0008 -0.36 
Silent 3 0.001 -0.3 

Replacement 1 0.0001 0.24 
Introns 86 0.0006 -0.47 

Intergenic 17 0.0006 -0.32 
All Sites 121 0.0006 -0.41 

 

c) NRXN1β 

  Segregating 
Sites Theta Tajima's D 

UTR 11 0.001 -0.63 
Silent 8 0.005 -1.07 

Replacement 7 0.001 -0.81 
Introns 199 0.002 -1.03 

Intergenic 35 0.002 -1.17 
All Sites 260 0.002 -1.21 
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Table 4.4 Number of variants identified in this study that are also found in dbSNP. 
 
      AVERAGE HETEROZYGOSITY 

  Greater than 10% Less than 10% TOTAL 

NLGN3 8/8 35/82 43/90 

NLGN4X 32/32 39/97 71/129 

NRXN1 33/33 24/39 57/72 
 
Numerator is the number of variants in this study that are also in dbSNP and denominator is the number of 
SNPs in dbSNP in the target region. 
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Table 4.5  Exonic and Highly Conserved Non-Coding Variants in NLGN3  
and NLGN4X 

 
 Gene 

Name Coordinate Reference Mutation Position PhastCon 
Score dbSNP_Name 

NLGN3 70291748 g A Intron 1 no_dbSNP 
NLGN3 70291656 c T Intron 1 no_dbSNP 
NLGN3 70291342 g A Intron 0.941 no_dbSNP 
NLGN3 70290929 a G Intron 0.921 rs7051529 
NLGN3 70290163 c T Intron 1 no_dbSNP 
NLGN3 70289941 c T Intron 1 rs2233440 
NLGN3 70286263 g A Intron 1 no_dbSNP 
NLGN3 70285256 g A Intron 0.986 no_dbSNP 
NLGN3 70284973 t G Intron 1 no_dbSNP 
NLGN3 70282170 g A Intron 1 rs62609614 
NLGN3 70281630 c A Intron 0.969 no_dbSNP 
NLGN3 70281629 c G Intron 0.992 no_dbSNP 

NLGN4X 5831786 c T Silent 0.919 rs7049300 
NLGN4X 5831468 g C Silent 0.099 rs61741754 
NLGN4X 5821532 c T Replacement 0.531 rs3747333 
NLGN4X 5821530 c G Silent 0.008 rs3747334 
NLGN4X 5818136 t C 3'UTR 1 no_dbSNP 



Table 4.6  Exonic and Highly Conserved Non-Coding Variants in NRXN1β 

Coordinate Reference Mutation Position PhastCon 
Score dbSNP_Name 

49999751 t C 3'UTR 1 no_dbSNP 
49999816 g A 3'UTR 1 no_dbSNP 
50000547 t G 3'UTR 0.951 no_dbSNP 
50001259 c G 3'UTR 0.988 rs12998798 
50001622 a C 3'UTR 0.996 no_dbSNP 
50001641 a C 3'UTR 0.99 no_dbSNP 
50001654 c T 3'UTR 0.993 no_dbSNP 
50001655 t C 3'UTR 0.907 no_dbSNP 
50001966 a T 3'UTR 1 no_dbSNP 
50002181 t G 3'UTR 1 no_dbSNP 
50002476 g A 3'UTR 1 rs1045881 
50002716 t G Replacement 1 no_dbSNP 
50002845 a T Replacement 0.992 no_dbSNP 
50002856 a G Silent 1 rs55923848 
50020286 t G Intron 1 no_dbSNP 
50024303 t C Intron 1 no_dbSNP 
50024353 t G Silent 1 no_dbSNP 
50024395 c G Silent 1 no_dbSNP 
50024777 c G Intron 0.99 rs6753652 
50024825 a G Intron 0.962 no_dbSNP 
50024827 g T Intron 0.993 no_dbSNP 
50024832 t C Intron 1 no_dbSNP 
50130977 a G Intron 0.999 rs17039714 
50131044 t G Intron 0.9 no_dbSNP 
50131687 a G Intron 0.999 rs1452772 
50131778 t C Intron 0.962 no_dbSNP 
50133957 a C Replacement 1 no_dbSNP 
50134020 a C Replacement 1 no_dbSNP 
50134079 t G Replacement 1 no_dbSNP 
50134108 a G Silent 1 no_dbSNP 
50134281 t C Intron 1 no_dbSNP 
50134380 a G Intron 1 no_dbSNP 
50134475 t G Intron 0.983 no_dbSNP 
50134592 t C Intron 1 rs17039730 
50134611 g A Intron 0.998 rs13021036 
50134899 t A Intron 0.998 rs11331484 
50135142 a G Intron 0.934 rs4971644 
50135274 a T Intron 0.999 no_dbSNP 
50135302 c A Intron 1 no_dbSNP 
50135306 t A Intron 1 no_dbSNP 
50135308 a T Intron 1 no_dbSNP 
50171630 t A Intron 1 no_dbSNP 
50171638 g T Intron 1 no_dbSNP 
50172000 t G Replacement 1 no_dbSNP 
50172020 t G Silent 1 no_dbSNP 
50173108 g A Intron 0.979 rs57137390 
50317493 g A Replacement 1 no_dbSNP 
50317497 g A Silent 1 no_dbSNP 
50317569 g A Silent 0.97 no_dbSNP 
50317839 c T Intron 0.935 no_dbSNP 
50317997 c A Intron 0.962 no_dbSNP 
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Table 4.7  List of Deletions and Insertions 
 

  DELETIONS  INSERTIONS  

  Number Average per 
sample Number Average per 

sample 

DNA Element 3 0.02 1 0.01 

LINE 10 0.07 0 0.00 

Tandem Repeat 10 0.07 0 0.00 

Low Complexity 
Element 179 1.24 2 0.01 

SINE 700 4.86 47 0.33 

Simple Repeat 527 3.66 33 0.23 

Non-repetitive 
DNA 3422 23.76 22 0.15 

TOTAL 4851 33.69 105 0.73 
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Table 4.8  Coding deletions 

Gene Position Number of 
bases 

deleted 

Bases deleted Substitution Type 

NLGN4X chrX: 5831324-
5831340 16 GGAGCCGTACTGCGCG Frameshift; deletes 

44% of protein 

NLGN4X chrX: 5831853 1 A Frameshift; deletes 
65% of protein 

NLGN4X chrX: 5957348 1 T Frameshift; deletes 
76% of protein 

NRXN1β chr2: 50134052 1 A Frameshift; deletes 
40% of protein 
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Table 4.9 Long PCR Primers 
 

ID Primer Sequence 
NLGN3.0 5'-AAAGGTACCCAAAGTAGTGGTGAGCTAGGA-3' 
NLGN3.1 3'-GACAGAGGTGTGTATGGCAGGAGTTACTAAA-5' 
NLGN3.2 5'-CAACGAAGACTGTCTCTACCTGAACGTCTAT-3' 
NLGN3.3 3'-GAATGGAGTTACCTGGAGTGCTAGGAGAAT-5' 
NLGN3.4 5'-AGAGAGGAGGGAGGACTAAAAGAAGGACAG-3' 
NLGN3.5 3'-GATGATAGAAGGCGTAGAAGTAGGTAGGCG-5' 
NLGN3.6 5'-AGAGACTGTGTTCCTAGGTGACCATAGTGG-3' 
NLGN3.7 3'-CTGCCCATCTCCAGTGTACCATATTAGTGT-5' 
NLGN4.10 5'-GGAACCAGTGACCTCAAGAACTAGTCTGAA-3' 
NLGN4.11 3'-CTCACTGCTTAATAGATGAGGTAGCCACACAT-5' 
NLGN4.12 5'-CCTCATTTCTACTATGCGTACTCGCTGACT-3' 
NLGN4.13 3'-GAACTCCTAGCATACTCATTACGCTAAGGTGA-5' 
NLGN4.14 5'-GGAGCGCATTTCTACTTCTACCTTGAGTCTA-3' 
NLGN4.15 3'-GTCGGATCTAGTGGAGTCTGTAACTTACGTTG-5' 
NLGN4.16 5'-ATAGGGCATAGGTACTCAAGTGGGTAGGTG-3' 
NLGN4.17 3'-CTCAAGTAGCTCTCTGAGAGATCTCCATTCTG-5' 
NLGN4.18 5'-GACTTAGTATGTGAGACTGGAACTTCTCGGC-3' 
NLGN4.19 3'-CAGGAGCAGCGACTTATGTAGGGATAGTTA-5' 
NLGN4.20 5'-CTTCCAAACAACGGTGGTCTG-3' 
NLGN4.21 3'-CTGCCCGTCCACAGACTATTG-5' 
NRXN.0 5'-AGAGACGGATACTGTAATGGTTAAAGTTAGT-3' 
NRXN.1 3'-CCTGATTCAGTCTAGAGTTAGACCTATGTT-5' 
NRXN.2 5'-CTATCTCTCATGTGTCTACGCTTCTTAAAC-3' 
NRXN.3 3'-CAAACTCTACATAGTCGTGAGTGTAAAAGG-5' 
NRXN.4 5'-GTAGGAATATAAACAGGACTTTATGGAGGAT-3' 
NRXN.5 3'-CACTAACTCAATCTATGAGGGTACTCACAG-5' 
NRXN.6 5'-TTTCTCACTAGTTCTCTACTTATCTCACGG-3' 
NRXN.7 3'-ATAAGAACCAGGTCTATAATAGACGAGACC-5' 
NRXN.8 5'-CTGATAGAAGGAGAACTTATAGGGAAAGAC-3' 
NRXN.9 3'-TGAATAGTTTGACAGCTACTAGATGTTGCT-5' 
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FIGURE LEGENDS 
 
Figure 4.1.  Schematic of Paired-End Multiplexed Sequencing on the Illumina 
Genome Analyzer.   Changes to the basic Illumina protocol are highlighted in red. 

A. Genomic DNA is fragmented and the ends are repaired to convert overhangs 
into blunt ends.  Then dATP adds “A” bases to the blunt ends to allow for the 
ligation of adapters.  After ligation, 300 base pair fragments are selected and 
amplified.  During this amplification step a unique 6-base tag is attached to 
individual samples allowing for 12 samples to be concomitantly added to one 
lane of a flowcell. 

B. The 12 pooled samples are then added to the flowcell and bridge amplification 
is performed.  This creates millions of clusters with each cluster containing 
many copies of a single DNA fragment.  The sequencing primer is then 
attached. 

C. The flowcell is then placed in the Genome Analyzer.  All four fluorescently 
labeled nucleotides are flowed simultaneously.  After the first base is 
incorporated and read, the base is deblocked, and the process is repeated for 
the remaining bases in the read.  After the end of the single end read (for this 
experiment, 36 base read) and the 6 base index read, the clusters are linearized 
and the process of bridge amplification is performed again in the Genome 
Analyzer machine.  Then a second 36 base read is performed; this is called 
paired-end sequencing. 

 
Figure 4.2.  Analysis Pipelines.  Basecalls generated by the Illumina Genome 
Analyzer are input into 3 different alignment algorithms, MAQ, BWA and Bowtie.  
The MAQ and Bowtie alignments are then assembled using the MAQ assembly while 
BWA is assembled using SAMTools.  SNP calling identifies variants in each 
consensus sequence.  FASTA files containing the consensus sequences are analyzed 
using the PopGen program, which measures the amount of variation by functional 
class, and SeqAnt, which annotates each variant by sample. 
 
Figure 4.3.  Trace result from Agilent Bioanalyzer showing the proper fragmentation 
profile.  Most of the DNA is between 250 and 350 base pairs, which is ideal for 
paired-end sequencing on the Illumina Genome Analyzer. 
 
Figure 4.4.  Trace result from Agilent Bioanalyzer showing the proper size selection 
profile.  Most of the DNA is about 350-375 base pairs, which is an ideal insert size 
for paired-end sequencing. 
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Figure 4.1 

 
 

A

A

T

T

A

A

T

T

A

C

G

T

T

G

C

A

T

G

C

a.

b.

c.

ACGTCA

ACGTCA



 

 

119 
Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Identifying the heritable component of complex human diseases like Autism 

Spectrum Disorder (ASD) remains a central challenge for the field of human genetics.  

Evolutionary genetics provides an ideal framework with which to examine these 

types of diseases.  Complex diseases can be explored as quantitative traits and the 

genetic contribution of common and rare alleles towards these traits can be studied. 

The ultimate goal of this research program is to identify and characterize the genetic 

variants that contribute to a complex trait, with the eventual goal of both explaining 

the great heterogeneity and understanding the biological systems disrupted in ASD. 

Completing this ambitious research plan requires the ability to first find the 

relevant genomic variation in selected patient samples. Next generation sequencing 

technologies, which offer the opportunity to efficiently pursue this research program, 

are improving at a rapid pace.  Even since beginning this project, technologies that 

were previously considered “next generation” are now outdated.  As opposed to 

methods such as Genome Wide Association Studies (GWAS) which focus 

exclusively on common SNP variation, sequencing the entire genome, or even just 

selected target regions, allows for detection of all classes of genetic variation in a 

given set of samples, independent of the population frequency of these variants. Deep 

sequencing of the unique coding and non-coding regions, and eventually entire 

genomes, can capture all relevant genomic variation and provides a foundation for the 

future of human genetics. Recently new algorithms have been developed that use data 

from next generation sequencing to even examine copy number variation and 

structural variation in the human genome 140.  As the costs per base decrease, high 

throughput, deep sequencing may soon replace other methods for identifying 
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variation in the human genome.  However, it may not always be necessary to 

sequence the entire genome. For many clinical and diagnostic applications, it may be 

sufficient, more efficient, and even desirable to just sequence a target region or 

regions containing known susceptibility loci. 

In Chapter 1 I describe a method for isolating target DNA for downstream 

resequencing applications, Microarray-based Genomic Selection (MGS) 66.  In this 

publication, we demonstrated that with minimal sample manipulation target DNA 

was efficiently isolated for resequencing arrays.  The sequence generated was highly 

accurate and complete.  This method has also recently been adapted by our laboratory 

for the Illumina Genome Analyzer 163 with high accuracy and completeness relative to 

other genomic selection technologies.  In Chapters 2 and 3 I explore the advantages 

and limitations of MGS.  Probe composition and distribution is critical to the success 

or failure of MGS.  For example, sequences with high GC content or highly 

homologous sequences may not be efficiently selected or the method may select the 

paralog rather than the sequence of interest.  Yet, as seen in Chapters 3 and 4, genes 

that are part of larger gene families in gene networks or pathways have been 

associated with complex human diseases, such as the neuroligins and ASD.  

Alternative methods for target DNA isolation paired with next generation sequencing 

are viable options for smaller scale studies of candidate genes that contain highly 

homologous sequence, such as the one in Chapter 4.  In Chapter 4 I demonstrate that 

multiplexed paired-end sequencing on the Illumina Genome Analyzer successfully 

produces reads that can then be assembled for analysis and variation detection.  I also 

introduced a novel basecalling algorithm that was developed under a population 
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genetics framework and a new pipeline for identifying insertions and deletions. Using 

these methods, I was able to identify a series of promising variants, many of them in 

noncoding, but highly evolutionary conserved, sequences that may contribute to ASD 

susceptibility in our patient samples. This comprehensive genetic variation discovery 

will provide a solid foundation for future functional studies at these ASD candidate 

loci, 

Throughout the thesis I have demonstrated the importance of utilizing 

population genetics and evolutionary quantitative genetics to interpret sequence data 

and guide experimental design.  It is critical to understand the amounts of variation 

expected for different functional classes as well as the difference in the amount of 

variation expected for X-linked versus autosomal loci.  Also understanding how allele 

frequencies change over time due to selection or environmental effects is essential for 

designing a successful experiment to examine complex human disease.  Evolutionary 

genetics theory estimates that the genetic contribution to quantitative traits is additive; 

however, under different models of selection the distribution of allelic effects can be 

dominated by primarily common alleles or primarily rare alleles.  For example, 

Genome Wide Association Studies (GWAS) rationalize their experimental design 

using a model of balancing selection where alleles that were previously neutral or 

beneficial during human evolution are now deleterious in the current environment.  

These alleles are common in the human population because they were not selected 

against in the past and rose to frequency due to drift or positive selection.  However, 

common alleles of large effect have failed to explain the vast majority of the genetic 

contribution to complex common diseases.  It is likely that rare variants with 
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moderate phenotypic effect significantly contribute to complex human disorders. If 

this hypothesis is true, then the development of methods that can efficiently detect 

and annotate all the relevant genomic variation, which was a major goal of this thesis, 

provide a critical foundation necessary if this research program is to be successful.  

Additionally, gene-gene interactions, epigenetics and structural variation most 

certainly play a role in these complex traits and will need to be incorporated in studies 

that aim to understand the genetic basis of complex human traits like ASD.  The rapid 

pace of innovation in next generation sequencing and this thesis demonstrate that 

single laboratories can now identify both common and rare variants and evaluate their 

role in complex diseases.   
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