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Abstract

Automatic Hyperparameter Tuning in Physics-Based Distortion Correction for
Diffusion Tensor Imaging
By Abigail K. Julian

Correction of susceptibility artifacts in Echo-Planar Imaging (EPI) is a compu-
tationally challenging problem due to its size, non-linearity, and scarcity of ground
truth data. Although several post-processing tools for three-dimensional EPI distor-
tion correction are available, these tools require choosing hyperparameters and are
often slow, taking several minutes per image volume. In this dissertation, we develop
a dependable, physics-based correction with automatic hyperparameter tuning in the
context of Diffusion Tensor Imaging (DTI).

First, we build upon existing tools to solve the three-dimensional distortion correc-
tion problem in a matter of seconds using a separable optimization setup and highly
parallelizable implementation. We implement an early one-dimensional correction
approach as an initialization scheme using one-dimensional optimal transport, and
implement an easy-to-use PyTorch tool that enables multi-threading and efficient use
of graphics processing units (GPUs). Our extensive numerical validation using 3T
and 7T data from the Human Connectome Project suggests that our tool achieves
accuracy comparable to that of leading distortion correction tools at a fraction of
the cost. We also validate the initialization scheme, compare different optimization
algorithms, and test the algorithm on different hardware and arithmetic precision.

Second, we expand distortion correction to four-dimensional DTI volumes. In
this setting, the three-dimensional brain volume is repeatedly imaged with a different
diffusion gradient applied. Using the scalable initialization and optimization setup
from the three-dimensional setting, we optimize in 4D using a parameterization of the
additional diffusion dimension, leveraging the additional information offered by the
associated directions of diffusion. We test a variety of parameterizations that relate
the diffusion directions and introduce smoothness in the diffusion dimension. We
also employ clustering to choose a subset of directions for optimization, and use the
parameterization to interpolate on the original volume containing all of the diffusion
directions.

Third and finally, we enable automatic hyperparameter tuning, possible because of
the efficiency of four-dimensional distortion correction. We set up a bilevel optimiza-
tion using metrics of DTI to tune the hyperparameters of the distortion correction
problem. The resulting tool runs in times comparable to existing correction tools
while not requiring the user to select any hyperparameters. Furthermore, the correc-
tion is dependable, since it is based on the interpretable physics of the distortion, and
the correction simultaneously optimizes the metrics of the downstream task, diffusion
tensor fit.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is an imaging technique useful in clinical settings

for patient diagnosis and care. MRI is also commonly used in research settings to

better understand the human body and its functionality. One particular acquisition

technique, called Echo-Planar Imaging (EPI), is promising because of its fast scan

times, allowing for less time and strain for a patient, increased scan efficiency for

healthcare systems, and the ability to quickly acquire a lot of data [58]. However, in

trade-off for this speed of acquisition, EPI is known to leave distortion artifacts in

the resulting images, distortions which are caused by inhomogeneities in the magnetic

field due to susceptibility variations in the human body [15].

A highly efficient and accurate method of distortion correction would make EPI

more attractive as an MR acquisition technique for both clinical and research settings.

For example, in brain surgery to remove a tumor, a quick EPI-MRI scan during

surgery could indicate to the surgical team if all of the tumor had been successfully

removed before ending the surgery. In general, a faster MRI acquisition is easier on

a patient. For research, being able to quickly acquire many highly-detailed images

can facilitate larger-scale studies leveraging this ability to gather more imaging data.

Increasing the field of view, the size of the region being captured in the image, of
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the acquired image in EPI also increases the distortions in the resulting image, but

effective distortion correction can allow for more highly-detailed images to be acquired

and studied.

A common application of EPI-MRI using spin-echo sequences is Diffusion Tensor

Imaging (DTI), a methodology to study how water moves throughout the brain. This

can provide information on the structure and composition of the underlying tissues,

which in turn can be used in a variety of neurological studies and treatments [39].

The data for DTI is a set of diffusion-weighted images acquired along at least six

gradient directions. Then the elements of the diffusion tensor - an object giving the

correlations between molecular movement in perpendicular directions - are estimated.

The diffusion tensor can be used to calculate diffusion information such as fractional

anisotropy and mean diffusivity, which describe the shape and amount of the diffusion.

Because the diffusion tensor is estimated from the acquired image data, accurate

images lead to a more accurate diffusion tensor and therefore more accurate diffusion

analysis.

Susceptibility artifacts in EPI-MRI can be corrected by estimating the field map

that gives the intensity of the magnetic field at scan time [15]. Despite the promise

of the speed of EPI acquisition, the computation required for distortion correction

makes it often a time-consuming step of MRI processing pipelines [14], and existing

correction tools rely on the selection of hyperparameters.

Fast distortion correction without manually tuning hyperparameters would enable

online distortion correction in applications where real-time decisions are necessary.

For example, the speed of EPI acquisition along with fast distortion correction would

enable real-time distortion-free imaging useful for intra-operative guidance (see, e.g.,

[30, 50, 66]). Additionally, fast distortion correction can be important for furthering

emerging fields such as fetal and neonatal imaging (see, e.g., [43, 1, 17]). In this

application, EPI is popular to reduce the effects of uncontrollable subject motion,
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and fast distortion correction can enable faster intervention if necessary.

1.1 Contributions

In this dissertation, we develop a dependable, easy-to-use, physics-based correction of

EPI distortions in DTI with automatic hyperparameter tuning. We focus on improv-

ing the speed and efficiency of EPI distortion correction and leverage DTI metrics to

automate hyperparameter selection.

1.1.1 GPU-Enabled 3D Distortion Correction in Seconds

We begin by developing a tool for fast GPU-enabled distortion correction on three-

dimensional EPI volumes. We introduce PyHySCO, an update to a well-known, reli-

able, and generalizable formulation, HySCO [52], that offers EPI distortion correction

through a GPU-enabled and command line accessible Python tool. The physics-based

field map estimation problem defined in HySCO has an interpretable formulation and

separable structure [42] acknowledging the physics of the distortions. PyHySCO takes

advantage of the separability of the problem formulation to speed up correction on

both CPU and GPU with PyTorch multithreading [47]. The Python implementation

allows for a simple command line interface compatible with existing MRI postpro-

cessing pipelines. We additionally implement a parallelized one-dimensional initial-

ization scheme, based on the correction of [15] interpreted through optimal transport,

to speed up and improve the accuracy of distortion correction. Distortion correction

with PyHySCO takes about 10 seconds on the GPU, including loading and saving

the data.
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1.1.2 Parameterized Four-Dimensional DTI Correction

Given the speed and efficiency of PyHySCO, we can extend distortion correction to

the four-dimensional DTI setting where the three-dimensional brain volume is cap-

tured over a set of applied diffusion gradients [39]. Because the distortions occur

only in the phase encoding dimension [15], the parallelization of computations in es-

timating the field map is unchanged with the addition of the diffusion dimension. We

develop a parameterization of the four-dimensional field map to promote smoothness

in the diffusion dimension and leverage the similarity of field maps for related diffusion

directions. We explore different parameterizations and metrics of similarity, includ-

ing using a nearest neighbors graph, spherical linear interpolation, and radial basis

functions. Furthermore, we use the parameterized field map to reduce computation

by optimizing over a subset of diffusion directions and interpolating the full field map

from the optimized parameterization coefficients. A parameterized four-dimensional

field map can improve both correction and DTI metrics when compared to the current

approaches to DTI distortion correction that use a three-dimensional field map.

1.1.3 Automatic Hyperparameter Tuning

Because solving the distortion correction problem is fast, we can easily solve the the

problem multiple times to tune the hyperparameters of distortion correction. We

setup a bilevel optimization in the four-dimensional setting using DTI metrics as the

outer problem and distortion correction as the inner problem. Using derivative-free

optimization, we can improve distortion correction by finding the hyperparameters

minimizing the loss value in the diffusion tensor fit problem and related metrics such as

the standard deviation of fractional anisotropy maps between corrected image pairs.

This results in a physics-based black-box correction, solving a reliable mathemati-

cal formulation of the correction problem while directly optimizing diffusion tensor

metrics and not requiring the user to select any hyperparameters.
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1.2 Overview

The dissertation is organized as follows. Chapter 2 introduces the notation and math-

ematical formulation for susceptibility artifact distortion correction. We define the

reverse gradient polarity correction paradigm and the related separable optimization

problem that we solve. We additionally define the diffusion tensor fit problem used in

the four-dimensional setting and the derivative-free optimization used in the bilevel

setup. Chapter 3 describes PyHySCO, our GPU-enabled PyTorch tool for distortion

correction. We implement a parallelized one-dimensional correction as an initializa-

tion scheme using tools from optimal transport. We describe the easy-to-use and

modular PyTorch implementation of PyHySCO, and we demonstrate the quality and

speed of correction on CPU and GPU across several datasets of real and simulated

EPI data. Chapter 4 describes the extension of the correction problem to the four-

dimensional DTI setting. We develop a class of field map parameterizations that

introduce smoothness and improve the distortion correction by leveraging diffusion

information. We demonstrate the speed and quality of the four-dimensional parame-

terized distortion correction on a variety of diffusion-weighted EPI volumes. Chapter

5 proposes a bilevel optimization setup for four-dimensional distortion correction us-

ing DTI metrics to tune hyperparameters of the correction problem. We demonstrate

the quality of the bilevel optimization in improving metrics of both the correction

problem and DTI. In Chapter 6 we provide a conclusion and discussion of future

directions for this work.
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Chapter 2

Background and Preliminaries

In this chapter, we define the notation and mathematical formulation of field map

estimation and distortion correction. In 2.1 we define Reversed Gradient Polarity

Correction and review related approaches to the distortion correction problem. In

2.2, we introduce the physical model of EPI distortion correction and in 2.3 define the

separable optimization problem that we solve. In 2.4, we describe several optimization

schemes used in distortion correction. We additionally define in 2.5 the diffusion

tensor problem used in the four-dimensional setting and in 2.6 bilevel and derivative-

free optimization.

2.1 Reversed Gradient Polarity Correction

Reversed Gradient Polarity (RGP) methods are commonly used to correct suscepti-

bility artifacts in Echo-Planar Imaging (EPI) [58]. RGP methods acquire a pair of

images with opposite phase encoding directions, which leads to a minimal increase in

scan time due to the speed of EPI. In a post-processing step, RGP approaches use the

fact that the distortion in both images has an equal magnitude but acts in opposite

directions to estimate the field map (see Figure 2.1) [15, 11]. The field map is then

used to estimate a distortion-free image.
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input images

+v

−v

optimize

field map b

apply model

corrected image I

Figure 2.1: The Reverse Gradient Polarity correction paradigm. Two images are
acquired with opposite phase encoding directions, +v and −v. These two images are
used to estimate the field map b, and the distortion correction model [15] is applied
to obtain a corrected image I.

Compared to other correction approaches such as field map acquisition, point-

spread function map acquisition, and anatomical registration, RGP methods generally

achieve comparable or superior accuracy while being more robust to noise and motion;

see, e.g., [60, 28, 26, 65]. These advantages make RGP correction a popular choice.

For example, the widely-used MRI database from the Human Connectome Project

(HCP) [62] used the RGP correction tool TOPUP [4] in the preprocessing of released

diffusion MRI from EPI scans.

The original RGP distortion correction approaches in [15, 11] are one-dimensional,

treating each image column separately in the phase encoding direction. This leads

to a non-smooth field map estimate and corrections. TOPUP addresses this non-

smoothness with a 3D spline-based approach and the introduction of regularization

[4]. TOPUP has limited support for hyperthreading and is often a time-consuming

step of MRI processing pipelines [14]. Running TOPUP on a standard CPU took

over 60 minutes on average per HCP subject in our experiments.

Although less widely used than TOPUP, other iterative methods have proposed

implementations of RGP correction employing various optimization schemes, dis-
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cretizations, and regularization terms to speed up the correction. EPIC [34] in-

troduces correction using a nonlinear image registration framework. The tool was

developed specifically for Anterior-Posterior distortions and can be less effective for

Left-Right distortions [29]. DR-BUDDI [36] and TISAC [25] regularize the optimiza-

tion using a T2-weighted or T1-weighted image, respectively. Including undistorted

anatomical information can improve the quality of distortion correction [29], but com-

plicates the choice of an effective distance measure and, depending on the protocol,

may require additional scan time. HySCO introduces hyper-elastic registration reg-

ularization and a novel separable discretization [51, 52, 42]. HySCO can accurately

correct real and simulated data varying in phase encoding direction, anatomy, and

field of view [29, 57, 60]. In our experiments, on average, HySCO runs on the CPU

for one to two minutes per HCP subject. While HySCO is a Statistical Parametric

Mapping (SPM) [48] plugin and has been integrated into several SPM-based DTI

processing pipelines; see, e.g., [21, 19], its dependency on a MATLAB license may

limit its wider use.

Motivated by the long processing times of the above RGP tools, several deep

learning approaches for susceptibility artifact correction have been proposed recently;

see, e.g., [35, 24, 23, 67, 3]. A recurrent theme is to train a correction operator in an

offline stage in a supervised way using training data, which enables fast evaluations in

the online step. For example, training S-Net on 150 volumes took over 5 days, while

correcting an image pair on a CPU took an average of 2.8 seconds (0.96 seconds on a

GPU) [24]. However, the dramatic reduction of correction time comes at the cost of

losing the robustness and generalizability that existing RGP approaches obtain from

the physical distortion model. For example, while RGP approaches can handle images

from different scanners, anatomies, resolutions, and other acquisition parameters,

deep learning models perform poorly when applied outside the training distribution,

[16]. Furthermore, deep learning models are highly sensitive to noise and adversarial
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attacks in other contexts [6].

2.2 Susceptibility Artifact Distortion Correction

Model

We now review the physical forward model defined in [15] for three-dimensional im-

ages. The field map estimation and distortion correction is based on this model. Let

v ∈ R3 be the phase encoding direction for the distorted observation I : Ω→ R, and

let Ω ⊂ R3 be the image domain of interest. The mass-preserving transformation

operator that, given the field map b : Ω → R, corrects the distortions of an image I

acquired with phase encoding direction v reads

T [I, b, v](x) = (I(x+ b(x)v) · (1 + ∂vb))(x) ∀x ∈ Ω, (2.1)

where ∂vb is the directional derivative of b in the direction of v. The operator has

two parts, the first handling the geometric deformation in the direction of v and the

second an intensity modulation term, which should always be positive.

2.3 Separable Optimization Problem

We estimate the field map using the formulation of HySCO [51, 52, 42], so we review

the formulation here. The inverse problem, as defined in [51], estimates the field map

b based on two observations, I+v and I−v, acquired with phase encoding directions

±v, respectively. To this end, we estimate the field map b by minimizing the distance

of the corrected images

D(b) = 1

2

∫
Ω

(T [I+v, b, v](x)− T [I−v, b,−v](x))2 dx.
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The distance term is additionally regularized to enforce smoothness and the in-

tensity modulation constraint. The smoothness regularization term,

S(b) = 1

2

∫
Ω

||∇b(x)||2dx,

penalizes large values of the gradient of b to ensure smoothness in all directions.

The intensity modulation constraint of the physical model requires that −1 <

∂vb(x) < 1 for almost all x ∈ Ω. This is enforced by the barrier term

P(b) = 1

2

∫
Ω

ϕ(∂vb(x))dx, where ϕ(z) =
z4

1− z2
. (2.2)

All together, this gives the optimization problem

min
b
J (b) = D(b) + αS(b) + βP(b), (2.3)

where the importance of the regularization terms is weighted with non-negative scalars

α and β. Higher values of α can promote a smoother field map, while lower values of

α promote reduced distance between corrected images at the expense of smoothness

in the field map. Any positive value for β ensures the intensity modulation constraint

is satisfied, but lower values can lead to more ill-conditioned problems.

Our work follows the discretize-then-optimize paradigm commonly used in image

registration; see, e.g., [45]. We discretize the variational problem (2.3) as in [42]

to obtain a finite-dimensional optimization problem almost entirely separable in the

phase encoding direction. Specifically, coupling is only introduced in the smoothness

regularization term when calculating the gradient in the frequency encoding and slice

selection directions.

Our convention is to permute the dimensions of the input image such that the

phase encoding direction is aligned with the third unit vector e3 = [0, 0, 1]T . The
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field map is discretized on an e3-staggered grid; that is, we discretize its values in the

cell centers along the first two dimensions and on the nodes in the third dimension.

The integrals in (2.3) are approximated by a midpoint quadrature rule. The input

images are modeled by a one-dimensional piecewise linear interpolation function in

the phase encoding direction. The geometric transformation is estimated in the cell

centers with an averaging operator, and the intensity modulation is estimated in the

cell centers with a finite difference operator.

The discretized smoothness regularization term is computed for the discretized

field map b via

S(b) =
h1 · h2 · h3

2
b⊤Hb =

h1 · h2 · h3

2
||b||2H , (2.4)

where h1, h2, h3 are the voxel sizes and H is a standard five-point discretization of

the negative Laplacian and thus is a positive semi-definite operator. The discretized

intensity modulation constraint term applies ϕ as defined in (2.2) element-wise to the

result of a finite difference operator applied to the discretized field map. This gives

the discretized optimization problem to solve as

min
b

J(b) = D(b) + αS(b) + βP (b). (2.5)

This problem is challenging to solve because it is high-dimensional and non-convex,

but we can exploit the structure and separability to efficiently solve the problem using

parallelization. The implementation of this optimization problem in a parallelizable

way, as described in 3.3, includes choices of image interpolation, linear operators for

averaging and finite difference, and regularization terms S and P .
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2.4 Optimization Schemes

We describe here three optimization schemes used in this dissertation to solve (2.5):

Gauss Newton, ADMM, and LBFGS. The optimizers are described here in the context

of this optimization problem and as implemented in previous work. In 3.2 we describe

modifications and details of our implementation of the optimizers in this work.

Gauss Newton

The optimization scheme in [52, 51] is Gauss Newton (Algorithm 1) with a precondi-

tioned conjugate gradient (PCG) linear solver (Algorithm 2) [46, Ch. 7 p. 168-170].

Following the general idea of Gauss-Newton, we linearize the (nonlinear) distortion

correction operator (2.1) about the k-th iterate bk, obtain a quadratic model for the

objective function by using a second-order Taylor approximation, and update the

field map estimate with its approximate solution obtained with a few iterations of

the PCG method.

More precisely, let∇J be the gradient andHJ be a positive definite approximation

of the Hessian of the optimization problem (2.5) about bk. Gauss Newton iteratively

updates the current field map estimate via

bk+1 = bk + γkqk,

where the step size γk is determined with a line search method such as Armijo [46,

Ch. 3 p. 33-36] and the search direction qk approximately satisfies

HJ(bk)qk = −∇J(bk). (2.6)

The Newton system (2.6) is solved using the preconditioned conjugate gradient (PCG)

method [33, 53]. Conjugate gradient iteratively updates the solution along a set of
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Algorithm 1 Gauss Newton

Input: b0; maximum iterations N
Output: b, solution to (2.5)
k ← 0
while k < N do
Compute qk = argminq ||HJ(bk)q+∇J(bk)||2
Compute step size γk using line search
bk+1 ← bk + γkqk

k ← k + 1
end while

conjugate directions until the residual rj of (2.6) reaches a specified tolerance. At

iteration j, the solution qj and conjugate direction pj are updated as

qj+1 = qj + τjpj, and pj+1 = rj+1 + νj+1pj, (2.7)

where τj is a step size from exact line search and νj+1 ensures the conjugacy of the

directions p. The performance of PCG crucially depends on the clustering of the

eigenvalues, which a suitable preconditioner M can often improve. As a computa-

tionally inexpensive and often effective option, we implement a Jacobi preconditioner,

which approximates the inverse of HJ by the inverse of its diagonal entries. While

the diagonal preconditioner works well in our examples, we note that a more accurate

(yet also more expensive) block-diagonal preconditioner has been proposed in [42].

ADMM

The optimization problem (2.5) is solved in [42] using an Alternating Direction

Method of Multipliers (ADMM) [12] setup (Algorithm 3). To take advantage of

the separability of the objective function, the idea is to split the optimization prob-

lem into two subproblems. Split (2.5), removing for now the intensity modulation
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Algorithm 2 Preconditioned Conjugate Gradient

Input: tolerance ϵ > 0; maximum iterations N
Output: q, solution to (2.6) at iterate bk

j ← 0; r0 ← −∇J(bk); q0 ← 0
Solve Mz0 = r0; p0 ← z0
while j < N or rj/r0 < ϵ do
τj ← (rTj zj)/(p

T
j Hpj)

qj+1 ← qj + τjpj

rj+1 ← rj − τjHpj

Solve Mzj+1 = rj+1

νj+1 =← (zTj+1rj+1)/(r
T
j zj)

pj+1 ← zj+1 + νj+1pj

j ← j + 1
end while

constraint term, into

F (b) = D(b) + αS3(b), and G(z) = αS1(z) + αS2(z), (2.8)

where S3 is the part of the smoothness regularization term S corresponding to the

phase encoding direction, and S1 and S2 are the remaining terms corresponding to

the other directions. Define the indicator function ιC for the intensity modulation

constraint with C = {b : −1 ≤ D3b ≤ 1} and returning 0 whenever b ∈ C, and ∞

otherwise. This gives rise to the following optimization problem, equivalent to (2.5):

min
b,z

ιC(b) + F (b) +G(z) s.t. b = z.

With the corresponding augmented Lagrangian

L(b, z,y) = ιC(b) + F (b) +G(z) + yT (b− z) +
ρh3

2
||b− z||2,

where y is the Lagrange multiplier for the equality constraint b = z, h is the voxel

size, and ρ is a scalar augmentation parameter. Using scaled dual variable u = y
ρh3 ,
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each iteration has the updates

bk+1 = argmin
b

ιC(b) + F (b) +
ρh3

2
||b− zk + uk||2 (2.9)

zk+1 = argmin
z

G(z) +
ρh3

2
||bk+1 − z+ uk||2 (2.10)

uk+1 = uk + bk+1 − zk+1. (2.11)

The b update in (2.9) is approximately solved with Sequential Quadratic Program-

ming [10], a quasi-Newton method for constrained nonlinear optimization. At each

iteration, the current iterate is updated to the solution of solving the quadratic ap-

proximation of the objective function subject to the intensity modulation constraint.

This is done using the active set method with Schur complement solver described in

[46, Ch. 16, p. 455-480]. Due to the separability of this update and its block diagonal

Hessian, solving the linear system in the Schur complement involving the Hessian can

be done in parallel.

The z update is computed by solving (2.10) directly. The closed form solution is

zk+1 = K−1(ρh3(bk+1 + uk)),

where K is the matrix αLTL + ρI with L the sum of the Laplacian matrices of S1

and S2 and I the identity matrix. This inverse and product is efficiently computed

using the factorization

K = QHDQ, (2.12)

where Q is a discrete Fourier transform matrix with periodic boundary conditions,

and D is diagonal with the eigenvalues of K as its elements [31].

The augmentation parameter ρ is updated adaptively as described in [12] to keep

the relative primal and dual residuals close.
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Algorithm 3 ADMM

Input: b0; maximum iterations N
Output: b, solution to (2.5)
k ← 0; z0 ← b0; u0 ← 0
while k < N do
Compute bk+1 = argminb Lb(b, zk,uk)
Compute zk+1 = argminz Lz(bk+1, z,uk)
uk+1 ← uk + bk+1 − zk+1

k ← k + 1
end while

Algorithm 4 LBFGS

Input: b0; maximum iterations N ; history size m
Output: b, solution to (2.5)
k ← 0
while k < N do
Compute pk using Two-Loop Recursion
Compute step size γk using line search
bk+1 = bk + αkpk

if k > m then
Discard sk−m and yk−m from history

end if
sk+1 ← bk+1 − b; yk+1 ← ∇J(bk+1)−∇J(bk)
k ← k + 1

end while

LBFGS

The final optimization scheme we describe for solving (2.5) is a limited-memory Broy-

den–Fletcher–Goldfarb–Shanno (LBFGS) algorithm [40] (Algorithm 4). LBFGS is a

quasi-Newton method that uses an estimate of the inverse of the objective function’s

Hessian based on a limited number of previous iterations in solving for the search

direction. Using a step size γk computed using line search, the update at iteration k

is

bk+1 = bk + γkpk,

where the search direction pk is solved for using a two-loop recursion (Algorithm 5)

that recursively estimates the inverse Hessian.
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Algorithm 5 LBFGS Two-Loop Recursion

p← −∇J(bk)
for i = k − 1, k − 2, · · · k −m do
τi ← (sTi p)/(s

T
i yi)

p← p− τiyi

end for
p← (sTk−1yk−1)/(y

T
k−1yk−1)p

for i = k −m, k −m+ 1, · · · , k − 1 do
ν ← (yT

i p)/(s
T
i yi)

p← p+ (τi − ν)si
end for

2.5 Diffusion Tensor Imaging

In diffusion weighted imaging, the scan of the three-dimensional volume of interest,

such as the human brain, is repeated with varying diffusion sensitization gradients

applied [39]. These gradients are defined by the direction g and weighting parameter,

called a b-value, γ. Together, call the directions defining the diffusion sensitization

gradients as d = γg.

One model to study diffusion information is the Stejskal-Tanner equation [59],

which models how the intensity at an image voxel decays in the presence of a diffusion

gradient. Let I(0) be one or more images without diffusion weighting and I(k) be an

image acquired with diffusion gradient gk and b-value γk. For a given voxel x in the

image domain Ω ⊂ R3 and given the symmetric 3x3 diffusion tensor for this voxel

D(x), the Stejskal-Tanner equation [59] is

I(k)(x) = I(0)(x) exp(−γk · gT
kD(x)gk). (2.13)

The symmetric 3x3 diffusion tensor D is unknown, but the six independent values of

the tensor can be estimated for each voxel using (2.13). In particular, given at least six

diffusion-weighted images along with their diffusion gradient information, estimating

D can be considered an overdetermined least squares problem [61]. Suppose there are
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nd > 6 diffusion directions {gk}nd
k=1. Let Ak of size nd ×m be nd diffusion weighted

images of size m, and A0 be a non-diffusion weighted image. Let γ ∈ R1×nd be all

of the associated b-values and g ∈ R3×nd the nd diffusion directions. Taking the

logarithm of both sides of (2.13), the problem becomes

logA0(x)− logAk(x) = γ · gTD(x)g.

Represent the six independent values of D(x) as

D6(x) = [D(x)[1, 1],D(x)[1, 2],D(x)[1, 3],D(x)[2, 2],D(x)[2, 3],D(x)[3, 3]],

and using the symmetry of D, the right hand side can be expressed as

γ · gTD(x)g = γ · [g[1]2, 2g[1]g[2], 2g[1]g[3],g[2]2, 2g[2]g[3],g[3]2] · D6(x),

where g[1], g[2], and g[3] give the first, second, and third rows of g, respectively. This

least squares formulation can be solved in parallel for each voxel x.

One metric of correction quality in the diffusion setting is the diffusion tensor fit

loss where Ak and A0 include the corrected images from the input pair with phase

encoding directions +v and −v. The quality of the diffusion tensor fit will improve

when the corrected images are closer, giving more consistent information about how

the diffusion gradient has affected the image. Therefore a metric of both distortion

correction quality and diffusion tensor quality is the diffusion tensor loss defined as

Ldti(D(x)) =
1

2
||γ · gTD(x)g − (logA0(x)− logAk(x))||2. (2.14)

As with the least squares solution, the diffusion tensor loss is computed in parallel

for each voxel x.
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Another common metric of quality in the diffusion tensor imaging setting is the

median standard deviation of the fractional anisotropy (FA) maps for the pair of

corrected images with phase encoding directions +v and −v [29, 65]. Fractional

anisotropy is a measure computed from the eigenvalues of D that indicates the

anisotropy (non-uniformity in different directions) of the diffusion at each voxel. Let

λ1, λ2, λ3 be the eigenvalues of D(x), computed for a single phase encoding direction

input volume. Then the fractional anisotropy value at voxel x is

fa(x) =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

. (2.15)

The fractional anisotropy map is computed in parallel for each voxel x, using the

diffusion tensor for each input volume. A lower median standard deviation between

the fractional anisotropy maps for images with phase encoding directions +v and −v

indicates more consistency and therefore confidence in the diffusion tensor informa-

tion. In Chapters 4 and 5, we use both the diffusion tensor loss (2.14) and median

standard deviation of the fractional anisotropy in (2.15) as metrics in evaluating four-

dimensional correction quality.

2.6 Bilevel and Derivative-Free Optimization

We conclude the chapter by describing bilevel optimization and an approach for solv-

ing the bilevel problem with derivative-free optimization. Consider the following

general bilevel optimization problem

min
x

f(x, y∗(x)) s.t. y∗(x) ∈ argmin
y

g(x, y).

The objective f is the outer objective, and the objective g is the inner objective. The

bilevel structure couples the two optimization problems and indicates a dependency
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between the variables x and y. See [22] for a survey of approaches and applications

in bilevel optimization.

We consider the case where the relationship between x and y is not explicitly

given, i.e. the derivative of f(x, y∗(x)) with respect to x cannot be easily computed

because of the dependence of x on y∗. In this case, a derivative-free (sometimes called

black-box) optimization is necessary. A popular family of derivative-free methods is

Bayesian optimization [44].

In Bayesian optimization, the objective f is treated as a random function with

an associated prior distribution. As the objective is evaluated, the prior is updated

to form a posterior distribution, and the next value of the optimization parameter

is chosen by a sampling method informed by the posterior. Specifically, Bayesian

optimization requires a method to model the probability of an objective function

value z given the input x and a set of observed function evaluations Z, notated as

p(z|x,Z).

One such model of p(z|x,Z) is the Tree-structured Parzen Estimator (TPE) [7] (Al-

gorithm 6). TPE splits the N observed objective function values into a ‘low’ group

Z(l) = {(xn, zn)}N
(l)

n=1 and a ‘high’ group Z(h) = {(xn, zn)}Nn=N(l) such that

p(z|x,Z) =


p(x|Z(l)), z ≤ zq

p(x|Z(h)), z > zq,

where zq is the function value defining the boundary between the two sets. The two
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Algorithm 6 Tree-structured Parzen Estimator

Input: observations Z
Output: solution x
Compute zq and split Z into Z(l),Z(h)

Compute weights {wn}Nn=1 and bandwidth b(l), b(h)

Build p(x|Z(l)), p(x|Z(h))
Sample S = {xs}Ns

s=1 p(x|Z(l))
Pick x = argmaxx∈S(p(x|Z(l))/p(x|Z(h)))

kernel density estimators are computed as

p(x|Z(l)) = w
(l)
0 p0(x) +

N(l)∑
n=1

wnk(x, xn|b(l)),

p(x|Z(h)) = w
(h)
0 p0(x) +

N∑
n=N(l)+1

wnk(x, xn|b(h)),

where {wn} are weights, k is a kernel function, b(l) and b(h) are bandwidth param-

eters, and p0 is a prior. See [64] for a tutorial on TPE including discussion of how

the choice of these parameters in the TPE model trade off between exploration and

exploitation. After sampling Ns times from p(x|Z(l)), the solution is taken as the

sampled x maximizing the quotient p(x|Z(l))/p(x|Z(h)).

TPE can be easily applied to a bilevel optimization problem, and is a popular

choice for hyperparameter optimization algorithms; see e.g. [2, 8].
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Chapter 3

GPU-Enabled 3D Distortion

Correction in Seconds

In this chapter, we describe a software tool, PyHySCO [37], developed as an update to

HySCO [52] to take advantage of modern GPU hardware and proposing an improved

initialization scheme. PyHySCO is implemented in PyTorch [47] and leverages the

separability of the optimization problem to enable multithreading in PyTorch to speed

up computation.

In Section 3.1, we introduce an initialization scheme based on the correction of

Chang and Fitzpatrick [15] and implemented using parallelized one-dimensional op-

timal transport maps. In Section 3.2, we provide additional details on the optimiza-

tion schemes implemented in PyHySCO, particularly how they may vary from the

traditional setups described in Chapter 2. In Section 3.3, we describe the PyTorch

implementation of PyHySCO and the workflow of using the software tool. In Section

3.4, we present extensive numerical results on real and simulated data of varying field

strengths. In Section 3.5, we provide a summary of the 3D correction offered by

PyHySCO.



23

3.1 Parallelized One-Dimensional Initialization

Due to the non-convexity of the optimization problem (2.5), an effective initialization

strategy for the field map is critical. To this end, PyHySCO initializes the correction

with the result of the one-dimensional correction of [15], which can be derived from

optimal transport (OT) theory [49]. The key idea is to compute the ’halfway’ point

of the oppositely distorted images in the Wasserstein space (as opposed to Euclidean

space, which would simply average the images). To render this problem feasible, we

treat each image column separately, use the closed-form solutions of 1D OT problems,

and then apply a smoothing filter. Implementing the [15] correction using optimal

transport provides a mathematical understanding of their algorithm and a highly

accurate and parallelizable initialization.

We calculate the initial transformations as optimal transport maps [49]. More

specifically, because the distortions only occur in the phase encoding direction, these

transformations are a set of one-dimensional maps calculated in parallel across the

distortion dimension. One-dimensional optimal transport has a closed-form solution

arising from considering the one-dimensional signal as a positive measure and con-

structing a cumulative distribution function [49].

We describe the computation of the one-dimensional optimal transport maps in

the distortion correction setting. In practice, the computation is parallelized in the

distortion dimension to compute the entire initial field map simultaneously.

Let i+v ∈ Rm be the image data from an entry in the phase encoding dimension of

I+v, and let i−v ∈ Rm be the image data from the corresponding entry in the phase

encoding dimension of I−v. Consider ihalf the sequence of image intensity values from

the corresponding entry of the undistorted image I. We numerically ensure i+v and

i−v can be considered positive measures by applying a small shift to the image values,

which does not change the relative distance between elements.

We initialize the field map using the optimal transport maps T+ from i+v to ihalf
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and T− from i−v to ihalf. These maps can be directly computed using the closed-

form one-dimensional optimal transport formula, which depends on a cumulative

distribution function and its pseudoinverse [49].

Define the discretized cumulative distribution function Ci : {0, . . . ,m} → [0, 1] of

a measure i as the cumulative sum

∀x ∈ {0, . . . ,m} Ci(x) =
x∑

j=0

i(j),

where i(j) returns the pixel intensity value at index j of i. The pseudoinverse C−1
i :

[0, 1]→ {0, . . . ,m} is defined as

∀r ∈ [0, 1] C−1
i (r) = min

x
{x ∈ {0, . . . ,m} | Ci(x) ≥ r}.

In practice, C−1
i is computed using a linear spline interpolation.

Returning to the measures arising from the input images, the closed-form solution

for one-dimensional optimal transport gives the optimal transport map from i+v to

ihalf as

T+ = C−1
ihalf
◦ Ci+v ,

and the optimal transport map from i−v to ihalf as

T− = C−1
ihalf
◦ Ci−v ,

where C−1
ihalf

is calculated as (C−1
i+v

+C−1
i−v

)/2. Figure 3.1 visualizes the computation of

the one-dimensional transport maps, and the parallelized computation and resulting

field maps are visualized in Figure 3.2. We thus compute the initial guess for the field

map as the average of the maps T+ and −T−, computed in parallel. To introduce

smoothness in the field map in the frequency encoding and slice selection dimensions,

we apply a smoothing filter to the initial field map before optimization.
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1-D Measures Cumulative Distributions

Pseudoinverses Transport Maps

Figure 3.1: Example of one-dimensional optimal transport maps. Top left shows
example one-dimensional measures. The green signal, i+v, corresponds to an intensity
pileup in I+v, while the purple signal i−v corresponds to an intensity dispersion in
I−v. The red signal corresponds to the intensity of the true image. Top right shows
the cumulative distributions for the measures i+v and i−v. Bottom left shows the
pseudoinverses for i+v and i−v along with the pseudoinverse C−1

ihalf
used in calculating

the transport maps T+ = C−1
ihalf
◦ Ci+v and T− = C−1

ihalf
◦ Ci−v , shown bottom right.
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C+v

◦

C−1
half

=

T+

(a) The map T+ mapping from I+v halfway to I−v is calculated as the compo-
sition of the cumulative distribution function C+v from I+v and the interpolated
pseudoinverse C−1

half.

C−v

◦

C−1
half

=

T−

(b) The map T− mapping from I−v halfway to I+v is calculated as the compo-
sition of the cumulative distribution function C−v from I−v and the interpolated
pseudoinverse C−1

half.

Figure 3.2: The maps T+ and T− are calculated using the closed-form one-dimensional
optimal transport solution, parallelized in the distortion dimension [49]. Note the
inverted coloring between T+ and T− as the map T− corrects a distortion in the
opposite direction as T+.

3.2 Parallelized Optimization

We implement in PyTorch three optimization schemes to solve (2.5): Gauss Newton,

ADMM, and LBFGS. We implement in PyTorch Gauss Newton PCG as described in

Section 2.4. In our implementation, to solve the Newton system in (2.6) we apply up to

10 iterations of the preconditioned conjugate gradient (PCG) method and stop early if

the relative residual is less than 0.1. As a computationally inexpensive preconditioner,

we implement a Jacobi preconditioner, which approximates the inverse of HJ by

the inverse of its diagonal entries. Instead of constructing the matrix HJ , which is
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computationally expensive, we provide efficient algorithms to compute matrix-vector

products and extract its diagonal.

In our LBFGS implementation, we provide an explicitly calculated derivative to

an LBFGS solver1. In computing the objective function, we precompute parts of the

derivative which allows for faster optimization than relying on automatic differentia-

tion.

We implement an unconstrained PyTorch version of the ADMM setup in [42] de-

scribed in Section 2.4. In contrast to [42], which uses a hard constraint to ensure

positivity of the intensity modulation and employs Sequential Quadratic Program-

ming, we implement this as a soft constraint with the barrier term (2.2). In our case,

we split the objective in (2.5) into

F (b) = D(b) + αS3(b) + βP (b), and G(z) = αS1(z) + αS2(z), (3.1)

where S3 is the part of the smoothness regularization term S corresponding to the

phase encoding direction, and S1 and S2 are the remaining terms corresponding to

the other directions. This gives rise to the following optimization problem, equivalent

to (2.5):

min
b,z

F (b) +G(z) s.t. b = z.

With the corresponding augmented Lagrangian

L(b, z,y) = F (b) +G(z) + yT (b− z) +
ρh3

2
||b− z||2,

where y is the Langrange multiplier for the equality constraint b = z and ρ is a scalar

augmentation parameter, and using scaled dual variable u = y
ρh3 , each iteration has

1https://github.com/hjmshi/PyTorch-LBFGS
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the updates

bk+1 = argmin
b

F (b) +
ρh3

2
||b− zk + uk||2 (3.2)

zk+1 = argmin
z

G(z) +
ρh3

2
||bk+1 − z+ uk||2 (3.3)

uk+1 = uk + bk+1 − zk+1. (3.4)

The b update computed in (3.2) involves a separable optimization problem that

can be solved independently for each image column along the phase-encoding direc-

tion. In PyHySCO we use a modified version of the GN-PCG scheme described in

2.4. The only change is the computation of the search direction, which can now be

parallelized across the different image columns. To exploit this structure, we imple-

ment a PCG method that solves the system for each image column in parallel. In

addition to more parallelism, we observe an increase in efficiency since the scheme

uses different step sizes and stopping criteria for each image column.

The z update in (3.3) is computed directly as described in Section 2.4.

3.3 PyHySCO: A GPU-Enabled, Command Line

Compatible, PyTorch Correction Tool

3.3.1 PyHySCO Implementation Details

PyHySCO is a GPU-friendly PyTorch [47] implementation of the distortion correc-

tion approach described above. The overall code structure is visualized in the di-

agrams in Figures 3.3a and 3.3b for the objective function and optimization, re-

spectively. The main classes of PyHySCO are the loss function, implemented in

EPIMRIDistortionCorrection, and the optimization, defined in EPIOptimize. The

other classes and methods, described in detail below, implement the components of
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the loss function evaluation and optimization schemes.

Data Storage and Image Model

The input pair of images with opposite phase encoding directions are loaded and

permuted such that the distortion dimension is the last dimension, as this is where

PyTorch expects the batch dimension for parallelizing operations. Information on the

input images is stored in an object of type DataObject. This class stores information

on the image size, image domain, cell size, how to permute the data back to the input

order, and the ImageModel for each input image. The ImageModel abstract class

defines the structure and required methods for an image model, including storing

the original data and providing a method eval that returns the data interpolated on

the given points. We provide the default implementation Interp1D which is a linear

one-dimensional interpolation, parallelized in the last dimension. The DataObject

for a given input pair is then stored in the EPIMRIDistortionCorrection object.

Correction Model

The mass-preserving correction model (2.1) is implemented in the method mp transform,

a class method of EPIMRIDistortionCorrection. The method takes as input an

ImageModel and a field map. The geometric deformation is computed by using an

averaging LinearOperator to compute the field map values in the cell-centers and

adding this to a cell-centered grid to obtain the deformed grid defined by this field

map. Using the ImageModel, the image is interpolated on this deformed grid. The in-

tensity modulation term is computed by applying a finite difference LinearOperator

to the field map. The two terms are multiplied together element-wise before return-

ing the corrected image. Default implementation of the LinearOperator objects for

averaging and finite difference are given as one-dimensional convolutions, parallelized

in the last dimension.
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DataObject

stores original data and 
image models 
(interpolations) along 
with image size, domain, 
and permutation 
information

Interp1D

implements ImageModel and 
provides one-dimensional 
image interpolation in the 
distortion dimension

ImageModel

abstract class defining 
data and methods of an 
image model and 
interpolation

LinearOperator

abstract class defining 
methods of linear 
operators

Conv1D

implements one-dimensional 
convolution in the 
distortion dimension

FFT3D

implements three-
dimensional convolution 
using FFTs

Conv3D

implements three-
dimensional convolution

Identity

implements identity 
operator

Preconditioner

abstract class defining 
methods of preconditioners

JacobiCG

implements Jacobi 
preconditioner

QuadRegularizer

implements quadratic 
regularization term of the 
form S(x) = 1/2*||x||_H**2 
where H is positive semi-
definite LinearOperator

TikRegularizer

implements Tikonov 
regularization term of the 
form Q(x) = 1/2*||x-y||**2 
for given reference value 
y

InitializeCF

implements one-dimensional 
Chang and Fitzpatrick 
initialization of field 
map using optimal 
transport

EPIMRIDistortionCorrection

evaluates objective function

J(b) = D(T(I_+v, b), T(I_-v, b)) + 
alpha * S(b) + beta * P(b)

(a) Class structure of PyHySCO loss function. The main class repre-
senting the loss function is EPIMRIDistortionCorrection. Purple
classes are abstract, and blue classes are concrete. Solid arrows in-
dicate inheritance. Dashed arrows indicate dependencies and class
objects that are attributes.

ADMM

implements optimization 
using ADMM

LBFGS

implements optimization 
using LBFGS

GaussNewton

implements optimization 
using Gauss Newton

PCG

implements preconditioned 
conjugate gradient solver

BlockPCG

implements preconditioned 
conjugate gradient solver 
parallelized for block 
diagonal input

Jacobi

implements preconditioned 
Jacobi solver

OptimizationLogger

stores optimization 
metrics and related 
information

EPIOptimize

defines attributes and 
methods of optimization, 
including applying field 
map for correction and 
visualizing results

LeastSquaresCorrection

implements least squares 
correction to solve for 
true image given field map 
information

(b) Class structure of PyHySCO optimization. The main class defin-
ing optimization is EPIOptimize. Solid arrows indicate inheritance.
Dashed arrows indicate dependencies and class objects that are at-
tributes.

Figure 3.3: UML diagram of PyHySCO showing the classes and relationships for
the (3.3a) loss function and (3.3b) optimization. A EPIMRIDistortionCorrection

object defining the loss function is an attribute of every EPIOptimize object defining
the optimization scheme.
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Regularization Terms

The intensity regularization term is computed within the EPIMRIDistortionCorrection

class in the method phi EPI which computes the result of applying ϕ as defined in

(2.2) element-wise to the result of applying the finite difference operator to the field

map, as computed in the correction model. This function acts as a barrier term

penalizing values of the derivative of the field map in the distortion dimension that

violate the intensity constraint, that is values outside of the range (-1, 1).

The smoothness regularization term is implemented in a QuadRegularizer object,

which defines the evaluation of a quadratic regularization term of the form of (2.4)

using a positive semi-definite LinearOperator as H. By default, H is a discretized

negative Laplacian applied via a three-dimensional convolution.

In the ADMM optimizer, the regularizer structure is different to account for the

splitting in (3.1). The objective function for the b update in (3.2) is computed

in EPIMRIDistortionCorrection where the computation of S3 is a one-dimensional

Laplacian in the distortion dimension applied via a one-dimensional convolution. The

proximal term is computed through a TikRegularizer object, a Tikhonov regularizer

structure. The objective function for the z update in (3.3) is a QuadRegularizer

object where the LinearOperator H is a two-dimensional Laplacian corresponding

to S2 and S3. This operator is implemented in FFT3D, which defines an operator

applying a convolution kernel in Fourier space diagonalized as in (2.12) [20]. This

implementation allows for easily inverting the kernel in solving for z.

Hessian and Preconditioning

For the Gauss Newton and ADMM optimizers, an approximate Hessian and pre-

conditioner are additionally computed. Parts of the Hessian are computed during

objective function evaluation in EPIMRIDistortionCorrection, and the Hessian can

be applied through a matrix-vector product. Similarly, a Preconditioner can be
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computed during objective function evaluation and is accessible through a returned

function applying the preconditioner to its input. By default, we provide a Jacobi

preconditioner in the class JacobiCG.

Initialization

The EPIMRIDistortionCorrection class has a method initialize, returning an

initial guess for the field map using some InitializationMethod. We provide an

implementation of the proposed parallelized Chang and Fitzpatrick initialization in

InitializeCF. The implementation computes the one-dimensional transport maps

in parallel using a linear spline interpolation. In practice, the parallelized initializa-

tion gives a highly non-smooth initial field map, so the method optionally applies

a Gaussian blur using the fast FFT convolution operator FFT3D to promote a more

smooth optimized field map.

Optimization

The minimization of the objective function defined in a EPIMRIDistortionCorrection

object happens in a subclass of EPIOptimize, which takes the objective function ob-

ject as input. During optimization, the OptimizationLogger class is used to track

iteration history, saving it to a log file and optionally printing this information to

standard output. PyHySCO includes implementations of the LBFGS, Gauss Newton,

and ADMM solvers described previously. Each of the classes LBFGS, GaussNewton,

and ADMM provide a run correction method which minimizes the objective func-

tion using the indicated optimization scheme. The LBFGS implementation uses the

explicitly computed derivative from EPIMRIDistortionCorrection. For LBFGS we

use as stopping criteria the norm of the gradient reaching a given tolerance, or the

change in loss function or field map between iterations falling below a given tolerance.

The GaussNewton implementation uses a conjugate gradient solver implemented in
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the class PCG. Our Gauss Newton implementation uses the same stopping criteria as

LBFGS. The ADMM implementation solves the b update in (3.2) using GaussNewton

with a parallelized conjugate gradient solver in BlockPCG. The z update in (3.3) is

solved directly through the inverse method inv of the operator used to define the

QuadRegularizer for this term, efficiently implemented using FFTs in FFT3D. As

stopping criteria, the ADMM iterations will terminate if the change in all of b, z,

and u from the previous iteration falls below a given tolerance.

Image Correction

The optimal field map, stored as Bc in the EPIOptimize object after run correction

is completed, can be used to produce a corrected image or pair of images. The

apply correction method of EPIOptimize implements both a Jacobian modula-

tion correction and a least squares correction. The Jacobian modulation correc-

tion is based on the model of [15] as implemented in the mp transform method of

EPIMRIDistortionCorrection. This correction method computes and saves two cor-

rected images, one for each input image.

The field map can also be used in a least squares correction similar to the correction

in [4], implemented in LeastSquaresCorrection. In this correction, the estimated

field map is used to determine a push forward matrix that transforms the true image

to the distorted image given as input. This gives rise to a least squares problem to

solve for the true image given the input images and push forward matrix.

3.3.2 PyHySCO Usage and Workflow

The workflow of PyHySCO is illustrated in Figure 3.4a alongside examples of using

PyHySCO in a Python script (Figure 3.4b) and through the command line (Figure

3.4c). Running PyHySCO from a user-defined Python script allows more specific

control of the inputs and outputs from PyHySCO methods. The command line in-
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terface allows the user to pass configuration options directly from the command-line,

which enables our EPI distortion correction tool to be easily used as a part of ex-

isting command-line based MRI post-processing pipelines such as the FSL toolbox

[56]. Executing PyHySCO requires the user to provide at a minimum the file paths

for the input pair of images with opposite phase encoding directions and which di-

mension (1, 2, or 3) is aligned with the phase encoding direction. The modularity of

PyHySCO additionally allows for configuring options such as the scalar hyperparam-

eters in (2.5), implementation of operators, regularizers, and interpolation, optimizer

and associated optimization parameters, and image correction method.

Regardless of execution through a script or the command line, PyHySCO stores

the input images in a DataObject object, the loss function and how to evaluate

it in a EPIMRIDistortionCorrection object, and the optimizer in an object of a

subclass of EPIOptimize. The field map is initialized from the method initialize in

EPIMRIDistortionCorrection, and the field map is optimized by calling the method

run correction in the optimizer object. Finally, the method apply correction in

EPIOptimize applies the field map to correct the input images and saves the result

to one or more NIFTI file(s).

3.4 Results

We demonstrate PyHySCO’s effectiveness through extensive experiments using real

and simulated data from the Human Connectome Project [62] and validate the ini-

tialization scheme and implementation of optimization algorithms. Section 3.4.1 de-

scribes the datasets and Section 3.4.2 introduces our evaluation metrics. In Section

3.4.3, we demonstrate the Chang and Fitzpatrick initialization scheme. The exper-

iments in 3.4.4 compare the performance of the three optimization algorithms im-

plemented in PyHySCO on CPU and GPU hardware. In Section 3.4.5, we compare
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load data
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function
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optimize 
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(a) The workflow of the PyHySCO toolbox from setup through optimization and
distortion correction.

# load images with phase encoding direction in first dimension
data = DataObject('im1.nii.gz', 'im2.nii.gz', 1, device='cuda:0', dtype=torch.float32)
# define loss function
loss_func = EPIMRIDistortionCorrection(data, 300, 1e-4, averaging_operator=myAvg1D, 
                                       derivative_operator=myDiff1D, regularizer=myLaplacian3D, PC=JacobiCG)
# define optimizer using Gauss Newton
opt = GaussNewton(loss_func, max_iter=500, verbose=True, path='results/')
# initialize field map
B0 = loss_func.initialize()
# optimize field map
opt.run_correction(B0)
# apply correction
opt.apply_correction(method='lstsq')

(b) An example using the PyHySCO toolbox from a Python script.

root $ pyhysco --help
usage: pyhysco   [-h] [--output_dir OUTPUT_DIR] [--alpha ALPHA] [--beta BETA] [--rho RHO]

[--optimizer OPTIMIZER] [--max_iter MAX_ITER] [--verbose] [--precision {single,double}]
[--correction {jac,lstsq}] [--averaging AVERAGING] [--derivative DERIVATIVE]
[--initialization INITIALIZATION] [--regularizer REGULARIZER] [--PC PC]

                 file_1 file_2 {1,2,3}

PyHySCO: EPI-MRI Distortion Correction.

positional arguments:
  file_1                Path to the input 1 data file (NIfTI format .nii.gz)
  file_2                Path to the input 2 data file (NIfTI format .nii.gz)
  {1,2,3}               Dimension of phase encoding direction

optional arguments:
  -h, --help                       show this help message and exit
  --output_dir OUTPUT_DIR          Directory to save the corrected images and reports (default=cwd)
  --alpha ALPHA                    Smoothness regularization parameter (default=300)
  --beta BETA                      Intensity modulation constraint parameter (default=1e-4)
  --rho RHO                        Initial Lagrangian parameter (ADMM only) (default=1e3)
  --optimizer OPTIMIZER            Optimizer to use (default=GaussNewton)
  --max_iter MAX_ITER              Maximum number of iterations (default=50)
  --verbose                        Print details of optimization (default=True)
  --precision {single,double}      Use (single/double) precision (default=single)
  --correction {jac,lstsq}         Use (Jacobian ['jac']/ Least Squares ['lstsq']) correction (default=lstsq)
  --averaging AVERAGING            LinearOperator to use as averaging operator (default=myAvg1D)
  --derivative DERIVATIVE          LinearOperator to use as derivative operator (default=myDiff1D)
  --initialization INITIALIZATION  Initialization method to use (default=InitializeCF)
  --regularizer REGULARIZER        LinearOperator to use for smoothness regularization term (default=myLaplacian3D)
  --PC PC                          Preconditioner to use (default=JacobiCG)

(c) The help message for the PyHySCO command line interface. This interface
allows for easily using PyHySCO as part of existing MRI post-processing pipelines.

Figure 3.4: The usage and workflow of PyHySCO.
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Dataset No. of Subjects Image Size Resolution PE directions

3T 20 168 × 144 × 111 1.25 × 1.25 × 1.25 mm3 LR/ RL
7T 20 200 × 200 × 132 1.05 × 1.05 × 1.05 mm3 AP/ PA

Simulated 20 320 × 320 × 256 0.7 × 0.7 × 0.7 mm3 AP/ PA

Table 3.1: Details of data used in validation. LR/RL is left-to-right and right-to-left
phase encoding, and AP/PA is anterior-to-posterior and posterior-to-anterior phase
encoding. Further details of acquisition parameters are in [62].

the performance of PyHySCO in single and double precision arithmetic on CPU and

GPU hardware. Section 3.4.6 compares PyHySCO with existing tools HySCO and

TOPUP [52, 4].

3.4.1 Validation Datasets

The data used in the following experiments is from the Human Connectome Project

[62]. We validate our methods and tool on 3T and 7T diffusion-weighted imaging data

from the HCP 1200 Subjects Release, with 20 subjects randomly chosen for each field

strength. Table 3.1 provides details of the datasets.

We also evaluate our methods on simulated data. This data only contains suscep-

tibility artifact distortions, so it shows how our tool performs without the influence of

other factors, e.g., patient movement between scans. To simulate the distortions, we

use a pair of magnitude and phase images for a subject in HCP and generate the field

map using FSL’s FLIRT and PRELUDE tools [56]. Considering the physical model

of [15], the field map b can be used to define the push-forward matrices that give

how the intensity value at x is pushed forward to x+ b(x) in the distortion direction

+v as well as the opposite direction −v. Applying the push-forward matrices to a

T2-weighted image for the subject, we generate a pair of distorted images. For the

simulated data, we then have a reference value for the field map and an undistorted,

true image.
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3.4.2 Metrics

The quality of correction results is measured using the relative improvement of the

distance between a pair of corrected images. Particularly, we calculate the sum-of-

squares distance (SSD) of the corrected image pair relative to the SSD of the input

pair. This metric is a useful surrogate for the correctness of the field map in the

absence of a ground truth [28]. Additionally, we take the value of the smoothness

regularization term S(b) as a measure of how smooth the resulting field map is, with

lower values being better.

We report the runtime in seconds of PyHySCO. The runtime is measured as the

wall clock time using the Linux time command when calling the correction method

from the command line. This time, therefore, includes the time taken to load and save

the image data. In some cases, we also report the optimization time only, without

loading and saving data, as measured by Python’s time module.

3.4.3 Validity of Chang and Fitzpatrick Initialization

We compare the results of PyHySCO using the one-dimensional parallelized Chang

and Fitzpatrick initialization to those of the multi-level initialization used in HySCO

[52] both at initialization and after optimization with Gauss-Newton. The multi-level

optimization of HySCO solves the optimization problem on a coarse grid and uses the

result as the initialization of optimization on a finer grid, continuing until reaching

the original image resolution; this follows the guidelines of [45, Chapter 9.4]. In our

experiments, we use five levels in the initialization. The multi-level initialization gives

a field map that is smooth by construction and improves the distance reduction as the

grid becomes more fine. The field map from the PyHySCO Chang and Fitzpatrick

initialization drastically lowers the relative error between the input images, a relative

improvement of over 96% on real data and 94% on simulated data. However, the par-

allelized one-dimensional computations lead to a lack of smoothness in the resulting
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field map. The smoothness can be improved by applying a Gaussian blur to the field

map from the Chang and Fitzpatrick initialization. This field map is smoother af-

ter initialization and gives a smoother field map after optimization. These results are

comparable in relative error and smoothness to the field map optimized from the mul-

tilevel initialization of HySCO. Our one-dimensional parallelized initialization, even

with the additional Gaussian blur, is much faster to compute than the multilevel ini-

tial field map given the ability to parallelize computations. PyHySCO initialization

on a GPU with the additional blur takes less than 1 second on real data and about

3 seconds on simulated data. In comparison, the multi-level initialization on a CPU

takes 30 to 40 seconds on real data and over 2 minutes on simulated data. The mean

and standard deviation relative improvement, smoothness value, loss function value,

and runtime are reported in Table 3.2 across all datasets. Examples of these field

maps before and after optimization are shown in Figure 3.5.

3.4.4 Comparison of PyHySCO Optimizers on GPU and CPU

We compare the results of PyHySCO using GN-PCG, ADMM, and LBFGS on both

GPU and CPU architectures. Table 3.3 shows the runtimes and correction quality of

each optimizer on CPU and GPU. All optimizers achieve a similar correction quality

with respect to relative improvement of image distance, loss value, and smoothness

regularizer value, but GN-PCG has faster runtime on both CPU and GPU. On real

data, GN-PCG took 10-13 seconds on average on GPU and 27-31 seconds on average

on CPU, while ADMM took 11-15 seconds on GPU and 98-158 seconds on CPU,

and LBFGS took 23-36 seconds on GPU and 104-141 seconds on CPU. Table 3.4

shows optimization metrics, including the number of iterations, stopping criteria,

number of function evaluations, number of Hessian evaluations, and number of inner

iterations if applicable. Consistent with its faster runtime, optimization with GN-

PCG achieves a similar loss value with less computation as measured by function
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Chang & Fitzpatrick Chang & Fitzpatrick (blur) Multilevel
initial after opt initial after opt initial after opt

3T

Runtime (s)
5.78 11.43 6.31 15.36 41.69 55.34
±1.26 ±1.46 ±0.60 ±3.90 ±1.71 ±2.84

Opt. Time (s)
0.27 4.34 0.28 6.78 42.43 48.65
±0.01 ±0.67 ±0.02 ±0.67 ±4.04 ±3.95

Relative 96.44 83.90 79.71 82.75 67.04 81.96
Improvement ±1.13 ±3.43 ±3.43 ±3.49 ±5.15 ±3.51

Loss Value
1.05e09 2.84e07 1.76e08 2.56e07 4.82e07 2.51e07
±2.66e08 ±7.49e06 ±5.20e07 ±7.66e06 ±1.70e07 ±7.54e06

Smoothness 3.50e06 5.08e04 5.28e05 3.85e04 6.89e04 3.47e04
Reg. Value ±8.81e05 ±1.23e04 ±1.54e05 ±1.21e04 ±2.98e04 ±1.08e04

7T

Runtime (s)
7.61 13.55 8.32 19.72 58.73 77.79
±1.99 ±2.04 ±2.79 ±2.91 ±6.24 ±5.72

Opt. Time (s)
0.61 5.09 0.63 10.16 30.38 40.50
±0.02 ±1.23 ±0.02 ±0.85 ±2.63 ±3.87

Relative 96.53 86.01 75.09 85.76 69.12 85.42
Improvement ±1.47 ±5.15 ±3.97 ±5.10 ±8.28 ±5.08

Loss Value
3.48e09 5.28e07 4.50e08 4.14e07 7.77e07 4.02e07
±1.15e09 ±2.01e07 ±2.47e08 ±1.95e07 ±3.01e07 ±1.82e07

Smoothness 1.16e07 9.52e04 1.36e06 5.63e04 8.21e04 5.03e04
Reg. Value ±3.83e06 ±2.64e04 ±7.74e05 ±1.91e04 ±4.07e04 ±1.48e04

Simulated

Runtime (s)
10.62 80.29 16.59 106.47 173.20 47.98
±0.57 ±9.96 ±0.64 ±11.21 ±27.06 ±8.38

Opt. Time (s)
3.51 64.45 3.61 89.17 125.35 157.95
±0.03 ±10.02 ±0.15 ±11.48 ±24.88 ±28.79

Relative 94.64 76.82 75.34 76.27 55.01 73.63
Improvement ±1.26 ±5.09 ±3.44 ±5.18 ±5.66 ±5.39

Loss Value
5.10e08 6.31e07 2.11e08 6.07e07 8.17e07 5.83e07
±9.51e07 ±1.46e07 ±4.30e07 ±1.39e07 ±2.08e07 ±1.33e07

Smoothness 1.67e06 1.06e05 5.84e05 9.53e04 6.18e04 7.50e04
Reg. Value ±3.14e05 ±2.94e04 ±1.24e05 ±2.71e04 ±1.70e04 ±2.20e04

Table 3.2: Validation of the parallelized Chang & Fitzpatrick initialization. We com-
pare the runtime, relative improvement, smoothness value, and loss function value
at initialization and after optimization with Gauss Newton for the proposed paral-
lelized initialization, the proposed initialization with an additional Gaussian blur,
and the multilevel initialization used in HySCO [52]. For each metric we report the
mean and standard deviation in the 3T, 7T, and simulated datasets. The multilevel
initialization is timed on CPU in Matlab, and the PyHySCO initializations and all
optimizations are timed on GPU in Python. The Chang & Fitzpatrick based ini-
tializations provide a comparable quality while decreasing runtime compared to the
multilevel initialization, and the initialization with Gaussian blur promotes a more
smooth field map.



40

in
it
ia
li
za
ti
on

Chang & Fitzpatrick Chang & Fitzpatrick (blur) Multilevel

o
p
ti
m
iz
ed

Figure 3.5: Example field maps (Subject ID 826353) at initialization (top row) and
after optimization with Gauss-Newton (bottom row). The first column uses the pro-
posed initialization scheme. The middle column uses the same scheme with an addi-
tional Gaussian blur to promote smoothness. The right column uses the coarse-to-fine
multilevel initialization scheme from HySCO with five levels, and the final field map
is optimized at the original image resolution. The multilevel initialized field map is
smooth by construction and further optimized to improve the relative image distance
at the full resolution. The PyHySCO initialization accurately corrects the distortions
but is not smooth in the non-distortion dimensions unless blurred with a Gaussian.
After the fine-level optimization all field maps are visually similar.

and Hessian evaluations. Figures 3.6, 3.7, and 3.8 show the field map and corrected

images for each optimizer for one example subject from each dataset. The field maps

and corrected images are visually similar across optimizers.

3.4.5 Single Precision vs Double Precision on GPU and CPU

We show the validity of PyHySCO using the proposed initialization and GN-PCG

in both double precision (64 bit) and single precision (32 bit) arithmetic on three

different GPU architectures and a CPU architecture. Since GPU architectures are

optimized for the speed of lower precision calculations, we see a significant speedup

when using single precision instead of double precision. Calculations in single pre-

cision, however, have the risk of lower accuracy or propagating errors due to using

fewer bits to approximate floating point values. Empirically, we see that the quality of
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our results is not significantly impacted by using single-precision arithmetic. We also

see consistent results across different GPU architectures: a Quadro RTX 8000, Titan

RTX, and RTX A6000. Because PyHySCO is optimized to parallelize computations

on GPU, the runtimes are faster on the GPUs compared to the Intel Xeon E5-4627

CPU.

3.4.6 Comparison of PyHySCO with HySCO and TOPUP

We compare the runtime, relative improvement, and resulting images after correction

using PyHySCO against those given by TOPUP [4] as implemented in FSL [56] using

the default configuration2, and HySCO [52] as implemented in the ACID toolbox for

SPM using the default parameters. HySCO is also based on the optimization problem

(2.5), while TOPUP uses a slightly different objective function. This makes it difficult

to compute smoothness and loss function values for TOPUP.

Table 3.6 reports the runtime and correction quality for PyHySCO using GN-

PCG, HySCO, and TOPUP. On real 3T and 7T data, PyHySCO achieves lower loss

and higher relative improvement between corrected images than HySCO, and higher

relative improvement than TOPUP. The runtime on CPU for real data is 1-2 minutes

for HySCO and over 1 hour for TOPUP, while PyHySCO on GPU has runtimes of

10-13 seconds. For the simulated dataset, PyHySCO requires an average of 1 minute

on GPU, HySCO an average of 12.6 minutes on CPU, and TOPUP an average of

8.5 hours on CPU. Using the ground truth field maps from the simulated dataset,

PyHySCO achieves the lowest average field map relative error, 14.48%, compared

to 19.70% for HySCO and 16.36% for TOPUP. PyHySCO also achieves the highest

structural similarity (SSIM) [63] with the ground truth field map, 91.80, compared

to 86.91 for HySCO and 80.15 for TOPUP. All three methods average a structural

2The default TOPUP configuration performs upsampling requiring the dimensions to be a multi-
ple of 2. The configuration for TOPUP with images of the 3T data set does not perform upsampling
due to the odd number of slices in the image volumes.
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similarity of over 99 with the ground truth T2-weighted image. Figures 3.6, 3.7,

and 3.8 show the field map and corrected images for one example subject from each

dataset. The results of the methods are similar, and the resulting field maps are

comparable to those of the existing tools, HySCO and TOPUP, while PyHySCO is

considerably faster.

3.5 Summary

The PyHySCO toolbox accurately and robustly corrects susceptibility artifacts in

Spin-Echo EPIs acquired using the Reverse Gradient Polarity acquisition. In numer-

ous experiments with real and simulated data, it achieves similar correction quality

to the leading RGP toolboxes TOPUP and HySCO while having a time-to-solution

in the order of timings reported for pre-trained deep learning approaches. Compared

to the latter class of methods, it is important to highlight that PyHySCO does not re-

quire any training and is based on a physical distortion model, which helps generalize

to different scanners, image acquisition parameters, and anatomies.

PyHySCO’s modular design invites improvements and contributions. The toolbox

is based on PyTorch, which provides hardware support and other functionality, in-

cluding automatic differentiation. In our experiments, correction quality is hardware

and precision-independent, but a considerable speedup is realized on GPUs with single

precision (32-bit) arithmetic. The reduced computational time is mostly attributed

to the effective use of multithreading and parallelism on modern hardware.

PyHySCO uses the one-dimensional correction of [15] to initialize the nonlinear

optimization. In our numerical experiments, the scheme is fast and effective and we

provide further insights through optimal transport theory. The initial estimate of the

field map already substantially reduces the distance between the images with opposite

phase encoding directions. In our experiments, the non-smoothness of the initial field
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Figure 3.6: Visualization of resulting field maps and images for one subject from the
3T dataset (Subject ID 211619). The first column in the top half shows the input
data, and the remaining columns show the results from PyHySCO using LBFGS,
Gauss Newton, and ADMM, TOPUP, and HySCO. For each optimization, the top
two rows are the pair of images with opposite phase encoding directions, and the third
row shows the absolute difference (with inverted color) between the pair of images.
The bottom row shows the field maps estimated for each method. PyHySCO gives
a reduction in image distance and a field map comparable in smoothness to existing
methods.
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Figure 3.7: Visualization of resulting field maps and images for one subject from the
7T dataset (Subject ID 825048). The first column in the top half shows the input
data, and the remaining columns show the results from PyHySCO using LBFGS,
Gauss Newton, and ADMM, TOPUP, and HySCO. For each optimization, the top
two rows are the pair of images with opposite phase encoding directions, and the third
row shows the absolute difference (with inverted color) between the pair of images.
The bottom row shows the field maps estimated for each method. PyHySCO gives
a reduction in image distance and a field map comparable in smoothness to existing
methods.
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Figure 3.8: Visualization of resulting field maps and images for one subject from
the simulated dataset (Subject ID 105014). The first column in the top half shows
the input data, and the second column shows the ground truth T2w image and field
map. The remaining columns show the results from PyHySCO using LBFGS, Gauss
Newton, and ADMM, TOPUP, and HySCO. For each optimization, the top two rows
are the pair of images with opposite phase encoding directions, and the third row
shows the absolute difference (with inverted color) between the pair of images. The
bottom row shows the field maps estimated for each method. PyHySCO gives a
reduction in image distance and a field map comparable in smoothness to existing
methods.
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map can be corrected by applying a Gaussian blur and a few optimization steps to

the full image resolution.

PyHySCO’s three optimization algorithms achieve comparable correction results

but have different computational costs. The ADMM algorithm takes advantage of the

separable structure of the optimization problem to enhance parallelism but requires

more iterations than GN-PCG. While this results in longer runtimes in our examples,

the method could be more scalable for datasets of considerably higher resolution.

For the relatively standard image sizes of about 200 × 200 × 132, the default GN-

PCG algorithm is most effective. Both customized optimization algorithms are more

efficient than our comparison, LBFGS.

PyHySCO can be interfaced directly in Python or run in batch mode via the

command line. The latter makes it a drop-in replacement for other RGP tools in

MRI post-processing pipelines.

The speed of PyHySCO relative to existing tools makes it uniquely positioned to

enable online distortion correction in applications where real-time decisions are neces-

sary. For example, the speed of EPI acquisition along with the speed of PyHySCO dis-

tortion correction enables real-time distortion-free imaging useful for intra-operative

guidance (see, e.g., [30, 50, 66]). Additionally, PyHySCO can be important for fur-

thering emerging fields such as fetal and neonatal imaging (see, e.g., [43, 1, 17]). In

this application, EPI is popular to reduce the effects of uncontrollable subject mo-

tion, and fast distortion correction using PyHySCO can enable faster intervention if

necessary.

PyHySCO offers RGP-based correction with high accuracy at the cost similar

to pre-trained learning-based methods. Our implementation is based on PyTorch

and makes efficient use of modern hardware accelerators such as GPUs. We show the

accuracy and efficiency of PyHySCO on real and simulated three-dimensional volumes

of various field strengths and phase encoding axes. Our results show that PyHySCO
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achieves a correction of comparable quality to leading physics-based methods in a

fraction of the time.

The source code, examples, and documentation for PyHySCO are available at

the following repository: https://github.com/EmoryMLIP/PyHySCO. The Python

package for PyHySCO can be installed via pip and be downloaded from:

https://pypi.org/project/PyHySCO/.
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LBFGS GN-PCG ADMM
CPU GPU CPU GPU CPU GPU

3T

Runtime (s)
104.45 23.13 27.37 10.37 98.54 11.58
±70.74 ±4.61 ±4.53 ±0.87 ±30.15 ±2.23

Opt. Time (s)
100.28 16.70 23.13 4.38 94.53 5.63
±70.82 ±4.49 ±4.53 ±0.68 ±30.20 ±2.15

Relative 81.47 82.32 82.74 82.74 82.76 82.77
Improvement ±3.71 ±3.40 ±3.50 ±3.50 ±3.31 ±3.30

Loss Value
7.90e07 2.56e07 2.56e07 2.56e07 3.09e07 3.10e07
±7.99e07 ±7.72e06 ±7.69e06 ±7.69e06 ±8.51e96 ±8.56e06

Smoothness 2.13e05 3.72e04 3.85e04 3.85e04 5.62e04 5.65e04
Reg. Value ±2.56e05 ±1.18e04 ±1.21e04 ±1.21e04 ±1.65e04 ±1.71e04

7T

Runtime (s)
141.44 36.23 31.71 13.62 158.64 15.25
±117.38 ±7.76 ±3.18 ±2.38 ±46.99 ±3.15

Opt. Time (s)
135.72 29.23 26.84 6.57 152.69 8.34
±116.29 ±7.88 ±3.15 ±2.30 ±46.64 ±2.91

Relative 80.75 85.74 85.76 85.76 85.87 85.85
Improvement ±6.91 ±4.99 ±5.10 ±5.10 ±4.99 ±4.99

Loss Value
2.25e08 4.25e07 4.14e07 4.14e07 4.43e07 4.43e07
±2.22e08 ±2.00e07 ±1.95e07 ±1.95e07 ±1.99e07 ±1.95e07

Smoothness 6.38e05 6.00e04 5.63e04 5.63e04 6.68e04 6.66e04
Reg. Value ±7.01e05 ±2.18e04 ±1.91e04 ±1.91e04 ±2.18e04 ±3.68e04

Sim.

Runtime (s)
6344.93 143.77 1094.96 55.26 7687.28 52.72
±649.21 ±6.47 ±135.20 ±3.86 ±4596.31 ±18.01

Opt. Time (s)
6320.43 125.95 1070.65 37.60 7662.55 35.15
±649.01 ±6.40 ±135.69 ±4.54 ±4596.38 ±17.92

Relative 75.45 75.44 76.28 76.28 74.93 75.00
Improvement ±5.40 ±5.35 ±5.19 ±5.18 ±5.59 ±5.34

Loss Value
6.03e07 6.00e07 6.08e07 6.08e07 6.08e07 6.12e07
±1.44e07 ±1.41e07 ±1.40e07 ±1.40e07 ±1.40e07 ±1.43e07

Smoothness 9.06e04 8.94e04 9.56e04 9.56e04 8.97e04 9.12e04
Reg. Value ±2.94e04 ±2.74e04 ±2.74e04 ±2.72e04 ±2.79e04 ±2.77e04

Table 3.3: The speed and quality of optimization in PyHySCO on GPU and CPU
with LBFGS, Gauss Newton, and ADMM. We report for each dataset and optimizer
the mean and standard deviation total runtime (including loading and saving data),
optimization time, improvement in distance between corrected images relative to
input image, loss value, and smoothness regularizer value. Gauss Newton achieves
a similar correction quality in less time than LBFGS or ADMM on both CPU and
GPU.
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LBFGS GN-PCG ADMM

3T

Iterations
455.30 8.400 36.05
±52.80 ±0.92 ±10.37

Stopping Criteria
9/3/0/8 0/20/0/0 0/0/20/0

(grad/loss/field map/max iter)

Func. Evals
463.30 9.40 37.05
±54.12 ±0.92 ±10.37

Hessian Evals N/A
92.40 437.50
±10.08 ±140.30

Inner Iterations N/A
10.0000 11.0269
±0.00 ±1.02

Loss Value
2.56e07 2.56e07 3.10e07
±7.72e06 ±7.69e06 ±8.56e06

7T

Iterations
405.00 7.50 56.75
±65.61 ±0.87 ±17.01

Stopping Criteria
14/3/0/3 0/20/0/0 0/0/20/0

(grad/loss/field map)

Func. Evals
415.35 8.50 57.75
±68.00 ±0.87 ±17.01

Hessian Evals N/A
82.25 339.05
±9.15 ±101.55

Inner Iterations N/A
9.9722 4.9771
±0.12 ±0.08

Loss Value
4.25e07 4.14e07 4.43e07
±2.00e07 ±1.95e07 ±1.95e07

Simulated

Iterations
497.65 20.05 109.35
±5.88 ±1.83 ±64.52

Stopping Criteria
1/0/0/19 0/18/2/0 0/0/20/0

(grad/loss/field map)

Func. Evals
532.35 21.05 110.35
±28.27 ±1.83 ±64.52

Hessian Evals N/A
220.55 1872.15
±20.13 ±1417.11

Inner Iterations N/A
10.0000 15.1681
±0.00 ±3.69

Loss Value
6.00e07 6.08e07 6.12e07
±1.41e07 ±1.40e07 ±1.43e07

Table 3.4: Details of optimization for PyHySCO optimizers LBFGS, Gauss Newton,
and ADMM. For each dataset we report the average and standard deviation number
of iterations, count of stopping criteria used (gradient tolerance/ loss function change
tolerance/ field map change tolerance/ maximum iterations), average and standard
deviation number of function evaluations, average and standard deviation number of
Hessian evaluations, average and standard deviation number of inner iterations, and
average and standard deviation loss value. Gauss Newton achieves a similar quality
of correction with less computation than LBFGS or ADMM.
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RTX A6000 Quadro RTX 8000 Titan RTX Intel Xeon E5-4627
(GPU) (GPU) (GPU) (CPU)

double single double single double single double single

3T

Runtime (s)
12.7262 9.5750 13.4800 7.8854 13.1178 7.5820 34.3328 27.1305
±0.68 ±0.58 ±1.23 ±0.91 ±1.31 ±0.98 ±4.26 ±3.09

Optimization 6.7947 4.1562 7.0133 2.1065 6.7862 1.9327 27.8682 23.2062
Time (s) ±0.51 ±0.39 ±1.25 ±0.90 ±1.25 ±0.62 ±3.10 ±3.07
Relative 82.7486 82.7393 82.7486 82.7393 82.7486 82.7393 82.486 82.7393

Improvement ±3.49 ±3.50 ±3.49 ±3.50 ±3.49 ±3.50 ±3.49 ±3.50

Loss Value
2.560e07 2.562e07 2.560e07 2.562e07 2.560e07 2.562e07 2.560e07 2.562e07
±7.66e06 ±7.69e06 ±7.66e06 ±7.69e06 ±7.66e06 ±7.69e06 ±7.66e06 ±7.69e06

Smoothness 3.848e04 3.851e04 3.848e04 3.851e04 3.848e04 3.851e04 3.848e04 3.851e04
Reg. Value ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04 ±1.21e04

7T

Runtime (s)
17.2494 11.9028 21.0102 9.3140 18.6522 9.4680 82.1059 33.4020
±0.94 ±0.44 ±6.31 ±0.99 ±2.84 ±2.19 ±7.64 ±4.15

Optimization 10.1298 5.7460 11.9937 2.2579 10.9617 2.9775 72.1380 28.5530
Time (s) ±0.95 ±0.42 ±3.55 ±0.64 ±2.85 ±2.11 ±6.82 ±4.09
Relative 85.7618 85.7641 85.7618 85.7642 85.7618 85.7642 85.7618 85.7638

Improvement ±5.10 ±5.10 ±5.10 ±5.10 ±5.10 ±5.10 ±5.10 ±5.10

Loss Value
4.143e07 4.140e07 4.143e07 4.140e07 4.143e07 4.140e07 4.1432e07 4.1410e07
±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07 ±1.95e07

Smoothness 5.634e04 5.628e04 5.634e04 5.628e04 5.634e04 5.628e04 5.634e04 5.629e04
Reg. Value ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04 ±1.91e04

Sim.

Runtime (s)
106.92 50.26 127.38 24.17 125.25 23.60 851.18 417.56
±11.42 ±3.52 ±13.42 ±1.31 ±14.87 ±3.78 ±107.41 ±55.33

Optimization 89.53 35.53 104.47 7.93 105.78 9.32 827.06 402.04
Time (s) ±11.56 ±4.13 ±13.88 ±0.92 ±14.84 ±3.81 ±108.91 ±56.58
Relative 76.27 76.28 76.27 76.28 76.27 76.28 76.27 76.28

Improvement ±5.18 ±5.18 ±5.18 ±5.18 ±5.18 ±5.18 ±5.18 ±5.18

Loss Value
6.07e07 6.08e07 6.07e07 6.08e07 6.07e07 6.08e07 6.07e07 6.08e07
±1.39e07 ±1.40e07 ±1.39e07 ±1.40e07 ±1.39e07 ±1.40e07 ±1.39e07 ±1.40e07

Smoothness 9.53e04 9.56e04 9.53e04 9.56e04 9.53e04 9.56e04 9.54e04 9.56e04
Reg. Value ±2.71e04 ±2.72e04 ±2.71e04 ±2.73e04 ±2.71e04 ±2.73e04 ±2.71e04 ±2.73e04

Table 3.5: The speed and quality of PyHySCO optimization with Gauss Newton
on three different GPUs and a CPU in both single (float 32) and double (float 64)
precision arithmetic. The relative improvement, loss value, and smoothness value are
evaluated in double precision in all cases. Results are shown for both 3T and 7T
data from the Human Connectome Project [62] and simulated data. There is a great
speedup when calculating in single precision without losing the quality of correction,
and the speedup of PyHySCO using a GPU is clear compared to the CPU.
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PyHySCO HySCO TOPUP

3T

Runtime (s)
10.37 65.06 4022.56
±0.87 ±8.64 ±73.11

Relative 82.74 78.98 54.36
Improvement ±3.50 ±6.39 ±17.08

Loss Value
2.56e07 4.13e07

N/A±7.69e06 ±1.38e07
Smoothness 3.85e04 7.84e04

N/A
Reg. Value ±1.21e04 ±3.01e04

7T

Runtime (s)
13.62 120.92 3713.51
±2.38 ±19.61 ±63.04

Relative 85.76 80.43 74.51
Improvement ±5.10 ±10.46 ±9.13

Loss Value
4.14e07 5.87e07

N/A±1.95e07 ±2.48e07
Smoothness 5.63e04 8.03e04

N/A
Reg. Value ±1.91e04 ±3.68e04

Simulated

Runtime (s)
55.26 757.65 30854.18
±3.86 ±96.26 ±568.11

Relative 76.28 69.53 17.56
Improvement ±5.18 ±5.10 ±28.14

Loss 6.08e07 6.07e07
N/A

Value ±1.40e07 ±1.51e07
Smoothness 9.56e04 6.10e04

N/A
Reg. Value ±2.72e04 ±1.60e04

Relative Error 14.48 19.70 16.37
(Field Map) ±7.71 ±11.70 ±3.60

SSIM 91.80 86.91 80.15
(Field Map) ±0.03 ±0.05 ±0.08

SSIM 99.87 99.95 99.96
(T2w Image) ±0.0017 ±0.0003 ±0.0002

Table 3.6: The speed and quality of optimization for TOPUP, HySCO, and Py-
HySCO. PyHySCO uses Gauss Newton and optimizes in single precision on GPU.
HySCO and TOPUP optimize on CPU using the default configurations. Results are
reported for 3T and 7T data from the Human Connectome Project [62] and the sim-
ulated distortion data.
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Chapter 4

Parameterized Four-Dimensional

DTI Correction

In this chapter, we extend the distortion correction model of the previous chapters to

the four-dimensional setting including diffusion information. In the case of diffusion

tensor imaging, the acquired images are four-dimensional with the fourth dimension

representing the applied diffusion gradient. The usual practice for distortion correc-

tion is to use the field map estimated from a non-diffusion weighted (γ = 0) pair

to then correct each diffusion-weighted volume [60]. However, this has been shown

to lead to poor correction in the presence of a large amount of subject motion [5],

and the quality of diffusion tensor analysis is adversely affected in areas of uniform

contrast in the γ = 0 image [60].

To improve the quality of both distortion correction and diffusion tensor analysis,

we propose to estimate a four-dimensional field map, leveraging the structure of the

applied diffusion gradients while allowing for differences due to motion and contrast.

We do this using a parameterization of the four-dimensional field map and optimizing

the coefficients of the parameterization. Our results show that this structure, using

different parameterizations, can yield improved correction and diffusion tensor analy-
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sis metrics. We additionally show how the parameterization can be used to decrease

computation by optimizing on a subset of diffusion directions and interpolating to

the full set of diffusion directions.

In Section 4.1, we introduce the additional notation required for the four-dimensional

problem and a four-dimensional field map parameterized in the diffusion direction.

In Section 4.2, we define five possible parameterizations of the four-dimensional field

map. In Section 4.3, we describe the setup for choosing a subset of diffusion directions

for which to optimize a field map and how to interpolate to the full field map. In

Section 4.4, we present results of experiments using the various parameterizations in

optimization as well as interpolation. In Section 4.5, we provide a summary of this

chapter.

4.1 Four-Dimensional Optimization Problem

In the four-dimensional diffusion setting, each image is four-dimensional with three

spatial dimensions and one diffusion dimension. Let S2 ⊂ R3 be the sphere containing

the set of diffusion directions {di : i = 0, . . . , nd} for a diffusion-weighted observation.

See Figure 4.1 for a visualization of these directions. Then the observed, distorted,

diffusion weighted image is I : S2 × Ω→ R.

The goal of optimization is to find the field map b : S2 × Ω → R minimizing

(2.5) for a pair of four-dimensional input images. Because the distortions happen

only in the phase encoding direction, the additional diffusion dimension increases the

size of the problem but does not change the physics of the distortion correction. In

particular, the computations that are parallelized in the three-dimensional correction

remain completely parallelizable in the distortion dimension.

However, this optimization does not promote smoothness in the diffusion dimen-

sion, and it does not incorporate any of the additional information provided by the
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Figure 4.1: The 95 directions of diffusion sensitization gradients for an example vol-
ume from HCP.

diffusion directions. We define a parameterization of the field map in the diffusion

dimension. This parameterization promotes smoothness among the field maps for

similar diffusion directions. Additionally, computation can be lessened by optimizing

over a subset of diffusion directions and parameterizing the field map such that for

unseen diffusion directions we can quickly interpolate a field map and apply the cor-

rection model. Let Q ∈ Rnd×nc be the parameterization matrix with nd the number

of diffusion directions and nc a chosen number of coefficients, and let the coefficients

be in c ∈ Rnc·m where m is the three-dimensional image size. Then the field map

b ∈ Rnd·m is

b = (Q⊗ Im) · c,

where Im is the identity matrix in Rm and ⊗ is a Kronecker product. For the complete

set of diffusion directions {di}nd
i=1, the objective function is

min
c

JQ(c) = D(c) + αS(c) + βP (c), (4.1)
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where we minimize over the coefficients in c and after optimization compute the field

map b = (Q⊗ Im) · c.

In implementation, much of the optimization problem is the same as the three-

dimensional implementation of Chapter 3, with parallelized computations account-

ing for the additional dimension. The parameterization Q is implemented as a

LinearOperator storing the matrix and allowing for multiplication and transpose

multiplication operations. We use Gauss-Newton PCG to optimize (4.1), with fixed

hyperparameters α = 10.0 and β = 1e− 4.

4.2 Field Map Parameterizations

We consider a collection of field map parameterizations that relate the associated

diffusion directions. These parameterizations seek to promote smoothness in the dif-

fusion dimension and leverage the information provided by similar diffusion directions

by using the structure of the sphere in which the diffusion directions lie.

4.2.1 Nearest Neighbor Graph Laplacian

A graph parameterization is computed from a nearest-neighbors graph that connects

diffusion directions that are close on the sphere. Let G(V,E) be the nearest neighbors

graph with the set of diffusion directions {di}nd
i=1 as the vertices of the set V , and edge

set E built by including an edge between a direction and the closest k directions using

Euclidean distance, weighted by the inverse distance value. The nearest neighbor

graphs are visualized for k = 2, 5, 10, and 20 neighbors in Figure 4.2. We compute

the graph Laplacian L = D − A from the degree matrix D and adjacency matrix

A of G(V,E). Let λ1, λ2, . . . λnd
be the eigenvalues of L, ordered from smallest to

largest. Let E be the set of associated eigenfunctions ϕ1, ϕ2, . . . ϕnc . We then define



56

k = 2

k = 5

k = 10

k = 20

Figure 4.2: Nearest neighbor graph for k = 2, 5, 10, and 20 neighbors.

the parameterization

Qgraph = Enc = {ϕi}nc
i=1,

with nc ≤ nd. By taking the nc eigenfunctions associated with the smallest nc eigen-

values of the graph Laplacian, we aim to capture the largest patterns of connectedness

in the graph Laplacian [18].

The tunable parameters of the Graph Laplacian parameterization are the number

of neighbors k in the graph and the number of eigenfunctions nc taken as the pa-

rameterization. The matrix Qgraph is visualized in Figure 4.3 for different parameter

options.

4.2.2 Spherical Linear Interpolation

Spherical Linear Interpolation (SLERP) arose in computer graphics as a method to

smoothly interpolate between two points on a sphere [55]. Let v0 and v1 be vectors
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k = 5

nc = 25 nc = 65

k = 20

Figure 4.3: Parameterization matrix Qgraph for different parameter options. The top
row uses k = 5 neighbors in building the graph, and the bottom row uses k = 20
neighbors in building the graph. The first column uses nc = 25 eigenfunctions, and
the second column uses nc = 65 eigenfunctions.
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Figure 4.4: Example interpolation paths using spherical linear interpolation (SLERP).

in R3. Define θ = arccos (v0 · v1). The spherical linear interpolation between v0 and

v1, parameterized by t, is

vt =
sin ((1− t)θ)

sin (θ)
v0 +

sin (tθ)

sin (θ)
v1.

Examples of spherical linear interpolations in R3 are shown in Figure 4.4. Let B be a

set of nc basis vectors in R3. For each diffusion direction di, we compute the SLERP

weights for the two closest basis vectors v0, v1 ∈ B. We compute t as the projection

of di onto v0, normalized by the relative orientations of v0 and v1 as

t =
di · v0
v0 · v1

.

We define the entries in row i of the parameterization matrix Qslerp as

Qslerp[i, j] =



sin ((1−t)θ)
sin (θ)

v0, B(j) = v0

sin (tθ)
sin (θ)

v1, B(j) = v1

0, otherwise.

This defines a parameterization Qslerp ∈ Rnd×nc . The tunable parameter of this pa-

rameterization is the number of basis vectors nc. Example parameterization matrices

Qslerp with different number of basis vectors are visualized in Figure 4.5.
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nc = 5 nc = 25 nc = 45 nc = 65

Figure 4.5: Parameterization matrix Qslerp for different number of basis vectors nc =
5, 25, 45, 65, 95.

4.2.3 Spherical Harmonics

Spherical Harmonics are a set of functions defined on the surface of a sphere that

form an orthonormal basis for all functions defined on the surface of a sphere [9].

These functions are computed by solving Laplace’s equation on the sphere [38, Ch 1,

Appendix B, page 171]. The complex spherical harmonic function with order m and

degree l at azimuthal coordinate θ and polar coordinate ϕ is

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimθPm

l (cos(ϕ)),

where Pm
l is the associated Legendre function of order m and degree l. The real

spherical harmonic functions Yl,m as defined in [9] are

Yl,m =



(−1)m√
2
R(Y m

l ), m > 0

Y m
l , m = 0

(−1)m√
2
I(Y m

l ), m < 0,
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l = 0,m = 0 l = 1,m = −1 l = 1,m = 0 l = 1,m = 1

l = 2,m = −2 l = 2,m = −1 l = 2,m = 0 l = 2,m = 1 l = 2,m = 2

Figure 4.6: Spherical harmonic functions for l = 0, 1, 2.

where R and I take the real and imaginary parts of the input, respectively. The real

spherical harmonic functions of degree l = 0, 1, 2 are visualized in Figure 4.6. By

computing the spherical harmonic coefficients for each diffusion direction for degree

up to nc and order varying for each degree value l between −l and l, we construct

Qsph ∈ Rnd×n2
c . In particular, for direction di with spherical coordinate (r, θ, ϕ), row

i of Qsph is

Qsph[i, :] = [Y0,0(θ, ϕ), Y1,−1(θ, ϕ), Y1,0(θ, ϕ), Y1,1(θ, ϕ), . . . , Ync,nc(θ, ϕ)].

The tunable parameter of this parameterization is nc, the maximum degree of spher-

ical harmonic function used. Figure 4.7 shows the parameterization matrix Qsph for

maximum degrees of nc = 1, 2, 3, and 4.

4.2.4 Inverse Distance Weighting

Inverse distance weighting was first defined as an interpolation method with applica-

tion to computing mapping in Geographical Information Systems [54]. For a distance
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nc = 1 nc = 2 nc = 3 nc = 4

Figure 4.7: Parameterization matrix Qsph for different values of maximum degree
nc = 1, 2, 3, 4.

function δ, define the weight between two vectors in R3 as

w(x, y) =
1

δ(x, y)2
.

This weighting favors closer vectors, with the weight decreasing as distance increases.

For a set of nc basis vectors B = {v1, v2, · · · , vnc} ⊂ R3, we define the entries in a row

i of the parameterization matrix Qidw as

Qidw[i, j] =
w(di, vj)∑nc

k=1 w(di, vk)
.

This defines a parameterization Qidw ∈ Rnd×nc . The tunable parameters in this

parameterization are the number of basis vectors nc and the choice of distance function

δ. Figure 4.8 shows the parameterization matrix Qidw for different numbers of basis

vectors and choice of distance function.
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Figure 4.8: Parameterization matrix Qidw for different number of basis vectors nc =
5, 25, 45, 65 and using Euclidean vs. Geodesic distance.
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4.2.5 Radial Basis Functions

A radial basis function parameterization is defined by applying a kernel function to

relate the diffusion directions and the vectors of a basis. These functions have been

studied as powerful interpolations on spherical data [13, 27].

The Gaussian kernel function for a distance function δ has the form

ϕgaussian(δ, x, y) = e
−δ(x,y)2

2σ2 ,

where the width of the kernel is controlled by the parameter σ. A thin plate spline

kernel for a distance function δ is

ϕtps(δ, x, y) = δ(x, y)2 ln δ(x, y).

For a set of nc basis vectors B = {v1, v2, · · · , vnc} ⊂ R3, we define the entries in a row

i of the parameterization matrix Qrbf as

Qrbf [i, j] = ϕ(δ, di, vj).

The parameters of this parameterization are the number of basis vectors nc, which

kernel function ϕ is used, and the distance function δ. Figure 4.9 shows the parame-

terization matrix Qrbf for different choices of distance and kernel function.

4.3 Cluster, Reduce, Optimize, and Interpolate

Beyond introducing smoothness in the diffusion dimension, the parameterizations

described in the previous section can be used to define an interpolation that allows

for optimizing on a subset of diffusion direction volumes and using the interpolation

to apply the correction to the full 4D volume. This is done by clustering to choose a
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Figure 4.9: Parameterization matrix Qrbf for nc = 65 basis vectors, using Euclidean
vs. Geodesic distance, and using Gaussian vs. Thin Plate Spline kernels.
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subset of representative diffusion directions, reducing the optimization inputs to those

chosen directions, optimizing on the subset, and interpolating back to the full volume.

This significantly reduces the cost of optimization as the memory and compute time

requirements of the full four-dimensional optimization could be prohibitive, especially

if the image size is large.

First, we cluster the diffusion directions into groups of related diffusion directions

using k-means clustering [41]. The algorithm begins by randomly assigning k diffusion

directions as the centroids of each cluster. At each step, the diffusion directions are

assigned to the cluster associated with the closest centroid, and the centroids are

updated to be the average of all of the directions in the cluster. This repeats until

the centroids stop significantly changing. An example clustering of directions is shown

in Figure 4.10a.

To reduce the size of the volume for optimization, we select a subset of diffusion

directions by taking the diffusion direction closest to the centroid for each cluster

found in the previous step. This is illustrated in Figure 4.10b. This gives a subset of

diffusion directions of size ninterp ≤ k << nd.

We then solve (4.1) for the smaller four-dimensional volume corresponding to

the subset of diffusion directions from the previous step using a parameterization

Q ∈ Rninterp×nc defined on the subset of diffusion directions. After optimization,

the optimized coefficients c are used along with a parameterization Qfull ∈ Rnd×nc

defined on the full subset of diffusion directions to compute a four-dimensional field

map corresponding to the full four-dimensional volume.

4.4 Results

In this section, we report the quality of optimization in 4D using the different pa-

rameterizations described in Section 4.2. The data used in these experiments are
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(a) Clustering of diffusion directions.
The arrows show the centroids of
each cluster.

(b) The same clusters as in (a) with
the arrows showing the chosen direc-
tion for each cluster.

Figure 4.10: The clusters and centroids (a) and clusters and chosen directions (b)
using k = 10 and 50 diffusion directions.

7 four-dimensional diffusion-weighted images from the Human Connectome Project

[62]. These images are 3T strength, with 95 diffusion directions and left-right phase

encoding. In all cases, the hyperparameters of (4.1) are α = 10 and β = 1e− 4.

In 4.4.1, we describe the metrics used to evaluate the four-dimensional parameter-

ized correction. In 4.4.2, we report the results of optimization with different choices

of parameterization. In 4.4.3, we report the results of optimization on a subset of

diffusion directions and interpolating the field map for the full set of diffusion direc-

tions.

4.4.1 Metrics

We evaluate correction in the four-dimensional setting using both metrics of the cor-

rection quality and metrics from diffusion tensor imaging. We report the optimization

time in seconds, measured using Python’s timemodule. We compute the loss function

value, distance value, and smoothness regularization value using the four-dimensional

field map and four-dimensional optimization problem (4.1). For diffusion tensor met-



67

rics, we report the diffusion tensor fit loss (2.14) and the median standard deviation

of the fractional anisotropy maps (2.15) computed for each input phase encoding

direction [65].

4.4.2 Comparison of Parameterizations

In this section, we experiment with the different parameterizations and the tunable

parameters for each parameterization. In each case, we report the results of the

4D correction using the parameterization in the optimization, and we compare these

results with correction using the γ = 0 field map to correct for all diffusion directions.

The input, baseline γ = 0, and representative examples for each parameterization are

shown in Figures 4.11 (no diffusion weighting) and 4.12 (with diffusion weighting) for

an example subject.

For the graph parameterization, we vary the number of neighbors k used in the

graph between 2, 5, 10, and 20, and we vary the number of eigenfunctions nc be-

tween 5, 25, 45, 65, and 95. These results are reported in Table 4.1. Compared to

applying the γ = 0 field map, the 4D graph parameterizations always improve the

smoothness. The best results are with nc = 95 eigenfunctions, achieving an average

relative improvement, relative to applying the γ = 0 field map, of 76.43% in dis-

tance, 78.56% in smoothness, and 5.15% in median standard deviation of fractional

anisotropy. However, the graph parameterization is unable to improve the diffusion

tensor loss.

For the SLERP parameterization, we vary the number of basis vectors nc between

5, 25, 45, 65, and 95. These results are reported in Table 4.2. Relative to applying

the γ = 0 field map, the 4D SLERP parameterizations have an average relative

improvement of 41.37% in distance, 83.30% in smoothness, 2.32% in diffusion tensor

loss, and 2.13% in median standard deviation of fractional anisotropy.

For the spherical harmonics parameterization, we vary the value of nc, the max-
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Figure 4.11: Visualization of images and field maps for one subject (Subject ID
100206) with no diffusion weighting. The first column in the top half shows the input
data, the second column shows the γ = 0 baseline correction, and the remaining
columns show the results using a graph parameterization with k = 10 and nc = 95,
a spherical linear interpolation parameterization using nc = 25, a spherical harmonic
parameterization using nc = 1, an inverse distance weighting parameterization using
nc = 5 and geodesic distance, and a radial basis function parameterization using
nc = 5, geodesic distance, and thin plate spline kernel. For each optimization, the
corrected images with opposite phase encoding direction and field map are shown.
The corrected images are of similar quality, and spherical harmonic, inverse distance
weighting, and radial basis function parameterizations have more smooth field maps.
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Figure 4.12: Visualization of images and field maps for one subject (Subject ID
100206) with diffusion weighting. The first column in the top half shows the input
data, the second column shows the γ = 0 baseline correction, and the remaining
columns show the results using a graph parameterization with k = 10 and nc = 95,
a spherical linear interpolation parameterization using nc = 25, a spherical harmonic
parameterization using nc = 1, an inverse distance weighting parameterization using
nc = 5 and geodesic distance, and a radial basis function parameterization using
nc = 5, geodesic distance, and thin plate spline kernel. For each optimization, the
corrected images with opposite phase encoding direction and field map are shown.
The corrected images are of similar quality, and spherical harmonic, inverse distance
weighting, and radial basis function parameterizations have more smooth field maps.
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imum degree of the spherical harmonic functions, between 1, 2, 3, and 4. These

results are reported in Table 4.3. Compared to applying the γ = 0 field map, all of

the spherical harmonic parameterizations improve the distance, smoothness, diffusion

tensor loss, and median standard deviation of fractional anisotropy. The 4D spher-

ical harmonic parameterizations have an average relative improvement of 48.12% in

distance, 81.99% in smoothness, 2.55% in diffusion tensor loss, and 4.42% in median

standard deviation of fractional anisotropy.

For the inverse distance weighting parameterization, we vary the number of basis

vectors between nc = 5, 25, 45, 65, and 95, and the distance function between euclidean

and geodesic distance. These results are reported in Table 4.4. Compared to applying

the γ = 0 field map, the inverse distance weighting parameterizations improve the

distance and smoothness. With euclidean distance, the 4D inverse distance weighting

parameterizations have average relative improvement of 54.87% in distance, 74.49%

in smoothness, 3.37% in diffusion tensor loss, and 5.64% in median standard deviation

of fractional anisotropy. With geodesic distance, the 4D inverse distance weighting

parameterizations have average relative improvement of 49.76% in distance, 42.70%

in smoothness, 1.52% in diffusion tensor loss, and 3.81% in median standard deviation

of fractional anisotropy.

For the radial basis function parameterization, we vary the number of basis vec-

tors between nc = 5, 25, 45, 65, and 95, the distance function between euclidean and

geodesic distance, and the kernel function between Gaussian and thin plate spline.

These results are reported in Table 4.5. Using a Gaussian kernel and euclidean dis-

tance, the 4D radial basis function parameterizations have an average relative im-

provement of 52.29% in distance, 47.08% in smoothness, 1.91% in diffusion tensor

loss, and 4.50% in median standard deviation of fractional anisotropy. Using a Gaus-

sian kernel and geodesic distance, the 4D radial basis function parameterizations

have an average relative improvement of 48.22% in distance, 47.44% in smoothness,
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

k = 2, nc = 5 475.4539 1.1333e+09 1.0846e+09 3.0922e+05 5.2757e+07 0.0712

k = 2, nc = 25 535.8321 6.2507e+08 5.5859e+08 4.2165e+05 4.9718e+07 0.06352

k = 2, nc = 45 429.7580 4.3078e+08 3.5440e+08 4.8444e+05 4.0825e+07 0.0590

k = 2, nc = 65 528.4616 3.2658e+08 2.4202e+08 5.3635e+05 4.0782e+07 0.0576

k = 2, nc = 95 522.0227 2.2436e+08 1.3082e+08 5.9326e+05 4.0185e+07 0.0551

k = 5, nc = 5 431.8051 9.6550e+08 9.1174e+08 3.4093e+05 5.3547e+07 0.0691

k = 5, nc = 25 501.8586 6.3213e+08 5.6462e+08 4.2815e+05 5.0411e+07 0.0643

k = 5, nc = 45 440.1367 4.3740e+08 3.5891e+08 4.9779e+05 4.1042e+07 0.0597

k = 5, nc = 65 450.2267 3.2924e+08 2.4406e+08 5.4026e+05 4.1170e+07 0.0581

k = 5, nc = 95 449.4204 2.2703e+08 1.3115e+08 6.0811e+05 4.0587e+07 0.0555

k = 10, nc = 5 421.5404 1.1624e+09 1.1130e+09 3.1349e+05 4.4568e+07 0.0696

k = 10, nc = 25 430.8503 5.9663e+08 5.2628e+08 4.4613e+05 4.1363e+07 0.0616

k = 10, nc = 45 484.8360 4.3966e+08 3.6428e+08 4.7807e+05 4.0761e+07 0.0590

k = 10, nc = 65 501.5646 3.2532e+08 2.4321e+08 5.2073e+05 4.0558e+07 0.0572

k = 10, nc = 95 348.8677 2.2305e+08 1.3060e+08 5.8637e+05 4.0048e+07 0.0550

k = 20, nc = 5 434.4051 1.2636e+09 1.2260e+09 2.3875e+05 4.9499e+07 0.0742

k = 20, nc = 25 466.1244 6.8500e+08 6.1287e+08 4.5746e+05 4.2344e+07 0.0629

k = 20, nc = 45 471.2274 5.3714e+08 4.5741e+08 5.0566e+05 4.1648e+07 0.0613

k = 20, nc = 65 508.0774 3.4726e+08 2.6513e+08 5.2089e+05 4.1416e+07 0.0580

k = 20, nc = 95 318.2721 2.2384e+08 1.3101e+08 5.8879e+05 4.0237e+07 0.0552

Table 4.1: Results using the graph parameterization with different number of neigh-
bors and chosen eigenfunctions. We report the optimization time, loss value, distance
value, smoothness regularizer value, diffusion tensor imaging loss, and the median
standard deviation of fractional anisotropy. For all metrics, lower is better. Values
in bold are better than the value for that metric for applying the γ = 0 field map to
all diffusion directions. The best results use nc = 65 or 95 eigenfunctions, though no
graph parameterization improves diffusion tensor loss.

0.95% in diffusion tensor loss, and 3.13% in median standard deviation of fractional

anisotropy. Using a thin plate spline kernel and euclidean distance, the 4D radial

basis function parameterizations have an average relative improvement of 53.03% in

distance, 51.40% in smoothness, 2.39% in diffusion tensor loss, and 4.67% in me-

dian standard deviation of fractional anisotropy. Using a thin plate spline kernel and

geodesic distance, the 4D radial basis function parameterizations have an average rel-

ative improvement of 49.66% in distance, 44.29% in smoothness, 0.69% in diffusion

tensor loss, and 2.92% in median standard deviation of fractional anisotropy.
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 5 317.6409 5.9724e+08 5.3836e+08 3.7345e+05 3.9429e+07 0.0595

nc = 25 328.7794 4.3465e+08 3.6568e+08 4.3746e+05 3.8847e+07 0.0574

nc = 45 373.8476 3.5281e+08 2.7487e+08 4.9436e+05 3.8742e+07 0.0567

nc = 65 401.9963 3.1396e+08 2.3591e+08 4.9503e+05 3.8567e+07 0.0557

nc = 95 403.9413 2.9415e+08 2.1326e+08 5.1301e+05 3.8609e+07 0.0555

Table 4.2: Results using the spherical linear interpolation parameterization with dif-
ferent size basis. We report the optimization time, loss value, distance value, smooth-
ness regularizer value, diffusion tensor imaging loss, and the median standard devi-
ation of fractional anisotropy. For all metrics, lower is better. Values in bold are
better than the value for that metric for applying the γ = 0 field map to all diffusion
directions. Using the SLERP parameterization, all metrics improve except for median
standard deviation of fractional anisotropy for nc = 5.

Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 1 359.9761 4.0404e+08 3.2395e+08 5.0793e+05 3.8400e+07 0.0559

nc = 2 377.7681 3.7151e+08 2.9394e+08 4.9198e+05 3.8581e+07 0.0556

nc = 3 471.3437 3.5281e+08 2.7513e+08 4.9265e+05 3.8844e+07 0.0555

nc = 4 453.0226 3.3885e+08 2.5948e+08 5.0341e+05 3.9166e+07 0.0555

Table 4.3: Results using the spherical harmonics parameterization with different max-
imum degree. We report the optimization time, loss value, distance value, smoothness
regularizer value, diffusion tensor imaging loss, and the median standard deviation of
fractional anisotropy. For all metrics, lower is better. Values in bold are better than
the value for that metric for applying the γ = 0 field map to all diffusion directions.
In all cases, the distance, smoothness, diffusion tensor loss, and median standard de-
viation of fractional anisotropy improves using the parameterization.
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 5, euclidean 305.9190 4.3102e+08 3.4698e+08 5.3298e+05 3.8226e+07 0.0561

nc = 5, geodesic 402.6946 4.0513e+08 3.2285e+08 5.2183e+05 3.8188e+07 0.0557

nc = 25, euclidean 398.1210 3.6163e+08 2.7833e+08 5.2826e+05 3.8295e+07 0.0553

nc = 25, geodesic 35.8501 4.8012e+08 3.0351e+08 1.1201e+06 3.9070e+07 0.0562

nc = 45, euclidean 323.3606 3.2532e+08 2.3352e+08 5.8219e+05 3.8405e+07 0.0545

nc = 45, geodesic 21.5846 5.4160e+08 2.8555e+08 1.6239e+06 3.9624e+07 0.0566

nc = 65, euclidean 505.5000 3.2869e+08 2.0944e+08 7.5635e+05 3.8376e+07 0.0543

nc = 65, geodesic 22.9066 5.8554e+08 2.5496e+08 2.0966e+06 3.9472e+07 0.0559

nc = 95, euclidean 163.8176 3.6378e+08 1.8494e+08 1.1343e+06 3.8798e+07 0.0544

nc = 95, geodesic 23.6751 6.3437e+08 2.2832e+08 2.5753e+06 3.9424e+07 0.0555

Table 4.4: Results using the inverse distance weighting parameterization with different
size basis and distance function. We report the optimization time, loss value, distance
value, smoothness regularizer value, diffusion tensor imaging loss, and the median
standard deviation of fractional anisotropy. For all metrics, lower is better. Values
in bold are better than the value for that metric for applying the γ = 0 field map
from the identity parameterization for all diffusion directions. All metrics improve,
regardless of basis size or distance function.

4.4.3 Clustering and Interpolation

In this section, we experiment with the interpolation setup described in Section 4.3.

In all cases, the maximum number of clusters and therefore chosen directions for

optimization is 30. The input data, γ = 0 baseline correction, and corrected images

for a representative example of each parameterization are shown in Figures 4.13 (non-

diffusion weighted) and 4.14 (diffusion weighted and not in the optimization subset

of directions).

For the graph parameterization, we vary the number of neighbors between k = 2, 5,

and 10, and the number of selected eigenfunctions nc between 5, 10, 15, and 25. Table

4.6 shows the results of using the field map optimized on a subset of directions and the

graph parameterization to interpolate a field map for the entire 4D volume including

all diffusion directions. In the case of the graph parameterization interpolation, we

use a weighted combination of the corresponding field map for the nearest neighbors

of each diffusion direction as defined in the graph used in the parameterization. While
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 5, gaussian, euclidean 360.0573 4.0616e+08 3.2708e+08 5.0157e+05 3.8353e+07 0.0558

nc = 5, gaussian, geodesic 465.5387 4.0372e+08 3.2036e+08 5.2870e+05 3.8261e+07 0.0557

nc = 5, tps, euclidean 309.9186 4.2201e+08 3.4602e+08 4.8199e+05 3.8839e+07 0.0568

nc = 5, tps, geodesic 440.1784 4.0724e+08 3.2731e+08 5.0692e+05 3.8419e+07 0.0562

nc = 25, gaussian, euclidean 394.5604 4.1378e+08 2.7635e+08 8.7162e+05 3.8399e+07 0.0552

nc = 25, gaussian, geodesic 21.2722 4.9152e+08 3.1203e+08 1.1384e+06 3.9900e+07 0.0574

nc = 25, tps, euclidean 522.2779 3.9396e+08 2.7227e+08 7.7180e+05 3.8389e+07 0.0553

nc = 25, tps, geodesic 22.0514 4.8429e+08 3.0827e+08 1.1164e+06 3.9876e+07 0.0574

nc = 45, gaussian, euclidean 25.3961 5.0522e+08 2.7047e+08 1.4889e+06 3.9642e+07 0.0563

nc = 45, gaussian, geodesic 22.8905 5.3742e+08 2.8443e+08 1.6046e+06 3.9636e+07 0.0565

nc = 45, tps, euclidean 333.1521 4.4473e+08 2.4795e+08 1.2480e+06 3.8515e+07 0.0549

nc = 45, tps, geodesic 21.7468 5.3340e+08 2.8292e+08 1.5886e+06 3.9997e+07 0.0571

nc = 65, gaussian, euclidean 28.5884 5.4845e+08 2.4213e+08 1.9428e+06 3.9281e+07 0.0555

nc = 65, gaussian, geodesic 24.3005 5.7486e+08 2.5908e+08 2.0028e+06 3.9628e+07 0.0562

nc = 65, tps, euclidean 200.2656 5.1024e+08 2.3144e+08 1.7682e+06 3.8901e+07 0.0551

nc = 65, tps, geodesic 25.7477 5.7610e+08 2.5062e+08 2.0643e+06 3.9699e+07 0.0562

nc = 95, gaussian, euclidean 30.4266 6.0727e+08 2.0897e+08 2.5262e+06 3.9341e+07 0.0551

nc = 95, gaussian, geodesic 23.6331 5.7836e+08 2.6196e+08 2.0067e+06 3.9486e+07 0.0561

nc = 95, tps, euclidean 30.3989 5.9504e+08 2.0666e+08 2.4632e+06 3.9413e+07 0.0553

nc = 95, tps, geodesic 28.2751 6.1400e+08 2.2891e+08 2.4424e+06 3.9452e+07 0.0556

Table 4.5: Results using the radial basis function parameterization with different size
basis and combinations of kernel and distance functions. We report the optimization
time, loss value, distance value, smoothness regularizer value, diffusion tensor imaging
loss, and the median standard deviation of fractional anisotropy. For all metrics, lower
is better. Values in bold are better than the value for that metric for applying the
γ = 0 field map to all diffusion directions. In all cases, the distance, smoothness, and
standard deviation of fractional anisotropy improves using the parameterization. In
almost all cases, the median value of the improves.
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Figure 4.13: Visualization of images and field maps for one subject (Subject ID
100206) with no diffusion weighting. The first column in the top half shows the input
data, the second column shows the γ = 0 baseline correction, and the remaining
columns show the results using a graph parameterization with k = 10 and nc = 25,
a spherical linear interpolation parameterization using nc = 25, a spherical harmonic
parameterization using nc = 1, an inverse distance weighting parameterization using
nc = 5 and geodesic distance, and a radial basis function parameterization using
nc = 5, geodesic distance, and thin plate spline kernel. For each optimization, the
corrected images with opposite phase encoding direction and field map are shown.
With the exception of the graph parameterization, the corrected images are of similar
quality, and spherical harmonic, inverse distance weighting, and radial basis function
parameterizations have more smooth field maps.
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Figure 4.14: Visualization of images and field maps for one subject (Subject ID
100206) with diffusion weighting. This diffusion directions is not in the subset for op-
timization. The first column in the top half shows the input data, the second column
shows the γ = 0 baseline correction, and the remaining columns show the results using
a graph parameterization with k = 10 and nc = 25, a spherical linear interpolation
parameterization using nc = 25, a spherical harmonic parameterization using nc = 1,
an inverse distance weighting parameterization using nc = 5 and geodesic distance,
and a radial basis function parameterization using nc = 5, geodesic distance, and thin
plate spline kernel. For each optimization, the corrected images with opposite phase
encoding direction and field map are shown. The graph and SLERP parameteriza-
tions do not interpolate well. The spherical harmonic, inverse distance weighting, and
radial basis function parameterizations interpolate well and have more smooth field
maps.
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the smoothness improves by over 99% relative to applying the γ = 0 field map, none

of the 4D graph parameterizations improve distance, diffusion tensor loss, or median

standard deviation of fractional anisotropy. Optimization with a graph parameteri-

zation empirically is better with a larger value for nc, but in this setting nc is limited

by the smaller size of the subset of diffusion directions used in optimization.

Using the spherical linear interpolation, we vary the number of basis vectors be-

tween nc = 5, 25, 45, 65, and 95. Table 4.7 shows the results of using the optimized

coefficients from a subset of diffusion directions and full parameterization to inter-

polate a field map for the entire 4D volume. We build a full parameterization using

the same basis vectors and the full set of diffusion directions, and interpolate a field

map using the optimized coefficients. The only interpolated SLERP parameteriza-

tion improving diffusion tensor loss is the parameterization using nc = 5. None

of the SLERP parameterizations improve distance or median standard deviation of

fractional anisotropy.

For the spherical harmonic parameterization, we vary the maximum degree as

nc = 1, 2, 3, or 4. Table 4.8 shows the results of using the optimized coefficients for a

subset of diffusion directions and full parameterization to interpolate a field map for

the entire 4D volume. We build a full parameterization by computing the spherical

harmonic coefficients for the full set of diffusion directions. While nc = 4 does not

improve any metrics, nc = 1, 2, and 3 successfully interpolate to the full dataset

and improve the relative distance compared to applying the γ = 0 field map by an

average of 22.84%, smoothness by 79.10%, diffusion tensor loss by 2.00%, and median

standard deviation of fractional anisotropy by 2.29%.

For the inverse distance weighting parameterization, we vary the number of basis

vectors between nc = 5, 25, 45, 65, and 95, and the distance function between eu-

clidean and geodesic. Table 4.9 reports the results of using the coefficients optimized

on a subset of directions and full parameterization to interpolate a field map. The full
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parameterization uses the same basis vectors as the parameterization for optimiza-

tion. The best results use nc = 5. Using euclidean distance, the relative improvement,

compared to applying the γ = 0 field map, is 19.34% in distance, 79.57% in smooth-

ness, and 3.45% in diffusion tensor loss, and 2.06% in median standard deviation of

fractional anisotropy. Using geodesic distance, the relative improvement is 24.77% in

distance, 80.72% in smoothness, 3.75% in diffusion tensor loss, and 2.92% in median

standard deviation of fractional anisotropy.

For the radial basis function parameterization, we vary the number of basis vec-

tors between nc = 5, 25, 45, 65, and 95, the distance function between euclidean and

geodesic, and the kernel function between Gaussian and thin plate spline. Table

4.10 reports the results of using the coefficients optimized on a subset of directions

and full parameterization to interpolate a field map. The full parameterization uses

the same basis vectors as the parameterization for optimization. The best results

use nc = 5. Using a Gaussian kernel and euclidean distance, the relative improve-

ment is 23.82% in distance, 81.32% in smoothness, 3.38% in diffusion tensor loss, and

2.75% in median standard deviation of fractional anisotropy. Using a Gaussian ker-

nel and geodesic distance, the relative improvement is 25.48% in distance, 79.54% in

smoothness, 3.49% in diffusion tensor loss, and 2.92% in median standard deviation

of fractional anisotropy. Using a thin plate spline kernel and euclidean distance, there

is a relative improvement of 20.19% in distance, 82.11% in smoothness, 2.19% in dif-

fusion tensor loss, and 1.03% in median standard deviation of fractional anisotropy.

Using a thin plate spline kernel and geodesic distance, the relative improvement is

24.03% in distance, 81.23% in smoothness, 3.09% in diffusion tensor loss, and 2.23%

in median standard deviation of fractional anisotropy.
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

baseline 1.4981e+09 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

k = 2, nc = 5 126.0622 1.3440e+09 1.3405e+09 2.2459e+04 5.3437e+07 0.0767

k = 2, nc = 10 91.7613 1.3114e+09 1.3074e+09 2.5904e+04 5.2900e+07 0.0757

k = 2, nc = 15 118.6506 1.2864e+09 1.2820e+09 2.8232e+04 5.2453e+07 0.0751

k = 2, nc = 25 110.4325 1.2594e+09 1.2536e+09 3.6677e+04 5.1164e+07 0.0740

k = 5, nc = 5 124.0593 1.3757e+09 1.3708e+09 3.0642e+04 5.4219e+07 0.0778

k = 5, nc = 10 86.6808 1.3362e+09 1.3310e+09 3.2471e+04 5.3061e+07 0.0766

k = 5, nc = 15 105.0814 1.2960e+09 1.2914e+09 2.9124e+04 5.2514e+07 0.0755

k = 5, nc = 25 109.7916 1.2608e+09 1.2551e+09 3.6322e+04 5.0932e+07 0.0739

k = 10, nc = 5 105.6295 1.3768e+09 1.3722e+09 2.8919e+04 5.4223e+07 0.0782

k = 10, nc = 10 119.9717 1.3403e+09 1.3351e+09 3.2725e+04 5.3026e+07 0.0767

k = 10, nc = 15 124.3314 1.2925e+09 1.2867e+09 3.6338e+04 5.2351e+07 0.0751

k = 10, nc = 25 92.1436 1.2592e+09 1.2535e+09 3.6203e+04 5.1007e+07 0.0739

Table 4.6: Results using the field map from optimization with a graph parameteriza-
tion on a subset of diffusion directions interpolated and applied to the full 4D volume.
We report the optimization time on the subset, loss value, distance value, smoothness
regularizer value, diffusion tensor imaging loss, and the median standard deviation of
fractional anisotropy. For all metrics, lower is better. Values in bold are better than
the value for that metric for applying the γ = 0 field map to all diffusion directions.
While the smoothness improves, no other metric does.

Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 5 100.1722 7.3644e+08 6.7339e+08 3.9987e+05 3.9676e+07 0.0608

nc = 25 112.9367 1.8842e+09 1.1407e+09 4.7153e+06 4.0517e+07 0.0617

nc = 45 109.6724 1.0903e+09 8.8763e+08 1.2856e+06 4.3061e+07 0.0615

nc = 65 113.6391 8.1025e+08 7.0928e+08 6.4037e+05 4.6613e+07 0.0619

nc = 95 105.4426 7.9403e+08 7.0567e+08 5.6042e+05 4.9877e+07 0.0628

Table 4.7: Results using the field map from optimization with spherical linear inter-
polation parameterization on a subset of diffusion directions interpolated and applied
to the full 4D volume. We report the optimization time on the subset, loss value,
distance value, smoothness regularizer value, diffusion tensor imaging loss, and the
median standard deviation of fractional anisotropy. For all metrics, lower is better.
Values in bold are better than the value for that metric for applying the γ = 0
field map to all diffusion directions. While the smoothness improves for many of the
SLERP parameterizations and the diffusion tensor loss improves for nc = 5, none of
the parameterizations improve distance or median standard deviation of fractional
anisotropy.
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 1 89.8742 4.9172e+08 4.1388e+08 4.9365e+05 3.8478e+07 0.0567

nc = 2 95.8029 4.9561e+08 4.1113e+08 5.3583e+05 3.8873e+07 0.0566

nc = 3 114.1452 5.7229e+08 4.6072e+08 7.0761e+05 3.9542e+07 0.0573

nc = 4 144.7307 1.1217e+10 2.3440e+09 5.6273e+07 4.1528e+07 0.0629

Table 4.8: Results using the field map from optimization with spherical harmonic
parameterization on a subset of diffusion directions interpolated and applied to the
full 4D volume. We report the optimization time on the subset, loss value, distance
value, smoothness regularizer value, diffusion tensor imaging loss, and the median
standard deviation of fractional anisotropy. For all metrics, lower is better. Values
in bold are better than the value for that metric for applying the γ = 0 field map to
all diffusion directions. For nc = 1, 2, and 3 the 4D parameterizations improve all of
the metrics and are able to interpolate to the full dataset.

Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 5, euclidean 94.9214 5.3723e+08 4.4798e+08 5.6607e+05 3.8390e+07 0.0570

nc = 5, geodesic 122.4786 5.0207e+08 4.1786e+08 5.3411e+05 3.8270e+07 0.0565

nc = 25, euclidean 128.0795 2.7260e+13 1.8362e+11 1.7173e+11 4.7187e+07 0.0755

nc = 25, geodesic 7.5889 2.0604e+10 2.3574e+09 1.1573e+08 4.2098e+07 0.0637

nc = 45, euclidean 140.0086 7.2792e+11 1.4272e+10 4.5262e+09 4.1325e+07 0.0633

nc = 45, geodesic 8.4888 1.1729e+10 1.6887e+09 6.3678e+07 4.1446e+07 0.0627

nc = 65, euclidean 115.8576 8.3451e+10 3.9628e+09 5.0414e+08 3.9785e+07 0.0602

nc = 65, geodesic 8.1930 1.1264e+10 1.6484e+09 6.0986e+07 4.1545e+07 0.0629

nc = 95, euclidean 121.7975 2.1383e+09 9.0781e+08 7.8042e+06 3.8767e+07 0.0580

nc = 95, geodesic 7.3624 1.1276e+10 1.6813e+09 6.0856e+07 4.1709e+07 0.0632

Table 4.9: Results using the field map from optimization with inverse distance weight-
ing parameterization on a subset of diffusion directions interpolated and applied to the
full 4D volume. We report the optimization time on the subset, loss value, distance
value, smoothness regularizer value, diffusion tensor imaging loss, and the median
standard deviation of fractional anisotropy. For all metrics, lower is better. Values
in bold are better than the value for that metric for applying the γ = 0 field map to
all diffusion directions. For nc = 5, the metrics improve using the parameterization.
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Opt. Loss Value Distance Smoothness DTI Loss std FA
Time (s) Value Reg. Value

input 1.4981e+09 1.4981e+09 7.6348e+07 0.0797

γ = 0 (baseline) 9.9229e+08 5.5542e+08 2.7707e+06 3.9761e+07 0.0582

nc = 5, gaussian, euclidean 121.6855 5.0470e+08 4.2310e+08 5.1759e+05 3.8418e+07 0.0566

nc = 5, gaussian, geodesic 142.7804 5.0325e+08 4.1388e+08 5.6679e+05 3.8373e+07 0.0565

nc = 5, tps, euclidean 88.7181 5.2146e+08 4.4330e+08 4.9569e+05 3.8891e+07 0.0576

nc = 5, tps, geodesic 94.1101 5.0397e+08 4.2198e+08 5.1998e+05 3.8534e+07 0.0569

nc = 25, gaussian, euclidean 28.9617 2.1381e+10 2.4137e+09 1.2029e+08 4.1628e+07 0.0631

nc = 25, gaussian, geodesic 7.7958 1.2351e+10 1.8186e+09 6.6798e+07 4.1991e+07 0.0635

nc = 25, tps, euclidean 89.8935 3.7916e+11 1.7869e+10 2.2914e+09 4.4683e+07 0.0686

nc = 25, tps, geodesic 7.5928 1.1946e+11 9.1953e+09 6.9936e+08 4.3422e+07 0.0658

nc = 45, gaussian, euclidean 117.4294 1.0989e+10 1.6215e+09 5.9412e+07 4.0818e+07 0.0618

nc = 45, gaussian, geodesic 8.1800 1.7457e+10 2.3571e+09 9.5770e+07 4.2544e+07 0.0643

nc = 45, tps, euclidean 147.6760 1.8085e+10 1.7688e+09 1.0348e+08 4.0274e+07 0.0601

nc = 45, tps, geodesic 8.1497 1.5263e+10 2.0984e+09 8.3491e+07 4.2540e+07 0.0644

nc = 65, gaussian, euclidean 116.0101 9.2442e+09 1.4280e+09 4.9573e+07 4.0800e+07 0.0618

nc = 65, gaussian, geodesic 8.4753 1.6590e+10 2.2865e+09 9.0720e+07 4.2433e+07 0.0640

nc = 65, tps, euclidean 151.2570 3.0200e+09 6.9008e+08 1.4777e+07 3.9439e+07 0.0585

nc = 65, tps, geodesic 88.5076 1.4939e+10 2.0876e+09 8.1507e+07 4.2631e+07 0.0644

nc = 95, gaussian, euclidean 137.4680 8.3756e+09 1.3445e+09 4.4593e+07 4.0676e+07 0.0616

nc = 95, gaussian, geodesic 8.8320 1.5886e+10 2.2282e+09 8.6624e+07 4.2214e+07 0.0637

nc = 95, tps, euclidean 121.5010 1.8396e+09 5.6834e+08 8.0629e+06 3.9161e+07 0.0577

nc = 95, tps, geodesic 8.6731 1.4574e+10 2.0696e+09 7.9306e+07 4.2459e+07 0.0641

Table 4.10: Results using the field map from optimization with radial basis function
parameterization on a subset of diffusion directions interpolated and applied to the
full 4D volume. We report the optimization time on the subset, loss value, distance
value, smoothness regularizer value, diffusion tensor imaging loss, and the median
standard deviation of fractional anisotropy. For all metrics, lower is better. Values
in bold are better than the value for that metric for applying the γ = 0 field map to
all diffusion directions. For nc = 5, the metrics improve using the parameterization
and interpolation.
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4.5 Summary

In this chapter, we introduce a parameterization of a four-dimensional field map in the

diffusion tensor setting. Using this parameterization and a four-dimensional correc-

tion can improve correction quality and diffusion tensor imaging metrics, compared

to the current best practice of applying the field map for a non-diffusion weighted

γ = 0 image to all diffusion directions. We also show the potential for using a pa-

rameterization as an interpolation of the field map, allowing for faster optimization

on a subset of diffusion directions and interpolating the full size field map based on

the optimized coefficients.

Based on our experiments, the most promising parameterizations are inverse dis-

tance weighting and radial basis function parameterizations. Particularly, parame-

terizations using geodesic distance can increase the relative improvement of diffusion

tensor imaging metrics compared to the γ = 0 baseline. Optimization with these

parameterizations can also converge quickly, with optimization times of around 30

seconds.

Using the parameterization to optimize coefficients using a subset of diffusion

directions and interpolating the full field map shows promising results. In our exper-

iments, inverse distance weighting and radial basis function parameterizations also

perform the best. However, the improvements are most consistent with a basis size

of nc = 5, the smallest number used in our experiments.

Across all experiments and parameterizations, the smoothness value is the most of-

ten improved among all of the metrics. While the parameterization promotes smooth-

ness in the diffusion dimension, the smoothness value only measures the smoothness

in the three spatial dimensions of the field map. The optimized coefficients can, using

the parameterization, result in a more smooth field map overall.

Our experiments in this chapter indicate that a four-dimensional optimization

using a parameterization such as inverse distance weighting or radial basis function
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can improve the quality of both distortion correction and diffusion tensor analysis

compared to using a γ = 0 field map for correction across all diffusion dimensions.

This can overcome the downsides of γ = 0 field map correction in the presence

of motion and uniform contrast. The parameterization promotes smoothness in all

dimensions, and can be used to decrease computation by optimizing on a subset of

diffusion directions and interpolating to the full set of diffusion directions.

This framework to model a four-dimensional field map allows for further explo-

ration of distortion correction in the DTI setting. In the next chapter, we use the

four-dimensional parameterization to enable automatic tuning of hyperparameters of

the distortion correction problem. Other explorations, left as future work, include

analysis of parameterizations and their associated parameter choices, additional pa-

rameterization options, and analysis of which diffusion directions to choose at scan

time to most improve distortion correction.
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Chapter 5

Automatic Hyperparameter

Tuning

In this chapter, we evaluate the influence on distortion correction of the hyperparam-

eters in both three-dimensional (2.5) and four-dimensional (4.1) correction. Existing

tools offer default parameter values or suggested configurations of parameter val-

ues, but require manual tuning of these parameters to achieve the best results. In

experiments of the preceding chapters, the hyperparameter values were fixed for all

examples in each experiment. In this chapter, we vary the hyperparameter values and

propose a structure for the automatic tuning of hyperparameters in four-dimensional

DTI using a bilevel optimization.

In 5.1, we describe the L-curve analysis used to evaluate the influence of α, the

scalar weighting the smoothness regularization term in the optimization, on both

distance and smoothness. In 5.2, we propose a bilevel optimization for the automatic

tuning of hyperparameters in the four-dimensional setting. In 5.3, we present results

of the L-curve analysis and bilevel optimization. In 5.4, we summarize the chapter.
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5.1 L-curve Analysis

A classical approach to selecting an optimal hyperparameter value is through L-curve

analysis [32]. For regularized problems of the form

min
x
||Ax− b||2 + λR(x),

it is often the case that for the optimal x, larger values of λ increase the value of the

data fit term, and smaller values of λ decrease the value of data fit term. In L-curve

analysis, the optimization problem is solved for values of λ in the range [λmin, λmax]

and the corresponding values of the data fit term and regularization term are plotted

on logarithmic axes. In some applications, the resulting curve is L-shaped, with the

optimal trade-off between data fit and regularization at the bottom left corner of the

‘L’.

In both the three-dimensional optimization problem (2.5) and four-dimensional

optimization problem (4.1), the parameter α weighting the importance of the smooth-

ness regularization term is balancing the smoothness term and the distance term.

Using L-curve analysis can indicate the optimal choice for the smoothness parameter

α. Of note, the speed of optimization allows for solving the distortion correction

problem with varying α quickly; in our experiments using 100 different values for α

in 3D correction takes about 10 minutes.

Because the optimization problem is non-convex, the L-curve is not likely to have

a well-defined corner of the ‘L’ shape [32]. However, the point of the L-curve with the

largest curvature can be taken as the best α value for the optimization. To ensure

a smooth curve in this setting, we begin with the largest value of α and for each

decreasing value, we use the result of optimization from the previous value as the

initial guess for the optimization with the new value of α.
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5.2 Bilevel Optimization

For four-dimensional correction, the same L-curve analysis can be used to select a

good choice for the smoothness parameter α. However, the lack of a distinct corner

of the ‘L’ makes the results of this approach inconsistent. The additional information

of diffusion tensor metrics can be used to setup a bilevel optimization and improve

both correction and diffusion tensor metrics through the choice of α and other hyper-

parameters. Let f(b) be a diffusion tensor metric, either diffusion tensor loss (2.14)

or median standard deviation of fractional anisotropy (2.15), evaluated using the field

map b. Then we have the following bilevel optimization

min
α∈R,α>0

f(b) s.t. b = (Q⊗ Im) · c∗ (5.1a)

and c∗ ∈ argmin
c

JQ(c) = D(c) + αS(c) + βP (c). (5.1b)

The inner optimization (5.1b) and computation of b is as in Chapter 4. Because α is

not explicitly a part of the outer optimization (5.1a), computing the derivative with

respect to α is difficult. To avoid this, solving the outer problem is a good candidate

for derivative-free optimization such as Bayesian optimization [44]. Additionally, this

setup can allow for simultaneously optimizing over a set of multiple hyperparameters

such as the parameters of the Gauss Newton optimization.

In Bayesian optimization, the objective f is treated as a random function with

an associated prior distribution. As the objective is evaluated, the prior is updated

to form a posterior distribution, and the next value of the optimization parameter

is chosen by a sampling method informed by the posterior. The algorithm we use

is a Tree-structured Parzen Estimator (TPE) [7], in which the sampling chooses the

hyperparameter(s) maximizing the quotient of two Gaussian Mixture Models (GMM)

evaluated at the hyperparameter(s), where the numerator GMM is fit to the hyper-

parameter values from the best f values seen so far, and the denominator GMM is fit
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to the remaining hyperparameter values. The details of the Tree-structured Parzen

Estimator algorithm are in Section 2.6. In our experiments, we use the Python TPE

implementation in the Optuna library [2].

5.3 Results

5.3.1 L-curve Analysis in 3D

In this section, we evaluate the L-curve analysis on a set of three-dimensional data

from the Human Connectome Project [62] and demonstrate its limitations. These

images are 3T strength with left-right phase encoding. In all cases, we use β = 1e−4

as the scalar parameter weighting the intensity regularization term. The values for α

vary in the range [1, 1e3], and we use 100 values for α in constructing the L-curve.

Results of the L-curve analysis for 7 example subjects is shown in Table 5.1. The

average optimization time, solving the optimization problem (2.5) 100 times with

different values of α, is 9.74 minutes. The largest value of α used for each volume

results in lower smoothness, but higher distance. The smallest value of α used for

each volume results in higher smoothness and lower distance. The best value of α,

chosen automatically as the point of highest curvature on the L-curve, attempts to

balance the distance and smoothness. Plots of distance increasing as α increases,

smoothness penalty decreasing as α increases, curvature changing as α increases, and

the resulting L-curve for an example subject are shown in Figure 5.1. For the same

subject, the resulting images and field maps are shown in Figure 5.2 for the input,

smallest α, largest α, and chosen best α. In this application, the L-curve appears

more linear than ‘L‘ shaped, making choosing a corner value difficult.
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Opt. Time (s) Input Best Min Max

107422 682.5
α 28.48 1.0 1000.0

distance 1.3858e+08 1.1806e+07 8.2603e+06 3.6597e+07
smoothness 1.5182e+05 4.2197e+05 2.7264e+04

123117 578.21
α 53.37 1.0 1000.0

distance 7.1424e+07 5.1776e+06 1.7871e+06 1.9908e+07
smoothness 7.1671e+04 3.3723e+05 1.3512e+04

172534 588.93
α 7.56 1.0 1000.0

distance 1.7121e+08 9.8199e+06 8.3788e+06 4.3057e+07
smoothness 2.8880e+05 4.5867e+05 3.7820e+04

176744 707.44
α 13.22 1.0 1000.0

distance 9.6376e+07 6.7261e+06 5.0160e+06 2.8979e+07
smoothness 1.8021e+05 3.9075e+05 1.9920e+04

192843 592.52
α 403.7 1.0 1000.0

distance 8.4872e+07 1.4071e+07 1.9852e+06 2.1555e+07
smoothness 2.8105e+04 3.0693e+05 1.6586e+04

211619 477.63
α 2.01 1.0 1000.0

distance 1.1660e+08 2.0217e+06 1.8103e+06 2.4817e+07
smoothness 3.4624e+05 4.3202e+05 2.1250e+04

333330 462.3
α 2.66 1.0 1000.0

distance 8.7475e+07 2.0790e+06 1.8549e+06 2.1780e+07
smoothness 3.1542e+05 3.9170e+05 1.9189e+04

Table 5.1: Results of using L-curve analysis to choose the best α for three-dimensional
optimization. For 7 example subjects, we report the optimization time, and the α
value, distance term value, and smoothness term value for the input data and results
using the best, minimum, and maximum α values.
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Smoothness
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Figure 5.1: Results relating distance and smoothness for an example subject (Subject
ID 123117). Top left shows how the distance value increases as α increases. Top right
shows how the smoothness penalty decreases as α increases. Bottom left shows the
curvature at each α. Bottom right shows the resulting L-curve. The best α, chosen
as the point of highest curvature, is indicated with the red triangle in each plot.
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Figure 5.2: Resulting images and field maps using L-curve analysis for an example
subject (Subject ID 123117). The top two rows show the pair of images with opposite
phase encoding direction, the third row shows the (color inverted) absolute difference
between the images, and the bottom row shows the field map. The first column is the
pair of input images, the second column is the minimum value of α, the third column
is the best value of α, and the last column is the maximum value of α.
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5.3.2 Bilevel Optimization in 4D

In this section, we demonstrate the bilevel optimization described in 5.2. The data

used in these experiments are 6 four-dimensional diffusion-weighted images from the

Human Connectome Project [62]. These images are 3T strength, with 95 diffusion

directions and left-right phase encoding. In all cases, we use as Q a radial basis

function parameterization with nc = 65 basis vectors, a thin plate spline kernel,

and geodesic distance. In the optimization, the number of outer iterations is 20. The

smoothness parameter α varies within the range [1e−1, 1e3], the intensity modulation

constraint parameter β varies within the range [1e − 6, 1e1], the maximum number

of Gauss Newton iterations varies within the range [3, 100], the stopping criteria

tolerance for Gauss Newton varies within the range [1e − 6, 1e − 2], the maximum

number of PCG iterations varies in the range [1, 50], and the stopping tolerance for

PCG varies in the range [1e− 2, 1].

Figure 5.3 shows resulting L-curves from bilevel optimization only tuning the value

of α. The best value of α balances the lowest distance and smoothness values.

In Table 5.2, we report the results of bilevel optimization over all hyperparame-

ters using median standard deviation of fractional anisotropy as the outer objective.

Over the 6 four-dimensional volumes, the average optimization time for the bilevel

optimization is 9.33 minutes. Compared to the baseline using default hyperparameter

values as in Chapter 4, the bilevel optimization results in lower distance, diffusion

tensor loss, and median standard deviation of fractional anisotropy.

In Table 5.3, we report the results of bilevel optimization using diffusion tensor

loss as the outer objective. Over the 6 four-dimensional volumes, the average opti-

mization time for the bilevel optimization is 8.51 minutes. These results are similar to

those using median standard deviation of fractional anisotropy as the metric. Com-

pared to the baseline using default hyperparameter values as in Chapter 4, the bilevel

optimization results in lower distance, diffusion tensor loss, and median standard
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Figure 5.3: The L-curves resulting from bilevel optimization tuning α for two example
subjects, Subject ID 100206 (first column) and Subject ID 825048 (second column).
The best α chosen in bilevel optimization is indicated by the red triangle. The top
row uses median standard deviation of fractional anisotropy as the objective, and the
bottom row uses diffusion tensor loss as the objective.
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Opt. Time (s) Input Baseline Best

100206 474.6030

α 10.0000 0.6739
β 1.0000e-04 2.0348e-03

GN iterations 500 22
GN tolerance 1.0000e-05 1.1043e-06
PCG iterations 20 10
GN tolerance 1.0000e-01 1.0653e-02

distance 1.7395e+09 2.7386e+08 2.4353e+08
smoothness 2.1410e+06 3.0325e+06
DTI loss 8.9731e+07 4.1730e+07 3.8634e+07
std FA 7.8084e-02 4.8563e-02 4.4194e-02

120414 481.9603

α 10.0000 0.2360
β 1.0000e-04 6.7991e-01

GN iterations 500 30
GN tolerance 1.0000e-05 2.9998e-05
PCG iterations 20 9
GN tolerance 1.0000e-01 1.8818e-02

distance 1.6304e+09 3.3369e+08 3.0311e+08
smoothness 2.3272e+06 4.0240e+06
DTI loss 3.6817e+07 3.6262e+07 3.3641e+07
std FA 7.5952e-02 6.5179e-02 6.0434e-02

456346 613.2917

α 10.0000 0.1193
β 1.0000e-04 1.3793e+00

GN iterations 500 70
GN tolerance 1.0000e-05 1.6034e-04
PCG iterations 20 41
GN tolerance 1.0000e-01 2.2377e-02

distance 1.4136e+09 2.3173e+08 1.9558e+08
smoothness 2.1536e+06 4.6290e+06
DTI loss 9.0470e+07 4.0569e+07 3.7559e+07
std FA 8.5311e-02 5.7807e-02 5.2334e-02

531940 638.6675

α 10.0000 0.1018
β 1.0000e-04 1.4414e-02

GN iterations 500 4
GN tolerance 1.0000e-05 2.6473e-03
PCG iterations 20 50
GN tolerance 1.0000e-01 2.7153e-02

distance 1.2104e+09 2.3074e+08 1.9634e+08
smoothness 2.1080e+06 4.7404e+06
DTI loss 5.7857e+07 3.8570e+07 3.6657e+07
std FA 7.3497e-02 5.6388e-02 5.2634e-02

825048 516.7515

α 10.0000 0.1063
β 1.0000e-04 6.8372e-04

GN iterations 500 65
GN tolerance 1.0000e-05 1.8828e-04
PCG iterations 20 25
GN tolerance 1.0000e-01 1.0556e-02

distance 1.3860e+09 2.4091e+08 2.1006e+08
smoothness 1.9000e+06 3.6520e+06
DTI loss 8.0125e+07 4.0713e+07 3.6826e+07
std FA 8.2772e-02 5.9019e-02 5.1862e-02

972566 632.7956

α 10.0000 0.1026
β 1.0000e-04 8.8572e+00

GN iterations 500 100
GN tolerance 1.0000e-05 2.5574e-04
PCG iterations 20 38
GN tolerance 1.0000e-01 2.0786e-02

distance 1.2774e+09 2.2226e+08 1.9544e+08
smoothness 1.7716e+06 3.2740e+06
DTI loss 7.9139e+07 3.8971e+07 3.6428e+07
std FA 7.9778e-02 5.6820e-02 5.1582e-02

Table 5.2: Results of using bilevel optimization to choose the best hyperparameters
minimizing median standard deviation of fractional anisotropy. For 6 example sub-
jects, we report the optimization time, and the hyperparameters, distance term value,
smoothness term value, diffusion tensor loss value, and median standard deviation of
fractional anisotropy for the input data, baseline using default values, and the best
hyperparameters from bilevel optimization.
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deviation of fractional anisotropy.

5.4 Summary

In this chapter, we enable automatic tuning of the hyperparameters in four-dimensional

DTI distortion correction. Because the optimization problem is fast to solve, distor-

tion correction while automatically tuning the values of the hyperparameters can be

done in less than 10 minutes. The additional metrics provided by diffusion tensor

analysis allow for a bilevel optimization using the diffusion metric as the outer ob-

jective and the correction as the inner objective. In our experiments, the automatic

hyperparameter tuning yields superior results in terms of distance, diffusion tensor

loss, and median standard deviation of fractional anisotropy when compared to the

baseline using fixed default values.

This bilevel optimization provides a black box correction of DTI distortions, mean-

ing the user does not need to manually tune any hyperparameters to achieve quality

results. Additionally, we are directly optimizing the metrics that are ultimately of

importance to the user, the metrics of DTI.

The bilevel optimization is a framework that will allow further exploration of dis-

tortion correction in DTI, including the influence of various hyperparameters and

the relationship between distortion correction and various diffusion tensor metrics.

The experiments here are limited to data from the Human Connectome Project [62],

but comparing the hyperparameters optimized for data from different scan config-

urations could provide more insight. Additionally, the outer optimization could be

improved with better heuristics on the bounds of the search space or a different choice

of derivative-free optimization. The modularity of the bilevel optimization allows for

changing the outer metric to suit the downstream task and application of the DTI

analysis. These explorations are left as future work.
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Opt. Time (s) Input Baseline Best

100206 556.2285

α 10.0000 0.1555
β 1.0000e-04 3.4197e+00

GN iterations 500 23
GN tolerance 1.0000e-05 2.9182e-04
PCG iterations 20 19
GN tolerance 1.0000e-01 4.7504e-02

distance 1.7395e+09 2.7386e+08 2.3883e+08
smoothness 2.1410e+06 3.6359e+06
DTI loss 8.9731e+07 4.1730e+07 3.9161e+07
std FA 7.8084e-02 4.8563e-02 4.4839e-02

120414 417.9174

α 10.0000 0.1222
β 1.0000e-04 7.0743e+00

GN iterations 500 44
GN tolerance 1.0000e-05 2.4091e-06
PCG iterations 20 12
GN tolerance 1.0000e-01 8.8208e-02

distance 1.6304e+09 3.3369e+08 3.0145e+08
smoothness 2.3272e+06 4.3049e+06
DTI loss 3.6817e+07 3.6262e+07 3.3483e+07
std FA 7.5952e-02 6.5179e-02 5.9944e-02

456346 492.6395

α 10.0000 0.1409
β 1.0000e-04 1.2362e-03

GN iterations 500 7
GN tolerance 1.0000e-05 2.3661e-05
PCG iterations 20 8
GN tolerance 1.0000e-01 2.6851e-02

distance 1.4136e+09 2.3173e+08 2.0018e+08
smoothness 2.1536e+06 4.5383e+06
DTI loss 9.0470e+07 4.0569e+07 3.7214e+07
std FA 8.5311e-02 5.7807e-02 5.2146e-02

531940 515.4201

α 10.0000 0.3123
β 1.0000e-04 1.1627e+00

GN iterations 500 83
GN tolerance 1.0000e-05 1.2876e-03
PCG iterations 20 40
GN tolerance 1.0000e-01 1.4505e-01

distance 1.2104e+09 2.3074e+08 2.0467e+08
smoothness 2.1080e+06 3.6088e+06
DTI loss 5.7857e+07 3.8570e+07 3.6284e+07
std FA 7.3497e-02 5.6388e-02 5.2935e-02

825048 548.3280

α 10.0000 0.1278
β 1.0000e-04 8.2633e+00

GN iterations 500 47
GN tolerance 1.0000e-05 3.5358e-05
PCG iterations 20 50
GN tolerance 1.0000e-01 5.1081e-02

distance 1.3860e+09 2.4091e+08 2.1326e+08
smoothness 1.9000e+06 3.1940e+06
DTI loss 8.0125e+07 4.0713e+07 3.6474e+07
std FA 8.2772e-02 5.9019e-02 5.2040e-02

972566 534.6187

α 10.0000 0.1151
β 1.0000e-04 6.0215e+00

GN iterations 500 7
GN tolerance 1.0000e-05 1.4136e-05
PCG iterations 20 50
GN tolerance 1.0000e-01 1.1849e-01

distance 1.2774e+09 2.2226e+08 2.0177e+08
smoothness 1.7716e+06 3.2708e+06
DTI loss 7.9139e+07 3.8971e+07 3.5994e+07
std FA 7.9778e-02 5.6820e-02 5.1379e-02

Table 5.3: Results of using bilevel optimization to choose the best hyperparameters
minimizing diffusion tensor loss. For 6 example subjects, we report the optimization
time, and the hyperparameters, distance term value, smoothness term value, diffusion
tensor loss value, and median standard deviation of fractional anisotropy for the
input data, baseline using default values, and the best hyperparameters from bilevel
optimization.
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Chapter 6

Conclusion

This thesis develops a dependable physics-based distortion correction with automatic

hyperparameter tuning in the setting of Diffusion Tensor Imaging. The fast acqui-

sition of EPI-MRI is promising for increased usage in both clinical and research ap-

plications, but the distortions in the resulting images and slow distortion correction

pipelines limit the popularity of EPI-MRI. The contributions of this thesis seek to

improve the speed, quality, and ease-of-use of EPI-MRI distortion correction in DTI.

In Chapter 3, we offer an improved distortion correction software tool for three-

dimensional images. By leveraging the physics of the distortions and the separable

structure of the optimization problem, we parallelize many of the computations and

demonstrate efficient optimization on both CPU and GPU architectures. We also

implement an initialization scheme based on the one-dimensional nature of the dis-

tortions. The resulting software tool, called PyHySCO, is easy to use, offering a

simple command line interface and publicly available code.

In Chapter 4, we consider distortion correction in the four-dimensional setting of

Diffusion Tensor Imaging. The computational advantages of the separable optimiza-

tion in 3D extend to the 4D setting. We additionally introduce a parameterization

of the field map that improves optimization by introducing smoothness in the diffu-
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sion dimension and leveraging the additional information offered by the structure of

the applied diffusion gradients. We demonstrate the ability of this parameterization

to improve distortion correction and DTI metrics compared to the current practice

of applying the three-dimensional field map from a non-diffusion weighted volume

to correct all diffusion directions. We additionally demonstrate how the parameter-

ization can be used to reduce computation and optimize over a subset of diffusion

directions, and then interpolate the full field map.

In Chapter 5, we make optimization easier for the user by enabling automatic

hyperparameter tuning. Specifically, we define a bilevel optimization in 4D to tune

the hyperparameters of the correction problem and optimization scheme. The bilevel

optimization uses Bayesian optimization to choose the hyperparameter values mini-

mizing a metric of Diffusion Tensor Imaging. We demonstrate the effectiveness of the

bilevel optimization in improving metrics of both distortion correction and DTI. This

provides an easy-to-use, dependable correction that simultaneously optimizes for the

quality of DTI analysis without requiring the user to manually tune any hyperparam-

eters.

The contributions of this thesis offer opportunities for further research utilizing

EPI-MRI for data acquisition. Additionally, there is potential for further exploration

in the four-dimensional setting utilizing different parameterizations and seeking to

better understand how the spherical nature of the diffusion directions relate the re-

sulting optimal field map. Finally, we hope that this thesis and the publicly available

code will further research into the computational aspects of DTI and EPI-MRI post-

processing, including applications such as functional-MRI, anatomies other than the

human brain, and other postprocessing steps such as motion correction.
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[21] Gergely Dávid, Björn Fricke, Jan Malte Oeschger, Lars Ruthotto, Francisco J.

Fritz, Ora Ohana, Thomas Sauvigny, Patrick Freund, Karsten Tabelow, and

Siawoosh Mohammadi. Acid: A comprehensive toolbox for image processing

and modeling of brain, spinal cord, and ex vivo diffusion mri data. bioRxiv,

2024. URL https://api.semanticscholar.org/CorpusID:264307573.

[22] Stephan Dempe and Alain Zemkoho. Bilevel optimization. In Springer optimiza-

tion and its applications, volume 161. Springer, 2020.

[23] Soan T. M. Duong, Son Lam Phung, Abdesselam Bouzerdoum, Sui Paul Ang,

and Mark M. Schira. Correcting susceptibility artifacts of mri sensors in brain

scanning: A 3d anatomy-guided deep learning approach. Sensors, 21(7), 2021.

[24] Soan TM Duong, Son L Phung, Abdesselam Bouzerdoum, and Mark M Schira.

An unsupervised deep learning technique for susceptibility artifact correction

in reversed phase-encoding epi images. Magnetic Resonance Imaging, 71:1–10,

2020.

[25] STM Duong, Son Lam Phung, Abdesselam Bouzerdoum, HG Boyd Taylor,

AM Puckett, and Mark M Schira. Susceptibility artifact correction for sub-

millimeter fmri using inverse phase encoding registration and t1 weighted regu-

larization. Journal of Neuroscience Methods, 336:108625, 2020.

[26] Oscar Esteban, Alessandro Daducci, Emmanuel Caruyer, Kieran O’Brien,

Maŕıa J Ledesma-Carbayo, Meritxell Bach-Cuadra, and Andrés Santos.

https://api.semanticscholar.org/CorpusID:235382378
https://api.semanticscholar.org/CorpusID:264307573


102

Simulation-based evaluation of susceptibility distortion correction methods in

diffusion mri for connectivity analysis. In 2014 IEEE 11th International Sympo-

sium on Biomedical Imaging (ISBI), pages 738–741. IEEE, 2014.

[27] W Freeden and W Törnig. On spherical spline interpolation and approximation.

Mathematical Methods in the Applied Sciences, 3(1):551–575, 1981.

[28] Mark S Graham, Ivana Drobnjak, Mark Jenkinson, and Hui Zhang. Quantita-

tive assessment of the susceptibility artefact and its interaction with motion in

diffusion mri. PloS one, 12(10):e0185647, 2017.

[29] Xuan Gu and Anders Eklund. Evaluation of six phase encoding based susceptibil-

ity distortion correction methods for diffusion mri. Frontiers in neuroinformatics,

13:76, 2019.

[30] Walter A Hall and Charles L Truwit. Intraoperative mr-guided neurosurgery.

Journal of Magnetic Resonance Imaging: An Official Journal of the International

Society for Magnetic Resonance in Medicine, 27(2):368–375, 2008.

[31] P.C. Hansen, J.G. Nagy, and D.P. O’Leary. Deblurring Images: Matrices, Spec-

tra, and Filtering. Fundamentals of Algorithms. Society for Industrial and Ap-

plied Mathematics, 2006. ISBN 9780898716184. URL https://books.google.

com/books?id=JjbSoRR9T-0C.

[32] Per Christian Hansen. The l-curve and its use in the numerical treatment of

inverse problems. In Computational Inverse Problems in Electrocardiology. WIT

Press, 1999.

[33] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of Conjugate Gradi-

ents for Solving Linear Systems. Journal of Research of the National Bureau of

Standards, 49(6):409 436, 1952.

https://books.google.com/books?id=JjbSoRR9T-0C
https://books.google.com/books?id=JjbSoRR9T-0C


103

[34] Dominic Holland, Joshua M Kuperman, and Anders M Dale. Efficient correc-

tion of inhomogeneous static magnetic field-induced distortion in Echo Planar

Imaging. NeuroImage, 50(1):175–183, March 2010.

[35] Zhangxuan Hu, Yishi Wang, Zhe Zhang, Jieying Zhang, Huimao Zhang, Chunjie

Guo, Yuejiao Sun, and Hua Guo. Distortion correction of single-shot epi enabled

by deep-learning. NeuroImage, 221:117–170, 2020.

[36] M Okan Irfanoglu, Pooja Modi, Amritha Nayak, Elizabeth B Hutchinson, Joelle

Sarlls, and Carlo Pierpaoli. Dr-buddi (diffeomorphic registration for blip-up blip-

down diffusion imaging) method for correcting echo planar imaging distortions.

Neuroimage, 106:284–299, 2015.

[37] Abigail Julian and Lars Ruthotto. Pyhysco: Gpu-enabled susceptibility artifact

distortion correction in seconds. Frontiers in Nueroscience, 18, 2024.

[38] W.T. Kelvin, P.G. Tait, and G.H. Darwin. Treatise on Natural Philosophy.

Number v. 1, no. 1 in Treatise on Natural Philosophy. At the University Press,

1879. URL https://books.google.com/books?id=D9dJAAAAMAAJ.

[39] Denis Le Bihan, Jean-François Mangin, Cyril Poupon, Chris A Clark, Sabina

Pappata, Nicolas Molko, and Hughes Chabriat. Diffusion tensor imaging: con-

cepts and applications. Journal of Magnetic Resonance Imaging: An Official

Journal of the International Society for Magnetic Resonance in Medicine, 13(4):

534–546, 2001.

[40] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1):503–528, 1989.

[41] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information

Theory, 28(2):129–137, 1982. doi: 10.1109/TIT.1982.1056489.

https://books.google.com/books?id=D9dJAAAAMAAJ


104

[42] Jan Macdonald and Lars Ruthotto. Improved Susceptibility Artifact Correc-

tion of Echo Planar MRI using the Alternating Direction Method of Multipliers.

Journal of Mathematical Imaging and Vision, 60(2):268–282, 2017.

[43] C Malamateniou, SJ Malik, SJ Counsell, JM Allsop, AK McGuinness, T Hayat,

Kathryn Broadhouse, RG Nunes, AM Ederies, JV Hajnal, et al. Motion-

compensation techniques in neonatal and fetal mr imaging. American Journal

of Neuroradiology, 34(6):1124–1136, 2013.

[44] Jonas Mockus. Bayesian Approach to Global Optimization: Theory and Appli-

cations. Springer Dordrecht, 1989. URL https://api.semanticscholar.org/

CorpusID:120322743.

[45] Jan Modersitzki. FAIR: flexible algorithms for image registration, volume 6 of

Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. So-

ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.

ISBN 978-0-898716-90-0. doi: 10.1137/1.9780898718843.

[46] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative

style, high-performance deep learning library. In H. Wallach, H. Larochelle,
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