
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Haochuan Feng April 14, 2022

PADL: Persistent Application Data Library

By

Haochuan Feng

Dorian Arnold, Ph.D.
Advisor

Computer Science

Dorian Arnold, Ph.D.
Advisor

Michelangelo Grigni, Ph.D.
Committee Member

Angela Porcarelli, Ph.D.
Committee Member

2022

PADL: Persistent Application Data Library

By

Haochuan Feng

Dorian Arnold, Ph.D.
Advisor

An abstract of
a thesis submitted to the Faculty of the

Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors

Computer Science

2022

Abstract

PADL: Persistent Application Data Library
By Haochuan Feng

This thesis presents a new application programming interface (API) that implements
an application-level data serialization for C. With the API, users can register or
unregister the key variables they want to serialize. At key points of interest during the
program’s execution, for example, to take a checkpoint that mitigates future hardware
or software failures, users can automatically serialize all registered variables. Later
the user can retrieve and deserialize previously stored data objects. We show how the
API makes it easier for users to implement checkpointing and can make the process
more efficient in space and time.

PADL: Persistent Application Data Library

By

Haochuan Feng

Dorian Arnold, Ph.D.
Advisor

A thesis submitted to the Faculty of the
Emory College of Arts and Sciences of Emory University
in partial fulfillment of the requirements for the degree of

Bachelor of Science with Honors

Computer Science

2022

Acknowledgments

First and foremost, I thank my advisor, Professor Dorian Arnold. I took Dr. Arnold’s

System Programming class in my senior year and became very interested in this field.

This was my first experience doing research in computer science. Dr. Arnold gave

me a lot of guidance and support throughout the project.

In addition, I thank my committee members, Professor Michelangelo Grigni and Pro-

fessor Angela Porcarelli. They gave great suggestions for my thesis and consistent

support throughout my undergraduate studies at Emory.

Last but not least, I thank my parents who gave me great support from a distance

during the special time of COVID-19.

i

Contents

1 Introduction 1

2 Background and Related Work 3

3 PADL Implementation 7

3.1 PADL Core Functions . 7

3.2 PADL Usage Demonstration . 9

3.3 Auxiliary PADL Functions . 9

3.4 Supported Data Types . 10

3.5 File Format . 10

4 Performance Test 13

4.1 Experimental Setup . 13

4.2 Experimental Results . 14

4.3 Conclusion . 14

5 Future Enhancement 15

Bibliography 16

Appendix PADL Error Messages 17

Appendix Support Functions 18

ii

List of Tables

2.1 Summary of the Features of Popular Data Serialization Libraries. . . 6

3.1 Supported Data Types . 11

3.2 Info File(Name: ”InfoFile”) . 11

3.3 Data File (Name: “Data” + versionNum) 12

4.1 Experimental Results . 14

1 Error Message . 17

1

Chapter 1

Introduction

For many computer programs with long running times, it may be unavoidable to

encounter software or hardware faults. If the program must start all over again at

each failure, hours, days or even weeks of processing time are wasted. To run to

completion, these programs must tolerate such failures in some way.

Checkpoint Recovery is an effective fault tolerant mechanism. Checkpoints save

current program state to persistent storage periodically. At system failures, check-

points can be retrieved to restore the last saved state of the program. There are two

main methods for implementing Checkpoint Recovery: system-level and application-

level checkpointing.

System-level checkpointing schemes are a “core dump” style of copying the en-

tire data from memory into the hardware. The entire saving and recovery process

is a black box to the user and requires no effort from the programmer to imple-

ment. Although easy to use, there are two issues with system-level checkpointing.

First, system-level checkpointing lacks portability. The checkpoint data can be very

system-specific. Thus, the checkpoint file can only be restarted on the same com-

puter. Secondly, taking a global snapshot using system-level checkpointing may in-

clude many unnecessary data, for example temporary data, and thus greatly slow

2

down the running program.

On the other hand, many programmers choose to implement application-level

checkpointing. In this way, they control what to save in checkpointing to reduce

the amount of data to be included in a checkpoint. Although more efficient in run

time, self-implemented checkpointing requires lots of programmer effort. At each

checkpoint, the users must decide what to save and implement the save and restore

mechanism.

We propose an application-level data serialization library to support checkpointing

for C. We call our library Persistent Application Data Library, PADL. With PADL,

the users only need to specify the data objects they want to save and when to save

them. PADL automatically serializes the data specified in a matter that allows the

data to be used by the program on another machine. Using PADL is straightforward,

users only need to add variables to registry and remove it from the registry when it

is no longer necessary to keep a record of them. Using a prototype implementation,

we show that using PADL to create application-level checkpointing is not only easy

to implement but also efficient in running time and storage space.

For the rest of this thesis, Chapter 2 describes current serialization methods and

their advantages and disadvantages. Chapter 3 describes PADL implementation de-

tails. Chapter 4 and 5 present our experimental results and opportunities for future

improvements.

3

Chapter 2

Background and Related Work

The critical step in checkpointing is serialization and deserialization. Serialization is

a process to convert objects into a data stream, while deserialization reverses that

process. Checkpointing serializes the relevant data into a file that can be deserialized

during a failure recovery process. There are many existing serialization libraries tar-

geting different purposes. As a result, they are also very different in their functionality

and efficiency in serializing the data.

In this work, the following requirements are essential:

• Small file size: The file storage format should be as efficient as possible.

Storage overhead can be computed as the percentage of (checkpoint size - data

size)/data size.

• Low serialization overhead: The time it takes to serialize and deserialize

the data should be as low as possible. This is computed as: the time to pack

the data + the time to write or read.

• High programmer productivity: The interface should be intuitive and easy

to use. The amount of programming effort needed to use the API should be

low.

4

• Portability: The serialized data stream must contain all information regarding

the data, so the data stored can be used to recover for another machine.

Related Data Serialization Works

Several serialization libraries exist on different platforms for various purposes such

as communication, synchronization, or cloning process. Some encode objects into

very compact bytes streams, while some contain a lot of external information about

the objects. Some libraries provide simple functions to write into and read from

a byte stream, while others require the users to write a complete data scheme for

serialization. Because of the difference in the serialized data stream format and

design of library functions, these serialization methods have their advantages and

disadvantages. This thesis will compare the four most popular serialization methods:

Java serializations, Pickle, FlatBuffer, and Protocol buffer.

Java Serialization [4] can serialize all objects types that have implemented a se-

rializable or externalizable interface. Because serializable is an interface, users have

the flexibility to overwrite the object serialization method and, therefore, to decide

which class fields to serialize. The interface can be straightforward to use: users

only need to put the variables they want to serialize in an interface and use function

writeObject and readObject to write into and read from a byte stream. The time and

space efficiencies are a function of the efficiencies of the user’s implementations.

Pickle [5] is a Python-specific library that supports the serialization/deserialization

of almost all Python data types into a binary data stream. Pickle is space efficient

because it serializes complex objects into a stream in a compact stream. Pickle keeps

track of objects already serialized and also supports compression when needed. Pickle

also has low serialization/deserialization overhead because encoding only takes place

for large objects that needed to be compressed. It is easy to use pickle. You can

simply use the functions dump and load to serialize and deserialize an object, but the

user must track the order in which objects are serialized.

5

FlatBuffer [7] converts data into a byte stream that contains the descriptive meta-

data and the real data. Because FlatBuffer stores object in a very simple and compact

way, it has both small file size and low serialization/deserialization overhead. But it is

difficult to implement as users have to write a schema to implement it. The program

also needs to use the schema to interpret the byte stream.

Protocol buffer [3] is similar to FlatBuffer. It uses message as a fundamental ele-

ment. In serialization, message will be serialized into a very compact binary stream.

Protocol has small file size. But the serialization overhead is high because of the en-

coding. Like FlatBuffer, users must specify everything in the message for serialization.

Protocol buffer’s advantage over FlatBuffer is that there is not need to deserialize the

entire data stream before accessing a single object.

In addition to serialization libraries, there are also data serialization format specifi-

cations that describe a data format and structure for object serialization/deserialization.

Such specifications include XDR, JSON, EXI and HDF5.

XDR [2] is an internet communication protocol that specifies a representation for

most commonly used data types in high-level languages, including arrays, structures,

and user-defined data types. It does not specify the file format for storage.

JSON [1] is a markup language that uses tags to define elements in a format that

is readable for humans. Because of the tags and conversion to readable format, there

is a lot of overhead in both storage space and time used for serialization.

XML [8] is a markup language for internet communication. While efficient XML is

a more compact way of representation. An EXI stream is self-describing but contains

a lot of external information.

HDF5 [6] is a file system designed to store and organize large amounts of data.

HDF5 puts the data in a search-able structure. When the user try to search for an

object a large data set, the file structure make it faster by reduce the number of time

it takes to access the disk. HDF5 is designed for fast access within large data volumes.

6

The complex file structure will also increase the file size and serialization time. It can

be complicated and lengthy to implement HDF5 in C at the primary level. But there

are many wrappers on the internet to make it much more manageable.

As shown in Table 2.1, our aim is to close the performance or functionality gaps

in existing libraries with PADL, that hopes to meet all our requirements.

Performance Functionality
Name Small file size Low serialization

/ deserialization
overhead

Higher program-
mer productivity

Portability Language supported

Java
serialization

Yes No Yes Yes Java

Pickle Yes No Yes Yes Python

Flatbuffer Yes No Yes Yes C++, #, C, Go, Java,
Kotlin, JavaScript,
Lobster, Lua, TypeScript,
PHP, Python, Rust, Swift.

Protocol
buffer

No No No Yes C++, C#, C, Go, Java,
Kotlin, JavaScript,
Lobster, Lua, TypeScript,
PHP, Python, Rust, Swift.

PADL Yes Yes Yes Yes C

Table 2.1: Summary of the Features of Popular Data Serialization Libraries.

7

Chapter 3

PADL Implementation

PADL uses an in-memory register table to track objects for serialization. Users must

first call an initialization function, which initializes all global variables, creates the

register table in memory, creates a checkpoint directory to keep serialized data files

and creates an information file in the checkpointing directory to store the general

checkpointing information. Then the user can register or unregister important ob-

jects for subsequent serialization. When serialization is desired, the user can call a

serialization function that serializes all variables in the register table into a data file in

the checkpoint directory. If the number of serialized data files exceed a user-controlled

limit, the earliest data files in the checkpoint directory are deleted. When desirable or

necessary, the user can use PADL’s deserialization function to extract object values

from the data file and put them back into the variables stored in the register table.

Upon program completion, the user can call a PADL termination function to erase

all memory traces and delete the directory and all the serialization files.

3.1 PADL Core Functions

The core functions implement the main PADL functionalities. All core functions

return 0 when successfully executed and a number associated with the encountered

8

error, otherwise. (Details of the error numbers and error messages are in Appendix 5.)

int initialize (char * name, unsigned int maxNumofVersions)

This function creates the global variables, a register table, a checkpoint directory

of the name given, and an information file, ”InfoFile”, inside the checkpoint directory.

If a directory of the same name already exists. The info file will be validated for the

correct format and updated. The user-controlled limit of the number of data files is

set as maxNumofVersions.

int register (char * varName, char * type, void * address, unsigned int size)

This function adds information about an initialized variable into the register table

and labels the variable as specified by varName. The register table keeps a record

of the variable’s name, type, address, and array size (1 if it is a single variable) as

provided in the input of the function.

void unregister (char * varName)

This function removes the variable, varName from the register table.

void serialize ()

This function serializes all enabled variables in the register table. The serialized

data stream will be stored in a Data file of the named, “Data” + the current version

number. The earliest data file will be deleted if the number of data files exceeds the

user-defined limit.

void deserialize (unsigned int fileNum)

This function deserializes all registered variables from the data in the checkpoint-

ing files. That is, the registered variable data specifies the addresses to which retrieved

variables should be written.

9

void terminate (int keepData)

This function erases all PADL-related in-memory data. If keepData equals 1, the

checkpointing files will be kept, otherwise, they will be deleted.

3.2 PADL Usage Demonstration

In Figure 3.1 is a simple demonstration code of how to use PADL. First, initialize()

is called to create a checkpointing called ”MyCheckpoints” and to limit the number

of serialized data files to 10. Three variables: variable1, variable2, and variable3, are

initialized with type int, double, and char and put into the register with their names

according to their types (%d, %c, and %lf), address, and array size using register().

(Since variable1 is just a single variable, the array size is 1.) Later, serialize() is called

to serialize all three variables into a data file. When serialized is called again, the same

three variables are serialized into another data file. When it is no longer necessary to

save variable1, variable1 can be removed from the register table using unregister().

In the subsequent serialization, only variable2 and variable3 will be serialized. Upon

program completion, function terminate is called with input 0 to delete all PADL

in-memory data and files generated during the checkpointing.

3.3 Auxiliary PADL Functions

In addtion to the core functions in the previous section, PADL has other necessary

support functions as well as some convenience functions. For instance, errorMessage()

takes the error number as input and returns the error number’s respective description.

validate() checks whether the info file and data file are of the correct format and

complete. The function listVar() lists the names of all the variables in the data file.

Full details of the complete PADL API is in Appendix 5.

10

initialize("MyCheckpoints", 10);

int variable1 = 1;

char * variable2 = malloc(sizeof(char) * 100);

double * varialbe3 = malloc(sizeof(double) * 20);

register("variable1", "\%d", \&variable1, 1);

register("variable2", "\%c", variable2, 100);

register("variable3", "\%lf", variable3, 20);

...

serialize();

...

serialize();

...

unregister("variable1");

serialize();

...

terminate(0);

Figure 3.1: Caption

3.4 Supported Data Types

Table 3.1 presents the data types supported by PADL. It covers all the basic data

types in C, including the basic types character, integer, and float-point number, with

the type specifiers c, d, and f. u, h and l are special modifiers meaning unsigned,

short, and long. In our current implementation, for more complex data types such as

structure and pointer of pointers, users can use the byte stream and specify the total

size of the object. But at serialization and deserialization, the users must wrap and

unwrap the variable by themselves.

3.5 File Format

Tables 3.2 and 3.3 show the expected format for the InfoF ile, which stores general

metadata, and checkpoint files, which store the actual serialized data objects. The

11

Short Notation Description
c signed 8-bit character
uc unsigned 8-bit character
hd signed 16-bit decimal integer
uhd unsigned 16-bit decimal integer
d signed 32-bit decimal integer
ud unsigned 32-bit decimal integer
ld signed 64-bit decimal integer
uld unsigned 64-bit decimal integer
f 32-bit floating-point number
lf 64-bit floating-point number
b byte stream

Table 3.1: Supported Data Types

latter files are named Data − %n, where %n is the checkpointing version number.

(Both information and data files start with a special magic number that matches

their expected format.)

Bytes Data
8 InfoFile Magic Number
4 (unsigned int) Size of Address
4 (unsigned int) Endianness (0 big, 1 small)
4 (unsigned int) Max Version Number Keep
4 (unsigned int) Current Number of Versions

Table 3.2: Info File(Name: ”InfoFile”)

12

Bytes Data
Data Content

8 Next var location in file
4 (unsigned int) Len (name)
4 (unsigned int) Len (type)
4 (unsigned int) Size
Len (name) Name
Len (type) Type
Size * Unit Size Object Value
8 End Signature

Table 3.3: Data File (Name: “Data” + versionNum)

13

Chapter 4

Performance Test

In this section, we present the results of the performance of our PADL protoype im-

plementation. We evaluated two main performance features: data file space efficiency

and serialization overhead. The API complexity is also of interest, but in this work

we do not quantitatively evaluate interface complexity.

4.1 Experimental Setup

Our test program consists of all ten basic types in C and arrays of these types of

lengths 1, 10, 50, 100, 500, 2000, and 5000. Therefore, the total length of objects for

each array length is: 42 bytes, 420 bytes, 2100 bytes, 4200 bytes, 21000 bytes, 84000

bytes, and 210000 bytes. We report the data file lengths, percentage of data file over-

heads (checkpointsize − datasize : datasize), serialization times and deserialization

times. We measure deserialization times both on machines of similar and different

endianness.

The experiment were performed on a MacBook Pro with 2.6 GHz 6-Core Intel

Core i7 processor and 16 GB memory size.

14

4.2 Experimental Results

Space Efficiency in Bytes Serialization Overhead in Seconds (1000 times)
Data Data file size Data File Space

overhead
Serialization Deserialization Different Endian-

ness Deserializa-
tion

All
Variables

323,680 1% 1.072455 0.110896 0.283054

1 Array 5,279 99% 0.270415 0.048327 0.045063

10 Array 5,657 93% 0.259049 0.108694 0.103219

50 Array 7,337 71% 0.261118 0.097684 0.097017

100 Array 9,437 55% 0.266048 0.051867 0.053977

500 Array 26,237 20% 0.310437 0.047437 0.044668

2000 Array 89,237 6% 0.459381 0.049553 0.049744

5000 Array 210,218 1% 0.776523 0.047976 0.044700

Table 4.1: Experimental Results

4.3 Conclusion

The test results, in Table 4.1, show that the API can be very fast in implementation

for serialization and deserialization, even for a relatively large number of variables.

The file space overhead is considerable for objects of small sizes because a similar

amount of space is needed to store related information to deserialize for both large

and small objects. The absolute amount of data for an object’s metadata is fixed at

about 20 bytes. This is not a problem, given that the number of variables in a program

is generally limited, and the data objects are typically very large. In conclusion, we

believe PADL not only easy to use but also very efficient in running time and storage

space.

15

Chapter 5

Future Enhancement

There are several opportunities to extend this work:

• Support for aggregate data types: currently, PADL only supports the basic data

types and arrays in C, but aggregate data types such as structure and pointer

of pointers are essential features in C.

• Smaller data files: mechanisms like compression and tracking duplicate objects

can be used to further improve both the size of PADL data files and reduce

serialization overhead. PADL could also consider incremental updates that

only save parts of a previously-saved data object that has changed.

• Comprehensive evaluation: a more comprehensive evaluation will be useful to

(1) understand PADL’s overhead in more realistic contexts, (2) separate the

overhead of PADL serialization from the cost of I/O transfers or storage device

overheads, and (3) quantitatively compare PADL to other data serialization

libraries.

16

Bibliography

[1] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.

RFC 8259, December 2017. URL https://www.rfc-editor.org/info/rfc8259.

[2] Mike Eisler. XDR: External Data Representation Standard. RFC 4506, May 2006.

URL https://www.rfc-editor.org/info/rfc4506.

[3] Google. Protocol buffers version 3 language specification, 2022. URL https://

developers.google.com/protocol-buffers/docs/reference/proto3-spec.

[4] Oracle. Java object serialization specification, 2005. URL https://docs.oracle.

com/javase/8/docs/platform/serialization/spec/serialTOC.html.

[5] Python Software Foundation. pickle — Python object serialization, 2022. URL

https://docs.python.org/3/library/pickle.html.

[6] The HDF Group. Hierarchical data format version 5, 2000-2022. URL https:

//portal.hdfgroup.org/display/HDF5/HDF5.

[7] Wouter van Oortmerssen. Flatbuffers. URL https://google.github.io/

flatbuffers/flatbuffers_white_paper.html.

[8] Efficient XML Interchange (EXI) WG. Efficient xml interchange (exi) format 1.0

(second edition), 2014.

https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc4506
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
https://developers.google.com/protocol-buffers/docs/reference/proto3-spec
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/serialTOC.html
https://docs.python.org/3/library/pickle.html
https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
https://google.github.io/flatbuffers/flatbuffers_white_paper.html
https://google.github.io/flatbuffers/flatbuffers_white_paper.html

17

PADL Error Messages

Error Number Error Message
1 “Directory of the same name already existed.”
2 “Failure at creating the directory.”
3 “Failure at creating the file.”
4 “Variable containing null pointers.”
5 “Variable type unrecognized.”
6 “Missing Info File.”
7 “Missing Data file.”
8 “Info File has incorrect format signature.”
9 “Variable is not found in the registry.”
10 “Info file has the wrong format.”
11 “Checkpointing file has the wrong format.”
12 “Checkpointing file is incomplete.”
13 “Variable has different allocated sizes.”

Table 1: Error Message

18

Support Functions

char * errorMessage(int i)

This function takes the error number and returns the error message in a string.

int disableVar(char* varName)

This function changes the state of the variable, varName to disabled.

int enableVar(char* varName)

This function changes the state of the variable, varName to enabled.

int validate(unsigned int fileNum)

This function checks whether the info file and data file are of the correct format

and complete.

int getCheckpointNum()

This function returns the latest checkpointing version number.

VarInfo getVarInfo(unsigned int fileNum, char* VarName)

This function returns the name, type, and size of variable, varName recorded in

the data file.

char** listVar(unsigned int fileNum)

19

This function returns the names of all the variables in the data file as an array of

strings.

int varExist(unsigned int fileNum, char* varName)

This function returns 1 if the variable exists in the data file, 0 otherwise.

int varState(char* varName)

This function returns the state of the variable inside the register: -1 if not found,

0 if disabled, 1 if enabled.

	Introduction
	Background and Related Work
	PADL Implementation
	PADL Core Functions
	PADL Usage Demonstration
	Auxiliary PADL Functions
	Supported Data Types
	File Format

	Performance Test
	Experimental Setup
	Experimental Results
	Conclusion

	Future Enhancement
	Bibliography
	Appendix PADL Error Messages
	Appendix Support Functions

