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Abstract

Hierarchical Entity Extraction and Ranking with Unsupervised Graph Convolutions

By Zhexiong Liu

Entity extraction problems have been extensively studied in terms of investigating the
capability of extracting entities from text using natural language processing (NLP).
Most research involves training learnable models on a large amount of corpus to ex-
tract entities and determine their salience. Typically, these systems aim to retrieve
an array of ranked entities from a set of documents while giving queries, which mainly
measure the relevance between queries and entities. However, this thesis leverages
semantic and syntactic information within the documents to perform entities extrac-
tion as well as entity ranking. In particular, given document corpus, constituency
parsing trees are constructed to extract entity mentions (phrases) for each article.
Meanwhile, dependency parsing trees and entity coreference clusters are employed
to build a relation graph, of which nodes denote entity mentions and edges denote
mention relations. Moreover, graph convolution is performed on the relation graph
to normalize the mention representation with respect to mention embeddings. Hi-
erarchical density-based clustering and ranking mechanism are applied to compute
entity priors. To evaluate this work, three models are proposed and evaluated on
60 annotated articles. Preliminary results illustrate that the usage of parsing trees,
along with entity coreference relations improves the effectiveness of entity extraction
and ranking. The interesting hierarchical trees for entity extraction, the principles
for graph construction, as well as the system architecture serve as main contributions
of this thesis.
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Chapter 1

Introduction

1.1 Motivation

Information extraction has recently drawn significant attention due to a tremendous

amount of information accumulated in collections of unstructured documents. Nat-

ural language processing (NLP) community has facilitated the development of text

processing applications to handle this literature, of which entity extraction constitutes

crucial components of these pipelined systems. Moreover, automatic extraction of use-

ful entities, such as organizations, persons, locations, and dates in given documents,

can be employed to tackle downstream tasks such as event surveillance, question,

and answering, information summarization [4][27][45]. In addition, the research of

ranking entities has significantly emerged thanks to the increasing number of entities

contained in a document [59]. Therefore, several tasks of ranking entities have been

recently organized, such as WSDM Cup 2016 that calls for an entity ranking challenge

using a large heterogeneous graph [58]. These tasks demonstrate the significance of

entity extraction and ranking.

Although NLP research that focuses on extracting entities from a variety of doc-

uments has been well studied, determining the importance of these entities hypo-
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thetically remains challenging tasks, especially for ranking entities [59]. A number

of these research have involved identifying main entity or entity salience that can be

considered as binary classifications, which determine relevant or irrelevant entities to

the document [15]. Other research has paid attention to retrieving an array of entities

from given documents, along with measuring the relevance between these entities to

given queries [61]. Such research either heavily relies on training learnable models

using a large volume of annotated data [17] or the way of determining main entities

are mostly based on external queries outside of documents [10].

To bridge this gap, an unsupervised framework is proposed in this thesis to han-

dle entities extraction and ranking. The unsupervised approaches not only offer an

alternative strategy to retain model generalization from a limited dataset but also

maintain robust performance without any hand-engineered features and specialized

external knowledge. These benefits make the unsupervised entity extraction and

ranking framework, which extensively minimizes the human annotation efforts and

maintains satisfactory effectiveness, a desirable approach for this task.

1.2 Research Questions

The objective of this work is to extract significant entities and determine their im-

portance with ranking scores for a given document. This thesis handles the task of

entity extraction and ranking by examining the following research questions.

Determine the effectiveness of unsupervised approaches for extracting main enti-

ties from unstructured documents. Entity extraction research has recently spawned

into two domains: unsupervised extraction and supervised extraction. As for the un-

supervised extraction, a group of candidates is first extracted from documents though

rules or heuristics. Several entity candidates are scored by their features, such as term

frequency and term offsets. Other research leverages graph-based approaches, such as
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PageRank, and TextRank [62], to build a graph in which nodes denote entities, and

edges represent entity relations [38]. I devise these processes by leveraging unsuper-

vised approaches to prune entity candidates with syntactic and semantic encodings.

In particular, this thesis investigates the effectiveness of constituency parsing, depen-

dency parsing, graph-based embedding and clustering for the entity extraction and

ranking problems.

Determine the effectiveness of contextualized embeddings for entity or mention

representation. Word embeddings are crucial steps in natural language processing

pipelined tasks, which captures word (token) semantics information amongst sen-

tences. However, despite the success of word embeddings have demonstrated their

effectiveness in capturing word semantics, the flexibility of entity mention (phrase)

embeddings remain challenges due to their inability that has important limitation

to discriminate meanings of different entity mentions regarding the same entity. For

instance, the phrase Kansas City Chiefs and Super Bowl Winner refer to the same

entity but do not have the same phrase representation. Meanwhile, The Champion

can refer to ambiguous meanings according to given context: a Super Bowl Champion

or a fiction movie. In other words, embeddings usually remain sensitive to semantics

in a variety of contexts. Therefore, accurately capturing the semantics of ambigu-

ous words or phrases can be crucial in NLP applications. This thesis leverages the

contextualized word or phrase embedding, which dynamically updates the represen-

tation of words and phrases according to their contexts [1][7]. Concretely, this thesis

aims to investigate the effectiveness of contextualized embedding for capturing entity

relations in terms of entity coreference and entity dependencies.

Determine the effectiveness of graph-based convolution for entity mention rep-

resentation. Graphs have been well employed to represent entity relations because

of their good properties of capturing the node-to-node relationship and other rel-

evant graph information [19]. A number of the research make use of graph con-
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volutions proposed in spectral graph theory [6][23] to extract featured information

in the dataset spectrum by using parameterized filters in graph convolutional neu-

ral networks (GCNN). Generally, GCNN shares filter parameters over graph nodes

and transform node information among their neighborhoods though performing con-

volution operations. This thesis takes advantage of spectral graph convolutions to

implement an unsupervised framework that leverages the dependency parsing and

coreference convolution relations to dynamically normalize the entity mention repre-

sentation. In particular, this work aims to evaluate the effectiveness of graph con-

volution for improving phrase representation, and in addition to further improving

density-based spatial clustering in terms of model efficiency and accuracy.

1.3 Contribution

This thesis investigates the entity extraction and ranking tasks with an unsupervised

learning framework, and reports attempt to contextualized embedding, graph-based

convolution, and density-based clusters. Extensive experiments have been conducted

to evaluate the effectiveness of proposed models. The contributions of this thesis fall

into the following folds.

This thesis introduced a problem of extracting main entities with hierarchical

ranking, which has been less investigated in an unsupervised way. To incorporate

multiple NLP and graph theories to efficiently solve hand-on tasks, end-to-end entity

extraction and ranking framework has been implemented, which show high potential

for downstream NLP applications.

Accompanying with the unsupervised framework, a fresh annotated dataset based

on NELA2017 [26], consisting of almost 1000 human-annotated entities with respect

to top 3/5/10 entities, are released. These annotations not only remain useful for

evaluating entity extraction and ranking tasks, but also fruitful for other NLP appli-
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cations such as event extraction.

This thesis proposed a simple yet effective normalization mechanism for entity

mention embedding that covers both positional information and entity coreference.

This mechanism significantly improves extraction performance by eliminating entity

redundancies and taking advantage of contextualized noun phrases, pronouns, and

single terms to enrich entity candidates.

This thesis takes an initial step in constructing an entity relation graph with

nodes as entities and edges as entity distance. To enhance the representation of the

entity mentions, the framework leveraged dependency parser and entity coreference

to weight edges. In addition, a k-block graph convolution is employed to aggregate

neighbor information and improve the performance of the density-based cluster algo-

rithm.

1.4 Organization

This Thesis is organized as 5 chapters: Chapter 1 discusses the motivation, research

questions, and main contribution. Chapter 2 discusses the background and related

work on word embedding, keyword extraction, followed by entity ranking and graph

construction related to work in each of the subsequent chapters. Chapter 3 goes

into the approach pipeline that provides details on an unsupervised framework, lan-

guage parsing, coreference resolution, embedding normalization, graph convolution,

clustering, and ranking. Chapter 4 discusses the experimental settings including gold

standard the data collection, inter-annotator agreement, data preprocessing, approach

evaluation, comparison with other approaches, and result visualization. Chapter 5

discusses the quantity and quality analysis, effectiveness examination, along with

error analysis, and further work.
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Chapter 2

Backgrounds

2.1 Word Embeddings

Word embeddings are approaches that encode words (tokens) into fixed-length vec-

tors, which are found very useful in NLP tasks. Word embeddings can be classified

into count-based embeddings and prediction-based embeddings [2].

The count-based embeddings mainly leverage word-context co-occurrence counts

in a corpus. These embeddings are represented as word-context matrices [56]. For

example, Deerwester et al. (1990) proposed Latent Semantic Analysis (LSA) to pro-

duce word-context matrices that can be employed to encode words [12]. Afterward,

Lund et (1996) al. introduced the Hyperspace Analogue to Language (HAL) ap-

proaches [40] to inversely compute the co-occurrence between context words and

target words[3]. Rohde et al. (2004) improved HAL by performing a normalization

mechanism that can differentiate word frequency [52]. Lebret and Collobert (2013)

have improved count-based approaches by applying a Hellinger PCA transforma-

tion to a word-context matrix [33]. Recently, Pennington et al. (2014) proposed a

significant word embedding model named GloVe [48], which leverages ratios of co-

occurrences to semantically represent a pair of words and trains a linear relation that
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can maximize the similarity between each word pair. For instance, given a GloVe

vector w(x) for a word x, a linear relation amongst king, queen, man and woman can

be interpreted as: w(queen) = w(king)− w(man) + w(woman)[48].

The count-based embeddings express meanings of words by considering its global

information but fail to disambiguate the different meanings of the same word by

analyzing its surrounding context. For example, the bank in the sentence a robber

robs a bank near the Hudson bank has different meanings. To handle the problem of

word ambiguities, contextualized embedding models have emerged in recent studies.

Peters et al. (2018) trained a language model named ELMo [50] that has the ca-

pability of creating context-based word embeddings. Moreover, Devlin et al. (2018)

proposed a more powerful contextualized model named BERT [14] that can greatly

disambiguate contextualized word representations in different contexts [49]. Several

downstream tasks have achieved significant improvement by using these contextu-

alized word embeddings, thus BERT embeddings are integrated into the proposed

models to represent mention embeddings.

2.2 Keyphrase Extraction

The keyphrase extraction task aims to extract an array of phrases that contain impor-

tant and topical information in a given document [60]. The keyphrase extraction task

mainly consists of two steps: extracting a set of candidates from a given document

and determining the importance of these candidates [28]. Usually, binary classifica-

tion is applied in terms of marking important or unimportant phrases but cannot

distinguish their importance levels. To handle this problem, several features such

as syntactic and external knowledge-based features are employed to quantify phrase

importance [21].

Commonly, a definition of the importance of a phrase refers to its relations to other
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candidate phrases in a given document. Intuitively, a candidate phrase is significant

if it has a large group of related phrases in the document [21] or it is significantly

related to a topic discussed in the document [37]. Therefore, topic-based approaches

have been prevailing in recent research as they propose to extract keyphrases that

have both strong relation to the topics and maintain the phrase generality that can

cover multiple topics in a given document.

Besides, researchers also measure phrase importance by leveraging semantic and

syntactic relatedness based on a graph. Typically, the graph-based approaches involve

building a graph, of which each node represents a phrase and an edge that connects

two phrases is measured by their syntactic and semantic relevance. For example,

graph ranking, such as PageRank [46] proposed by Page et al. (1999) and TextRank

proposed by Mihalcea and Tarau (2004) [48], have become prominent for text process-

ing in several NLP research. These approaches leverage graph-based theories to score

candidate phrases and consequentially select the most significant ones, but cannot be

directly applied to entity extraction and ranking. To bridge this gap, this thesis focus

on the extracting and ranking entity with graph-based approaches.

2.3 Entities Ranking

An entity is denoted by a sequence of tokens that carry substantial information in a

sentence [22]. The main difference between phrases or entity mentions and entities is

that an entity might consist of several entity mentions [25]. For example, regarding the

sentence, “Kansas City Chiefs defeated the National Football Conference Champion,

San Francisco 49ers, in February 2020”, the Francisco 49ers and National Football

Conference Champion are both entity mentions but reference to the same entity.

Considering the disambiguation and coreference of these phrases is the main difference

between keyphrase extraction and entity extraction. Formally, the task of identifying
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entity mentions that refer to the same entity is named entity coreference resolution

[20][43][55].

In most research, entity extraction tasks leverage entity coreference resolution

form mention clusters that significantly eliminate phrase ambiguities. Entity ranking

tasks usually employ a given query to measure the significance of extracted entities.

In other words, the more relevant to the given query, the more significant an extracted

entity is [16]. However, entities have underlying importance based solely on syntactic

and semantic information in given documents. For example, the main entities in a

document1 regarding Super Bowl 2020 can be directly extracted without any queries.

Since the entity such as Kansas City Chiefs, San Francisco 49ers, National Football

League, Patrick Mahomes, Hard Rock Stadium and so on play significant roles in

conveying main information in the document, deeply investigate the semantic and

syntactic relations in the given document might be beneficial. Therefore, this thesis

addresses the task of entity extraction and ranking based on semantic and syntactic

information in the document regardless of any external knowledge or given queries.

The challenge of this task is that the significance of entities is implicitly expressed in

the context of the document [59], which can hardly measure and quantify, and further

ensure the difficulties of entity ranking task.

Nevertheless, entity ranking have several applications in information extraction

and NLP fields [13] [18] [43]. For example, entity-oriented web search leverage the

entity ranking to improve web entity recommendation; web sanctification utilizes the

entity importance to help semantic tagging; entity ranking also potentially enhances

the knowledge extraction by performing ranks and links to given knowledge [59].

Typically, entity ranking and extraction can be mutually enhanced and solved, thus

the entity ranking procedure is integrated into the clustering components in this thesis

that rank entity importance by leveraging the hierarchical information of the minimal

1The article 51167 in NELA2017 dataset
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spanning tree.

2.4 Graph-based Approaches

Previous studies have explored graph-based modeling to share entity representations

across entity relation in information extraction tasks [39]. Recently, neural networks

with graph-based approaches have achieved significant performance compared to rule-

based approaches on several downstream NLP tasks. For instance, Katiyar et al.

(2018) proposed an approach that extracts entities by constructing a hypergraph

[30]. Yang et al. (2015) have constructed a knowledge graph to embedding entities

and relations [64]. As for the relation extraction, Christopoulou et al. (2018) have

modeled entity relations on a graph and perform a random walk to integrate node

representations [11], which has demonstrated the effectiveness in terms of incorpo-

rating features such as syntactic relations [47]. Conclusively, most of these works

leverage the graph nodes to update node embeddings through learning processes.

Many graph-based models for entity extraction focus on leveraging syntactic and

semantic information to construct entity dependency within a sentence [65][66]. These

approaches suffer from significant errors from ignoring inter-sentence relations and

are limited to construct graphs to capture comprehensive information for given doc-

uments. More recently, an intern-sentence relation extraction approach has been

proposed by Sunil Kumar Sahu et al. [53] to handle the relation extraction tasks.

These research significantly exploit the graph-based approaches for entity relation

classifications, but few of them involve entity extraction and ranking tasks.

Therefore, this thesis bridge this gap and pay attention to utilizing graph con-

volution to explore entity extractions and ranking. Meanwhile, motivated by the

state-of-the-art coreference resolution results in [29] [53], the proposed framework in-

corporates both the dependency parsing relations within sentences and coreference
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relations across sentence as inputs for graph construction. The model uses a simple

yet effective convolution operations to dynamically normalize the node embeddings

for entity mentions. In other words, the proposed graph-based model does not require

a time-consuming training process, instead, it only allows a limited dataset without

any external information.
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Chapter 3

Approaches

The entity extraction and ranking task can be defined as a ranking problem. In other

words, the objective of the entity extraction and ranking is to extract an array of

ranked entities that dominate the significant information in a given document. Rank-

ing extracted entity brings benefits for several entity-related tasks such as question

and answering, topic modeling, and text summarization [21][63].

Given a document D, the goal is to extract a group of entities denoted as E, of

which each entity e has a ranking score r(e) that marks the importance of the entity

in document D. Since an entity consists of several entity mentions in given document,

the definitions of entity mention and entity clusters are respectively formulated. In

particular, let x be an array of word (tokens) [x1, x2, . . . , xn] in a document, the entity

mention (span) consisting of a subarray of X is denoted as m = [xs, . . . , xe], in which

the tuple (s, e) denotes a start and end offset of the mention respectively. Normally,

(s, e) is considered as global offsets in document D. In addition, the entity clusters

c(e) for document D that represent the entity is formulated as a group of entity

mentions (spans) c(e) = {m1,m2, ...,mk} where k is a positive integer. Therefore, the

objective of this project is to extract an array of entity cluster {c(e1), c(e2), ...c(en)}

and a list of corresponding ranking scores {r(e1), r(e2), ...r(en)} from given document
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D, where n is a positive integer.

3.1 Constituency Parsing

Constituency parsing aims to explore syntactic structure of a given sentence, which

plays a substantial role in mediating between linguistic expression and meaning [54].

For example, the sentence1 Kansas City Chiefs won their first Super Bowl on February

2020 can be parsed along with parts of speech (POS) tags [41] and constituency [5]

tags as shown in Figure 3.1.

Figure 3.1: Constituency parsing tree.

In this tree, the abbreviations S, NP, VP, PP, JJ, IN, CD, NNP, NNPS, VBD,

and PRPS refer to tags described in Table 3.1. The words (tokens) in the sentence

are denoted as tree leaves, and play a role of being substitutes of their immediate

parents. The rest of the nodes are formed out of constituency parsing by following

1A sentence from article 51167 in NELA2017 dataset
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Context-Free Grammars [9]:

S ⇒ NP |V P

NP ⇒ NP |NNP |NNPS|PRP$|JJ |CD

V P ⇒ V BD|NP |PP

PP ⇒ IN |NP

(3.1)

As constituency trees ensure the capability of parsing sentence structure in the

phrase level, the state-of-the-art constituency parser is employed in this thesis to

trunk noun phrases. As stated in Table 3.1, the NP tag denotes the noun phrases in

given sentences, thus all the NP on the parsing tree would be collected as a set of

raw entity mentions. The mention set for document D is formulated as

M(D) = {m1,m2, ...,ml} (3.2)

where l is a positive integer, representing the number of mentions in document D.

Moreover, the mention mi can be denoted as an array of words x, refering

mi = (xs, ..., xe) (3.3)

where i = 1, 2, ..., l, and (s, e) represent the start offset and end offset of mention mi

in given document D, respectively.

3.2 Dependence Parsing

Dependency parsing has been well-studied in NLP research, which dominates main-

stream tasks regarding the syntactic structure of a sentence. In a dependency tree

(referring Figure 3.2) for sentence Kansas City Chiefs won their first Super Bowl on
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Table 3.1: The table of POS & constituency tags and examples

Tags Description Examples
S sentence -
NP noun phrase Kansas City Chiefs
VP verb phrase won their first Super Bowl
PP prepositional phrase on Febrary 2020
JJ adjective first
IN conjunction, preposition on
CD cardinal number 2020
NNP noun, proper singular Kansas, City, Chiefs, Super, Bowl
VBD verb, past tense won
NNPS noun, proper plural Chiefs
PRP$ pronoun, possessive their

February 2020, each note represents a word and each edge represents a dependency

relation between two words. The labels nsubj, prep, dobj, pobj, nn, poss, amod, and

num refer the dependency relations in Table 3.2.

The relation between words in the dependency tree can be intuitively interpreted.

For example, the words of their, first and super are served as modifiers for the word

bowl, which points out a heading information in the phrase their first super bowl. In

other words, the headword bowl hypothetically conveys more significance than the

other words. Formally, the headword in mention m can be formulated as

h(m) = xi (3.4)

where xi is a head token in mention m and the other tokens xj (j 6= i, ands <= j <=

e) are all the modifiers of xi in dependency parsing tree.

Another advantage of the dependency tree is that the dependency tree can capture

syntactic relations in terms of sentence subjects and objects, which convey significant

information. Besides, the dependency parsing tree also performs a hierarchical struc-

ture that can be used to present entity hierarchy, and correspondingly measure entity

importance.
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In order to leverage syntactic information in sentences, a state-of-the-art depen-

dency parsing is performed to document D. Meanwhile, with the mention set M(D)

obtained in Equation 3.2, the parsed tokens in Table 3.2 are merged into noun phrases,

which conforms to mention set M(D) trunked through constituency parsing tree in

Section 3.1. In particular, the dependency parsing tree with merged mentions is

shown in Figure 3.3.

To leverage and quantify dependency relations shown in the tree (Figure 3.3),

the tree-based path is defined. Specifically, the distance of mention mi and mj on

a dependency tree is defined as the distance between head word h(mi) and h(mj)

defined in Equation 3.4 for mention mi and mj respectively. Thus, the distance

between mention mi and mj is defined as the number of edges on the shortest path

that connects two mentions. Specifically,

distp(mi,mj) =< h(mi), h(mj) > (3.5)

where i 6= j and i <= l, j <= l. Meanwhile the distance between the same mentions

is defined as 0.

Table 3.2: The table of dependency relations and examples

Relations Description Examples
Nsubj represent nominal subject Chiefs
Prep prepositional phrase On
Dobj direct object Bowl
Pobj object of a preposition February
NN noun compound modifier Kansas, City, Super
Poss possession modifier Their
Amod adjectival modifier First
Num numeric modifier 2020
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Figure 3.2: Dependency parsing tree for tokens.

3.3 Coreference Resolution

Even if the dependency tree successfully measures syntactic relations between two

words in a given sentence, it cannot measure syntactic relation between two words

that come from different sentences. In order to handle this issue, The entity coref-

erence relations are employed to handle inter-sentence entities [43]. Generally, entity

coreference resolution aims to determine if a pair of entity mentions (mi and mj)

refers to the same entity e or the same entity cluster c(e). For instance, given the

following sentence2:

“Kansas City Chiefs defeated the National Football Conference cham-

pion, San Francisco 49ers, in February 2020. This team made their first

Super Bowl victory since Super Bowl IV and the Chiefs’ first NFL cham-

pionship since joining the league”.

2A sentence from article 51167 in NELA2017 dataset
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Figure 3.3: Dependency parsing tree for noun phrases.

A person can easily recognize the coreference of the entity mentions in given

sentences and partition them into the four clusters: (Kansas City Chiefs, This team,

their), (National Football Conference champion, San Francisco 49ers), (Super Bowl

victory, the Chiefs’ first NFL championship), (Super Bowl IV, the league), along with

singleton February 2020. However, it is significantly challenging for an automatic

coreference resolver.

In this thesis, a state-of-the-art coreference resolution model is employed to resolve

coreference in documents. Particularly, SpanBERT [29], a pre-training model that

is trained to represent entity mentions is leveraged to perform entity coreference for

mention set M(D) of document D. SpanBERT is an extending work of BERT [14],

which achieved 79% F1 score on OntoNotes dataset [51] for coreference tasks.

To implement this, the training process of the coreference resolution system based

on SpanBERT is partitioned into two phrases, of which the first one is to train a better

word embedding based on SpanBERT; and the second one is to generate coreference

clusters for each entity e.

For the first phrase, the Transformer [57] is employed to embed an array of tokens
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xi ∈ X into a d-dimensional vector denoted by xi ∈ Rd (i = 1, 2, ..., n). Based on the

SpanBERT, the embedding for each token xi is further represented as

yi = f (xs−1,xe+1,pi−s+1) (3.6)

where xs−1,xe+1 represent the words at right before the start and after the end words

of the mention m in an array X, and pi−s+1 is the position embedding in d dimension

that marking the relative global offsets of the start and end boundary of word xi in

mentions m. f(·) is a simple Feed-forward Network (FFN), GeLU is the activation

function, and Norm represents a normalization layer [24]. Specific, the formulation

of the FFN network is represented as

s0 = [xs−1;xe+1;pi−s+1]

s1 = Norm (GeLU (W1s0))

yi = Norm (GeLU (W2s1))

(3.7)

where W1 and W2 are learnable parameter matrices in FFN. In order to employ the

vector representation yi to predict word xi in mention m, a loss function is formulated

as

L (xi) = − logP (xi|xi)− logP (xi|yi) (3.8)

where P (xi|yi) is the condition probability of word xi for given vector yi.

The second phase is to learn the entity mention clusters. Specifically, the task

goes to find a set of the most possible antecedent mentions mj ∈ Y(i) of current

mention mi, where Y(i) = {ε,m1, . . . ,mi−1}, and a dummy antecedent ε represents

that there is no corresponding antecedent for mi. In other words, [34][35] is going to

learn a conditional probability distribution P (ε,m1, . . . ,mi−1|D) for mi in document

D to figure out the most likely antecedent mentions and produce them as clusters.
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Specifically, the distribution can be formulated as

P (ε,m1, . . . ,mi−1|D) =
i−1∏
j=1

P (mj|D)

=
i−1∏
j=1

exp (s (mi,mj))∑
y′∈Y(i) exp (s (mi, y′))

(3.9)

where s(mi,mj) is the coreference scores for mention mi and mj, which is further

formulated as

s(mi,mj) =

 0 j = ε

sm(mi) + sm(mj) + sa(mi,mj) j 6= ε
(3.10)

where sm(mi) is a mention score for mi, and sa(mi,mj) is an antecedent score for

mention mj being an antecedent of mention mi.

Given mention representations, the scoring functions are computed by another

FFN:

sm(mi) = wm · FFNm (gi)

sa(mi,mj) = wa · FFNa

([
gi, gj, gi ◦ gj

]) (3.11)

where · represents the dot product, wm and wa denote the learnable weight param-

eters, ◦ represents element-wise multiplication between two vectors, and gi is the

mention representation for mi. Specifically, gi is a concatenation of the two trans-

former encoder of start and end point of mention mi along with an attention vector

that is computed over the spenBERT representation yi. The formula is defined as

gi = [xs−1;xe+1; x̂i] (3.12)

where the x̂i is the sum of word embeddings in mention mi with attention weights.
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Normally, the weighted sum of word embeddings is formulated as

αt = wα · FFNα (yi)

ai,t =
exp (αt)∑s
k=e exp (αk)

x̂i =
e∑
t=s

ai,t · xt

(3.13)

where wα is a trainable parameter, which is learned by the objective function 3.9,

and yi is obtained in Equation 3.7. Thus, a list of the coreference clusters C(D) for

document D is formulated as

C(D) =
⋃
e∈E

c(e) (3.14)

where e and E are the entity and entity set for D, respectively.

Thus, the inter-sentence entity relations that play an important role of indicating

of local and non-local dependencies [53] are obtained. To quantify these inter-sentence

relations, the distance between mention mi and mj that belong to different sentences

but fall into the same coreference cluster c(e) is formulated as

distc(mi,mj) =

 0 otherwise

|c(e)| mj ∈ c(e),mj ∈ c(e), i 6= j
(3.15)

where |c(e)| denotes the number of mentions in the entity mention cluster c(e).

3.4 Embedding Normalization

To encode extracted entity mention mi in Equation 3.3, mention embeddings are

applied based on BERT [14]. For each word (token) xi,j in mention mi where j ∈ [s, e],

the word embedding of xi,j is performed as the sum of the last four layers of the BERT

architecture, denoting as xi. In particular, the embedding of mention mi is formulated
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as

xu(mi) =
e∑

k=s

αkxk (3.16)

where the αk is the attention score obtained through BERT between token xk and

xroot, where xroot is the root node in the dependency tree discussed in Session 3.2, s

and e are the global offset of the mention mi in documnet D.

Besides, coreference can also be used to improve mention embeddings. In other

words, the mentions in the same coreference cluster can share similar embedding

features. Thus, the normalized embedding of mention mi ∈ c(e) based on coreference

resolution is formulated as

xn(mi) = x(me,i) + x̄(me) (3.17)

where x̄(me) is the average embeddings of entity cluster c(e), which is formulated as

x̄(me) =
1

|c(e)|

|c(e)|∑
k=1,mk∈c(e)

xu(mk) (3.18)

To incorporate Equation 3.17 and 3.18, the embedding of mention mi can be deduced

as

x(mi) =

 xu(mi) if mi /∈ c(mi)

xn(mi) otherwise
(3.19)

In other words, the mention embedding of mi is the mean of the embeddings of men-

tions in cluster c(e) plussing its own embedding from BERT if mi ∈ c(e); otherwise,

the mention embedding of mi is only from the last four layers of BERT.
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3.5 Graph Convolutions

The dependency-based graphs represent each sentence as a tree with modifier de-

pendency and relation edges between words [44]. Thus, the same mechanism can

be applied to mentions. Each mention on the graphs is surrounded by its directly

related entity mentions, and connected mentions have hypothetically strong relations

in terms of similar mention embeddings. Performing convolution operation on the

connected nodes on a graph can smooth the node representation. Therefore, the

graph convolution can be employed to capture the most relevant mention neighbors

for the current mention and avoid the modeling of unrelated nodes [44].

Inspired by the recently favored graph convolutional neural networks [31][32] in

the NLP community, an unsupervised graph convolution approaches are performed to

further capture syntactic relations. In other words, the dependency and coreference

relations are once again to form connections between mention nodes on the graph. In

particular, a dependency-based graph are constructed, of which nodes are a mention

in M(D), along with corresponding mention embeddings in 3.19 and edges denote

the distance between two mention nodes defined in 3.5. The convolution operations

are performed to update these nodes in terms of mention embeddings. Moreover,

a k-order convolutions can be used to update the nodes in the spectrum of k-order

neighbors. Specifically, a graph Gp based on the dependency tree is formulated as

Gp = {V , E} (3.20)

where V is an array of nodes with respect to mention set M(D) of document D, and

E denotes the edge set computed by the formula 3.5. More concretely, each entry

ami,mj
in adjacency matrix A ∈ Rn×n of the graph Gp is defined as

ami,mj
= distp(mi,mj) (3.21)
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In addition, the degree matrix of graph Gp can be deduced as D = diag(d1, d2, ..., dn),

where di (i = 1, 2, ..., n) counts the number of times an edge terminates at the node

mi. Therefore, the Laplacian matrix L ∈ Rn×n can be denoted as

L = D − A (3.22)

Meanwhile, the symmetric normalized Laplacian matrix Ls ∈ Rn×n is formulated as

Ls = D−
1
2LD−

1
2 = I −D−

1
2AD−

1
2 (3.23)

where I ∈ Rn×n is the identity matrix of A. As indicated in [36], a graph filter Gpf

can be performed to integrate graph structure and node features, which is defined as

Gpf = I − Ls (3.24)

Thus, a linear graph convolution can be formulated as

X̄ = GpfX
T (3.25)

where X = [x(m1),x(m2), ...,x(ml)], and x(mi), i ∈ [1, n] is the mention embedding

in equation 3.19. Even if Equation 3.25 can update current node (mention) embedding

by performing convolution to its direct neighbors, a first-order on graph Gp convolution

3.25 cannot exploit nodes without direct connections to itself. It is necessary to

aggregate k-order neighbors to globally update node embeddings, which normally

happens in large and sparse graphs. Therefore, a k-order graph filter Gk
pf is denoted

as

Gk
pf = (I − Ls)k (3.26)

Consequencially, a k-order graph convolution can be applied obtain the updated men-
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tion embeddings X̃p

X̃p = Gk
pfX (3.27)

where k is a positive integer denoting k order connections between current nodes and

their k-order neighbors.

Similarly, the graph Gp with the convolution for the parsing tree can be adopted

to a coreference graph Gc with coreference resolution. The former one captures the

mentions regarding relations within sentences; the latter one captures the mentions

regarding relations amongst sentences. Therefore, the mention representation X̃ in

document D regarding both the within sentences and cross sentences relations can

be formulated as

X̃ = X̃p + X̃c (3.28)

where X̃c is the updated mention embedding based on the coreference graph Gc.

3.6 Clustering

Given the mention embedding X̃ for document D, a fully connected graph Gcluster

can be constructed to perform clustering. Formally,

Gcluster = {V , E} (3.29)

where V is mention set in M(D) for document D with updated mention embeddings

in 3.28 and E is edge set with weights that measure the Euclidian distance between

two nodes.

Furthermore, in order to enlarge the embeddings features between mention mi

and mention mj, comparable embeddings r(mi) and r(mj) is defined, which evolves
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concatenate of three kinds of embeddings as follows

r(mi) = [x(mi);x(mi)− x(mj);x(mi) ◦ x(mj)]

r(mj) = [x(mj);x(mj)− x(mi);x(mi) ◦ x(mj)]

(3.30)

where x(mi) and x(mj) are the embeddings obtained from 3.28, and ◦ is the pairwise

production. Afterwards, the adjacency matrix A ∈ Rn×n for graph Gcluster can be

defined in terms of each entry ai,j as

ai,j = ‖r(mi)− r(mj)‖22 (3.31)

Having graph Gcluster, a clustering algorithm aims to partition Gcluster into several

components, of which each part represents an entity cluster. As the adjacency matrix

shows the property that dense areas are separated by sparse areas, the Hierarchical

Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [8] algo-

rithm is performed to make graph clusters. Meanwhile, HDBSCAN does not need a

parameter to indicate the number of clusters, which is useful and significant to cluster

entity mentions with noises as singletons. In addition, finding correct cluster numbers

is extremely bias as the entity number varies in different documents. Therefore, the

HDBSCAN cluster is a good fit for this research.

Specifically, HDBSCAN leverages the concept of core distance corek(mi), which

is defined with parameter k and a mention node mi, drawing a circle at mi with the

core distance as the radius and its area covers the k nearest neighbor nodes. In other

words, small core distance represents a dense area of the nodes and large core distance

represents a relatively a sparse area of the nodes. In order to spread apart nodes with

low density, a mutual reachability distance dk for mention mi and mj is defined as

dk(i, j) = max {corek(mi), corek(mj), ai,j} (3.32)
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where ai,j is defined in 3.31.

With the mutual reachability distance as a new distribution of graph nodes, the

HDBSCAN first generates a Minimum Spanning Tree (MST) and then leverages a

single linkage to convey this MST to a hierarchical tree. Specifically, each mention

node has a score of λ(mi)

λ(mi) =
1

dist(mi)
(3.33)

where dist(mi) is the distance on the hierarchy tree for each mention node. Moreover,

this hierarchical tree can be condensed and clustered by giving a minimum cluster

size parameter while maintaining and splitting each linkage [8]. Note that, the score

for each entity that may be a cluster or a singleton is defined as

s(ei) =

 λei,max − λei,min if ei is a cluster

λmi
otherwise

(3.34)

where λei,max and λei,min are the maximum and minimum value of λ for the mentions

in cluster c(ei). If the entity ei is a singleton, its score is a mention score. Thus,

the cluster hierarchy can be well formulated to rank entity clusters, of which entity

importance is decreasing while traversing the tree from its root to leaves.

3.7 Models

To validate the effectiveness of the proposed frameworks and approaches, three models

are constructed to solve the entity extraction and ranking.

3.7.1 Baseline Model

The baseline model is a phrase embedding model, which leverages the constituency

parsing to obtain candidate mentions set M(D) for document D. The embedding
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formula is indicated in 3.16, which sum each token embedding in the phrase. After-

ward, these candidate mentions are used to construct the cluster graph Gcluster and

run cluster algorithms. The model architecture is shown in figure 3.4.

Figure 3.4: Baseline model architecture.

3.7.2 Coreference Model

The second model is a coreference-aided model, which not only leverages the con-

stituency parsing to obtain candidate mentions in a document but also employs the

coreference resolution to normalize the mention embedding. The embedding nor-

malization formula is indicated in 3.17, which averages two mention embeddings,

including the original mention embedding and the mean of mention embeddings in

a cluster. Afterward, these mentions embeddings are used to compute the euclidean

distance and construct the adjacency matrix for graph Gcluster, which is then fit to

the clustering. The framework for the coreference model is shown in Figure 3.5.

3.7.3 Convolutional Model

The third model is a convolutional model, which leverages the graph convolution

to moderate candidate mentions embeddings. In particular, the graph convolution

components utilize the coreference resolution and dependency parsing to represent

the mention relations within sentences and between sentences respectively. The con-

volution operation aims to smooth the node embeddings and relatively smooth the
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Figure 3.5: Model with conreference architecture.

graph. Normally, a 1-order convolution leverages the embedding information in the

first-order neighbors of a node through a linear mapping to update the embeddings

of that node. Higher-order convolution considers second- or higher-order neighbors of

that node. The graph convolution formula is indicated in 3.25 and 3.27. Afterward, a

cluster graph Gcluster is constructed, and the hierarchy is employed to rank the entity

clusters. The structure of the convolutional model is shown in Figure 3.6

Figure 3.6: Model with dependency parsing and coreference architecture.
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Chapter 4

Experiments

This chapter introduces the experiments of the proposed models, and exams the

effectiveness of these models using NELA2017 dataset [26]. The implementation of

this research is mainly based on Pytorch1, TensorFlow2, SpaCy3, and NLTK4 in

Python 3.6+.

4.1 Experimental Setup

PyTorch is a deep learning framework that provides libraries to implement the Span-

BERT coreference as well as BERT Embeddings. The work of [29] and [14] are

employed to develop TensorFlow-based coreference resolution and mention embed-

ding components respectively. As PyTorch relies on tensor-based computation that

is incorporated with Graphics Processing Units (GPUs), all the vectors and matri-

ces are necessarily converted to tensor formats to perform efficient computation on

GPUs.

SpaCy is a Python open-source framework for NLP research and NLP industry

1https://pytorch.org/
2http://tensorflow.org/
3https://spacy.io/
4https://www.nltk.org/
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production. It supplies implementations for data preprocessing, named entity recog-

nition, part-of-speech tagging, and so on. Threfore, SpaCy is leveraged to build

constituency parsing and dependency parsing trees in this thesis.

The Natural Language Toolkit (NLTK) is another package used to process text

data. It has similar functions compared to SpaCy and also provides various interfaces

such as tokenization, POS tagging and so on. For the implementation, NLTK is used

to split sentences in given articles.

4.2 Data Exploration

The dataset used in this thesis is the NEws LAndscape (NELA2017) [26]. It presents

a large political news dataset with over 136K articles in 92 sources from April 2017 to

October 2017. Compared to the specific events or topics of news in other event-based

news datasets, NELA2017 instead incorporates all political news from 92 sources,

which perfectly matches the needs of entity extraction and ranking regardless of

events and topics in the documents.

As unsupervised learning for these models is performed in this thesis, the volume

of the dataset rarely affects the model performance. So a sample of 60 articles is

used to exam the effectiveness of proposed models by comparing their outputs with

gold entities. The gold entities are manually annotated by annotators with respect

to top 3, top 5 and top 10. The number of annotated entities in the sampled articles

is shown in Figure 4.1.

In general, the average number of annotated entities is 16.24; however, there are

8 articles, in which the total annotated entities are less than 10. For the articles

with total entities less than 10, the top 10 entities are the whole number of entities

annotated in the articles. Meanwhile, the top 5 entities are the whole number of

entities annotated in the articles if the whole number is less than 5. The articles with
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human-annotated entities less than 3 are dropped. Moreover, each entity consists of

several tokens. The average number of tokens in an entity is 1.79. As shown in Figure

4.2, the longest entity has 6 tokens, and most of the entities consist of 1 or 2 tokens.

Figure 4.1: Number of entities in sampled articles

The x-axis is the sampled article and y-axis is the number of entities in the articles

4.3 Evaluation Metrics

The accuracy assessment for entity extraction involves the comparison between entity

candidates extracted from systems and gold entity annotated by annotators with

respect to precision, recall, and F1-score. Traditionally, entity extraction systems can

be evaluated by the number of top-N candidates that exactly match corresponding

gold entities. In particular, inexact matches, or near-misses, have been considered.

In evaluation, the inexact matches between candidates and gold entities are al-

lowed if most of the tokens matching within the entities. In other words, the gold

entity is matched with candidate entity if at least half of the tokens in the gold en-

tities are matched. In particular, the outputs of the extraction system are entity
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Figure 4.2: The entity length in the articles

The x-axis represents the entity length category and y-axis is the number of the entity
length

clusters but the gold entities are phrases, so the evaluation of the matches between

the entity cluster is challenging. The criteria for matching between entity cluster and

entity phrases is that the gold entity phrase needs to match at least a half number

of the entity mentions in the candidate entity cluster. All the evaluation is calcu-

lated as micro-averaged precision, recall and F-score regarding the top 5, 10 and 15

candidates.

In classification experiments, precision is a measure of the class matches between

the labels in gold data and the labels given by the classifier. In experiments, the

micro precision for top K is measured as the matching agreement between candidate

entity and gold entities instead. Thus, the formula is

Pmicro@K =
¯TP

¯TP + F̄P
=

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi
(4.1)

where the TPi is the number of matchings in top K, and FPi is the number of non-
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matchings in top K. Recall measures the effectiveness of a classifier in identifying

positive labels, which can be calculated as the number of matchings (TPi) in top K

dividing the total number of correctly matched entities generated through the system.

The micro recall is formulated as

Rmicro @K =
¯TP

¯TP + ¯FN
=

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi

(4.2)

where the FNi is the number of incorrectly ordered entities after top K. The micro

F1-score is a particularization of the F-Measure, which is a combination of micro

precision and micro recall and is formulated as follows

Fmicro@K =
2× Pmicro ×Rmicro

Pmicro +Rmicro

(4.3)

All the evaluation is based on the experiments with the NALA2017 dataset with

respect to sampled articles. The inputs are raw texts and the outputs are ranked entity

clusters, of which there can be clusters with one mention, representing singletons, and

cluster with multiple mentions, representing entity clusters.

4.4 Model Evaluation

As discussed in the previous session, the evaluation metrics include the micro preci-

sion (P@K), micro recall (R@K), and micro F1-score (F1@K) for top 3, top5, and

top10 candidates respectively. The precision was obtained based on the proportion

of matched entities in the total entities generated through the models. The recall

was obtained based on the proportion of matched entities in the annotated golden

entities. The F score performs a trade-off between precision and recall.

From the results presented in Table 4.1, the conclusion that models proposed in

this thesis surpass the baseline on NELA2017 dataset can be made. The coreference-
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Table 4.1: Evaluation results for proposed models

Pmicro Rmicro F1micro

Baseline
Top@3 0.382 0.127 0.191
Top@5 0.393 0.218 0.280
Top@10 0.311 0.345 0.327

Coreference
Top@3 0.521 0.179 0.266
Top@5 0.480 0.275 0.350
Top@10 0.396 0.454 0.423

Graph Covolution
Top@3 0.438 0.153 0.227
Top@5 0.481 0.280 0.354
Top@10 0.463 0.538 0.498

based model has the most satisfactory results for Top 3 entities as it directly leverages

the phrase embeddings in the cluster, of which each phrase has coreference relations.

It is important to notice that, the coreference resolution is significant to improve

the entity clustering as well. The graph-based model also archived satisfactory per-

formance as it aims to normalize the node information from its k-order neighbor,

which could verify the assumption that entity nodes did share information with their

neighbors on dependency and coreference graphs.

On the one hand, the top 10 has relatively higher precision compared to the top 3

and top 5 in terms of F1 scores, which indicates that proposed frameworks have the

potential to extract entities. On the other hand, the recall of these models maintains

increasing trends in all the three models for top 3, top 5, and top 10, which indicates

that these models could generate fewer noises with the number of the candidates

increased. In general, the top 10 candidates achieved considerably higher results

compared to the top 3 and top 10. This finding suggests that the top 10 candidates

not only improve the coverage of the candidate entities but also maintain considerable

accuracy.

Moreover, the graph-based model slightly improves the performance of coreference

model in terms of F1 score for the top 5 and top 10, as it leverages both the coreference

resolution normalization and the dependency parsing trees. This finding can verify
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the effectiveness of the contextualized embeddings and graph-based convolutions for

entity extraction and ranking. Besides, the precision of the graph-based model is

higher than coreference model in terms of top 5 and top 10 but lower than the

coreference model in terms of top 3, so it may conclude that graph-based model is more

sensitive to the top key entities; however, the coreference model may be more sensitive

to the coverage of the entities. In general, the pipelined framework that integrates the

contextualized embeddings, the coreference resolution, graph convolutional, and the

density-based clusters, has demonstrated its effectiveness on this task, which further

indicates that the joint entity extraction and entity ranking could to some degree

demonstrate the success of the unsupervised learning in this application.
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Chapter 5

Analysis

In this thesis, pipelined approaches are developed to extract entities from given texts.

The proposed models involve the contextualized embeddings, dependency parsing and

constituency parsing, coreference resolution, graph convolution, and density-based

clustering. The evaluation of these proposed models have demonstrated their effec-

tiveness and achieved satisfactory results on NELA 2017 dataset. This chapter further

exams the proposed models in terms of error analysis.

Given texts, the unsupervised frameworks can directly generate ranked entities

without any external resources or any model training, which are competitive to learn-

able models with multiple deep layers. The case analysis is based on the following

article1:

“WASHINGTON NFL Sunday kicked off in London with more kneeling

during the national anthem, as President Trump continues to admonish

players who don’t stand for the flag. Three Miami Dolphins players were

spotted taking a knee on the sideline during the singing of the national

anthem: Kenny Stills, Michael Thomas, and Julius Thomas. The three

kneeled side-by-side at one of the sidelines while the rest of their team

1Number 51167 article in NELA2017 dataset
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stood for the anthem. Meanwhile, their opposing team, the New Orleans

Saints, took a unified knee on the sidelines but rose in time for the national

anthem. Many of Saints linked arms as Grammy-winning artist Darius

Rucker sang the anthem in Wembley Stadium, the first televised game of

the day on Fox. The cameras didn’t zoom in on the Dolphins kneelers, but

attendees and journalists in London quickly posted pictures of the trio of

kneelers on social media. President Trump has blasted a kneeling player

as a son of a bitch and urged owners to fire athletes who don’t stand up

for the flag”

In this research, the use of constituency parsing is sufficient to generate a list

of entity mentions, which contains both singletons and phrases candidates. The

contextualized BERT embeddings for each phrase are shown in Figure 5.1.

As seen in Figure 5.1, the contextualized embeddings map each noun phrase ex-

tracted from constituency parsing to space where related phrases remain close to each

other. For example, the two President Trump phrases are overlapped as they refer to

the same entity, but the related phrases a knee and kneelers are yet considerably far

from each other. Besides, the phrase a keen and kneelers also keep distance with each

other and the phrase the flag and the anthem are even further even if they may have

close relations based on knowledge. Therefore, the contextualized embeddings can

somewhat map a similar phrase to a close area but fail to precisely recognize similar

terms in different sentences.

To solve this problem, the entity coreference resolution is employed to leverage

inter-sentence relations for embeddings. For example, as shown in figure 5.2, the

marked phrase the flag and the anthem, a keen and kneelers are in close positions,

which indicates that the normalized embeddings based on coreference resolution can

potentially encode phases based on their semantics and contexts. However, there are

a few outliers such as marked fire athletes and more kneeling, which introduce noises
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Figure 5.1: Phrase embeddings based on BERT

The x- and y-axis represent the distance of phrases in BERT embeddings

to the embedding space. Therefore, coreference-based embeddings have potentials to

improve.

Figure 5.3 shows the density of the cluster graph defined in 3.29. Generally, these

graphs show density clusters with sparse spectrums; therefore, performing density-

based clustering on these graphs is effective. Moreover, the upper left subplot repre-

sents the cluster graph with only contextualized embeddings, of which density areas

are not significantly separated by the sparse domains. This caused that HDBSCAN

algorithm makes fewer clusters. In the upper right graph, the density and spars areas

are well identified. In other words, the cluster algorithm achieves considerable per-

formance, which on the other hand demonstrates the effectiveness of the coreference

resolution model. Meanwhile, the lower-left subplot shows that the cluster graph con-

structed by using normalized phrase embedding with graph-convolution can further
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Figure 5.2: Phrase embeddings based on BERT and Coreference

The x- and y-axis represent the distance of phrases in BERT embeddings with coreference
normalizations

smooth the node distribution as the graph convolution aims to update the mention

embedding by conducting a convolutional operation on its neighbor nodes, which con-

sequentially differentiates the nodes embeddings. The lower right subplot shows the

graph constructed by conducting graph convolution based on phrase embeddings with

coreference. Notably, the convolution-based cluster graph has a similar distribution

to the graph that leverages both graph convolution and entity coreference resolution.

Therefore, the phrase embeddings based on coreference resolution do not make many

benefits to graph convolutions. These findings also demonstrate the generalization of

the graph convolutions that do not heavily rely on pre-coreferenced entities.

The ranked entities of these documents are shown in Table 5.1. The entities are

represented as a list of entity mentions, and each of them (in the table cell) is consid-

ered as a cluster that contains corresponding entity mentions. The entities are ranked
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Figure 5.3: Density graph based on BERT embeddings, coreference resolution, graph
convolution, and graph convolution with normalizations, respectively

from top 1 to top 10. As for the baseline model with contextualized embeddings, the

clustered entities have several noises. For example, the Three Miami Dolphins players

and New Orleans Saints are opposing teams that cannot belong to a cluster. On the

other hand, the top 2 of the baseline model can handle the the national anthem show-

ing in different sentences, which once again shows the effectiveness of contextualized

embeddings for entity representation. Moreover, throwing the flag and the anthem

into a cluster is yet reasonable. The significant entities are extracted and ranked with

acceptable orders. For the coreference resolution model, the top 1 entity cluster is

related to the national anthem, of which time and Grammy-winning artist Darius

Rucker are irrelevant; however, the second entity is perfectly generated as the New

Orleans Saints is exactly the opposing team of Three Miami Dolphins players shown

in the fourth entity cluster. This finding demonstrates that coreference relations play
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a significant role in improving clusterings. Even the fourth and seventh contain many

noises, the rest of the entity clusters have considerable accuracy. The graph-based

convolution model shows that the entity clusters have fewer noises compared to the

coreference model, but have the limitation of the ranking for the top 3 and top 5 enti-

ties. For the fifth entity, it exactly extracts President Trump as an entity cluster that

could be also important. As noticed, the graph convolution model is not sensitive to

the entity coreference, therefore, it does not have rich entity mentions extracted from

different sentences for an entity cluster; however, this may reduce errors and noises

with relatively higher recall as shown in Table 4.1.

Figure 5.4: Minimum spanning tree of a cluster graph

Besides, Figure 5.4 shows the minimum spanning tree (MST) of the cluster graph,
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Table 5.1: The results of ranked entities for three models
Rank Baseline Model Coreference Resolu-

tion Model
Graph Convolution
Model

1 Three Miami Dolphins
players, the New Or-
leans Saints

the national anthem,
the singing, the na-
tional anthem, time,
the national anthem,
Grammy-winning
artist Darius Rucker

side, fire athletes

2 the national anthem,
the national anthem

their opposing team,
the New Orleans
Saints

more kneeling, players

3 the flag, the anthem,
the national anthem

a knee, a unified knee their opposing team, a
unified knee

4 a knee, a unified knee the flag, Three Miami
Dolphins players, the
rest, pictures, the trio

WASHINGTON NFL,
the national anthem,
the singing, the na-
tional anthem, the na-
tional anthem, The
cameras

5 the sideline, the side-
lines

the sideline, the side-
lines

President Trump,
President Trump

6 players, who players, who the flag, the anthem,
the anthem, the flag

7 Saints, arms,
Grammy-winning
artist Darius Rucker,
the anthem, Wembley
Stadium, the first
televised game

Saints, arms, the an-
them, Wembley Sta-
dium, the day, Fox,
The cameras, the Dol-
phins kneelers, atten-
dees, journalists, Lon-
don, kneelers, Presi-
dent Trump, a kneel-
ing player, a son, a
bitch, owners, fire ath-
letes, who, the flag

who, the rest, who

8 The three kneeled side The three kneeled side the sidelines, their
team, the sidelines

9 their opposing team WASHINGTON NFL attendees, pictures
10 WASHINGTON NFL the first televised

game
the sideline, ox, the
Dolphins kneelers, so-
cial media
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seeing formula 3.29, which is a direct interpretation of the clusters and edge weights.

Inspired by the hierarchical clustering algorithm, this MST can be converted to a hier-

archy by performing single linkages [42], which is also the essential step in HDBSCAN

algorithm. This hierarchy tree can be further condensed to obtain the clustering hi-

erarchy with ranked entities [8], showing in Figure 5.5, in which the hierarchy tree

represents the clusters in a ranked manner. In particular, each node denotes a cluster,

and the X node denotes a failed cluster that has many noises, referring Table 5.1.

From this tree, node The National Anthem and node The New Orleans Saints are

the direct children of Root, which share the significance of the entities. Consequently,

nodes on the lower levels share less important information.

Figure 5.5: The hierarchy of a cluster graph

In conclusion, this thesis performs unsupervised frameworks to handle entity ex-

traction and entity ranking problem. The parsing, entity coreference, and graph

convolution jointly benefit the phrase normalization, resulting in a sparse-dense clus-
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tering graph. Thus, the hierarchical density-based cluster algorithm can be applied

to further cluster the graph nodes, along with the auxiliary entity ranking. This work

not only demonstrates the effectiveness of proposed models but also further evaluates

the successes of unsupervised learning for NLP application. The further work will

be focusing on leveraging NLP parser to construct a more meaningful graph that

could be used to update the node embeddings as well as directly training span-based

model to improve mention representation will be another interesting direction. In

addition, improving the hierarchical density-based cluster algorithm will be another

exploration.
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