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Abstract

Leveraging Diverse Data Generation for Domain-Adaptable Dialogue State Tracking
By James Finch

This work investigates improving domain adaptability in Dialogue State Tracking (DST), a crucial
task for integrating conversational AI to real-world software applications. DST produces structured
state representations that track important information in dialogue, which can be used as an interface
to external software components and for controlling dialogue model behavior. However, obtaining
DST models that can robustly adapt to new application domains is an ongoing research challenge.
The proposed work aims to improve the utility of DST by making the domain adaptation of DST
models more effective and cost-efficient. To achieve this, a new task is proposed called Dialogue
State Generation (DSG). The goal of DSG is to infer both the schema and values of dialogue
state in unseen dialogue domains, and experimental results demonstrate the effectiveness of the
presented DSG approach for tackling the challenge of domain generalizability. The DSG approach
is then extended for Slot Schema Induction, which is shown to be the first practical method for
discovering a consistent set of new slot types from unlabeled data. Finally, the novel DSG and
Schema Induction approaches are leveraged to generate a synthetic DST dataset with silver dialogue
state labels that covers 1,000 different domains, an order of magnitude more than any existing
dataset. An evaluation of few- and zero-shot DST models trained on the domain-diverse synthetic
data demonstrates a substantial positive impact on DST domain adaptation. These contributions
improve the feasibility of integrating conversational AI in real-world applications, taking steps
towards the global improvement of software applications’ efficacy and ease of use.
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Chapter 1

Introduction

Conversational Artificial Intelligence (AI) has recently gained much popularity, as it allows people to

interface with technology in an intuitive way via natural language. Spoken conversational assistants

such as Alexa, Siri, and Google Assistant have existed for several years now and allow users to

perform simple tasks such as checking the weather or setting an alarm with speech input alone.

More recently, instruction-tuned large language models (LLMs) such as ChatGPT have shown

groundbreaking flexibility for interpreting user instructions to generate complex text output includ-

ing emails, step-by-step tutorials, and even computer programs. There is an enormous potential for

leveraging these current conversational AIs for the next generation of conversational assistants, as

their broad natural language understanding and problem solving abilities should provide several ad-

vantages over traditional keyboard-and-mouse user interfaces. However, integrating conversational

AI in real-world software systems requires tracking structured information introduced throughout

conversations with users in order to interface with application software components. Tracking this

structured information is known as Dialogue State Tracking (DST), and it is an open research task

with many ongoing challenges. In particular, adapting DST models to the specific requirements of a

given application setting in a cost-effective way and without a large performance degradation is

difficult. This dissertation describes a novel body of research that tackles the problem of efficient

domain adaptation for DST, facilitating the use of conversational AI in real-world applications.

1
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1.1 Application Utility of Conversational AI

There are several advantages to integrating conversational AI into software applications. The

conversation between ChatGPT and a human user in Figure 1.1 illustrates this potential using hotel

booking as an example setting. In this dailogue, ChatGPT plays the role of a hotel receptionist

talking to a hotel guest in order to make a reservation. Although this conversation was produced

independently of any actual hotel booking software, one can see several advantages to the use of

conversational AI if the conversation was indeed connected to a real-world hotel booking system.

Welcome to Walkworth Inn! How can I assist today?

Hi, I'd like to make a reservation for this upcoming Monday.

Of course! How many people will be in your party, 
and for how many nights would you like to book?

It's me, my wife, and 2 kids, and also my brother and his wife. We're staying 
for 5 days. What's the cheapest booking you can give us?

Let me calculate the most cost-effective option for your party. 
For a group of six adults and two children, we could book Room 122 and Room 156. 

This arrangement would provide a total of three beds, which should be sufficient for your party. 
The total cost for both rooms for the duration of your stay would be $1815.

Please play the role of a hotel receptionist. Below is the current information for the hotel you work at.
Hotel name: Walkworth Inn

Available rooms: room 243 (1 bed, $313/night), room 122 (2 beds, $150/night), room 156 (1 bed, $213/night)

1

2

3

4

5

0

num guests 6 price range cheap

book day Monday

num nights 5

book rooms 122, 156num guests 8total cost $1815

Figure 1.1: A real conversation between ChatGPT and a human user (abridged for readability).
Structured information below turns such as book day is handcrafted to illustrate the necessary
information needed for integration in live hotel reservation software.
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Ease of Use While traditional keyboard-and-mouse interfaces require time and effort for users to

become familiarized with the layout, menus, and capabilities of the interface, users can intuitively

interact with conversational AI simply by speaking or typing in natural language even with no

expertise. Furthermore, any domain knowledge the user lacks can be tutorialized by the AI as

needed.

Adaptation to Underspecified Objectives When the user’s objective is vague or underspecified,

conversational AI can adapt gracefully by asking the user for additional details, or by inferring

or recommending a concrete action plan that is likely to satisfy the user’s needs. In turn 2 of the

conversation in Figure 1.1, the user asks to make a reservation for Monday but does not specify

the duration of the stay or which rooms to book, both of which are required for a reservation to be

successfully registered. ChatGPT is able to adapt to this underspecification by asking for the number

of guests and length of stay in order to make progress. Once the number of guests are provided

in turn 4, ChatGPT makes a recommendation for which individual rooms to book, resulting in a

complete action plan with all required information.

Flexible Problem Solving Conversational AI is also capable of solving problems in a way that is

customized to a user’s particular situation. In turn 5 of the conversation in Figure 1.1, ChatGPT

correctly suggests the cheapest subset of available rooms that provide enough beds for the user’s

party. This kind of problem solving often relies on commonsense reasoning, such as who in

the party is comfortable sharing a bed and how a party divides into separate rooms. Because it

is difficult to anticipate the wide variety of factors that affect this kind of problem, such as the

interpersonal relationships of the party, it is unlikely that any traditional booking software could

provide this solution. Integrating conversational AI into software applications can therefore offload

intellectual work typically performed by a human user when the software itself does not provide

any programmatic solver.
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1.2 Software Integration of Conversational AI

In order to integrate conversational AI with a particular software application, certain key information

in the conversation must be translated into a structured representation based on the requirements of

other software components. By obtaining this structured information from the conversation, the

conversational AI can interface with other software application components in two necessary ways:

Application Program Interface (API) calls and custom policies.

API Calls No matter how capable a dialogue system is at generating natural language responses,

the system must be compatible with the APIs of external software components in order to be

able to perform most real-world tasks. In the case of the conversation in Figure 1.1, although the

conversation with ChatGPT is real, structured information from the conversation would need to be

automatically extracted and sent through an API call to register the final reservation in a live hotel

booking application. For example, the hypothetical application’s reservation API might require

a list of room numbers, the day of the upcoming week the stay begins, and the duration of the

stay in order to register a reservation in a database. This information could be represented by the

information slots book rooms, book day, and num nights respectively, as shown in Figure

1.1. Similarly, in order to access information about available rooms like those provided in the turn 0

prompt, the reservation system might require book day and num nights to perform a relevant

database query, then send the query results back to the AI as text input to provide real and up-to-date

information for continuing the conversation.

Custom Policies Real-world applications frequently carry requirements that originate not from

the user or application structure, but rather from a third party that has a stake in application

performance. For example, suppose a hotel manager wants the conversational AI integrated with

their booking software to specially mention that the hotel provides free parking and free wifi

if the user indicates a cheap price range. If the user’s price range is explicitly tracked as

structured information during their conversation with the AI as in Figure 1.1, the dialogue system
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would be able to inspect the user price range to dynamically control the AI’s behavior, such as

by switching the prompt at turn 0 with the instruction: "Please inform the guest that

Walkworth Inn provides free wifi and free parking.". Tracking structured

information also makes it possible to control fine-grained aspects of the AI’s response. Turn 5 in

Figure 1.1 contains a mistake where ChatGPT miscounts the number of guests, but by tracking

num guests as structured information and checking for discrepancies, the response can be

automatically revised before it is sent to the user.

1.3 Challenges of Dialogue State Tracking

Despite their powerful natural language understanding and text generation abilities, current con-

versational AI models like ChatGPT fall far short of their potential to be integrated into software

applications due to challenges in extracting structured information for use in API calls and custom

policies. The task of inferring structured application-relevant information throughout a dialogue is

known as Dialogue State Tracking (DST), and it is an open research area. The major challenges of

DST are outlined below.

Domain Adaptation Each software application has different requirements for the structure of

information needed to integrate conversational AI, resulting in the need for DST to adapt to the

information type semantics of any particular application domain. It is challenging to perform this

domain adaptation without incurring a large cost for data collection in the target domain. Often

the performance of a general DST model will degrade substantially when adapted to unseen target

domains in a data-efficient way, reflecting the realistic usage of DST models in practice.

Cost of Collecting Adaptation Resources When adapting a DST model to a particular application

domain, a set of information types (slots) for the model to track is necessary but often requires

a time-consuming development process to define the slots by hand. Furthermore, for effective

domain adaptation to be possible, natural language descriptions or example data for each slot must
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be collected or handcrafted. These development and collection costs are a barrier for integrating

conversational AI in real-world applications, and slow down new feature development for existing

conversational AI applications.

Efficiency In practical applications, there may be hundreds of slots that must be tracked by a

DST model to support integrating conversational AI. This can easily create a latency bottleneck

in a conversational AI system if a computationally intensive DST model is used such as a LLM.

This latency bottleneck can be especially detrimental because users expect timely responses when

conversing with the AI. Thus, finding efficient methods for tracking structured information remains

a significant challenge in the integration of conversational AI into software applications.

1.4 Research Contributions

The efficient domain adaptation challenge of DST is the focus of the research contributions presented

in this dissertation, in which the following research questions are tackled.

Is dialogue state useful for open-domain and chat-oriented dialogue systems? Related work

focuses on the use of DST in task-oriented dialogue systems, where the goal is to accomplish a

concrete task through dialogue, and tracked dialogue state is used primarily as a means of filling

API call parameters. However, the presented work demonstrates that structured dialogue state is

also a powerful tool for enabling rich open-domain, chat-oriented conversation where there is no

concrete conversation objective other than engaging the human user. This finding motivates the need

for domain-general dialogue state inference, and exemplifies the rich controllability of dialogue

system behavior that is afforded by structured dialogue state information.

Can domain-general dialogue state inference be achieved? Conventional DST requires adapting

a DST model to a particular set of application slots to be used in practice. This adaptation to the

target domain is difficult, especially when the target domain is unlike any data used to train the
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base DST model. The presented work tackles the domain generalizability challenge by formulating

a new task called Dialogue State Generation (DSG), in which a model jointly discovers the state

schema and infers state values in a target domain without any domain adaptation step. Although

the presented DSG model does not produce consistent state schemata within the same domain, it

successfully achieves domain generality and serves as a potent resource for increasing the diversity

of DST training resources.

How can dialogue state schemata be automatically induced from unlabeled dialogues? Adapt-

ing DST models to new domains conventionally incurs a steep cost of human labor, as the state

schema of the target domain must be manually specified. In the event of unlabeled dialogue data

being available for the target domain, an automatic solution for inducing the state schema would thus

drastically reduce the cost of DST domain adaptation. The presented schema induction approach

leverages the presented DSG model to induce a unified schema across unlabeled dialogue examples,

and is shown to be the first practical approach for this task.

Can DST domain adaptability be improved by increasing training data diversity? Existing

DST training resources are quite limited in their coverage of different task domains and types of

information tracked, which is hypothesized to limit the performance of DST models after adapting

to unseen target domains. This hypothesis is tested in the presented work by training DST models

on a new dataset covering over 1, 000 domains, which is made possible by automatically annotating

dialogues using a DSG model. Experiments demonstrate a large performance improvement on

unseen target domains for DST models that make use of diverse training resources.

1.5 Organization

Chapter 2 provides background on Dialogue State Tracking (DST) and related tasks, highlighting

the major challenges in this area. Chapter 3 provides a case study of the deployed open-domain

dialogue system Emora, which demonstrates the utility of tracking structured dialogue state in
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an understudied setting. Chapter 4 presents the novel Dialogue State Generation (DSG) task

formulation and model that achieves domain-general dialogue state inference. Chapter 5 details

a simple yet effective approach for leveraging the DSG model to induce dialogue state schemata

from unabeled data. Chapter 6 presents experiments on DST that show the large impact on domain

adaptability provided by diverse training resources. Finally, Chapter 7 outlines the key takeaways,

limitations, and future directions of the presented research.



Chapter 2

Background

This chapter describes the current state of the art in Dialogue State Tracking (DST) and related

work, and situates DST within the context of human-computer dialogue research. Broadly, human-

computer dialogue research can be divided into Task-Oriented and Chat-Oriented work, with DST

traditionally serving as a foundational subtask of Task-Oriented Dialogue.

Task-Oriented Dialogue research focuses on developing human-computer dialogue systems for

completing well-defined tasks through natural language, such as booking flights, making restaurant

reservations, or setting an alarm [5, 62]. In these dialogues, the human generally plays the role of

a user who brings certain custom requirements to the task scenario, and the automatic dialogue

system must meet their request by providing information, requesting user preferences, and taking

actions to accomplish the task. Task-oriented dialogue is generally straightforward to evaluate, as

the task success rate of a dialogue system’s conversations is directly measurable.

Chat-Oriented Dialogue research focuses on developing human-computer dialogue systems that

are able to support open-ended conversations with humans. Although a theme or topic might be

chosen to give some guidance to the conversation scenario, such as conversations about Wikipedia

articles [11], conversers are generally free to ask about or share any information, opinions, or

experiences they find interesting [64]. For this reason, most chat-oriented dialogue tasks are

9
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considered open-domain, as opposed to task-oriented dialogues that are generally closed to the task

domain. As there is no concrete task objective, chat-oriented dialogue evaluation relies on human

judgements on the quality of model responses, making evaluation challenging from the labor cost

and variance in human judgements due to subjectivity [15].

2.1 Task-Oriented Dialogue

Task-oriented dialogue systems are traditionally modularized into 3 components, each of which is a

subtask with a dedicated body of research: Dialogue State Tracking (DST), Policy Learning (POL),

and Response Generation.

Sure, I can help, any particular day 
and time that you hand in mind?

Yes, I want to leave on Tuesday, 
after 09:15.

Hi, can you help me find a train 
from Cambridge to Leicester?

departure

Cambridge

destination

Leicester

day leave at

departure

Cambridge

destination

Leicester

day

Tuesday

leave at

09:15

1

2

3

Figure 2.1: Example conversation from the MultiWOZ dataset. User turns in orange are labeled
with a state consisting of slot-value pairs.

Dialogue State Tracking aims to maintain a structured representation of all information in the

dialogue required to effectively act and respond towards completing the task. Although in theory

any structured state representation is possible, the dialogue state is conventionally represented as a

set of n slot-value pairs {(s1, v1), (s2, v2), ..., (sn, vn)}, where the slots s1, s2, ..., sn represent the

slot schema, a predefined set of information types associated with the task. Seen in Figure 2.1,

all slots are initially empty at the start of the conversation by default, and are filled in with values

tracking the current state as the conversation progresses. Although system actions and knowledge

are encapsulated in the dialogue state in practice, these are trivial to track since they originate from
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the system itself; thus DST research focuses on the problem of tracking state information originating

from the user as shown in Figure 2.1. Further details regarding recent work in DST are given in

Section 2.3.

Policy Learning aims to automatically learn a function P : S → A mapping state space S to

action space A. This function P determines the action to be taken in each state. For example, given

the tracked dialogue state shown in turn 3 in Figure 2.1, the dialogue system policy might produce

the action inform(choice=2), which reflects a decision to inform the user that there are two

trains matching the user’s search criteria. Note that it is possible and common in practice to create or

augment P using handcrafted rules that check the slot state for conditions to trigger certain actions.

However, since handcrafting the policy can be labor intensive and produce suboptimal policies,

reinforcement learning methods have been explored to learn the policy automatically [28, 32].

Recently however, there has been a trend to learn a policy jointly with the response generation

model using a single end-to-end neural approach [52, 8].

Response Generation aims to produce a natural language response given the current dialogue

state. This is possible using handcrafted response templates, as the tracked state should provide all

necessary information to produce coherent and productive responses; however, this component is

generally handled by a neural response generation model as in Peng et al. [52], Chen et al. [8].

2.2 Data for Task-Oriented Dialogue

Many datasets have been created for Task-Oriented Dialogue, [55, 5, 62] but most are substantially

limited in size, domain diversity, and naturalness [55, 62] due to the steep costs of data collection.

Two datasets, MultiWOZ [5] and Schema Guided Dialogues (SGD) [62], are by far the most popular

due to their relatively high volume of dialogue examples and domains.
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MultiWOZ The MultiWOZ dataset [5] was collected using a Wizard-of-Oz (WOz) set-up in

which two crowd workers use a custom software application to have a natural language dialogue.

Each worker is provided a role, either system or user, and given instructions describing their role and

goal for the conversation. The conversation goals given to workers were based on 5 task domains

inspired by the situation of a user talking to an automated travel agent. For example, in the "hotel"

domain, the user might be given the goal to book an expensive hotel on the east side of the city.

The details of task goals correspond to a set of predefined slots within each task domain in order

to support dialogue states that incrementally update over the course of a dialogue as more goal

information is specified between the two conversers. To obtain state labels, another set of crowd

workers annotated each turn of the "user" role. The final dataset contains 8,438 dialogues spanning

5 domains1 with 31 total slot types2.

Schema Guided Dialogues The Schema Guided Dialogues (SGD) dataset [62] was collected

using an automatic approach to generate synthetic dialogues from predefined domain schema

definitions, which were then revised by crowd workers to improve the naturalness and coherence

of each dialogue turn. A set of tasks corresponding to domains was first defined with slots and

a list of possible values for each slot. Then, a simulated user and system agent modelled using

probabilistic automata are initialized with conversation goals and take turns updating the dialogue

state using a set of transition rules. The result is a sequence of conversation states that can then

be translated into a dialogue using a set of handcrafted templates, and then further paraphrased by

human crowdworkers into reasonably natural conversations. SGD focuses on tasks representative of

a user talking with a virtual assistant such as Alexa or Siri, and therefore includes domains such

as "alarm", "weather", and "flights". The dataset includes 16,142 dialogues spanning 16 domains

and 214 slot types. SGD is therefore the most domain-diverse and largest DST dataset, although its

dialogues are arguably less natural than those in MultiWOZ.

1The Bus and Hospital domains are excluded by convention due to a poverty of examples.
2There are 17 slot types in MultiWOZ if slots from different domains that represent the same kind of information

are counted as a single type
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2.3 Dialogue State Tracking

The task of dialogue state tracking (DST) is to produce a structured dialogue state representation

for each turn in a dialogue, where the dialogue state is represented as a set of slot-value pairs.

Slots are information types defined by a domain-specific schema such as "destination" or "arrival

time", and values represent corresponding information that has been shared in the dialogue such as

"New York" or "5:30". Formally, given a dialogue context D1..i from turn 1 to some turn i, and a

task-specific slot schema defining a set of n slots T , a dialogue state tracker must predict a dialogue

state SDi
= {(s1, v1), (s2, v2), ..., (sn, vn)} representing all slot information in every turn of the

dialogue context. A special value n/a can be used to represent empty slots. The performance of

DST models is conventionally measured using Joint Goal Accuracy (JGA), which is the proportion

of turns in a test set where all slot-values in the predicted state exactly match all slot-values in the

gold state:

JGA =

∑N
i=1 I(ŜDi

= SDi
)

N
(2.1)

Traditionally, DST has been tackled using supervised learning, where the model learns to predict

values for each slot by fitting to a large number of gold examples in the training dataset [83, 90, 86].

However, this approach is usually impractical in application settings where such training data is

unavailable. Therefore, several lower-resource settings have been proposed to test the ability of an

approach to correctly adapt to the provided slot schema. These include the low-resource setting,

few-shot setting, and zero-shot setting. Each of these lower-resource settings limit the number of

in-domain gold-labelled examples, testing whether a DST approach is capable of adapting to new

target domains and slot types. For evaluation in these settings, a leave-one-out methodology is

commonly used, where k independent evaluations are performed for each of k domains in a dataset.

In each evaluation, the full set of gold-labelled training data is observable for the k − 1 training

domains, but only a limited number of training examples are observable on the held-out target

domain to simulate a low-resource scenario. The low-resource and few-shot settings respectively
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provide a small or very small number of training examples in the target domain during test time,

and the zero-shot setting provides no in-domain training examples. All settings leverage end-to-end

neural models trained to tag or generate slot values, with pretrained transformer-based [76] models

used most commonly in recent work to good effect [30, 19, 94, 22, 83].

Low Resource Dialogue State Tracking In this setting3, a small number of gold, in-domain

training examples are provided for each slot type in the task schema. Common downsampling

percentages are 1, 5, and 10%; however, since downsampling even of 1% of the training data usually

provides hundreds of gold-labelled examples to be used for training, this setting still reflects a costly

approach that requires substantial data collection effort.

The current state-of-the-art (SoTA) approaches in low-resource DST involve two steps: (1)

retrieving one or more similar examples from the small number of in-domain observable examples to

use in a natural language prompt, and (2) generating a value prediction using a sequence-to-sequence

(S2S) model that takes both the prompt and dialogue context as inputs [26, 30, 7]. Two of these

works use OpenAI Codex as their generation model [26, 30], and outperform the best non-LLM

implementation that follows the same approach [7].

Few-Shot Dialogue State Tracking In the few-shot setting, a very small (usually 1 to 10) number

of in-domain gold-labelled examples ("shots") are provided for each slot type. Each example takes

the form of a single sample one would typically see in a fully supervised setting where a dialogue

context is paired with a gold slot-value label. In this setting, the definition of each slot is specified

using the example shots, but the quantity of examples is too small for typical supervised approaches

to be effective. Therefore, approaches in this setting often treat the few shots as additional input

when predicting each slot value, which trains the model to condition each value prediction on the

provided examples. A model that learns to condition its prediction on the provided examples in a

sufficiently general way will then be capable of correctly predicting values for new unseen slots

3The majority of work in low-resource DST refers to the task setting as "few-shot" instead of "low-resource". I
break the conventions of this terminology in order to keep in line with other work in few-shot NLP and distinguish this
work from task formulations where truly only a few (1-10) shots are available.
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during test time as long as a sufficient number of examples for those unseen slots are also provided

as input. Unlike fully supervised and low-resource setting, the few-shot dialogue state tracking

setting is a good proxy for application scenarios. Dialogue system developers are usually able to

handcraft or collect a few examples per slot type, whereas it is often prohibitively time consuming

or costly to collect enough examples for supervised training even in the low-resource setting.

Unfortunately, the few-shot setting in DST is underexplored and there is poor standardization

for evaluation methods, leading to difficulties when comparing approaches. Wu et al. [84] uses a

sequence-to-sequence (S2S) approach that linearizes the dialogue context, slot type shots, and a

question specifying the slot type, all into a single prompt to predict the slot value. They evaluate

5- and 10-shot settings on the unpopular MixSNIPS/MixATIS [55] dataset. Aksu et al. [1] take

advantage of gold state labels to create response templates and a state transition graph from in-

domain shots, and then generate entirely new dialogues by traversing several paths of this transition

graph. Once a new state transition path for a synthetic dialogue is sampled from the transition

graph, the turns from the original dialogues corresponding to each transition are used as templates

and filled with new slot values to produce a final natural language dialogue. Synthetic dialogues

are then used to train a DST model for the target domain. This approach demonstrates the ability

for data generation to compensate for resource-poor situations, although their reported JGA on

MultiWOZ 2.1 is substantially lower than SoTA zero-shot approaches on the same data. Gupta et al.

[19] achieve strong performance on MultiWOZ 2.1 and Schema Guided Dialogues using a simple

1-shot S2S approach that predicts values given the dialogue history and a single shot for each target

slot type. Since they limit to 1-shot, their approach can be almost-fairly compared with zero-shot

approaches, and is competitive with even SoTA LLM zero-shot approaches at 65.9% JGA.

Zero-Shot Dialogue State Tracking The zero-shot setting is similar to the few-shot setting,

except a natural language description of each slot is provided as the means of encoding the slot

definition, rather than a small number of examples. Thus, approaches to few-shot and zero-shot

dialogue state tracking are often compatible with the slot definition (which can be either the few-
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shot examples or description) being provided as additional input to the model when predicting slot

values. This setting is more challenging then the few-shot setting, however, because the provided

slot definitions do not resemble the dialogue context from which the model is predicting values;

instead, the model must interpret the natural language slot definition in order to correctly predict

the appropriate value. On the other hand, this setting is even more cost-efficient than the few-shot

setting since it usually requires far less human labor to specify slot descriptions than to handcraft or

collect several few-shot examples.

The best approaches to zero-shot DST leverage slot descriptions use simple sequence-to-

sequence (S2S) formulations to predict a value appropriate for the given slot description [94, 75, 78].

This S2S modelling formulation has been shown to be a simple but effective tool for adapting to

new slot types, since models can leverage the given description of a new, unseen slot type when

making predictions. Tavares et al. [75] use a natural language question in place of a traditional slot

description to formulate zero-shot DST as a kind of question answering, showing that the semantics

and framing of the description can significantly affect task performance. Wang et al. [78] extend the

basic description-driven S2S approach with a mixture-of-experts architecture, where each expert

is a simple S2S model focusing on a different semantic subspace for the task. The description-

driven S2S approach for zero-shot DST has recently been explored using instruction-tuned large

language models (ILLMs), for example Heck et al. [22] demonstrates that ChatGPT is capable

of outperforming traditional zero-shot DST approaches with a simple prompt. The current SoTA

zero-shot model4 is by Gupta et al. [19], who use a T5-11B model in a simple S2S formulation

to achieve 64.4% JGA on MultiWOZ 2.1, showing the power of fine-tuning models with larger

parameter sizes for this task.

4Excluding few-shot models that use examples as "descriptions."
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2.4 Slot Schema Induction

One of the challenges of applying DST models in practice is specifying a slot schema that defines

which slots the DST model should track. In applications where a dialogue model is being integrated

into existing software framework, the slot schema is typically specified by hand to match the existing

infrastructure such as API call parameters or database schemata. However, in many cases, the

external software components interfacing with the dialogue system are under development, and the

choice of slots to track is made in tandem with the development of new features. In these cases,

a typical developer workflow for creating the slot schema involves manually reviewing unlabeled

dialogue data produced by a previous version of the dialogue system or by human-human interaction,

and deciding which information is important to track as slots. This workflow is especially prevalent

when implementing custom policy changes to the dialogue system behavior, where a developer seeks

to control system behavior via programmatic intervention as a response to viewing a poor-quality

dialogue produced by their system.

Slot schema induction (SSI) aims to reduce the cost of manual schema creation by automatically

inducing slots from unlabeled dialogue data that are likely to facilitate task completion. The primary

challenges of this task are (1) to correctly identify what information in the unlabeled dialogues

would be important to track as slot values, and (2) aggregating candidate value information into a

consolidated set of useful slot types. As SSI is a relatively recent task with few works, there is yet

no standardized task formulation and evaluation method. However, several of the most recent works

present similar variants of the following formulation.

Given a list of dialogues D, produce a list of slots Ŝ = [ŝ1, ŝ2, ..., ŝn] where each slot ŝi is a

cluster of values ŝi = [v̂1, v̂2, ..., v̂|ŝi|] corresponding to a gold reference slot si = [v1, v2, ..., v|si|].

To evaluate, a mapping M : Ŝ → S ⊕ [none] is constructed by hand or using a semantic similarity

estimator to assign each predicted cluster to a gold slot (or to none if no gold slot matches). In this

formulation, producing a name for each induced slot is out of scope; the goal is only to find clusters

of values that correspond well to gold slots. Given the mapping M from predicted to gold slots,

precision, recall, and F1 are calculated to measure the quality of induced slot clusters.
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Approaches to slot schema induction follow a two-step pipeline of first extracting value candi-

dates from dialogue text, then clustering dense semantic vector representations of each candidate

to produce slot clusters. Hudeček et al., Wu et al., Qiu et al. [27, 85, 56] leverage tagging models

trained on other tasks such as Semantic Role Labeling (SRL) or Named Entity Recognition (NER)

to identify a set of value candidates from spans in the unlabelled dialogue data. Then, each candidate

value is embedded into a dense vector representation using an encoder model such as BERT [10].

Finally, a clustering algorithm is used to induce the slot types from the value candidate span represen-

tations, often in conjunction with a filtering step to eliminate noisy candidate values. Hudeček et al.

[27] use a simple cosine-similarity-based threshold to filter value candidates and merge them into

clusters. Wu et al. [85] use an iterative, self-supervised method to alternate between fine-tuning the

candidate value tagging model and cluster candidates, where the tagger learns to select candidates

near the centroid of induced clusters. Instead of using NER and SRL models to identify value

spans, [56] train a domain-general value tagger to identify value candidates, then use out-of-the-box

clustering algorithms such as K-Means5 to induce slot types. One fully unsupervised approach

for slot schema induction by Yu et al. [92] uses a PLM attention distributions between tokens in a

dialogue turn to infer the syntactic structure of the turn, and treat constituents as candidate values.

Three clustering steps are then followed to obtain a cluster hierarchy, where different encodings of

the span candidates are clustered at each step using HDBSCAN [41].

Overall, the SoTA in slot schema induction is encouraging but not practical. The reported recall

of predicting slot clusters that match gold slot clusters is quite high with the SoTA achieving 94%

recall on MultiWOZ. However, most slot induction methods induce a number of slots that is about

10x the number of gold slots in a given domain, which still requires a large human effort to manually

name and consolidate the clusters into a usable slot schema. Furthermore, a limitation to all previous

work in this area is that value candidates are always extracted spans from the orignial dialogue text.

This limits the ability of these approaches to induce abstractive slots, whose values rarely appear in

the dialogue directly but are nevertheless critical to tracking the dialogue state.

5Incurs the limitation of requiring the number of induced slot clusters K to be specified ahead of time.



Chapter 3

Emora: A Socialbot Built from Custom State

and Policy Rules

Traditionally, research in dialogue systems has emphasized the use of dialogue state tracking (DST)

in task-oriented settings, where the primary objective is to fulfill specific tasks through dialogue,

typically by populating API call parameters. However, this chapter highlights the versatility of

structured dialogue state in facilitating open-domain conversation in a chat-oriented setting, where

the goal is simply to engage the human user in an interesting conversation on a variety of topics.

Dialogue state is shown to be useful for open-domain and chat-oriented dialogue specifically because

of the flexibility it affords dialogue systems developers in implementing custom policies to control

dialogue system behavior. However, to achieve these advantages, fine-grained slots must be tracked

that are extremely situational and application-specific. This is demonstrated by way of a case study

of the chat-oriented dialogue system named Emora, which was deployed to a broad user base in a

live application setting. An analysis of Emora’s abilities resulting from its DST-driven design is

provided by evaluation metrics collected from both the live deployment setting and experimental

setting where it is compared to dialogue models from contemporary SoTA research.

19
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3.1 Application Setting

Emora was deployed to live users on Amazon Alexa devices for a period of about 12 months as a

part of the 3rd Amazon Alexa Prize Competition [16] and associated Alexa Skill. The main aim of

the competition is to develop conversational agents capable of engaging in coherent and meaningful

discussions with humans for as long as possible, while receiving high user feedback ratings. 10

participating universities built socialbots that interact with real users through Alexa in real-time,

multi-turn, spoken dialogues.

To interact with the application, users initiate conversations with Alexa by saying phrases like

"Alexa, Let’s Chat." They are then connected to a randomly-selected one of the 10 socialbots

participating in the competition, one of which is Emora. After ending the conversation, users are

asked to verbally rate their experience, followed by an opportunity to give additional feedback.

Conversation transcriptions with their associated ratings, if given by the user at the end of the

conversation, are provided to participating teams in order to support scientific experimentation

and improvements to their socialbots. By the end of its deployment, on the order of 1,000,000

conversations had been produced between Emora and users.

Although the application setting is intended to be open-ended in spirit, there are several charac-

teristics of the application setting that distinguish it from a typical academic experimental setting,

which are outlined below.

Alexa Skill Platform The Alexa Prize skill is a single application hosted within Amazon’s Alexa

Skill platform which has thousands of other applications available. Because the Alexa devices

use a speech-only interface which relies on noisy automatic speech recognition (ASR), speech

input that the user intends as a command to exit the Alexa Prize skill must be distinguished from

speech intended to continue a conversation as a part of each deployed socialbot’s natural language

understanding capabilities. Furthermore, it is quite common for users to connect to the Alexa Prize

skill and enter a conversation with a sociabot by accident, due to false positive classification of

the invocation command "Alexa, Let’s Chat". Detecting accidental connections and gracefully
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exiting the conversation is therefore a desirable property of socialbot behavior to avoid poor user

experiences.

Topic Restrictions In order to maintain the integrity of both the competition and Amazon

Alexa as a product, certain sensitive conversation topics were required to be off-limits, with the

expectation that socialbots would never introduce these topics and would decline interaction if

the user introduced them. Some of these restricted topics included giving opinions on politics or

religion, sexual topics, and hate speech.

Required Responses Some specifications were put in place for required responses the socialbots

must give to certain questions. For example, if asked "who are you?" by a user, socialbots were

required to distinguish themselves from Alexa as an Alexa Prize socialbot while maintaining

anonymity to maintain competitive integrity.

Longitudinal Deployment Because Alexa Prize socialbots were deployed for up to a year,

distributional shifts in user interests occurred over time in response to evolving current events. This

was especially true for the duration of Emora’s deployment, which coincided with the outbreak of

the COVID-19 pandemic. Providing support for conversation in a way that matched the changing

interests of the user base was ideal for user engagement. Additionally, current events such as

holidays and recent news are one of the few sources of common ground among most users that can

be leveraged as introductory topics to begin conversations in a reliably natural way.

Returning Users Although users were anonymous, some users would frequently invoke the Alexa

Prize skill and converse multiple times with the same socialbots. In order to support the development

of long-term, multi-session interactions with users, anonymous user identifiers were made available

for each conversation, allowing data saved from previous conversations to be imported into future

conversations with the same user.



22

3.2 Motivations for a Structured-State-Based Socialbot

When Emora was originally designed, the first approaches considered included end-to-end neural

response generation and pipelines involving the use of several core natural language processing

(NLP) models such as topic and intent classifiers, semantic parsers, and neural DST models.

These approaches fell in line with contemporary research on human-computer dialogue. However,

when prototyping various architectures, these approaches were quickly found to be insufficient for

developing a viable socialbot for the Alexa Prize application setting for several reasons.

Imprecise Natural Language Understanding SoTA Natural language understanding (NLU)

models produced by contemporary research tended to focus on fixed, generic schemata for NLU

output. For example, named entity recognition work focuses on identifying mentions of entities, but

the schema of entity types only covers generic classes such as person and organization [79].

This level of granularity for NER and other tasks provided insufficient information to effectively

distinguish key dialogue states, such as whether the user had invoked the Alexa Prize skill on

accident, was introducing a restricted topic, or personally knew someone infected by COVID-19.

Lack of Control Although it is possible to develop new NLU models using finer-grained or

application-specific schemata, the cost barrier of collecting labeled data to train neural models is too

high to be viable, especially for supporting conversation on current events. Few-shot approaches that

allow adaptation of an NLU model to schema extensions such as few-shot NER [12] or zero-shot

DST [19] might have been effective, but were understudied and suffering from poor performance

at the time of Emora’s development. Similarly, neural response generation models supporting

fine-grained control over response semantics were emerging research [74], meaning there was no

reliable way of controlling response generation behavior for these approaches apart from collecting

a large number of training examples [65].

In response to these challenges, an approach and implemented dialogue system development
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framework, named Emora-STDM, were developed to support rapid development of human-computer

dialogue systems using structured dialogue state and a handcrafted approach to both NLU and

response generation. The next section describes Emora-STDM. The following Section 3.4 covers

the design and deployment of Emora, a case study usage of this approach to dialogue.

3.3 Emora-STDM: Controllable Human-Computer Dialogue

Using Structured Dialogue State

Emora State Transition Dialogue Manager, henceforth E-STDM, is an approach to human-computer

dialogue affording rich controllability of dialogue system behavior by leveraging structured dialogue

state representations. The goal of this approach is primarily to tackle the challenge of rapidly

developing a human-computer dialogue system with full customization of system behavior. To

achieve this, E-STDM does not rely on any data-driven approaches for NLU, development of the

dialogue policy, or response generation, which typically require costly data collection in order

to support custom system behaviors. To achieve this, E-STDM has three major components.

NATEX is a new language for flexibly specifying grammars for parsing-based DST and response

generation. The Dialogue State Machine controls the dialogue policy, selecting a candidate subset

of NATEX NLU patterns and response generation templates at each turn. Finally, Information State

Update Rules provide additional control for managing the dialogue state representation. E-STDM

was implemented as a publicly available python package1.

3.3.1 NATEX: Natural Language Expression

The challenge of understanding user input in natural language is addressed by NATural language

EXpression, NATEX, a rule-based and fast-to-develop pattern matching system for intent classifica-

tion and slot tracking. NATEX defines a comprehensive grammar to match patterns in user input by

dynamically compiling to regular expressions. This dynamic compilation enables abstracting away

1https://pypi.org/project/emora-stdm/

https://pypi.org/project/emora-stdm/
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unnecessary verbosity of regular expression syntax, and provides a mechanism to embed function

calls to arbitrary Python code. Critically, NATEX patterns are capable of filling slots by compiling

regex variable captures. The key features of NATEX are highlighted below.

String Matching It offers an elegant syntax for string matching. The following NATEX matches

user input such as ‘I watched avengers’ or ‘I saw Star Wars’ and fills the slot $MOVIE with the

values ‘Avengers’ and ‘Star wars’, respectively:

[I {watched, saw}

$MOVIE={Avengers, Star Wars}]

The direct translation of this NATEX to a regular expression would be as follows:

.*?\bI\b

.*?(?:\b(?:watched)\b|\b(?:saw)\b)

.*?(?P<MOVIE>(?:\b(?:avengers)\b|

\b(?:star wars)\b)).*?

As shown, NATEX is much more succinct and interpretable than its counterpart regular expression.

Function Call It supports external function calls. The following NATEX makes a call to the

function #MDB in Python that returns a set of movie titles:

[I {watched, saw} $MOVIE=#MDB()]

This function can be implemented in various ways (e.g., database querying, named entity recogni-

tion), and its NATEX call matches substrings in the user input to any element of the returned set.

Note that not all elements are compiled into the resulting regular expression; only ones that are

matched to the user input are compiled so the regular expression can be processed as efficiently as

possible.
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Figure 3.1: A dialogue graph using a state machine approach with NATEX to dialogue management.

Ontology It supports ontology editing and querying as the built-in NATEX function called #ONT.

This ontology-based matching mechanism is a core mechanism for slot filling based on recognizing

keyword lemmas that belong to a type set defined in the ontology. An ontology can be easily built

and loaded in JSON. #ONT(movie) in the example below searches for the movie node in a

customizable ontology represented by a directed acyclic graph and returns a set of movie titles from

the subgraph of movie:

[I {watched, saw} $MOVIE=#ONT(movie)]

Response Generation It can be used to generate system responses by randomly selecting one

production of each disjunction (surrounded by {}) in a top-down fashion. The following NATEX

can generate “I watched lots of action movies lately” or “I watched lots of drama movies recently”,

and assign the values of ‘action’ and ‘drama’ to the slot $GENRE respectively:

I watched lots of $GENRE={action,

horror, drama} movies {recently, lately}
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Error Checking The NATEX compiler uses the Lark parser to automatically detect syntax errors.2

Additionally, several types of error checking are performed before runtime such as:

• Call to a non-existing function.

• Exceptions raised by any function.

• Function returning mismatched type.

• Reference to a non-existing variable.

3.3.2 Dialogue Management

Dialogue State Machine The primary component responsible for dialogue management within

E-STDM is a state machine. In the framework, state transitions alternate between the user and

the system to track turn taking, and are defined by NATEX (Figure 3.1). Any transition performed

with a slot-filling NATEX will store a slot-value pair in a dedicated table in memory, which persists

globally for future reference.

User turns are modeled by transitions according to which NATEX matches the user input. To

resolve cases where multiple NATEX yield matches, transitions can be defined with priority values.

Similarly, developers can specify a catch-all “error transition” (ERROR in Figure 3.1) to handle

cases where no transition’s NATEX returns a match. The user input resulting in an error transition is

automatically logged to improve the ultimate design of the state machine.

System turns are modeled by randomly selecting an outgoing system transition. Random

selection promotes uniqueness among dialogue pathways, but can be restricted by specifying

explicit priority values. To avoid redundancy when returning to a previously visited state, E-STDM

prefers system transitions that have not been taken recently.

The simplicity of this dialogue management formulation allows for rapid development of contextu-

ally aware interactions. The following demonstrates the streamlined JSON syntax for specifying

transitions S1, S3, U1, U2, and U3 in Figure 3.1.

2https://github.com/lark-parser/lark

https://github.com/lark-parser/lark
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{

"Have you seen any movies lately?": {

"state": "c",

"[I, $ENT=#ONT(entertainment)]": {

"What’s your favorite $ENT?": {..}

},

"[$MOVIE=#MDB()]": {

"$MOVIE is one of my ...": {..}

}

"error": {

"Sorry, I didn’t catch ...": "c"

} } }

Information State Update Rules Despite its simplicity, state machine-based dialogue manage-

ment often produces sparsely connected state graphs that are overly rigid for complex interactions

[34]. E-STDM thus allows developers to specify information state update rules to take advantage of

the power of information state-based dialogue management.

Information state update rules contain two parts, a precondition and a postcondition. Each

user turn before E-STDM’s state machine takes a transition, the entire set of update rules is

iteratively evaluated with the user input until either a candidate system response is generated or

no rule’s precondition is satisfied. In the following example, satisfying precondition [I have

$USER_PET=#PET()] triggers postcondition #ASSIGN($USER_LIKE=$USER_PET) to assign

$USER_PET to $USER_LIKE, allowing rule #IF(..) I like $USER_LIKE .. to trigger in turn:



28

{

"[I have $USER_PET=#PET()]"

: "#ASSIGN($USER_LIKE=$USER_PET)",

"[$USER_FAVOR=#PET() is my favorite]"

: "#ASSIGN($USER_LIKE=$USER_FAVOR)",

"#IF($USER_LIKE != None)"

: "I like $USER_LIKE too! (0.5)"

}

When a precondition is satisfied, the postcondition is applied through the language generation

(Sec. 3.3.1). If a real-number priority is provided in parentheses at the end of any NATEX, the

generated string becomes a candidate system response. A priority value higher than any outgoing

system transition in the dialogue state machine results in the candidate becoming the chosen one;

thus, no dialogue state machine transition is taken. Often however, a developer can choose to omit

the priority value to use NATEX purely as a state updating mechanism.

This formalism allows flexible interoperability between state machine-based and information

state-based dialogue management. Given E-STDM, developers have the latitude to develop a system

entirely within one of the two approaches, although a mixed approach lends the best balance of

development speed and dialogue sophistication.

3.4 Design and Deployment of Emora

This section presents Emora, a socialbot developed in collaboration with the Emory University

Alexa Prize 3 team. The goal of Emora’s development and deployment was to provide Amazon

Alexa users with engaging human-computer dialogue in the open-domain chat-oriented setting of

the Alexa Prize. To accomplish this, a major design goal of Emora was to create interesting and

fluent dialogue, but to reach beyond information-based chat so that Emora feels more like a caring

friend to users than an information desk. In addition to providing a valuable application to users,

Emora’s design tests the following hypothesis: conversational AI is more engaging to users when
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focusing on personal chat that prioritizes opinions and experiences instead of information-oriented

chat concerned with providing detailed and accurate information.

Section 3.4.1 describes the user experience design and philosophy of Emora’s development in

additional detail. Section 3.4.2 provides an analysis of Emora’s performance in the Alexa Prize

application setting.

3.4.1 Conversation Design

Following the goal to design Emora as a chatbot capable of engaging in human-like social aspects

of conversation, Emora was designed to reach beyond opinion-oriented conversation and support

personal conversation. Personal conversation is distinguished from opinion-oriented conversation

based on whether speakers are sharing thoughts and attitudes towards entities that are regularly

present and impactful to their daily lives. For example, stating an opinion about a movie would

be regarded as opinionated but not personal, whereas a speaker expressing an opinion towards a

class they are enrolled in would be considered personal, since the class has a direct and substantial

involvement in the speaker’s own life. Although this distinction exists along a continuum, it is

helpful to explicitly focus on driving a more personal conversation to improve the human-like

qualities of Emora.

Table 3.1 presents a simulated conversation with the socialbot. The given conversation is an

exemplification of the personal-experience-focused dialogue strategy that is the main novelty of the

approach. It provides the general interaction style of sharing and receiving personal experiences

with the user in a manner that balances displaying an interest in the user’s experiences through

question-asking and giving open-ended statements that allow the user the freedom to respond as

they wish.

Supporting personal, experience-oriented conversation in open-ended chat is especially challeng-

ing for two reasons. First, experience-oriented conversation evokes a wider range of user satisfaction

than information-oriented conversation. Engaging with users on subjects such as their daily ex-

perience, recent challenges, and interpersonal relationships can lead to deeper, more meaningful
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ID Utterance Slot Table Stack

E1
I’ve been hearing a lot from people about how strange it is

[ ]
to live with the corona virus. Has your life changed much?

U1 Yeah my school has online courses now
student=True

[CoS]
remote=True

E2 Oh, are you liking your online classes? [CoS]
U2 Not really [CoS]

E3(a)
Oh yeah, it is hit and miss for a lot of people.

[CoS]
Definitely just try to do the best you can.

E3(b)
Actually, I have seen something pretty uplifting recently.

[ ]Have you seen those videos where zoos are letting some
of their animals out of their cages to roam around?

U3 No [ ]

E4(a)
My favorite one was the penguins at the Chicago zoo,

[ ]
you should check it out!

E4(b)

Anyway, the good news is that this virus won’t last forever

[ ]
and people are taking steps in the right direction to lower
its impact. I know things might seem weird right now, but
just do the best that you can and stay positive.

U4
I will try to but its pretty stressful, i am having a hard time

need_grocery=True [CoE]
buying groceries

E5

Yeah, that’s tough. None of my friends can find necessities

[CoE]
like toilet paper in stores anywhere. Honestly, who would
have ever imagined there would come a time when toilet
paper was such a sought after item?

U6 It is crazy [CoE]
E6(a) For sure. [CoE]
E6(b) So, what did you get up to today? [ ]
U6 I called my mom activity=talk_to_mom [ ]

E7
It is good to hear that you are keeping in touch with the

[ ]
people in your life. Are you close to your mom?

U7 We are pretty close [ ]

E8(a)
Wow, you sound like you are really close to your family.

close_to_mom=True [ ]
I am glad to hear that.

E8(b)
So, I remember you saying something about being a student.

[ ]
I am actually a student too. Do you like school?

U8 Yes I do likes_school=True [ ]

Table 3.1: Simulated interaction with Emora, modeled on interactions observed from real users.
User inputs are denoted as U#. System responses involving multiple state transitions are denoted on
separated contiguous lines as E#[a-b]. The third column indicates the slot values tracked from
a given user utterance. The fourth column displays the contents of the stack at each point in the
conversation (CoS: covid_sympathy, CoE: covid_end).
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interactions, but it can also quickly introduce negative emotions and frustration if these topics are

not handled carefully. A second challenge is that experience-oriented conversation often requires

reasoning abilities. For example, suppose the user mentions a spouse to the socialbot. In this case,

if the socialbot then asks the user "Are you a student?", the socialbot will likely be perceived as

inattentive or unintelligent by the user, often provoking a reaction of frustration. On the other hand,

the socialbot’s ability to succesfully reason and provide a response that incorporates information

shared by the user, such as responding "Do you have any kids?", will often result in an engaging

experience where the user feels understood.

The E-STDM approach used to design Emora makes it easy to encode custom topic introductions

and dynamic commonsense reasoning, since slots encoding what Emora has learned about the

user are stored in the structured conversation state as the conversation progresses. By handcrafting

responses and custom policy rules that are dynamically triggered based on Emora’s dialogue state

representation, Emora leverages the commonsense reasoning ability of human developers to make

engaging interactions more likely and avoid frustrating ones.

3.4.2 Results and Analysis

Impact of Opinion-Oriented Conversation Design Since one of the major focuses for the social-

bot was on incorporating opinion-driven conversations, empirical results are presented quantifying

the importance of opinion sharing in chat. Over a period of three days in early April, an A/B test

was conducted between a fact-oriented coronavirus opening and an opinion-oriented coronavirus

opening, keeping the remainder of the system stable. Half of the users received the fact-oriented

opening whereas the other received the opinion-oriented opening. Table 3.2 shows the results of the

A/B test, suggesting that opinion-oriented conversation is better received among users, even when

the broader conversation domain is the same.

Impact of Personal Conversation Design In addition to the analysis of the opinion-oriented

conversation, an analysis is performed to investigate the impact of conversation that focuses



32

Type Average Rating
Fact 3.59
Opinion 3.73*

Table 3.2: Results of A/B test for fact-based and opinion-based coronavirus openings. (*) denotes a
statistically significant result, p < 0.10.

specifically on personal experiences and information. The average rating was calculated for

conversations that contained the Life topic3 and the average rating of conversations that contained

a conversational style that did not focus on personal experience sharing: Movies, Music, Virtual

Reality, and Sports. The results of this analysis appear in Table 3.3. Note that, as described in

Section 3.4.1, personal conversation is distinguished from opinion-oriented conversation that does

not contain personalized elements. The four above components whose ratings comprise the "Info

and Opinions" category in Table 3.3 have an opinion-oriented focus, but do not focus on personal

information. Other topics are excluded from the analysis, such as the pets component, since it has

some elements of personal information sharing as well as many fact-oriented elements. Additionally,

conversations with 3 or less turns were removed to reduce noise from uncooperative users. Results

indicate that experience-oriented conversations are preferred to opinion-oriented conversations.

Type Average Rating
Info and Opinions 3.79
Personal Experience 3.85*

Table 3.3: The average rating of conversations stratified by the types of components they contain.
(*) denotes a statistically significant result, p < 0.10.

Impact of Current Events on Conversation Satisfaction In order to begin conversations with

users in a reliably natural way, several conversation openings were crafted that specifically targeted

holidays and current events. For Valentine’s Day, April Fool’s Day, and Easter, these opening topics

were deployed instead of a generic opening. Figure 3.2 shows the average user score over the time

periods where these current-event-based openings were deployed. the results present an indication

3Mutually-exclusive topic labels were assigned to each of Emora’s state nodes in the dialogue transition graph,
making topic mentions measurable.
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that these special openings have a positive impact on the user’s satisfaction and impression of the

socialbot. All time periods in which the Holiday openings were deployed display a positive trend

in average user ratings. Similar to the Holiday openings, the COVID-19 opening shown in Figure

3.2(a) also displays a positive effect on the user ratings. Unlike the Holiday components, whose

underlying current event is more transient, COVID-19 was a dominating event during Emora’s

deployment and, in line with this, the positive impact of the COVID-19 Opening seems to have

been sustained over time.

(a) The period when COVID-19 was the opening. (b) The day that April Fools Day was the opening.

(c) The period when Valentine’s Day was the opening. (d) The period when Easter was the opening.

Figure 3.2: The average daily and last seven day user ratings for the time periods surrounding
the current-event-focused openings. Single day openings are indicated by a red dashed line and
multi-day openings are denoted by the red highlighted section in each graph.

Overall Performance Figure 3.3 shows the daily and last seven day average user ratings that

were received during the course of the Quarterfinals and Semifinals periods. There is a definite

positive trend, providing empirical support that the various changes and system updates made to
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Emora’s dialogue management improved user experience. Additionally, Emora took first place in

the final competition results out of the 10 socialbots submitted by university teams. Final placement

was decided by third-party judges invited by Amazon who scored Emora an average quality of 3.81

out of 5 on a Likert scale. The second and third place runners-up scored 3.17 and 3.14, respectively.

Figure 3.3: The daily average user rating and the average seven day user rating received during the
Quarterfinals and Semifinals.

3.5 Experimental Evaluation of Emora

The Emora-STDM approach to human-computer dialogue is radically different than the modern

approach seen in state-of-the-art research. This is primarily due to the design philosophy of Emora-

STDM for supporting flexible and controllable real-world dialogue applications, at the expense

of a large amount of developer effort required to handcraft NLU NATEX patterns and response

logic. By contrast, research focuses on data-driven approaches for human-computer dialogue. These

approaches are in theory more scalable since they are capable of creating dialogue systems at
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virtually zero human labor cost for any scenario in which data is available. However, training a

neural human-computer dialogue model in a way that only optimizes the objective of imitating

human behaviors seen in the data fails to account for the unavoidable need to control dialogue

system behavior if the goal is to deploy the dialogue system in a live application setting. Thus, a

question arises: what are the characteristic differences in the behavior and overall performance

of handcrafted vs state-of-the-art data-driven approaches to dialogue system development? This

section addresses this question by presenting an experimental evaluation of Emora, a case study

of a dialogue system relying entirely on handcrafted elements operating atop structured dialogue

state, as well as three of Emora’s contemporaries that claimed state-of-the-art for various aspects of

chat-oriented dialogue.

3.5.1 Chatbot Selection

To evaluate the strengths and weaknesses of chat-oriented dialogue (COD) models, chatbots are

selected using a two-stage process: (1) a literature review to identify chatbot candidates, and (2) a

pilot evaluation to select the final set of bots.

Literature Review To promote diversity among the selected chatbots, the review focused on four

popular themes of the human-computer chat: (1) Knowledge-grounded chat, (2) Empathetic chat,

(3) Self-consistent chat, and (4) General open-domain chat with large pre-training resources like

Reddit. Candidate chatbots are selected from each theme using the following criteria:

1. The bot must demonstrate state-of-the-art performance in a task related to the theme.4

2. The implementation must be provided.

3. The response latency of the bot must be <10 seconds using modern GPU hardware.

This review yields the 6 chatbot candidates in Table 3.4: Blender-Decode [49], Blender2 [82],

BART-FiD-RAG [70], Emora [14], DukeNet [45], and CEM [66].

4Note that selection occurred in October 2021.
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Model Theme N Q Pass

Blender-Decode Consistency 10 4.1 ✓

Blender2 General 10 3.8 ✓

BART-FiD-RAG Knowledge 10 3.5 ✓

Emora General 10 3.3 ✓

DukeNet Knowledge 9 1.9 ✗

CEM Empathy 12 1.1 ✗

Table 3.4: The pilot results for 6 bots, showing the theme of the approach (Theme), the number
of collected conversations (N), and the avg. dialogue-level Likert quality rating (Q). Pass denotes
which models passed the verification criteria and were included in the full study.

Chatbot Selection A pilot evaluation using the 6 chatbot candidates is conducted in order to verify

the multi-turn dialogue capability of the chatbot candidates. 10 students majoring in Computer

Science or Linguistics are invited to interact with randomly assigned chatbots in 3-5 text-based

conversations, each of which consisted of 30 turns.5 At the end of each conversation, students are

asked to rate the quality from 1 (least) to 5 (most). Based on the pilot results (Table 3.4), DukeNet

and CEM are excluded from the full evaluation because they are unable to hold satisfying multi-turn

conversations, despite their reasonable single-turn response generation capabilities.

3.5.2 Evaluation Methods

Two human evaluation methods are chosen for the study, both of which ask a 3rd party human judge

to read the text conversation between a chatbot and human interactor and follow instructions to

provide judgement labels.

Turn Likert Annotators provide turn-level ratings from 1 (least) to 5 (most) for the 8 labels shown

in Table 3.5. The label set proposed in Finch and Choi [13] is used, which results from a detailed

survey of characteristics used in chat evaluation and has better coverage than alternatives like the

set used in ACUTE-Eval [36]. The dialogue-level metric is measured as the mean rating of a single

dialogue’s turns. The bot-level metric is calculated as the mean rating of all turns.

5A “turn” is defined as ONE message from a single interactor.
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Label Abbr. Definition

Consistency Cont Responses do not produce information that contradicts other information
known about the system

Emotion Understanding Emot
Responses indicate an understanding of the user’s current emotional
state and provide an appropriate emotional reaction based on the current
dialogue context

Engagingness Engt Responses are engaging to the user and fulfill the particular conversa-
tional goals implied by the user

Grammaticality Grat Responses are free of grammatical and semantic errors

Informativeness Inft Responses produce unique and non-generic information that is specific
to the dialogue context

Quality Quat The overall quality of and satisfaction with the dialogue

Proactivity Prot Responses actively and appropriately move the conversation along dif-
ferent topics

Relevance Relt Responses are on-topic with the immediate dialogue history

Table 3.5: The 8 labels for Likert evaluations, henceforth referred to using their abbreviations and
colors.

Behavior Classification: ABC-Eval is a novel evaluation methodology for chat-oriented dialogue

in which annotators provide binary labels on the turn-level indicating the presence or absence of a

particular chat characteristic. The included chat characteristics are defined in Table 3.6. Dialogue-

level metrics are calculated as the proportion of turns that display the characteristic of the dialogue.

Bot-level metrics are calculated as the proportions of turns that display the characteristic over all

bot dialogues. ABC-Eval labels were validated as being more reliable and informative regarding

dimensional aspects of chat quality as opposed to existing evaluation methods, such as average

Likert ratings [15].

3.5.3 Evaluation Study

The full evaluation study consists of the collection of 24 labels per conversation. This collection

was split into 16 independent evaluation tasks as follows:

• 8 ABC-Eval tasks, each composed of 1 to 4 labels as denoted by groupings in Table 3.6

• 8 Turn Likert tasks, each composed of 1 label from Table 3.5
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Label Abbr. Description Inspired by

Uninterpretable !Intb It is difficult to understand the intended meaning of part or all of the response. 1, 2, 3, 4, 5, 6

Antisocial !Socb The response is insulting, hateful, or excessively vulgar. 2, 7, 8, 9

Preference Info Preb The response expresses the bot’s preferences, wishes, or values.
10, 11

Life Info Lifb The response shares information about the bot’s life or experiences.

Empathetic Empb The response shows an understanding and reacts appropriately to someone’s emotions.
11, 12, 13Lack of Empathy !Empb The bot misunderstands or reacts inappropriately to someone’s emotions.

Commonsense
!Comb The response misunderstands or contradicts common knowledge. 2, 14, 15, 16Contradiction

Fact Usage Facb The response accurately incorporates encyclopedic or expert knowledge. 1, 2, 11, 17, 18,
Fact Contradiction !Facb The response hallucinates or inaccurately presents encyclopedic or expert knowledge. 19, 20

Self Contradiction !Selb The bot contradicts something it said earlier in the dialogue.
2, 3, 6, 20, 21,Partner Contradiction !Parb The bot contradicts or misremembers something the user said earlier in the dialogue.

Redundant Redb The response inappropriately repeats information presented earlier in the dialogue.
22, 23

Ignore Ignb The response ignores what the user just said.

1, 2, 3, 6, 24
Irrelevant !Relb The response interrupts the current topic of discussion by presenting unrelated information.
Follow-up Folb The response explores, elaborates on, or asks about the ideas shared in the previous turn.
Topic Switch Topb The response introduces a new topic of conversation.

Table 3.6: The 16 behavior labels within ABC-Eval. Row separators denote evaluation task
groupings. Bold indicates behavior labels kept in final set. [1] Gopalakrishnan et al. [17], [2]
Higashinaka et al. [23], [3] Mehri and Eskenazi [42], [4] Mehri and Eskenazi [43], [5] Phy et al.
[53], [6] Sanguinetti et al. [67], [7] Beattie et al. [3], [8] Sun et al. [73], [9] Xu et al. [87], [10]
Rashkin et al. [61], [11] Smith et al. [71], [12] Majumder et al. [40], [13] Rashkin et al. [60], [14]
Zhong et al. [95], [15] Zhou et al. [96], [16] Zhou et al. [97], [17] Gupta et al. [18], [18] Honovich
et al. [24], [19] Santhanam et al. [68], [20] Shuster et al. [70], [21] Li et al. [37], [22] Nie et al. [49],
[23] Welleck et al. [80], [24] Xu et al. [88] .

The 16 evaluation tasks are posted on SurgeHQ’s annotation platform6 to be completed by dedicated

remote workers (Surgers) with experience in NLP annotation. Each time an evaluator connects

to one of the evaluation tasks, they are assigned a randomly selected conversation to annotate.

Evaluators are compensated per annotated conversation per task, at an estimated rate of $20/hr.

Evaluators are allowed to annotate up to 60 conversations per task. The final evaluation dataset

consists of 400 conversations, each with results for all 24 labels.
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!Socb !Comb Ignb !Facb !Relb !Empb !Parb Redb !Selb Topb !Intb
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0.3 BART-FiD-RAG
Emora

Blender2
Blender-Decode

Figure 3.4: Proportions of turns expressing undesirable behaviors, with 95% Wilson score confi-
dence intervals.

3.5.4 Chatbot Evaluation

Facb Empb Folb Lifb Preb
0.0

0.2

0.4

0.6 BART-FiD-RAG
Emora

Blender2
Blender-Decode

Figure 3.5: Proportions of turns expressing desirable behaviors, with 95% Wilson score confidence
intervals.

To evaluate the strengths and weaknesses of our 4 selected chatbots, results are presented for the

400 collected conversations across all ABC-Eval metrics (Figure 3.4 and Figure 3.5), and Likert

Turn metrics (Figure 3.6).

Commonsense Violations of commonsense are one of the most frequent problems reported across

the 4 bots, with about 10-20% of turns containing a commonsense contradiction, depending on the

chatbot. Emora demonstrated the best commonsense ability of all chatbots.

6https://www.surgehq.ai

https://www.surgehq.ai
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Coherence All chatbots had occasional issues maintaining dialogue coherence. Across bots,

about 10-15% of responses contained irrelevant information, and around 10% of responses ignored

something the human interactor said completely. Based on our results, Emora had the overall worst

coherence capability, performing poorly on Reld and Relt, worst on the ignore error Ignb, and 2nd

worst on the irrelevant error !Relb.

Consistency Although the rate of partner contradictions, self contradictions, and redundancies

was relatively lower than some other issues like ignoring the user or commonsense violations, these

consistency issues each occurred about 5-10% of the time in the three data-driven models. True to

its approach, Blender-Decode was able to mitigate all three inconsistent behaviors compared to the

other two data-driven bots; however, its poor performance on other ABC-Eval metrics suggests that

incorporating the Decode model into response generation created trade-offs between consistency

and other aspects of dialogue quality. Unsurprisingly, Emora had virtually no self-contradictions

!Selb, although redundancies Redb and partner contradictions !Parb occurred about as often as with

the neural chatbots.

Knowledge Rates of correct fact usage show that BART-FiD-RAG is the most factually-oriented

chatbot, with nearly 40% of its responses containing correct factual world knowledge, compared

to about 20% in the other data-driven models. However, BART-FiD-RAG also presents incorrect

factual information in about 15% of its responses, along with Blender+Decode. These rates of

presenting incorrect information pose a serious challenge to settings where misleading information

is unacceptable. Notably, Blender2 had a very low (< 1%) rate of presenting incorrect information,

even though it incorporated world knowledge in 20% of its responses. Emora never hallucinated

factual knowledge due to her handcrafted response generation approach.

Empathy All four bots seem to appropriately respond to a their human partner’s emotions at high

rates (about 30-40% of turns). However, there is still room for improvement, since our evaluation

shows that chatbots failed to give an emotionally appropriate response 5-15% of the time. Blender2
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was the best overall at understanding and reacting to the interactor’s emotions, with only 5% of its

turns labeled with !Emp. Emora’s empathetic ability was poor, with about 15% !Empb errors.

Overall Quality Shown in Figure 3.6, our overall quality results suggest the following ranking:

Blender2 > Emora > Bart-FiD-RAG > Blender-Decode . These quality results are consistent with

the rates of erroneous behaviors we see among these chatbots.

Cont Emot Engt Grat Inft Prot Quat Relt

3

4

5
BART-FiD-RAG
Emora

Blender2
Blender-Decode

Figure 3.6: Average Turn Likert ratings of the conversations, with 95% Student’s t confidence
intervals.

3.6 Discussion

Overall, the results demonstrate that the characteristics of Emora and neural chatbots are quite

distinct, despite the overall quality of Emora being competitive with even the best neural chatbot

Blender2. In particular, neural chatbots were able to respond more appropriately in terms of the

relevance and empathy of their responses, with fewer instances of ignoring the user compared to

Emora. On the other hand, Emora is more consistent, with virtually zero self-consistency issues or

factual knowledge hallucinations, and superior commonsense ability compared to neural bots.

These results give some empirical backing to the theory that rule-based and neural systems are

complimentary in their strengths and weaknesses. While Emora is incapable of responding appropri-

ately to any dialogue context due to a reliance on handcrafted DST patterns and response templates,
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these constraints also enforce more reliable dialogue interactions in many cases. Furthermore, the

results are a demonstration of the effectiveness of handcrafted DST and dialogue policies, as Emora

was able to achieve competitive performance with the SoTA neural models. On the other hand, the

fact that Emora’s response generation relies entirely on handcrafted elements is a clear weakness, as

demonstrated by a high rate of relevance and appropriateness issues with her responses.

One of the most straightforward ways to combine the strengths of neural and rule-based

approaches demonstrated in this study is to simply augment neural systems with a structured

dialogue state representation using a dialogue state tracking model. Even if response generation

is not conditioned on the structured dialogue state directly, the presence of an accurate dialogue

state at each turn in the conversation would allow integrations with external components and an

easy mechanism to trigger custom behaviors when certain conditions are met. For example, large

language model (LLMs) prompting [50] provides a simple mechanism with which responses can be

reliably conditioned by custom policy controls triggered by conditions in a structured dialogue state

representation.

Despite the apparent utility, a major challenge for incorporating SoTA DST models into open-

domain dialogue systems is the limited nature of current DST data. Virtually all DST data targets

closed-domain, task-oriented systems, and suffer from a lack of variety in slot types. Future work

should look to improve the domain flexibility of DST, particularly in settings where only small

adaptation resources are required like zero- and few-shot DST, for usage in open-domain and

chat-oriented systems. The next chapter presents a strong start towards this direction by vastly

increasing the domain coverage and generalizability of dialogue state inference.



Chapter 4

Dialogue State Generation

Conventionally, Dialogue State Tracking (DST) relies on a predefined slot schema specifies the

types of information (slots) to be tracked. This slot schema is provided to DST models in the form

of labeled examples or natural language descriptions for each slot to perform domain adaptation.

However, defining the slot schema and collecting these domain adaptation resources is costly

[62, 5], resulting in a barrier to apply DST in practice. Furthermore, the domain adaptation abilities

of DST models may be limited due to poor diversity in training data caused by the high cost of

data collection. To alleviate these resource barriers, the Slot Schema Induction task has been

proposed to automatically induce a slot schema and value examples from unlabeled dialogue data

[27, 56, 85]. However, Slot Schema Induction approaches rely on clustering value spans extracted

from a large amount of unlabeled dialogue data, which may not be available for many application

settings. Furthermore, outputted value clusters contain no slot names and require substantial human

interpretation and revision to finalize the slot schema.

This chapter presents a new task, Dialogue State Generation (DSG), which aims to infer dialogue

states for new domains while eliminating the resource constraints imposed by both DST and Slot

Schema Induction. Given a dialogue context, DSG models are required to infer both the slots and

values of the dialogue’s state without access to any domain-specific resources such as slot names,

descriptions, examples, or other unlabeled dialogues. Thus, success in this task would provide

43



44

reliable dialogue state tracking in virtually any domain without the need to define a slot schema or

collect other resources, since slot schema induction occurs automatically as a part of the model’s

inferences.

An approach and evaluation are presented that tackle the main initial challenge for DSG: domain

generalizability. Because DSG models are provided zero in-domain resources at inference time,

they must be able to generalize to any domain to discover appropriate slots and fill them with correct

values. To achieve this, supervised training of a DSG model would thus require a high degree of

training data diversity; however, existing DST datasets cover a limited number of domains. This

challenge is overcome by leveraging large language models (LLMs) to construct a domain-general

DSG pipeline using prompting instead of fine-tuning. Due to the steep inference cost of LLMs, a

model is also distilled1 from the LLM pipeline by generating a synthetic dialogue dataset spanning

1, 000+ domains, silver-annotating it with the pipeline, then training an end-to-end DSG model.

Experiments demonstrate that our DSG models successfully generalize to new domains and out-of-

distribution data with negligible performance drop-off, whereas a baseline model trained on existing

data is incapable of such generalization. The presented DSG task and models thus make substantial

progress towards zero-resource dialogue state inference.

4.1 Dialogue State Generation (DSG)

Dialogue State Generation (DSG) task is defined as follows: given a dialogue history D1..t from

turn 1 to t, it aims to produce a set of slot-value pairs St = {(s1, v1), (s2, v2), ..., (sk, vk)}, which

accurately represents all information in D1..t relevant to either speaker’s goals. Unlike DST where a

specification of goal-related slots is predefined by the slot schema, DSG requires discovering slots

that are appropriate for the dialogue, in addition to correctly identifying their values. Other than the

dialogue history itself, no guidance or resources are provided to the DSG model during inference.

Moreover, in this work, DSG models are exclusively tested on unseen domains, which prevents

1Using symbolic distillation as in West et al. [81]
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signaling in-domain information via training examples.

Accurate DSG inferences are characterized by the Correctness of each slot-value pair (si, vi)

in representing the type and value of some information appearing in D1..t, and the Completeness

of each inferred state St in covering all goal-related information appearing in D1..t. Additional

definition of Correctness and Completeness are given in Section 4.6.3. Note that since the primary

goal of this work is to tackle the problem of domain generalizability for DSG, this work does

not evaluate whether slot names maintain consistency across multiple inferences. Although the

consistency of slot naming is required to link DSG slot outputs to application infrastructure such as

API call parameters, this problem is partially solved via simple pattern matching or clustering to

resolve slot names, and it is left to future work to explore a full solution.

Finally, note that the models presented in this work infer each state update Ut from D1..t, which

represents the set of slots whose values have changed since the previous turn such that:

St = update(St−1, Ut)

This results in O(|Ut|) for obtaining St from St−1, which would be O(|St|) if all dialogue states in

St were generated individually (|Ut| ≤ |St).

4.2 Related Work

Dialogue State Tracking is the task of inferring the correct value for each of several predefined

slots throughout the course of a dialogue. DST has been tackled using fully supervised [20, 86, 83]

and few-shot [39, 69, 7] approaches, where the model learns to track each slot using labeled example

data. The utility of these approaches is limited in practice because of their reliance on labeled

examples, which are costly to collect. Zero-shot DST addresses the cost of data collection by

providing models with only a natural language description for each slot [30, 22, 78, 75]. However,

zero-shot DST still incurs a nontrivial labor cost to work, especially since the development of

slot descriptions often requires several revisions before the developer’s intent is aligned with the
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model interpretation of each description. DSG eliminates this labor cost by requiring the model to

infer all relevant dialogue state information without any predefined resources. In this way, model

interpretations are all provided “up-front," allowing developers to immediately select useful slots

from model inferences to be integrated into a broader dialogue application.

Slot Schema Induction is the task of extracting important information from unlabeled dialogue

data and separating these extracted information values into appropriate slot categories. Like DSG,

Slot Schema Induction must infer what slots and values are critical for the dialogue’s goals with

no guidance other than the dialogue text itself, and was proposed to alleviate the manual effort of

slot schema creation. Recent approaches to this task leverage tagging models trained on related

tasks such as semantic role labeling to identify candidate values, then cluster vector encodings of

these values into slots [27, 56, 85, 92]. There are three major limitations of Slot Schema Induction

that DSG addresses. First, Slot Schema Induction assumes access to a large number of unlabeled

dialogues within a particular task domain in order to induce appropriate slots, whereas DSG models

are capable of discovering important slots from even a single dialogue. Second, Slot Schema

Induction is limited to discovering slots and values as extracted spans from the original dialogue

text; DSG’s values can instead be abstracted or inferred. Finally, Slot Schema Induction treats each

value cluster output as an induced slot, which requires manual effort to interpret and name each

cluster to finalize the slot schema. On the other hand, DSG models infer slot names as a part of the

DSG task formulation, making discovered slots immediately interpretable.

DST Data Diversity One of the challenges facing recent work in DST is the limited amount

of available training resources, particularly with respect to the diversity of task domains and slot

types. The most diverse dataset, Schema Guided Dialogues (SGD), covers 16 domains and 214

slot types [62]. MultiWOZ covers 5 domains and 31 slot types [5, 89]. The low diversity in these

training resources is likely to limit generalizability to unseen target domains. Some existing works

in few-shot DST mitigate this issue by generating synthetic dialogues for the target domain using

template-based methods [2, 1] or PLMs [29, 48, 77]. However no previous work has attempted fully
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automatic generation of new task-oriented dialogue domains. DSG addresses the limited diversity

in existing resources by automatically annotating a synthetic dataset of over 1,000 task domains

with silver dialogue state labels.

4.3 GPTPipe: DSG with Zeroshot Pipeline

The primary challenge of DSG is the generalization of dialogue state inference to diverse information

types and domains. Given the exceptional zero-shot performance of instruction-tuned large language

models (LLMs) on a wide variety of tasks [4, 31, 22], they are leveraged as an initial approach to

DSG. Specifically, this section presents a pipeline that uses LLMs to automatically annotate every

dialogue turn with a state update in two stages: Question-Answer (QA) Pair Generation to deduce

the key information in each turn (Section 4.3.1) and Slot-Value Translation to transform those QA

pairs into the corresponding slot names and values (Section 4.3.2). Figure 4.1 illustrates the full

pipeline approach. Since GPT2 models are selected as LLMs for our experiments, the approach is

denoted as GPTPipe.

guitar level 60Okay, I'm lowering the guitar to 60 
and bringing the vocals up to 70. 

How does that sound?

That's better. Can we also adjust 
the feedback and distortion levels 

while we're at it? 

Q: What level is the guitar at now?
A: The guitar is now at 60.

Q: What level are the vocals at now?
A: The vocals are now at 70.

Q: How does the new sound balance sound?
A: That's better.

Q: Can we adjust the feedback levels?
A: [Unknown]

Q: How does the new sound balance sound?
A: [Unknown]

Q: Can we adjust the distortion levels?
A: [Unknown]

vocals level 70

sound balance ?

sound balance improved

adjust feedback levels ?

adjust distortion levels ?

Figure 4.1: Two example inferences of GPTPipe, a GPT-based DSG pipeline that infers dialogue
state information by first generating question-answer pairs for important information shared in a
given dialogue turn (Section 4.3.1), then translates questions to slot names and answers to values to
obtain the final dialogue state update (Section 4.3.2).

2gpt-4-0314 and gpt-3.5-turbo-0301 were used for QA Pair Generation and Slot-Value Translation respectively.
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4.3.1 Question-Answer Pair (QA) Generation

To generate a state update Ut given a dialogue history D1..t, a prompt Pt containing the last two

turns Dt−1,t, instructs GPT to break down all the information in turn t as a set of QA pairs. Only the

last two turns are included to reduce irrelevant information from previous turns that could misguide

the state update for the current turn t. To further mitigate this issue, every turn is prepended

with a speaker tag, allowing GPT to soley focus on turn t by referring to the corresponding

speaker. A set of QA pairs QAt = {(qt1, at1), . . . , (qtk, atk)} is generated by this method, where each

question qti represents an information type either shared or requested during the turn and its answer

ati summarizes the information value.

State updates are produced to monitor the change in values of slots throughout the dialogue,

enabling tracking whether information requests from one speaker are satisfied through information

shared by the other speaker. To implement this, Pt explicitly designates the answer Unknown for

use in any QA pair, where the question represents an information request made by the current

speaker. Therefore, for each turn, a set of unanswered questions for the prompt Pt can be identified

as follows:

Rt = {∀i. qti : 0 < i ≤ t ∧ ati = Unknown}

A second prompt P ′
t is used to answer each question in Rt using two turns Dt,t+1, which

produces a set of QA pairs QA′
t+1 comprising slots from turn t filled with values in turn t + 1.

Included in P ′
t is an instruction to use Unknown for questions whose answers are not present in turn

t+1. Such unanswered questions are removed from QA′
t+1, leaving only QA pairs with information

requested in turn t and shared in turn t+ 1. QA′
t+1 are then appended to the next prompt Pt+1 to

generate a new set QAt+1 for turn t+ 1. Including QA′
t+1 in Pt+1 guides GPT to generate only new

QA pairs that have not already been covered by QA′
t+1.
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4.3.2 Slot-Value Translation

The second stage of GPTPipe translates every QA pair in QAt (Section 4.3.1) to a slot-value

pair. GPT tends to generate overly detailed slot names when answers are provided along with

questions. Hence, slot names and values are derived using separate prompts. First, a prompt Ps is

used to translate all questions in QAt into corresponding slot names. No context from the dialogue

is provided, nor do we include any answers from QAt in Ps. The result is a set of slot names

Nt = {st1, . . . , st|QAt|} representing information types mentioned in turn t.

Finally, a prompt Pv, comprising questions and answers in QAt as well as the slot names in Nt, is

used to translate each answer into a value for the corresponding slot name. In addition, Pv highlights

that a value can be a concise phrase, number, span, category, score, boolean, list, or other form,

aiding the model in generating values suitable for the respective slot names, rather than always using

natural language phrases as values. QA pairs with the Unknown answer are excluded from Pv, as they

are translated into a special token ? to represent a requested slot. Pairing each generated value with

its corresponding slot name results in the dialogue state update Ut = {(st1, vt1), . . . , (st|QAt|, v
t
|QAt|)}.

4.4 DSG5K: New Diverse DSG Dataset

Existing dialogue datasets rich in information, such as Schema Guided Dialogues (SGD) [62] and

MultiWOZ [5], are limited by a small number of domains. Open-domain datasets such as Blended

Skills Talk [65] lack the information density for summarizing the slot and values of a dialogue

state, rendering them insufficient for building robust DSG models. Meanwhile, previous work has

showcased LLM’s proficiency in generating high-quality dialogue data [46]. Thus, the experiments

in this chapter test the hypothesis that by creating an information-rich dataset using LLMs across

diverse domains, we can build a robust DSG model via symbolic distillation [81]. To this end, a

new dataset is generated using LLM dialogue generation named DSG5K, with 5,000+ dialogues

spanning 1,000+ domains. Subsequently, GPTPipe (Section 4.3) is adapted to annotate DSG5K

with silver labels, producing a dataset for training DSG models.
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Scenario 
Derivation

Information 
Composition

Musician talks to sound technician in order to 
adjust levels.

1. Specific frequency ranges that need to be 
    boosted or cut
2. Desired tone or feel of the overall mix
3. Desired volume levels for individual 
    instruments and vocals

Dialogue 
Generation

Artist: Right now, the guitar is a bit too loud 
compared to the vocals. Can we bring the 
guitar down and bring the vocals up?
Tech: Got it. What levels are we at right now?
Artist: The guitar is at about 80, vocals at 60.
Tech: Okay, I'm lowering the guitar to 60 and 
bringing the vocals up to 70. How does that 
sound?
Artist: That's better. Can we also adjust the 
feedback and distortion levels while we're at it? 

Figure 4.2: Examples of the three stages in the data generation pipeline used to create DSG5K.

Dialogues are generated in three stages. Initially, domains are derived through an iterative

process of generating and refining dialogue scenario descriptions (Section 4.4.1). Next, an unstruc-

tured list of information types associated with every scenario is generated (Section 4.4.2). Third, a

dialogue is crafted based on the scenario description and the unstructured information list (Section

4.4.3). Figure 4.2 gives an overview of this dialogue generation approach.

4.4.1 Scenario Derivation

Algorithm 1 shows the scenario derivation method. GPT is prompted to create a set of k dialogue

scenario descriptions (L3). This mini-set is combined with the previously obtained scenarios, where

each scenario description is encoded into an embedding by SentenceBERT [63],3 and the resulting

embeddings are clustered through a community detection algorithm (L4).4 A fresh set of scenario

descriptions is created by selecting any embedding from every cluster, which is mapped back to

its corresponding scenario description (L5). This iteration continues until the set reaches to the

3SentenceBert model: all-MiniLM-L6-v2
4https://www.sbert.net/docs/package_reference/util.html

https://www.sbert.net/docs/package_reference/util.html
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requested size (L2). DSG5K was produced using parameters k = 100, n = 1000.

Algorithm 1: Scenario Derivation
Input :k: mini-set size, n: final set size.
output :S: the final set containing n scenarios.

1 S ← ∅
2 while |S| < n do
3 S′ ← gpt_generated_scenarios(k)
4 E← cluster(embed(S ∪ S′))
5 S ← {∀C∈E. map(any(c)) : c ∈ C}
6 end
7 return S

4.4.2 Information Composition

In a pilot analysis, generating dialogues directly from scenario descriptions (Section 4.4.1) using

GPT resulted in generic contents that lack sufficient details for effective DSG model training. To

address this issue, an intermediate step was included to compose relevant information for each

scenario. In this step, GPT is asked to generate a comprehensive list of information types based

on the provided scenario, serving as a knowledge base to retrieve various information associated

with the scenario. The GPT output, outlining scenario-oriented information types, is then used to

condition the following stage (Section 4.4.3), enhancing the detail and specificity of the generated

dialogues.

4.4.3 Dialogue Generation

With a scenario and its associated information types gathered in the previous two stages, GPT is

asked to generate a dialogue. The prompt encourages GPT to provide detailed responses and make

up values for the information types, while remaining straightforward in its structure.

With this three-stage dialogue generation approach, 1,003 scenarios are derived and 5 unique

dialogues are generated per scenario, yielding a total of 5,015 dialogues in the final dataset. Table 4.1

presents the statistics of DSG5K after applying GPTPipe (Section 4.3) to annotate each turn with

silver state update labels.
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Metric Value Metric Value

Scenarios 1,003 Unique Slots 173,572
Dialogues 5,015 Unique SlotsS 244.6
Turns 100,471 Unique SlotsD 64.9
TurnsD 20.0 Unique SlotsT 3.3
Tokens 2,061,332 Turns w/o SV 1,583
TokensT 20.5 TokensSN 2.4
Slots 324,973 TokensSV 2.0

Table 4.1: The statistics of the DSG5K dataset (Section 4.4) with dialogue state update labels
generated by GPTPipe (Section 4.3). SN/SV: slot names/values respectively, *D/T/S/SN/SV : * per
dialogue/turn/scenario/SN/SV, respectively.

4.5 End-to-End (E2E) DSG Model
The DSG5K dataset (Section 4.4) is used to train an end-to-end DSG model, where DSG is framed

as a sequence-to-sequence task to predict a dialogue state update Ut for each turn t. A pretrained

language model with an encoder-decoder transformer architecture is used as a base model. For

training, the dialogue history D∗..t and the state update Ut are linearized as described in Figure 4.3.

To distinguish speakers and turn boundaries, the speaker tags [S1] and [S2] are prepended to all

turns accordingly. For better efficiency, the dialogue history is limited to the previous three turns:

Dt−2,t−1,t.

balancesound : improved feedbackadjust :levels ? distortionadjust :levels ?[sep] [sep] [sep] [eos]

Encoder Decoder

The[S1] guitar … [S2] Okay , [S1] That ‘ s better [eoi]… …. Can we also adjust the feedback

Figure 4.3: Example of input and output formats for end-to-end DSG using a sequence-to-sequence
approach.
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4.6 Experiments

4.6.1 Datasets

Two datasets are used in the experiments5: Schema-Guided Dialogues (SGD), a widely adopted

dataset for DST [62], and the new DSG5K dataset (Section 4.4). SGD consists of four held-out

domains in its test set, Alarm, Trains, Messaging, and Payment, where a held-out domain refers

to one not present in the training set. Only the turns related to those four held-out domains (or no

domain) compose the evaluation set. Furthermore, to enhance slot diversity, the Schema Guided

Dialogues Extension (SGD-X) is included by replacing every slot name in SGD with a randomly

selected one from the six alternatives provided in SGD-X for the slot [35]. For DSG5K, one

dialogue from each of the 100 held-out domains is selected for the evaluation split, and all turns

in those dialogues are included. For each turn t, a dialogue history Dt−2,t−1,t is fed into a model,

which predicts a set of slot-value pairs for the turn.

SGD DSG5K

TRN DEV TST TRN DEV TST

DO 16 16 4 903 100 100
DI 16,142 2,482 100 4,515 400 100
TU 329,964 48,726 300 90,643 7,816 300
SL 392,383 57,709 416 292,510 25,897 1,012
US 972 701 94 157,834 17,542 852

Table 4.2: The statistics of our data split. TRN/DEV/TST: training/development/evaluation sets, DO:
domains, DI: dialogues, TU: turns, SL: slots, US: unique slot names.

Table 4.2 shows the statistics of both datasets. Compared to SGD consisting of 20 domains with

1,284 unique slots, DSG5K demonstrates significantly greater diversity, comprising 1,000 domains

with 173,572 unique slot names, despite having a smaller number of dialogues.

5SGD with SGD-X slot names was chosen instead of MultiWOZ or vanilla SGD to train our baseline due to superior
performance in a pilot study.
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4.6.2 Models

Comparison is made among three models for DSG performance, SGD-DSG, E2E-DSG, and

GPTPipe. For SGD-DSG, the T5-3B model is fine-tuned [58] using the E2E approach in Section

4.5 on the SGD dataset. For E2E-DSG, a T5-3B-based model is trained using the same E2E

approach, but on DSG5K with silver labels from GPTPipe (Section 4.3).6 Finally, the zero-shot

performance of GPTPipe is assessed in comparison to the other supervised models.

4.6.3 Human Evaluation: Metrics

Due to the generative nature of DSG where both slot names and values must be inferred from the

context, evaluating DSG poses a challenge, as traditional DST metrics, such as joint goal accuracy,

rely on a fixed slot schema. To facilitate a thorough evaluation of DSG models, a human evaluation

measures the following two key aspects:

State Update Completeness measures the proportion of predicted state updates that humans

have judged to fully capture the key information in their associated turns. Human judges are asked

to read each turn within its context and make a binary decision on whether or not any essential

information is missing in the state update such that:

CP =
1

|U|
∑
∀U∈ U

I(complete(U))

U is a list of all state updates across dialogues to be evaluated and I(x) is 1 if x is true; otherwise, 0.

Note that the judges are not responsible for finding all missing information but identifying at least

one to assess completeness for efficient evaluation.

Slot Value Correctness measures the proportion of slot-value pairs that humans have judged to

accurately represent specific information in their corresponding turns. Judges are asked to mark each

6The domains in the training set are mutually exclusive from those in the development and evaluation sets.
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slot-value pair as correct if it makes sense and is entirely faithful to the content of the associated

turn s.t.:

CR =
1∑

∀U∈ U |U |
∑
∀U∈ U

∑
∀(s,v)∈U

I(correct(s, v))

Note that both the slot name s and value v must be accurate for I(correct(s, v)) to be 1.

Three human judges are trained for this evaluation by annotating the state updates predicted by a

DSG model on each of 60 turns from the held-out DSG5K data.

Inter-annotator agreement (IAA) is presented in Table 4.5, calculated for 60 turn-predictions

annotated by all 3 judges, sampled evenly across both datasets and all 3 models. Correctness IAA is

on par with similar human evaluation metrics [15]. Completeness IAA is lower. A manual review of

the annotations suggests this is because completeness requires judges to consider more information

across an entire state update compared to judging the correctness of a single slot-value pair, leading

to higher difficulty.

4.6.4 Human Evaluation: Results

Table 4.3 presents the evaluation results for the three models, SGD-DSG, E2E-DSG, and GPTPipe

(Section 4.6.2), on the DSG5K and SGD data (Section 4.6.1) using the Completeness (CP) and

Correctness (CR) metrics (Section 4.6.3). The overall results are estimated by computing the

harmonic means (HM) between the CP and CR scores.

Overall, E2E-DSG slightly outperforms GPTPipe on both datasets, showing the state-of-the-

art results. SGD-DSG exhibits subpar performance in completeness, scoring only 69.3% in the

held-out domains of its own dataset and 32.3% for DSG5K, suggesting that existing DST data, such

as SGD, may be insufficiently diverse for developing an effective DSG model. This trend persists

in the correctness results; while SGD-DSG attains the highest score at 90.8% for SGD, it drops to

72.6% on DSG5K. In fact, the results from E2E-DSG and GPTPipe are statistically significant

compared to those from SGD-DSG for all except for CR on SGD by Agresti-Caffo (p < 0.05).

E2E-DSG achieving around 95% completeness on both datasets holds promising implications
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DSG5K SGD

Model CP CR HM CP CR HM

SGD-DSG 32.3 72.6 44.7 69.3 90.8 78.6
E2E-DSG 95.7 81.2 87.9 94.7* 81.7 87.7
GPTPipe 93.3 82.0 87.3 90.0 84.7 87.3

Table 4.3: Human evaluation of SGD-DSG, E2E-DSG, and GPTPipe on DSG5K and SGD for
the completeness and correctness. * implies that the E2E-DSG result is statistically significant
compared to the GPTPipe result.

for our data generation approach in creating diverse DSG training data and developing general DSG

models. While around 81% correctness can be improved, the fact that it does not decrease when

evaluated on the out-of-distribution SGD dataset provides further evidence of the robustness of the

model.

It is highly encouraging that E2E-DSG achieves competitive performance with GPTPipe,

scoring similarly on correctness and outperforming in completeness on both datasets. This implies

the possibility of achieving GPT-level performance by fine-tuning a substantially smaller model,

T5-3B, with a relatively small dataset. On the other hand, the 82% to 85% correctness achieved by

GPTPipe reveals the limitations of the current GPT model in DSG.

4.6.5 Automatic Evaluation: Metrics

Human evaluation is reliable but costly and labor-intensive; thus, the feasibility of automatic

evaluation is explored by adapting existing metrics for generative tasks to DSG. However, estimating

similarities between predicted and reference state updates as linearized sequences is not suitable for

DSG because it fails to account for the slot-value structure. Therefore, an arbitrary similarity metric

sim is extended to measure the completeness and correctness of a predicted state update against its

reference such that it accounts for the structure.

Let Up and U r be lists of predicted and reference state updates respectively, where |Up| = |U r| =

n. Both Up
i ∈ Up and U r

i ∈ U r are associated with the same turn in a dialogue. sim(x, y) calculates

the similarity between x and y. sim-max(x, Y ) gauges the similarity between x and each item in Y ,
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finds ŷ ∈ Y with the highest similarity to x, and returns sim(x, ŷ). Let V ∗
i = [s∗1 ⊕ v∗1, .., s

∗
k ⊕ v∗k],

where (s∗j , v
∗
j ) is the j’th slot-value pair in U∗

i . Given this formulation, the completeness is calculated

as:
1

n

n∑
i=1

 1

|V r
i |

∑
∀v ∈ V r

i

sim-max(v, V p
i )


Similarly, the correctness is calculated as follows:

1∑n
i=1 |V

p
i |

n∑
i=1

∑
∀v ∈ V p

i

sim-max(v, V r
i )

For automatic evaluation, various similarity metrics are adapted: BLEU [51],7 ROUGE-L [38],

BERT score [93], and SBERT similarity [63]. GPT-3.5 is also employed by instructing to match

prediction slot-values to gold references (GMatch), assigning a score of 1 when a prediction and

reference match and 0 otherwise.

The validity of these automatic metrics is estimated by measuring their agreement with human

judgements. This is done by calculating item-level completeness scores for each state update and

correctness scores for each slot-value pair that was annotated in the human evaluation (Section

4.6.3). Let H be a list of binary human judgements, and S a list of real-valued scores calculated

using an automatic metric, such that |H| = |S| and each Hi ∈ H and Si ∈ S correspond to the

same item. Given that A(X, Y ) calculates agreement between lists of binary judgements X and Y ,

the agreement betweenH and S is calculated by binarizing S with a threshold τ that maximizes the

agreement:

max({A(H, [I(Si ≥ τ)]
|S|
i=1) : τ ∈ S ⊕ [∞]})

This agreement calculation is performed for each automatic metric against majority-vote human

judgements, and results are presented in Table 4.5.

7SacreBLEU is used with default settings as in Post [54].
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Correctness Completeness

BLEU ROUGE-L BERT SBERT GMatch BLEU ROUGE-L BERT SBERT GMatch

SGD-DSG 12.306 0.177 0.268 0.226 0.868 33.311 0.476 0.764 0.627 0.848
E2E-DSG 5.709 0.099 0.157 0.139 0.231 29.363 0.502 0.720 0.642 0.890
GPTPipe 5.146 0.092 0.159 0.136 0.236 27.200 0.487 0.714 0.636 0.898

Table 4.4: Automatic evaluation results on the SGD evaluation set (Section 4.6.5).

4.6.6 Automatic Evaluation: Results

Automatic evaluation results are presented for the SGD test set only, since gold state references are

not available for DSG5K. As shown in Table 4.4, GPTPipe and E2E-DSG approach SGD-DSG’s

completeness performance on the held-out SGD evaluation domains, with E2E-DSG slightly

outperforming GPTPipe. All models seem to perform poorly on correctness; however, these

automatic correctness metrics agree poorly with human judgements as shown in Table 4.5, and

are thus unlikely to be reliable estimators of DSG performance. On the other hand, automatic

completeness metrics agree with humans about as well as humans agree with each other, suggesting

their credibility for evaluation.8

Correctness Completeness

Human 0.43 0.27

BLEU 0.26 0.17
ROUGE 0.26 0.22
BERT 0.30 0.20
SBERT 0.33 0.28
GMatch 0.17 0.26

Table 4.5: Krippendorff’s Alpha scores for inter-annotator agreement (Human), or agreement of
binarized automatic metrics with majority vote human judgments.

8Human IAA can be regarded as a soft performance ceiling for agreement between human judges and automatic
metrics.



59

4.7 Discussion

This work introduced DSG as a new task, and demonstrates that it is possible to infer dialogue states

in new task domains, even without a slot schema or other in-domain resources. DSG models do

not require authoring slot descriptions like zero-shot DSG, and do not require a large number of

unlabeled dialogues to discover new slots as with Slot Schema Induction. DSG models are thus the

first automatic method for inferring dialogue state in new domains with zero in-domain resource

requirements.

The presented experiments demonstrate success of this initial work in tackling the difficult

problem of domain generalization in DSG, as the best models show negligible performance drop-off

when evaluated on new domains and even out-of-distribution data. Experiment results also show

that existing DST resources are currently insufficient for training domain-general models, as the

baseline SGD-DSG model was unable to adapt to new domains. LLM-based data generation is a

promising direction forward that can improve the diversity of training resources at low cost. The

results suggest a trade-off where training resources generated via LLMs contain some noise, but are

orders of magnitude more diverse and scalable. This enables training DSG models that generalize

to virtually any domain, although at times they will make mistakes in their inferences.

One limitation of the work is the simplification of the DSG task formulation, ignoring whether

inferred slots conform to a self-consistent schema. As a consequence of this simplification, slot

names can be outputted by our DSG models that represent the same information type, but have

slightly different surface forms, and this redundancy is not punished by any of the presented

evaluation metrics. In practice, consistent slot names are important for linking dialogue states to

application infrastructure such as API calls or custom policy logic.

The overall high performance of the E2E-DSG model benefits dialogue systems development

by providing access to structured dialogue state inferences for virtually any domain with zero cost

overhead, apart from running the model. While the correctness performance and consistency of

inferred slot names are still important outstanding challenges, this work marks substantial progress

towards the goal of inferring dialogue state in a zero-resource setting. The next two chapters build
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on this work by leveraging DSG to tackle two tasks. Chapter 5 addresses the schema inconsistency

limitation of DSG by investigating DSG’s potential as a value candidate identification approach

for Slot Schema Induction. Chapter 6 uses DSG to create a diverse synthetic training resource to

improve the domain adaptability of DST models.



Chapter 5

Slot Induction

This chapter describes a novel approach for Slot Schema Induction (SSI). In this task, the goal is to

automatically induce critical application-relevant information types as slots from unlabeled dialogue

data. As described in Section 2.4, a major limitation of previous work is the use of tagging models

to extract slot value candidates directly from dialogue text. Because value candidates must appear in

the dialogue text directly, abstractive slots are not modelled properly and might be lost. Furthermore,

the value extraction models used were trained primarily for other tasks such as Semantic Role

Labeling and masked language modelling, and thus may be poorly optimized for value candidate

identification.

The Dialogue State Generation (DSG) approach presented in Chapter 4 serves as an alternative

approach to value candidate identification. This approach addresses the limitations of previous value

candidate identification models, since DSG directly targets inferring dialogue state information and

its identified slot values do not need to appear directly in the text. Also unlike previous approaches,

DSG inferences include slot names, which provides an opportunity for automatically providing

names for each induced slot cluster.

The presented SSI approach, named DSG-I (DSG-based Induction), thus leverages DSG pre-

dictions to obtain slot value candidates, before following a similar strategy as previous works to

encode and then cluster candidates into induced slots. Several methods are tried to encode slot value

61
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departure:
The starting location 
traveled from.

arrival time:
When to arrive at the 
destination.

… to London please?

… will arrive by 10:15.

departure

destination London

Leicester

arrival time 10:15

destination:
The desired location 
to travel to.

Dialogue Context DSG Prediction Slot Type Clusters Slot Schema

Figure 5.1: DSG-I approach to slot schema induction. The final description generation step is not
included in the approach, but is shown for illustrative purposes.

candidates into dense semantic vector representations for clustering. Experiments demonstrate the

effectiveness of this DSG-based SSI approach compared to previous work despite its simplicity.

Although a limitation of DSG-I is that it does not reliably distinguish slots that encode the same

type of information but for different domains, DSG-I produces far fewer redundant clusters than

previous works but with similar slot coverage, making it the first practical SSI method.

The presented work thus demonstrates substantial progress on the SSI task, reducing the labor

cost of slot schema development by enabling automatic induction of a manageable set of named

slot clusters. Induced slots can then be easily reviewed and revised manually to support desired

dialogue system behaviors, or used directly to automatically annotate data for DST.

5.1 DSG-I: Inducing Slots from DSG Inferences

Given a set of unlabeled task-oriented dialogues, the presented DSG-I approach produces a list

of clusters Ŝ = [ŝ1, ŝ2, ..., ŝn] representing induced slots. Each slot cluster ŝi is composed of 3-

tuples ŝi = [(ĉi,1, n̂i,1, v̂i,1), (ĉi,2, n̂i,2, v̂i,2), ..., (ĉi,k, n̂i,k, v̂i,k)], where each (ĉi,j, n̂i,j, v̂i,j) represents

a dialogue context, slot name, and slot value from a DSG prediction. Although the slot names

n̂i,1, n̂i,2, ... within cluster ŝi may be different, the goal is to produce slot clusters where these names

have similar meaning and all values v̂i,1, v̂i,2, ... of ŝi belong to the same type of information.

Obtaining slot clusters is performed in three steps. First, a DSG model infers a set of slot-value
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pairs for each turn in the unlabeled dialogues, which are combined along with their dialogue

contexts into a single candidate list C = [(ĉ1, n̂1, v̂1), (ĉ2, n̂2, v̂2)..., (ĉm, n̂m, v̂m)]. Second, an

encoding model maps each candidate to a semantic vector representation to obtain |C| vector

encodings. Third, a clustering algorithm groups candidates into predicted cluster list Ŝ by their

vector encoding distances.

The DSG-I approach is substantially simpler than previous approaches to SSI, as it relies mainly

on the DSG model’s ability to infer a good set of slot value candidates. The main challenge in

this approach is to appropriately encode each candidate slot value. Previous work’s encoding of

candidate values is straightforward because values are spans from the original dialogue text, and thus

contextual embedding models such as BERT can be used to good effect. However, DSG inferred

values often do not appear directly in-text. Futhermore, although DSG inferred slot names should

provide valuable information for grouping value candidates, it is unclear how to best incorporate

them into the encoding. To deal with this challenge, several encoding methods are tried as described

in Section 5.1.1. For each encoding method, HDBSCAN is used as the clustering algorithm to

obtain final induced slots following previous work [92].

5.1.1 Encoding Slot Value Candidates

In total, six different encoding strategies are experimented with in the evaluation of DSG-I. Each of

these methods takes a (ĉi,j, n̂i,j, v̂i,j) slot value candidate as input representing a dialogue context,

slot name, and slot value corresponding to an inference of the DSG model, and outputs a single

vector encoding of the candidate.

The first three encoding methods leverage SBERT as the encoding model, inspired by the results

in Section 4.6.6 that suggest SBERT may effectively encode slot-value pairs.

SBERT-S encodes only the slot name.

SBERT-SV encodes the slot name and value using the question mark as a separator.
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B: I have a paper due Friday.|deadline?

turn + slot name slot name + value slot name

deadline? Friday deadline

SBERT Encoder SBERT EncoderSBERT Encoder

Figure 5.2: SBERT encoding.

SBERT-TS encodes the concatenation of the last turn of the dialogue context only with the slot

name. A newline is used as a separator, and a question mark is appended to the end of the slot name

in an attempt to give some contextualization to the slot name.

SBERT is a powerful model trained to encode single-sentence text as a fixed width vector, but

does not support contextualizing the encoded sentence within a larger body of text. Therefore, the

other three encoding methods leverage RoBERTa to encode each token in the slot value candidate

with the dialogue context as a single sequence, before averaging the encodings of a relevant token

subsequence to produce a final single vector representation for the candiate. For all three methods,

the candidate token sequence is formed by concatenating the full dialogue context ĉi,j with the slot

name n̂i,j and value v̂i,j . To attempt to suggest the semantic relationship between the components

of this concatenated sequence, a newline separator is used between the context and slot name, and a

question mark separator is used between the slot and value.

ROBERTA-S averages the contextualized token embeddings of the slot name only.

ROBERTA-SV averages the contextualized token embeddings of the slot name, question mark

separator, and value.
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A: What are you doing? B: I have a paper due Friday. deadline? Friday

A: What B: I a paper due Fridayhave deadline? Fridayyou doing

RoBERTa Encoder

turn + slot name

are

slot name + value

slot name

Figure 5.3: RoBERTa encoding.

ROBERTA-TS averages the contextualized token embeddings of the final turn of the dialogue

context, newline separator, and slot name.

5.2 Experiments

5.2.1 Data

To facilitate comparison with previous work, the validation split of the MultiWOZ 2.1 dataset is

used for evaluating the DSG-I approach. The MultiWOZ slot schema is used as a gold reference,

including only the main 5 domains: Taxi, Train, Restaurant, Attraction, and Hotel. Since there is a

large amount of overlap in the slot specifications across domains as seen in Table 5.1, the evaluation

is performed in both Domain-Aware (DA) and Domain-Free (DF) settings.

Domain-Aware All 31 MultiWOZ slots are considered to be unique slot types. In this setting, the

SSI model is expected to induce separate slots for different domains, even if the semantic meaning
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of the slot is the same. For example, separate Leave at slots should be induced distinguishing

the time for a taxi departure versus the time for a train departure.

Category Taxi Train Restaurant Attraction Hotel
Leave at ✓ ✓

Arrive by ✓ ✓

Departure ✓ ✓

Destination ✓ ✓

Day ✓

Book People ✓ ✓ ✓

Book Day ✓ ✓

Book Time ✓

Food ✓

Name ✓ ✓ ✓

Price Range ✓ ✓

Stars ✓ ✓ ✓

Area ✓ ✓ ✓

Type ✓

Book Stay ✓

Internet ✓

Parking ✓

Table 5.1: Slots present in each of the main 5 MultiWOZ domains.

Domain-Free The 31 MultiWOZ slot types are consolidated into the 17 Domain-Free slot types

seen in Table 5.1 based on shared name, since slots sharing a name carry the same semantic meaning.

This setting is a better evaluation of the SSI approach’s ability to induce a robust set of unique

information types, but domain information is lost.

5.2.2 Evaluation Metrics

For comparability, the evaluation of DSG-I follows the formulation and metrics laid out in previous

work. Given an induced list of slot clusters Ŝ = [ŝ1, ŝ2, ..., ŝn] where each slot ŝi is a cluster of

values ŝi = [v̂1, v̂2, ..., v̂|ŝi|], and a list of gold reference slots S = [s1, s2, ..., sm], the evaluation

aims to calculate the quality of matching induced slots to gold references. To do this, a mapping
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M : Ŝ → S ⊕ [none] is constructed by hand1 to assign each predicted cluster to a gold slot (or to

none if no gold slot matches).

Manual slot mapping for evaluation is performed by a graduate student by viewing a random

sample of 10 slot-value pairs produced by the DSG model, along with their dialogue contexts, for

each induced cluster, and assigning the cluster to a gold slot only if the vast majority (> 7) of

slot-value pairs accurately reflect the semantics of some gold slot; otherwise, the predicted slot

is mapped to none and treated as a precision error. Additionally, because the gold MultiWOZ

slot schema does not have full coverage of all types of task-critical information introduced in its

dialogues, predicted slots were excluded from the evaluation entirely if they reflect a valid and

task-relevant information type but there is no corresponding gold slot. This was done primarily

for information types typically introduced by the agent speaker such as phone numbers, reference

numbers, postcodes, and vehicle types. The MultiWOZ slot schema does not attempt to cover

these information types in the slot schema because their values are meant to originate from the

hypothetical dialogue system, thus there is no need to track them as slots.

Given the mapping M from predicted to gold slots, the evaluation metrics are calculated follows:

Slot Precision is the proportion of predicted slots that were able to be mapped to a gold slot:

SP =

∑
ŝi∈Ŝ 1S(M(ŝi))

|Ŝ|
(5.1)

Slot Recall is the proportion of gold slots for which there is at least one corresponding predicted

slot:

SR =
|{M(ŝi) : ŝi ∈ Ŝ} − {none}|

|S|
(5.2)

1One previous work uses an automatic matching method based on cosine similarity of vector encodings, but this
evaluation method was found to be easily exploited to overestimate SSI performance in a pilot study. Therefore, the
presented work adopts the method of manually mapping predicted to gold slots.
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Slot F1 is calculated normally as the harmonic mean of precision and recall:

S-F1 = 2× precision× recall
precision + recall

(5.3)

Number of Induced Slots In the above Slot Precision calculation, multiple predicted clusters are

allowed to be mapped to a single gold slot. This choice of formulation was made by previous work

to avoid punishing the schema induction approach for inducing a finer-grained schema than what

the gold schema provides, but fails to reflect the number of redundant clusters that are induced. To

mitigate this, the number of induced slots is reported as an additional evaluation metric, where a

lower number of induced slots is considered preferable.

Value Precision is meant to measure the purity of predicted slot clusters. It is calculated only

between matched predicted clusters Ŝmatched and matched gold clusters Smatched. For each gold slot

with at least one match si ∈ Smatched, the proportion of predicted values in the mapped predicted

slots that have a fuzzy match to some gold slot value is measured using fuzzy match boolean

function f :

VPsi =
|{v̂kl : v̂kl ∈ v̂k,M(ŝk) = si, vij ∈ si, f(vij, v̂kl)}|

|{v̂kl : v̂kl ∈ v̂k,M(ŝk) = si}|
(5.4)

The final Value Precision score is an average across matched gold slots calculated in this way:

VP =

∑
si∈Smatched

VPsi

|Smatched|
(5.5)

Value Recall is calculated similarly to Value Precision. For each gold slot with a mapping to one

or more predicted clusters, recall is measured as the proportion of gold values that have a fuzzy

match to some value in the corresponding predicted clusters:

VRsi =
|{vij : v̂kl ∈ v̂k,M(ŝk) = si, vij ∈ si, f(vij, v̂kl)}|

|si|
(5.6)
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The final Value Recall is also averaged across matched gold slots:

VR =

∑
si∈Smatched

VRsi

|Smatched|
(5.7)

Since previous work does not specify the fuzzy matching algorithm used, fuzzy matching is

performed using the Python standard library implementation difflib.get_close_matches of

the Ratcliff and Obershelp algorithm, with a default threshold of 0.6.

5.2.3 Pilot Evaluation

To avoid a large evaluation cost incurred by the manual mapping of predicted slot clusters to gold

slots, a pilot was conducted using a heuristic automatic evaluation to select an encoding strategy.

The automatic evaluation constructs the mapping M by assigning each predicted cluster to the

gold slot si in a way that maximizes the Value Recall V Rsi (Eq. 5.6) between the cluster and the

gold slot. If no assignment can be found that results in a Value Recall above a 20% threshold, the

predicted cluster is assigned to none. This automatic evaluation method is somewhat noisy, but

enables efficient filtering of poor encoding methods.

Table 5.2 presents the results of the pilot evaluation, in which each of the 6 encoding methods

presented in Section 5.1.1 was evaluated using the heuristic evaluation method 30 times with a

random grid search of the hyperparameter space2, and the top result for each encoding method is

compared. To mitigate the curse of dimensionality, the UMAP algorithm was used for dimensionality

reduction in 15 of the 30 evaluation runs for each encoding strategy.

Pilot results indicate the superior performance of the SBERT-S and SBERT-SV encoding

methods, with UMAP dimensionality reduction appearing to hurt performance for these two

strategies. A brief review of each approach’s clustered outputs revealed that, although SBERT-S

showed a slightly higher performance on Slot F1 in the pilot, the clusters it produces often conflate

2Although the encoder models require no hyperparameters to be set for encoding, HDBSCAN and UMAP each
have several hyperparameters.
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Model Encoding UMAP Used Slot Precision Slot Recall Slot F1

SBERT s No 42.9 93.5 58.8
SBERT sv No 45.3 74.2 56.2

RoBERTa sv Yes 35.0 54.8 42.7
RoBERTa s No 78.6 25.8 38.9
RoBERTa ts Yes 28.6 29.0 28.8
SBERT ts Yes 26.3 25.8 26.1

Table 5.2: Pilot Results

several distinct types of information. Table 5.3 illustrates a typical example of this problem, where

a "guest house" cluster is induced due to the prevalence of this substring in the candidate slot name

produced by DSG, yet the values are not homogeneously typed.

Slot name Slot value

expensive guest house No
moderate priced guest houses 3
guest house type Expensive
moderate guest houses east side “carolina bed and breakfast”, “warkworth house”
moderate priced guest house hobsons house
guest houses meeting criteria 12
guest houses location East
guest house help True
guest house 1 a and b guest house
guest house west side 2

Table 5.3: Example of 10 slot value inferences from the DSG model, sampled from a single cluster
produced by DSG-I using the SBERT-S encoding strategy.

5.2.4 Models

DSI [47] leverages a Part-of-Speech (POS) tagger, Named Entity Recognition (NER) tagger, and

coreference resolution model to extract value candidate spans using a set of heuristic rules. Slot

clusters are then assigned to value candidates using a neural latent variable model.

USI [92] is the SoTA approach. It is a fully unsupervised SSI approach that leverages attention

scores between token spans estimated using a pretrained language model to extract value candidates.
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A three-step hierarchical clustering procedure is then used that aims to cluster value types, then

domains, then slots, using HDBSCAN as a the base clustering algorithm.

DSG-I is the presented approach. In light of the pilot evaluation results, SBERT-SV was chosen

as the encoding strategy. Since DSG-I relies on HDBSCAN clustering for which hyperparameters

must be tuned to achieve good performance on a particular dataset, a single graduate student tuned

min samples and min cluster size3 by iteratively running the DSG-I approach on the

test set4 and manually reviewing a random sample of slot values in each predicted slot cluster.

Although ideally such manual tuning would be unnecessary, this process was straightforward due to

the relative insensitivity of the approach to different hyperparameter values and manageable number

of induced clusters; the entire hyperparameter tuning process took less than 10 minutes and resulted

in the values min samples = 75 and min cluster size = 30.

5.2.5 Results

Slot Type Slot Value

Setting Method # Clusters Precision Recall F1 Precision Recall F1

DSI* 522 96.15 80.65 87.72 41.53 57.40 37.18
DA USI* 290 100.00 93.55 96.67 61.34 67.26 58.71

DSG-I 69 93.75 70.97 82.23 79.07 73.12 72.20

DF DSG-I 69 94.44 100.00 97.14 77.59 68.06 64.44

Table 5.4: Schema induction results on the MultiWOZ 2.1. DA: Domain-aware evaluation setting.
DF: Domain-free evaluation setting. *DSI and USI results are taken from Yu et al. [92].

Evaluation results are presented in Table 5.4. DSG-I produces far fewer clusters than previous

work, indicating far fewer redundancies in induced slots. The precision of induced slots is com-

parable to previous approaches; in fact, only 2 clusters were produced did not correspond to any

3Maximum cluster size was left unconstrained.
4This makes a fair comparison to baseline approaches, as the validation split of MultiWOZ was used for both

development and testing in previous work.
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well-defined and task-related information type5. DSG-I has inferior coverage of Domain-Aware slot

types compared to previous approaches, as indicated by a lower Slot Recall. The reason for this is

that it does not reliably distinguish domain boundaries when the type of information represented by

a slot is the same across domains. This is demonstrated by a 100% recall score in the Domain Free

evaluation setting.

Induced DSG-I slot clusters have higher purity and coverage of gold values for the corresponding

slot. This is indicated by a higher Value Precision and Value Recall of DSG-I. Note that the Value

Recall of DSG-I drops in the Domain-Free evaluation setting because the model is expected to cover

values for additional domains for which it did not output a separate slot cluster in the Domain-Aware

setting. For example, DSG-I does not induce a Taxi Arrive By cluster because the DSG

model’s naming of this slot for the Taxi domain is somewhat noisy. However, DSG-I does induce a

Train Arrive By cluster. In the Domain-Free setting, these slots are treated as a single slot

induction target, leading to many value misses on Taxi examples when measuring the Value Recall

of Arrive By.

5.2.6 Analysis

To illustrate the induction abilities of DSG-I, Table 5.5 provides 3 randomly sampled examples of

every induced slot cluster that was mapped to a gold Hotel slot in the Domain-Aware evaluation.

Although the examples overall appear to faithfully induce MultiWOZ slots for this domain, it can

also be seen from these examples that the SBERT-SV encoder can be sensitive to the surface form of

the slot name. This causes separate clusters to be induced that are semantically equivalent, such as

the separate num nights and stay duration clusters that both represent the hotel book

stay slot.

Analysis of Missed Slots An error analysis of all Domain-Aware gold slots that were not induced

by DSG-I was conducted by randomly sampling 10 gold slot-value examples for each of the 9 missed

537 clusters were excluded from the evaluation, as they clearly represented other task-related information types not
covered by the gold slot schema. A breakdown of these excluded clusters is presented in Section 5.2.6.
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Book Stay

A: thank you . i would also like entertainment options in the same area as you booked the hotel . num nights: 3
A: yes , i need it for 2 people and 5 nights starting from tuesday . i would also like the reference
number .

num nights: 5

A: can you book it for 4 people for 4 nights starting on thursday ? num nights: 4

A: yes , i would like to book 5 nights at the leverton house . stay duration: 5 nights
A: book it for thursday night , 3 nights , and 4 people . thank you ! duration: 3 nights
A: it s just 1 night for 4 people . stay duration: 1 night

Internet

A: i do not have an area preference but it needs to have free wifi and parking at a moderate price . free wifi: Yes

B: hobsons house is a moderate -ly priced , 3 star guest house in the west . it offers free internet
and parking . would you like me to book this for you ? free internet: yes
A: great , can i please have the address and phone number ?

B: the cambridge belfry also include -s free wifi . i would be more than happy to make your
reservations , would you like to do so ? wifi situation: Free
A: yes make reservations for 6 people for 5 nights

Parking

A: please pick 1 that has free parking . free parking: 1
A: i would prefer something with 2 stars , and i need free parking as well . parking requirement: free parking
A: i am looking for someplace to stay . i would like something expensive , and i do not need
parking .

parking needed: No parking needed

Stars

A: i am flexible about cost , i would prefer free wifi and a 4 star rating though . 4 star rating: Yes

B: the ashley hotel and the lovell lodge are both in the north and are in the moderate price range
with 2 stars . star rating: 2 stars
A: will you book it for a party of 7 . 5 days beginning friday .

A: the star preference does not matter . i’ll take the 4 star . star preference: 4

A: yes , i am also looking for a 3 star hotel located in the same area as the restaurant . hotel type: 3 star
A: the hotel should include free parking and should have a star of 3 . hotel star rating: 3
A: i am looking for a 4 star hotel in the south . hotel rating: 4 star

Book Day

A: yes , please recommend 1 that can accommodate 8 people for 2 nights starting on thursday start date: Thursday
A: 4 people for 2 nights starting sunday , please ! start date: Sunday
A: great ! i would like to book rooms for 5 people for 4 nights starting friday . start date: friday

Area

A: hi , i am looking for a moderate -ly priced hotel in the east . hotel location: East
A: i am looking for a hotel with free parking in the north . hotel location: North
A: i need a hotel in the south with free wifi . hotel location: South

Price Range

A: thank you , i am also looking for a hotel in the east that has free parking for my car . i’ll need
the hotel to be cheap with wifi

hotel budget: Cheap

A: hi , i am looking for a moderate -ly priced hotel in the east . hotel type: Moderate -ly priced
A: hmm , well how about checking for a hotel instead that is expensive with free parking and wifi ? hotel type: Expensive

Type

A: thanks i am also needing to book at a guest house for 6 for 5 nights starting on sunday room type: Guest house
A: let s go with a hotel . i would actually like it to have free internet and parking , if possible . hotel or guest house: Hotel
A: i am looking for a place to stay . ideally , it will be a guest house and have a 4 star rating . accommodation type: Guest house

Table 5.5: Examples of DSG-I results mapping to the gold Hotel slots of MultiWOZ. Dashed
lines separate individual DSG-I clusters that map to the same gold slot.
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slots: taxi departure, taxi arrive by, taxi destination, taxi leave at,

attraction area, attraction name, hotel name, hotel book people, restaurant

area. These 90 slot-value examples were manually reviewed in their original dialogue contexts,

alongside the DSG model prediction for those contexts to infer a cause of each error. The results of

this analysis are presented in Table 5.6.

For 17 cases, no issue with the DSG predictions could be determined and the inferred slot values

appeared to be correctly clusterable by DSG-I, indicating that the density of cases similar to these

was not high enough to capture the corresponding gold cluster. The most prevalent issue with the

DSG model predictions was a lack of domain information occuring in 25 cases, such as departure

time: 13:30 being inferred. These slot value inferences were frequently clustered into another

domain’s slot cluster of the same name, explaining the difference in Slot Recall performance

seen in the evaluation. The next most prevalent error category was termed "Slot Variant," which

we use to denote the 23 cases where the slot name produced by the DSG model was strange in

some way, though not technically incorrect. For example, the slot name arrival restaurant

contains the relevant semantic information corresponding to the intended gold restaurant

destination slot, but the naming quality is poor. This noisy naming reduced the density of

slot value encodings for the hotel name and attraction name slots especially, resulting in

no cluster forming for these slots. Only in 5 out of 90 cases did the DSG model simply miss the

relevant slot and value entirely. Other errors were due to failures in semantic understanding by the

DSG model, such as mixing up the semantics of destination vs. departure or including the value in

the slot name.

5.3 Discussion

DSG-I demonstrates several improvements on the SSI task, notably a vast reduction of redundant

induced slots, as well as better cluster purity and coverage of gold values. This result capitalizes on

the ability of the DSG approach presented in Chapter 4 to infer a high-coverage set of slot values
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across unlabeled dialogue data and is further evidence for its efficacy. However, the evaluation

also reveals that DSG-I is limited in its ability to distinguish domains, as evidenced by a lower slot

recall on the Domain Aware evaluation compared to previous methods. This limitation can likely

be mitigated by incorporating a dedicated domain induction component as was used in previous

work [92], and this direction should be explored in future work. In many realistic settings however,

the application setting may be constrained to a single domain, or the distinction of domains for

the same slot type may not be important, in which case the evaluation suggests DSG-I is highly

practical. DSG-I thus marks a step forward for SSI, reducing the labor cost of manual slot schema

creation and consequently increasing the viability of integrating conversational AI in real-world

applications.
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Error Definition Example #

No Domain The predicted slot name lacks spec-
ification regarding the domain to
which the information pertains.

A: would you be able to arrange taxi service from cam-
bridge artworks to royal standard leaving by 13:30 ?

departure time: 13:30

25

Slot Variant The predicted slot name is irregular
compared to other predicted slots
conveying similar types of informa-
tion.

A: i would like to leave the hotel by 22:00 to go to
the gardina . please let me know the contact number
and car type .

arrival restaurant: gardina

23

Correct The predicted slot name and value
accurately represent the informa-
tion conveyed in the dialogue turn.

A: i need a taxi between the hotel and the camboats .
i want to leave the camboats by 3:45 .

taxi departure time: 3:45

17

Coreference The predicted value is the reference
term, instead of being resolved to
the appropriate entity mentioned in
a previous turn.

A: what types of college are they ?
B: may i recommend hughes hall . it is in the centre of town
and has free entrance ?
...
A: i also need a taxi to get from college to the restaurant . i
need to arrive by 14:45 .

destination: College

8

Value in Slot The slot value leaks into the slot
name.

B: the lensfield hotel has both free parking and inter-
net it s in the south , would you like me to book it for
you ?
A: yes , please book the room .

book lensfield hotel: True

7

Missing The system fails to predict a specific
slot and its corresponding value in
the dialogue turn.

A: i heard of that place from a friend , not sure if i like that 1
. . but it would be for just me for 2 nights starting sunday .

num nights: 2 (correct)
start date: Sunday (correct)
book people: 1 (missing)

5

Destination/Departure The assignment of departure and
destination properties is inverted, re-
sulting in the departure details be-
ing mistaken for destination infor-
mation and vice versa.

A: i want to be at the attraction by 2:15 and will need
a contact number for the driver and car type .

leave time: 2:15

3

Incorrect Value The predicted slot value is inappro-
priate for the specified information
type, resulting in an erroneous slot
name and value pair.

A: i’ll need the taxi between charlie chan and castle
galleries please

taxi destination: charlie chan,
castle galleries

2

Table 5.6: Error analysis



Chapter 6

Domain-Adaptable Dialogue State Tracking

This chapter presents a novel approach for zero- and few-shot dialogue state tracking (DST), and

aims to answer the research question: to what extent does increasing the diversity of dialogue

state tracking data improve the domain adaptability of trained DST models? As discussed in

Chapter 2, a major limitation of existing work in DST is the low diversity of training data. The two

most popular datasets, MultiWOZ and SGD, only cover 5 and 16 domains respectively, with only

31 and 214 slot types respectively. This limited diversity may inhibit their effectiveness as training

data for real-world applications, since the DST model will need be generalizable enough to robustly

adapt to the unique slots required by any particular application domain.

The DSG approach presented in Chatpter 4 allows investigating the impact of slot diversity

on DST domain adaptation performance on an unprecedented scale, since it provides access to

automatically-annotated dialogue state labels for virtually any domain. This Chapter therefore

presents experiments using a DSG-based data generation approach as a pretraining step for zero-

and few-shot DST. Results reveal a substantial performance boost of this novel approach over strong

baselines, demonstrating that the diversity of conventional training resources is indeed a bottleneck

for domain adaptability on this task.

77
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6.1 Related Work

Several previous works explore data augmentation methods for improving the quality and diversity

of limited DST data. Nearly all of these approaches target the low-resource or few-shot settings,

using data augmentation techniques to improve the effectiveness of limited in-domain training

resources. This can be done using simple approaches to improve the lexical or semantic diversity of

training examples, or by synthesizing entire dialogues to create additional training resources.

Lexical Diversification One approach is to use paraphrasing techniques to improve lexical

diversity on the turn-level. Quan and Xiong [57] experiment in this direction with a variety of

methods such as back-translation and synonym replacement, and Yin et al. [91] use a reinforcement

learning approach to learn to replace token spans with paraphrases. These works demonstrate the

potential of data augmentation to improve existing training resources, but their focus on paraphrasing

fundamentally limits the extent to which the original data can be altered since the goal is to maintain

the semantic content of original examples.

Semantic Diversification Other approaches look to improve the generalizability of trained DST

models to handle new values and dialogue contexts by modifying the semantic content of original

dialogues. Summerville et al. [72] focus specifically on the problem of DST models’ ability to

generalize to new slot values, using external corpora to augment training data with with additional

values for open-ended slot types. Lai et al. [33] synthesize new training examples by generating a

new response to the context of existing dialogues. Their response generator is conditioned on the

dialogue act and state, but is given a new dialogue act and state during augmentation to increase the

semantic diversity of the training pool. These works successfully augment the lexical and semantic

content of DST training data on the turn- or slot-value-level.

Dialogue Reconstruction Some works augment existing data by synthesizing entirely new

dialogues from an initial seed set. Three works explore methods that take advantage of the state

representations in DST data to create a state transition graph, and then generate entirely new
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dialogues by traversing transition paths that are not represented in the initial dataset [1, 2, 6]. Once a

new state transition path for a synthetic dialogue is sampled from the transition graph, the turns from

the original dialogues corresponding to each transition are used as templates and filled with new

slot values to produce a final natural language dialogue. This approach introduces new variations in

the structure and content of training data. However, the synthetic dialogues produced will share

many of the same features as the original seed data, especially due to the reliance on templates.

Mehri et al. [44] use a similar approach but eliminate the reliance on seed dialogues by using slot

schema specification to create the state transition graph, and GPT-3 is used to paraphrase each

template-generated turn to be more natural and coherent. It is difficult to evaluate the efficacy

of their method however, since less-common evaluation data MixSNIPS/MixATIS [55] are used

making comparison to related work difficult.

Full Dialogue Generation Three recent works generate new DST data by training PLMs to

generate new dialogues from a task goal and schema definition. Kim et al. [29] trained a dialogue

generator model to produce dialogues given a goal, schema, and queryable database of schema

values, and trained separate dialogue state labeler model to label the generated dialogues with

dialogue states. Mohapatra et al. [48] train a pipeline of separate PLMs to model a user response

generator, user response selector, dialogue state generator, system response generator, and system

responses selector. Wan et al. [77] similarly trained separate PLMs for to simulate user and system

agents. They demonstrated improved transfer to generating synthetic data on low-resource target

domains by pre-training their simulation agents on 12 different training data from previous work.

All three of these approaches target low-resource DST by training their dialogue generation models

on a limited amount of in-domain data, then train the DST model on synthetically generated data.

Their results demonstrate the power of using PLMs to generate data to domains where substantial

training resources are unavailable.

The works highlighted above demonstrate that automatic methods for data augmentation and
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generation can help address the limitations of existing training resources and improve transfer to

data-poor domains. One area in this direction for which there is little work is generating data for new

domains entirely from scratch or with a minimal schema specification. The recent PLM-based work

[29, 48, 77] for low-resource DST is the closest to this goal, but these works still rely on a small

amount of in-domain training data or other domain-specific resources. Unlike any previous data

generation or augmentation approach in DST, the presented approach based on DSG synthesizes

entirely new domains, slot types, and full dialogues from scratch and can be run fully automatically

with no human intervention.

6.2 Approach

The presented DST approach consists of three stages. First, an extension of the fully automatic data

generation approach used to generate DSG5K from Chapter 4 is used to create a synthetic DST

dataset. Second, an end-to-end model is pretrained on the synthetic data to acquire domain-general

DST ability. Third, because synthetic data can be noisy, a fine-tuning stage trains the model similarly

to conventional approaches using gold DST annotations to further refine the model.

Synthetic Data Generation To generate a synthetic DST dataset from scratch, a set of dialogues

covering diverse task scenarios is first generated using the approach from Section 4.4, then each

turn in the dialogue is annotated with a dialogue state update label using a DSG model as in Section

4.6. This data generation method alone yields data that supports training a zero-shot DST model by

predicting values given slot names within the context of each dialogue. However, previous work has

shown the value of using in-context learning for zero- and few-shot DST using natural language

descriptions and few shot examples. Therefore, we extend the data generation pipeline using LLMs

to generate a description and list of value examples for each slot value produced by the DSG model.

Given each dialogue context, slot, and value update tuple in the generated data (ci, si, vi), an

instruction-tuned LLM generates a one-sentence natural language description di for the slot si using

a prompt that includes all information in the tuple. Similarly, a LLM generates a comma-separated
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list of alternative value examples ei given a prompt that includes all information in (ci, si, vi, di), in

order to further define the slot. Note that these value examples do not qualify as few shots because

they are not grounded in any dialogue context, and primarily serve to illustrate the valid space of

values that can fill each si. The resulting list of each 5-tuple (ci, si, vi, di, ei) defines the full set

of information in the synthetic DST dataset. These examples can be used to train an end-to-end,

sequence-to-sequence dialogue model such as T5 using the sequence format shown in Table 6.1.

A: Good afternoon, Mr. Smith. I’m here today to survey your land and assess its value. May I
ask you a few questions?
B: Of course, please go ahead.
A: Firstly, can you tell me the location and size of the land?
B: Sure. The land is located on the outskirts of town, about 10 miles away from the city center.
It’s approximately 20 acres in size.
A: That’s helpful. Can you also tell me about the type of terrain and land features on the property?

Identify the information from the above dialogue:
land size : the area encompassed by the property, typically measured in units such as acres,
hectares, or square miles.

ex. The floodwaters have submerged over 150 hectares of farmland. land size? -> 150 hectares
ex. Yes, we’re finalizing a purchase of 50 acres in the valley. land size? -> 50 acres
ex. I am going to the wildlife sanctuary. It spans 80 square miles. land size? -> 80 square miles

(e.g. 50 hectares, 2 square miles )?

Figure 6.1: An example of an input token sequence format used for training. The dialogue context
ci (yellow) and slot name si (peach) is taken from the synthetic DSG5K data, and extended with
an automatically generated slot description di (green) and value examples ei (red). Few shots fi
(purple) are optionally used in the few-shot setting and collected automatically using the DSG-I
slot induction approach presented in Chapter 5. The value example vi = 20 acres is the silver
output sequence for this training example.

Empty Slot Sampling One challenge of using DSG-generated labels for DST training is that DSG

never produces examples of empty slots, since new slots are inferred only to capture observed values.

Naively training a DST model to predict each DSG inferred value vi given (ci, si, di, ei) will cause

the model to hallucinate non-empty slot values during test time. On the other hand, constructing

training data that includes an example for every combination of slot name and dialogue context
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from the same domain overrepresents empty slots because DSG produces such a wide variety of slot

names, causing the model to be too conservative in filling slots with values. Therefore, a sampling

strategy is adopted where, given n slot-value examples inferred by the DSG model, αn empty

slot examples are added to the data. Each empty slot example is constructed by replacing the slot

definition (si, di, ei) of some randomly-selected training example (ci, si, vi, di, ei) with (sj, dj, ej)

from the jth example in the original dataset, in conjunction with replacing vi with the empty value

n/a. j is sampled from a uniform distribution across all examples in the original dataset, as

validation experiments revealed this method to be superior superior compared to restricting the

sampling to the within the same domain as the original example i.

Few Shot Sampling Constructing few-shot training examples is another challenge when using

DSG for few-shot DST data generation. Conventionally, training shots can simply be sampled from

other examples containing the slot from within the same training data. However, DSG slots do not

conform to a consistent schema, making this strategy nontrivial. To overcome this, the DSG-I slot

schema induction approach presented in Chapter 5 is used to cluster slot value examples. Then, for

each training example (ci, si, vi, di, ei), a set of up to k few shots fi = (t1, v1), (t2, v2), ..., (tk, vk)

is sampled from within the same cluster, where each tj is the last turn of dialogue context cj

and each vj is a value that was inferred to match the definition of slot si for that turn. Few shot

sampling is constrained to shots that come from a different dialogue but within the same domain.

These constraints were chosen based on manual review of sampled few shots during validation

experiments, in which it was discovered that the values of shots sampled from the same dialogue or

from different domains as target example i often did not match the original description di.

Simulated State Tracking Conventionally, DST models track slots as they are updated throughout

the course of a dialogue. However, the DSG approach from Chapter 4 infers only slot-value pairs

that are expressed locally for each dialogue turn. To align the synthetic training resource better

with the DST task, examples are altered to train the model to infer values from the entire dialogue

context, rather than from the final turn of the context. To do this, the context ci of each training
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example (ci, si, vi, di, ei) is replaced with some cj from the dialogue continuation. Specifically, if ci

ends on turn k and the complete dialogue has n turns, cj is sampled uniformly from contexts ending

within turn indices [k, n).

6.3 Data

Experiments are presented on the MultiWOZ dataset, as it is the most popular data for DST.

MultiWOZ 2.4 is used as it contains corrected gold labels in the validation and test splits. An

evaluation on MultiWOZ 2.1 is also included to facilitate further comparison to previous work.

A single-sentence description is written for each MultiWOZ slot to provide slot definitions. The

descriptions are based on Lin et al. [39] but with improvements in detail and grammar. Similarly, a

set of 4 value examples is written by hand for each slot.

In addition to zero-shot DST, we evaluate on a 3-shot setting, for which a single set of 3 shots is

collected for each MultiWOZ slot. Each shot is hand picked as a single turn and value pair from the

validation split, with some light revisions made in order to shorten the number of tokens dedicated

to shots.

Note that no prompt engineering process or validation experiments were performed when

collecting slot descriptions, value examples, and shots. Instead, these resources were created

to simply provide a clear and concise representation of each slot type, as if meant for human

interpretation. This process best reflects how such resources would be initially constructed in an

application setting, although prompt tuning and refinement of the descriptions and examples could

be used to possibly improve performance.

6.4 Models

Experiments were conducted using T5-3B and Llama-13B-Chat base models using the sequence-to-

sequence formulation shown in Figure 6.1, which is similar to the "independent" formulation of

Gupta et al. [19].
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T5-3B [59] is a 3 billion parameter encoder-decoder transformer model trained on a variety of

sequence-to-sequence tasks such as summarization and translation.

Llama-13B-Chat is a 13 billion parameter decoder-only transformer model trained on a variety

of long-form texts, then further trained on instruction data using the Reinforcement Learning from

Human Feedback (RLHF) technique [50]. Due to the computational expense of its 13B parameter

size, the model was quantized using QLoRA [9], which uses 4-bit nf4 quantization, and freezes

the base model parameters while only training the parameters of a Low-Rank Adapter (LoRA) [25].

A LoRA rank of 32 is used.

Experimental comparisons are made between models pretrained on synthetic data only using the

data generation approach from Section 6.2, models pretrained on synthetic data and finetuned on

MultiWOZ, and baseline models trained only on MultiWOZ.

Baseline Models (BL) are trained only on the MultiWOZ training split, with the test domain held

out for each experiment run in accordance with the standard leave-one-out evaluation setup.

Pretrained-Only Models (PT) are trained only on synthetic data using the fully automatic data

generation approach outlined in Section 6.2. We reuse the DSG5K synthetic dataset with silver

DSG state update labels from Section 4.4 in line with this approach, which consists of 5, 015

dialogues and 173, 572 slot value pairs, each of which was extended with a description and value

examples using GPT-3.5. An empty slot sampling rate of α = 0.5 was used, resulting in training

data consisting of 1/3 empty slot examples and 2/3 original slot value examples.

DSG-Pretrained Models (DSG) are pretrained using the presented automatic data generation

approach, then finetuned in a second, separate training run on MultiWOZ similar to the baseline

approach.

3-Shot Models (3S) are provided 3 shots for in-context learning during all training and testing.



85

6.5 Results

data model shots params avg. attr. hotel rest. taxi train

MWOZ 2.4

IC-DST [26] 1 175B* 58.7 62.1 53.2 54.9 71.9 51.4
RefPyDST [30] 1 175B* 68.8 74.5 56.6 68.2 68.5 76.1

T5-PT 0 3B 18.6 29.7 10.2 36.1 5.1 12.1
Llama-PT 0 13B† 23.6 26.7 11.4 39.7 13.9 26.9
T5-BL 0 3B 49.2 63.2 26.0 71.7 29.8 55.8
T5-DSG 0 3B 51.5 (+2.3) 69.1 29.9 73.2 29.2 56.2
Llama-BL-3S 3 13B† 57.6 74.7 25.2 68.6 48.3 71.3
Llama-BL 0 13B† 59.2 62.2 44.9 69.8 49.1 70.2
Llama-DSG 0 13B† 65.9 (+6.7) 74.4 56.4 76.0 54.7 68.3
Llama-DSG-3S 3 13B† 66.8 (+9.2) 76.8 48.9 78.8 53.6 76.1

MWOZ 2.1

TripPy-R [21] 0 < 1B 29.2 27.1 18.3 15.3 61.5 23.7
LAQ [75] 0 < 1B 46.2 46.5 29.4 54.0 65.5 35.4
D3ST [94] 0 11B 46.7 56.4 21.8 38.2 78.4 38.7
ChatGPT [22] 0 175B 56.4 52.7 42.0 55.8 70.9 60.8
IC-DST [26] 1 175B* 57.0 60.0 46.7 57.3 71.4 49.4
T5-seq [19] 0 11B 64.4 76.1 28.6 69.8 87.0 60.4
RefPyDST [30] 1 175B* 64.7 70.9 51.2 65.6 67.1 69.2
SDT [19] 1 11B 65.9 74.4 33.9 72.0 86.4 62.9

T5-PT 0 3B 17.2 27.3 8.9 32.8 4.9 12.6
Llama-PT 0 13B† 23.9 28.4 11.6 37.7 13.1 27.2
T5-BL 0 3B 44.7 57.1 22.8 60.6 30.9 52.2
T5-DSG 0 3B 46.3 (+1.6) 61.5 27.3 62.3 29.1 51.7
Llama-BL 0 13B† 51.8 55.4 38.8 59.0 44.8 61.2
Llama-DSG 0 13B† 56.2 (+4.4) 63.1 43.8 64.7 48.8 60.8

Table 6.1: DST results on MultiWOZ, sorted within each division by avg. Joint Goal Accuracy (Eq.
2.1). Improvement to performance resulting from leveraging the presented data generation approach
for pretraining provided in parentheses. ∗ denotes the conjectured parameter size of OpenAI Codex.
† denotes use of QLoRA.

Results indicate the effectiveness of the presented data generation approach to create diverse

training resources. By pretraining on diverse data, the zero-shot Llama model saw a +6.7 point

improvement on MultiWOZ 2.4. The improvement of T5 was more modest at +2.3 JGA, which

is a counterintuitive result. Usually, techniques that boost performance on smaller models are

more likely to disappear when a larger or stronger base model is used, rather than the reverse. A
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possible explanation is that the T5 base model suffers from catastrophic forgetting due to the 2-stage

training process, wherein the pretraining knowledge encoded in the base T5 model parameters is

lost during the synthetic data pretraining, leading to poor finetuning performance on the MultiWOZ

data. Llama-DSG is more likely to avoid this problem due to the use of LoRA, since original model

parameters were frozen during training.

The results of the 3S models are concerning due to the−1.6 performance dropoff of the baseline

Llama-BL-3S compared to the baseline zero-shot model. This dropoff was caused almost entirely

by poor performance on the Hotel domain, due to consistent errors on the hotel internet slot.

This may indicate an issue where the shots confused the model rather than providing supporting

information. Despite this, the Llama-DSG-3S model achieved the best performance out of any

model using the presented approach at 66.8 JGA. This is within 2% of the state of the art model

RefPyDST [30], which uses the costly OpenAI Codex API.

The performance of the DSG-pretrained models sees a massive performance dropoff on the

MultiWOZ 2.1 test set, such as the zero-shot Llama-DSG suffering−9.7 JGA. This may be unusual,

as largest performance dropoff from any baseline model when comparing MultiWOZ 2.1 vs 2.4

evaluation is only −4.1. Unfortunately, the MultiWOZ 2.4 corrections to the test set were made

quite recently at the time of writing, thus most previous work only evaluates on MultiWOZ 2.1.

On this benchmark, Llama-DSG performs about as well as zero-shot ChatGPT and the OpenAI

Codex-based approach IC-DST. The work by [19] still holds state-of-the-art on this benchmark at an

impressive 65.9 JGA, using a T5-11B model with a simple 1-shot sequence-to-sequence approach

and fine-tuning all model parameters using 32 TPU machines. A question for future work is to

what extent a model of this size would benefit from pretraining on diverse data with all parameters

trainable.
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Error Definition Example #

Agent Value
Miss

No value is outputted for
the indicated slot, even
though the information is
present in the system’s
turns.

B: bedouin servers african food and is in the centre of town in the expen-
sive price range . would you like their phone number , or should i book a
reservation ?
A: please book a reservation for wednesday at 20:00 for 5 .

restaurant name: None

13

No prefer-
ence

Indications of no prefer-
ence are inappropriately
understood, either by fail-
ing to recognize when
no preference is given or
by incorrectly interpret-
ing an indication of no
preference from the dia-
logue.

A: are there any 1 star hotel -s with free parking ?
B: i am sorry , i cannot find any hotel -s that meet your criteria . would
you like to search again ?
A: i am looking for a guest house with free parking , preferably 1 star .
B: sorry , i am not finding anything . want to change to a hotel ?
A: what about guest houses ?

hotel parking: any

13

Value
Change

The appropriate value for
the indicated slot has
been updated in the dia-
logue turn, but the pre-
dicted value remains as
the original.

A: i am looking for a place to dine in the centre that serves jamaican food.
B: i am sorry , i am not finding any place that serves jamaican food in the
centre of town . would you like to try another area ?
A: that is fine , how about a place that serves indian food ?

restaurant food: jamaican

10

Hallucination A value is predicted for
the indicated slot that
does not exist in the di-
alogue.

A: i need a train that departs after 08:30 on friday .
B: i have a train leaving cambridge arriving at birmingham new street on
friday at 9:01 . would you like me to book this for you ?
A: yes please , that sounds perfect .

train leave at: after 16:30

9

Miss No value is outputted for
the indicated slot, even
though the information
is present in the user’s
turns.

A: are there any guest houses in the east ?
B: there are 6 guest houses in the east . do you have a preference on price?
A: it needs to be cheap .

hotel area: None

7

Wrong
Value

Information in the dia-
logue is incorrectly at-
tributed to the indicated
slot.

A: hey , are there any interesting attractions in towncentre today ?
attraction type: interesting

6

Other Errors not explained by
any of the other error pat-
terns.

A: i am looking for a 3 star hotel in cambridge with free wifi
B: there are 5 hotel -s that meet that criteria . do you have a location or
price range in mind ?
A: i would like something cheap .
B: unfortunately , none of the cheap hotel -s have free wifi . would you
prefer to try a different price range or go with a hotel without free wifi ?
A: how about a hotel with a 4 star rating ?

hotel internet: no

16

Correct The predicted value for
the indicated slot is cor-
rect, but is missing from
the gold annotations in
MultiWOZ due to an an-
notation mistake.

A: i am looking for information on a hotel called warkworth house .
B: i got it . may i get the day youd like to move in so i can book
hotel type: hotel

26

Table 6.2: Error analysis of DSG5K Zero-shot pretrained model Llama-PT on MultiWOZ
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6.6 Error Analysis

The impact of diverse DST training data is further investigated by conducting an error analysis

on 100 randomly sampled errors from the Llama-PT model’s evaluation on MultiWOZ 2.4. The

results of this error analysis with examples can be seen in Table 6.2. As expected, some of the errors

made by this model are due to slot semantics specific to the MultiWOZ task that are difficult to

encode in a single-sentence slot description. For example, the dontcare value (represented as

any to the model) is a frequent source of errors, as the model consistently overpredicts it in the

Hotel domain. Many errors also stem from a slot being filled with a wrong value that does indeed

appear in the dialogue, but does not quite fit the specifics of the definition of the MultiWOZ slot.

However, the majority of errors made are due to limitations in the training formulation using the

synthetic dataset. For example, the dialogues generated by GPT-3.5 rarely include corrections or

clarifications where slot value would change, resulting in consistent errors when the user speaker

changes their mind or self-corrects in MultiWOZ. Also, the military time format used in MultiWOZ

for time slots was a consistent source of hallucinations, as this format rarely or never appears in the

synthetic DSG5K data. Finally, the model frequently missed slot values entirely, particularly when

the value originated from the system travel agent speaker.

6.7 Discussion

This chapter demonstrates the critical importance of data diversity in enhancing the domain adapt-

ability of dialogue state tracking (DST) models. By leveraging a dialogue state generation (DSG)

approach, the study overcomes the limitations posed by the narrow coverage of traditional DST

datasets like MultiWOZ and SGD, leading to substantial improvements in zero- and few-shot DST

tasks. The significant performance boost observed underscores the efficacy of diverse pretraining

data in enhancing model robustness and adaptability, with the Llama-DSG model showing a notable

improvement on MultiWOZ 2.4. However, the more modest improvement seen when training T5-3B

and the remaining performance gap compared to larger models with all parameters trained requires
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further investigation to see the impact of diverse training data with other approaches. The presented

experiment results suggest that the limited diversity of popular training data does indeed limit the

ability of DST models to adapt to new domains. Although high quality data is costly to collect,

use of data generation approaches such as LLM-based dialogue generation, DSG automatic state

labeling, and Slot Schema Induction approaches may provide a viable way to alleviate performance

bottlenecks caused by a lack of data diversity and lead to a new state-of-the-art in DST.



Chapter 7

Conclusion

The research presented in this dissertation focused on tacking the challenge of efficient domain

adaptation for DST in order to facilitate the integration of conversational AI into real-world software

systems, and has made several research contributions.

DST for Chat The presented chat-oriented dialogue system Emora demonstrates that DST is

indeed useful not only for task-oriented dialogue systems but also for enabling rich and engaging

open-domain conversations. In particular, the controllability afforded by integrating custom policy

rules to modify application behavior was shown to be extremely effective. This suggests that DST

may benefit from a shift in focus that targets a more diverse range of slot types and domains, or

from being used explicitly as a mechanism to control dialogue system behavior.

Dialogue State for Any Domain The introduction of the Dialogue State Generation (DSG)

task makes strides towards inferring dialogue state across different domains without the need for

explicitly defined slots or domain adaptation resources. The presented DSG model is shown to

successfully achieve domain generality when inferring slots and values for new domains, even on

out-of-distribution data. This approach not only increases domain generality but also enriches the

diversity of training data for DST models.

90
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Practical Slot Induction The approach to DSG was leveraged to develop the first practical slot

schema induction method DSG-I, where slots are automatically induced from a set of unlabeled

dialogue data. This addresses the limitation of the DSG approach regarding the schema inconsistency

of slot names. The impact of DSG-I is the reduction of laborious manual effort typically required to

specify slots for DST, thus offering a more efficient solution for adapting models to new domains.

Robust DST Domain Adaptation Experiments leveraging DSG for automatically generating

diverse DST training resources demonstrate that diversity of training data improves performance

substantially when adapting DST models to new target domains. This demonstrates both the

existing performance bottleneck caused by limited diversity in existing training resources, but also a

direction for alleviating this bottleneck via diverse data generation. The presented best-performing

DST model achieves competitive performance with the current SoTA LLM model on the updated

MultiWOZ 2.4 benchmark, while being much more computationally efficient.

7.1 Limitations and Future Work

DSG Schema Inconsistency Although the schema consistency issue of DSG was addressed

via a clustering-based SSI method, use of a clustering-based approach to slot induction requires

the availability of enough unlabeled dialogue text to provide enough value candidate density to

induce meaningful clusters. Furthermore, the encoding and clustering steps are not perfect, and the

pipelined nature of the approach propagates DSG errors that do occur to these two steps. Thus not

all DSG schema inconsistencies are resolved. Future work should look to resolve the slot schema

inconsistency in a more fundamental way, perhaps through a new DSG approach that generates state

inferences while jointly inducing a consistent slot schema as dialogues are processed in a streaming

manner, combining the advantages of both DSG and SSI.

Noise in Synthetic DST Resources Another limitation of the presented experiments for increasing

the diversity of DST training resources is the noise of the synthetic training resources. Although the
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presented DSG5K data is extremely diverse, human evaluation indicates it is slightly noisy with

about 15−20% incorrect slot-value predictions as judged by human evaluators. Therefore, although

the DSG data generation approach allows creating a training resource of unprecedented diversity, it

does not perfectly reflect the potential gains of increasing DST training diversity due to its noise.

The automatic data generation approaches can be treated as a baseline for future work to refine and

improve upon. Further refinement of diverse DST training resources, whether synthetic or collected

in a real-world setting, will help estimate the impact of training diversity on DST domain adaptation

more precisely.

Constraints on DST Experiments Due to constraints of time and computational resources, the

DSG-based pretraining approach for DST could not be applied to the model holding the current

SoTA on the MultiWOZ 2.1 benchmark. Therefore, while the diverse pretraining is likely to result

in a similar boost in performance for SoTA models as the ones used in the presented experiments,

this is ultimately a hypothesis to be investigated in future work.

DST Evaluation Diversity The presented exploration for improving the domain adaptation

efficiency and efficacy for DST models is limited by the diversity of existing evaluation data. One

of the goals of improving domain adaptation using the presented approaches is to provide improved

support for niche domains and slots, but this is not evaluated due to the lack of such gold data. As

demonstrated by the real-world dialogue system Emora presented in Chapter 3, fine-grained slot

types that are very unlikely to be seen in other application domains can be quite important and useful

for controlling the dialogue application’s behavior. However, the slot types covered in the popular

MultiWOZ and SGD datasets are usually quite generic. This gap in evaluation coverage should be

explored in future work, and might reveal crucial new information regarding the performance of

various DST approaches.
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7.2 Impact

Overall, the findings presented in this dissertation contribute to advancing the field of dialogue

systems by addressing key challenges in domain adaptation and enhancing the flexibility and

effectiveness of dialogue state tracking. This research illustrates the importance of DST in real-world

applications, demonstrates a performance bottleneck in DST due to insufficiently diverse training

resources, and explores one successful strategy for improving DST data diversity via synthetic

data generation. All data and models produced during this work are made publicly available for

future research and applications to make use of. These contributions facilitate the integration

of conversational AI in real-world applications, taking steps towards the global improvement of

software applications’ efficacy and ease of use.
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