
Distribution Agreement 
 
In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory 
University, I hereby grant to Emory University and its agents the non-exclusive license to 
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or 
hereafter now, including display on the World Wide Web. I understand that I may select some 
access restrictions as part of the online submission of this thesis. I retain all ownership rights to 
the copyright of the thesis. I also retain the right to use in future works (such as articles or books) 
all or part of this thesis. 
 
Tianhui Mao                                                                                                                 April 9, 2019 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

Smart Initialization for Smooth and Sparse Tensor Factorization 
 
 

by 
 
 

Tianhui Mao 
 
 

Joyce C. Ho 
Adviser 

 
 

Department of Mathematics 
 
 

Joyce C. Ho 
Adviser 

 
 

James G. Nagy 
Committee Member 

 
 

Yuanzhe Xi 
Committee Member 

 
 

2019 
  



 
 
 

Smart Initialization for Smooth and Sparse Tensor Factorization 
 
 

by 
 
 

Tianhui Mao 
 
 
 
 

Joyce C. Ho 
Adviser 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An abstract of 
a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 
of the requirements of the degree of 
Bachelor of Sciences with Honors 

 
Department of Mathematics 

 
2019  



Abstract 
 

Smart Initialization for Smooth and Sparse Tensor Factorization 
 

By Tianhui Mao 
 

Spatiotemporal data can come from any event that describes phenomena that exist at 

certain combinations of time and spaces. Its analysis has  great  real-life  implications,  such  as  

identifying  traffic  hot  spots. However, the complex nature of spatiotemporal data poses 

challenges for its analysis. Tensor, a multidimensional array structure, can serve as a container 

for spatiotemporal  data  of  high  dimensions.  Tensor  decompositions  can  extract latent 

patterns in time and space from the data. The CP decomposition is one widely used tensor 

decomposition model. Fitting a CP model for a tensor can be viewed as a least squares problem.  

A gradient based optimization algorithm, CP_OPT, solves the problem by explicating 

calculate the gradient of the objective function that minimizes the tensor norm of the difference 

between the original tensor and the CP model. In this study, we customize this general CP_OPT 

framework for sparse containing spatiotemporal data in the following aspects: 

1. Adding the smoothness constraints on factor matrices to control the change in  

    magnitudes between neighboring entries in the same column; 

2. Using high order singular value decomposition (HOSVD) to capture the sparsity  

     patterns in factor matrices generated by CP_OPT; 

3. Generating a interlaced HOSVD for the original tensor and truncating trivial entries  

    with magnitudes below a certain threshold; using this HOSVD with truncation as  

    initialization to accelerate the optimization process by utilizing the sparsity. 

 

 



 
 
 

 
 
 
 

Smart Initialization for Smooth and Sparse Tensor Factorization 
 
 

By 
 
 

Tianhui Mao 
 
 
 
 

Joyce C. Ho 
Adviser 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A thesis submitted to the Faculty of Emory College of Arts and Sciences 
of Emory University in partial fulfillment 

of the requirements of the degree of 
Bachelor of Sciences with Honors 

 
Department of Mathematics 

 
2019 

 



Contents

1 Introduction 1

1.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Tensor Inner Product . . . . . . . . . . . . . . . . . . . 4

1.1.2 Tensor Norm . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Rank-One Tensors . . . . . . . . . . . . . . . . . . . . . 5

1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Matricization . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 The n-mode Product . . . . . . . . . . . . . . . . . . . 10

1.2.3 Kronecker Product . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Khatri-Rao Product . . . . . . . . . . . . . . . . . . . . 11

2 CP Decomposition 12

2.1 Tensor Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Fitting a CP Model . . . . . . . . . . . . . . . . . . . . . . . . 14

1



CONTENTS

2.3 CP OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . 15

2.3.2 CP Gradient . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 CP OPT with Smoothness Penalty . . . . . . . . . . . . . . . . 17

2.4.1 Objective Function with Smoothness Penalty . . . . . 17

2.4.2 Updated Gradient . . . . . . . . . . . . . . . . . . . . . 18

2.5 Optimization Method for CP OPT . . . . . . . . . . . . . . . . 18

3 Experiment Outline 20

3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Dataset Resize . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Determine Rank: Fit and Core Consistency Diagnostic 21

3.3 Select Penalty Strength for the Smoothness Penalty . . . . . . 24

3.4 Visualization of Smoothness Improvement . . . . . . . . . . . 26

3.5 Running Performance . . . . . . . . . . . . . . . . . . . . . . . 31

4 Exploring Sparsity 33

4.1 Tucker Decomposition and HOSVD . . . . . . . . . . . . . . . 35

4.2 HOSVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 HOSVD as Initialization . . . . . . . . . . . . . . . . . . . . . 37

2



CONTENTS

4.3.1 Comparisons between Different Initializations . . . . 38

4.4 Sparsity of the Experiment Tensor . . . . . . . . . . . . . . . . 39

4.5 Learning Sparsity Pattern through HOSVD . . . . . . . . . . 40

4.5.1 Experiments: Sparsity Patterns . . . . . . . . . . . . . 41

4.6 HOSVD with Truncation . . . . . . . . . . . . . . . . . . . . . 44

4.6.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7.1 Truncated HOSVD as Initialization for CP OPT . . . . 47

4.7.2 Truncated HOSVD as Initialization for CP OPT with

Smoothness Constraints . . . . . . . . . . . . . . . . . 48

5 Conclusions 50

5.1 Smoothness Constraints . . . . . . . . . . . . . . . . . . . . . 51

5.2 Initialization Using HOSVD . . . . . . . . . . . . . . . . . . . 51

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 54

3



Chapter 1

Introduction

A spatiotemporal dataset contains both information about time and space.

It may come from any events that describe phenomena that exist at certain

combinations of time and space. Therefore, spatiotemporal data analysis

has great real-life implications, such as identifying traffic hot spots and

determining healthcare distributions [5]. The main goal of spatiotemporal

data analysis is to extract underlying patterns in time and space from the

data. However, the innate characteristics of spatiotemporal data, including

spatial and temporal correlations and its significant size, pose challenges

for its analysis.

Tensor, a multidimensional array structure, can serve as a container for

spatiotemporal data of high dimensions. Tensor decompositions can be

1



CHAPTER 1. INTRODUCTION

used to extract latent patterns in time and space from the data. The canon-

ical polyadic (CP) decomposition is one widely used tensor decomposition

model. CP decomposition expresses a tensor as a linear combination of

rank-one tensors. One advantage of tensor rank decomposition over ma-

trix decomposition is the essential uniqueness of the decomposition for a

high-order tensor under mild conditions [1]. For a high-order tensor, the

combination of rank-one tensors that sums up to it is unique up to column

scaling and permutations under mild conditions.

Fitting a CP model for a tensor can be viewed as a least squares prob-

lem. Through iterative process, the optimization algorithm finds the com-

bination of decomposed components that gives the best approximation of

the original tensor. However, a classical CP model only provides a general

framework for tensor decomposition. For tensors carrying spatiotemporal

data, we would like to impose some constraints, such as non-negativity or

smoothness on decomposed components, to make the results more inter-

pretable. In this study, we choose to add smoothness constraints on the CP

model when exploring spatial and temporal patterns from Uber pick up

data. The motivation is that for a certain location, we do not expect the

number of pickups to change drastically within 1 hour. And for a certain

time, we do not expect the number of pickups changes drastically within

2



CHAPTER 1. INTRODUCTION

two neighboring locations.

In addition, fitting a CP model usually starts with random guesses for

factor matrices. For a tensor of significant size, the optimization process

(e.g nonlinear conjugate gradient descent) takes a large number of itera-

tions to find the optimal solution. There have been studies that propose

using high-order singular value decomposition (HOSVD) as initialization

for optimization process to decrease the number of iterations. We find out

that HOSVD can capture the sparsity patterns (the locations of nonzero

entries) in factor matrices of the final CP model efficiently. For potential

future work, we may be able to further accelerate the optimization process

by only updating the nonzero locations predicted by HOSVD.

3



CHAPTER 1. INTRODUCTION

1.1 Tensors

A tensor can be considered as a generalization of the matrix to higher di-

mensions. It is often considered as a multidimensional array. The order or

mode of a tensor (denoted by N) refers to the number of dimensions of the

tensor X. A tensor X ∈ RI1×···×IN is a N-way tensor. A matrix can be viewed

as a 2-way tensor.

Figure 1.1: A 3-way tensor: X of size I × J × K

1.1.1 Tensor Inner Product

The inner product between two tensors of the same size I1 × I2 × · · · × IN is

defined to be the sum the the products of corresponding entries:

〈X,Y〉 =
I1∑
i1=1

I2∑
i2=1

. . .
IN∑
iN=1

xi1i2...iN yi1i2...iN

4



CHAPTER 1. INTRODUCTION

1.1.2 Tensor Norm

The norm of a tensor is analogous to the Frobenius norm of matrix. It is the

square root of the sum of the squares of all entries. It can also be expressed

as the square root of the inner product of X ∈RI1×···×IN with itself:

‖X ‖=
√
〈X,X〉 =

√√√√ I1∑
i1=1

I2∑
i2=1

. . .
IN∑
iN=1

x2
i1i2...iN

1.1.3 Rank-One Tensors

An N-way tensor is called rank-one if it can be expressed as the outer prod-

uct of N vectors.

A rank-one 3-way tensorX ∈RI×J×K can be expressed as the outer prod-

uct of three vectors a ∈RI , b ∈RJ , and c ∈Rk :

X = a ◦b ◦ c

Each element ofX , xijk , can be written as the product of corresponding

elements in three vectors:

xijk = aibjck

where 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K .

5



CHAPTER 1. INTRODUCTION

Figure 1.2: A rank-one 3-way tensor as the outer product of 3 vectors

6



CHAPTER 1. INTRODUCTION

1.2 Notations

We will keep the terminology consistent with terminology used in previous

publications in the area of tensor decomposition. The tensor notation here

is similar to that proposed by Kiers [3] and Kolda [1].

Symbol Definition⊗
tensor-matrix product

∗ elementwise product

◦ outer product

⊗ Kronecker product

� Khatri Rao product

X tensor

A matrix

A(k) k-th mode factor matrix

X k mode-k matricization of X

a vector

a scalar

7



CHAPTER 1. INTRODUCTION

1.2.1 Matricization

Matricization or unfolding, refers to the process of reordering a multiway

array into a matrix. A general matricization can be found in Kolda [4]. The

mode-n unfolding of aX ∈RI1×···×IN , denoted byX (n). It maps the element

of tensor at the location (i1, i2, . . . , iN ) to the matrix element at the location

(in,j) [1].

A slice of a tensor is a two-dimensional section of it [1]. Frontal slices

of a tensor is shown in Figure 1.3.

Figure 1.3: Frontal slices

8



CHAPTER 1. INTRODUCTION

We can use this notation to illustrate a tensor unfolding. For example,

we have a tensor X of size 3× 4× 2 and its two frontal slices are:

Figure 1.4: Frontal slices of the tensor X of size 3× 4× 2

Then the mode-0 unfolding, denoted by X 0 is:

X 0 =


1 3 5 7 0 2 4 6

9 11 13 15 8 10 12 14

17 19 21 23 16 18 20 22



9



CHAPTER 1. INTRODUCTION

The mode-1 unfolding, denoted by X 1, is:

X 1 =



1 9 17 0 8 16

3 11 19 2 10 18

5 13 21 4 12 20

7 15 23 6 14 22


The mode-2 unfolding, denoted by X 2, is:

X 2 =


1 9 17 3 11 19 5 13 21 7 15 23

0 8 16 2 10 18 4 12 20 6 14 22


1.2.2 The n-mode Product

The n-mode product refers to multiplying a tensor by a matrix in mode

n. The n-mode product of a tensor X ∈ RI1×···×IN and a matrix A ∈ R
J×In ,

denoted by X ×n A, is of size I1 × · · · × In−1 × J × In+1 × · · · × IN and can be

expressed elementwise as:

(X ×nA)i1...in−1iJ in+1...iN =
IN∑
in=1

xi1i2...inajin

1.2.3 Kronecker Product

The Kronecker product between matrix A ∈RI×J and B ∈RK×L, denoted by

A⊗B is a matrix ∈R(IK)×(JL) and is defined by

10



CHAPTER 1. INTRODUCTION

A⊗B =



a11B a12B · · · a1JB

a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


1.2.4 Khatri-Rao Product

The Khatri-Rao product between A ∈RI×K and B ∈RJ×K , denoted by A�B,

is a matrix ∈R(IJ)×K and is defined by:

A�B =
[
a1 ⊗b1 a2 ⊗b2 · · ·aK ⊗bK

]

11



Chapter 2

CP Decomposition

The canonical polyadic (CP) decomposition is one of the most widely used

tensor decomposition algorithms. Its development history can be found in

Kolda and Bader [1]. CP expresses a N-way tensor X of size I1 × I2 × · · · × IN

as a sum of R rank-one tensors.

X =
R∑
r=1

λra
(1)
r ◦a

(2)
r · · ·◦a

(N )
r where λr ∈R,a

(1)
r ∈RI1 , . . . ,a

(N )
r ∈RIN ,R ∈Z+.

For a three-mode tensor X , it can be expressed as

X =
R∑
r=1

λra
(1)
r ◦a

(2)
r ◦a

(3)
r

A factor matrix corresponding to one mode of a tensor is defined as the

combination of vectors in the rank-one components. For a 3-way tensor,

12



CHAPTER 2. CP DECOMPOSITION

there are three factor matrices A(1),A(2),A(3) corresponding to three modes

of X , where A.(k) = [a(k)
1 a

(k)
2 . . . a

(k)
R ], for k = 1, 2, 3.

We can write the CP model in terms of factor matrices as

X = ~λ;A(1),A(2),A(3)� λ ∈RR.

For simplification, we often consider multipliers λr ’s are absorbed into

the factors and write the CP model as

X =
R∑
r=1

a
(1)
r ◦a

(2)
r ◦a

(3)
r = ~A(1),A(2),A(3)�

2.1 Tensor Rank

Tensor rank is defined as the smallest number of rank-one tensors that sum

up to X . Determining tensor rank can be challenging. As pointed out

by Kolda and Bader [1], there is no algorithm that directly determines the

rank of any given tensor. In practice, we determine the rank of a tensor

by generating CP models with different choices of R. We choose the best R

based on the fit and the core consistency of the CP model. In general, as

the rank increases, the fit of the CP model increases. However, if we choose

an R that is greater than the actual rank, which gives rise to the problem of

overfactoring [2].

13



CHAPTER 2. CP DECOMPOSITION

2.2 Fitting a CP Model

Since determining the rank of a given N-way tensorZ of size I1×I2×· · ·×IN

is difficult, we fit a N-way tensor with CP model with a predetermined rank

R as:

Z ≈
R∑
r=1

ar
(1) ◦ar(2) · · · ◦ar(N ) = ~A(1),A(2), . . . ,A(N )�

In this equation, the factor matrix A(k) is of size Ik ×R, for k = 1, 2, . . . ,

N.

For a predetermined R, we want to find the combination of factor ma-

trices A(1),A(2), . . . ,A(N ) that gives the best approximation of the tensor Z.

It automatically becomes a least squares problem. The objective function

we want to minimize can be expressed as a function of factor matrices:

f (A(1),A(2), . . . ,A(N )) = 1
2 ‖Z− ~A

(1),A(2), . . . ,A(N )� ‖2

2.3 CP OPT

Acar, Dunlavy and Kolda [2] presented a gradient-based optimization ap-

proach, CP OPT, to solve the least squares problem. This algorithm views

fitting a CP model as an optimization problem and explicitly calculates the

gradient. It utilizes nonlinear conjugate gradient or L-BFGS as the opti-

mization method.

14



CHAPTER 2. CP DECOMPOSITION

2.3.1 Objective Function

The objective function can be broken down into three parts, which will

help us easily derive the gradient. The complete derivation and proof and

be found in Acar, Dunlavy and Kolda [2].

f (A(1),A(2), . . . ,AN )) =
1
2
‖Z ‖2 −〈Z,~A(1),A(2), . . . ,A(N )�〉+1

2
‖ ~A(1),A(2), . . . ,A(N )� ‖2

2.3.2 CP Gradient

The partial derivatives of the objective function f with respective to factor

matrices are given by

∂f

∂A(n)
= −Z(n)A

(−n) +A(n)Γ (n),

where A(−n) = A(N )� · · ·�A(n+1)�A(n−1) · · · �A(1) and Γ(n) = γ (1) ∗ · · · ∗γ (n−1) ∗

γ (n+1) ∗ · · · ∗γ (N ) with γ (n) =
(
A(n)

)T
A(n).

Now the function f is expressed as a function of factor matrices and

the partial derivative is calculated with respect to each column of a factor

matrix. We can consider the objective function f as a function of a stacked

15



CHAPTER 2. CP DECOMPOSITION

vector x that comprises factor matrices A(1),A(2), . . . ,A(N ):

x =



a1
(1)

...

aR
(1)

a1
(2)

...

aR
(2)

...

a1
(N )

...

aR
(N )


We can also put the partial derivatives with respect to A(n) ’s into a

stacked vector.

For the following sections of this chapter, we will narrow our discus-

sions to 3-way tensors. For a 3-way tensor Z, the objective function of

fitting a CP model is written as

f (A(1),A(2),A(3)) = 1
2 ‖Z− ~A

(1),A(2),A(3)� ‖2

We use the implementation of CP OPT in Tensor Toolbox for Matlab de-

veloped by the Sandia National Laboratories as baseline.

16



CHAPTER 2. CP DECOMPOSITION

2.4 CP OPT with Smoothness Penalty

The general CP OPT framework does not guarantee smoothness in the de-

composed factor matrices. For spatiotemporal data analysis through CP

decomposition, we expect the change in magnitudes between neighboring

entries in the same column to be smooth. Therefore, we add a smoothness

penalty term to the objective function.

2.4.1 Objective Function with Smoothness Penalty

For a N-way tensorZ , we define a N-way tensor L. Each factor matrix L(i)

is a square matrix of size Ii × Ii , where Ii is the row dimension of A(i). L(i)

has 1’s along the diagonal and -1’s along the subdiagonal.

L(i) = 

1 0 · · · 0 0

−1 1 · · · 0 0

...
...
. . .

...
...

0 0 · · · −1 1


The square of the Frobenius norm of L(k)A(k) is equal to the sum of

squares of the differences between neighboring cells in the same column

for factor matrix A(k), except for the first row.

‖ L(k)A(k) ‖2F=
R∑
j=1

Ik−1∑
r=2

(
a

(k)
rj − a

(k)
(r+1)j

)2

17



CHAPTER 2. CP DECOMPOSITION

Then the objective function with smoothness constraints on output com-

ponents becomes:

f (A(1),A(2),A(3)) =
1
2
‖Z−~A(1),A(2),A(3)� ‖2 +

λ
2

(
‖L(1)A(1)‖2F + ‖L(2)A(2)‖2F + ‖L(3)A(3)‖2F

)
︸                                                ︷︷                                                ︸

fp

where λ is the strength of the penalty term.

2.4.2 Updated Gradient

The new objective function can be solve using CP OPT by deriving a new

gradient corresponds to the penalty term and adding this gradient to the

existing gradient.

fp =
λ
2

(
‖L(1)A(1)‖2F + ‖L(2)A(2)‖2F + ‖L(3)A(3)‖2F

)
We take the partial derivative with respect to each factor matrix:

∂fp

∂A(k)
= λ

(
L(k)

)T
L(k)A(k) k = 1,2,3

2.5 Optimization Method for CP OPT

We have obtained the objective function f as a function of stacked vector x

that comprises factor matrices A(1),A(2),A(3) and its corresponding gradi-

ent in the same form. The current implementation of CP OPT in the Mat-

18



CHAPTER 2. CP DECOMPOSITION

lab Tensor Toolbox utilizes either first-order optimization method (nonlin-

ear conjugate gradient descent) or second-order optimization method (L-

BFGS) to find the optimal solution x and then transforms the solution into

corresponding factor matrices.

19



Chapter 3

Experiment Outline

3.1 Data Description

We evaluate the modified algorithm on six-month Uber pick up data in

New York City. The dataset covers statistics from April 2014 through Au-

gust 2014, which has 1,426,993 pickups. The original dataset records the

number of pickups in a certain location at a certain time. The location

is expressed in latitude and longitude, whose values are rounded to three

decimal places. The time is expressed in the date and the hour of the day.

Tensor values (the counts) are integers.

20



CHAPTER 3. EXPERIMENT OUTLINE

3.2 Set up

3.2.1 Dataset Resize

The original data contains date, hour, latitude and longitude information

for each of 1,426,993 pickups. For this study, we conduct experiments on

3-way tensor and choose to only keep hour, latitude and longitude infor-

mation for each pickup. Hour has 24 different values that represent 24

hours in a day. Latitude has 1140 different values and longitude has 1717

different values. The gap between two different values is 0.001 for both lat-

itude and longitude. To shrink the size of the tensor while keeping all the

information, we reset the gap to be 0.01 and group some values together .

The tensor we operate on is of size 24 × 176 × 237. The resulting tensor is

sparse with only 4% of elements are nonzero.

3.2.2 Determine Rank: Fit and Core Consistency Diagnostic

When fitting a CP model for a tensor X , we choose a predetermined R to

find the combination of N factor matrices that gives the best approximation

to the original tensor:

X ≈
R∑
r=1

ar
(1) ◦ar(2) · · · ◦ar(N ) = ~A(1),A(2), . . . ,A(N )�

21



CHAPTER 3. EXPERIMENT OUTLINE

We hope that the chosen R is close to the exact rank of the original ten-

sor. Choosing a rank much smaller than the actual rank leads to poor fit.

Choosing a rank greater than the actual rank leads to the problem of over-

factoring. However, as mentioned in Chapter 1, there is no good algorithm

that directly gives the exact rank of a given tensor.

CP decomposition is a special case of Tucker Decomposition where the

core tensor is superdiagonal. Given the best CP model approximation to

the original tensor, we can calculate the corresponding core tensor through

the factor matrices. If we select an R greater than the actual rank for a CP

model, the CORCONDIA, which measures how superdiagonal the calcu-

lated core tensor is, is large. Thus, as the R increases, we have a higher fit

but the core consistency drops.

For this study, we first select a range of R that is likely to contain the

exact rank of the tensor. Then we calculate the model fit and the core con-

sistency score obtained from the Core Consistency Diagnostic (CORCON-

DIA) associated with different choices of R in this range. We narrow down

the range of R by selecting R’s that give better balances between the fit and

the core consistency. For 3-way tensor,

Fit = (1− ‖X −K ‖
2

‖X ‖2
)× 100

22



CHAPTER 3. EXPERIMENT OUTLINE

where K = ~A(1), A(2), A(3)�.

The Core Consistency Diagnostic (CORCONDIA) is calculated as

CORCONDIA = (1− ‖ I −G ‖
2

‖ I ‖2
)× 100

for a 3-way tensorX , G =X×1(A(1))+×2(A(2))+×3(A(3))+, where (A(1))+, (A(2))+, (A(3))+

are the Moore-Penrose inverses of factor matrices A(1),A(2),A(3) obtained

from the CP model [7]. If we use R for the CP model, then I is a super-

diagonal tensor of size R×R×R with 1’s along the superdiagonal.

For the Uber pick up tensor, we find out that the fit is 0.88 when R

equals 2 and exceeds 0.95 when R increases to 5. We first set the range of R

to be from 2 to 8. As shown in table 3.1, we generate a CP OPT model for

R = 1, 2, . . . , 8 and calculate the fit and calculate the core consistency score

of the CP model obtained from CP OPT using HOSVD as initialization.

23



CHAPTER 3. EXPERIMENT OUTLINE

R Fit CORCONDIA

2 88.263 100.000

3 92.632 86.945

4 94.825 -59.764

5 96.182 -32.279

6 97.208 -509.308

7 97.866 -504.906

8 98.444 -19457.603

Table 3.1: The model fit and the CORCONDIA at different choices of R

We observe that the core consistency score changes drastically when R

increases from 5 to 6. Therefore, we choose 5 as the maximum choice of R

to avoid overfactoring.

3.3 Select Penalty Strength for the Smoothness Penalty

We generate CP OPT model with smoothness constraint for a given R. In

this study, we calculate the the smoothness score using the value of the

penalty term ‖ L(1)A(1)‖2F + ‖L(2)A(2)‖2F + ‖L(3)A(3)‖2F as it measures the sum

of squares of the column-wise neighboring cells for all factor matrices. A

24



CHAPTER 3. EXPERIMENT OUTLINE

smaller smoothness score indicates a better smoothness in the decomposed

factor matrices. For simplification, instead of finding the best λ for each

choice of R, we find the the best λ associated with the maximum choice of

R (e.g R = 5) and fix this λ for other choices of R.

Figure 3.1: The Model Fit against the Smoothness Score at R = 5. Data label

indicates the value of penalty strength λ

As shown in Figure 3.1, there is a trade-off between the model fit and

the smoothness score. We try the penalty strength from 0 to 10,000. We

observe that the CP OPT algorithm with smoothness constraint will crash

25



CHAPTER 3. EXPERIMENT OUTLINE

when λ is greater than 100,000. This is because for a very large λ, the

penalty term dominates the objective function and fails the optimization

process. As λ increases from 0 to 100,000, the smoothness score drops

from 9.4 to 8.3. A reasonable choice of λ is between 20,000 and 60,000. We

fix the λ to be 50,000 for later experiments.

3.4 Visualization of Smoothness Improvement

We measure the differences in values between two neighboring cells in

every column of every factor matrix. For classical CP OPT model and

CP OPT model with smoothness constraints, respectively, we plot these

differences for each column of each factor matrix with different choices of

R. In Figure 3.2 to 3.5, the x-axis refers to the index and the y-axis refers

to the absolute value of the difference between neighboring cells. The red

dashed line corresponds to the classical CP OPT model and the black line

corresponds to the CP OPT model with smoothness constraints. For same

index, the smaller the average value of the difference between neighbour-

ing cells, the better the smoothness. One thing to clarify is that the im-

provement of smoothness is not necessarily applicable in every column in

every factor matrix. Model fit is still a more dominant term in the objective

function compared to the penalty term.

26



CHAPTER 3. EXPERIMENT OUTLINE

For example, at R = 4, we look at 4 columns in factor matrix corresponds

to Mode-2 of the tensor. We observe significant improvements in smooth-

ness for the 2nd , as shown in Figure 3.2, and the 3rd column, as shown in

Figure 3,3. There is no big change for the 1st column, as shown in Figure

3.6, and the 4th column, as shown in Figure 3.7.

27



CHAPTER 3. EXPERIMENT OUTLINE

Figure 3.2: R = 4: 2nd column of factor matrix of mode 2 (latitude)

Figure 3.3: R = 4: Zoom in peak range of the 2nd column of factor matrix

of mode 2 (latitude)

28



CHAPTER 3. EXPERIMENT OUTLINE

Figure 3.4: R = 4: 3rd column of factor matrix of mode 2 (latitude))

Figure 3.5: R = 4: Zoom in peak range of the 3rd column of factor matrix

of mode 2 (latitude)

29



CHAPTER 3. EXPERIMENT OUTLINE

Figure 3.6: R = 4: 1st column of factor matrix of mode 2 (latitude)

Figure 3.7: R = 4: 4th column of factor matrix of mode 2 (latitude)

30



CHAPTER 3. EXPERIMENT OUTLINE

3.5 Running Performance

We compare the running performance of the CP OPT with smoothness

constraints (λ = 50,000) to the classical CP OPT under different choices

of R and the results are shown in the following table. For both models,

we use random initialization for the optimization process. For each R, we

do 100 random initializations on both the CP OPT and the CP OPT with

smoothness constrains. For each model with a different random initializa-

tion, we measure the model fit and the smoothness score. We measure the

running performance based on the number of iterations required by the

optimization method (L-BFGS). In the following table, Classical refers to

the classical CP OPT model, and Smooth refers to the CP OPT model with

smoothness constraints.

From the Table 3.5, we find out there is indeed an overall improvement

31



CHAPTER 3. EXPERIMENT OUTLINE

in smoothness by adding the smoothness penalty, but with some compen-

sation for the model fit. With random initialization for the optimization

process, we observe that the standard deviation of the number of iterations

can be huge.

We also observe that given random initializations, adding the smooth-

ness penalty seems to be able to stabilize the number of iterations required

by the optimization process and leads to smaller standard deviations.

32



Chapter 4

Exploring Sparsity

In the past, tensor decomposition problems focus on dense data, such as

applications from Chemometrics, where most of the values of the tensor

are nonzero. However, for spatiotemoporal data, the corresponding tensor

is usually quite sparse. Existing tensor decomposition algorithms only pro-

vide a framework for general tensors, without capturing the innate struc-

tures of sparse tensors.

Furthermore, the optimization process of fitting a CP model usually

starts with random initial guesses for factor matrices. However, for a sparse

tensor, some of the factor matrices obtained from CP decomposition are

usually quite sparse. Therefore, the optimization process that starts with

random factor matrices that are fully dense can be slow. What’s more,

33



CHAPTER 4. EXPLORING SPARSITY

computing CP models with constraints, such as on smoothness or non-

negativity, is much more expensive than the unconstrained CP models.

Constraints generate a larger gradient and the optimization method (e.g

L-BFGS) may take longer time to find the optimal CP model.

There have been studies that use high-order singular value decomposi-

tion (HOSVD) as initialization for optimization process to start at a location

closer to the local minimum and thus decrease the number of iterations. We

propose that using high-order Singular Value Decomposition (HOSVD) as

initialization can help us learn the sparsity patterns in factor matrices ob-

tained from CP Decomposition efficiently. We can accelerate the iterations

process further by truncating ”trivial” entries in HOSVD before putting it

as the initial guess.

34



CHAPTER 4. EXPLORING SPARSITY

4.1 Tucker Decomposition and HOSVD

Tucker decomposition expresses a tensor X of size I1×I2×· · ·×IN into a core

tensor G of size R1×R2 · · ·×RN multiplied by a factor matrix corresponding

each mode. CP decomposition is a special case of Tucker decomposition

where the core tensor has a cubic structure and is superdiagonal.

We call X a rank-(R1 ×R2 · · · ×RN ) tensor. The n-rank is defined to be

the dimension of vector space spanned by the fibers of n-th mode [1].

X = G ×1A
(1) ×2 · · · ×N A(N ) = ~G;A(1),A(2), . . . ,A(N )�

Consider a 3-way tensor X ∈RI×J×K , Tucker decomposition of X is

X = G ×1 A×2 B×3 C =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦bq ◦ cr = ~G,A,B,C�

where A ∈RI×P , B ∈RJ×Q, and C ∈RK×R.

4.2 HOSVD

High-order Singular Value Decomposition (HOSVD) is a special Tucker De-

composition. It generate one factor matrix whose columns are orthogonal

to each other for each mode of the tensor.

35



CHAPTER 4. EXPLORING SPARSITY

One classical strategy to compute a HOSVD for a N-way tensor takes

the following three steps [6]:

For k = 1,2, . . . ,N

1. Construct the mode-k unfolding X k

2. Compute the singular value decomposition X k = U kΣkV
T
k and store

the left singular vectors U k as factor matrix Ak

3. Compute the core tensor G via multilinear multiplication

G = (U T
1 ,U

T
2 , . . . ,U

T
N ) ·X

The other approach (interlaced HOSVD) interlaces the computation of

factor matrices with core tensor and works as follows [6]:

Set X (0) =X 0

For k = 1,2, . . . ,N

1. Construct the mode-k unfolding X (k−1)
k

2. Compute the singular value decomposition X (k−1)
k = U kΣkV

T
k and

store the left singular vectors U k as factor matrix Ak

3. Set X (k)
k = U T

kX
(k−1)
k = ΣkV

T
k

Set G = X (N )
N . In theory, the interlaced HOSVD is more efficient than the

classical HOSVD as it shrinks the size of the matrix whose SVD is to be find

36



CHAPTER 4. EXPLORING SPARSITY

at each iteration.

A truncated HOSVD is computed by replacing the full singular value

decomposition with a truncated SVD.

4.3 HOSVD as Initialization

The current implementation of CP OPT supports using a classical version

of HOSVD, which calls the Matlab function nvecs, as initialization for the

optimization method. It can largely accelerate the optimization process

compared to a random initialization. Most importantly, the main cost of

computing the HOSVD for a low-rank tensor comes from computing a few

(e.g R = 5) dominant eigenvectors of sparse matrices in this application.

The cost of computing HOSVD is trivial compared to the cost of the op-

timization process because both nonlinear conjugate gradient descent and

L-BFGS are iterative processes.

We propose that the interlaced HOSVD can give a better performance

than the classical HOSVD. We utilize the HOSVD function in the Matlab

Tensor Toolbox, an implementation of interlaced HOSVD, and make some

modifications. It originally uses the eig solver to find call eigenvectors for

each k-mode unfolding. Since the tensor is a sparse tensor, we choose to

use the function eigs instead to compute the R dominant eigenvectors of

37



CHAPTER 4. EXPLORING SPARSITY

(Ak−1
(k) )TAk−1

(k) , insteading of calculating all the eigenvectors and then do the

selection.

On both the classical CP OPT model and the CP OPT model with smooth-

ness constraints, we compare the performance of using random, the classi-

cal HOSVD, and the interlaced HOSVD as initialization for the optimiza-

tion process.

4.3.1 Comparisons between Different Initializations

random represents the random initialization; nvecs represents the clas-

sical HOSVD; HOSVD represents our implementation of the interlaced

HOSVD. We use the median of the number of iterations to measure the

performance.

Figure 4.1: Performances of Different Initilizations for CP OPT

38



CHAPTER 4. EXPLORING SPARSITY

Figure 4.2: Performances of Different Initailizations for CP OPT with

Smoothness Constraints

For both the classical CP OPT model and the CP OPT model with smooth-

ness constraints, using HOSVD as initialization fixes the number of itera-

tions for the optimization method and the number is much smaller than

the one taken by a random initialization. We also observe that the inter-

laced HOSVD has a slightly better performance than the classical HOSVD.

For this experiment, we operate on a relative small tensor and we expect a

bigger difference in performances if we operate on a tensor of a bigger size.

4.4 Sparsity of the Experiment Tensor

Our experiment tensor containing Uber pickup data contains only 4% of

nonzero elements. We explore 3 factor matrices generated by CP OPT and

39



CHAPTER 4. EXPLORING SPARSITY

we find out that the mode 2 factor matrix corresponding to the latitude

and the mode 3 factor corresponding to the longitude contains many trivial

entries. We calculate the percentage of entries with magnitudes below 1e−5

in each factor matrix and the result is shown in the following table.

R Mode 1 Mode 2 Mode 3

2 0 72.73 55.06

3 0 70.08 55.70

4 0 69.32 55.49

5 0 68.75 56.79

For all choices of R, the mode 1 factor matrix that corresponds to the

hour is evenly distributed in terms of the magnitudes of entries and can be

considered as a fully dense matrix. For the mode 2 factor matrix and the

mode 3 factor matrix, they can be considered as sparse if regarding those

trivial entries as zeros.

4.5 Learning Sparsity Pattern through HOSVD

For a 3-way tensorX , we fit an interlaced HOSVD model and set the size of

the core tensor to be R×R×R. We ignore the core tensor and only look at the

factor matrices obtained from HOSVD. We compare the factor matrices ob-

tained from HOSVD and the factor matrices generated by CP OPT model.

40



CHAPTER 4. EXPLORING SPARSITY

They have similar sparsity patterns. That is, the locations of nonzero en-

tries in the factor matrices obtained from HOSVD match the locations of

nonzero entries in the factor matrices obtained from CP OPT. As a result,

truncated HOSVD can serve as a good starting point for optimization pro-

cess of CP OPT for sparse tensors.

4.5.1 Experiments: Sparsity Patterns

On the test tensor containing Uber pickup data, we generate one HOSVD

model and one CP OPT model for R = 1, 2, 3, 4, 5. We plot the magnitudes

of entries in a certain column of a certain factor matrix for both the model

generated by HOSVD and the model generated by CP OPT. For example,

for R = 3, we compare the sparsity patterns in all 3 columns factor ma-

trices generated by CP OPT and the ones in factor matrices generated by

HOSVD. Mode 2 and mode 3 correspond to latitude and longitude, respec-

tively and the differences in magnitudes between nontrivial and nontrivial

entries are significant. As shown in Figure 4.3, Figure 4.4 and Figure 4.5,

HOSVD accurately captures the locations of nontrivial entries.

41



CHAPTER 4. EXPLORING SPARSITY

Figure 4.3: R = 3: Sparsity patterns comparison on mode 2 factor matrix

between HOSVD and CP OPT

Figure 4.4: R = 3: Sparsity patterns comparison on mode 3 factor matrix

between HOSVD and CP OPT

42



CHAPTER 4. EXPLORING SPARSITY

As shown in Figure 4.5, We zoom in the peak area of the 3rd column

of mode 3 factor matrix. The red dashed line corresponds to CP OPT and

the blue solid line corresponds to HOSVD. There are 3 peaks in the column

corresponds to CP OPT and HOSVD captures all three of them

Figure 4.5: R = 3: Zoom in peak area of the 3rd column in mode 3 factor

matrix

As shown in our experiments, HOSVD can predict the locations of non-

trivial entries in factor matrices generated by CP OPT.

43



CHAPTER 4. EXPLORING SPARSITY

4.6 HOSVD with Truncation

We propose that a better initial guess can be obtained by truncating small

entries whose magnitudes are below some threshold (e.g 1e−5) in factor

matrices obtained from HOSVD. We maintain that small entries that are

irrelevant to the final analysis can slow down the convergence of optimiza-

tion process. Our interpretation is that using HOSVD with truncation not

only makes the starting point for the optimization iterations closer to the

local minimum, but also captures the sparsity patterns and incorporates a

smoother structure.

4.6.1 Visualization

On our test tensor carrying Uber pickup data, we compare the sparsity pat-

terns of factor matrices obtained by CP OPT model to those obtained by

the truncated HOSVD with a threshold of 1e−5. In CP OPT model, the sec-

ond and the third factor that correspond to the latitude and the longitude,

respectively, are both sparse matrices. However, the first factor matrix cor-

responds to the hour of each pickup is a dense matrix. A straightforward

interpretation is that there are pickups in every hour of the day. The thresh-

old does not truncate the first factor matrix of HOSVD and therefore we

only look at the second and the third factor matrix. We find that the trun-

44



CHAPTER 4. EXPLORING SPARSITY

cated HOSVD captures the peak range of every column. The following two

figures are the example of sparsity pattern comparisons between HOSVD

and CP OPT at R = 3. For both figures, the dashed blue line corresponds to

CP OPT and solid red line corresponds to HOSVD with truncation of 1e−5.

Figure 4.6: R = 3: Sparsity pattern comparisons in Mode 2 factor matrix

45



CHAPTER 4. EXPLORING SPARSITY

Figure 4.7: R = 3: Sparsity pattern comparisons in Mode 3 factor matrix

46



CHAPTER 4. EXPLORING SPARSITY

4.7 Experiments

HOSVD provides a starting point much closer to the local minimum com-

pared to random initialization. For both the traditional HOSVD and the

truncated HOSVD, the number of iterations for the classical CP OPT model

and for the CP OPT model with smoothness constraints is fixed for a given

R. For both the classical CP OPT and CP OPT with smoothness constraints,

we use truncated interlaced HOSVD with different thresholds as initializa-

tion and measure the number of iterations required by the optimization

process. We try the threshold from 0 (no truncation) to 1e−3.

4.7.1 Truncated HOSVD as Initialization for CP OPT

Figure 4.8: Number of iterations required by the CP OPT with truncated

HOSVD as initialization

47



CHAPTER 4. EXPLORING SPARSITY

We observe that if the threshold is too small (e.g 1e−7), truncation on

HOSVD has no improvement in terms of the number of iterations required

by the optimization process. As we gradually increase the threshold and

get rid of more trivial entries in factor matrices generated by HOSVD as

initialization, we observe an overall decrease in the number of iterations

for different choices of R. As the threshold reaches 1e−3, the performance

of truncated HOSVD drops.

4.7.2 TruncatedHOSVDas Initialization for CP OPTwith Smooth-

ness Constraints

Figure 4.9: Number of iterations required by the CP OPT with smoothness

constraints with truncated HOSVD as initialization

48



CHAPTER 4. EXPLORING SPARSITY

For CP OPT with smoothness constraints, the truncated HOSVD can

decrease the number of iterations required by the optimization process for

a certain range of choices of thresholds. For example, compared to no trun-

cation, removing entries with magnitudes below 1e−6 can significantly im-

prove the number of iterations for R = 4 and R = 5.

49



Chapter 5

Conclusions

In this study, we customize the classical CP OPT model for sparse tensors

containing spatiotemoporal data mainly in 2 aspects:

1. Adding smoothness constrains on factor matrices by using Laplacian

matrices;

2. Replacing the random initialization with the interlaced HOSVD to

accelerate the optimization process; exploring the sparsity patterns in

the decomposed components of CP OPT using the interlaced HOSVD

whose trivial entries are removed as initialization to further acceler-

ate the optimization process by taking the advantage of sparsity

50



CHAPTER 5. CONCLUSIONS

5.1 Smoothness Constraints

As introduced in Chapter 2, we construct the smoothness penalty term us-

ing Laplacian matrices to control the change in magnitudes between two

neighboring entries in the same column. Introducing this penalty term in-

deed improves the overall smoothness in factor matrices. However, achiev-

ing a better smoothness will decrease the model fit to some extent. There

is a trade-off between the model fit and the smoothness when choosing the

penalty strength λ. In addition, the penalty term leads to a greater gra-

dient and therefore L-BFGS takes a larger number of iterations to find the

optimal in general.

5.2 Initialization Using HOSVD

Using the default random initialization for the optimization process leads

to slow convergences and instability in the number of iterations required

by the optimization method (e.g L-BFGS).

The current implementation supports using the classical HOSVD as ini-

tialization. We have proved that using the interlaced HOSVD as initial-

ization has better performances compared to using the classical HOSVD.

In addition, we find out HOSVD can predict the sparsity patterns in fac-

51



CHAPTER 5. CONCLUSIONS

tor matrices generated by CP OPT model. We observe the presence of a

considerable amount of trivial entries (e.g entries with magnitudes below

1e−5) in factor matrices generated by HOSVD. Therefore, to avoid unnec-

essary computations for the optimization method (e.g L-BFGS), we truncate

those entries with magnitudes below a self-determined threshold and use

a truncated HOSVD as initialization for a CP OPT model with or without

smoothness constraints. Our experiments have shown that HOSVD with

truncation can further accelerate the optimization process.

5.3 Future Work

Since the CP OPT algorithm explicitly calculates the gradient of the ob-

jective function and expresses the objective function and the gradient as

functions of a stacked vector, we can choose any optimization method that

requires only these two pieces of information, not only the nonlinear con-

jugate gradient descent method and L-BFGS method, such as the fast prox-

imal gradient method (FISTA).

We have shown that HOSVD can identify the locations of nontrivial

entries in factor matrices generated by CP OPT. For spatiotemporal data

analysis, we actually care more about those nontrivial entries. In addition,

moving trivial entries (e.g with magnitudes below 1e−5 in factor matrices

52



CHAPTER 5. CONCLUSIONS

generated by CP OPT does not influence the model fit. Therefore, if the

optimization method only updates the locations identified as the locations

of nontrivial entries, we might be able to reduce the computational cost

and accelerate the optimization process even more.

53



Bibliography

[1] T. Kolda, and B. Bader, Tensor Decompositions and Applications. Society

for Industrial and Applied Mathematics, 2007, pp. 8–37.

[2] E. Acara, D.Dunlavyb, and T. Kolda, A scalable optimization approach

for fitting canonical tensor decompositions. Journal of Chemometrics

25(2):67–86, February 2011.

[3] H. Kiers,Towards a standardized notation and terminology in multiway

analysis. J. Chemometr., 14 (2000), pp. 105–122

[4] T. Kolda, and Tamara Gibson, Multilinear operators for higher-order

decompositions. United States: N. p., 2006. Web. doi:10.2172/923081.

[5] A. Afshar,J. C. Ho,B.Dilkina,I. Perros,E.B.Khalil, L. Xiong, and V.

Sunderam, Cp-ortho: An orthogonal tensor factor- ization framework for

spatio-temporal data. In Proceedings of the 25th ACM SIGSPATIAL In-

54



BIBLIOGRAPHY

ternational Conference on Advances in Geographic In- formation Sys-

tems, SIGSPATIAL 17, pages 67:167:4, New York, NY, USA, 2017.

ACM. ISBN 978-1-4503-5490-5. doi: 10.1145/3139958.3140047. URL

http://doi.acm.org/10.1145/3139958.3140047.

[6] Higher-order singular value decomposition. (n.d.). In Wikipedia. Re-

trieved February, 2019, from https://en.wikipedia.org/wiki/Higher-

order singular value decomposition.

[7] R. Bro, H. Kiers,A new efficient method for determining the number of

components in PARAFAC models, J. Chemometrics 2003; 17: 274286.

[8] M. Bahadori, Q. Yu, and Y. Liu, Fast Multivariate Spatio-temporal Anal-

ysis via Low Rank Tensor Learning, Neural Information Processing Sys-

tems Conference 2014.

55


