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Abstract

Experimental investigations on the nonequilibrium

dynamics of pattern formation in fluid and

granular systems

By Xiaolei Ma

Patterns are quotidian in nature and occur on multiple length scales. Distinct

multiscale patterns are generally a consequence of nonequilibrium dynamical pro-

cesses associated with particular mechanical and hydrodynamic instabilities, which

play a vital role in shaping the pattern geometry. In this thesis, I report experimen-

tal investigations on the pattern formation in a few examples of fluid and granular

systems, and uncover the underlying mechanisms that give rise to those patterns.

Leidenfrost drops are known to experience star-shaped oscillations with little

damping. However, the underlying mechanism remains unclear. Here I report that

the hydrodynamic coupling between the rapid evaporated vapor flow and vapor-liquid

interface excites the star-shaped oscillations, suggesting a purely hydrodynamic ori-

gin. In addition, I also give an analytical explanation for an oscillatory “breathing

mode” found in small Leidenfrost drops.

Polygonal desiccation crack patterns are commonly observed in natural systems.

However, it is unclear whether similar crack patterns spanning multiple length scales

share the same underlying physics. I also report experimental investigation on polyg-

onal cracks in drying suspensions of micron-sized particles. In cornstarch-water mix-

tures, multi-scale crack patterns were observed due to two distinct desiccation mech-



Abstract iii

anisms. In addition, we find that the characteristic area of the polygonal cracks (Ap),

and film thickness (h) obey a universal power law, Ap = αh4/3. Thus we provide a

robust framework for understanding multiscale polygonal crack patterns.

Finally, I report experimental results on sedimentation of non-Brownian particles

in viscous fluids, which is crucial in both nature and industrial processes. We observed

an effective repulsion between particles with nonuniform density in both two-body and

many-body systems, in contrast to particles with uniform density. This trend holds

true in two and three dimensions. In addition, we also characterize the statistical

properties of the sedimentation patterns of particles in three dimensions. Our results

also shed light on the potential for controlling the uniformity of particle layers after

sedimentation.

The patterns I report in this thesis represent typical examples in fluid and granular

systems that are driven by nonequilibrium dynamics, and the underlying mechanisms

we uncover are expected to enhance our understanding of how these seemingly simple

patterns can arise in natural systems.
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Chapter 1

Introduction

1.1 Pattern formation in nature

The nature is composed of diverse patterns existing from nanoscopic to geophysi-

cal scales, such as the examples shown in Fig. 1.1. The cause of patterns can be very

complicated depending on particular physical mechanisms. For example, the striking

six-fold symmetry of a snowflake, as shown in Fig. 1.1a, is basically a particular sig-

nature of crystallization of water molecules. During this process, the water molecules

align themselves in order to localize in the lowest energy state. Based on this princi-

ple, snowflakes develop hexagonal symmetry, and in reality there are different types

of snowflakes depending on the surrounding temperature and humidity [1]. Figure

1.1b shows the sand ripples that can be easily observed in a desert or beach. The

formation of these nearly periodic patterns originate from the interactions between

the fluid (liquid or wind) flow and bed topography. The rough process can be as

follows: when the fluid is moving fast, the sand grains will be lifted, gaining trans-

1
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(a) (b) (c)

Figure 1.1: Patterns in nature. (a) (b) and (c) show the patterns of a crystalline
structure in a snowflake, sand ripples, and a basalt columnar jointing, respectively.
Image (a) is reproduced from Ref. [6] with permission from Kenneth Libbrecht, (b)
is licensed under “CC0 Public Domain”, and (c) is reproduced with permission from
Goehring et al. [7], copyright (2008) by the American Geophysical Union.

lational and rotational energy. In a higher energy state, the grains on the top of a

dune are unstable and prone to flow down to dissipate energy when perturbed. As a

consequence, the sand grains display such an amazing pattern with the wavelength

depending on the fluid flow velocity and depth of the granular material [2, 3]. A

spectacular geologic column joint pattern found in cooled lava flows is shown in Fig.

1.1c. Some well-known examples of those hexagonal fracture patterns can be found

for instance in Giant’s Causeway, Northern Ireland, Devils Tower, Wyoming, USA,

and Devils Postpile, California, USA. As the hot lava flows are exposed to air, cool-

ing takes place from outside in, generating enormous stress inside the rock. Fractures

then form at the surface and grow into the material, which usually takes decades.

Depending on the specific environmental settings, the number of sides of the joints

can vary and joint structures with the number of sides ranging from 4 to 7 have been

observed in reality, nevertheless, hexagonal symmetry is the most common scenario,

which is likely due to a particular ordering process [4, 5].
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In addition to the amazing patterns observed in non-living systems, biological

organisms display a tremendous diversity of patterns, such as the branching pattern

of veins in a leaf, the fractal structure in a Romanesco broccoli, the spiral pattern in a

nautilus shell, the Turing pattern in a zebra’s skin, and the fractures in a crocodile’s

skin. The origins for the development of the diverse and fascinating patterns observed

in biological organisms are quite complicated due to the highly nonequilibrium nature

in biological systems which usually involve cell differentiation, cell growth and death,

and interaction with environmental conditions, however, many models have to some

extent successfully explained the origin of patterns observed in biological systems

at the molecular level or based on mechanical principles on the mesoscopic scale,

although oversimplified in many cases [8–14].

Despite the difficulty in fully understanding the formation of patterns in diverse

systems in nature, there have been a number of widely applicable theories and mod-

els that are now employed as frameworks to describe the generic dynamics of the

nonequilibrium growth of patterns in certain systems, for instance, the diffusion-

limited aggregation of Brownian particles [15, 16] and the spinodal decomposition of

a mixture of liquids [17, 18]. Although our understanding of the fascinating patterns

observed in nature is pretty much in its infancy, there are growing interests in un-

covering the underlying mechanisms behind these nonequilibrium patterns physically

and mathematically [3, 19–22]. In Sections 1.2, 1.3 and 1.4, I will present some fun-

damental background for pattern formation in particular systems of fluids, colloidal

suspensions, and sedimentation, respectively.
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1.2 Patterns in fluids

The world of fluids is rich in intriguing patterns, which can essentially be ex-

plained by hydrodynamic theories [23–25]. Generally, the origin of patterns observed

in incompressible fluid systems can be understood by the Navier-Stokes equation:

∂u

∂t
+ (u · ∇)u = g− 1

ρ
∇p+ ν∇2u, (1.1)

In most cases, the fluid of interest is assumed to be incompressible, i.e.,

∂ρ

∂t
= 0, (1.2)

∇ρ = 0, (1.3)

and given the condition of mass conservation:

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+∇ρ · u + ρ(∇ · u) = 0, (1.4)

we can simply arrive:

Dρ

Dt
=
∂ρ

∂t
+ u · ∇ρ = −ρ(∇ · u) = 0, (1.5)

which yields the continuity equation:

∇ · u = 0, (1.6)

where u is the flow velocity, ρ is the fluid density, ν = η/ρ is the kinematic viscosity

wherein η is the dynamic viscosity, g is acceleration field of the volume forces, and p is

the pressure. In certain regimes, the viscous force is dominant over inertial forces and

gravity, and the nonlinear, advective inertial terms in Eq. 1.1 can be safely ignored,

leading to:

∇p = η∇2u, (1.7)
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(a) (b) (c)

Figure 1.2: Patterns driven by hydrodynamic instabilities. (a) shows the hexagonal
convection cell pattern when heating a liquid from below with the top surface ex-
posed to air, which is driven by the Bénard-Marangoni thermocapillary instability,
(b) shows the viscous fingering pattern when imposing a less viscous fluid into a more
viscous fluid in a Hele-Shaw cell, which is driven by the Saffman-Taylor instability, (c)
shows the wave pattern of a cloud layer near New York when the pressure difference
across the interface of cloud and air is beyond a critical value, which is driven by the
Kelvin-Helmholtz instability. Image (a) is reproduced with permission from Ref. [26],
copyright (2015) by the Oxford University Press, (b) is reproduced with permission
from Bischofberger et al. [27], copyright (2014) by the Springer Nature, and image
(c) credit to Paul Chartier.

which is known as the Stokes equation. Equation 1.7 is much easier to deal with both

mathematically and numerically than Eq. 1.1, and most hydrodynamic phenomena

in this regime can be analytically understood due to the linearity of Eq. 1.7.

Figure 1.2a shows the hexagonal convection cells which can be observed when

heating a liquid from below with the top surface exposed to air. Due to the per-

turbation, the warm fluid will move upward, thus bringing local perturbation to the

temperature of the free surface and leads to a surface tension gradient at the interface

resultantly. The surface tension gradient induces a Marangoni stress, which drives the

fluid to spread out thus forming the hexagonal pattern. In this systems, the resisting

forces are caused by the liquid viscosity and thermal diffusion, which tend to stabi-

lize the temperature variations in the fluid and make the fluid more homogeneous.
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2 cm

Figure 1.3: Star-shaped oscillation patterns of Leidenfrost drops on a curved, alu-
minum surface with a temperature of ≈ 350 ◦C. Oscillation modes with n = 2 to
n = 13 are shown when the lobes are at their maximum displacement. The scale bar
applies to all images. The images are reproduced with permission from Ma et al. [28],
copyright (2015) by the American Institute of Physics.

Usually, a dimensionless Marangoni number defined as the ratio of surface tension

effect to viscous and thermal diffusive effects is used to characterize to the relative

importance, and when the Marangoni number reaches a critical value, hexagonal cell

patterns should occur between the bottom layer and the top free surface with the

size of the cell depending on the thickness of the fluid layer, which is the so-called

Bénard-Marangoni thermocapillary instability [26, 29–33]. Another example is the
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viscous fingering patterns that usually occur when a less viscous liquid is injected

into a more viscous liquid in a rectangular configuration, for instance, a Hele-Shaw

cell, as shown in Fig. 1.2b. Once the critical injecting velocity of the less viscous

liquid is reached, an instability will be excited and lends to the front to be unstable

for growth of fingers, which consequently initiates a fingering pattern known as the

Saffman-Taylor instability [34, 35]. Figure 1.2c shows the wave pattern in a cloud

layer, which is driven by a shear flow at the interface composed of two fluids with

different densities (heavy fluid on the bottom and light fluid on the top). Basically, a

shear flow at the interface will cause a pressure gradient in the vicinity of the interface,

then the interface will be unstable and heavy fluid will be lifted up whereas the light

fluid be pushed down, thus forming vortex-like wave pattern in the could layer. This

is known as the Kelvin-Helmholtz instability [25]. Besides the pattern shown in Fig.

1.2c, the Kelvin-Helmholtz instability also manifests in other well-known examples,

such as Jupiter’s Red Spot, the Sun’s corona, and in ocean waves [36–38].

In addition to the gorgeous patterns displayed in Fig. 1.2, isolated drops are

also able to show fascinating patterns. Leidenfrost drops are known for the star-

shaped oscillations that spontaneously form, as shown in Fig. 1.3. The Leidenfrost

effect occurs when depositing a liquid drop onto a hot surface well above the boiling

point of the liquid. Then the drop will levitate on a vapor cushion fed by the drop

evaporation, consequently the Leidenfrost drops will undergo a long lifetime as the

vapor insulates the liquid from the hot solid substrate [39, 40].

The capillary length is a length scale that characterizes the relative importance of

gravitational force and surface tension. Assuming a spherical liquid drop with a size,
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l, surface tension, γ, and density, ρl, then the balance of surface tension force, γl, and

gravitational force, ρlgl
3, leads to a characteristic length scale lc =

√
γ/ρlg, which is

known as the capillary length. For drop with a size larger than lc the gravitational

force will dominate over surface tension forces and the drops will be flatten by gravity.

More interestingly, for drops with a radius much larger than lc, the thickness of the

drops, h, will become constant, i.e., h ≈ 2lc, which can be simply derived by balancing

the surface tension force, γ/(h/2), and hydrostatic force, ρlgh/2, per unit length near

the edge of the drop. Large Leidenfrost drops easily form large-amplitude, star-shaped

oscillations as shown in Fig. 1.3, which is generally due to the complex coupling

between the solid, liquid and vapor phases. As will be shown in Chapter 2 in more

detail, the star-shaped oscillations of Leidenfrost drops are parametrically driven by

the pressure oscillations in the vapor beneath the drop. The pressure oscillations are

initiated by the capillary waves with a characteristic wavelength (frequency) traveling

from the drop center to the edge and the capillary waves are excited by a strong shear

due to the rapidly flowing evaporated vapor. This suggests that the star-shaped

oscillations of Leidenfrost drops are purely hydrodynamic in origin [41, 42].



Chapter 1: Introduction 9

(a) (b) (c) (d)

1 mm 4 mm

Figure 1.4: (a) and (b) show the circular and radial cracks by drying nanoscopic silica-
water drops on a polystyrene substrate and a glass substrate, respectively. (c) shows
spiral cracks by drying a nanoscopic latex-water suspension in a circular container
with the top surface exposed to air. (d) shows the parallel cracks by drying nanoscopic
silica-water suspension in a quasi-two-dimensional thin chamber. Images (a) and
(b) are reproduced with permission from Jing et al. [43], copyright (2012) by the
American Chemical Society, (c) is reproduced with permission from Lazarus et al.
[44], copyright (2011) by the Royal Society of Chemistry, and (d) is reproduced with
permission from Dufresne et al. [45], copyright (2003) by the American Physical
Society.

1.3 Patterns in colloidal films

Crack patterns by drying are ubiquitous in nature, artistic works and industrial

processes [46]. Typical examples include the complex crack network in a dried blood

drop [47], craquelures in old paintings [48, 49], T/Y-shaped cracks in dried mud [50],

and polygonal terrain cracks [4, 51, 52]. Practically, a broad range of applications,

such as thin film coating, forensics, and controllable surface patterning rely on the

knowledge of the physical processes that determine crack patterns [53–57]. To un-

derstand the underlying mechanisms behind those versatile, multiscale cracks, drying

colloidal suspensions has been widely employed as a model system in the laboratory.

Colloid generally refers to a type of multiphase system wherein particles (solid, liquid

or gas) with a size between 10−9 m to 10−6 m are dispersed in a liquid. Prototypical
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colloidal systems include milk, blood and ink in our daily lives. One of the most

important properties of colloidal particles is that they are susceptible to thermal fluc-

tuations, which leads to Brownian motion due to the random collision with liquid

molecules [58]. However, many crack patterns in natural systems contain particles

with sizes from 10 µm to 1 mm, so larger particles are also used to investigate crack

pattern formation. In contrast to colloidal particles, the major interactions between

between these granular particles are from friction and collision, and when the parti-

cles size is close to 1 µm, other factors such as van der Waals forces, humidity are

also likely to play a role in the interaction between granular particles [59–62].

Heretofore, a large number of types of crack patterns have been observed by drying

colloidal suspensions under various conditions, and those results indicate that many

factors can influence the selection of crack patterns [46, 63]. Figure 1.4 shows a

few typical crack patterns observed in drying colloidal suspensions in recent years.

Different substrate wettability can lead to distinct types of crack patterns as indicated

by Figs. 1.4a and 1.4b which show circular and radial cracks by drying colloidal drops

on polystyrene (hydrophobic) and glass (hydrophilic) substrates, respectively [43].

The film thickness can also play a role in selecting the crack pattern as shown in Fig.

1.4c in which spiral crack patterns are observed in drying a latex-water suspension in

a circular container with the top surface exposed to air with a film thickness of ≈ 200

µm, in contrast, only polygonal cracks can be observed in films with thickness of ≈

20 µm in the same experimental setup [44]. In addition to the open system shown in

Figs. 1.4a, 1.4b and 1.4c, when the colloidal suspensions are confined in a quasi-two-

dimensional space, an array of roughly periodically spaced cracks are usually observed
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with drying as shown in Fig. 1.4d [45].

Besides the crack patterns shown in Fig. 1.4, a large variety of crack patterns

have been reported in dried suspensions [43, 48, 64–79]. The diversity in observed

patterns depends on numerous factors such as film geometry [44, 67], particle me-

chanics [80], liquid additives [81, 82], preparation history [83, 84], solvent volatility

[85, 86], and external fields [87, 88]. The difficulty in understanding pattern selection

and propagation lies in the combinations of elastic instabilities, plastic deformations

and multiphase interactions in the such systems [49, 63, 89].

Despite this broad range of crack patterns, we know surprisingly little about what

controls the size and hierarchy of commonly observed polygonal cracks, which are vis-

ible on both the micro- and macro-scales. Although multiple experimental, numerical

and theoretical studies have reported specific scalings between the crack spacing and

film thickness considering the mechanical, thermodynamic, hydrodynamic, and sta-

tistical properties of cracking, however they often lead to contradictory results. Given

the importance of understanding crack patterns, in Chapter 3 I report experimental

results on the mechanisms underlying polygonal crack patterns by drying micro-sized

particulate suspensions. We found distinct mechanisms lead to multiscale crack pat-

terns in drying cornstarch-water suspensions, and the crack area and film thickness

of the multiscale cracks we observed in our experiment obey a universal power law

that can be derived from a balance of stored elastic energy in the film and the surface

energy released upon cracking [90].
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(a) (b)

Figure 1.5: (a) The Mississippi River Delta, showing the sediment plumes from the
Mississippi and Atchafalaya Rivers, USA, (b) shows the sedimentary rocks located
in The Wave, Vermillion Cliffs, Arizona, USA. Images (a) and (b) are taken from
Wikipedia licensed under CC-BY-2.5.

1.4 Patterns driven by sedimentation

Sedimentation of particles in fluids plays a key role in shaping natural patterns

[91, 92], for example the formation of river deltas (Fig. 1.5a) and geological deposits of

sandstone and siltstone (Fig. 1.5b). In industrial applications, sedimentation is also

widely used in the processes of decontamination, neutralization, particle separation

and biological purification. Given its crucial role, sedimentation has been extensively

studied with a particular focus on the settling velocity fluctuations of mono/poly-

disperse, Brownian/non-Brownian particles, density fluctuations, the effects of par-

ticle geometry, system size, and many-body hydrodynamics [93–97], however, the

sedimentation is still far from being fully understood due to the complex long-range

hydrodynamic, many-body interactions between particles.

Practically, one of the important issues is to precisely control particle clustering

and the uniformity of particulate films after sedimentation, which relies on one’s
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Figure 1.6: Sketch of the sedimentation of a spherical particle with density ρp, radius
a and velocity U in the vertical direction z in a viscous fluid with density ρf and
dynamic viscosity η.

ability to control particle interactions. Recently, it has been theoretically suggested

that controlling these interactions can be done by tuning the particle geometry and

mass distribution of non-Brownian particles in Stokes flows [98]. The key idea is that

as the particle geometry center is different from the center of mass, the particles will

response anistropically to the fluid disturbance generated by the density fluctuations.

This will eventually generate an effective repulsion between particles, suppressing the

density fluctuations. In contrast, for symmetric particles (e.g., sphere) with uniform

density distributions there is no such repulsion between particles, which is due to

the isotropic response to the fluid disturbance endowed by the highly symmetrical

geometry. In Chapter 4, I will show some experimental evidence related to those

theoretical predictions.

In typical experimental, theoretical and computational studies, viscous fluids are
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used for sedimentation in order to simplify the analysis, in which the inertial forces

can be ignored, and the sedimentation dynamics of particles are merely determined

by Stokes flow (i.e., Eq. 1.7). For a spherical particle settling down in a very viscous

fluid as illustrated in Fig. 1.6, the particle moves very slowly and the motions can be

considered steady state. Then balancing the drag, gravitational, and buoyancy forces

leads to:

6πηaU =
4

3
(ρp − ρf )πa3g, (1.8)

and the steady state sedimentation velocity (Stokes velocity) is:

Ustokes =
2

9

a2

η
(ρp − ρf )g. (1.9)

One of the most interesting properties of sedimentation in viscous fluids is the long-

range hydrodynamic nature of the interactions between particles. This can be easily

derived by considering Eqs. 1.6 and 1.7 with appropriate boundary conditions, and

the disturbance velocity and pressure fields around a sphere in a spherical coordinate

system (r, θ, φ), the solution is [99, 100]:

ur =

(
1− 3

2

a

r
+

1

2

a3

r3

)
U cos θ, (1.10)

uθ = −
(

1− 3

4

a

r
− 1

4

a3

r3

)
U sin θ, (1.11)

uφ = 0, (1.12)

p = −3

2
η
a

r2
U cos θ, (1.13)

where U is the uniform stream velocity at r →∞.

Figure 1.7 shows the two dimensional view of the Stokes flow around a solid sphere

in a Cartesian coordinate system based on Eqs. 1.10 to 1.13. What is different here
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Figure 1.7: Sketch of Stokes flow around a sphere based on Eqs. 1.10 to 1.13 in a
Cartesian coordinate system. Note the horizontal axis represents the x direction,
whereas the vertical axis represents the z direction.

from the pattern of potential flow around a sphere is that the perturbation created

by a translating sphere decays slower and extends further due to the term O(1/r),

which is what we mean by the long-range nature of the interactions.

To leading orders, Eqs. 1.10 and 1.11 are reduced to:

u ∼ 1− 1

r
' 1

r
, (1.14)

whereas Eq. 1.13 is simplified to:

p ∼ 1

r2
. (1.15)

This long-range hydrodynamic characteristic, as indicated by Eq. 1.14, can re-

sult in interesting and complex phenomena in many-body systems, such as collective

motions, large-scale velocity and structure fluctuations in the sense of the dynamic
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coupling between hydrodynamics and the positions and orientations of particles, and

considerable progress has been made regarding those problems [93, 95, 96, 101–112].

More recent attention has been paid to controlling the particle interactions during

sedimentation so as to control the uniformity of particle cluster patterns after sedi-

mentation.

One of the promising pathways for realizing controllable sedimentation is to tune

the density distributions as theoretically suggested by Goldfriend et al. [98]. Using

linear stability analysis, the authors predict that the particles (non-Brownian) with

different density distributions respond very differently to the fluid disturbance, and

there should be an effective repulsion between elongated particles with nonuniform

density distributions, in contrast to particles with uniform density distributions, for

example, a sphere or a rod will align with the fluid flow (see Fig. 4.1 for comparison).

This will create a lateral motion of the particles because of the greater downward

gravitational torque of the heavier part compared to the lighter adjacent part. This

torque pulls the particle from the preferred alignment direction, consequently pulling

the particles to move towards the regions of lower settling velocities and lower densi-

ties. This lateral motion is theoretically promising in suppressing density fluctuations

so as to realize controllable uniformity of particles after sedimentation.

In Chapter 4, I report our we experimental investigation on the effect of particle

density distributions on the sedimentation dynamics. In the experiment, we used

equal-sized aluminum and steel balls to construct particles with different density dis-

tributions. We observed an effective repulsion between the particles with nonuniform

density distributions in both two-body and many-body systems, in contrast to the
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counterpart of particles with uniform density distributions. Our results suggest that

the theoretical predictions by Goldfriend et al. [98] are basically correct despite that

the density fluctuations are only restricted to the x-y plane (see Fig. 1.6). It is ex-

pected that our results could open a novel pathway for tunable route towards the

uniformity of particulate films via sedimentation.

The examples of pattern formation I report in this thesis represent the typical

scenarios in fluid and granular systems driven by nonequilibrium dynamics, though in

the real world the systems are quite complex and diverse. The underlying mechanisms

giving rise to the pattern formation in fluid and granular systems we uncover in

laboratory experiments (Chapters 2, 3 and 4) can enhance our understanding of how

nonequilibrium dynamics shape the nature, and are also expected to serve as directive

tools for manually controlling pattern formation for multiple purposes.



Chapter 2

Oscillations of Leidenfrost drops

2.1 Introduction

When a millimeter-scale volatile liquid drop (e.g., water) is deposited on a suf-

ficiently hot solid, it can survive for minutes due to the presence of a thermally-

insulating layer of evaporated vapor beneath the drop. This phenomenon is known

as the Leidenfrost effect for example the Leidenfrost drop shown in Fig. 2.1a, and

the geometry of the Leidenfrost drop is illustrated in Fig. 2.1b. In this levitated

state, commonly known as the Leidenfrost regime [113], the supporting vapor layer is

maintained by the sustained evaporation of the liquid, and individual drops are free

to undergo frictionless motion due to the absence of liquid-solid contact.

The Leidenfrost effect can be easily observed by placing a water drop onto a hot

pan over a cook stove in the kitchen, and has been the subject of numerous fun-

damental and applied studies due to the complex and rich interactions between the

solid, liquid, and vapor phases [40]. Examples include the evaporation dynamics and

18
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hot substrate

vapor

1 mm(a) (b)

Figure 2.1: (a) shows an image of a Leidenfrost water drop on a solid substrate with
temperature of 320 ◦C, (b) illustrates the geometry of the Leidenfrost drop, where R
represents the maximum radius of the drop, Rneck represents the radius of the neck
region which is closest to the hot solid substrate, and e represents the gap height
between the bottom surface of the drop and the hot solid substrate, which is also the
average thickness of the vapor layer fed by drop evaporation. Image (a) is reproduced
with permission from Burton et al. [114], copyright (2012) by the American Physical
Society.

geometry of the drop [39, 114–121], the stability of the vapor-liquid interface [122–

129], hydrodynamic drag-reduction [130–132], self-propulsion of droplets [133–141],

impact dynamics [142–145], green nanofabrication [146], nanoparticle painting [147],

particle self-organization [148], explosion of Leidenfrost liquid mixtures [149], chemi-

cal reactions [150], fuel combustion [151], quenching process in metallurgy [152], heat

transfer [153, 154], directional transport [138, 155], soft heat engines [156, 157] and

thermal control of nuclear reactors [158]. The rich phenomena behind Leidenfrost

effect essentially stem from the complex coupling between the liquid-vapor interface

and the rapid vapor flow beneath the drop, which is however far from being well un-

derstood [40]. Here I report our experimental investigation on the coupling dynamics

through the study of self-sustained oscillations of Leidenfrost drops.

In many of these examples, transient and self-sustained capillary oscillations play
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an important role in the dynamics. The interplay between gravity, the flow of vapor

beneath the drop, and the liquid surface tension can lead to both small- and large-

amplitude oscillations with very little damping. An understanding of these detailed

interactions is crucial for the stability of the vapor layer, the failure of which can

lead to explosive boiling upon contact with the hot surface. However, the excitation

mechanism of these oscillations is complicated by the presence of both hydrodynamic

and thermal effects, for example, rapidly-flowing vapor can cause a strong shear stress

at the liquid-vapor interface, and temperature gradients in the liquid can lead to

convective and Marangoni forces. Here we focus on capillary oscillations in individual

Leidenfrost drops, where the shape is mostly determined by the competition between

the gravity and surface tension, as measured by the relative size of the drop with

respect to the capillary length, lc ≡
√
γ/ρlg, where γ and ρl denote the surface tension

and density of the liquid, and g is the acceleration due to gravity. For drops with

radius R < lc, surface tension forces are dominant, and the drop shape is essentially

spherical except for a vanishingly small flat region near the solid surface [114]. Caswell

[159] identified a planar vibrational mode (“breathing” mode) in the neck region of

the drop closest to the solid substrate. The oscillation frequencies were found to

obey a power law that is not consistent with a general three-dimensional dispersion

relation for capillary waves [160]. Here we provide an analytical expression for the

breathing mode using a simple model based on gravity and surface tension which

shows excellent agreement with the experimental data.

Large Leidenfrost drops form liquid puddles whose thickness is approximately 2lc

(see Section 1.2). These puddles are known to spontaneously form large-amplitude,
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star-shaped oscillations [28, 161–163, 163–165]. Similar oscillations have been ob-

served in large drops on periodically-shaken, hydrophobic surfaces [166, 167], drops

levitated by an underlying airflow [125], and drops excited by an external acoustic

or electric field [168–170]. In studies where the frequency of external forcing is pre-

scribed, the oscillations are excited by a parametric mechanism [171]. The external

forcing leads to variations in the drop radius with time. Since the drop radius ap-

pears in the dispersion relation for azimuthal, star-shaped oscillations, the evolution

of the oscillation amplitude obeys an equation similar to the Mathieu equation. For

Leidenfrost drops, however, the mechanism is less clear since there is no prescribed

frequency, and the star oscillations are excited and sustained through the heat input

and resulting evaporation of the liquid. It has been suggested that the star oscillations

may result from modulations of the surface tension of the liquid due to temperature

variations [162, 172, 173], or perhaps due to convective patterns [163, 164]. However,

[125] observed star-shaped oscillations in drops which are supported by an external,

steady air flow, suggest that a hydrodynamic coupling between the gas flow and liquid

interface initiates the oscillations.

Given the importance of the Leidenfrost effect in basic fluid and thermal transport,

or the numerous practical applications (e.g., self-propulsion and drag-reduction), we

know surprisingly little about the coupling between the evaporated vapor flow and

vapor-liquid interface that lead to rich dynamical phenomena. Here we explore this

coupling by investigating the self-organized, star-shaped oscillations of Leidenfrost

drops using six different liquids: water, liquid N2, ethanol, methanol, acetone and

isopropanol. The liquid drops were levitated on curved surfaces in order to sup-
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press the Rayleigh-Taylor instability, and star-shaped oscillation modes with n = 2

to 13 lobes along the drop periphery were observed. The number of observed modes

depended sensitively on the liquid viscosity, whereas the oscillation frequency (wave-

length) depended only on the capillary length but not the mode number, substrate

temperature, or drop size. Accompanying pressure measurements in the center of the

vapor layer indicate that the pressure variation frequency was approximately twice

that the drop oscillation frequency for all of the observed modes, consistent with a

parametric forcing mechanism. We show that the pressure oscillations are driven

by capillary waves of a characteristic wavelength beneath the drop traveling from

the drop center to the edge, and such capillary waves can be generated by a strong

shear stress at the liquid-vapor interface. Additionally, we find that although ther-

mal convection is expected to be quite strong, the robust frequency (wavelength) of

star oscillations is only weakly affected by varying either the substrate or environ-

mental temperature, suggesting that star-shaped oscillations of Leidenfrost drops are

hydrodynamic in origin.

2.2 Experimental setup

In the experiment, blocks of engineering 6061 aluminum alloy with dimensions of

7.6 cm × 7.6 cm × 2.5 cm were used as substrates. Resistive heaters were embedded

with high-temperature cement into the aluminum to control the substrate tempera-

ture, Ts. Six different liquids were used as Leidenfrost drops: deionized water, liquid

nitrogen (liquid N2), ethanol, methanol, acetone, and isopropyl alcohol (isopropanol).

The relevant liquid properties at the boiling point, Tb, such as the surface tension
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tubepressure sensor

hot substrate
(b)
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Leidenfrost
drop

hot substrate
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Figure 2.2: Schematics of the experimental setup and star-shaped oscillation pattern.
(a) Top-down view of the substrate whose upper surface is milled into a bowl shape
enclosed by the dashed red circle. (b) Cross-sectional view of the substrate. (c) Star-
shaped oscillation pattern of a Leidenfrost drop showing the standing wave along the
drop periphery, which obeys 2πR = nλd, where R is the drop radius, n is the number
of lobes, and λd is the wavelength of the standing wave.

γ, density ρl, dynamic viscosity ηl, and capillary length lc, are listed in Table 2.1.

The substrates were heated to different temperatures based on Tb for each liquid. For

water, the temperature of the substrate was set from 523 K to 773 K, for ethanol,

methanol, acetone, and isopropanol the temperature of the substrate was set to 523

K, whereas the substrate for liquid N2 was not heated due to its extremely low Tb.

The upper surfaces of the substrates were machined into a concave, spherical

shape in order to suppress the buoyancy-driven Rayleigh-Taylor instability at the

vapor-liquid interface and keep the drops stationary [40, 124, 126]. After machining,

the roughness of the surface was inspected using optical microscopy with 50× magni-

fication. By changing the focus, we determined that over a 250 µm × 250 µm surface

area, the peak-to-peak roughness was less than 10 µm, and often much smaller than

this value. The curved surfaces for different liquids were designed to satisfy lc/Rs =

0.03, where Rs is the radius of curvature of the surface whose top and cross-sectional
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views are schematically shown in Figs. 2.2a and 2.2b, respectively. Following this

principle, we fabricated three types of curved substrates, i.e. one for water, one for

ethanol, methanol, acetone, and isopropanol, and one for liquid N2, considering their

respective capillary lengths (lc) listed in Table 2.1. For some experiments, a plano-

concave, fused silica lens (focal length = 250 mm) was used as the heated substrate

in order to allow for optical imaging of the capillary waves underneath the Leiden-

frost drop. A T-type thermocouple (maximum measurable temperature: 473 K, tip

diameter ≈ 0.08 cm, HYP-2, Omega Engineering) was used to measure the internal

temperature profile of Leidenfrost drops.

For most of the substrates, a pressure sensor (GEMS Sensors, response time: 5

ms, sensitivity: 2 mV/Pa) was connected to a hole (diameter = 1 mm) at the center

of the curved substrate in order to measure the pressure variations in the vapor layer

at sample rates of 500-1000 Hz during quiescent and oscillatory phases of drops as

illustrated in Fig. 2.2b. We used a high-speed digital camera (Phantom V7.11, Vision

Research) with a resolution of about 132 pixels/cm to image the motions of drops

from above at frame rates of 1000 frames per second. Recorded videos were then

analyzed with NIH ImageJ software to obtain the frequency and wavelength of the

star-shaped oscillations (A typical star-shaped oscillation mode n = 8 is schematically

shown in Fig. 2.2c).
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liquid Tb γ ρl ηl lc Ts Modes Rel

water 373 59.0 958 0.282 2.5 523-773 2-13 1340

liquid N2 77 8.90 807 0.162 1.1 298 3-5,7 539

acetone 329 18.2 727 0.242 1.6 523 5-10 601

methanol 338 18.9 748 0.295 1.6 523 6-10 511

ethanol 352 18.6 750 0.420 1.6 523 7-11 355

isopropanol 356 15.7 723 0.460 1.5 523 9,10 283

Table 2.1: Physical properties of different liquids at the boiling point Tb (K). Units
are as follows: γ (mN/m), ρl (kg/m3), ηl (mPa s), lc (mm). Data was taken from Ref.
[174]. The last three columns indicate the range of substrate temperatures, Ts (K),
used in the experiments, the observed mode numbers (n), and the Reynolds number
computed in Section 2.3.5.

2.3 Results and discussion

2.3.1 The geometry of Leidenfrost drops on curved surfaces

The shape of a Leidenfrost drop is determined by a competition between surface

tension and gravity. It has been shown that a nonwetting drop with radius R � lc

will exhibit a quasi-spherical profile except for the bottom region where the drop is

slightly flattened by gravity, which still holds true for small Leidenfrost drops [114].

In comparison, for large Leidenfrost drops, i.e. R � lc, the shape of the drops is

dominated by gravity and resembles a circular puddle with a constant thickness of

approximately 2lc [39]. However, these large puddles are susceptible to the Rayleigh-

Taylor instability, which is manifested by bubbles rising from the vapor layer beneath
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Figure 2.3: Schematic of the suppression of Rayleigh-Taylor instability at the liquid
interface (solid blue curve) by a curved substrate (solid gray curve) with a curvature
κ = 1/Rs, where Rs is the radius of curvature defined before, λc is the capillary
wavelength.

the drop [39]. This instability can be easily understood by considering a system

composed of two fluids with the heavy fluid on the top of the light fluid. Such a

system is gravitationally unstable since the heavy fluid is prone to fall through the

light fluid, and any fluctuation at the initial flat interface of the two fluids will cause

pressure imbalance, which in turn amplifies the fluctuation and deforms the drop. In

our experiment, we used curved surfaces (see Section 2.2), which essentially act as

a restoring-force-like role, in order to suppress the gravitationally driven Rayleigh-

Taylor instability and obtain large, stable Leidenfrost drops [40, 124, 126].

The effects of surface curvature on the Rayleigh-Taylor instability can be seen

through the following simple model, similar to the original model used by Biance et

al. [39]. Assuming the liquid-vapor interface beneath a Leidenfrost drop is perturbed

with axisymmetric, sinusoidal variations, as illustrated in Fig. 2.3, then the shape

function of the new drop interface, S(r), can be expressed in cylindrical coordinate

as:

S(r) = e+
r2

2Rs

+ ε cos

(
2πr

λc

)
, (2.1)
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Figure 2.4: Plot of Eq. 2.5. The red and blue curves plot the real and imaginary
parts of Eq. 2.5, respectively.

where e is the mean vapor layer thickness, ε is the perturbation amplitude, and λc is

the capillary wavelength generated at the bottom of the drop (see Fig. 2.13). We also

assume that Rs � e� ε, implying a small perturbation to the equilibrium shape of

the drop [122, 123]. For a stable interface, the pressure at the drop center should be

smaller or equal to the pressure at r ≈ λc/2 in order to drive liquid back to the center.

If the pressure in the vapor layer is constant, then to leading order, the pressures at

r = 0, and r = λc/2 are:

P0 ≈ γκ|r→0 = 2γ

(
1

Rs

− 4επ2

λ2c

)
, (2.2)

P1 ≈ γκ|r→λc/2 − ρlg∆z =
4επ2γ

λ2c
+

2γ + ρlgλc
2Rs

− 2ερlg, (2.3)

where the height difference between the two points is ∆z = S(r)r→0 − S(r)r→λc/2 =

2ε− λ2c/8Rs. The condition for stability can be found by equating Eqs. 2.2 and 2.3,
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leading to an expression for the wavelength:

λc = 2

(
2εRs −

√
2ρlgεRs(−3π2γ + 2ρlgεRs)

ρlg

)1/2

. (2.4)

Since the perturbation amplitude and radius of curvature always appear as a product,

Eq. 2.4 can also be written as:

λc
lc

= 2
(

2χ−
√

2χ(2χ− 3π2)
)1/2

, (2.5)

where χ = εRs/l
2
c . For finite ε, in the limit Rs → ∞, Eq. 2.4 simplifies to λc/2 ≈

3.85lc, in agreement with the prediction in Biance et al. [39] for a flat surface. How-

ever, the addition of a curved surface couples the perturbation amplitude to the radius

of curvature. The quantity 2χ− 3π2 must be positive in order for λc to be real, and

thus represent the condition for instability. Figure 2.4 shows the plots of Eq. 2.5, in

which the red curve shows the real part, whereas the blue curve shows the imaginary

part. As we can see from Fig. 2.4, on a curved surface, the perturbation amplitude

must satisfy χ & 14.8, i.e., ε & 14.8l2c/Rs in order to lead to the Rayleigh-Taylor

instability. In this sense, we can conclude that the surface curvature suppresses the

Rayleigh-Taylor instability.

Although the curved surface suppresses the Rayleigh-Taylor instability, it still has

an affect on the overall drop shape. We investigated the influence of surface curvature

on the drop shape by depositing water drops of given volumes V on a curved surface

with Ts = 623 K. We measured the radius R of the drops from recorded images

taken immediately after deposition prior to the onset of oscillations. As can be seen

in Fig. 2.5, stable Leidenfrost water drops with R ≈ 11lc ≈ 28 mm are obtained

on the curved surface, while on a flat substrate, the maximum radius of a stable
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Figure 2.5: The variations of drop radius R with respect to volume V for Leidenfrost
water drops. The dashed blue line shows the theoretical prediction for a drop on a
flat surface assuming that the contact angle of the drop is 180◦ as indicated in the
text.

Leidenfrost water drop is R ≈ 3.95lc ≈ 10 mm (lc= 2.5 mm for Leidenfrost water

drops, see Table 2.1) [39, 114, 124], suggesting that surface curvature plays a crucial

role in suppressing the Rayleigh-Taylor instability. The dashed blue line in Fig. 2.5

shows the theoretical prediction for a drop on a flat surface by solving the Young-

Laplace differential equation numerically and assuming that the contact angle of the

drop is 180◦ [114, 175]. The experimental results show excellent agreement with

the theoretical prediction, indicating that the shape of the Leidenfrost drops is not

strongly affected by the surface curvature. More specifically, when R < lc (2.5 mm

for water), the drops are quasi-spherical and thus R ∝ V 1/3, whereas R ∝ V 1/2 for

R > lc, which is expected for puddle-like drops with constant thickness.

However, one can also notice that most of the experimental data is slightly less



Chapter 2: Oscillations of Leidenfrost drops 30

than the corresponding theoretical prediction, which we attribute to two possible

reasons. First, for small drops, the evaporation begins from the moment of deposition

on the hot surface, which removes a small amount of water prior to imaging. Second,

large drops are thicker in the center due to the underlying curved substrate, leading

to a smaller apparent radius for a given volume. Thus, although surface curvature

and evaporation may somewhat reduce the drop size, the effects seem to be a minor

influence on the overall drop shape.

2.3.2 Breathing mode of small Leidenfrost drops

Caswell [159] experimentally characterized axisymmetric oscillations in the radius

of small Leidenfrost drops using interference imaging. The drops displayed small-

amplitude changes in the radius of the flat region near the surface. Due to volume

conservation, an increase (decrease) in the drop radius leads to a decrease (increase)

in the thickness of the drop. Caswell [159] found that the oscillation frequency of

the breathing mode, fb, obeyed a distinct power law, fb ∝ R−0.68±0.010 , where R0 is

the average drop radius during the oscillation. This dependence is distinctly different

than the expected three-dimensional dispersion relation for inviscid spherical drops,

f ∝ R
−3/2
0 [160]. Here we provide an analytical model which explains this contrast

and fits the experimental data with no adjustable parameters.

To leading order, and due to the axisymmetry of the breathing mode, we model

a Leidenfrost drop as an incompressible liquid cylinder of volume = V and a time

dependent radius, R(t). We will assume that the bottom of the cylinder is fixed at

z = 0, which is reasonable if the thickness of the vapor layer varies much less than the
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Figure 2.6: (a) Breathing mode oscillation frequency fb of small Leidenfrost drops as
a function of the average drop radius R0. The dashed red curve represents the power
law fb ∝ R−0.680 , and the solid blue curve represents the dispersion relation from Eq.
2.13. (b) A zoomed-in view of the data in (a). With permission, the data shown here
are taken from Caswell [159].

radius. In cylindrical coordinates, (r, φ, z), the simplest form for the velocity which

satisfies ∇ · ~v = 0 and the boundary conditions ~v · r̂|r=R(t) = R′(t) and ~v · ẑ|z=0 = 0

is:

~v =
R′(t)

R(t)
(r, 0,−2z) . (2.6)

For simplicity, we will write R(t) = R, and the time derivative of R as R′(t) = R′.
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The total kinetic energy of the drop is then:

T =

∫
1

2
ρl |~v|2 dV =

πρlR
2

R′2

∫ R

0

∫ h

0

r(r2 + 4z2)dzdr. (2.7)

Evaluating the integrals, and using the fact that V = πR2h, where h is the time-

dependent height of the cylinder, we obtain:

T =
1

12
ρlV

(
3 +

8V 2

π2R6

)
R′2. (2.8)

The total potential energy is the sum of gravitational potential energy and surface

energy:

U =
1

2
ρlV gh+ 2πγR(h+R) =

gV 2ρl + 4πγR (V + πR3)

2πR2
. (2.9)

The equilibrium drop radius, R0, can be found by minimizing the potential energy

with respect to R:

dU

dR
= 0 = 4πγR0 −

2V γ

R2
0

− gρlV
2

πR3
0

. (2.10)

For large drops where R� h, the first and third terms must balance. Equating these

two terms and using the fact that V = πR2h, we see that:

h ≈ 2

√
γ

ρlg
, R0 →∞, (2.11)

which agrees with the expected asymptotic thickness of large Leidenfrost drops [39].

We may now define the Lagrangian of the system as L = T − U , and apply the

Euler-Lagrange equation to obtain a differential equation for R:

R′′ =
6ρlV

2gπR4 + 12γV π2R5 − 24γπ3R8 + 24ρlV
3R′2

8ρlV 3R + 3ρlV π2R7
. (2.12)

To proceed further, we will linearize the equation by considering only small oscil-

lations of the radius, R = R0(1 + εeiωt), where R0 is equilibrium drop radius found
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by solving Eq. 2.10, ε is the perturbation amplitude, and ω is the angular frequency

of the oscillation. Assuming that ε � 1, to leading order Eq. 2.12 reduces to an

expression for the angular frequency:

ω2 =
576γ2(γ + Γ) + 36ρ2l g

2R4
0(γ + 2Γ) + 384γρlgR

2
0(5γ + 2Γ)

ρlR3
0 (1120γ2 + 9ρ2l g

2R4
0 + 192γρlgR2

0)
, (2.13)

where Γ ≡
√
γ2 + 4γρlgR2

0 and we have substituted V for the equilibrium radius R0

using Eq. 2.10.

Taking typical values of the parameters in Eq. 2.13 for water, we can plot the

oscillation frequency of the breathing mode, fb = ω/2π, as a function of R0, which

is shown by the solid blue curve in Fig. 2.6a. The theory shows excellent agreement

with the data. For comparison, the power law fb ∝ R−0.680 found by Caswell [159] is

plotted as the dashed red line in Fig. 2.6a. A closer view of the comparison between

the prediction by Eq. 2.13 and fb ∝ R−0.680 can be seen in Fig. 2.6b. The data lie in

the transition regime between two asymptotic limits, R0 � lc and R0 � lc, which

may explain the anomalous power law reported by Caswell [159]. In these two limits,

Eq. 2.13 reduces to:

ω ≈
(

36γ

35ρlR3
0

)1/2

, R0 → 0 (2.14)

ω ≈ 4

R0

(
gγ

ρl

)1/4

, R0 →∞.

The scaling for small drops is independent of g, which is expected based on their

nearly-spherical shape. For large drops where h ≈ 2lc (Eq. 2.11), the scaling is

determined essentially by gravity: ω ∼
√

2gh/R0.
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Figure 2.7: Star-shaped oscillations of Leidenfrost water drops at Ts = 623 K. (a)
A snapshot of the oscillation mode with n = 11. (b) and (c) show the star-shaped
oscillation wavelength λd, and frequency fd, with respect to drop radius R. The
data points from left to right in (b) and (c) represent the increasing mode number
n as indicated by the red arrows, and the error bars in (b) and (c) are the standard
deviations of multiple drops. The data for λd in (b) are indirectly measured using the
relation 2πR = nλd, and the red circles in (c) represent the theoretical prediction by
Eq. 2.16 for drops with different radii.

2.3.3 Star-shaped oscillations of Leidenfrost water drops

In addition to the breathing mode, large Leidenfrost drops may also develop az-

imuthal, star-shaped oscillations. Similar oscillations have been observed in a variety

of systems involving liquid drops [171]. In our experiments with Leidenfrost water

drops using a curved substrate, we observe star-shaped oscillation modes with n = 2

to 13 lobes along the drop periphery at Ts = 623 K. A typical star-shaped oscillation

mode (n = 11) is shown in Fig. 2.7a. Figures 2.7b and 2.7c show the drop oscillation

wavelength λd and frequency fd for different R, respectively, which are measured by

analyzing the high-speed videos of the oscillating drops. Surprisingly, both λd and fd

remained nearly constant as we varied R. Increasing R thus led to an increase in the
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allowable number of lobes n, as indicated by the red arrows. This similar trend also

applies to other liquids used in our experiments, which will be discussed in Section

2.3.5.

For the free oscillations of an incompressible, axisymmetric spherical drop with

infinitesimal deformations, the natural resonance frequency, fn, of the nth-mode is

given by [160]:

fn =
1

2π

√
γn(n− 1)(n+ 2)

ρlR3
. (2.15)

For a liquid puddle with R � h ≈ 2lc, where h is the thickness of the liquid puddle

[39], the resonance frequency fn takes the form [176]:

fn =
1

2π

√
γn(n2 − 1)

ρlR3

√
1

1 + (2− π
2

+ n−3
4

) lc
R

. (2.16)

The first term under the square root is for a strictly two-dimensional drop, whereas

the correction factor, 1/
√

1 + (2− π
2

+ n−3
4

) lc
R

, is due to the quasi-two-dimensional

nature of the puddle.

As shown in Fig. 2.7, for water drops where we observed n = 2 modes, the average

radius was R ≈ 4 mm, which is greater than lc. Hence, it is reasonable to use Eq. 2.16

to predict the oscillation frequency for all star-shaped modes in our experiments. The

comparison between theory and experiment is shown in Fig. 2.7c, which indicates an

excellent agreement. For smaller values of n, both λd and fd vary non-monotonically

with R. There are a few potential reasons for this. One possibility is that nonlinear

effects play a more significant role for smaller values of n because the ratio of the mode

amplitude to the drop radius is larger [177, 178]. However, the excellent agreement

with the linear theory, i.e. Eq. 2.16, suggests that nonlinear effects may not be

important.
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Instead, we suggest that the behavior may be related to the mode selection mech-

anism. For a given radius, either the frequency or the wavelength is preferentially

selected by the excitation mechanism. Once fd or λd is selected, Eq. 2.16 will deter-

mine the other. As will be shown in Section 2.3.6, there are strong capillary waves

excited at the liquid-vapor interface beneath the drop. These waves produce pressure

oscillations which parametrically couple to the star-shaped modes. A determination

of the expected behavior of fd on R is thus complicated by the physics of the vapor

flow beneath the drop, nevertheless, we would expect the effects to be less variable

for R� λd, which agrees with the data shown in Fig. 2.7.

2.3.4 Pressure oscillations in the vapor layer

It has been well-documented that star oscillations of large liquid drops can be

initiated by a parametric forcing mechanism [171]. For instance, when a liquid puddle

is deposited onto a superhydrophobic, vertically-vibrating substrate with a prescribed

frequency, then the equation of motion of the drop can be described by an equation

similar to Mathieu’s equation, and star oscillations will be excited when the drop

oscillation frequency is approximately half that the excitation frequency [171, 176].

In the experiment, we observed star oscillations of Leidenfrost water drops (e.g. see

Fig. 2.7a) in the absence of an external excitation. Therefore, we hypothesize that the

star oscillations are driven by fluctuations in the vapor layer pressure that supports

the drop.

In order to explore the dynamics of pressure fluctuations in the vapor layer, we

utilized a pressure sensor attached to the center of the curved substrate, schematically
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shown in Fig. 2.2b. We measured the pressure variations in the vapor layer of water

drops at Ts = 623 K during the initiation of the star-shaped oscillations. We started

recording the pressure immediately after the drops were placed on the substrate, and

stopped after the well-defined star-shaped oscillations had been initiated for several

seconds. The whole process lasted about 18.5 s.

The snapshots on the top panel of Fig. 2.8a show images of an n = 4 drop at

different stages during the oscillation. More specifically, the drop shape was nearly

circular immediately upon placement on the substrate (t = 0 s), then the pressure

fluctuations in the vapor layer increased as the drop shape developed well-defined

lobes. The amplitude continued to grow with time (t =12 s) until the formation of a

steady-state, star-shaped oscillation with large amplitude (t = 16.1 s).

Figure 2.8a shows the pressure variations in the vapor layer during the whole

process. The mean pressure required to support the drop is ρlgh ≈ 2ρlglc = 47 Pa.

However, the mean pressure we measure is slightly larger than this value because the

pressure is measured at the center of the substrate where the pressure is larger in order

to drive the viscous vapor to flow out to the drop edge. The pressure fluctuations

around the mean increase with time until the formation of a steady star-shaped

oscillation with a large amplitude (about t = 14 s).

In order to gain insight into the underlying relationship between the oscillations

of the drop and pressure in the vapor layer, we performed a Fast Fourier Transform

on the pressure data in four different time intervals: 0-1 s, 5-6 s, 12-13 s, and 16-17

s. The results are shown in Figs. 2.8b-2.8e. Initially, the pressure remains nearly

constant, and there are no sharp peaks in the power spectrum (Fig. 2.8b). Between
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Figure 2.8: (a) The pressure variations in the vapor layer during the initiation of
a 4-mode star-shaped oscillation of a Leidenfrost water drop within ≈ 18.5 s. (b),
(c), (d), and (e) represent the Fourier power spectra of the pressure in the vapor
layer during the time intervals of 0-1 s, 5-6 s, 12-13 s, and 16-17 s, respectively. The
snapshots of the top panel represent the drop profile at 0 s, 5.1 s, 12 s, and 16.1 s,
respectively, during the initiation process.

t = 5-6 s, the pressure fluctuations become stronger and more periodic, and several

small peaks are visible (Fig. 2.8c). Then, as the star oscillation is further developed, a

sharp peak which is located at ≈ 28 Hz shows up in the power spectrum (Fig. 2.8d).

Finally, when the star oscillation is fully developed, the pressure fluctuations stop

growing, and a sharp peak located at ≈ 28 Hz dominates the spectrum (Fig. 2.8e).
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It is interesting to note that the location of the sharp peak is approximately

twice the oscillation frequency of a fully-developed, n = 4 mode Leidenfrost water

drop (see Fig. 2.7c). This is consistent with a parametric forcing mechanism for the

excitation of the star oscillations. Generally, for an oscillator with time-dependent

frequency, the oscillation amplitude exponentially increases with time when the driv-

ing frequency is approximately twice that the natural frequency, which is known as

parametric forcing. A well-known example is the parametric pendulum with a natural

frequency of
√
g/l/(2π), and parametric oscillation occurs when the vertical frequency√

k/m/(2π) of the center of mass of the pendulum is twice that natural frequency,

i.e.,
√
k/m/(2π) =

√
g/l/π [179], where l and m are the length and mass of the

pendulum, respectively, whereas k is the spring constant of the pendulum. Moreover,

harmonics at higher frequencies are also visible as indicated by the secondary peaks

in Fig. 2.8e. This is likely due to nonlinear effects involved in the star-shaped oscil-

lations. In addition, the location of the peak is robust. As will be shown in Section

2.3.7, the location of the dominant peak in the power spectrum is mostly independent

of the substrate temperature and the environmental temperature.

Figure 2.9a shows the pressure oscillation frequency fp in the vapor layer of Lei-

denfrost water drops for all of the observed modes. The data points from left to right

correspond the oscillation modes from n = 2 to 13, as indicated by the red arrows. By

comparing this with the drop oscillation frequency fd (Fig. 2.9b), we find fp ≈ 2fd

as indicated by the dashed blue and red lines in Figs. 2.9a and 2.9b, respectively.

This robust relationship suggests that the star-shaped oscillations are parametrically

driven by the pressure [171, 176, 180–182]. Consider the radial position of a point
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Figure 2.9: (a) Summary of the pressure oscillation frequencies fp in the vapor layer
of star-shaped Leidenfrost water drops with different radii at Ts = 623 K. The data
points from left to right represent the oscillation modes from n = 2 to 13, respectively,
as indicated by the red arrows. (b) The drop oscillation frequency fd with respect to
drop radius R (Fig. 2.7c). The error bars of fp are taken from the full-width at half-
max of the highest peak in the Fourier power spectra computed over a time interval
of 10 s, and the error bars of R are defined as the standard deviation of multiple
measurements of different drops after the star oscillations are fully developed for each
mode. The dashed lines in (a) and (b) are visual guides to indicate that fp ≈ 2fd.

on the perimeter of the drop during a star-shaped oscillation, r(t). This point will

oscillate in time due to the azimuthal standing wave, and obey the following equation:

d2r

dt2
+ ω2r = 0. (2.17)

To leading order, ω is the resonant frequency of the mode, Eq. 2.16 can be written

as:

ω2
0 =

n (n2 − 1) γ

ρlR3
. (2.18)

For simplicity, we have ignored the correction due to the quasi-two-dimensional nature

of the drop. The pressure variations will induce vertical oscillations of the drop, and
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in turn oscillations of the drop radius:

R = R0(1 + ε cosωpt), (2.19)

where R0 is the average radius of the drop, and ε is the amplitude of the small

perturbation. Plugging Eq. 2.19 into Eq. 2.18, to leading order in ε we obtain ω2 =

ω2
0(1− 3ε cosωpt). Therefore, Eq. 2.17 now becomes:

d2r

dt2
+ ω2

0 (1− 3ε cosωpt) r = 0. (2.20)

When ωp ≈ 2ω0, the parametric resonance is the strongest, i.e. the oscillation

amplitude will exponentially increase with time until the star-shaped oscillations are

fully developed. This is consistent with our measurements of the pressure oscillation

frequencies in the vapor layer (Fig. 2.9), which are approximately twice that the drop

oscillation frequencies (Fig. 2.7c) that we observed in our experiment. We note that

it is possible that the pressure oscillations are a consequence of the star oscillations.

If the star oscillations were excited by some other mechanism, then the symmetry

of the star shape would necessitate a pressure extrema when the star shape reaches

its maximum amplitude. However, the only energy which is available to drive the

oscillation comes from the evaporation and gas flow in the vapor layer. Thus we

expect that the pressure oscillations are the source of the star oscillations. Section

2.3.6 will explore the potential source of the pressure oscillations.

2.3.5 Star-shaped oscillations of different liquids

In addition to water, we performed similar experiments with five other liquids:

liquid N2, acetone, methanol, ethanol, and isopropanol. For these liquids, the curved
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Figure 2.10: Snapshots of star-shaped oscillation modes with n = 2 to 13 of six
different liquids when the lobes are at their maximum displacement. Panels (a), (b),
(c), (d), (e), and (f) represent water, acetone, methanol, ethanol, liquid N2, and
isopropanol, respectively. For water: Ts = 623 K, for acetone, methanol, ethanol and
isopropanol: Ts = 523 K. The substrate for liquid N2 was not heated.
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surfaces were also machined to satisfy lc/Rs ≈ 0.03 (see Section 2.2), and the relevant

physical properties and substrate temperatures are listed in Table 2.1. Figure 2.10

shows snapshots of star-shaped oscillations for the six different liquids we used in the

experiments, where the other five liquids show similar star-shaped patterns to water

drops but with different observable oscillation modes. By analyzing the images of the

star-shaped oscillations, we find that star-shaped oscillations of acetone, methanol,

ethanol, and isopropanol share a similar wavelength λd ≈ 0.9 cm and frequency

fd ≈ 14 Hz, whereas liquid N2 shows a wavelength of λd ≈ 0.6 cm and frequency

fd ≈ 17 Hz. This suggests that the star oscillations may depend on the capillary

length of the liquid.

Figure 2.11 shows the dependence of star-shaped oscillation mode n, rescaled

wavelength λd/lc, and rescaled frequency f/
√
g/lc on the rescaled drop radius R/lc

of the six liquids used in the experiment. The mode number n increases linearly

with R/lc as indicated by the dashed black line in Fig. 2.11a, showing that large

modes can only be observed in larger drops, as supported by Fig. 2.10. The rescaled

wavelength λd/lc for the six liquids collapses onto a straight line as shown in Fig.

2.11b, which indicates that the wavelength of the star oscillations only depends on

lc of the liquid. Figure 2.11c shows the oscillation frequency of both the azimuthal

star oscillations, fd, and the corresponding pressure, fp, in the vapor layer. The solid

symbols denote the drop oscillations, whereas open symbols with the same color

represent the corresponding pressure oscillations in the vapor layer for a specific

liquid. Both fd and fp collapse fairly well, and the relationship fp ≈ 2fd is consistent

with the data, as indicated by the dashed black and red lines. Additionally, by
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Figure 2.11: Dependence of star-shaped oscillation mode n (a), and dimensionless
oscillation wavelength λd/lc (b) and frequency f/

√
g/lc (c) with respect to the di-

mensionless drop radius R/lc for six different liquid. In (c), the solid symbols represent
the drop oscillation frequency fd, whereas the open symbols denote the correspond-
ing pressure oscillation frequency fp. The error bars of R, λd and fd come from the
standard deviations of multiple measurements of different drops, and the error bars
of fp are defined as the full width of the highest peak in the power spectrum at half
the maximum value. The dashed lines in all panels are visual guides.



Chapter 2: Oscillations of Leidenfrost drops 45

comparing different values of Ts for water, Fig. 2.11 shows that λd, fd, and fp are

mostly independent of substrate temperature.

The main influence of Ts is the through the number of observable modes. For

instance, at Ts = 673 K, we did not observe oscillation modes n = 12 and n = 13

in water, which we attribute to the extremely fast evaporation rate of the liquid, as

will be discussed in Section 2.3.6. Although the robust relationship between fd and

fp suggests that the star oscillations of the drops are parametrically driven by the

pressure in the vapor layer, there is an interesting variation in both fd and fp at

small mode numbers. The data for smaller modes (e.g. n = 2, 3, 4) deviates further

from the average compared to larger modes. This behavior may be nonlinear in

nature since the amplitude of the mode relative to the drop radius is much larger for

small n [177, 178]. In addition, the quasi-two-dimensional nature of the drop is more

important at small n, which may also contribute to the variations in this regime. A

more quantitative explanation for this dependence is left for future studies.

As shown in Table 2.1, different oscillation modes are observed in different liquids.

In particular, some liquids failed to display smaller mode numbers. This may be due

to inherent viscous damping that prevents the sustained excitation of large-amplitude

oscillations. Following the analysis in Ma et al. [165], the role of damping can be

characterized by the Reynolds number associated with the liquid oscillation. For a

star oscillation, the characteristic length scale and time scale are lc and
√
l3cρl/γ,

respectively. Thus, the inertial term in the Navier-Stokes equation is estimated as

|ρl(~v · ∇)~v| = γ/l2c , and the viscous term is |ηl∇2~v| = ηl/
√
l5cρl/γ. The Reynolds

number of the oscillating liquid is defined as the ratio of inertial to viscous terms:
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Figure 2.12: Scaling behavior for the minimum observed star mode nmin with respect
to Rel of different liquids (Table 2.1). The dashed line represents the fit to the data,
2600 Re−1l .

Rel =
√
lcρlγ/ηl, and the values of Rel for different liquids are listed in Table 2.1.

Figure 2.12 shows the dependence of the minimum mode number nmin on Rel for

each liquid. The dashed line represents a suggested scaling Re−1, indicating that the

liquid viscosity damps the oscillations of smaller drops and thus sets the minimum

mode number of stable star oscillations. However, the substrate temperature and

thus evaporation rate will likely affect the number of observed modes as well. A

higher evaporation rate will induce a stronger driving of the oscillation modes, which

would reduce nmin. This can be seen in Fig. 2.12 for liquid N2, which undergoes much

more rapid evaporation due to the large difference between the boiling and substrate

temperature, Ts− Tb. In addition, as mentioned previously, the stronger evaporation

may also inhibit larger modes if the pressure oscillations are less coherent. In the next

section we show how the flow in the vapor layer is linked to the pressure oscillations.
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2.3.6 Origin of pressure oscillations in the vapor layer

As evidenced by Fig. 2.11c, the star-shaped oscillations of Leidenfrost drops are

parametrically driven by the pressure variations in the vapor layer. Star oscillations

induced by a parametric coupling have been observed in a variety of systems where

variations of the drop radius are induced by external, periodically-modulated fields

[171]. However, in our experiment, there are no obvious external fields. It is then

crucial to understand the source of the pressure oscillations. In this section we show

how capillary waves of a characteristic wavelength at the liquid-vapor interface induce

the pressure oscillations in the vapor layer.

Figure 2.13 shows s sketch of a large, axisymmetric Leidenfrost drop with a max-

imum radius = R and thickness ≈ 2lc. The mean vertical velocity of the gas at the

liquid surface is v, e is the mean thickness of the vapor layer, and u is the outward

radial velocity of the gas near r = R. For such a large Leidenfrost drop, both the

bottom surface of the drop and the substrate surface are assumed to be approximately

flat to simplify the analysis. Following the model of Biance et al. [39], the mass loss

rate of the drop due to evaporation can be expressed as:

dm

dt
=
κv
L

∆T

e
πR2 = ρvπR

2v, (2.21)

where κv is the thermal conductivity of the vapor, L is the latent heat of the evap-

oration, ∆T = Ts − Tb, and ρv is the density of the vapor at the liquid interface.

Since e ≈ 100 µm, and thus R� e [114], we employ lubrication theory, leading to an

expression relating the flow rate to the mean pressure, P , in the vapor layer:

dm

dt
= ρv

2πe3

3ηv
P = ρv

2πe3

3ηv
2lcρlg = ρvπR

2v, (2.22)
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Figure 2.13: Sketch of the cross-sectional view of a large Leidenfrost drop levitating
on a flat hot surface. The red dashed line and black solid line represent the drop
profiles before and after the initiation of capillary waves at the bottom surface of the
drop. The symbols are defined in the main text.

where ηv is the dynamic viscosity of the vapor. We note here that parameters such as

κv, ρv, and ηv will vary in the vapor layer due to the temperature gradient between the

liquid and solid surfaces. For simplicity, we will assume that these represent average

values of the vapor layer properties. A more detailed treatment, possibly including

full numerical simulations, would be necessary to extend this simplified model.

In addition, due to mass conservation, the volumetric flow rate of gas from the

bottom of the drop must be equal to the flow rate exiting the perimeter of drop:

πR2v = 2πeRu. (2.23)

Solving Eqs. 2.21, 2.22, and 2.23 for u, v, and e yields:

u =

(
ρlgκvlc
3ρvηvL

)1/2

∆T 1/2, (2.24)

v =

[
4lcρlg

3ηv

(
κv∆T

Lρv

)3
]1/4

R−1/2, (2.25)

e =

(
3κv∆Tηv
4Llcρlρvg

)1/4

R1/2. (2.26)

In this model, the steady-state, linear temperature profile in the vapor layer is
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valid since the characteristic time scale associated with thermal diffusion, e2/Dv ≈ 1

ms, is smaller than the typical residence time of the gas in the vapor layer, R/u ≈

10 ms, where Dv is the thermal diffusivity of the vapor. Let us assume a water

Leidenfrost drop with R = 0.01 m, and for the vapor, we use the properties of steam

at 373 K and 1 atm of pressure: ρl = 959 kg/m3, ρv = 0.45 kg/m3, γ = 0.059 N/m,

g = 9.8 m/s2, L = 2.26 ×106 J/kg, ηv = 1.82 × 10−5 Pa s, and κv = 0.04 W/m/K.

Although the properties of the vapor may vary somewhat in the vapor layer due to

the temperature gradient, we have verified that this does not significantly affect our

analysis.

We can now plot u, v, and e with respect to ∆T based on Eqs. 2.24, 2.25 and

2.26. The results are shown in Figs. 2.14a, 2.14b, and 2.14c, respectively. The

inertial term in the Navier-Stokes equation is estimated as |ρv(~v · ∇)~v| = ρvv
2/e,

and the viscous term as |ηv∇2~v| = ηvv/e
2. Thus the Reynolds number in the vapor

layer is Rev = ρvve/ηv. Plugging in Eqs. 2.25 and 2.26, we arrive at a surprisingly

simple expression for the Reynolds number in the vapor: Rev = ∆Tκv/Lηv, which

is independent of the drop size. This expression is plotted in Fig. 2.14d. Under

typical experimental conditions, Rev ≈ 0.2, suggesting that the original lubrication

flow assumption is valid, although inertial forces are non-negligible.

Based on Fig. 2.14, we can estimate the Bernoulli pressure in the vapor layer of

Leidenfrost water drops as ρvu
2/2 ≈ 1 Pa, which is much smaller than the pressure

variations ≈ 10 Pa (see Fig. 2.8a), suggesting that the inertial force does not account

for the pressure variations. The viscous pressure is Pvis ∼ ηvvR
2/e3, thus the pressure

variation due to the local variations of the film thickness is ∆Pvis = dPvis

de
∆e. Then
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Figure 2.14: Dependence of vapor film thickness (a), radial velocity (b), vertical
velocity (c), and the Reynolds number in the vapor (d) on temperature difference
∆T , respectively.

∆Pvis = 10 Pa corresponds to ∆e ≈ 15 µm considering the typical values of v (Fig.

2.14c) and R. Although this local film thickness could also be possibly induced by

the vertical motion of the center of mass of the drops, the fact that small and large

drops (see Fig. 2.11c) share a nearly constant oscillation frequency suggests this is

not the case. Therefore, the pressure variations in the vapor layer are likely to be

induced by the local variations of the vapor film thickness.

We propose that capillary waves with a characteristic wavelength, λc, traveling

from the center to the edge of the drop lead to local variations in vapor film thickness,

and thus pressure variations in the vapor layer, as schematically shown in Fig. 2.13.

To confirm this possibility, we used a heated, plano-concave, fused silica lens as a

substrate to image the capillary waves from below, as schematically shown in Fig.
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Figure 2.15: Sketch of the experimental setup for imaging capillary waves underneath
Leidenfrost drops.

2.15. The results for acetone and ethanol Leidenfrost drops are shown in Fig. 2.16.

The images were produced by averaging all frames in a given video sequence, then

subtracting this background image in order to enhance contrast in the center of the

drop. The white “halo” surrounding the drop is a consequence of this subtraction

process. The Fourier spectra for the capillary waves in the central region of the drops

were computed in both time and space using the pixel intensity as the signal. Using

the Nyquist sampling theorem, the maximum frequency was limited by half the video

frame rate (500-1000 Hz), and the maximum spatial frequency was set by half the

camera magnification (132 px/cm).

We observed a sharp peak in the measured Fourier spectrum for all the analyzed

video sequences. In Figs. 2.16a and 2.16b (8-mode, acetone), this peak is located at a

capillary wave frequency fc ≈ 24 Hz and within a range of wave numbers, kc = 2π/λc,

from 7 cm−1 to 12 cm−1, where λc is the wavelength of the capillary waves. Figures
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Figure 2.16: (a) (c) and (e) show the capillary waves imaged beneath 8-mode acetone
drop, 11-mode ethanol drop and 12-mode ethanol drop, respectively. (b), (d) and
(f) represent the corresponding Fourier power spectra of the capillary waves shown
in (a), (c), and (e), respectively. The images of capillary waves were enhanced for
visibility, as described in the text.
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2.16c and 2.16d show the capillary waves beneath a 11-mode Leidenfrost ethanol drop

and a sharp peak at a capillary wave frequency fc ≈ 25 Hz with kc ≈ 7-10 cm−1.

Similarly, for the capillary waves beneath a 12-mode Leidenfrost ethanol drop (Fig.

2.16e), a sharp peak exists at fc ≈ 27 Hz and kc ≈ 10-11 cm−1 as shown in Fig. 2.16f.

These frequencies show excellent agreement with the corresponding typical pressure

oscillation frequencies measured in the vapor layer of star-shaped Leidenfrost ethanol

and acetone drops (see Fig. 2.11c).

It is well-known that capillary waves can be generated at a liquid-vapor interface

due to a strong shear stress in the vapor [183–187]. A similar mechanism underlies

the Kelvin-Helmholtz instability, however, the intermediate Reynolds number in the

Leidenfrost vapor layer complicates the analysis. Nevertheless, we can estimate the

strength of this shear stress. Typically, the “friction velocity” is generally used to

measure the strength of shear, which is defined as u∗ =
√
τ/ρv, where τ is the shear

stress at the liquid-vapor interface. The maximum shear stress at the interface is:

τ =
6ηvu

e
, (2.27)

assuming a parabolic-flow profile in the vapor layer with mean velocity u near the

edge of the drop. Using water as an example, and plugging Eqs. 2.24 and 2.26 and

the value of ηv of water vapor into Eq. 2.27 yields u∗ ≈ 2 m/s. This friction velocity is

quite strong and sufficient to lead to the growth of unstable modes with wavelengths

of millimeter scale [184, 186].

The general dispersion relation of gravity-capillary waves with a dense upper-layer

is:

fc =
1

2π

√(
−gkc +

γk3c
ρ

)
tanh (kch), (2.28)
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where kc = 2π/λc, and h ≈ 2lc is the thickness of the drop. For simplicity, we have

assumed that the normal velocity is zero at the upper surface of the drop. For a

large Leidenfrost water drop whose characteristic pressure oscillation frequency in

the vapor layer is fp ≈ 26 Hz (see Fig. 2.9), the corresponding capillary wavelength is

calculated to be λc ≈ 3.03lc, so that kc ≈ 8.3 cm−1 [165]. Similarly, for the Leidenfrost

acetone and ethanol drops shown in Figs. 2.16a, 2.16c, and 2.16e, the corresponding

kc ≈ 13 cm−1, which is slightly larger than the positions of the peaks indicated in

Figs. 2.16b, 2.16d, and 2.16f, where λc ≈ 4lc. The agreement between the estimate

for kc and the measurements shown in Fig. 2.16 is good considering the simplicity of

Eq. 2.28, which is derived using an inviscid, semi-infinite flow in both phases.

The capillary-wave origin for the star-shaped oscillations also agrees with the

minimum size of the n = 2 mode. More specifically, the radius we measured in

our experiments is R rather than Rneck as illustrated in Fig. 2.13. The relationship

between these two lengths is R = Rneck + 0.53lc [114, 124]. Thus, the minimum drop

size required to fit one capillary wavelength beneath the drop is 2Rneck ≈ λc. Using

λc ≈ 3.03lc from above, we find that the radius of an n = 2 mode drop should be

R ≈ 2.05lc. This is in good agreement with Fig. 2.11a, which shows R/lc is slightly

less than 2 for the smallest drops. Taken together, this analysis suggests a purely

hydrodynamic origin for the star oscillations based on capillary waves generated by

a strong shear stress in the rapidly-flowing vapor beneath the drop.
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Figure 2.17: The temperature profile of a large Leidenfrost water drop with the
volume of 10−6 m3. The error bars come from the standard deviations of multiple
measurements.

2.3.7 Thermal effects

In the Leidenfrost effect, thermal energy is transferred from the substrate to the

drop, inducing evaporation and enabling the sustained star-shaped oscillations. Here

we consider the role of thermal effects, such as convection in the liquid, which may

play a role in the star oscillations. At sufficiently large temperature gradients in

liquid layers, convective structures can develop with well-defined length scales. A

well-known example is Bénard-Marangoni convection, where hexagonal patterns are

generated in a thin layer of liquid when heated from the bottom [29, 30]. The convec-

tion pattern is strongly affected by the variation of surface tension with temperature

[31–33]. Given that our data collapses when scaled by the capillary length of the

liquid (Fig. 2.11), this particular type of convection may be important for Leidenfrost

drops since the capillary length also appears in the length scale which characterizes

the size of the convective patterns.
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Figure 2.18: Fourier power spectra of the pressure variations in the vapor layer at
different environment temperature T1. (a), (b) and (c) represent pressure variations
of a 4-mode Leidenfrost water drop at T1 ≈ 367 K, 483 K, and 623 K, respectively.
(d), (e) and (f) represent pressure variations of a 5-mode Leidenfrost water drop at
T1 ≈ 367 K, 483 K, and 623 K, respectively. All of the data shown here was obtained
at the same scanning rate within the same time interval, 20 s.

Generally, the Marangoni number, Ma, and Rayleigh number, Ra, are used to

characterize Bénard-Marangoni convection. These dimensionless numbers are defined
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as:

Ma =
(∂γ/∂T ) δTh

νlρDl

, (2.29)

Ra =
gαδTh3

νlDl

. (2.30)

These numbers characterize the strengths of thermocapillary and buoyancy effects,

respectively. Additionally, the ratio of thermal conduction inside the liquid to the

conduction at the liquid-vapor interface is characterized by the Biot number:

Bi =
βh

κl
=
Thot − Tcold
Tcold − T1

, (2.31)

The definitions of the symbols in Ma, Ra, and Bi are listed in Table 2.2, as well as

their values for water at the boiling point.

Figure 2.17 shows the temperature profile of a large Leidenfrost water drop levi-

tating on its vapor layer with Ts = 673 K, in which the substrate surface is defined as

z = 0. The temperature was measured with a fine-point thermocouple, as described

in Section 2.2. We define the temperatures of the bottom and top surfaces of the

drop as Thot and Tcold, respectively, and the temperature of the position which is

slightly above the top surface of the drop is denoted as the environment temperature,

T1, as shown in Fig. 2.13. From Fig. 2.17 we can obtain δT = Thot − Tcold ≈ 3.8

K, the environment temperature measured to be T1 = 367 K, thus we can calculate

Ma ∼ 2 × 105, Ra ∼ 7 × 104, and Bi ≈ 1.1. Both the values of Ma and Ra are

much larger than their critical values, which are typically of order 100 for the initi-

ation of convective instability [33, 188]. Thus it is possible that thermal convection

plays a role in initiating the star-shaped oscillations. In this case, one may expect the

star-shaped wavelength, λd, to be related to the critical wavelength of the convective
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Symbol Quantity Value

νl liquid kinematic viscosity 2.94×10−7 m2/s

Dl liquid thermal diffusivity 1.743×10−7 m2/s

α thermal expansion coefficient 7.52×10−4 /K

κl liquid thermal conductivity 3.2×10−2 W/m/K

h drop thickness 0.005 m

δT temperature difference Thot − Tcold

β heat transfer coefficient depends on δT

∂γ/∂T surface tension gradient 1.46×10−4 N/m/K

T1 surface temperature >367 K

Table 2.2: Physical properties of water at the boiling points [174].

instability. This critical wavelength depends on the Biot number. We implemented a

qualitative test for this dependence by wrapping aluminum foil around the substrate

and Leidenfrost drop, which dramatically increased the environment temperature, T1,

near the top of drop.

Figures 2.18a and 2.18d show Fourier power spectra of the pressure oscillations in

the vapor layer of Leidenfrost water drops during n = 4 and n = 5 oscillations at T1 ≈

367 K, respectively. Figures 2.18b and 2.18e are the spectra of pressure oscillations

during n = 4 and n = 5 oscillations at T1 ≈ 483 K, respectively. Finally, Figs. 2.18c

and 2.18f represent the same modes at T1 = 623 K. For T1 = 483 K and 623 K, the

direction of heat transfer at the upper surface of the drop has been reversed; energy
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is added to the drop. Overall, dramatically increasing the surrounding temperature

affects the appearance of higher harmonics in the spectra. The behavior is non-

monotonic, and is likely due to the highly nonequilibrium conditions (high evaporation

rate) induced by the high temperatures of the substrate (Ts) and environment (T1).

A more detailed understanding of the pressure oscillation spectra is left for future

studies. Nevertheless, the position of the main peak in the spectra is independent

of T1, indicating that convection and the details of thermal transport in Leidenfrost

drops play a secondary role in the star-shaped oscillations.

2.4 Summary and outlook

Both large and small Leidenfrost drops display self-organized oscillations due to

the constant input of thermal energy and continuous evaporation and flow beneath

the drop. Here we have focused on radial oscillations (i.e. “breathing” mode) of small

Leidenfrost drops, and the large-amplitude, star-shaped oscillations that appear in

large Leidenfrost drops. We have characterized the number of observed modes for

various volatile liquids, the frequency and wavelength of the oscillations, and the

pressure variations in the vapor layer beneath the drops. The number of observed

modes is sensitive to the properties of the liquid (see Table 2.1), i.e. the star-shaped

oscillations of smaller Leidenfrost drops are dissipated by the liquid viscosity, which

sets the minimum oscillation mode number nmin that can be observed in experiment.

The relationship between the frequency and wavelength agrees very well the quasi-

two-dimensional theory proposed by Yoshiyasu et al. [176]. The dominant frequency

associated with the pressure oscillations is approximately twice the drop oscillation
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frequency, consistent with a parametric forcing mechanism for the star oscillations.

One of the main findings of our work is identifying the underlying cause of the

pressure oscillations. By imaging the liquid-vapor interface from below the drop,

and using a simplified model for the flow in the thin vapor layer, we conclude that

capillary waves of a characteristic wavelength, λc ≈ 4lc, lead to pressure oscillations

at the experimentally measured frequency. The flow in the vapor layer is quite rapid.

Near the edge of the drop, the mean radial velocity can reach 1-2 m/s or more.

In the small gap (∼ 100 µm) between the liquid and the solid surface, this flow

applies a large shear stress to the liquid-vapor interface, and can easily excite capillary

waves with millimeter-scale wavelengths. The dispersion relation for the capillary

waves then leads to a characteristic frequency for the pressure oscillations, which in

turn parametrically drive the star-shaped oscillations. Furthermore, although the

vapor flow is inherently driven by evaporation and heat transfer, the substrate and

surrounding temperature have little effect on the dominant frequency and wavelength

of the oscillations, suggesting they are purely hydrodynamic in origin.

Although the work presented here has focused mostly on the origin of star-shaped

oscillations, the coupling of the flow in the vapor layer and the liquid-vapor interface

underlies a rich spectrum of dynamical phenomena observed in both Leidenfrost liquid

layers and drops. In particular, of key interest is understanding the failure of the

Leidenfrost vapor layer which can lead to explosive boiling. If the observed capillary

waves beneath the drop act as the precipitant to vapor-layer failure, then it is possible

that geometrical tailoring of the surface to be commensurate with λc may inhibit the

generation of capillary waves. In addition, patterned, ratchet-shaped substrates with
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wavelengths≈ 1-3 mm are known to induce propulsion of small Leidenfrost drops [133,

136, 137], however, less is known about transport of large quantities of liquid, and the

dependence on the wavelength of the surface patterns. We leave these questions open

to future experiments. More generally, our results may offer insight into the direct

control of oscillations in levitated drops in many other systems [122, 123, 189–192],

for example, precise control is crucial when levitating high-temperature or harmful

liquids using a gas film. We also expect our results to enhance the understanding

of dynamics that couple a thin, supporting gas film, a liquid interface, and a solid

surface, a scenario which occurs through forced wetting and gas entrainment in liquid

coating [193–198].
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Polygonal desiccation crack

patterns

3.1 Introduction

In addition to the gorgeous star-shaped oscillatory patterns in Leidenfrost drops,

there also exist a large group of amazing patterns driven by drying particulate sus-

pensions. For example, when spill a coffee drop onto a desk, the final residues of

the drop after drying form a ring-shaped pattern, which is known as the coffee ring

effect. The formation of the coffee ring is driven by the capillary flow drawn from the

bulk of the drop to the edge as the drying rate at the drop periphery is greater than

of the bulk [199–201]. For more concentrated particulate suspensions, the particles

pack closely into a network during drying, and the particulate films are prone to form

cracks if enough capillary stress is stored in the film. This capillary induced phe-

nomena contribute largely to the diverse natural patterns, and one of the well-known

62
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category is the desiccation crack patterns [46, 63].

Desiccation crack patterns observed in natural systems span many orders of mag-

nitude in size (Fig. 3.1) [46, 63, 202–205]. Among the large diversity of desiccation

crack patterns, polygonal patterns are the most common. Typical examples include

the complex crack network in dried blood [47], craquelures in old paintings [48, 49],

T/Y-shaped cracks in dried mud [50], and polygonal terrain cracks [4, 51, 52]. In

particulate suspensions, the formation of desiccation cracks depends on the interplay

between order and disorder in granular systems, as well as mechanical instabilities

initiated by local, nonequilibrium interactions between the liquid, solid, and vapor

phases [46, 63]. Nevertheless, a broad range of practical applications, such as thin

film coating, forensics, and controllable surface patterning rely on knowledge of the

physical processes that determine crack patterns [53–57]. Despite numerous studies

which focus on desiccation crack patterns in a diverse range of systems, a fundamen-

tal understanding of the characteristic length scales associated with polygonal crack

patterns is lacking, and it is not clear if the observed patterns in both microscopic

and geologic crack patterns share the same underlying mechanisms.

In the laboratory, drying particulate suspensions, both Brownian and non-Brownian,

are model systems for replicating and understanding desiccation cracks in nature. For

a crack to form in any material, the mechanical potential energy released during frac-

ture must exceed the energetic cost of creating new surfaces [206]. In homogeneous,

isotropic, elastic solids, the dynamics of fracturing have been recently characterized

with exquisite detail [207–211]. However, the dynamics of drying-induced cracks are

complicated by the lack of material homogeneity and a nonlinear relationship be-
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Figure 3.1: Multiscale polygonal crack patterns. (a) Crack patterns by dry-
ing cornstarch-water suspensions in a petri dish. (b) Polygonal terrain in an
ancient dried lake be on Mars (HiRISE: PSP 007372 2475, image courtesy of
NASA/JPL/University of Arizona).

tween stress and strain [63, 72, 89, 212–216]. This complexity is enhanced by the

multi-phase nature of the material: liquid menisci between particles generate het-

erogeneous shrinkage through capillary pressure, and excess liquid-vapor surface area

in the bulk of the material [45, 217–220]. As a consequence, in addition to polygo-

nal cracks, a large variety of cracks patterns have been reported in dried suspensions

[43, 48, 64–79]. The variability in observed patterns depends on numerous factors such

as film geometry [44, 67], particle mechanics [80], liquid additives [81, 82], preparation

history [83, 84], solvent volatility [85, 86], and external fields [87, 88].

Despite this broad range of crack patterns, we know surprisingly little about what

controls the size and hierarchy of commonly observed polygonal cracks, which are

visible on both the micro- and macroscales. As shown in Fig. 3.1, a detailed under-

standing of desiccation crack patterns can lead to more accurate interpretations of

planetary geomorphology, where data are limited to satellite-based imaging [51, 52].
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Thus far, laboratory experiments and numerical models have produced contradictory

results as to the mechanism and dependence of the crack spacing on desiccation con-

ditions. For example, for regularly-spaced cracks produced by directional drying, the

relationship between the crack spacing, λ, and material thickness, h, is a power law,

λ ∝ hβ. Experimentally, numerous groups have reported β ≤ 1 [64, 221, 222], and

various theoretical predictions give 2/3 ≤ β ≤ 1 [223, 224]. For polygonal patterns,

one may expect Ap ∝ λ2 ∝ h2β. Groisman et al. [225] reported Ap ∝ h2 in desic-

cated suspensions of coffee grinds, although only over a four-fold increase in h. Other

experimental [226] and numerical [227, 228] studies have reported similar scalings.

Most recently, Flores [229] showed that Ap ∝ h4/3 using a model based solely on a

balance of the average stress and surface energy released during cracking. Yet despite

this history of investigation, there has been no systematic experimental study of the

film’s thickness and mechanics on the size of polygonal crack patterns.

The pattern morphology of polygonal cracks is also of interest since it reveals

information about the formation and history of the cracking process [63]. For example,

the distribution of angles at crack junctions [225, 226, 230] and statistical analysis of

the correlation length in crack patterns [231] are commonly quantified from images

of the surface. Repeated wetting and drying of the material can lead to more “Y”-

shaped junctions rather than “T”-shaped junctions [4, 50]. For some commonly used

desiccation suspensions such as cornstarch-water mixtures, crack patterns with two

distinct length scales can be identified, as shown in Fig. 3.1a. For thick samples, the

smaller polygons grow into the material, resembling columnar jointing patterns often

found in nature [230, 232–236]. These smaller polygons are also known to coarsen
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with depth in the material [237]. Hierarchical patterns have also been observed in the

cracking glaze of ceramics [74, 75]. It is not yet apparent why some materials display

hierarchical crack patterns, and some do not.

Here we present experimental evidence which resolves many of these important,

outstanding questions. Our experiments involve analysis of desiccated crack patterns

in various granular materials, such as cornstarch and CaCO3, suspended in different

volatile liquids: water, isopropanol (IPA), and silicone oil. We use both very thin,

quasi-two-dimensional chambers, as well as open petri dishes to dry the samples. For

all observed crack patterns, we find that the characteristic polygonal area is consistent

with Ap = αh4/3 over more than three orders of magnitude in h, in agreement with

a recent theoretical prediction [229] based on a balance of stress and surface energy

for crack formation. This scaling is independent of the shape of the polygons, which

varies considerably depending on the material-liquid combination. By characterizing

the modulus of the desiccated suspension, we are also able to quantitatively predict

the prefactor α. For all material-liquid combinations, we only observe multiscale

crack patterns in cornstarch-water mixtures. We show that these cracks are due

to two distinct desiccation mechanisms. Primary cracks form first due to capillary-

induced shrinkage of the material. Secondary cracks form much later, and are due

to deswelling of the hygroscopic cornstarch particles. Taken together, these results

provide a quantitative pathway for interpreting multiscale polygonal desiccation crack

patterns observed in diverse systems, from microscale colloidal films to terrestrial and

extra-terrestrial planetary surfaces.
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3.2 Experimental setup

We used commercial, polydisperse cornstarch particles from ARGO. The average

radius, R, of the particles is ≈ 5 µm. We also used CaCO3 particles from Onli-

neScienceMall with R ≈ 1 µm, and for some experiments, glass beads with R ≈

5 µm from Miscrospheres-Nanospheres. Particle sizes were measured using optical

microscopy. Different fluids such as deionized water, low-viscosity silicone oil (0.65

cSt, ClearCo), and 99.9% isopropanol (IPA) were used as solvents to prepare par-

ticulate suspensions. For samples thicker than h ≈ 1 mm, we dried suspensions in

polystyrene petri dishes of diameters 14 cm and 8.5 cm. Glass microscope slides were

used to build thin, quasi-two-dimensional chambers as discussed in Section 3.3.5. For

the thin chambers, the tunable thickness, h, was set by vinyl spacers cut from a sheet.

Once the vinyl spacers were placed on the edges, a sample of suspension was placed

on the microscope slide, and the sample was compressed by a second glass slide and

secured mechanically before gluing with optical epoxy. Similar setups have been used

by previous authors [45, 64, 65, 238]. However, one important distinction in our ex-

periments is that due to the relatively slow evaporation in this system, evaporation

occurs nearly isotropically around the perimeter of the sample (see Figs. 3.10a and

3.10b), so drying is not uni-directional.

We used a conventional bright-field microscope to image crack patterns in the thin

chambers, and a USB 3.0 digital video camera (Point Grey) connected to a macro

lens to image the crack formation during drying of particulate suspensions in petri

dishes from above. Recorded images were analyzed using NIH ImageJ software to

obtain the area of polygonal cracks and thickness of the dried films. An electronic
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balance (Omega) was used to monitor the instantaneous mass of suspensions during

drying. All experiments were performed at room temperature (20 ◦C) with uncon-

trolled relative humidity of ≈ 60%. Modulus measurements were obtained by slowly

pressing a stainless steel ball of diameter 1.9 cm into the material using a rheometer

(TA Instruments AR2000), and recording the applied normal force.

3.3 Results and discussion

3.3.1 Multiscale cracks in cornstarch-water suspensions

We prepared cornstarch-water suspensions and dried the samples in petri dishes.

We varied the thickness of the films by controlling the initial volume of the suspen-

sions. Above a critical thickness, hc, as will discussed in Section 3.3.2, we observed

two distinct crack patterns that appeared at different stages of desiccation. Figure 3.2

shows the formation of these multiscale cracks during drying of a cornstarch-water

suspension with φi = 40%. As shown in Fig. 3.2a, drying occurs at the air-water

interface. The primary cracks (blue polygons) first appear, then as drying proceeds,

secondary cracks (red polygons) appear within the larger polygons. After the sus-

pension has dried for t ≈ 10.5 h, primary cracks first appear (Fig. 3.2c), and the

number of primary cracks increases with time (Fig. 3.2d). At t ≈ 24 h, secondary

cracks are visible (Fig. 3.2f). When t ≈ 42.5 h, the number of secondary cracks stops

increasing though drying still proceeds (Fig. 3.2h). Finally, the drying contributes

to the widening of the existing cracks, as shown in Fig. 3.2h. We note that the pri-

mary cracks penetrate completely through the sample when they form, whereas the
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Figure 3.2: (a) Experimental setup for drying cornstarch-water suspensions in petri
dishes where drying occurs at the top interface as indicated by the red arrows. For-
mation of multiscale crack patterns during drying of a cornstarch suspension (φi =
40%) in a petri dish: (b) Image of the initial suspension (t = 0), (c) the primary
cracks appear (t ≈ 10.5 h), (d) the number of primary cracks increases (t ≈ 11 h), (e)
the number of primary cracks stops growing (t ≈ 22 h), (f) secondary cracks appear
(t ≈ 24 h), (g) the number of secondary cracks increases (t ≈ 29 h), (h) the number
of secondary cracks stops increasing though drying still proceeds (t ≈ 42.5 h), (i) the
final crack pattern (t ≈ 72 h). The inset in (f) is a zoomed-in view of the section
enclosed by the yellow box. Some of the images here have been enhanced for the best
visualization of crack patterns, and the scale bar applies to all images.The final dried
film has a thickness of h ≈ 0.7 cm.

secondary cracks grow more slowly, and their visibility increases with time.

As reported by previous authors [227, 230, 239], the primary cracks are a result

of film shrinkage induced by the Laplace pressure on the scale of the particle size.

As the water evaporates, menisci form between individual particles of radius R ≈ 5
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µm. Thus the average pressure is reduced in the suspension by ≈ γ/R ≈ 15 kPa,

where γ = 72 mN/m is the surface tension of water. Since the suspension is partially

adhered to the bottom surface of the petri dish, the cracks form almost uniformly over

the sample. Without this adhesion, the suspension undergoes isotropic shrinkage, and

the number of primary cracks is reduced [225].

As the stress boundary condition at substrate can potentially play a role in the

formation of desiccation crack patterns. We examined the effect of the boundary

condition on the formation of crack patterns by drying cornstarch-water suspensions

in petri dishes. We modified the bottom surfaces of the petri dishes: sandpaper sheets

with grit size 120 were used to roughen the petri dish surface so as to make the surface

less adhesive. This is a little bit counterintuitive since increasing surface roughness

usually increases contact area and makes the surface more adhesive. However, here the

boundary stress is mainly contributed by the tangential component of the adhesion,

and roughening the substrate surface leads to the structures of troughs and peaks,

which decrease tangential component of the adhesion such that the boundary stress

decreases. A commercial coating (Rain-X) was applied in order to make the surface

more hydrophobic or less adhesive. In addition, a 5-min epoxy layer was applied to

the petri dish surface to enhance the adhesive properties.

We prepared cornstarch-water suspensions with the same initial volume (Vi = 120

ml) and the same initial volume fractions (φi = 40%), then deposited the suspensions

into the prepared petri dishes with different boundary conditions, and the suspen-

sions dried at room temperature. Figure 3.3a shows the crack patterns of the dried

cornstarch-water film without any modification to the petri dish surface as a control
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Figure 3.3: Desiccation crack patterns of cornstarch-water suspensions with the same
initial volume (Vi = 120 ml) and the same initial volume fraction (φi = 40%) dried
in petri dishes with different boundary conditions. (a) Image of the dried polygonal
cracks without modifying the surfaces of the petri dish. (b) The surface of the petri
dish was roughened by sandpaper sheets with grit size 120 in order to decrease the
adhesion between the suspension and the substrate since the contact area is reduced.
(c) The surface of the petri dish was made hydrophobic by coating with a layer of
Rain-X. (d) The surface of the petri dish was coated with a 5-min epoxy layer. The
scale bar applies to all images. The zoomed-in image of (b) was enhanced for better
visualization of secondary, small-scale cracks.

experiment. It is evident that the increase of the surface roughness will decrease

the number of large-scale cracks as indicated by Fig. 3.3b since increasing the sur-

face roughness decreases the contact area between the suspension and the substrate,

and the boundary stress decreases consequently, whereas the small-scale cracks are
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still observable as shown in the zoomed-in image of a particular region enclosed by a

dashed yellow box in Fig. 3.3b. Similarly, as the hydrophobicity was increased (Fig.

3.3c), the number of large-scale cracks dramatically decreased, whereas the small-

scale cracks are insensitive to the coating layer. The results shown in Figs. 3.3b and

3.3c indicate that the decrease in adhesion of the suspension to the substrate leads

to dramatic decrease in the number of large-scale, primary cracks (or the increase of

polygon area), which is likely due to the more isotropic shrinkage of the film during

drying.

Figure 3.3d shows the polygonal cracks in a petri dish whose surface was coated

with an epoxy resin layer. In this case, although the adhesion of the suspension to the

substrate has increased, the number of large-scale cracks does not dramatically change

compared to Fig. 3.3a. This is not surprising since shrinkage in the film will continue

until the yield stress of the granular material is reached so that a crack is formed, and

then this process continues. Therefore, although the boundary condition plays a key

role in determining the area of the polygonal cracks, weakening the adhesion has the

strongest effect, especially if the adhesive stress is smaller than the yield stress of the

material. The secondary cracks are generally unaffected by the choice of boundary

condition, and the origin of secondary cracks will be discussed in Section 3.3.3.

3.3.2 Critical condition for primary cracks

The appearance of primary cracks for thicker samples of cornstarch and water

suspensions, as shown in Fig. 3.2, can be understood in terms of a well-known theory

for the initiation of cracks in colloidal thin films [217, 218]. The theory assumes a no-
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Table 3.1: Physical properties of the parameters in Eq. 3.1.

Symbol Meaning Value

G
particle shear

modulus

4 GPa (cornstarch)

32 GPa (CaCO3)

R particle radius
5 µm (cornstarch)

1 µm (CaCO3)

γ surface tension

72 mN/m (water)

23 mN/m (IPA)

16 mN/m (silicone oil)

M coordination number 5

φ random close packing 0.67

hc critical thickness

σc critical stress

slip boundary condition between the bottom boundary of the film and the substrate,

and predicts a relationship between the critical film thickness and stress when crack

should appear:

σcR

2γ
= 0.1877

(
2R

hc

)2/3(
GMφR

2γ

)1/3

, (3.1)

where the definitions of the parameters in Eq. 3.1 are listed in Table 3.1. Although

the particle radius ultimately cancels from Eq. 3.1, it is included here so that each

term is dimensionless, as in Ref. [218]. We have included typical values for the shear

modulus of both cornstarch and CaCO3 taken from the literature [240], assuming
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a crystalline form of CaCO3 and a Poisson’s ratio of 0.5 for cornstarch. The same

values of φ and M were used for all calculations.

Taking the typical values of the suspensions of cornstarch-water and CaCO3-water

used in the experiment (see Table 3.1), we can calculate the critical thickness for

cracking. Since the stress driving the primary cracks is due to capillary pressure

[221], we can assume that σc ≈ γ/R. Solving for hc, we obtain hc ≈ 1500 µm for

cornstarch, and hc ≈ 400 µm for CaCO3.

In order to examine whether Eq. 3.1 accurately predicts the critical film thickness

for cracking, we dried both thin films of cornstarch-water and CaCO3-water suspen-

sions in petri dishes, and the results are shown in Fig. 3.4. In Figs. 3.4a-3.4b, only

small-scale, secondary cracks are observed. In Fig. 3.4c, the small-scale, secondary

cracks are obvious and the large-scale, primary cracks are about the appear. In Fig.

3.4d, both large-scale, primary cracks and small-scale, secondary cracks are obvious.

This indicates that the critical film thickness of cornstarch-water suspensions lies in

between h = 864 µm (Fig. 3.4c) and h = 1181 µm (Fig. 3.4d). In Fig. 3.4g, no

cracks are visible, whereas in Fig. 3.4h cracks appear, suggesting that the critical film

thickness for CaCO3-water suspensions lies between 500 µm and 553 µm. Both the

critical film thicknesses we observed show good agreement with the predictions by

Eq. 3.1, though slightly different from the predicted values. However, Eq. 3.1 fails

to explain the origin of secondary cracks in dried cornstarch-water suspensions. For

the secondary cracks, there is no critical film thickness, and the cracks are visible

in samples that are only a few particles thick, as will be discussed in Section 3.3.5,

suggesting that the stress is not solely due to capillary pressure, as described in Ref.
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Figure 3.4: Measurement of critical film thickness for cracking of cornstarch-water and
CaCO3-water suspensions. Images (a) to (e) show dried cornstarch-water suspensions
with thicknesses of 281 µm, 600 µm, 864 µm, 1181 µm, and 1236 µm, respectively.
Images (f) to (j) show dried CaCO3-water suspensions with thicknesses of 267 µm,
500 µm, 553 µm, 635 µm, and 701 µm, respectively. The scale bar applies to all
images.

[221].

3.3.3 Cornstarch particle deswelling drives secondary cracks

Multiscale crack patterns in dried cornstarch-water suspensions have been re-

ported previously [74, 75, 230]. The secondary cracks in cornstarch-water suspen-

sions have been used as a model system to investigate the formation of geophysical

columnar joints [7, 205, 232–236]. However, to the best of our knowledge, the origin

of the different types of cracks is not well-understood. It has been suggested that the

small-scale cracks are driven by the spatial nonuniformity of the local shrinkage of

the film [230, 239], which has never been confirmed. More recently, Goehring [235]

showed that the strong separation between two distinct drying regimes dominated by
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Figure 3.5: Deswelling of a large, individual cornstarch particle from the wet state
(a) to the fully dry state (b). The lengths indicated in the images are l0 = 27 µm
and l1 = 24 µm. (c) Normalized evaporation rate of suspensions of cornstarch-water,
-IPA and -silicone oil, and CaCO3-water and -silicone oil. The symbols are defined
as follows: ml(t) is the instantaneous mass of the liquid in the prepared suspension,
ml0 is the initial mass of the liquid, and ∆m/∆t is the initial evaporation rate of the
liquid at t = 0. Note that only cornstarch-water suspensions show secondary cracks
during drying.

liquid and vapor transport in the particle network could influence the formation of

small-scale crack patterns in cornstarch-water suspensions, yet similar physics should

apply in other particle networks where small-scale cracks are not observed. Con-

sequently, the underlying mechanism for the formation of multiscale crack patterns

remains unclear.
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One of the main results of this work is that distinct polygonal crack patterns are

due to distinct shrinkage mechanisms. The initial evaporation of the suspending liquid

creates capillary stress at the interface, which shrinks the sample and induces stresses

sufficient for cracking (primary cracks). For cornstarch in water, the secondary cracks

are driven by a second shrinkage mechanism: the deswelling of the particles. We

observed strong deswelling by drying swollen cornstarch particles dispersed in dilute

suspensions, and the average deswelling ratio was ≈ 5-10%, as shown in Figs. 3.5a-

3.5b.

In order to examine whether particle deswelling is unique for cornstarch-water

suspensions, we prepared suspensions of cornstarch-water, -IPA, and -silicone oil,

and suspensions of CaCO3-water and -silicone oil and compared their drying kinetics.

We used an electronic balance to record the instantaneous mass of the prepared

suspensions during drying, and the results are shown in Fig. 3.5c. The instantaneous

mass of the liquid, ml(t), is normalized by the initial mass of the liquid, ml0 (vertical

axis), and the drying time t is normalized by the initial evaporation rate of the liquid,

ml0/(∆m/∆t) (horizontal axis). It can be easily seen in Fig. 3.5c that the normalized

drying dynamics of all of the suspensions follow the same curve, except for cornstarch

and water. The drying dynamics are much slower at late times for cornstarch in water,

and the sample takes more than twice as long to dry. This discrepancy suggests that

the cornstarch particles are deswelling in the later drying stage, so that evaporation

depends on diffusion of water out of the individual particles. Finally, the point where

the drying rate of the cornstarch-water suspensions start to deviate from the other

four suspensions is exactly when small-scale, secondary cracks show up during drying
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cornstarch-water suspensions in petri dishes (t ∼ 24 h, see Fig. 3.2), indicating that

the secondary cracks are driven by deswelling-induced shrinkage.

Generally, the drying kinetics of granular suspensions follow a similar pattern,

i.e., initially the saturated state, in which the drying rate is only determined by

the evaporation at the top free surface, next drying rate almost keeps constant and

then decreases followed by a saturation state as the liquid content is nearly com-

pletely gone, and these characteristics are essentially determined by the fluid-pore

interactions, pore size distributions and the connectivities of pores [63, 241, 242].

Therefore, the normalized drying rate for various particle-liquid suspensions shown in

Fig. 3.5 furthermore suggests the unique small-scale, secondary cracks are driven by

the deswelling of cornstarch particles in water given the differentiated drying behavior

of cornstarch particles.

3.3.4 Primary cracks in different particle suspensions

Above the critical thickness, we explored primary crack patterns in various sus-

pensions. We dried suspensions of cornstarch and CaCO3 in water, silicone oil, and

IPA in petri dishes. We varied the initial volumes of the suspensions in order to

obtain different film thicknesses and polygon areas. Figure 3.6a shows the multiscale

cracks observed in dried cornstarch-water films, for different film thicknesses. For

primary polygonal cracks, the average polygon area increases with thickness, whereas

for secondary cracks, the average polygon area initially increases with film thick-

ness and then saturates for large h. For CaCO3-water suspensions (Fig. 3.6b), the

polygonal pattern is not isotropic, and has a preferred direction. This anisotropy is
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Figure 3.6: Multiscale crack patterns observed in dried films of cornstarch and CaCO3

particles suspended in different fluids. Panel (a) shows images of polygonal crack
patterns in dried film of cornstarch in water with film thicknesses of 2, 7, 10, and 20
mm, from left to right, respectively. Panels (b), (c) and (d) show dried crack patterns
of films of CaCO3 suspended in water, silicone oil, and IPA, respectively. In (b) the
film thicknesses from left to right are 1.5, 2, 3, 5.5 mm; in (c) from left to right are
2.5, 4, 7.5, 9 mm; and in (d) from left to right are 3.1, 5, 5.5, 9.5 mm.
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well-known, and is likely due to particle chain formation induced by drying [243]. For

CaCO3 particles in both silicone oil and IPA (Figs. 3.6c and 3.6d), the cracks are

distinctly different than those observed in water, nevertheless, the characteristic size

of the polygons increase with thickness. This dependence will be discussed in detail

in Section 3.3.6.

Although the liquids used in our experiments have different surface tensions and

vapor pressures, we suspect that some of the differences in patterns are mostly due

to particle-liquid interactions and surface energies. In order to examine these as-

sumptions, we have tested the packing ability of various particle-liquid combinations,

and found significant differences between the same particles in different solvents (Fig.

3.7). We prepared cornstarch-water, cornstarch-silicone oil, and cornstarch-IPA sus-

pensions with the same initial volume (Vi = 10 ml), and the same initial volume

fraction (φi = 20%). The samples were then centrifuged at 2000 rpm for 2 mins.

Longer centrifuge times did not change the result. According to particle number

conservation,

φfVf = φiVi, (3.2)

where φf and Vf are the final volume fraction and the total volume of the particle

suspension after being centrifuged, respectively. Figure 3.7a shows images of the

initial cornstarch suspensions, and the images of the cornstarch suspensions after

being centrifuged are shown in Fig. 3.7b. From Fig. 3.7b we find that Vf ≈ 4.6 ml,

4.4 ml, and 3.9 ml for cornstarch particles in silicone oil, water, and IPA, respectively.

Therefore, we can calculate that φf ≈ 43% for cornstarch-silicone oil, φf ≈ 45% for

cornstarch-water, and φf ≈ 51% for cornstarch-IPA, respectively. The results shown
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(a) (b)

Figure 3.7: Suspensions of cornstarch-silicone oil, cornstarch-water, and cornstarch-
IPA (from left to right) with the same same initial volume (Vi = 10 ml), and the
same initial volume fraction (φi = 20%). (a) and (b) show the images of the initial
suspensions and the suspensions after being centrifuged, respectively.

in Fig. 3.7 suggest that particles suspended in different liquids show different packing

abilities, depending on the particle-liquid interactions.

Additionally, we measured the packing abilities of different particles suspended in

water. To do this, we prepared the suspensions of cornstarch-water, CaCO3-water,

and glass beads-water with the same initial volume (Vi = 10 ml), and the same initial

volume fraction (φi = 20%) as shown in Fig. 3.8a from left to right, respectively.

Figure 3.8b shows the images of the three suspensions after being centrifuged. From

Fig. 3.8b, we can obtain the the final volume Vf of different particles in water, i.e.,

Vf ≈ 4.4 ml for cornstarch, Vf ≈ 3.8 ml for CaCO3, and Vf ≈ 3.4 ml for glass beads.

Therefore, using Eq. 3.2 we can calculate the final volume fraction φf for different

particles in water, i.e., φf ≈ 45% for cornstarch, φf ≈ 53% for CaCO3, and φf ≈ 59%

for glass beads. The results shown in Fig. 3.8 indicate that the packing efficiency of
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Figure 3.8: Suspensions of cornstarch-water, CaCO3-water, and glass beads-water
(from left to right) with the same initial volume fraction (φi = 20%), and the same
initial volume (Vi= 10 ml). (a) and (b) show the images of the initial suspensions
and images of the suspensions after being centrifuged, respectively.

different materials suspended in a given liquid can be significantly different. From

Figs. 3.7 and 3.8, we can conclude that the packing efficiency of particles in liquids

can potentially affect the modulus of the material and the visibility of the cracks,

among other properties. It should be noted that the packing fraction of porous media

is not well-defined, and here we we calculate the volume fraction by the ratio of the

granule particle volume to the total volume of liquid and granule particle in a given

suspension for the sake of simplicity.

The ultimate packing fraction obtained after desiccation can potentially affect

the maximum strain attainable upon drying, the modulus and tensile strength of the

sample, the adhesion to the underlying substrate, and the visibility of the cracks. For

example, after centrifuging prepared suspensions, we found that cornstarch particles
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Figure 3.9: Fully desiccated suspensions of cornstarch-IPA (a) and cornstarch-silicone
oil (b). The two suspensions have the same initial volume (124 ml), and the same
initial volume fraction (φi = 40%). The film thicknesses of the samples in (a) and (b)
are ≈ 6 mm. The images are enhanced for better visualizations, and the scale bar
applies to both images.

pack significantly more densely (φf ≈ 0.51) in IPA than either water (φf ≈ 0.45)

or silicone oil (φf ≈ 0.43), as shown in Fig. 3.7. In addition, both cornstarch and

CaCO3 pack more loosely than spherical glass beads in water (Fig. 3.8).

We also observed a stark contrast in the crack patterns for cornstarch in both IPA

and silicone oil as shown in Fig. 3.9. For IPA suspensions, we only observed very fine

surface cracks in thick samples (h & 1 cm), which did not penetrate more than ≈

1 mm into the desiccated material (Fig. 3.9a). We suspect that this is due to high

packing density of cornstarch in IPA (Fig. 3.8), so that only the surface layer could

obtain sufficient strain to crack upon desiccation. Suspensions of cornstarch in silicone

oil did not display any visible cracks for most thicknesses used in our experiments

(Fig. 3.9b), and only small cracks for very thick samples (h ≈ 2 cm). Even after full

desiccation, the surface of these films looked like smooth paste (Fig. 3.9b), suggesting

that the particles retained some sort of sticky interactions, possibly due to residual

silicone oil adhered to the surface. Even weak, attractive interactions are expected



Chapter 3: Polygonal desiccation crack patterns 84

drying

(c) (d) (e)

h

0.4 mm

(a) (b)

Figure 3.10: (a) Experimental setup for drying cornstarch-water suspensions in quasi-
two-dimensional chambers with thickness h. (b) The polygonal cracks in the final
dried film are indicated by the red polygons. The dashed blue line represents the
profile of the initial suspension, and polygonal cracks (red) appear after the shrinkage
of the initial suspension (blue arrows). Images in (c), (d) and (e) show the drying
stages: (c) the initial suspension in the thin chamber, (d) the percolation of dried
regions, which appear darker in color since they scatter more light, and (e) the final
polygonal crack patterns in the dried film. The scale bar applies to all of the three
images.

to have a significant effect on granular packings and their mechanical properties for

large system sizes [244]. This hypothesis is consistent with the low packing density of

cornstarch in silicone oil (Fig. 3.8), suggesting that the particles may have a strong

affinity for the silicone oil.

3.3.5 Cornstarch-water suspensions in thin chambers

The small-scale secondary cracks observed in Fig. 3.2i are a unique feature of

cornstarch-water suspensions, and did not show evidence of a critical thickness (hc),

in contrast to primary cracks. In order to explore the thickness dependence of the sec-

ondary cracks, we prepared cornstarch-water suspensions with different initial volume

fractions, φi, and then deposited the suspensions into the thin, quasi-two-dimensional
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Figure 3.11: Polygonal crack patterns of fully-desiccated cornstarch-water suspensions
in thin chambers with initial particle volume fraction φi = 26%. Panels (a) to (h)
represent the film thicknesses of 10, 25, 50, 100, 250, 400, 500, 600, 750, and 1000
µm, respectively. The scale bar applies to all images.

chambers, as shown in Figs. 3.10a and 3.10b. We observed two drying stages: ini-

tially a compaction front invades throughout the film; then a second drying stage

“percolates” throughout the film with a characteristic branching pattern, leading to

the formation of liquid, capillary bridges between particles. Finally, the liquid bridges

dried up followed by the formation of polygonal cracks after several days (see Figs.

3.10c-3.10e).

Figure 3.11 shows images of the polygonal cracks observed in the dried films of

a cornstarch-water suspension (φi = 26%) in chambers with increasing h. Note here

the thickness of the chamber is safely taken as the thickness of the dried film since

the final dried film was attached to the top and bottom surfaces of the chambers, as

shrinkage mostly occurred in the plane (Fig. 3.10b). In very thin chambers (h ' R),

“dendritic” fracture patterns are observed, as shown in Figs. 3.11a and 3.11b. Since
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the thickness of the chamber is comparable to the particle size, these patterns were

sensitive to the flow of the suspending liquid as evaporation occurred. As h exceeds a

critical value, the sensitivity to flow ceased, and regular, polygonal cracks appeared,

as shown in Figs. 3.11c-3.11j. This trend holds true for all values of φi used in the

experiments.

It should be noted here that we also prepared suspensions of glass beads and

CaCO3 particles in thin chambers with water, however, no cracks appear during

drying of the suspensions in these chambers. This supports the hypothesis that the

secondary cracks are due to a distinct drying mechanism involving deswelling of the

hygroscopic cornstarch particles (Section 3.3.3).

3.3.6 Universal scaling of multiscale polygonal cracks

Figures 3.6 and 3.11 show that the characteristic size of all observed polygonal

cracks, in both petri dishes and thin chambers, increases with h. Although there are

many ways to characterize the polygonal patterns, such as the average number of

edges, or the aspect ratio, we simply measured the average area Ap of the polygonal

cracks. The results are shown in Fig. 3.13. The solid symbols represent cornstarch-

water suspensions desiccated in thin chambers. The data were nearly independent of

the initial volume fraction deposited in the chamber (Fig. 3.12). The open symbols

represent polygons observed in petri dishes. More specifically, the open blue circles

represent the secondary cracks in dried cornstarch-water suspensions in petri dishes,

which overlap with the data from the thin chambers. For very thick suspensions

of cornstarch and water, the area of the small-scale, secondary polygons saturated,
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Figure 3.12: Scaling behavior of polygon crack area Ap vs. film thickness h for
cornstarch-water suspensions with various initial volume fractions φi after drying in
thin quasi-2D chambers. The dashed black line represents the best fit for the data,
Ap = 0.02 m2/3 h4/3. The error bars are from the standard deviation of multiple
measurements.

and did not increase further. As we will show in Section 3.3.7, the deswelling of the

particles proceeds as a drying front that penetrates diffusively into the material. Thus,

the effective thickness associated with the crack formation depends on the diffusion

of water vapor from the film.

As mentioned previously, numerous authors have investigated the thickness de-

pendence of the characteristic crack spacing or polygon area in desiccated suspensions

[64, 221, 223–226]. However, for polygonal crack networks, most of these studies cover

a very limited range in thicknesses, so that a comprehensive picture of the thickness

dependence of polygonal cracks is lacking. Although there is significant variation in

the data from any single set of experiments, taken together, our results in Fig. 3.13



Chapter 3: Polygonal desiccation crack patterns 88

●
●

● ●
● ●

●
●● ●

●

●
● ● ●

● ● ●
●
● ●

●

●
●

●
●

● ●
● ●

● ●
● ●

●

● ● ●

● ● ●
● ●

●

● ●
●

●
● ● ● ● ●

10-5 10-4 10-3 10-2 10-1
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

1

effective film thickness is

set by the diffusion of

water vapor

Figure 3.13: Characteristic area (Ap) vs. the film thickness (h) of the multiscale
polygonal cracks observed in both thin chambers and petri dishes. The open sym-
bols represent the data obtained in petri dishes, whereas the solid symbol represent
cornstarch-water suspensions dried in thin chambers with various φi, from Fig. 3.12.
The open blue circles represent small-scale, secondary cracks observed in cornstarch-
water suspensions dried in petri dishes. The dot-dashed blue and dashed black lines
represent Ap = αh4/3, where α = 0.5 m2/3 and 0.02 m2/3, respectively.

strongly suggest:

Ap = αh4/3 (3.3)

over a wide range of thickness, for different types of polygonal cracks, in different

experimental geometries, and for different liquid-particle combinations. This scaling

law is indicated by the dot-dashed blue and dashed black lines in Fig. 3.13. Although

the prefactor, α, is distinct for primary and secondary cracks in different materials,

the data suggest that the exponent is universal. Recently, Flores [229] derived this

simple scaling law using continuum elastic theory, and a balance of surface energy
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Figure 3.14: Cracking in a material driven by tensile stress at the substrate. Here,
h is the film thickness, Ap is the characteristic area of the polygonal cracks, P is the
tensile stress generated due to the adhesion of the film to the substrate. Adapted
from Ref. [229].

and elastic energy for the initiation of cracking. We will repeat this argument here

since we will make small alterations to the expression for α.

Figure 3.14 shows a section of a thin film after the formation of cracks [229].

The thickness of the film is h, and the characteristic area of the polygons is Ap.

The main tensile stress, P , acts on the bottom surface, where the film is adhered

to the substrate. We assume that cracks will form when the energy cost of creating

new surfaces at the sides of a polygon is equal to the elastic energy released during

cracking:

κγ
√
Aph ∼

V

2E
〈σ〉2 , (3.4)

where γ is the surface tension of the newly-created interfaces which have a typical

area
√
Aph, and κ is the ratio of the perimeter to the area of the polygons. Here, 〈σ〉

is the volume-averaged tensile stress in the film, E is Young’s modulus, and V = Aph

is the volume of one polygon.

We can relate 〈σ〉 to P using the fact that the average stress in a volume element
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can be related to an integral over the forces acting on its boundaries [245]:

〈σij〉 =
1

2V

∮
S

(Pixj + Pjxi) dS. (3.5)

Since the main stress is applied at the substrate, Eq. 3.5 provides the approximate

scaling:

〈σ〉 ≈ P

√
Ap

h
. (3.6)

Although we have not rigorously evaluated the integral for a thin, adhered film, one

obtains the same result, 〈σ〉 ∝ 1/h, by considering a similar problem, a thin, spherical

elastic shell under uniform pressure. In this case, which can be solved exactly, the

tangential, tensile stress scales in the same way as Eq. 3.6 [99].

Combining Eqs. 3.4 and 3.6, we arrive at the predicted scaling relation:

Ap =

(
2κγE

P 2

)2/3

h4/3. (3.7)

Given the surface tension of the new, “wet” interfaces, γ, the prefactor, α =

(2κγE/P 2)2/3, is determined by the modulus of the material when cracks form, and

stress at the substrate generated by shrinkage, P . When cracks form, P will essentially

be the yield stress, and will be smaller than E [246]. Most of the polygons we observe

are convex. In this case, we can estimate κ by assuming they are regular polygons,

where κ has an analytic expression:

κ = 2

√
N

cot(π/N)
. (3.8)

Here, N is the number of sides of the polygon. As shown in Fig. 3.15, for N = 3, κ ≈

4.56. As N → ∞, κ → 3.54. Thus, in our further discussion, we will assume κ ≈ 4

for simplicity in estimating the prefactor α.
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Figure 3.15: The variations of κ with respect to the number of polygon side N , i.e.,
Eq. 3.8.

In order to provide some quantitative measurement of the modulus, we prepared

different mixtures at different drying stages, and used a rheometer to measure the

applied normal force upon indenting the material with a stainless steel ball of radius

Rb ≈ 9.5 mm using the indentation load-displacement method [247, 248]. More

specifically, in this method, a complete cycle of loading and unloading of the indenter

into the material is performed to measure the elastic and plastic contributions to the

deformation. Generally, the loading phase contains both elastic and plastic effect,

whereas the initial unloading is assumed to be approximately pure elastic, such that

the Young’s modulus can be calculated using the linearly-elastic Hertzian contact

theory [249, 250].
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The stiffness (slope) for the initial unloading is [247, 248, 251]:

dFN
dy

∣∣∣
y=ym

=
2√
π
E∗
√
Aproj, (3.9)

E∗ =
E

1− ν2
, (3.10)

where FN is the normal force, y is the indentation depth, ym is the maximum dis-

placement when the indenter is fully loaded, Aproj = πym(2Rb − ym) is the projected

circular area of the contact for a sphere indented into a half-space by a distance

y = ym, E is Young’s modulus, and ν is the Poisson’s ratio of the film (≈ 0.5).

Figure 3.16 shows the loading and unloading versus displacement for different

particulate films when primary and secondary cracks form. Note for each tested film,

the entire film thickness is at least 100 times greater than the indentation depth ym,

and the maximum load was held for about 10 s before unloading started. By fitting

the slope of the initial unloading data at y = ym using Eq. 3.9, the Young’s modulus

of the films fall in the range from 2.6 to 20 MPa. These values are consistent with

similar modulii measured in non-Brownian dense suspensions and soils [246, 252–

254]. In addition, we also measured the Young’s modulus of fully-desiccated films,

and the results are shown in Fig. 3.17, in which the modulus of films is calculated

to be as follows: 3.3 × 106 Pa (cornstarch-IPA film, see Fig. 3.17a), 1.0 × 106 Pa

(cornstarch-water film, see Fig. 3.17b), 3.3× 106 Pa (cornstarch-silicone oil film, see

Fig. 3.17c), 6.9× 107 Pa (CaCO3-water, see Fig. 3.17d). The errors of the nonlinear

fitting parameters using Eq. 3.9 range from 0.3% to 2.0%. The results of Figs. 3.16a

and 3.16b are consistent with experimental observations that small-scale secondary

cracks have a smaller prefactor, as shown in Fig. 3.13, although this alone does not

explain the difference (0.02 m2/3 versus 0.5 m2/3, Fig. 3.13).
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Figure 3.16: Indentation load-displacement measurement of particulate suspensions
at different drying stages. (a), (b) and (c) show the data of a cornstarch-water film
after primary cracks appear, a cornstarch-water film when secondary cracks appear,
and a CaCO3-water film when cracks appear, respectively. The dashed lines represent
the eye guide for the best fits of slope of the initial unloading at y = ym using Eq.
3.9, and the corresponding modulus values are E = 3.0 × 106 Pa (a), 2.6 × 106 Pa
(b), and 2.0× 107 Pa (c).
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Figure 3.17: Indentation-loading displacement tests of different films at different dry-
ing stages. (a), (b), (c) and (d) show the data on fully-desiccated cornstarch-IPA
film, cornstarch-water film, cornstarch-silicone oil film, and CaCO3-water film, re-
spectively. The dashed lines represent the best fits of the unloading data using Eq.
3.9.
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The value of the substrate stress, P , is more difficult to measure. The maximum

adhesion to the substrate clearly affects the crack pattern, as shown in Fig. 3.3, so that

a stronger maximum stress at the substrate decreases the polygon area, as indicated

by Eq. 3.7. Even for strong adhesion, shrinkage in the film will continue until P is

approximately the yield stress of the particle network.

For a random, close-packed particle network, the yield stress, Y , can be estimated

as [89]:

Y =
φMFmax

4πR2
, (3.11)

where φ is the volume fraction of particles, M is the coordination number, and R

is the particle radius (see Table 3.1). Fmax is the maximum force between particles.

For the initiation of primary cracks, the suspension is still saturated with liquid, so

we can assume that Fmax/R
2 can be simply estimated as the capillary pressure, γ/R.

Assuming typical values of the parameters from Table 3.1, Eq. 3.11 gives:

Y ∼ 0.27
γ

R
. (3.12)

This result is not surprising for a wet sample if the inter-particle adhesion in

the bulk liquid is small, i.e. the stress required to form a crack by pulling particles

apart is of order the capillary forces holding them together. To confirm this, we have

performed rheological measurements on cornstarch-water, CaCO3-water, and glass

beads-water suspensions with different volume fractions, and the results are shown

in Fig. 3.18. Although shear thickening is observed for larger volume fractions, the

maximum shear stress is smaller than γ/R [255], showing that capillary forces are

larger than any inter-particle force in the bulk liquid.

When a crack forms, we can assume that the boundary stress will be of the same
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Figure 3.18: Rheology measurements of particulate suspensions with different initial
volume fractions φi.

order as the yield stress, so that P ∼ Y . Plugging the values of E, γ, and R for the

large-scale cracks in cornstarch-water samples, and assuming κ ≈ 4, Eq. 3.7 yields

α ≈ 0.4 m2/3, which agrees well with dot-dashed blue line in Fig. 3.13. Given the

variability in the modulus E between different suspensions, we do not currently have

a way of collapsing all the data in Fig. 3.13 for the primary cracks. For wet samples,

the modulus will likely depend on the surface tension, particle size, the modulus of the

particles, the particle shape, and the inter-particle friction. Nevertheless, given this

large parameter space, the good agreement with Eq. 3.7 suggests that the polygonal

crack pattern can be quantitatively understood for a range of different particles and

liquids, provided some knowledge of the modulus and yield stress of the suspension.

The small-scale, secondary polygonal cracks of cornstarch-water suspensions can

be observed in both open petri dishes (Fig. 3.2) and thin chambers (Fig. 3.11). This

suggests that the formation of small-scale, secondary cracks does not sensitively de-

pend on the drying geometry, and that capillary interactions are not a dominant force,
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in contrast to the primary cracks. Thus, local particle adhesion likely determines the

yield stress of the material. As shown in Section 3.3.3, the cornstarch particles are

swollen with water, so we do not currently have a way to estimate this adhesion.

In addition, the factor of γ in the stress balance (Eq. 3.4) would be related to the

surface energies of the particle-particle adhesion [89]. Since Fmax ∝ γ for adhesive

forces, then α ∝ (γ/F 2
max)

2/3 ∝ 1/γ2/3. We can then conclude that this adhesion of

swollen particles must be stronger than capillary interactions since the prefactor is

smaller for small-scale cracks.

3.3.7 Effective film thickness for cracks in thick cornstarch-

water suspensions

In Fig. 3.13, we showed how the area of the small-scale, secondary polygons in

cornstarch-water suspensions saturated for large values of h (blue open circles). Here

we show that this saturation of Ap is set by the diffusion of the water vapor in the later

drying stage. The individual particles will remain swollen until their environment is

sufficiently dry. In an open particle network where evaporation is occurring from

above, water transport is initially limited by viscosity as the liquid is pulled through

the porous network according to Darcy’s law. As evaporation proceeds, eventually

the diffusion of water vapor through the top of the sample limits the transport. This

diffusion-limited transport is likely to set a boundary between wet and dry layers,

leading to an effective film thickness, L, as illustrated in Fig. 3.19.

It has been suggested that the water vapor content can be described by a nonlinear,
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dry

wet

Figure 3.19: The boundary between dry and wet layers during drying cornstarch-
water suspensions is set by the diffusion of water vapor, as indicated by the red
arrows in thick films. L represents the characteristic length scale of the dry layer, i.e.,
the effective film thickness, and φw(z) is the water volume fraction along the vertical
direction z.

one-dimensional effective diffusion equation [235, 236]:

∂φw
∂t

=
∂

∂z

[
D(φw)

∂φw
∂z

]
, (3.13)

where φw = φw(z, t) is the spatio-temporal variation of the local volume fraction of

water content, and D(φw) is local diffusivity of the water vapor, and can be expressed

as [236, 256]:

D(φw) =

(∫ z

h

∂φw
∂t

dz′
)/(

∂φw
∂z

)
, (3.14)

where 0 ≤ z ≤ h, assuming a no-flux boundary condition at the lower boundary

z = h. With Eq. 3.14, Goehring et al. [236] measured an average D(φw) ∼ 10−9

m2/s with φw ranging from 0.1 – 0.3 g/cm3. A similar value has also been reported

by Müller [232]. In our experiment the characteristic time scale for the formation

of secondary cracks in petri dishes is T ∼ 24 h, thus the characteristic length scale

of the dry layer L can be estimated as L ∼
√
TD ∼ 1 cm, which shows excellent

agreement with the saturation thickness for small-scale cracks shown in Fig. 3.13. It

should be noted that in our experiment, the cornstarch-water suspensions were dried
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under room temperature without introducing extra heat, so that D(φw) should be a

bit smaller than 10−9 m2/s.

3.4 Summary and outlook

In summary, we experimentally investigated polygonal crack patterns in desic-

cated, particulate suspensions composed of various liquid and particle combinations.

The thicknesses of the films ranged from h = 10 µm to 4 cm. There are two major re-

sults of this work. First, the appearance of multiple, distinct length scales associated

with cracks results from distinct shrinkage mechanisms during the drying process.

Whereas larger, capillary-induced crack patterns occurred in many of the liquid-

particle combinations, such multiscale crack patterns only appeared in dried suspen-

sions of cornstarch and water due to deswelling of the hygroscopic starch particles.

As Fig. 3.1 shows, similar multiscale crack patterns can be observed in meter-scale,

planetary terrain. This finding alone may help interpret geomorphological history

from surface images, even though knowledge of the relevant material properties may

not be known.

Second, the characteristic area of the polygons, for all observed cracks, is consistent

with a power law scaling: Ap = αh4/3, where the prefactor is determined by a balance

of surface energy (γ), film modulus (E), and boundary stress (P ): α ∼ (2κγE/P 2)2/3

[229]. The values of these parameters depend on the dominant particle-particle inter-

action forces at play during the initiation of cracking. By quantifying the modulus

and equating P with the yield stress, we are able to quantitatively predict α for pri-

mary cracks. We note that although this scaling law is consistent with some previous
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predictions [224], other authors have reported a quadratic relationship between Ap

and h [225–228]. However, nearly all experimental studies report less than one order

of magnitude in thickness variation. In our analysis, we have assumed that for small

strains, our films can be considered homogeneous, elastic materials, and it is possible

that effects such as Brownian motion, particle density fluctuations, or sticky parti-

cle interactions may explain differences observed in the literature for crack spacing

and polygon area. We leave this hypothesis to future studies of other materials with

different particle interactions.

Although our experiments are limited to laboratory scales, the scaling law, Ap ∝

h4/3 reproduces reasonable values for polygon areas on larger scales. For example, if

we assume that polygonal cracks commonly observed in wet mud with R ≈ 60 µm

are mainly due to capillary pressure during drying, and a typical modulus of 5 MPa

[253, 254], then Eqs. 3.7, 3.8, 3.11, and 3.12 give
√
Ap ≈ 1 m for a crack depth of

h ≈ 20 cm. For polygonal crack patterns on much larger scales, such as those show

in Fig. 3.1b, we note that the polygon area may saturate due to heterogeneity in

the material properties with depth. In this case it is likely that the modulus of the

material is much larger, or that the stress induced during shrinkage is much smaller,

in order to produce very large polygon areas. In addition, in the scaling, the boundary

stress applied by the substrate requires more detailed characterizations for substrates

with diverse conditions for various particle-liquid combinations, and we leave these

interesting points for our future studies.

It is expected that the scaling law we found in the laboratory experiments can

enhance our general understanding of how nonequilibrium dynamics give rise to crack
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patterns that we encounter in our daily lives, and it could also provide a novel route

for predicting the history and material properties of particular lands (e.g., Fig. 3.1b)

by simply analyzing the images.



Chapter 4

Sedimentation of non-Brownian

particles

4.1 Introduction

In Chapters 2 and 3, I discussed pattern formation driven by hydrodynamic and

mechanical instabilities in fluid and granular systems, respectively. In addition, when

solid particles are immersed in liquid, they are prone to gravitational settling in the

liquid as long as the density of the particle is greater than that of the liquid. This sed-

imentation process gives rise to a larger number of intriguing natural structures, and

is still a main research focus in fundamental fluid mechanics, mechanical, chemical,

and biological engineering. In this chapter, I will report some experimental results on

the dynamics of sedimentation of non-Brownian particles and the resulting pattern

formation driven by such dynamics.

Sedimentation is a ubiquitous and crucial process both in nature and industry,

102
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for instance the accumulation of geological deposits [257] (e.g., the structure shown

in Fig. 1.5), the separation of particles with different sizes or densities [258], and

water treatment [259]. Driven by its importance, sedimentation has been extensively

investigated and considerable progress has been made, however it is still far from

being well understood [93–96, 104, 109, 110, 260, 261]. The difficulty in understanding

sedimentation stems from the long-range, many-body hydrodynamic nature of particle

interactions as mentioned in Section 1.4, which usually leads to problems that are

difficult to solve mathematically.

Despite the complexity of sedimentation, some well-known results have been suc-

cessfully proposed and experimentally verified. For instance, the settling velocity of

a cloud of particles will always be faster than that of a single particle, which is due to

cooperative effect of hydrodynamic interactions between particles [100, 262]. One of

the vital conflicting problems in sedimentation is particle density and velocity fluctu-

ations during sedimentation, which are likely related to the particle volume fraction,

system size, side wall effect and inertia [102, 103, 109, 263]. In addition, the density

nonuniformity also plays a key role in the upward swimming for the microorganisms

with a heavy bottom [264–272]. The basic principle behind this particular locomo-

tion is that the net effect of the competing gravitational and hydrodynamic torques

exerted on the microorganisms generates an upward motion while swimming [268].

The dynamics of sedimentation are also strongly dependent on the geometry of

the sedimenting objects [273]. For example, a pair of disk-like or semi-spherical parti-

cles exhibit periodic orbits [106, 112], and usually non-spherical particles are subject

to complicated settling dynamics due the coupling between the translational and
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(a) (b)

Figure 4.1: Response to fluid disturbance for particles with different mass distribu-
tions. The spherical particles with uniform density distributions (i.e., particle center
of mass coincides with the geometry center) respond isotropically to the flow distur-
bance generated by the density fluctuations, leading to the cancellation of influx and
outflux, and the velocity of spherical particles aligns with the fluid flow as indicated
by the black arrows in (a). (b) Shows responses of prolate particles whose center
of mass (red spot) is different from the geometry center. Due to the imbalance of
hydrodynamic and gravitational torques, the particles respond anitropically to the
flow disturbance generated by multiple particles, leading to a net lateral motion as
indicated by the black arrows in (b). This figure is reproduced with permission from
Goldfriend et al., [98], copyright (2017) by the American Physical Society.

orientational degrees of freedom even for a pair of particles [274, 275], and the sedi-

mentation dynamics for many-particle systems are even more complicated as shown

in Refs. [262, 276]. In what follows, I will show that symmetric rod-like particles

with uniform density align with the fluid flow during sedimentation. Generally, for a

rigid object moving in a fluid, the velocity U at position r can be written as:

U = U s + ωs × r, (4.1)

where U s is the translation velocity and ωs is angular velocity.

For a particle sedimenting in a fluid, the fluid stress field will generate a hydro-
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dynamic force F and a hydrodynamic torque T :

F =

∫
Sp

σ · ndS, (4.2)

T =

∫
Sp

r× σ · ndS, (4.3)

where σ is the fluid stress tensor, and can be expressed as:

σij = −pδij + τviscous = −pδij + 2ηεij, (4.4)

where η is the fluid dynamic viscosity, τviscous is the viscous stress tensor, p is the

absolute pressure which is defined as p = (−1/3)σii, δij is the Kronecker delta function

such that δij = 1 if i = j, otherwise δij = 0, εij is the strain rate tensor and can be

expressed in a matrix form in a coordinate system with the axes of 1, 2 and 3 as:

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 . (4.5)

Since εij is generally symmetric, there is εij = εji. For any material undergoing

displacement, the strain rate tensor is related to velocity gradient:

εij = εji =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4.6)

where u is the velocity and x is the direction.

In Eqs. 4.2 and 4.3, n is the outward unit vector normal to the particle surface,

and Sp denotes particle surface. In particular, for a spherical particle with radius a

in a uniform flow stream U∞, there is F = 6πηaU∞ (see Eq. 1.8), which is Stokes

drag force [277], and for the same particle in a rotational flow with angular velocity

ω∞ × r there is T = 8πηa3ω∞.
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Assuming a no-slip boundary condition, the relationship between the object ve-

locity, hydrodynamic force F and torque T exerted on the object can be expressed

in a matrix form [273, 278]:

U s

ωs

 =

µt µtr

µrt µr


F
T

 , (4.7)

where the tensors µt and µr are the translation and rotation mobility tensors, respec-

tively, and µtr and µrt are the coupling tensors between the translation and rotation

motions. By dimensional analysis we can easily arrive [µt] ∼ (ηL)−1, [µr] ∼ (ηL3)−1,

and [µtr] ∼ (ηL2)−1, where L is the characteristic length scale and η is fluid dy-

namic viscosity. More specifically, for symmetric objects the mobility tensors can be

diagonalized, i.e., µtr = µrt = 0, thus for symmetric rod-like objects we have [100]:

µt = (ηL)−1


µ⊥ 0 0

0 µ⊥ 0

0 0 µ‖

 , (4.8)

where the dimensionless quantities µ⊥ and µ‖ represent perpendicular and parallel

mobility constants, respectively, and the values of µ⊥ and µ‖ depend on the geometry

of the particle, and for long rod-like object they obey µ‖ ' 2µ⊥, meaning that an

rod-like object with a horizontal orientation moves about twice as fast as an identical

object with a vertical orientation. Therefore, the angle β between the symmetric axis

of the rod-like object and the object velocity can be expressed as [26]:

tan β =
U⊥
U‖

=
µ⊥mg cos θ

µ‖mg sin θ
' tan θ

2
, (4.9)

where θ is the angle between the symmetric axis of the object and the vertical direction



Chapter 4: Sedimentation of non-Brownian particles 107

Figure 4.2: Sketch of the sedimentation of a rod-like object.

as schematically shown in Fig. 4.2. This means for a rod-like object sedimenting in a

viscous fluid with the velocity of Ustokes will always remain initial orientation, i.e., θ

is constant, which is consistent with the predictions in Refs. [101, 279]

Recently a theoretical study by Goldfriend et al. [98] showed that particle density

distributions can strongly influence the velocity and density fluctuations, and in some

certain regimes particles with nonuniform density distribution are expected to sup-

press velocity and density fluctuations. Figure 4.1 sketches that the coupling between

the density distribution and the translational and rotational motion of the settling

particles can lead to distinct sedimentation dynamics. Due to spherical symmetry,

the spherical particles with uniform density isotropically respond to the flow distur-

bance generated by multiple particles, leading to the mutual cancellation of influx

and outflux of the particles, and the velocity of spherical particles align with the fluid

flow as indicated by the black arrows in Fig. 4.1a. In contrast, the prolate particles

with the center of mass (red spots in Fig. 4.1b) different from the geometry center will

respond anistropically to the flow disturbance due to the competition between the
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hydrodynamic and gravitational torques. Consequently, this will create a net outflux,

i.e., lateral motion, of particles as illustrated in Fig. 4.1b.

This theoretical analysis is based on linear stability analysis, in which the authors

assumed a velocity fluctuations along the horizontal direction, and this results in an

imbalance between hydrodynamic and gravitational torques. For spherical particles as

shown in Fig. 4.1a, this torque imbalance simply contributes to the rotational motion

of the particles. However, surprisingly the prolate particles with nonuniform density

distributions as shown in Fig. 4.1b are predicted to undergo a lateral motion driven

by the anistropic response to the flow disturbance, which strongly depends on the

orientation and geometry of the particles. The detailed derivation for differentiated

responses to the flow disturbance of the particles with different density distributions

and geometries is shown in Ref. [98]. It should noticed that the linear stability

analysis in Ref. [98] is only restricted to fluctuations in the horizontal direction,

while in what follows we show experimentally that the mechanisms shown in Fig. 4.1

also apply when the particles are moving in three dimensions.

As stated above, it is of vital significance to understand and control sedimentation

both for the sake of fundamental curiosity (e.g., many-body physics) and practical

applications (e.g., manipulation of particulate films with uniform density and homo-

geneities, understanding large-scale geologic sedimentation pattern). The theoretical

ideas by varying the particle density distribution as shown in Fig. 4.1 [98] is a one way

to realize that. For this purpose, we experimentally investigated the settling dynamics

of non-Brownian particles with different density distributions at low-Reynolds num-

bers (10−3) in quasi-two-dimensional (quasi-2D) and three-dimensional (3D) space.
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The particles are composed of equal-sized aluminum and steel balls glued together in

various configurations. In the experiment, we observed that particles with uniform

and nonuniform density distributions respond differently during sedimentation. A

single doublet made of equal-sized aluminum and steel balls aligns with gravity, in

contrast to a doublet made of two aluminum balls, which aligns with the fluid flow.

For a pair of identical particles made of equal-sized aluminum and steel balls, we ob-

served an effective repulsion between particles during sedimentation in both two-body

and many-body systems, however, the particles made of identical balls show variable

settling dynamics. In addition, for three or more pairs of particles, more complex

dynamics were observed that are likely due to the many-body hydrodynamic nature,

yet repulsion between the particles with nonuniform densities still played a key role.

It is expected that density-distribution-dependent sedimentation can provide a novel

tunable route towards the control of uniformity of particulate films after sedimenta-

tion, although more work is needed to fully characterize the particle dynamics and

interactions.

4.2 Experimental setup

In the experiment, we used equal-sized (diameter d ≈ 2 mm) aluminum (Al) and

steel (St) balls with densities of 8× 103 kg/m3 and 2.8× 103 kg/m3, respectively. In

order to prepare particles with various density distributions, we glued three different

types of particle doublets, namely Al-St, Al-Al, and St-St. We used silicone oils with

viscosity of 1000 cSt and 10000 cSt, respectively as fluid for sedimentation. Transpar-

ent acrylic sheets and blocks were used to construct quasi-two-dimensional (quasi-2D)
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silicone oil

Figure 4.3: Sketch of the quasi-2D chamber for sedimentation. The prepared particles
are placed in the holes located on the top of the chamber and the holes have the same
diameter which is slightly larger than the diameter of Al or St balls as indicated by the
dashed black lines. The gate (green lines) is then manually opened to let the particles
sediment. The dimension of the 2D chamber is approximately 15 cm (length) × 19
cm (height) × 0.3 cm (thickness).

and three dimensional (3D) chambers as shown in Figs. 4.3 and 4.4, respectively. For

sedimentation in quasi-2D chambers, a USB 3.0 digital video camera (Point Grey)

connected to a macro lens was used to image the sedimentation behavior from the

front, whereas for the sedimentation in 3D chambers, the camera was held from the

top to image the sedimentation pattern of particles. Some recorded images were en-

hanced using NIH ImageJ software for better visualization. The software Trackpy

(an open source Python tracking software) was used to track down the trajectories

of particles for the experiment in 2D chambers, and the particle diameter (≈ 2 mm)

corresponds to 24 pixels in the images.

Given the size of the particles and the viscosity of silicone oil, the Reynolds number

as defined in Chapter 2 is calculated to be 10−3 < Re < 10−2, suggesting that
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silicone oil

flip

sediment

Figure 4.4: Sketch of the 3D chamber for sedimentation. The particles were initially
placed inside the 3D chamber, and silicone oil was poured into the chamber which
was sealed later to make sure no bubbles exist in the chamber. Then the chamber
was flipped to let particles start settling under gravity. The area fraction of particle
put inside the chamber is ≈ 0.3. The dimension of the 3D chamber is approximately
13 cm (diameter) × 23 cm (height).

inertial effects can be ignored. The Péclet number is defined as Pe = aU
D

, which

characterizes the relative importance of advective effects to Brownian motion where

U is the characteristic velocity (i.e., Ustokes), a is the particle radius, and D is the

diffusion coefficient given by D = kBT
6πηa

, where kB is the Boltzmann’s constant, and η

as fluid dynamic viscosity. Since the particles used in the experiment are milimeter-

scale, we can estimate Pe ∼ 1012, suggesting that the particle motion was purely

determined by hydrodynamics.

4.3 Results and discussion

4.3.1 Effect of density distribution on sedimentation

We first test the settling dynamics of single particles with uniform and nonuniform

density distributions in a 3D chamber. We used single particles of Al-Al and Al-St
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in 3D chambers for sedimentation, and then tracked the settling dynamics of the

particles.

Figures 4.5a and 4.5b show the images of a single Al-St and Al-Al particle at a

certain moment during sedimentation, respectively. In the sedimentation of a single

Al-St particle, the heavier part was initially pointed upwards and lighter part down-

wards. After releasing the particle, the heavier part will induce a torque in order to

lower the center of mass, leading the particle to flip. Afterwards, the Al-St particle

will align with the external force, i.e., gravity. This process is confirmed by charac-

terizing the variations of angle (θ) between the vertical direction and the symmetric

axis with respect to time as shown in Fig. 4.5c. In contrast to the settling dynamics

of Al-St particle, during sedimentation the single Al-Al particle does not align with

gravity but rather aligns with the fluid flow. This means that the angle θ will remain

the same as the initial angle during sedimentation as indicated by Eq. 4.9. The vari-

ation of θ with time is plotted in Fig. 4.5d, in which fluctuations in θ is likely due to

noise and anomalous disturbances in the fluid, however, the average value of θ almost

remains constant (≈ π/8), and generally this angle depends on the initial conditions

of the sedimentation. Note that the trajectories shown in Figs. 4.5c and 4.5d repre-

sent the variation of the angle between the geometry center axis of the doublet and

the vertical direction as indicated in the inset of Fig. 4.5c.
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(c)

(d)

(a) (b)

Figure 4.5: Sedimentation of particles with different density distributions. (a) and
(b) show the images of a single Al-St and Al-Al particles during sedimentation in
silicone oil with viscosity of 10000 cSt and 1000 cSt, respectively. (c) and (d) show the
variation of angle (θ) between the geometry center axis and the vertical direction with
respect to time during the sedimentation of the particles in (a) and (b), respectively.
The inset of (c) shows the definition of θ.
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(a) (b)

(d)

(c)

Figure 4.6: Sedimentation of two Al-St particles in a quasi-2D chamber. (a), (b) and
(c) show images of two Al-St particles during sedimentation at different times. (d)
shows the trajectories of the particles during sedimentation for three different trials.
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(a) (b)

(d)

(c)

Figure 4.7: Sedimentation of two Al-Al particles in a quasi-2D chamber. (a), (b) and
(c) show images of two Al-Al particles during sedimentation at different times. (d)
shows the trajectories of the particles during sedimentation for two different trials.



Chapter 4: Sedimentation of non-Brownian particles 116

(a) (b)

(c) (d)

Figure 4.8: Sedimentation of many particles in a quasi-2D chamber. (a) and (b)
show the images of many St-St particles and Al-St particles at a certain moment
during sedimentation, respectively. (c) and (d) show the trajectories of the particles
in (a) and (b) during sedimentation, respectively. In (c) and (d) each particle has
two trajectories with the same color, corresponding to the two balls that compose the
doublet, the trajectories of different particles are plotted in different colors.

4.3.2 Sedimentation of multiple particles in quasi two dimen-

sions

We also systematically investigated the sedimentation of multiple particles with

different density distributions in quasi-2D chambers. Figures 4.6a to 4.6c show the
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images of two identical Al-St particles during sedimentation at different times, which

clearly indicate that the separation between the particles increases as sedimentation

proceeds. This trend can be confirmed by tracking the trajectories of the particles

during sedimentation, and it holds true for different trials as indicated in Fig. 4.6d.

Note that the trajectories with the same color in Fig. 4.6c two doublet particles in

the same trial. In addition, the increase of separation between particles suggests that

there is an effective repulsion between particles, which agrees with the mechanism

shown in Fig. 4.1b.

For comparison, we also investigated the sedimentation of two identical Al-Al

particles. Figures 4.7a to 4.7c show the images of two identical Al-Al particles during

sedimentation at different times, in which it is clearly seen that the orientations of each

particle and separation between the two particles are more irregular and complicated

than that of Al-St particles shown in Fig. 4.6. Figure 4.7c shows the trajectories

of the particles for two different trials, we can see that the particles’ trajectories

often overlap though they pass the overlapping point at different times. In addition,

we also occasionally observed flipping of Al-St particles during sedimentation of two

such particles. Although there are only two bodies, the complicated dynamics of the

sedimentation of two Al-Al particles are likely due to the non-spherical geometry.

Next we investigated the settling dynamics of many particles with different density

distributions in quasi-2D chambers. Figures 4.8a and 4.8b show the images of 29 St-St

and Al-St at given times during sedimentation in a quasi-2D chamber, respectively.

It is apparent that both the spacing and orientation of the St-St particles are more

irregular than that of Al-St particles. This property can also be confirmed by Figs.
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Figure 4.9: Probability density function (PDF) of particle spacing for sedimentation
of many Al-Al particles and Al-St particles in a quasi-2D chamber.

4.8c and 4.8d, which show the sedimentation trajectories of particles in Figs. 4.8a and

4.8b, respectively.

In order to quantity the interactions between particles during sedimentation as

shown in Figs. 4.8a and 4.8b, we investigated the statistics of the particle spacing.

Figure 4.9 shows the probability density function (PDF) of particle spacing for the

sedimentation shown in Figs. 4.8a and 4.8b. The distributions shown in Fig. 4.9 are

essentially the pair correlation function in one dimension. It is also clear that the

distribution decays to zero at the particle spacing of ≈ 14 cm, which is simply due

to the finite size of the experimental system. In other words, if the system size was

infinite, the distribution will eventually saturate to a certain non-zero value, typically

normalized to unity.
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As shown in Fig. 4.9, the main difference between Al-Al particles and Al-St par-

ticles is that at a given small particle spacing (≈ 0.4 cm), the probability of finding

another St-St particle (blue curve) is higher than that of Al-St particle (nearly zero,

red curve). The distinct behaviors essentially suggest that there is an effective repul-

sion between Al-St particles during sedimentation, which is absent in St-St particles.

Therefore, the results shown in Fig. 4.9 validate the mechanisms shown in Fig. 4.1 de-

spite the many-body nature of the system. It should also be noted that the statistics

shown in Fig. 4.9 are based on the average of five trials for both particle configurations.

4.3.3 Sedimentation of multiple particles in three dimensions

Given the distinct sedimentation statistics for Al-Al and Al-St particles in quasi-

2D chambers as shown in Fig. 4.9, we extended our experiment to three dimensions

as illustrated in Fig. 4.4, which is more similar to real-world situations. In the ex-

periment, we prepared the same number of pairs of Al-Al and Al-St particles, and

deposited the particles into two separate 3D chambers (see Section 4.2 for experimen-

tal details), then we investigated particle spatial distributions on the bottom of the

chamber after sedimentation..

For the sedimentation of multiple particles in 3D, clusters of particle obstruct

the view and make tracking all particle impossible. Therefore, we took images of

the sedimentation pattern on the bottom of the chamber. We performed more than

100 trials for the sedimentation of Al-Al and At-St particles, respectively, and some

typical images are shown in Figures 4.10 and 4.11. By simple comparison, we can

conclude that the average density of Al-St particles is smaller than that of Al-Al
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(a) (b) (c)

(d) (e) (f)

3 cm

Figure 4.10: Images of the sedimentation pattern of Al-Al particles in 3D. The images
are enhanced for better visualization, and the scale bar applies to all images. In the
images the particle diameter (≈ 2 mm) corresponds to 20 pixels.

particles.

In order to quantify the average density of the particle layer after sedimentation,

we plot the probability density function (PDF) of the particle position in the radial

direction, as shown in Fig. 4.12a, in which integral of the distribution is normalized

to unity. It is apparent in Fig. 4.12a that the distribution curve for Al-St particles

is more stretched than that of Al-Al particles, meaning that the cluster size of Al-St

particles is larger than that of Al-Al particle clusters, which can also be confirmed by

Figs. 4.12b and 4.12c. It should be noted that each distribution curve shown in Fig.

4.12a is based on 10 separate images, and the shaded area for each curve represents the
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(a)

3 cm

(b) (c)

(d) (e) (f)

Figure 4.11: Images of the sedimentation pattern of Al-St particles in 3D. The images
are enhanced for better visualization, and the scale bar applies to all images. In the
images the particle diameter (≈ 2 mm) corresponds to 20 pixels. Note that the
number of particles in each image here is the same as that shown in Fig. 4.10.

standard deviation for 10 images, and the distinction between the distribution curves

of Al-St and Al-Al particle clusters is pretty obvious. The larger cluster size of Al-

St particles is due to the hydrodynamic repulsion interaction between the particles,

which agrees with the theoretical prediction shown in Fig. 4.1, though the theory

is formulated in 2D [98]. The tendency of Al-Al particles to form smaller clusters

suggests that the particles are unstable to density fluctuations, and consequently the

cluster of Al-St particles is more uniform than that of Al-Al particles (see Figs. 4.12b

and 4.12c), which agrees with experimental, theoretical and numerical studies on the
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(a) (b)

(c)

Figure 4.12: (a) Probability density function (PDF) of particle cluster size in the
radial direction for the sedimentation pattern of particles in 3D, the shaded part for
each curve represents the standard deviations for multiple images. (b) and (c) show
the typical images of particle cluster of Al-Al and Al-St particles in 3D, respectively.

sedimentation of non-spherical particles in dilute suspensions [95, 260, 262, 280–283].

4.4 Summary and outlook

In summary, we experimentally investigated sedimentation of particles with differ-

ent density distribution in quasi-2D and 3D. For the sedimentation of a single particle

with uniform density distribution, the particle aligns with the fluid flow, whereas a

single particle with nonuniform density distribution aligns with gravity. In quasi-2D

chambers, we observed an effective repulsion during sedimentation of a pair of dou-

blets with nonuniform density distribution. In contrast, the sedimentation dynamics

of a pair of doublets with uniform density distribution are more complex, we did
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Figure 4.13: Theoretical prediction of the effect of geometry and density distribution
of particles on the sedimentation dynamics based on linear stability analysis. The
vertical axis ξ represents the response parameter of the particle to the fluid flow, and
the horizontal axis k represents the aspect ratio of the particle. The inset sketches the
geometry and the density distribution of the particle, in which the red spot denotes
the center of mass of the particle, the parameter χ characterizes how the center of
mass is off-centered from the geometry center. The three curves show the predictions
for three different values of χ, in which k > 1 corresponds to prolate particles, and
repulsion can always be observed, k = 1 corresponds to spherical particles and there
will be no repulsion as shown in Fig. 4.1a, k < 1 corresponds to oblate particles and
the response of the particles to the flow disturbance is unstable, thus no repulsion
between particles can be observed. This figure is reproduced with permission from
Ref. [98], copyright (2017) by the American Physical Society.

not observe an repulsion between such particles and we occasional observed flipping

during sedimentation. In addition, we found that the repulsion still plays a key role

in the sedimentation of many particles with nonuniform density distributions, which

is confirmed by the probability density function of particle spacing shown in Figure

4.9.
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For the experiment in 3D, we quantified the uniformity of the final sedimented

layer of particles, and found that the particles with nonuniform mass density form

layers of lower number density when compared to particles with uniform mass density

as indicated in Figs. 4.10, 4.11 and 4.12. This suggests that the repulsion between

particles with nonuniform density distribution still plays a role in 3D scenario. Our

experimental results on the sedimentation of particles with different density distribu-

tions in 2D system validate the main predictions by Goldfriend et al. [98]. Moreover,

the theoretical analysis in Ref. [98] is restricted in 2D, whereas our results in 3D

chambers also show that those mechanisms also apply to 3D. We expect our exper-

imental results on the density-distribution-dependent sedimentation dynamics could

provide a novel tunable route towards self-assembly and controlling the uniformity of

particulate films after sedimentation.

The future direction in this project is to vary the geometry and density distribu-

tion of the particles. Figure 4.13 shows the phase diagram for the effective response

parameter ξ with respect to the aspect ratio of the particle κ based on linear sta-

bility analysis [98]. Theoretically, when ξ > 0, the density fluctuation of particles

will be suppressed, which is driven by the effective repulsion between particles with

nonuniform density distributions or the self-alignability of particles. Whereas for the

scenario of ξ < 0, there is no suppression of density fluctuation and the uniform

suspension becomes unstable to density fluctuations, which in turn means that no

effective repulsion should be observed between particles with κ < 1 during sedimen-

tation. For spherical particles, κ = 1, and the theory becomes invalid to predict the

stability of the suspension. In addition, it is also interesting to investigate the effect
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of system size on the dynamics of sedimentation, which is still controversial hitherto

[103, 109, 263, 284, 285], and we leave these open questions for future research.
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Summary

During my Ph.D. research activities, I experimentally investigated the nonequilib-

rium dynamics of pattern formation by studying a few laboratory-accessible examples

in fluid and granular systems. I primarily focused on the formation of diverse spatial

patterns in different experiments, and the mechanisms we uncover represent distinct

pattern formation phenomena with different physics. This is perhaps not surprising

since they are all nonequilibrium in nature. Although the nonequilibrium dynamics

that give rise to patterns in real world can be rather complicated given the complex

environment they are located in, we expect our findings to enhance our understanding

of how nonequilibrium dynamics determine tremendous groups of patterns in nature.

In this thesis, I particularly reported three stories about spatial pattern forma-

tion under nonequilibrium conditions, and the main conclusions in each story are

summarized as follows:

126
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•Oscillations of Leidenfrost drops

In fluid dynamics, most interesting and intriguing patterns are driven by multiphase-

interaction-induced instabilities, such as the examples shown in Fig. 1.2. Leidenfrost

drops are known to form star-shaped oscillations, however, the complicated interplay

between the solid, liquid and vapor phases as well as the highly nonequilibrium mass

and heat transfer in Leidenfrost phenomenon has made the underlying mechanism for

the star-shaped oscillatory pattern remain unclear. In the experiment, by focusing

on the star-shaped oscillation frequency of Leidenfrost drops and pressure variations

in the sustaining vapor layer, we found that the star-shaped oscillations are paramet-

rically driven by the pressure in the vapor layer. We furthermore assumed that the

pressure variations in the vapor are induced by the capillary waves underneath the

drop, which was confirmed by imaging the bottom surface of the drop. The capil-

lary waves with characteristic wavelength are generated by a large shear stress at the

liquid-vapor interface due to the rapid flow of evaporated vapor, and travel form the

drop center to the edge. This leads to the local variations of vapor film thickness,

which generates the pressure variations in the vapor. Therefore, we conclude that hy-

drodynamic coupling between drop interface and vapor flow leads to the star-shaped

oscillations of Leidenforst drops. We also explored potential effects of thermal convec-

tion in the liquid, and found it plays a minor role in Leidenfrost drop oscillations. In

addition to the study of the star-shaped oscillations found in large Leidenfrost drops,

we also gave an analytical explanation for the small-amplitude axisymmetric oscil-

lations (breathing mode) observed in small Leidenforst drops by a simple balance of

gravitational and surface tension forces. We expect the nonequilibrium dynamics we
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uncover behind the patterned oscillations in both large and small Leidenfrost drops

are of help to understand the coupling dynamics in systems with a supporting gas

layer contacting a liquid interface and a solid surface.

•Polygonal desiccation crack patterns

Polygonal desiccation crack patterns are commonly observed in nature, and they

span multiple orders of magnitude in length scale. The formation and selection of

crack patterns strongly depend on nonequilibrium multiphase interactions between

fluid and solid particles as well as the drying kinetics (see Fig. 1.4). To date, there

is still an outstanding question that whether crack patterns on different length scales

share similar dynamics. To answer this question, in the experiment we dried particu-

late suspensions composed of various liquid and particle combinations, and found that

large-scale polygonal cracks occurred in many liquid-particle combinations are driven

by the shrinkage of the particulate films (capillary-induced), whereas in cornstarch-

water suspensions we found that deswelling of the hygroscopic starch particles leads

to hierarchical polygonal crack patterns. In addition, we found a universal power

law relating polygonal crack area, film thickness, film modulus and boundary stress

for multiscale polygonal crack patterns, which can help interpret geomorphological

history from surface images without knowing the material property and enable to

manipulate crack patterns for specific purposes. Therefore, the nonequilibrium dy-

namics for the formation of multiscale polygonal crack patterns we uncover in the

laboratory experiment can serve as a framework for understanding polygonal crack

patterns from microscopic to geologic scales.
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•Sedimentation of non-Brownian particles

Sedimentation is a crucial process both in nature and industry, which is however

not well understood due to complex coupling between the particle orientation and

many-body, long-range hydrodynamic interactions. In the laboratory experiment,

I investigated the sedimentation dynamics of non-Brownian particles with different

density distributions. By focusing on the statistical properties of the spacial patterns

of particles during sedimentation (2D) and after sedimentation (3D), we observed an

effective repulsion between particles with nonuniform density distribution, in contrast

to particles with uniform density distribution. These results indeed highlight the im-

portant role of particle density distribution in determining the highly nonequilibrium

dynamic process of sedimentation, and can shed light into a novel pathway for large-

scale self-assembly of uniform particulate films by sedimentation, and furthermore

can enable to shape geomorphology manually as desired.

The underlying mechanisms we uncovered for the spatial pattern formation in the

above three laboratory experimental systems represent the typical examples about

how nonequilibrium dynamics give rise to pattern formation in fluid and granular

systems. Although realistically the situations for pattern formation are supposed to

be more complicated, our results in the limited experiment can help to model studies

on the nonequilibrium dynamics that more resemble the real situations of pattern

formation in nature.
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