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Abstract 

An Exposition of the Functional Equation for the Riemann Zeta Function  

and its Values at Integers 

By Jiaqi Guo 

This paper is an exposition of the development of the zeta function, as well as proving 

and deriving the essential elements which lead to the functional equation of the Riemann zeta 

function. We start from the historical background and motivation of defining the zeta function. 

As Euler first defined this function for the real numbers, he utilized it to prove that there exist 

infinitely many primes. In addition, a proof for ζ(2), the solution to Basel Problem, was also 

included in this paper. Then we move on to the Riemann zeta function and its analytic 

continuation on the whole complex plane. Finally, with an objective to evaluate the zeta 

function for all the positive even integers, we examine the Bernoulli numbers and their 

connection with the zeta function. 
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1 Introduction and Statement of the Formula

When it was first introduced, the zeta function was merely used to prove the in-

finitude of prime numbers. The argument of the function was defined first for real

numbers s. As Riemann later extended the function to complex variables, the Rie-

mann zeta function becomes a pivotal element in analytic number theory, especially

in proving the Prime Number Theorem. Over the past two centuries, the applications

of Riemann Zeta Function have extended to physics, probability theory, and applied

statistics.

1.1 Preliminary

In order to present the theorems and results, the following definitions are neces-

sary.

Definition 1.1.1. [Riemann] For complex number s with Re(s) > 1, the zeta function

is defined by

ζ(s) :=
1

1s
+

1

2s
+

1

3s
+ · · · =

∞∑
n=1

n−s

Definition 1.1.2. For complex s with s with Re(s) > 0, the Gamma function is

defined by

Γ(s) =

∫ ∞
0

e−tts−1dt

1.2 Formula

Using the previous two definitions, the functional equation for Riemann zeta func-

tion is expressed as following.

Theorem 1.2.1. [Functional Equation for ζ(s)] For all s ∈ C, we have that

π−
1
2
sζ(s)Γ

(
1

2
s

)
= π−

1
2

(1+s)Γ

[
1

2
(1− s)

]
ζ(1− s).
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The left hand side is often defined as the Λ-function. In other words, we have that

Λ(s) = π−
1
2
sζ(s)Γ

(
1

2
s

)
,

and so, the functional equation is more succinctly stated as Λ(s) = Λ(1− s).

2 Historical Background

While Euclid gave a proof for the infinitude of prime numbers in around 300 BC,

by using proof by contradiction. Mathematicians had no idea about how to quantify

this infinitude until Riemann’s famous Memoir on the ζ-function.

2.1 Zeta of the Real

When Leonhard Euler first introduced the zeta function, complex analysis did not

even come into being yet. Thus, in the first half of the eighteenth century, Euler only

defined the zeta function on the real numbers. However, this did not limit Euler’s

ability to utilize the zeta function taking only real arguments. The case of ζ(1) was

used efficiently to prove the infinitude of prime numbers, which will be shown in later

section. This also linked the zeta function to the prime numbers for the first time. In

addition, Euler also found the value of the ζ(2), which provides the solution to the

Basel problem. In addition, Euler determined the zeta function has rational values

at negative integers.

2.2 Riemann Zeta Function

If Euler gave birth to the zeta function, then Bernhard Riemann fully developed

the function using complex analysis. Without doubt, Riemann’s only paper in the

field of number theory, “On the Number of Primes Less Than a Given Magnitude,”
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published in 1859, is probably the most influential and fundamental work for the

zeta function. Not only did Riemann extend the Euler definition of the function to

a complex variable, but he also proved the analytical continuation of the function,

thereby obtaining a functional equation for the zeta function.

After studying the zeros of the zeta function extensively, Riemann proved that for

σ < 0 the function has trivial zeros at the points s = −2,−4,−6, · · · , and conjectured

that the infinitely many zeros that lie within the critical strip of 0 ≤ σ ≤ 1 are all

on the line of s = 1
2
. Here we use the assumption that s = σ + it, where σ, t ∈ R.

Finally, with the help of complex analysis, Riemann established a relation between

the zeros of the zeta function and the distribution of prime numbers.

3 Applications of the Zeta Function by Euler

Before introducing the Riemann zeta function and the details of deriving the

functional equation for the zeta function, we will take a look at two major applications

Euler used the zeta function that he defined for. Above all, he used the zeta function

defined for a real variable to rigorously prove the infinitude of prime numbers. Namely,

this is the major application of ζ(1). Secondly, the answer to the Basel Problem

happens to be exactly ζ(2). Euler first found the exact result to be π2

6
and provided

a solution to the problem at an age of twenty-eight. Proofs for these results will be

presented in this section.

3.1 Proof of the Infinitude of Prime Numbers

Theorem 3.1.1. [Euler] There exist infinitely many primes.

Proof. For s > 1, and let p be primes, then Euler’s identity states that

ζ(s) =
∏
p

(1− p−s)−1.

3



This is based on the fact that every natural number can be factorized into prime

numbers uniquely, according to the Fundamental Theorem of Arithmetic. Taking

logarithm on both sides of the equation, we obtain that

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

∞∑
n=1

(p−s)n

n
,

by using the Taylor series expansion.

As s→ 1, the zeta function becomes a harmonic series. Since harmonic series are

divergent, ζ(s)→∞, as s→ 1. Also, we have

∑
p

∞∑
n=1

(p−s)n

n
=
∑
p

p−s +
∑
p

∞∑
n=2

p−ns

n
.

For the second term, there is the inequality that

∑
p

∞∑
n=2

p−ns

n
<
∑
p

∞∑
n=2

p−n =
∑
p

[
∞∑
n=0

p−n − 1− p−1

]

=
∑
p

1

1− 1
p

− 1− 1

p

=
∑
p

1

p2 − p
< 1,

by using Taylor series expansion again. Applying integral test at the last step for the

series confirms that the term is less than 1.

However, as s→ 1, ζ(s)→∞, log ζ(s)→∞ as well. Thus, we have proved that

∑
p

p−s →∞, as s→ 1.

This proves the infinitude of primes, and further shows that the series of reciprocals

of primes diverges.

In other words, ζ(1) = ∞, which of course can be shown by using the integral

4



convergence test.

3.2 Basel Problem

The Basel Problem was first posed by Pietro Mengoli in 1644 and solved by Euler

in 1735. The problem asks for the precise summation of the reciprocals of the squares

of the natural numbers,

∞∑
n=1

1

n2
= lim

n→∞

(
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2

)
.

The series is approximately equal to 1.644934. The Basel problem asks for the exact

sum of this series and the proof. The problem is named after Basel, the Swiss town

where Euler was born and the home to the Bernoulli Family, for its effort in attacking

the problem. Presented below is an elementary proof due to Cauchy.

Theorem 3.2.1. [Cauchy]

ζ(2) =
π2

6
.

Proof. By De Moivre’s Theorem, we have

einx = cos(nx) + i sin(nx) = (cos x+ i sinx)n,

so that we get

cos(nx) + i sin(nx)

(sinx)n
=

(cosx+ i sinx)n

(sinx)n
=

(
cosx+ i sinx

sinx

)n
= (cotx+ i)n.

Using the Binomial Theorem, we can write

(cotx+ i)n =

(
n

0

)
cotn x+

(
n

1

)
(cotn−1 x)i+ · · ·+

(
n

n− 1

)
(cotx)in−1 +

(
n

n

)
in

=

[(
n

0

)
cotn x−

(
n

2

)
cotn−2 x± · · ·

]
+ i

[(
n

1

)
cotn−1 x−

(
n

3

)
cotn−3 x± · · ·

]
.
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Combining the two previous equations together, their imaginary parts must be the

same, i.e.

sin(nx)

(sinx)n
=

(
n

1

)
cotn−1 x−

(
n

3

)
cotn−3 x± · · · .

Based on this property, fix a positive integer m, set n = 2m + 1 and consider

xr = rπ
2m+1

for r = 1, 2, · · · ,m. Then naturally nxr is a multiple of π, which is a zero

for the sine function. Thus, we have

0 =

(
2m+ 1

1

)
cot2m xr−

(
2m+ 1

3

)
cot2m−2 xr+

(
2m+ 1

5

)
cot2m−4 xr±· · · (−1)m

(
2m+ 1

2m+ 1

)
,

for r = 1, 2, · · · ,m. On the interval of (0, π
2
), the values x1, x2, · · · , xm are distinct.

Since the function cot2 x is injective on this interval, the numbers tr = cot2 xr are

distinct for r = 1, 2, · · · ,m. In fact, these m numbers are the roots of the m-th degree

polynomial,

p(t) :=

(
2m+ 1

1

)
tm −

(
2m+ 1

3

)
tm−1 ± · · ·+ (−1)m

(
2m+ 1

2m+ 1

)
.

We know the sum of the roots has the relationship with the coefficients of the

polynomial,

cot2 x1 + cot2 x2 + · · ·+ cot2 xm =

(
2m+1

3

)(
2m+1

1

) =
2m(2m− 1)

6
.

Substituting this with the trigonometric identity csc2 x = cot2 x+ 1, we have

csc2 x1 + csc2 x2 + · · ·+ csc2 xm =

(
2m+1

3

)(
2m+1

1

) +m =
2m(2m+ 2)

6
.

Recalling the Taylor series representations of the cotangent and cosecant functions,

we can derive the inequality that cot2 x < 1
x2

< csc2 x. After substituting back
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xr = rπ
2m+1

and summing up the inequalities, we obtain

2m(2m− 1)

6
<

(
2m+ 1

π

)2

+

(
2m+ 1

2π

)2

+ · · ·+
(

2m+ 1

mπ

)2

<
2m(2m+ 2)

6
.

Thus, we have that

π2

6

(
2m

2m+ 1

)(
2m− 1

2m+ 1

)
<

1

12
+

1

22
+ · · ·+ 1

m2
<
π2

6

(
2m

2m+ 1

)(
2m+ 2

2m+ 1

)
.

As m approaches infinity, both the lower bound and the upper bound approach π2

6
.

Therefore,

ζ(2) =
∞∑
n=1

1

n2
= lim

m→∞

(
1

12
+

1

22
+ · · ·+ 1

m2

)
=
π2

6
.

4 Riemann Zeta Function

As we mentioned before, Riemann took the zeta function defined by Euler only

for the real variable to a domain of complex variable. In order to achieve this goal,

Riemann worked on the analytical continuation of the zeta function. The functional

equation for the zeta function is the key to this analytic continuation. To start from

scratch, we will need to understand the Gamma function and the Poisson Summation

Formula. Thus, this section will start the discussion with these two topics.

4.1 Gamma Function and its Properties

As defined previously, we have

Γ(s) =

∫ ∞
0

e−tts−1dt, s ∈ C, for Re(s) > 0.
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The Gamma function also has the property Γ(s+ 1) = sΓ(s). This can be shown by

using integration by parts,

Γ(s+ 1) =

∫ ∞
0

e−ttsdt = (−e−tts)|∞t=0 + s

∫ ∞
0

e−tts−1dt = sΓ(s).

Notice that the fact that Re(s) > 0 guarantees the term (−e−tts)|∞t=0 goes to zero.

This ensures the property Γ(s + 1) = sΓ(s) to be true. This is why we first define

Γ(s) for Re(s) > 0.

However, we want to take our Gamma function to the whole complex plane. This

then requires the analytic continuation. As we wish to extend the definition of our

Gamma function to the left half plane, we would like the nice property to hold as

well. Therefore, we begin by defining Γ(s) = Γ(s+1)
s

on the left half plane. We know

that Γ(1) = 1, simply by computing the integral. This can also be verified from a

probability prospective, using the Gamma distribution. The cumulative probability

of the Gamma distribution from zero to infinity has to equal to 1. However, according

to this recurrence relationship, lims→0 Γ(s) =∞. Therefore, Gamma function has an

asymptote at s = 0.

We now extend the function to the strip corresponding to (−1, 0), i.e. Re(s) ∈

(−1, 0). We define Γ(s) = Γ(s+1)
s

, for Re(s) ∈ (−1, 0). Firstly, Γ(s + 1) is analytic

for Re(s) ∈ (−1, 0), since s + 1 will be on the right half of the plane. Secondly, 1
s

is

also analytic for Re(s) ∈ (−1, 0). Thus, Γ(s) = Γ(s+1)
s

is analytic for Re(s) ∈ (−1, 0).

By doing so, we have extended the analyticity of the Gamma function to the region

Re(s) > −1. Similarly, the Gamma function also has an asymptote at s = −1, due

to its recurrence relationship to s = 0.

By continuing this process, we can extend the Gamma function to the whole

complex plane, with asymptotes at every non-positive integers. Furthermore, from

the recurrence relationship Γ(s) = Γ(s+1)
s

, we know that every non-positive integer is

8



in fact a simple pole. This gives us the meromorphic Gamma function, defined on

the whole complex plane.

4.2 From Gamma to Zeta Function

As we have now achieved the analytic continuation of the Gamma function, it

is then natural to try to relate it to the zeta function. In fact, with some careful

manipulation, we can see the two are closely related.

Starting from the classic definition of the Gamma function, we have

Γ

(
1

2
s

)
=

∫ ∞
0

e−tt
1
2
s−1dt,

for Re(s) > 0. Let t = n2πx, then dt = n2πdx, substituting this back into the

definition gives us,

Γ

(
1

2
s

)
= n2π

∫ ∞
0

e−n
2πx(n2πx)

1
2
s−1dx = nsπ

1
2
s

∫ ∞
0

e−n
2πxx

1
2
s−1dx.

Putting the two coefficients onto the other side,

Γ

(
1

2
s

)
π−

1
2
sn−s =

∫ ∞
0

e−n
2πxx

1
2
s−1dx.

For Re(s) > 1, we can sum up n from 1 to ∞,

∞∑
n=1

Γ

(
1

2
s

)
π−

1
2
sn−s =

∞∑
n=1

∫ ∞
0

e−n
2πxx

1
2
s−1dx.

Since ζ(s) is also only defined for Re(s) > 1 at this point, we can rewrite the left

hand side with ζ(s),

π−
1
2
sΓ

(
1

2
s

)
ζ(s) =

∫ ∞
0

x
1
2
s−1

∞∑
n=1

e−n
2πxdx. (4.2.1)

9



It is legitimate to inverse the order on the right hand side, since

∞∑
n=1

∫ ∞
0

e−n
2πxx

1
2
s−1dx

is convergent.

Define ω(x) =
∑∞

n=1 e
−n2πx, then (4.2.1) can be written as

π−
1
2
sΓ

(
1

2
s

)
ζ(s) =

∫ ∞
0

x
1
2
s−1ω(x)dx. (4.2.2)

4.3 Poisson’s Summation Formula

Before we derive further a functional equation for ω(x), we will have to derive

the transformation law for theta function first. In order to obtain that, we will need

Poisson’s Summation Formula as our starting point. Thus, we will first prove the

Poisson’s Summation Formula in this section.

Theorem 4.3.1. If f(x) is a real, continuous, and monotonic function, then

B∑
n=A

′f(n) =
∞∑

v=−∞

∫ B

A

f(x)e2πivxdx,

where
∑′

denotes that the end terms of the sum are replaced by 1
2
f(A) and 1

2
f(B).

The proof for this formula heavily involves the Fourier series expansion of a func-

tion. Thus, it is worthwhile to review the Fourier series expansion for a given function.

For a periodic function f(x), integrable on [0, 1], then

f(x) = lim
N→∞

[
a0

2
+

N∑
v=1

av cos(2πvx) + bv sin(2πvx)

]
,

av = 2

∫ 1

0

f(x) cos 2πvxdx, bv = 2

∫ 1

0

f(x) sin 2πvxdx.

10



This is the Fourier series of f(x).

Proof. We divide this proof into two cases. The first case is the simple one, where

A = 0 and B = 1. The second one is the general case.

Case 1: Since A = 0 and B = 1, then

B∑
n=A

′f(n) =
1

2
f(0) +

1

2
f(1).

Let f1(x) coincide with f(x) for 0 ≤ x < 1, and be a periodic function of period 1.

Thus, f1(x) has Fourier series representation,

1

2
a0 +

∞∑
v=1

(av cos 2πvx+ bv sin 2πvx),

av = 2

∫ 1

0

f(x) cos 2πvxdx, bv = 2

∫ 1

0

f(x) sin 2πvxdx.

If x is a continuous point, then this series converges to f1(x). However, if x is an

ordinary discontinuity, then this series converges to the mean of the left and right

limit of f1(x). It is easy to see that x = 0 is in fact an ordinary discontinuity of f1(x).

For x = 0, we have

lim
x→0−

f1(x) = f1(1) = f(1), and lim
x→0+

f1(x) = f1(0) = f(0).

Thus, this gives us

1

2
[f(1) + f(0)] =

1

2
a0 +

∞∑
v=1

av

=
1

2
a0 +

1

2

[
∞∑
v=1

av +
−1∑

v=−∞

av

]

=
∞∑

v=−∞

∫ 1

0

f(x) cos 2πvxdx.

11



This proves the basic case of A = 0 and B = 1.

Case 2: Let f1(x + n) coincide with f(x + n), for 0 ≤ x < 1, and n = A,A +

1, · · · , B − 1. Consider when n = A, let x = 0, we have

lim
x→0−

f1(x+ A) = f(1 + A), and lim
x→0+

f1(x+ A) = f(A).

The Fourier series representation is

1

2
a0 +

∞∑
v=1

[av cos 2πv(x+ A) + bv sin 2πv(x+ A)] ,

av = 2

∫ A+1

A

f(x) cos 2πvxdx, bv = 2

∫ A+1

A

f(x) sin 2πvxdx.

Again, x = 0 is an ordinary discontinuity. Thus, this gives us

1

2
[f(A+ 1) + f(A)] =

1

2
a0 +

∞∑
v=1

[av cos 2πvA+ bv sin 2πvA]

=
∞∑

v=−∞

∫ A+1

A

f(x) cos 2πvxdx.

Similarly, when n = A+ 1, we have

1

2
[f(A+ 2) + f(A+ 1)] =

∞∑
v=−∞

∫ A+2

A+1

f(x) cos 2πvxdx.

Continuing this process, when n = B − 1, we have

1

2
[f(B) + f(B − 1)] =

∞∑
v=−∞

∫ B

B−1

f(x) cos 2πvxdx.

Therefore, combining all these terms together, we obtain the desired result that

1

2
f(A) + f(A+ 1) + · · ·+ f(B − 1) +

1

2
f(B) =

B∑
n=A

′f(n) =
∞∑

v=−∞

∫ B

A

f(x)e2πivxdx.

12



4.4 Transformation Law for Theta Function

Definition 4.4.1. [Jacobi] Define functions ω(x) and θ(x) by

ω(x) =
∞∑
n=1

e−n
2πx, and θ(x) =

∞∑
n=−∞

e−n
2πx.

Naturally, one can see the relationship between ω(x) and θ(x) as

2ω(x) = θ(x)− 1.

Theorem 4.4.1. [Transformation Law for θ(x)] we have that

∞∑
n=−∞

e−
(n+α)2π

x = x
1
2

∞∑
n=−∞

e−n
2πx+2πinα

This is called the transformation law for theta function. As α = 0 in the case for

θ(x) as defined above, the theta function satisfies the relationship

θ

(
1

x

)
= x

1
2 θ(x).

Proof. By Poisson’s Summation Formula, we have

N∑
n=−N

′e
−(n+α)2π

x =
∞∑

v=−∞

∫ N

−N
e−

(t+α)2π
x e2πivtdt,

for the function f(n) = e
−(n+α)2π

x is real, continuous, and monotonic.

In order to take N →∞, we need to calculate

∫ ∞
N

e−
(t+α)2π

x
+2πivtdt =

∫ ∞
N

e−
(t+α)2π

x [cos(2πvt) + i sin(2πvt)] dt

13



to verify whether the equation will still hold. Using integration by parts, we evaluate

∫ ∞
N

e−
(t+α)2π

x cos 2πvtdt =
1

2πv
sin 2πvte−

(t+α)2π
x |∞t=N −

1

2πv

∫ ∞
N

sin 2πvtd

[
e−

(t+α)2π
x

]
.

Since the first positive term vanishes as N →∞, we can bound this integral

|
∫ ∞
N

e−
(t+α)2π

x cos 2πvtdt| < 1

2πv

∫ ∞
N

d

[
e−

(t+α)2π
x

]
=

1

2πv
e−

(N+α)2π
x .

Thus, we have that

|
∑
v 6=0

∫ ∞
N

e−
(t+α)2π

x cos 2πvtdt| < Ce−
(N+α)2π

x ,

where C is a constant. This vanishes as we take N →∞. Thus, the limit operation

is justified. The equality holds, as the remainder eventually approaches 0.

Therefore, we have acquired the following equation,

∞∑
n=−∞

e
−(n+α)2π

x =
∞∑

v=−∞

∫ ∞
−∞

e−
(t+α)2π

x
+2πivtdt. (4.4.1)

Now we let t+ α = xu, then one can substitute it in,

e−
(t+α)2π

x
+2πivt = e−xu

2π+2πiv(xu−α), and dt = xdu.

Substituting these back into 4.4.1,

(4.4.1) = x
∞∑

v=−∞

e−2πivα

∫ ∞
−∞

e−πxu
2+2πivxudu

= x
∞∑

v=−∞

e−2πivα

∫ ∞
−∞

e−πx(u+iv)2−πxv2du

= Ax−
1
2x

∞∑
v=−∞

e−πxv
2−2πivα.
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Since we have ∫ ∞
−∞

e−πxz
2

dz = Ax−
1
2 ,

for some constant A. This can be verified from the integral of normal distribution,

manipulating the exponents. We let α = 0, this gives us

∞∑
n=−∞

e−
n2π
x = Ax

1
2

∞∑
v=−∞

e−πxv
2

. (4.4.2)

Applying the relationship (4.4.2) to the right hand side of (4.4.2) itself again, we can

solve for A,

∞∑
n=−∞

e−
n2π
x = Ax

1
2

∞∑
v=−∞

e−πxv
2

= Ax
1
2Ax−

1
2

∞∑
v=−∞

e−
v2π
x

= A2

∞∑
v=−∞

e−
v2π
x .

Therefore, we may conclude that A = 1, since A is the constant coefficient of a integral

with integrand larger than 0. We have then achieved the desired expression,

∞∑
n=−∞

e−
(n+α)2π

x = x
1
2

∞∑
v=−∞

e−v
2πx+2πivα,

by replacing v with −v on the right hand side of the equation.

Finally, if we let α = 0, we have

∞∑
n=−∞

e−
n2π
x = x

1
2

∞∑
v=−∞

e−v
2πx.
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This gives us the functional equation for the theta function,

θ(x−1) = x
1
2 θ(x).

Also, the functional equation for ω(x),

ω(x) = x−
1
2ω(x−1) +

1

2
x−

1
2 − 1

2
.

4.5 Functional Equation of Riemann Zeta Function

Picking off from where (4.2.2) we left off for deriving the functional equation of

the Riemann zeta function,

π−
1
2
sΓ

(
1

2
s

)
ζ(s) =

∫ ∞
0

x
1
2
s−1ω(x)dx

=

∫ 1

0

x
1
2
s−1ω(x)dx+

∫ ∞
1

x
1
2
s−1ω(x)dx

=

∫ 1

∞
−x−

1
2
s−1ω(x−1)dx+

∫ ∞
1

x
1
2
s−1ω(x)dx

=

∫ ∞
1

x−
1
2
s−1ω(x−1)dx+

∫ ∞
1

x
1
2
s−1ω(x)dx.

The purpose of transforming the upper and lower bound of the limit on the integral is

to create integrals that will later converge, in order to save us the trouble in evaluating

the integrals later. Substituting the functional equation we derived for ω(x), we have

π−
1
2
sΓ

(
1

2
s

)
ζ(s) =

∫ ∞
1

x
1
2
s−1ω(x)dx+

∫ ∞
1

x−
1
2
s−1

(
−1

2
+

1

2
x

1
2 + x

1
2ω(x)

)
dx

=

∫ ∞
1

(
x

1
2
s−1 + x−

1
2
s− 1

2

)
ω(x)dx− 1

s
+

1

s− 1

=

∫ ∞
1

(
x

1
2
s−1 + x−

1
2
s− 1

2

)
ω(x)dx+

1

s(s− 1)
.

Although this only holds for Re(s) > 1, the right hand side of the equation converges

for all s on the complex plane. The term 1
s(s−1)

is a finite, and the integral is also

16



finite, because ω(x) = O(e−πx).

Therefore, we have obtained the analytic continuation for the zeta function. In

addition, if we replace s with 1−s, we realize that the right hand side of the equation

stays the same. Thus, we have achieved a functional equation for the Riemann zeta

function,

π−
1
2
sζ(s)Γ

(
1

2
s

)
= π−

1
2

(1+s)Γ

[
1

2
(1− s)

]
ζ(1− s).

5 Riemann Zeta Function and Bernoulli Numbers

As we have already derived the functional equation for the Riemann zeta function,

we will now evaluate the zeta function at some points, namely all the integer points.

5.1 Values of the Riemann Zeta Function

Before examining the value of the zeta function at any other integer values, we

will take a look at ζ(1) more closely. After all, this specific value motivated Euler to

define this function and was later used to prove the infinitude of prime numbers. We

begin reviewing this value from the most classic definition of the zeta function.

ζ(s) =
∞∑
n=1

n−s = 1−s + 2−s + · · ·+ n−s + · · ·

= (1−s − 2−s) + 2(2−s − 3−s) + 3(3−s − 4−s) + · · ·

=
∞∑
n=1

n
[
n−s − (n+ 1)−s

]
=
∞∑
n=1

ns

∫ n+1

n

x−s−1dx

= s

∫ ∞
1

[x]x−s−1dx

= s

∫ ∞
1

x−sdx− s
∫ ∞

1

(x)x−s−1dx,
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where [x] denotes the largest integer less than x, and (x) denotes the fractional part

of x, i.e. [x] = x− (x).

After evaluating the first integral, we have the following equation

ζ(s) =
s

s− 1
− s

∫ ∞
1

(x)x−s−1dx,

whereas the second integral converges for Re(s) > 0. Therefore, ζ(s) has only one

simple pole at s = 1, and the residue at 1 is 1.

Next, we will take a look at ζ(0). This time we follow the functional equation

we have derived. We will start from the property for Γ(s) we previously mentioned,

Γ(s+ 1) = sΓ(s). By taking s→ 0, we notice that

lim
s→0

1

2
sΓ

(
1

2
s

)
= lim

s→0
Γ

(
1

2
s+ 1

)
= Γ(1) = 1.

Thus, it is clear that

lim
s→0

Γ
(

1
2
s
)(

1
2
s
)−1 = 1.

If we now go back to the expression for zeta that we just derived and take limit

operation on both sides,

lim
s→0

π−
1
2
sζ(s)Γ

(
1

2
s

)
= lim

s→0

s

s− 1
− s

∫ ∞
1

(x)x−s−1dx.

We can now replace the term lims→0 Γ
(

1
2
s
)

with
(

1
2
s
)−1

, this turns out to be

lim
s→0

π−
1
2
sζ(s)

(
1

2
s

)−1

= lim
s→0

s

s− 1
− s

∫ ∞
1

(x)x−s−1dx.

This eventually gives us the final result that

lim
s→0

ζ(0) = −1

2
.
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We finally conclude that ζ(0) = −1
2
.

5.2 Bernoulli Numbers

Bernoulli Numbers are named after Jacob Bernoulli, who set a goal for himself to

find a formula for the finite sum of powers of consecutive positive integers,

Sk(n) = 1k + 2k + 3k + · · ·+ (n− 1)k,

where k = 1, 2, · · · , n and n = 2, 3, · · · . Notice that Sk(n) shares a similar terminal

goal with the zeta function, when it is evaluated at integers. Except zeta function

aims for an infinite sum, whereas here the Sk(n) function is a finite sum.

The formula for first few n’s are quite well known. For example,

S1(n) =
1

2
n2 − 1

2
n

S2(n) =
1

3
n3 − 1

2
n2 +

1

6
n

S3(n) =
1

4
n4 − 1

2
n3 +

1

4
n2

S4(n) =
1

5
n5 − 1

2
n4 +

1

3
n3 − 1

30
n

S5(n) =
1

6
n6 − 1

2
n5 +

5

12
n4 − 1

12
n2

· · ·

The formula for Sk(n) was then found,

Sk(n) =
1

k + 1
nk+1 − 1

2
nk +

k

12
nk−1 + 0nk−2 +

k(k − 1)(k − 2)

720
nk−3 + · · ·

=
1

k + 1

[
B0n

k+1 +

(
k + 1

1

)
B1n

k + · · ·+
(
k + 1

k

)
Bkn

]
=

1

k + 1

k∑
j=0

(
k + 1

j

)
Bjn

k+1−j.

The coefficients Bj are called the Bernoulli numbers. There also exist recurrent
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relations for Bj, namely

B0 = 1,

B0 + 2B1 = 0,

B0 + 3B1 + 3B2 = 0,

B0 + 4B1 + 6B2 + 4B3 = 0,

· · ·
k∑
j=0

(
k + 1

j

)
Bj = 0, k ≥ 1.

We could also define the Bernoulli numbers analytically. Consider the function

f(z) =
z

ez − 1
,

it then has the power series expansion

z

ez − 1
= 1− 1

2
z +

1

2!

1

6
z2 +

1

4!

(
− 1

30

)
z4 + · · · =

∞∑
n=0

Bn
zn

n!
.

It seems that the coefficients Bn here are exactly the same Bernoulli numbers but

defined in another way. Below is a list of some Bernoulli numbers

n 0 1 2 3 4 5 6 7 8 9 10
Bn 1 −1

2
1
6

0 − 1
30

0 1
42

0 − 1
30

0 5
66

5.3 Bernoulli Numbers and the Zeta Function

Surprisingly, it turns out that the Bernoulli numbers will give us the values of the

zeta function at positive even integers. In order to derive the formula for calculating

these values, we start from the infinite product of the sine function due to Euler.
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For z ∈ C, we have the following product representation

sin z = z
∞∏
n=1

(
1− z2

n2π2

)
.

Taking the logarithmic derivative, we have

d

dz
(log sin z) = cot z

=
1

z
− 2

∞∑
n=1

z

n2π2 − z2

Thus, this gives us

z cot z = 1− 2
∞∑
n=1

z2

n2π2 − z2

= 1− 2
∞∑
n=1

∞∑
k=1

1

n2k

z2k

π2k

= 1− 2
∞∑
k=1

z2k

π2k
ζ(2k).

On the other hand, we can also calculate z cot z from another approach,

z cot z = z
cos z

sin z
= iz

eiz + e−iz

eiz − e−iz

= iz
e2iz + 1

e2iz − 1

= iz +
2iz

e2iz − 1

Using the analytic definition of the Bernoulli numbers, we conclude that

z

ez − 1
=
∞∑
n=0

Bn
zn

n!
,
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evaluating at 2iz, we have

2iz

e2iz − 1
=
∞∑
n=0

Bn
(2iz)n

n!
= 1− iz +

∞∑
n=2

Bn
(2iz)n

n!
.

Therefore, we have another expression for z cot z,

z cot z = 1 +
∞∑
n=2

Bn
(2iz)n

n!
.

Comparing the coefficients for the terms of zn from the two expressions of z cot z, we

obtain the expression for ζ(2n),

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n, (5.3.1)

for n being positive integers.

6 Conclusion

The formula (5.3.1) will give us the values of the zeta function at any positive

even integer. Reviewing what we have already derived, we have found that for s

being negative even integers, ζ(s) = 0. The zeta function has a simple pole at s = 1,

and has a value of −1
2

at s = 0. We also know that the values of the zeta function

at positive even integers can be expressed by Bernoulli numbers. Furthermore, by

manipulating the functional equation of the zeta function, we can calculate the zeta

function at any negative odd integers from the positive even integers.

However, there are still many details of the zeta function which remain as mysteries

today. The famous Riemann Hypothesis and the values of the zeta function at odd

positive integers serve as the best examples among the mysteries.

The Riemann Hypothesis conjectures that all the zeros of the ζ(s) in the critical
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strip, 0 < Re(s) < 1, lie on the line Re(s) = 1
2
. So far, we only know that there are

infinitely many zeros on the line of Re(s) = 1
2
, and at least a positive proportionate

of all the zeros lie on the line.

Regarding the values of the zeta function values at positive odd integers, there is

the conjecture that ζ(2n+ 1) is irrational, if n > 1 is odd. The only we know for sure

is ζ(3), which was proven to be irrational by the Greek-French mathematician Roger

Apéry in 1979. The nature of the values of the zeta function at other positive odd

integers remain unknown.
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