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Abstract

Generalized Fermat equations, stacks, and arithmetic statistics
By Santiago Arango-Piñeros

Let (a, b, c) be a triple of positive integers. The Belyi stack P1(a, b, c) is the algebraic
stack obtained by rooting the projective line at 0, 1, and ∞ with multiplicities a, b,
and c, respectively.

In this thesis, we study the relationship between primitive integral solutions to gen-
eralized Fermat equations

F : Axa +Byb + Czc = 0 (1)

and the S-integral points on P1(a, b, c).

We find that, after inverting a suitable finite set S of rational primes, the stack
P1(a, b, c) is isomorphic to the quotient [U/H], where U is the punctured cone defined
by F , and H is the stabilizer group scheme of U in G3

m. By descent theory, the
S-integral points of P1(a, b, c) are partitioned into H(ZS)-orbits of Uτ (ZS) for an
explicit set of twists Fτ of Equation (1). From this perspective, we reformulate the
proofs of the landmark results of Darmon–Granville [13, Theorem 2] and Beukers [7,
Theorem 1.2].

Finally, we obtain a winsome application in arithmetic statistics. Suppose that the
Euler characteristic χ(F ) := 1

a
+ 1

b
+ 1

c
−1 is positive, and that there exists at least one

primitive integral solution to Equation (1). Then, we prove that there is an explicitly
computable constant κ(F ) > 0 such that the number of primitive integral solutions
(x, y, z) to Equation (1) of height max {|Axa|, |Czc|} not exceeding h is asymptotic
to κ(F ) · hχ.
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Chapter 1

Introduction

The main topic of this thesis is the study of integer solutions to Generalized Fermat

equations. These are polynomial equations of the form the form

F : Axa +Byb + Czc = 0 (1.1)

where A,B,C ∈ Z satisfy ABC 6= 0. A solution (x, y, z) ∈ Z3 to Equation (1.1)

is called primitive if the greatest common divisor of the triple is 1. We will focus

on understanding the geometric structures that arise from the study of primitive

integral solutions to Equation (1.1), rather than on the set of primitive solutions to

any particular instance of the equation.

When the equation is homogeneous of degree n, it defines a smooth projective

curve C = ProjQ[x, y, z]/〈F 〉, and there is a two-to-one correspondence between the

set of primitive integral solutions to Equation (1.1) and set of rational points C(Q).

When F is not homogeneous, we are led to study the integral points of a quasi-affine

surface with complicated singularities. As stubborn enthusiasts of the arithmetic of

algebraic curves, we are inspired by the following quote from Henri Darmon [12] on

this subject.

“Nonetheless, in this Diophantine study one is reluctant to abandon the
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well-tended landscape of curves for the untamed wilds of (singular) alge-

braic surfaces. As it turns out, a better framework for discussing primitive

solutions of the generalized Fermat equation is supplied by the notion of

a curve with multiplicities.”

The notion of curves with multiplicities introduced by Darmon coincides with the notion

of relative stacky curves, as defined in [38] by Voight and Zureick-Brown, and the

language of stacks provides a more conceptual framework that allows one to apply

familiar geometric methods to this more general context. Indeed, the classical method

of descent (arguably discovered by Fermat himself) can be extended to this context,

and has been applied with great success by Poonen, Schaefer, and Stoll [30] to find

the sixteen primitive integral solutions to x2 + y3 − z7 = 0.

The contents of this work are organized as follows:

• In Chapter 2, we summarize the necessary background from the theory of stacks.

We follow closely the conventions in Olsson’s book [25]. The emphasis is on un-

derstanding the arithmetic of the stacks under consideration; i.e., their groupoids

of integral and rational points. In the case of quotient stacks, the main tool is

the method of descent described in Section 2.2.5. The main results of this chapter

are Theorem 2.2.5.d, and the explicit calculation of the set of PID points on the

projective line rooted at a point Proposition 2.3.3.d.

• In Chapter 3, we introduce the relevant geometric structures that arise from the

study of primitive integral solutions. As an application, we provide a reformula-

tion of the classical results of Darmon–Granville [13, Theorem 2] and Beukers [7,

Theorem 1.2]. We hope that this chapter will serve as a useful reference for re-

searchers interested in exploiting the stacky perspective in the study of generalized

Fermat equations. This appears to be the first systematic study of generalized

Fermat equations from the point of view of stacks, although experts have been
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aware of the connection for decades. Chapter 3 builds on the blueprints laid out by

Poonen, Schaefer, and Stoll in [30], and by Poonen in [27] and [29]. Recently, San-

tens [31, 32] has developed part of the theory of relative (arithmetic) stacky curves

that is essential for this work, and it appears that the study of generalized Fermat

equations is also a primary motivation of his. Aside from the theory developed in

this chapter, the main results are Theorem 3.4.0.b and Theorem 3.5.0.c.

• In Chapter 4 we focus on the arithmetic statistics of primitive integral solutions.

We study the asymptotic count of solutions to those generalized Fermat equations

that have infinitely many primitive integral solutions. Our approach uses the tools

developed in the previous chapters. Our main theorem is Theorem 1.2.0.d (c.f.

Theorem 4.3.0.b).

To introduce these ideas, we outline an application of the method of Fermat

descent in the elementary case of the Pythagorean equation, where the use of stacks

is not required and would be considered excessive. In Section 1.1 we explain how

one could use this method to recover the known parametrizations. In Section 1.2 we

introduce the integral points on the Belyi stack P1(a, b, c), and relate our main result

to the classical asymptotic counts of Pythagorean triples.

1.1 Parametrizing Pythagorean triples via the method

of Fermat descent

It is a beautiful classical theorem that there are infinitely many primitive integral

solutions to the Pythagorean equation x2 + y2 − z2 = 0. Furthermore, we understand

how to parametrize its primitive integral solutions. Consider the polynomial functions

φ(s, t) := (s2 − t2, 2st, s2 + t2), φ̂(s, t) := (2st, s2 − t2, s2 + t2).
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Theorem 1.1.0.a. Every primitive integral solution (x, y, z) ∈ Z3 to the Diophantine

equation x2 + y2 − z2 = 0 corresponds to

φ(s, t), −φ(s, t), φ̂(s, t), −φ̂(s, t),

for a unique pair of tuples ±(s, t) ∈ Z2 satisfying gcd(s, t) = 1 and s 6≡ tmod 2.

Elementary proofs of this theorem can be found in every introductory text in

Number Theory. Line by line, these proofs clearly explain how the parametrizations

arise. In the opinion of the author, however, the why remains mysterious.

Question 1.1.0.b. Why is there a congruence condition specifically at the prime 2?

Question 1.1.0.c. What is the geometric origin of the parametrization?

Question 1.1.0.d. Where does the symmetry in the parametrization come from?

We will attempt to answer all of these questions using the method of Fermat

descent, a modern incarnation of Fermat’s method of infinite descent. Our implemen-

tation of the method has three main steps: covering, twisting, and sieving.

Step 1: covering

Our task is to find a “covering” φ : V → U . Concretely, by a covering we mean a

(right) fppf G-torsor φ : V → U , where G is some fppf group scheme over SpecZ. By

the Hermite–Minkowski theorem (i.e., π1(SpecZ) = 1) this is too much to ask, but it

can be done if we allow ourselves to remove a finite set of bad primes.

Ideally, V will be a space that we understand well. In this case, we can let V be the

punctured affine plane A2−0, as a scheme over the arithmetic line SpecZ. The set of

integral points V(Z) is identified with the pairs (s, t) ∈ Z2 satisfying gcd(s, t) = 1. Let

U be the punctured cone, over SpecZ, corresponding to the Pythagorean equation

x2 + y2 − z2 = 0. Similarly, the set of integral points U(Z) is identified with the
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primitive integral solutions to the Pythagorean equation. The group µ2 ⊂ Gm inherits

the diagonal action of Gm on V .

Lemma 1.1.0.e. Let R = Z[1/2]. The morphism φ : VR → UR given by (s, t) 7→

(s2 − t2, 2st, s2 + t2) is an fppf µ2-torsor.

The proof of this lemma comes down to realizing that R[s2 − t2, 2st, s2 + t2] =

R[s2, st, t2] is the ring of invariants R[s, t]{±1}. This statement is certainly false if we

replace R by Z, hinting a partial answer to Question 1.1.0.b: it seems that 2 shows

up because the chosen map φ is not a “covering” unless we remove this prime.

Step 2: twisting

Descent theory tells us that once we have a covering, the points on the base are

partitioned by the images of the points of the twists. In this particular situation, we

have that

U(R) =
⊔

τ∈H1(R,µ2)

φτ (Vτ (R)).

To understand the right hand side, we first need to understand the Čech cohomol-

ogy group H1(R, µ2) classifying isomorphism classes of fppf µ2-torsors over SpecR.

From the Kummer exact sequence, we see that H1(R, µ2) ∼= R×/(R×)2 ∼= {±1,±2}.

Concretely, to each d ∈ {±1,±2} corresponds the µ2-torsor Td := SpecR[u]/〈u2−d〉.

With this explicit description of the indexing set, the equation above now reads

U(R) =
⊔

d∈{±1,±2}

φd(Vd(R)).

The task at hand now is to compute the twists φd : Vd → U .

Lemma 1.1.0.f. For d ∈ {±1,±2}, the twist φd of φ is given by φd = 1
d
φ : V → U .

Proof. First, recall that Vd is the quotient of V×RTd by the twisted action of µ2 given

by ((s, t),
√
d) · ξ := ((ξs, ξt), ξ

√
d). Since the ring of invariants (R[s, t]⊗R R[

√
d]){±1}



6

is isomorphic to R[
√
ds,
√
dt], we see that after extending the base to Td, we have

an isomorphism ψd : VR[
√
d] → (Vd)R[

√
d] given by (s, t) 7→ (

√
ds,
√
dt). We use ψd to

identify V with Vd and φd with 1
d
φ.

With this explicit description of the twists, the partition of U(R) given by descent

theory now reads

U(R) =
⊔

d∈{±1,±2}

1
d
φ(V(R)). (1.2)

Step 3: sieving

Since we are interested in the subset U(Z) of U(R), we must sieve away the

excess of R-points. For example, we want to get rid of the point φ(−1, 3/2) =

(−5/4,−3, 13/4) ∈ U(R). With our current choices, we will see that it is enough

to restrict the domain V(R) to certain subsets V(Z)1,V(Z)2 of V(Z) to hit all the

primitive integral solutions to the Pythagorean equation. (Recall that the set V(R)

consists of pairs (s, t) ∈ R2 generating the trivial ideal: sR + tR = R.) It is at this

stage that the usual arguments from elementary number theory play a role.

Lemma 1.1.0.g. If (s, t) ∈ V(Z), then gcd(φ(s, t)) ∈ {1, 2}. Moreover, gcd(φ(s, t)) =

2 if and only if s ≡ tmod 2.

This lemma defines for us a partition V(Z) = V(Z)1 t V(Z)2, according to the

greatest common divisor of the image of φ:

V(Z)|d| := {(s, t) ∈ V(Z) : gcd(φ(s, t)) = |d|} .

Let (x, y, z) ∈ U(Z), and define

d(x, y, z) :=


sign(z), if x ≡ 1 mod 2,

sign(z) · 2, if x ≡ 0 mod 2.
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Figure 1.1: Partition of the set V(Z) = V(Z)1 t V(Z)2.

Partition U(Z) according to this invariant, so that

U(Z) = U(Z)1 t U(Z)−1 t U(Z)2 t U(Z)−2.

It turns our that this naive partition of the set of primitive integral solutions has

geometric meaning: it comes from the method of descent.

Lemma 1.1.0.h. For each d ∈ {±1,±2}, we have that U(Z)d = U(Z) ∩ φd(V(R)).

Moreover,

U(Z)d = φd(V(Z)|d|) =



φ(V(Z)1), if d = 1,

−φ(V(Z)1), if d = −1,

φ̂(V(Z)1), if d = 1,

−φ̂(V(Z)1), if d = −2.
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Figure 1.2: Visualization of the partition U(Z) = U(Z)1 t U(Z)−1 t U(Z)2 t U(Z)−2.

Putting everything together, we have that

U(Z) = U(Z)1 t U(Z)−1 t U(Z)2 t U(Z)−2

= φ(V(Z)1) t −φ(V(Z)1) t φ̂(V(Z)1) t −φ̂(V(Z)1),

concluding the proof of Theorem 1.1.0.a. See Figure 1.2 for a visualization of the

partition of primitive solutions arising from this choice of cover φ. (We are only

plotting the points (x, y) corresponding to a triple (x, y,±z).)

The point, of course, is that even though this is not the most economical way

to solve the problem, the method of descent sketched here is more conceptual, and

works (with some stacky input) when the Pythagorean equation is replaced by an

arbitrary generalized Fermat equation Axa +Byb +Czc = 0 with integer coefficients.

We need only work over a stack that is birational to the projective line P1
Z, but

where the irreducible divisors 0, 1, and ∞ have been replaced by certain “fractions”

of themselves.
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1.2 Counting integral points on the projective line

with three fractional points

We follow [27]. Let a, b, c be positive integers, and consider the following subset

of the rational points on the projective line P1(Q) ∼= Q ∪
{

1
0

}
.

Ω(a, b, c) :=

Q ∈ P1(Q) :

(i) num(Q) is an ath power,

(ii) num(Q− 1) is a bth power,

(iii) den(Q) is a cth power.

 . (1.3)

By the numerator and denominator of a point Q ∈ P1(Q), we mean the first and second

coordinate of any representative ±(n, d) ∈ Z2 for Q = (n : d) with gcd(n, d) = 1.

This pair is only well defined up to sign. We say that an integer m is an nth power if

the ideal mZ equals enZ for some e > 0. In particular, 0, 1,∞ ∈ Ω(a, b, c).

To any subset Ω ⊆ P1(Q) we associate the subset of points of bounded height,

and the corresponding counting function. Given h positive, define

Ω6h := {Q ∈ Ω : Ht(Q) 6 h} , N(Ω;h) := #Ω6h, (1.4)

where Ht: P1(Q)→ Z>0 is the usual multiplicative height, given by

Ht(Q) = max {| num(Q)|, | den(Q)|} . (1.5)

Heuristic 1.2.0.a. We estimate the probability that a uniformly random rational

number of height not exceeding h � 0 is in the set Ω(a, b, c). We do this under

the heuristic assumption that the events (i), (ii), and (iii) defining Ω(a, b, c) in Equa-

tion (1.3) are independent.
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We have that

#
{
Q ∈ P1(Q)6h : num(Q) is an ath power

}
#P1(Q)6h

.
=
h · h1/a

h2
= h−1+1/a,

#
{
Q ∈ P1(Q)6h : num(Q− 1) is an bth power

}
#P1(Q)6h

.
=
h · h1/b

h2
= h−1+1/b,

#
{
Q ∈ P1(Q)6h : den(Q) is an cth power

}
#P1(Q)6h

.
=
h · h1/c

h2
= h−1+1/c,

where the notation f(h)
.
= g(h) means that there exists an implicit constant κ > 0

such that f(h) = κ · g(h) as h→∞. The independence assumption implies that

#Ω(a, b, c)

#P1(Q)6h

.
=
(
h−1+1/a

) (
h−1+1/b

) (
h−1+1/c

) .
= h−3+1/a+1/b+1/c.

The heuristic above suggests that the Euler characteristic

χ(a, b, c) := 1
a

+ 1
b

+ 1
c
− 1 (1.6)

forces Ω(a, b, c) to be


infinite, if χ(a, b, c) > 0, and

finite, if χ(a, b, c) < 0.

This prediction turns out to be correct. The hyperbolic case (when χ < 0) can be

deduced from a theorem of Darmon and Granville [13, Theorem 2]. The spherical case

(when χ > 0) can be deduced from a theorem of Beukers [7, Theorem 1.2]. More

precisely, the heuristic suggests that in the spherical case, N(Ω(a, b, c);h) � hχ.

Theorem 1.2.0.b. Suppose that a, b, c > 1 and that χ := χ(a, b, c) > 0. Then, for
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every ε > 0, there exists an explicitly computable constant κ(a, b, c) > 0 such that

N(Ω(a, b, c), h) = κ(a, b, c) · hχ +O(hχ/2+ε),

as h→∞. The implicit constant depends on (a, b, c) and ε.

Our approach is geometric: we use the method of descent on a certain stack

P1(a, b, c). We call it the Belyi stack of signature (a, b, c), primarily because étale covers

φ : X → P1(a, b, c)Q are in bijective correspondence with Belyi maps ϕ : X → P1
Q. The

stack P1(a, b, c) is birational to P1
Z, but the irreducible divisors 0, 1, and ∞ have µa,

µb, and µc automorphism groups, respectively. (Technically, P1(a, b, c) is the iterated

root stack of P1
Z along these divisors, with the corresponding multiplicities.)

The main point, hinted at by Poonen in [27], is that the set Ω(a, b, c) ⊂ P1(Q) we

have been discussing coincides with the set of isomorphism classes of the groupoid of

Z-points on the stack P1(a, b, c). It also coincides with the set of integral points on

Darmon’s M -curve P1
a,b,c, and, as Darmon remarks in [12], “up to some sloppiness in

the signs,” it also coincides with the set of primitive integral solutions to the equation

xa + yb + zc = 0.

The case of signature (a, b, c) = (2, 2, 2) will serve as a simple example to guide

our intuition for the non-homogeneous spherical signatures. Lehmer [21, p. 38] and

Lambek–Moser [20] counted the asymptotic number of Pythagorean triangles with

bounded hypothenuse.

Consider the group G := {±1}3 /± 1, and note that G is isomorphic to the Klein

four group. List its elements

e0 = [1, 1, 1], e1 = [−1, 1, 1],

e2 = [1,−1, 1], e3 = [1, 1,−1].

Consider the conics F0, F1, F2, F3 with coefficients given by element in G with match-
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ing index. For each element in G, we attach a corresponding j-map.

Table 1.1: G-twists of Pythagorean equation.

G F j

e0 x2 + y2 + z2 = 0 (x, y, z) 7→ (−x2 : z2)

e1 x2 − y2 − z2 = 0 (x, y, z) 7→ (x2 : z2)

e2 x2 − y2 + z2 = 0 (x, y, z) 7→ (−x2 : z2)

e3 x2 + y2 − z2 = 0 (x, y, z) 7→ (x2 : z2)

Theorem 1.2.0.c. As h→∞, we have the asymptotic relation

N(Ω(2, 2, 2);h) ∼ 24
π
· h1/2.

Moreover, the set Ω(2, 2, 2) is the pushout

Ω(F1) t Ω(F2) t Ω(F3)

{0, 1,∞} .

In other words, Ω(2, 2, 2) = Ω(F1)∪Ω(F2)∪Ω(F3) and the intersections Ω(Fi)∩Ω(Fj)

are contained in {0, 1,∞}. From this description, we deduce that

N(Ω(F1);h) = N(Ω(F2);h) = N(Ω(F3);h) ∼ 8
π
· h1/2.

Proof. The pushout description of Ω(2, 2, 2) follows by partitioning the set according

to the signs of num(Q), num(Q− 1), and den(Q), and staring at Table 1.1.

Step 1: A suitable covering is readily available. Indeed, if Z = Z0 denotes the plane

conic defined by F0, the j-map j0 : U0 → P1 induces the morphism

φ : Z0 → P1
Q, (x : y : z) 7→ (−x2 : z2).
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One verifies that φ is a Galois Belyi map defined over Q with Galois group G, diag-

onally embedded in PGL3(Q). (Although any such cover Zi → P1 would suffice, we

choose the pointless conic for dramatic emphasis.) Since U0(Z) is empty, so is Ω(F0).

Step 2: Consider the Galois cohomology group H1(Q, G). Since the absolute Galois

group GalQ acts trivially on the abelian group G, H1(Q, G) is the group of continuous

group homomorphisms GalQ → H. Every such map factors through a unique injective

homomorphism Gal(L|Q) ↪→ H, where L is a finite Galois extension of Q.

The only bad prime for the covering φ is p = 2. Let S = {2}, and R = Z[S−1] =

Z[1/2]. So, we are really interested in the subgroup H1
S(Q, G) ⊂ H1(Q, G) corre-

sponding to those injective homomorphisms ρ : Gal(L|Q) ↪→ G for which L is possibly

ramified only above p = 2. The possible fields are

L ∈
{
Q,Q(i),Q(

√
2),Q(

√
−2),Q(ζ8)

}
.

Descent theory tells us that the set ΩS(2, 2, 2) := P1(2, 2, 2)〈R〉 ∼= [P1
R/Aut(Φ)]〈R〉

is partitioned by the disjoint union of the sets φρ(Zρ(Q)), as ρ ranges over H1
T (Q, G).

This already implies that

N(ΩS(2, 2, 2);h) =
∑
ρ

N(φρ(Zρ(Q));h) ∼ κ((2, 2, 2),S) · h1/2,

for some explicitly computable constant κ((2, 2, 2),S) > 0.

Step 3: We will show that the count above already contains the counts N(Ω(2, 2, 2);h)

and N(Ω(F3);h) that we seek. Indeed, starting from the partition

P1(2, 2, 2)〈R〉 =
⊔

ρ∈H1
T (Q,G)

φρ(Zρ(Q)),

we note that by properties of Belyi maps, we can assigny to each ρ ∈ H1
T (Q, G) a
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unique 2-simplified coefficient (Aρ, Bρ, Cρ) such that φρ(Zρ(Q)) is contained in the

set

Ω(Aρx
2 +Bρy

2 + Cρz
2 = 0).

In particular, since Ω(F1) ⊂ Ω(2, 2, 2) ⊂ ΩS(2, 2, 2), we deduce that

Ω(F3) ≈
⊔

ρ∈H1
T (Q,G)

j(U3(Z))∩φρ(P1(Q)) 6=∅

φρ(Zρ(Q)),

where the ≈ sign denotes that the difference of the two sets is contained in {0, 1,∞}.

Combining this with Lehmer’s count of primitive integral solutions to the Pythagorean

equation, we conclude that

N(Ω(F1);h) = N(Ω(F2);h) = N(Ω(F3);h) ∼ 8
π
· h1/2.

The set Ω(a, b, c) and the primitive integral solutions to the equation are closely

related when A,B,C ∈ Z× = {±1}. Indeed, given Q ∈ Ω(a, b, c), then | num(Q)| =

|x|a, | num(Q− 1)| = |y|b and | den(Q)| = |z|c. From the identity

− num(Q) + num(Q− 1) + den(Q) = 0,

we deduce that (x, y, z) is a primitive integral solution to Equation (1.1) for some

choice of (A,B,C) ∈ {±1}3 / {±1}. Conversely, given a primitive integral solution

(x, y, z) to the equations

xa + yb + zc = 0, xa + yb − zc = 0, xa − yb + zc = 0, xa − yb − zc = 0,

we see that Q = −xa/zc is in Ω(a, b, c). By carefully identifying how the sets Ω(F )
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partition Ω(a, b, c) (or rather, certain supersets ΩS(a, b, c) ⊃ Ω(a, b, c)) we are able to

obtain the following (stronger) result.

Theorem 1.2.0.d. Consider Equation (1.1) with A,B,C ∈ Z3 nonzero and a, b, c >

1. Suppose that χ := χ(a, b, c) > 0, and that there exists at least one primitive integral

solution to F . Then, there exists an explicit constant κ(F ) > 0 such that for every

ε > 0,

N(Ω(F ), h) = κ(F ) · hχ +O(hχ/2+ε),

as h→∞. The implied constant depends on F and ε.
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Chapter 2

Background

We are interested in the arithmetic of certain stacks that arise in the study of

generalized Fermat equations. In this chapter, we recall the definition of the functor

of points of a stack and elaborate on the two examples most relevant to our context:

quotient stacks and root stacks.

2.1 The groupoid of points on a stack

Recall that a morphism of schemes is fppf if it is faithfully flat and locally of finite

presentation (see [28, Definition 3.4.1]). For a choice of base scheme S, we work on

the big fppf site Sfppf = (Sch/S)fppf. This is the category Sch/S of schemes over S

where the open coverings are families {Ui → U} of S-morphisms such that
⊔
i Ui → U

is fppf.

Definition 2.1.0.a. A category over S is a pair (X, p) where X is a category and

p: X Sch/S is a functor. A morphism f : y → z in X is called cartesian if given any

morphism g : x→ z and a factorization p(f) ◦ φ : p(x)→ p(y)→ p(z) of p(g), there

exists a unique morphism h : x→ y such that p(h) = φ and g = h ◦ f .
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X x y z

Sch/S p(x) p(y) p(z)

p

h

g

f

φ p(f)

(2.1)

Definition 2.1.0.b. Let (X, p) be a category over S. If f : y → z is a cartesian

morphism, the object y ∈ X is called a pullback of z along p(f). Given an S-scheme

U , the category of U -points in X, denoted X(U), is the category of pullbacks over the

identity. That is,

Objects: objects u in X such that p(u) = U .

Morphisms: morphisms φ : v → u in X such that p(φ) = idU .

Definition 2.1.0.c. A fibered category over S is a category (X, p) over S such that

for every S-morphism of schemes Φ: V → U and u in X(U), there exists a cartesian

morphism φ : v → u such that p(φ) = Φ. In particular, this implies that v is in X(V ).

Fibered categories over S assemble into a 2-category (see [25, Definition 3.1.3]).

Indeed, there are natural notions of (i) morphisms between fibered categories over S,

and (ii) morphisms between morphisms of fibered categories over S. Moreover, there

is a version of the Yoneda lemma (see [25, Chapter 3.2]) in this context that justifies

calling U 7→ X(U) a “functor” of points.

Definition 2.1.0.d. Recall that a groupoid is a category in which every morphism is

an isomorphism. A category fibered in groupoids over S if a fibered category X over S,

such that for every S-scheme U , the category X(U) is a groupoid. Given a category

fibered in groupoids X over S and an S-scheme U , we denote by X〈U〉 the set of

isomorphism classes of the groupoid X(U).

Since our focus will be on the arithmetic of stacks, thinking about stacks in terms

of their groupoids/sets of U -points will be enough for most of our applications. When

we use the word stack, we mean an algebraic stack in the following sense.
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Definition 2.1.0.e. Let X be a category fibered in groupoids over S.

(i) X is a stack if for every fppf cover {Ui → U}, the induced descent functor

X(U)→ X({Ui → U}) is an equivalence of categories. See [25, Section 4.2.4].

(ii) A stack X is algebraic if the diagonal ∆: X → X ×S X is representable by an

algebraic space, and X admits a smooth surjection X ′ → X from an S-scheme

X ′. The map X ′ → X is called a smooth presentation of X. See [25, Section 8.1].

(iii) An algebraic stack X is Deligne–Mumford if the smooth presentation above is in

fact étale. See [25, Section 8.3].

2.2 H1, torsors, and quotient stacks

2.2.1 Nonabelian Čech cohomology

We follow [23, pp. 122] with the notations of [28, Section 6.4.4]. Let G be a sheaf

of groups on a site S, written multiplicatively. We allow the possibility that G is not

abelian. Let U = {Ui → U}i∈I be a covering. A 1-cocycle for U with values in G is a

family g = {gij ∈ G(Uij) : (i, j) ∈ I × I} such that:

(gij|Uijk)(gjk|Uijk) = gik|Uijk for all (i, j, k) ∈ I × I × I.

Two 1-cocycles g, g′ for U with values in G are said to be cohomologous if there is a

family h = {(hi) ∈ G(Ui) : i ∈ I}, such that:

g′ij = (hi|Uij)gij(hj|Uij)−1, for all (i, j) ∈ I × I.

This is an equivalence relation, and we denote by Ȟ1(U ,G) the set of equivalence

classes. Note that this set has a distinguished element, namely the class of the family

of identities {1 ∈ G(Uij) : (i, j) ∈ I × I}. We define the Čech cohomology set Ȟ1(U,G)
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to be the direct limit of the pointed sets Ȟ(U ,G), where the direct limit is taken over

all open coverings U of U ordered by refinement.

Proposition 2.2.1.a. To any short exact sequence of sheaves of groups on a site S,

and any object U in S

1 −→ G′ → G→ G′′ → 1,

there is an exact sequence of pointed sets

1 −→ G′(U)→ G(U)→ G′′(U)
δ−→ Ȟ1(U,G′)→ Ȟ1(U,G)→ Ȟ1(U,G′′).

2.2.2 Torsor sheaves

We follow [25, Section 4.5], [28, Section 6.5.4], and [23, Section III.4].

Let S be a site, and let G be a sheaf of groups on S.

Definition 2.2.2.a (Torsor sheaves). A right G-torsor on S is a sheaf of sets Z together

with a right action ρ : Z× G→ Z such that the following conditions hold:

1. For every U ∈ S, there exists a covering {Ui → U}i∈I such that Z(Ui) 6= ∅ for

all i ∈ I.

2. The map Z× G→ Z× Z defined by (x, g) 7→ (x, x · g) is an isomorphism.

A morphism of G-torsors (Z1, ρ1)→ (Z2, ρ2) is a morphism of sheaves f : Z1 → Z2 such

that the following square commutes.

Z1 × G Z2 × G

Z1 Z2

f×idG

ρ1 ρ2

f

A silly yet important example is the trivial G-torsor. This is the sheaf G itself,

equipped with the right G-action given by the multiplication law. Note that Item 1
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in Definition 2.2.2.a is satisfied, since for every U in S, the group G(U) contains the

identity element. We say that an open cover {Ui → U}i∈I trivializes Z if there exist

isomorphisms fi : Z|Ui → G|Ui of G|Ui-torsors for every i ∈ I. We could have defined

sheaf torsors as sheaves of sets with a group action admitting a trivializing cover (see

[28, Definition 6.5.7]).

Proposition 2.2.2.b. Let G be a group sheaf on a site with final object S. Then,

there is an isomorphism of pointed sets

{G-torsor sheaves}
isomorphism

→ Ȟ1(S,G). (2.2)

Proof. Let Z be a right G-torsor sheaf. Choose a trivializing open cover U = {Ui → S}

with isomorphisms fi : G|Ui → Z|Ui . Then, on the overlaps Uij := Ui ×S Uj, the

transition maps f−1
i ◦ fj : G|Uij

∼−→ G|Uij are given by left multiplication by some

gij ∈ G(Uij). Since (f−1
i ◦ fj) ◦ (f−1

j ◦ fk) = f−1
i ◦ fk when restricted to Uijk, the

family g = {gij} obtained in this way is a 1-cocycle for U . Furthermore, a different

choice of isomorphisms f ′i : G|Ui → Z|Ui yields a cohomologous 1-cocycle g′. Indeed,

the isomorphism f−1
i ◦ f ′i : G|Ui → G|Ui is given by left multiplication by an element

hi ∈ G(Ui). The family h = {hi} defined in this way witnesses the equivalence between

g and g′. In this way, we get an isomorphism of sets

{G-torsor sheaves trivialized by U}
isomorphism

→ Ȟ1(U ,G).

Moreover, the isomorphism class of the trivial torsor is sent to the class of the trivial 1-

cocycle. Taking the direct limit over all open coverings gives the desired isomorphism.
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2.2.3 Torsor schemes

We follow [28, Section 6.5].

We narrow our focus to S = Sfppf the fppf site over a base scheme S.

A torsor scheme is a representable torsor sheaf on Sfppf. We will work with the

following equivalent definition.

Definition 2.2.3.a (Torsor scheme). Let G → S be an fppf group scheme. A right

fppf G-torsor over S is an S-scheme T → S together with a right action T ×S G→ T

such that the following conditions hold:

1. T → S is fppf.

2. The map T ×S G→ T ×S T defined by (t, g) 7→ (t, t · g) is an isomorphism.

A morphism of G-torsors is a G-equivariant morphism of S-schemes.

As before, a silly but important example is the trivial G-torsor. This is the fppf

scheme G→ S itself, with the right G-action given by the multiplication law. Observe

that if T → S is a G-torsor, and S ′ → S is an fppf cover, then the base change T ′ → S ′

is a G′-torsor.

Lemma 2.2.3.b. Let T → S be an S-scheme, equipped with a G-action T ×SG→ T

satisfying Item 2 in Definition 2.2.3.a. The following conditions are equivalent.

(a) T → S is fppf.

(b) T → S is fppf locally isomorphic to the trivial G-torsor.

(c) T → S admits a section fppf locally.

Proof.

(a) ⇔ (b). Assume (a), and let φ be the isomorphism T ×S G → T ×S T . Then φ

is the pullback of G → S by the fppf cover π : T → S. In other words, TT ∼= GT as
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T -schemes. Furthermore, the GT -actions coincide: this is the formula (xg)h = x(gh)

coming from the definition of a right action. Thus TT ∼= GT asGT -torsors. Conversely,

assume (b). There exists an fppf cover S ′ → S such that T ′ ∼= G′ as G′-torsors over

S ′. Since G′ → S ′ is fppf, so is π′ : T ′ → S ′. By fpqc descent [28, Theorem 4.3.7], the

original map π : T → S is also fppf.

(b)⇔ (c). Assume (b) and let S ′ → S be a trivializing fppf cover. Since G′ → S ′ has

a section (the identity) so does π′ : T ′ → S ′. Conversely, assume (c) and let S ′ → S

be an fppf cover over which π admits a section σ : S ′ → T ′.

T ′ T

S ′ S

π′ πσ

Using the same argument as above, we know that T ′T ′ ∼= G′T ′
∼= GT ′ as GT ′-torsors

over T ′. Base changing this isomorphism by σ, we get that T ′ and G′ are isomorphic

as G′-torsors over S ′, as we wanted to show.

We have seen in Proposition 2.2.2.b that Ȟ1(S,G) is in bijective correspondence

with isomorphism classes of torsor sheaves on Sfppf. In many cases of interest, isomor-

phism classes of torsor sheaves coincide with isomorphism classes of torsor schemes.

Theorem 2.2.3.c ([28, Theorem 6.5.10]). Let G be an fppf group scheme over a

locally noetherian scheme S. Then, we have

{G-torsor schemes}
∼= ↪→ {G-torsor sheaves}

∼=
∼−→ Ȟ1

fppf(S,G).

Moreover, the first injection is a bijection in any of the following cases:

(i) G→ S is an affine morphism.

(ii) G is of finite presentation and separated over S, and dimS 6 1.

(iii) G→ S is an abelian scheme, and G is locally factorial.
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2.2.4 Quotient stacks

Situation 2.2.4.a. Here

• S is a scheme.

• Z is a scheme over S.

• G is an fppf S-group scheme.

• Z ×S G→ Z is a right action of G, defined over S.

• We abbreviate H1 = Ȟ1
fppf, as in Section 2.2.1.

Definition 2.2.4.b (Quotient stack). Assume we are in Situation 2.2.4.a. Define the

quotient stack of Z by G, denoted [Z/G], to be the stack over Sfppf with:

Objects: triples (U, T, φ)

T Z

U

S

G-torsor
φ

G-equivariant

where

(i) U is an S-scheme,

(ii) T → U is a right fppf GU -torsor, and

(iii) φ : T → Z is a G-equivariant S-morphism.

Morphisms: (U ′, T ′, φ′)→ (U, T, φ) are pairs (f, h), where

(iv) f : U ′ → U is an S-morphism of schemes, and
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(v) h : T ′ → T is a G-equivariant morphism over f inducing an isomorphism of

GU ′-torsors T ′ ∼= T ×f,U U ′, such that φ′ = φ ◦ h.

T ′ T

U ′ U X

S

h

φ

f φ′ (2.3)

In particular, for any given S-scheme U , the groupoid [Z/G](U) consists of pairs

(T, φ) with T → U a GU -torsor, and φ : T → Z a G-equivariant S-morphism; and

isomorphisms h : (T1, φ1) → (T2, φ2) are simply isomorphisms h : T1 → T2 of GU -

torsors, compatible with the maps to Z.

T1 T2

U Z

S

h

φ2

φ1 (2.4)

The following lemma is [25, Exercise 10F].

Lemma 2.2.4.c (Induced maps on quotient stacks). Let S be a scheme, and ϕ : G→

H a homomorphism of fppf group schemes over S. Let X be an S-scheme with a

right G-action, and Y and S-scheme with a right H-action. Suppose that there is an

S-morphism f : X → Y that is compatible with the group actions. Then, f induces a

morphism of algebraic stacks f̄ : [X/G]→ [Y/H].

2.2.5 The method of descent

In this section, we summarize the basics of descent theory. We follow Skoroboga-

tov’s book [34, pp. 20], but with inverted handedness. We recast the geometric
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operations on torsors from the point of view of quotient stacks.

Situation 2.2.5.a. We are in Situation 2.2.4.a. Furthermore, we will restrict to the

the case where:

• Z is quasi-projective.

• T denotes a left fppf G-torsor over S.

• [Z/G] is the quotient stack, and f : Z → [Z/G] is the projection map. We

emphasize that [Z/G] need not be a scheme.

• G → S is affine. This assumption is not necessary, but it will ensure that

H1(S,G) is in bijection with isomorphism classes of G-torsor schemes, as a

consequence of Theorem 2.2.3.c.

The main definition of this section is the following.

Definition 2.2.5.b (Contracted product). The contracted product Z×
G

T is defined

as the quotient stack [Z ×S T/G], where G acts on the right on Z ×S T via

(z, t) · g := (z · g, g−1 · t).

The following lemma is a restatement of [28, Section 6.5.6].

Lemma 2.2.5.c (Twisting by fppf descent). Suppose we are in Situation 2.2.5.a.

Given τ ∈ H1(S,G), let T → S be a left fppf G-torsor corresponding to τ . Then:

(i) The contracted product Z×
G

T is an affine fppf S-scheme. We call this the twist

of Z by τ , and denote it Zτ . There is an induced map fτ : Zτ → [Z/G], called

the twist of f by τ .

(ii) If T = G is the trivial left G-torsor, then Zτ ∼= Z as S-schemes with a right

G-action.
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(iii) Taking Z = G acting on itself by conjugation, the twist Zτ = Gτ is an affine

fppf group scheme over S. It is called the inner twist of G by τ .

(iv) The twist Zτ is a right fppf Gτ -torsor over S. Moreover, there is an isomorphism

[Z/G] ∼= [Zτ/Gτ ].

(v) T is a (G,Gτ )-bitorsor. The same S-scheme T is a (Gτ , G)-bitorsor, which we

call the inverse torsor T−1.

(vi) T−1×
G

T is isomorphic to the trivial G-torsor.

Proof. (i) The representability of Zτ = Z×
G

T is [34, Lemma 2.2.3]. The fact that

T → S is affine follows from the affineness of G→ S. For the second statement, note

that we have a G-equivariant morphism Z ×S T → Z, namely the first projection

(z, t) 7→ z. From Lemma 2.2.4.c, we get that fτ : [Z ×S T/G]→ [Z/G] is the induced

map of quotient stacks.

(ii) We have the morphism Z×SG→ Z×S Z given by (z, g) 7→ (z, z · g). Observe

that it is G-equivariant for the twisted action on Z×SG, and the action (z1, z2) · g :=

(z1 · g, z2) on Z ×S Z. This gives a morphism of quotient stacks ψ : Zτ → Z. On

the other hand, we have a morphism Z → Zτ induced by φ : Z → Z ×S G. To see

that these are mutual inverses, it is enough to realize that the following diagram is

commutative.
Z

Z ×S G Zτ

Z ×S Z Z

ψ

φ

pr1

(iii) We already verified the affineness claim. The rest is a matter of pulling back the

group operations to T and verifying that they are G-equivariant under the twisted

action. For example, consider the inverse morphism ι : G → G pulled back to ι ×S
T : G ×S T → G ×S T . Then, we have that (g, t) · h = (h−1gh, h−1t) maps to
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(h−1g−1h, h−1t) = (g−1, t) · h. We obtain the twisted inverse morphism Gτ → Gτ by

passing to the quotient.

(iv) Consider the morphism φ : (Z ×S T )×S (G×S T )→ Z ×S T given on points

by (z, x, g, t) 7→ (z · g, t). Note that (z, x, g, t) · h = (z · h, h−1x, h−1gh, h−1t) maps to

(z · gh, h−1t) = (z · g, t) · h, so φ induces a morphism Zτ ×S Gτ → Zτ . One similarly

verifies the G-equivariance of the diagrams that descend to the group action axioms

on Zτ ×S Gτ → Zτ .

(v) Follows directly from (iv).

(vi) This is a particular instance of the general fact that Z ×[Z/G] Z ∼= Z ×S G.

Indeed, taking Z = T−1 ×S T shows that Zτ has a section fppf locally, implying that

it is the trivial G-torsor by Lemma 2.2.3.b.

Theorem 2.2.5.d (The method of descent). Suppose we are in Situation 2.2.5.a.

Then, the set of S-points on the quotient stack [Z/G] is partitioned by the images of

the S-points of the twists of f : Z → [Z/G].

[Z/G]〈S〉 =
⊔

τ∈H1(S,G)

fτ (Zτ (S)).

Proof. Recall that a map S → [Z/G] is the data of a pair (T−1, φ) where T−1 is a

right fppf G-torsor over S, and φ : T−1 → Z is a G-equivariant map of S-schemes. We

want to show that every map (T−1, φ) : S → [Z/G] factors through a twist fτ : Zτ →

[Z/G] of the canonical quotient f : Z → [Z/G], where τ is completely determined

by the isomorphism class of the point (T, φ). Indeed, in this setting, we have the

evaluation map ζ : (T−1, φ) 7→ τ := [T → S] from [Z/G]〈S〉 to H1(S,G), where τ is the

cohomology class corresponding to the leftG-torsor T → S via Theorem 2.2.3.c. Since

T−1×
G

T is isomorphic to the trivial G-torsor, we have a section e : S → T−1×
G

T that

realizes the factorization of our map (T−1, φ) by the commutativity of the diagram

in Figure 2.1. The map T−1×
G

T → Zτ is the one induced by the G-equivariant
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T−1×
G

T Zτ

T−1 Z

S [Z/G] [Zτ/Gτ ]

φ×
G

idT

fτ
φ

f

e

Figure 2.1: Proof of the method of descent.

S-morphism φ×S idT : T−1 ×S T → Z ×S T .

2.3 The root stack construction

2.3.1 Generalized effective Cartier divisors

Recall that an effective Cartier divisor on a scheme X is a closed subscheme D ⊂ X

such that the corresponding ideal sheaf OX(−D) is a line bundle [35, Tag 01WR].

Equivalently, a closed subscheme is an effective Cartier divisor if and only if it is

locally cut out by a single element which is a nonzero divisor [35, Tag 01WS]. Denote

by jD : OX(−D) ↪→ OX the natural inclusion morphism of OX-modules.

Definition 2.3.1.a ([25, Definition 10.3.2]). A generalized effective Cartier divisor

on a scheme X is a pair (L, ρ), where L is a line bundle on X, and ρ : L → OX

is a morphism of OX-modules. An isomorphism between generalized Cartier divisors

(L′, ρ′) ∼= (L, ρ) is an isomorphism of line bundles σ : L′ → L such that the following

triangle commutes
L′ L

OX .

σ

ρ′ ρ

We can multiply generalized effective Cartier divisors (L, ρ) and (L′, ρ′) by declaring

(L, ρ) · (L′, ρ′) := (L ⊗OX L′, ρ ⊗ ρ′), where ρ ⊗ ρ′ is the morphism of OX-modules

given by the composition L ⊗OX L′ → OX ⊗OX OX
∼= OX .

https://stacks.math.columbia.edu/tag/01WR
https://stacks.math.columbia.edu/tag/01WS
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Example 2.3.1.b. Given an effective Cartier divisor D ⊂ X, the pair (OX(−D), jD)

is a generalized effective Cartier divisor. By definition, two effective Cartier divisors

D′, D ⊂ X are isomorphic as generalized effective Cartier divisors if and only if they

are equal and the isomorphism is therefore unique.

Example 2.3.1.c (Generalized effective Cartier divisors on affine schemes). In light

of the equivalence between R-modules and quasicoherent OX-modules onX = SpecR,

a generalized effective Cartier divisor on an affine scheme is of the from (M̃, λ̃) for a

projective R-module M of rank one, and a morphism λ : M → R of R-modules. In

particular, λ(M) is an ideal in R. Two generalized effective Cartier divisors (M ′, λ′)

and (M,λ) on SpecR are isomorphic if and only if there exists an R-module isomor-

phism σ : M ′ → M such that λ′ = λ ◦ σ. In particular, note that such a pair gives

rise to the same ideal λ′(M ′) = λ(σ(M ′)) = λ(M).

2.3.2 Definition of a root stack

Definition 2.3.2.a (Root stack). Fix a generalized effective Cartier divisor (L, ρ) on

a scheme X, and a positive integer r. Let r
√
X; (L, ρ) be the fibered category over

the category Sch/X with:

Objects: triples (f : T → X, (M, λ), σ) where f : T → X is an X-scheme, (M, λ)

is a generalized effective Cartier divisor on T , and σ : (M⊗r, λ⊗r)→ (f ∗L, f ∗ρ) is an

isomorphism of generalized effective Cartier divisors on T .

Morphisms: a morphism (f ′ : T ′ → X, (M′, λ′), σ′) → (f : T → X, (M, λ), σ) is

the data of a pair (h, h[) where h : T ′ → T is an X-morphism, and h[ : (M′, λ′) →

(h∗M, h∗λ) is an isomorphism of generalized effective Cartier divisors on T ′ such that
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the following diagram commutes

M′⊗r h∗M⊗r

(f ′)∗L h∗f ∗L.

h[⊗r

σ′ h∗σ

∼

Remark 2.3.2.b (Points on a root stack). By Definition 2.3.2.a, X is defined over

the base X, i.e., it is a fibered category over Sch/X . In particular, the notation X(Z)

is abusive. To justify it, we consider X as a stack over SpecZ, composing with the

forgetful map Sch/X → Sch. This allows us to consider the groupoid X(Z) as the

disjoint union over x ∈ X(Z) of the groupoids X(x : SpecZ → X). More generally,

when base changing to Sfppf for some base scheme S, the scheme X ∈ Sch/S, and the

root stack X will be initially defined over (Sfppf)/X . Our standing convention will be

to denote by X(S) the disjoint union over x ∈ HomS(S,X) = X(S) of the groupoids

X(x).

We are concerned with the special case in which we root a scheme at a good old

Cartier divisor D. We abbreviate r
√
X; (OX(−D), jD) by r

√
X;D. In particular, given

an X-scheme f : T → X, the groupoid r
√
X;D(f) consists of:

Objects: triples (f : T → X, (M, λ), σ) where (M, λ) is a generalized effective

Cartier divisor on T , and σ : (M⊗r, λ⊗r) → (f ∗OX(−D), f ∗jD) is an isomorphism

of generalized effective Cartier divisors on T .

Isomorphisms: (f : T → X, (M′, λ′), σ′) → (f : T → X, (M, λ), σ) consist of pairs

(h, h[) where h ∈ Aut(T ) satisfies f = f ◦ h, and h[ : (M′, λ′) → (h∗M, h∗λ) is an

isomorphism of generalized effective Cartier divisors on T such that the following

diagram commutes

M′⊗r h∗M⊗r

(f)∗OX(−D) h∗f ∗OX(−D).

h[⊗r

σ′ h∗σ

∼
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2.3.3 The projective line rooted at a point

Remark 2.3.3.a (PID points on the projective line). Recall the greatest common

divisor of two elements a, b in R is a generator of the ideal aR+ bR. Let V := A2−0.

We have that P1(R) ∼= {(a, b) ∈ R2 : aR + bR = R} /R×. One can see this using the

fact that P1 is the quotient stack [V/Gm]. Indeed, since PicR is trivial, a point

Q ∈ P1(R) is (isomorphic to a) cartesian square

Gm V

SpecR P1,

φ

where φ is a Gm-equivariant map. Composing the identity section e : SpecR → Gm

with φ we obtain a point in V(R), i.e., a pair (a, b) ∈ R2 such that aR + bR = R.

Any other isomorphic square comes from a Gm-equivariant map φ′ : Gm → V giving

rise to a point (a′, b′) such that (a′, b′) = (ua, ub) for some u ∈ R×.

Definition 2.3.3.b. Let R be a principal ideal domain, and choose P = (c : d)

and Q = (a : b) in P1(R). Define the intersection ideal of P with Q as I(P,Q) :=

(ad− bc)R ⊂ R.

The ideal I(P,Q) cuts out the locus in SpecR over which P and Q intersect.

Indeed, the pullback of the diagonal P1 → P1 × P1 by (P,Q) : SpecR → P1 × P1

gives the closed subscheme SpecR/I(P,Q). From the magic square, I(P,Q) can

equivalently be defined by the cartesian square

SpecR/I(P,Q) SpecR

SpecR P1
R .

Q

P

(2.5)

�

Warning 2.3.3.c. The pullback P ∗OP1(−Q) does not coincide with ˜I(P,Q). More
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generally, the pulback of a quasicoherent ideal sheaf need not coincide with the ideal

sheaf of the pulled back closed subscheme (see [37, Remark 14.5.10]). Nevertheless,

we have the following commutative diagram of sheaves on SpecR with exact rows

P ∗OP1(−Q) P ∗OP1 P ∗Q∗R̃ 0

0 ˜I(P,Q) R̃ ˜R/I(P,Q) 0 .

λ̃ (2.6)

Proposition 2.3.3.d. Let R be a principal ideal domain with fraction field k. Let

P1 = ProjR[s, t]. Fix a point P ∈ P1(R), and a positive integer n. Let X := n
√
P1;P

be the nth root stack of P1 at P , defined over SpecR. Then,

X(R) =
⊔

Q∈P1(R)

X(Q),

where

(i) The fiber X(P ) contains one object up to isomorphism, with automorphism group

isomorphic to µn(R) = {u ∈ R× : un = 1}.

(ii) For Q 6= P the ideal I(P,Q) is nonzero, and the fiber X(Q) contains one object

with trivial automorphism group if and only if I(P,Q) = Jn for some ideal

0 6= J ( R, and is empty otherwise.

In particular, when R = k, we have that X〈k〉 ∼= P1(k).

Proof. Let X := n
√
P1;P . As explained in Remark 2.3.2.b, the groupoid X(R) is

the disjoint union of the groupoids X(Q), ranging over Q ∈ P1(R). We proceed to

describe each groupoid X(Q).

To start, consider the pullback of the ideal sheaf OP1(−Q) = ĨQ via the map

P : SpecR → P1, where IQ = (at − bs)R[s, t] ⊂ R[s, t]. This is a line bundle on

SpecR corresponding to a certain free R-module of rank one M(P,Q). (Explicitly,
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M(P,Q) is the degree zero part of the tensor product of graded R-modules

(at− bs)R[s, t]⊗R[s,t]
R[s, t]

(ct− ds)R[s, t]
,

but we will not use this description.) Moreover, the pullback of the generalized effec-

tive Cartier divisor jQ : OP1(−Q) ↪→ O1
P corresponds to an R-module homomorphism

λ(P,Q) : M(P,Q)→ R with image I(P,Q), as illustrated in 2.6.

The objects in X(Q) are triples (Q, (M,λ), σ), where

• (M,λ) is a generalized effective Cartier divisor on SpecR (see Example 2.3.1.c).

Since R is a principal ideal domain, M is a free R-module of rank one and λ : M →

R is an R-module homomorphism.

• σ : (M⊗n, λ⊗n) → (M(P,Q), λ(P,Q)) is an isomorphism of generalized effective

Cartier divisors on SpecR, that is, a commutative triangle of R-modules

M⊗n M(P,Q)

R.

σ

∼=

λ⊗n λ(P,Q)

(2.7)

By definition, an isomorphism (Q, (M ′, λ′), σ′) → (Q, (M,λ), σ) in X(Q) is a pair

(h, h[), where

• h : SpecR→ SpecR is a morphism over SpecR, so it must be the identity.

• h[ : M ′ → M is an isomorphism of R-modules such that λ′ = λ ◦ h[ and the

following diagram commutes

M ′⊗n M⊗n

R⊗r M(P,Q)

R.

h[⊗n

σ

∼=

σ′

λ(P,Q)

(2.8)
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(i) When P = Q, then I(P,Q) = 0 and this forces every map λ : M → R to

be the zero map. In particular, the bottom part of diagram (2.8) imposes no

restriction and the isomorphisms of X(P ) are precisely the isomorphisms of

R-modules h[ : M ′ →M such that

(M ′)⊗n M⊗n

M(P, P ).

h[⊗n

∼=

σ′
σ

In particular, any triple (P, (M,λ), σ) in X(P ) has µn(R) automorphisms.

(ii) When P 6= Q, the commutativity of (2.7) requires that the nonzero ideal I(P,Q)

is the nth power of the ideal λ(M) in R. This condition is also sufficient. Indeed,

if I(P,Q) = Jn for some nonzero ideal λ : J ⊂ R, then take an isomormphism

of R-modules σ : I(P,Q)→M(P,Q) and note that

(Q, (J, λ), σ : Jn →M(P,Q)) (2.9)

is an object of X(Q), and every object in X(Q) is isomorphic to it. To calculate

the automorphism group of this object, note that the only possible isomorphism

h[ : J → J of R-modules such that λ = h[ ◦ λ : J ↪→ R, is the identity. Thus,

the automorphism groups in X(Q) are trivial.
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Chapter 3

Stacks associated to generalized

Fermat equations

3.1 The projective line with three fractional points

3.1.1 A brief discussion of triangle groups

We collect a number of facts that we will use later. We follow [8, Section 2]. For

more on this topic see [22, Chapter II].

Let a, b, c > 1 be positive integers. We say that the triple (a, b, c) is spherical,

Euclidean, or hyperbolic according as the quantity

χ(a, b, c) := 1
a

+ 1
b

+ 1
c
− 1

is positive, zero, or negative.

Definition 3.1.1.a. Given a, b, c ∈ Z>2∪{∞}, the extended triangle group4(a, b, c) is

defined as the group generated by elements δ0, δ1, δ∞,−1, with−1 central in 4̄(a, b, c),
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subject to the relations (−1)2 = 1 and

δa0 = δb1 = δc∞ = δ0δ1δ∞ = −1. (3.1)

Define the triangle group 4̄(a, b, c) as the quotient of 4(a, b, c) by {±1}.

Let H(a, b, c) denote the simply connected Riemann surface with curvature corre-

sponding to the sign of χ(a, b, c). Thus, H(a, b, c) is the Riemann sphere CP1 in the

spherical case, the complex plane C in the euclidean case, and the upper-half plane H

in the hyperbolic case. The reason to call them triangle groups is that they arise as

groups of orientation-preserving isometries of a triangle with angles π/a, π/b, π/c in

the corresponding geometry H(a, b, c). Note that πχ(a, b, c) measures the difference

between π and the sum of the angles of this triangle.

The spherical triangle groups are all finite groups. Moreover, they are all finite

subgroups of PGL2(Q̄). These were classified by the German mathematician Felix

Klein more than a century ago. By [8, Remark 2.2], we are safe to assume temporarily

that the signature is nondecreasing: a 6 b 6 c.

• For the dihedral signatures (a, b, c) = (2, 2, c) with c > 2, the triangle groups

4̄(2, 2, c) are isomorphic to the dihedral group Dc with 2c elements. In partic-

ular, 4̄(2, 2, 3) is isomorphic to the symmetric group in three letters S3. The group

4̄(2, 2, 2) is isomorphic to the Klein four group C2 × C2.

• For the tetrahedral signature (a, b, c) = (2, 3, 3), the triangle group 4̄(2, 3, 3) is

isomorphic to A4; the group of rigid motions if the tetrahedron.

• For the octahedral signature (a, b, c) = (2, 3, 4), the triangle group 4̄(2, 3, 4) is iso-

morphic to S4; the group of rigid motions of the octahedron.

• For the icosahedral signature (a, b, c) = (2, 3, 5), the triangle group 4̄(2, 3, 5) is

isomorphic to A5; the group of rigid motions of the icosahedron.
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Table 3.1: Spherical triangle groups.

(a, b, c) 4̄(a, b, c) χ(a, b, c)

(2, 2, c) Dc 1/c

(2, 3, 3) A4 1/6

(2, 3, 4) S4 1/12

(2, 3, 5) A5 1/30

3.1.2 Existence of Galois Belyi maps

Triangle groups arise as the monodromy groups of Galois Belyi maps.

Definition 3.1.2.a. Let Z be a nice1 curve2 defined over a field k ⊂ C. A k-Belyi

map is a finite k-morphism ϕ : Z → P1 that is unramified outside {0, 1,∞}.

These remarkable covers of the projective line are named after the Ukrainian

mathematician G. V. Belyi , who famously proved that a complex algebraic curve

can be defined over a number field if and only if it admits a C-Belyi map [5, 6].

Definition 3.1.2.b. Let φ : Zk → P1
k be a k-Belyi map with automorphism k-group

scheme Aut(φ). We say that φ is geometrically Galois with Galois group G if the ex-

tension of function fields k(Zk̄) ⊃ k(P1
k̄
) is Galois, with Galois group G. Equivalently,

φ is geometrically Galois if the monodromy group Aut(φk̄) is isomorphic to G and acts

transitively the fibers. This is the case if and only if # Aut(φk̄) = #G = deg φ.

Remark 3.1.2.c. If φ : Zk → P1
k is a geometrically Galois k-Belyi map, for any

Q ∈ P1(k)− {0, 1,∞}, the fiber φ−1(Q) := Z ×k Q is a Gal(φ)-torsor over Spec k.

Definition 3.1.2.d. The signature of a Galois Belyi map ϕ : Z → P1 is the triple

(e0, e1, e∞) where eP is the ramification index eϕ(z) of any critical point z ∈ Z with
1Smooth, projective, geometrically integral.
2One dimensional separated scheme of finite type over a field.
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critical value P ∈ {0, 1,∞}. The Euler characteristic of ϕ is the quantity

χ(ϕ) := 1
e0

+ 1
e1

+ 1
e∞
− 1. (3.2)

As a consequence of the Riemann existence theorem, there exist Galois Belyi maps

of any signature. See [13, Proposition 3.1] and [26, Lemma 2.5].

Proposition 3.1.2.e. For any positive integers a, b, c > 1, there exists a number field

K and a geometrically Galois K-Belyi map φ : ZK → P1
K of signature (e0, e1, e∞) =

(a, b, c). Let g be the genus of ZK, and G be the monodromy group of φ. Then

2− 2g = deg φ · χ(φ). In particular,

(i) If χ(φ) > 0, then g = 0 and deg φ = #G(K̄) = 2/χ(φ).

(ii) If χ(φ) = 0, then g = 1.

(iii) If χ(φ) < 0, then g > 1.

A crucial fact that we will need later is that for each one of the spherical signatures,

there exists a Galois Belyi defined over Q. The maps presented in Table 3.1 are

adapted from the parametrizations found in [9, Chapter 14]. The original sources can

be found in [7] and [15].

Table 3.2: Examples of Galois Q-Belyi maps for the spherical signatures.

(a, b, c) 4̄(a, b, c) Example of a Galois Q-Belyi map P1 → P1

(2, 2, c) Dc
(sc+tc)2

4(st)c

(2, 3, 3) A4
(s2−2st−2t2)2(s4+2s3t+6s2t2−4st3+4t4)2

26t3(s−t)3(s2+st+t2)3

(2, 3, 4) S4
−(4st)2(s2−3t2)2(s4+6s2t2+81t4)2(3s4+2s2t2+3t4)2

(s2+3t2)4(s4−18s2t2+9t4)4

(2, 3, 5) A5
−(34s10+28t10)2(38s20−27310s15t5−218310s10t10+212310s5t15+216t20)2

(12st)5(81s10−1584s5t5−256t10)5
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3.1.3 The Belyi stack

In this section, we summarize a few geometric and arithmetic properties of the

Belyi stack P1(a, b, c). This is the relative stacky curve corresponding to Darmon’s

M -curve (P1; 0, a; 1, b;∞, c) in [12].

Situation 3.1.3.a. Here:

• We use e := (e0, e1, e∞) = (a, b, c) ∈ Z3 be a triple of positive integers.

• P1 = ProjZ[s, t].

• Let D0 = V (s), D1 = V (s− t), D∞ = V (t) ∈ Div(P1
Z).

Definition 3.1.3.b (Belyi stack). We define the Belyi stack P1(a, b, c) as the iterated

root stack of P1
Z at the divisor D := a · D0 + b · D1 + c · D∞. In the notation of

Section 2.3, we have

P1(a, b, c) :=
(
a√
P1;D0

)
×P1

(
b√
P1;D1

)
×P1

(
c√
P1;D∞

)
.

(2) (3) (5) (7) (11) (13) (0)

0

1

∞

µa

µb

µc

Figure 3.1: The Belyi stack of signature (a, b, c).



40

We start by summarizing some straightforward geometric properties of the Belyi

stack.

Lemma 3.1.3.c. Suppose we are in Situation 3.1.3.a. Then

(i) The Belyi stack P1(a, b, c) is a relative stacky curve over Z with coarse space P1,

in the sense of [38, Definition 11.2.1]. The coarse space morphism π : P1(a, b, c)→

P1 is an isomorphism over the open set U = P1 −D0 ∪D1 ∪D∞.

(ii) Let R = Z[1/abc]. Then the base change P1(a, b, c)R is tame.

(iii) For every closed point s in SpecR, the fiber P1(a, b, c)s is a stacky curve over

the residue field k(s), in the sense of [38, Definition 5.2.1]. Moreover, the Euler

characteristic of P1(a, b, c)s is

χ(P1(a, b, c)s) = 1
a

+ 1
b

+ 1
c
− 1. (3.3)

We define this common value to be the Euler characteristic of P1(a, b, c).

Proof. (i) These follow by standard properties of root stacks [25, Theorem 10.3.10].

See also Section 2.3. (ii) For every point s : SpecK → R, the characteristic of K

does not divide abc. Since P1(a, b, c)s is the iterated root stack of P1
K at the divisor

a · 0 + b · 1 + c · ∞ ∈ Div(P1
K), it is tame. (iii) For every point s : SpecK → R, let

X = P1(a, b, c)s be the corresponding stacky curve over K. From [38, Proposition

5.5.6] and the discussion thereafter, we know that

g(X) = g(P1
K) +

1

2

(
1− 1

G0

+ 1− 1

G1

+ 1− 1

G∞

)
= 1

2

(
3− 1

a
− 1

b
− 1

c

)
,

and thus

χ(X) = 2− 2g(X) = 1
a

+ 1
b

+ 1
c
− 1.
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We now turn to the arithmetic of the Belyi stack. We want to understand the set of

Z-points on P1(a, b, c). We have already done most of the work in Proposition 2.3.3.d.

Recall the definition of the intersection ideal of two points from Definition 2.3.3.b.

Lemma 3.1.3.d (R-points on the Belyi stack). Let R be a principal ideal domain

with fraction field k. Let P1(a, b, c) be the base extension of the Belyi stack to R. The

set P1(a, b, c)〈R〉 is in bijection with the subset of Q = (s : t) ∈ P1(R) = P1(k) such

that Q ∈ {D0, D1, D∞}, or:

• I(0, Q) = 〈s〉 is a ath power.

• I(1, Q) = 〈s− t〉 is a bth power.

• I(∞, Q) = 〈t〉 is a cth power.

Proof. From the definition of fiber product of groupoids (see [25, Section 3.4.9]), it

follows that the set P1(a, b, c)〈R〉 is the fiber product set

(
a
√

P1; 0
)
〈R〉 ×P1(R)

(
b
√

P1; 1
)
〈R〉 ×P1(R)

(
c
√

P1;∞
)
〈R〉,

so the result follows from the description of the R-points of the nth root stack of

the projective line at a given point P . See the proof of Proposition 2.3.3.d for the

details.

The fundamental group of the Belyi orbifold P1(a, b, c)(C) is a familiar one: the

triangle group 4̄(a, b, c), as defined in Section 3.1.1. Indeed, the fundamental group

of the thrice-punctured Riemann sphere CP1 − {0, 1,∞} is the free group on three

generators; these generators are represented by loops γ0, γ1, γ∞ going around the

punctures. Introducing the stackyness imposes the relations

γa0 = γb1 = γc∞ = γ0γ1γ∞ = 1
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on the generators.

0

1

∞

Figure 3.2: Generators of the fundamental group of the orbifold P1(a, b, c)(C).

More generally, the fundamental groups of any orbifold curve can be calculated

via van Kampen’s theorem [4, Proposition 5.6]. It would be desirable to translate

these results to their algebraic analogs. For our applications, it will be enough to

confirm the existence of Galois étale covers Z → P1(a, b, c) realizing the Belyi stack

as the quotient of a curve by a finite group.

The definition of the Belyi stack implies the following.

Lemma 3.1.3.e. Let φ : ZK → P1
K be a geometrically Galois K-Belyi map of sig-

nature (a, b, c). Then, there exists an étale Aut(φ)-torsor ψ : ZK → P1(a, b, c)K such

that Diagram (3.4) commutes.

ZK

P1(a, b, c)K

P1
K .

φgeometrically Galois Belyi

ψ

étale Aut(φ)-torsor

coarse

(3.4)

3.2 The Fermat stack

Situation 3.2.0.a. Here:
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• k is a number field, with ring of integers Ok.

• c := (A,B,C) ∈ Z3 is a triple of coefficients, satisfying A ·B · C 6= 0.

• e := (a, b, c) ∈ Z3 is a triple of strictly positive exponents, called a signature.

• Let m := gcd(bc, ac, bc) and d := gcd(a, b, c). We define the weight vector

associated to the signature e to be

w := (w0, w1, w∞) = (bc/m, ac/m, ab/m). (3.5)

• F : Axa + Byb + Czc = 0 is the generalized Fermat equation with coefficients c

and signature e.

• S denotes the set of rational primes p such that p | a · b · c or p | A ·B · C.

To every generalized Fermat equation F we associate a graded ring R = RF ,

a punctured cone U = UF , and a group scheme Gm(w) equipped with a natural

action on U . In this section we study the scheme quotient U/Gm(w) and the stack

quotient [U/Gm(w)]. The advantage of this quotient is that it embeds in the weighted

projective stack P(w). One can take the quotient of U by a bigger group H. We do

this in Section 3.3.

3.2.1 The graded ring

Definition 3.2.1.a (Graded ring associated to a GFE). The graded ring associated

to F is

R := Z[x, y, z]/〈F 〉,

where x has degree w0, y has degree w1 and z has degree w∞. The irrelevant ideal of

R is denoted by R+ :=
⊕

n>0Rn.
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Definition 3.2.1.b (Punctured cone associated to a GFE). The punctured cone as-

sociated to F is

U := SpecR− V (R+),

where V (I) denotes the closed subset associated to the ideal I ⊂ R.

The graded structure of R induces an action of the multiplicative group Gm :=

SpecZk[u, u−1] on the scheme U . On points, this action is given by

(x, y, z) · λ = (λw0x, λw0y, λw∞z). (3.6)

Definition 3.2.1.c. Let Gm(w) be the group scheme over SpecZ given by the image

of the homomorphism Gm → G3
m : λ 7→ (λw0 , λw0 , λw∞).

Remark 3.2.1.d. Note that our choice of w ensures that Gm → Gm(w) is injec-

tive. Indeed, ker(Gm → Gm(w)) equals µgcd(w0,w1,w∞), and gcd(w0, w1, w∞) = 1 by

construction.

Taking the scheme quotient of the punctured cone U by the group Gm(w) we

obtain the scheme C := ProjR. We show that C ⊂ P2
Z is isomorphic to the relative

curve given by the equation Axd +Byd + Czd = 0.

Lemma 3.2.1.e. We have ProjR ∼= ProjZ[X, Y, Z]/〈AXd + BY d + CZd〉, where

d = gcd(a, b, c) and degX = deg Y = degZ = 1.

Proof. By [17, Proposition 2.4.7], we have that ProjR ∼= ProjR(n) for every n > 0.

Choose n := l/d where l = lcm(a, b, c) and d = gcd(a, b, c). Consider the elements

X := xa/d, Y := yb/d, and Z := zc/d. Observe that X, Y, Z ∈ R(n)
1 = Rn and

F = AXd + BY d + CZc. From Bézout’s identity, it follows that in fact R(n) =

Z[X, Y, Z]/〈AXd +BY d + CZd〉, and this concludes the proof.
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3.2.2 The stacky proj

The Proj functor forgets important data from the graded ring. Taking the stack

quotient of U by Gm(w) instead of the scheme quotient we are able to retain this

information. Recall the stacky proj construction [25, Example 10.2.8].

Definition 3.2.2.a (Fermat stack associated to a GFE). The Fermat associated to

F is

C := ProjR := [U/Gm(w)].

C is a closed substack of the weighted projective stack P(w) := [(A3 − 0)/Gm(w)].

Lemma 3.2.2.b. Let C be the Fermat stack associated to a generalized Fermat equa-

tion F . Then,

(i) C is cyclotomic stack over Z, in the sense of [1, Definition 2.3.1].

(ii) The projective scheme C := ProjZ[X, Y, Z]/〈AXd +BXd + CZd〉 is the coarse

moduli space of C.

(iii) Let S be the finite set of bad primes defined in Situation 3.2.0.a and let R be

the ring of S-integers ZS . Then CR is a tame stacky curve over R in the sense

of [38, Definition 11.2.1].

(iv) The coarse map π : CR → CR restricts to an isomorphism above the open set

U = CR − Q0 ∪ Q1 ∪ Q∞, where Q0 = V (X), Q1 = V (Y ), and Q∞ = V (Z).

Consequently, CR is isomorphic to the iterated root stack of C at the divisor

m0 ·Q0 +m1 ·Q1 +m∞ ·Q∞, (3.7)

where the multiplicities m0,m1, and m∞ are given by Equation (3.8). In par-

ticular, CR is a relative stacky curve over SpecR in the sense of [38, Definition



46

11.2.1].

Proof. (i) Indeed, Gm acts properly on U via Gm(w) with finite stabilizers (namely µm

stabilizers). So, C is cyclotomic by [1, Example 2.3.2]. (ii) The coarse space of a quo-

tient stack coincides with the coarse quotient. The result follows from Lemma 3.2.1.e.

(iii) We need to verify that for every point s : SpecK → R, the base change Cs is

a stacky curve over K. The Deligne–Mumford statement follows from [25, Corllary

8.4.2]. The smoothness follows from [35, Tag 0DLS]. The dimension statement follows

from [35, Tag 0AFR]. The properness statement follows from the properness of the

coarse map, the properness of CK → SpecK, and [25, Proposition 10.16.1]. Likewise,

the geometric irreducibility statement follows from the geometric irreducibility of CK ,

and the fact that the coarse map is a universal homeomorphism [10, Theorem 3.1].

(iv) This follows from (iii) and the fact that every tame relative stacky curve is

an iterated root stack over the ramification divisor of its coarse map [31, Lemma 2.1].

To verify that these are the correct stabilizers, we may work over a geometric point

s : Spec k̄ → SpecR. Let P = (x, y, z) ∈ U(k̄). Suppose that g = (λw0 , λw1 , λw∞) ∈

Gm(w)(k̄) stabilizes P . If xyz 6= 0, it follows that g = (1, 1, 1). If xyz = 0, then

only one coordinate can be zero. Suppose that x = 0. Then, we have that λw1 =

λw∞ = 1, which implies that λ ∈ µw1(k̄) ∩ µw∞(k̄) = µgcd(w1,w∞)(k̄). Let w′0 ∈

{0, . . . , gcd(w1, w∞)− 1} be the residue class of w0 modulo gcd(w1, w∞). Since g =

(λw0 , 1, 1), we conclude that StabGm(w)(Q0) has order


gcd(w1, w∞)/w′0, if w′0 | gcd(w1, w∞)

gcd(w1, w∞). otherwise.
(3.8)

We obtain m1 and m∞ by analogous formulas.

https://stacks.math.columbia.edu/tag/0DLS
https://stacks.math.columbia.edu/tag/0AFR
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3.3 The group scheme H

For this section we will need some basic notions from the theory of diagonalizable

group schemes of multiplicative type. See the notes of Oésterle [24] and Conrad [11,

Appendix B].

Given a base scheme S, and a finitely generated Z-module M , we define DS(M)

to be the S-group scheme SpecOS[M ] representing the functor HomS−GrpSch(MS,Gm)

of characters of the constant S-group scheme MS. An S-group scheme is called

diagonalizable if it is isomorphic to DS(M) for some finitely generated Z-module M .

Moreover, DS gives a contravariant functor between finitely generated Z-modules and

the category of diagonalizable S-group schemes satisfying certain exactness properties

that are summarized in [24, 5.3].

Situation 3.3.0.a. Let

• D denote the functor described above, over the base scheme S = SpecZ.

• (a, b, c) be a triple of positive integers.

• m := gcd(bc, ac, ab), and define the weight vector of (a, b, c) by w = (w0, w1, w∞),

where w0 = bc/m, w1 = ac/m and w∞ = ab/m.

• Gm(w) be the image of the (injective) homomorphism Gm → G3
m given by λ 7→

(λw0 , λw1 , λw∞).

• 4̄(a, b, c) denote the triangle group

4̄(a, b, c) = 〈γ0, γ1, γ∞ : γa0 = γb1 = γc∞ = γ0γ1γ∞ = 1〉.

Definition 3.3.0.b. Consider the finitely generated Z-module

M := 〈(a,−b, 0), (0, b,−c), (−a, 0, c)〉 ⊂ Z3. (3.9)
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Define H to be the subgroup D(Z3/M) of G3
m = D(Z3).

The diagonalizable group H admits a maximal torus corresponding to the Z-free

part of Z3/M . Moreover, we have the following characterization. An important

formula to keep in mind is

lcm(a, b, c) =
abc

gcd(bc, ac, ab)
. (3.10)

Lemma 3.3.0.c (The structure of H). Let K = D(4̄(a, b, c)ab), and recall that m =

gcd(bc, ac, ab).

1. The Z-module Z3/M is isomorphic to Z⊕ 4̄(a, b, c)ab.

2. Let K be the kernel of the map

µa × µb × µc → µlcm(a,b,c), (ξ0, ξ1, ξ∞) 7→ ξ0 · ξ1 · ξ∞.

Then K ∼= D(4̄(a, b, c)ab).

3. The group scheme H is equal to Gm(w) · K and isomorphic to Gm × K.

4. In particular, when m = 1, H = Gm(w) ∼= Gm.

Proof. (1) We calculate the invariant factor decomposition of Z3/M from the Smith

normal form of the matrix having the generators of M as its rows [36, Theorem 2.3].

Let

m =


a −b 0

0 b −c

−a 0 c

 .
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From Stanley’s formula [36, Theorem 2.4], we see that

SNF(m) =


d 0 0

0 m/d 0

0 0 0

 ,

where d = gcd(a, b, c) is the greatest common divisor of the 1 × 1 minors, and m =

gcd(bc, ac, ab) is the greatest common divisor of the 2 × 2 minors. It follows that

Z3/M ∼= Z⊕ Z/dZ⊕ Z/(m/d)Z.

It remains to show that Z/dZ ⊕ Z/(m/d)Z is isomorphic to 4̄(a, b, c)ab. To this

end, note that the group 4̄(a, b, c)ab is isomorphic to the quotient of Z3 by the sub-

group

J = 〈(a, 0, 0), (0, b, 0), (0, 0, c), (1, 1, 1)〉.

As before, we calculate the invariant factor decomposition of Z3/J via a Smith normal

form computation.

SNF



a 0 0

0 b 0

0 0 c

1 1 1


=



1 0 0

0 d 0

0 0 m/d

0 0 0


.

We conclude that 4̄(a, b, c)ab ∼= Z3/J ∼= Z/dZ⊕ Z/(m/d)Z.

(2) From the presentation given in Situation 3.3.0.a, we see that 4̄(a, b, c)ab is the

cokernel of the map Z/lZ→ Z/aZ⊕Z/bZ⊕Z/cZ taking 1 mod l 7→ (1 mod a, 1 mod b, 1 mod c),

where l = lcm(a, b, c). The result follows by applying the functor D.

(3) The computation above shows that Z3/M has Z-rank one. The free part of

Z3/M corresponds to the (dual of the) kernel of the matrix m. That is, we want a
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generator for the subgroup of v ∈ Z3 such that


a −b 0

0 b −c

−a 0 c

v =


0

0

0

 .

In other words, we are looking for minimal v1, v2, v3 ∈ Z satisfying av1 = bv2 = cv3.

But this is precisely the property defining the weight vector w (see Situation 3.3.0.a).

The equality H = Gm(w) ·K follows from the exact sequence 0→ Z3/〈w〉 → Z3/M →

Z3/J → 0 and the exactness of the functor D.

The statement that H ∼= Gm × K follows from the fact that Z3/〈w〉 has Z-rank

one and the general fact that D(M1 ⊕M2) ∼= D(M1) ×D(M2) for arbitrary finitely

generated Z-modules M1,M2.

Lemma 3.3.0.d. Let S be a finite set of rational primes, and let R = Z[S−1]. Then

H1(R,HR) is finite. Moreover, H1(Z,H) is trivial.

Proof. From H ∼= Gm × K, we obtain the exact sequence H1(R,Gm) → H1(R,H) →

H1(R,K) → H2(R,Gm). Since both H1(R,Gm) = PicZ is trivial, we have that

H1(R,H) injects into the finite group H1(R,K). In the special case of R = Z,

H2(Z,Gm) = BrZ is also trivial, and we obtain that H1(Z,H) ∼= H1(Z,K). But

Minkowski’s theorem implies that H1(Z,K) is trivial.

3.4 The Belyi stack as a quotient

Situation 3.4.0.a. We place ourselves in the following situation for the remainder

of this section.

• Let F := SpecZ[x, y, z]/〈Axa +Byb + Czc〉 ⊂ A3.

• Let T be set of primes dividing the integer a · b · c · A ·B · C.
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• Let R = Z[T −1] be the ring of T -integers.

• Let H be the affine group scheme introduced in Definition 3.3.0.b.

• Let U be the punctured cone associated to F , defined over R.

• Let s : Spec k → SpecR denote a geometric point.

• For a geometric object X defined over R, we let Xs := X ×s Spec k denote the

geometric fiber above s.

In the author’s view, the following theorem is the central result in the theory of

generalized Fermat equations. It serves as the starting point for a substantial portion

of the main results in the field.

Theorem 3.4.0.b. The map

j : U → P1
R, (x, y, z) 7→ (−Axa : Czc) (3.11)

induces an isomorphism j : [U/HR] ∼= P1(a, b, c)R.

The reason we are interested in the group scheme H is that it arises as the stabilizer

in G3
m of the punctured cone U associated to a generalized Fermat equation.

Lemma 3.4.0.c. Let S be the stabilizer subgroup of U under the action of G3
m on A3

Z.

Then, H ⊂ S and HR = SR.

Proof. By definition, S := StabG3
m

(U) is the group scheme that takes any Z-algebra

B to the group

S(B) =
{

(λ0, λ1, λ∞) ∈ (B×)3 : F (λ0x, λ1y, λ∞z)/F (x, y, z) ∈ B×
}
,
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and this group visibly contains

H(B) =
{

(λ0, λ1, λ∞) ∈ (B×)3 : λa0 = λb1 = λc∞
}
.

So we have an inclusion H ↪→ S. For every geometric point s : Spec k → SpecR, this

inclusion pulls back to an equality Ss = Hs, so we conclude that SR = HR by fpqc

descent [35, Tag 02L4] and spreading out.

We start by considering the situation on the geometric fibers.

Lemma 3.4.0.d. For every geometric point s : Spec k → SpecR, the map

j : Us → P1
s, (x, y, z) 7→ (−Axa : Czc) (3.12)

induces an isomorphism js : [Us/Hs] ∼= P1(a, b, c)s.

Proof. We omit the subscript “s ” and work over k throughout. We start by showing

that j induces a coarse map j : [U/H] → P1. Recall that R = k[x, y, z]/〈Axa +

Byb + Czc〉 is the coordinate ring of F . Consider the affine open D(z) ⊂ F , with

corresponding coordinate ring R[1/z]. Note that U ∩ D(z) = D(z). Since D(z) =

SpecR[1/z] is affine, H is linearly reductive, and [D(z)/H] is tame, the natural map

[SpecR[1/z]/H] → SpecR[1/z]H is a good moduli space and thus a coarse moduli

space (see [2, Theorem 13.2 and Remark 7.3]). Now, we calculate that R[1/z]H =

k
[−Axa
Czc

]
. Applying the same argument to D(x), the result follows by glueing the

maps

[U ∩D(x)/H]→ Spec k
[−Czc

Axa

]
, [U ∩D(z)/H] → Spec k

[−Axa
Czc

]
to obtain the coarse map j : [U/H]→ P1.

We proceed to show that [U/H] ∼= P1(a, b, c). By definition of P1(a, b, c) as an

iterated root stack, the map j : U → P1 induces a map j : [U/H]→ P1(a, b, c). Indeed,

https://stacks.math.columbia.edu/tag/02L4
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the map j : U → P1 satisfies

j∗OP1(−P0) = La0, j∗OP1(−P1) = Lb1, j∗OP1(−P∞) = Lc∞,

with L0 = x · OU ,L1 = y · OU and L∞ = z · OU , and this gives rise an object in

P1(a, b, c)(U).

Since [U/H]〈k〉 = P1(k) = P1(a, b, c)〈k〉, and the map [U/H](k) → P1(a, b, c)(k)

induces isomorphisms between the stabilizer groups of the stacky points

StabH(V (x)) ∼= µa(k),

StabH(V (y)) ∼= µb(k),

StabH(V (z)) ∼= µc(k).

The result follows from [38, Lemma 5.3.10(a)].

Proof of Theorem 3.4.0.b. The R-morphism j is surjective (this can be checked on

geometric fibers by fpqc descent [35, Tag 02KV] and spreading out) and HR-invariant.

From Lemma 2.2.4.c, this induces a morphism [U/HR] → P1
R, which factors through

the coarse map P1(a, b, c)R → P1
R by the definition of the Belyi stack. Both P1(a, b, c)R

and [U/HR] are tame relative stacky curves. To calculate the coarse space of U/H of

[U/H], we use the same argument as in the proof of Lemma 3.4.0.d.

U

[U/HR] P1(a, b, c)R

P1
R

j

coarse

j

coarse

In summary, we have a morphism j : [U/H]R → P1(a, b, c)R with the property

that on each geometric fiber, the induced map on the coarse spaces (U/H)s → P1
s

https://stacks.math.columbia.edu/tag/02KV
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is an isomorphism inducing a stabilizer-preserving bijection between [U/H]〈k̄〉 and

P1(a, b, c)〈k̄〉. [38, Lemma 5.3.10 (a)] implies that (j̃)s is an isomorphism for every

geometric point of SpecR, and this implies that the same is true globally.

Alternatively, we can apply Santens’ characterization of tame relative stacky

curves [31, Lemma 2.1].

3.5 The method of descent on the Belyi stack

Situation 3.5.0.a. Here

• S is a finite set of places in a number field k, containing the archimedean places.

• OS is the ring of S-integers of k.

• G is a finite fppf group scheme over SpecOS .

• We abbreviate H1(OS , G) = Ȟ1
fppf(OS , G), as in Section 2.2.1.

The finiteness results presented in this section rely crucially on the finiteness of

the cohomology sets H1(OS , G). Let H1
S(k,G(k̄)) denote the subset of the Galois

cohomology set H1(k,G(k̄)) of cohomology classes unramified outside of S, as in [28,

Section 6.5.7]. See also [28, Exercises 8.4 and 8.5].

Theorem 3.5.0.b. The following statements hold.

1. There is an isomorphism of pointed sets H1(OS , G) ∼= H1
S(k,G(k̄)). This iso-

morphism sends the class of a G-torsor T → SpecR to the class of the Gk-torsor

Tk → Spec k.

2. The set H1(OS , G) is finite.

Working with H1
S(k,G(k̄)) instead of H1(OS , G) allows us to work over k. In

practice, this is useful for computing the twists with Galois cohomology.
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Theorem 3.5.0.c (Integral descent on the Belyi stack). Let ϕ : Z → P1 be the OS

integral model of a Galois Belyi map ϕk : Zk → P1
k, and let G := Aut(ϕ) be the

automorphism group scheme. Denote by φ : Z → P1(a, b, c) the corresponding étale

cover. Then, the set of OS-points on the Belyi stack P1(a, b, c) is parametrized by

the disjoint union of the images of the OS-points of the twisted torsors φτ : : Zτ →

P1(a, b, c). That is:

P1(a, b, c)〈OS〉 =
⊔

τ∈H1(OS ,G)

φτ (Zτ (OS)) =
⊔

τ∈H1
S(k,G(k̄))

ϕτ (Zτ (k)).

Proof. The first statement is a particular instance of Theorem 2.2.5.d. To verify

the second equality in the displayed equation, recall that the valuative criterion of

properness (see [28, Theorem 3.2.13]) implies that Z(R) ∼= Z(k) and P1(R) ∼= P1(k).

Since P1(a, b, c)〈OS〉 ⊂ P1(OS), and the maps ϕτ : Zτ → P1 factors through φτ , we

have that φτ (Z(OS)) = ϕτ (Zτ (k)).

3.5.1 The theorem of Darmon–Granville

In this section, we employ the method of descent on the Belyi stack P1(a, b, c) to

prove a celebrated theorem of Darmon and Granville [13, Theorem 2] in the setting

of hyperbolic generalized Fermat equations. While this approach is essentially the

same as the original proof, it has the advantage of being both more conceptual and

more algorithmic.

Theorem 3.5.1.a (The Darmon–Granville theorem). Let

F : Axa +Byb + Czc = 0 (3.13)

be a hyperbolic generalized Fermat equation with integer coefficients. Then, the set

U(Z) of primitive integer solutions to Equation (3.13) is finite.
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Proof. From Proposition 3.1.2.e, after replacing Q with a finite extension k, and

choosing a large enough set of bad places S, we can find an integral model of a

geometrically Galois Belyi map ϕ : Z → P1, with automorphism group scheme G,

defined over the ring OS . This map factors through the Belyi stack and induces an

isomorphism P1(a, b, c) ∼= [Z/G] over SpecOS .

• First, H1(OS, G) is finite (Theorem 3.5.0.b).

• Second, for each τ ∈ H1(OS , G), the curves Zτ
k are nice k-curves of genus g >

1. Indeed, the Hurwitz formula gives χ(Z) = deg(ϕ)χ(P1(a, b, c)) < 0. In

particular, the valuative criterion of properness ensures that Zτ (OS) = Zτ (k).

From the method of descent (Theorem 3.5.0.c), we have

P1(a, b, c)〈OS〉 ∼=
⊔

τ∈H1
S(k,G(k̄))

ϕτ (Zτ (k))

Faltings’ theorem [16] implies that Zτ (k) is finite for every τ , so P1(a, b, c)〈OS〉 is finite.

But U(Z)/H(Z) injects into P1(a, b, c)〈OS〉. Since H(Z) is finite, so is U(Z).

3.5.2 The theorem of Beukers

In this section, we employ the method of descent to sketch a proof of a beautiful

theorem of Beukers [7, Theorem 1.2]. Beukers proves a more general theorem (see [7,

Theorem 1.5]) for Diophantine equations “arising from the invariant theory of finite

matrix groups", of which the spherical generalized Fermat equations are a special

case. It would be interesting to apply the method of descent (as in Theorem 2.2.5.d)

to this setting as well.

Theorem 3.5.2.a (Beukers theorem). Let F : Axa + Byb + Czc = 0 be a spherical

generalized Fermat equation with integer coefficients. Then, the set U(Z) of primitive
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integer solutions is either infinite or empty. Furthermore, if a primitive integral

solution exists, then there is a finite set of polynomials

{(xτ (s, t), yτ (s, t), zτ (s, t))}τ ⊂ Z[s, t]3

such that every primitive integral solution (x, y, z) ∈ U(Z) can by obtained by special-

ization of the parameters s, t to values s, t ∈ Z.

The starting point is the existence of geometrically Galois Belyi maps defined over

Q for the spherical signatures (see Table 3.2). Let ϕ : P1
Q → P1

Q be such a map. For a

finite set of rational primes S, we can take an integral model ϕ : P1 → P1 defined over

ZS . Let G = Aut(ϕ) be the automorphism group scheme. By Theorem 3.5.0.c, we can

write P1(a, b, c)〈ZS〉 as the disjoint union of ϕτ (P1
τ (Q)), as τ ranges over H1

S(Q, G(Q̄)).

In particular, we see that for each (x, y, z) ∈ U(Z) ⊂ U(ZS), the point j(x, y, z) =

(−Axa : Czc) is equal to ϕτ (s : t) for a unique τ with the property that P1
τ
∼= P1

(since otherwise P1
τ (Q) = ∅), and for some (s : t) ∈ P1(Q). Since each ϕτ is a Galois

Belyi map defined over Q, we can find homogeneous polynomials Ψτ,0(s, t),Ψτ,1(s, t),

and Ψτ,∞(s, t) of degree #4̄(a, b, c) such that ϕτ (s : t) = (Ψτ,0(s, t) : Ψτ,∞(s, t)).

Moreover,

Ψτ,0(s, t) = Aτ · x(s, t)a, Ψτ,1(s, t) = Bτ · y(s, t)b, Ψτ,∞(s, t) = Cτ · z(s, t)c,

where Aτ , Bτ , Cτ are integers supported in S. These are almost the polynomials in

the statement of the theorem. To ensure that we hit all of U(Z) by specializing to

s, t ∈ Z we must (i) consider the H(Z)-orbits of this polynomials as well, and (ii)

apply a suitable change of coordinates. For the second task, Beukers’ notices that the

set of points (s, t) ∈ Q2 such that (Ψτ,0(s, t),Ψτ,∞(s, t)) ∈ Z2 generates a full lattice

Λτ ⊂ Q2. The change of coordinates in question arises from the choice of an integral

basis for Λτ . These ideas will be discussed in more detail in Section 4.3.
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Chapter 4

Counting primitive integral solutions

4.1 Rational points of bounded height in the image

of a rational function

The results presented in this section are undoubtedly well known; however, authors

often lose track of the leading constants ([33, p. 133], [19, Theorem B.6.1]. For the

sake of completeness, we provide full proofs, making the constants explicit.

Situation 4.1.0.a. Throughout the remainder of this section, we shall work with the

following notations.

• Let φ : P1
Q → P1

Q be a non constant Q-morphism of degree d := deg(φ).

• Let φ0, φ∞ ∈ Z[s, t] be a choice of relatively prime homogeneous polynomials of

degree d such that φ is given by

φ(s : t) = (φ0(s, t) : φ∞(s, t)).

• Let V := A2 − 0 be the punctured cone over P1
Z. We identify V(Z) with the set

{(s, t) ∈ Z2 : gcd(s, t) = 1}. The map V(Z) → P1(Q) given by (s, t) 7→ (s : t) is
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two-to-one.

• Denote by φ̃ : A2 → A2 the lift φ̃(s, t) := (φ0(s, t), φ∞(s, t)) of φ.

• On P1(Q) = P1(Z), Ht: P1(Q) → Z>0 is the usual multiplicative height, given by

Ht(Q) = max {| num(Q)|, | den(Q)|}.

• Ω(φ) ⊂ P1(Q) is the image of φ(Q) : P1(Q)→ P1(Q).

• For any Ω ⊂ P1(Q) and for every h > 0, Ω6h is the finite subset of Ω consisting

of those points Q with Ht(Q) 6 h. The counting function of Ω ⊂ P1(Q) is denoted

N(Ω;h) := #Ω6h.

• We denote by Aut(φ) the group of Q-automorphisms of the map φ.

The main result of this section is the following.

Proposition 4.1.0.b. We have N(Ω(φ);h) � hχ/2 as h→∞. More precisely, there

exists an explicitly computable constant δ(φ) > 0 such that

δ(φ) · hχ/2 6 N(Ω(φ));h) 6 d · δ(φ) · hχ/2, as h→∞.

The constant δ(φ) is described in Equation (4.6)

In the special case where φ is geometrically Galois, we can keep track of the exact

number of Q-rational points on each fiber φ−1(Q) := P1×QQ, for all but finitely many

Q ∈ Ω(φ). This allows us to promote the asymptotic bounds of Proposition 4.1.0.b

to an asymptotic count.

Corollary 4.1.0.c. Suppose that φ is geometrically Galois. Then, there exists an

explicitly computable constant κ(φ) ∈ R>0 such that for every ε > 0,

N(Ω(φ);h) = κ(φ) · h2/d +O
(
h1/d+ε

)
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as h→∞. Moreover, the leading constant is given by

κ(φ) = δ(φ)/# Aut(φ),

and the implied constant depends on φ and ε.

4.1.1 The primitivity defect set

Given (s, t) ∈ V(Z), it does not follow that φ̃(s, t) = (φ0(s, t), φ∞(s, t)) ∈ V(Z).

For example, consider the map

φ̃(s, t) = ((s2 − t2)2, (2st)2)

arising in the parametrization of Pythagorean triples. When s and t have the same

parity, 4 | gcd φ̃(s, t). In general, φ̃ : V(Z)→ Z2 and we have the following commuta-

tive diagram of sets.
P1(Q) V(Z)

Z2

P1(Q) V(Z)

φ

φ̃

·(1/ gcd)

Define the primitivity defect set of φ by

D(φ) :=
{

gcd φ̃(s, t) : (s, t) ∈ V(Z)
}
. (4.1)

The set D(φ) is finite. Let R(φ) ∈ Z denote the resultant of the homogeneous

polynomials φ0 and φ∞.

Lemma 4.1.1.a. If e ∈ D(φ), then e | R(φ).

Proof. Let e ∈ D(φ). By definition, there exists (s, t) ∈ V(Z) such that gcd φ̃(s, t) = e.
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In particular, we can find u, v ∈ Z such that u ·φ0(s, t)+v ·φ∞(s, t) = e. By standard

properties of the resultant, we can find polynomials g0, g∞ ∈ Z[s, t] such that

R(φ) = g0(s, t) · φ0(s, t) + g∞(s, t) · φ∞(s, t).

By evaluating the expression above at (s, t) = (s, t), we see that R(φ) is a multiple of

e.

For each e ∈ D(φ), consider the set

V(Z)e :=
{

(s, t) ∈ V(Z) : gcd φ̃(s, t) = e
}
.

We have a partition V(Z) =
⊔
e∈D(φ) V(Z)e.

Figure 4.1: Partition V(Z) = V(Z)1 t V(Z)4 with respect to the map φ(s : t) =
((s2 − t2)2 : (2st)2), with primitivity defect set D(φ) = {1, 4}.
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4.1.2 Proofs

We start with the proof of the asymptotic bounds.

Proof of Proposition 4.1.0.b. For each e ∈ D(φ), consider the lattice

Λe := SpanZV(Z)e.

We will abbreviate max φ̃(s, t) := max {|φ0(s, t)|, |φ∞(s, t)|}.

Step 1: Lipschitz

We may apply the principle of Lipschitz [14] (in the form of [18, Lemma 2.22]) to

obtain

Ñe(h) := #
{

(s, t) ∈ Λe : max φ̃(s, t) 6 eh
}

= δ(φ, e) · h2/d +Oe

(
h1/d

)
. (4.2)

The constant is given by

δ(φ, e) =
d
√
e · vol (R(φ, 1))

det Λe

,

where vol (R(φ, 1)) is the Lebesgue measure of the compact regionR(φ, 1) in R2 given

by max {|φ0(s, t)|, |φ∞(s, t)|} 6 1, and det Λe is the covolume of the lattice Λe.
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Step 2: Möbius sieving

We intersect Λe with V(Z) and apply a standard Möbius sieve to Equation (4.2)

to obtain, for every ε > 0, the asymptotic

Ne(h) := #
{

(s, t) ∈ V(Z)e : max φ̃(s, t) 6 eh
}

=
6

π2
· δ(e) · h2/d +Oe,ε

(
h1/d+ε

)
. (4.3)

Indeed, from the partition

{
(s, t) ∈ Λe : max φ̃(s, t) 6 eh

}
=⊔

16m6 d√
eh

{
(ms,mt) ∈ Λe : md max φ̃(s, t) 6 eh, gcd(s, t) = e

}
,

we deduce that

Ñe(h) =
∑

16m6 d√
eh

Ne(h/m
d).

From Möbius inversion (see [3, Theorem 2.23]), we get

Ne(h) =
∑

16m6 d√
eh

µ(m)Ñe(h/m
d)

=
∑

16m6 d√
eh

µ(m)

(
δ(φ, e)

m2
· h2/d +Oe

(
h1/d

m

))

=
∑

16m6 d√
eh

µ(m) · δ(φ, e) · h
2/d

m2
+

∑
16m6 d√

eh

Oe

(
h1/d

m

)

= δ(φ, e) · h2/d
∑

16m6 d√
eh

µ(m)

m2
+ h1/dOe

 ∑
16m6 d√

eh

1

mε

 .

From this last expression we see that Equation (4.3) holds as h→∞.
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Step 3: back to P1(Q).

Consider the related counting function

Nφ(h) := #
{

(s : t) ∈ P1(Q) : Ht(φ(s : t)) 6 h
}
,

which counts all Q-rational points on P1 with respect to the height Ht pulled back

by φ. In general, we have the inequalities

N(Ω(φ);h) 6 Nφ(h) 6 d ·N(Ω(φ);h) (4.4)

which arise from the fact that a point Q = φ(P ) ∈ Ω(φ) has at least one rational

point in the fiber φ−1(Q), and at most d = deg φ.

To conclude, we relate Nφ(h) to the previous estimates.

Nφ(h) =
1

2

∑
e∈D(φ)

Ne(h)

=
1

2

∑
e∈D(φ)

6

π2
· δ(φ, e) · h2/d +O

(
h1/d+ε

)
.

=
3

π2

 ∑
e∈D(φ)

δ(φ, e)

 · h2/d +O
(
h1/d+ε

)
. (4.5)

In particular, the constant term is

δ(φ) =
3

π2

∑
e∈D(φ)

δ(φ, e). (4.6)

We will use Proposition 4.1.0.b in the special case of a geometrically GaloisQ-Belyi

map φ.

Proof of Corollary 4.1.0.c. Suppose that φ is geometrically Galois, with Galois group
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Gal(φ) = Aut(φQ̄). Then, Gal(φ) acts transitively and without stabilizers on the

fibers of unramified points Q ∈ P1(Q). Since there are finitely many points that

ramify, they do not influence the asymptotic count, so we ignore them. We claim

that for every Q ∈ φ(P1(Q)) = Ω(φ), we have that

#φ−1(Q)(Q) = # Aut(φ).

Indeed Aut(φ) = Aut(φQ̄)GalQ̄ , and for every P ∈ φ−1(Q)(Q) and γ ∈ Aut(φ), we

have that γ(P ) ∈ φ−1(Q)(Q) as well. On the other hand, given P, P ′ ∈ φ−1(Q)(Q),

there exists γ ∈ Aut(φQ̄) such that γ(P ′) = P . For any σ ∈ GalQ, we see that

γσ(P ′) = γ(σ−1P ′) = γ(P ′). Therefore, γ−1γσ stabilizes P ′, which implies that

γ−1γσ = 1, and therefore γ ∈ Aut(φ). It follows that Nφ(h) = # Aut(φ) ·N(Ω(φ);h),

and the proof is complete.

4.2 Counting integral points on the Belyi stack

Situation 4.2.0.a (Counting integral points on the Belyi stack). Here

• Let e = (a, b, c) be a spherical signature (see Table 3.1), with a, b, c > 1.

• Let P1(a, b, c) be the Belyi stack of signature (a, b, c).

• Let S is a finite set of primes containing all prime divisors of a · b · c.

• Let ZS be the ring of S-integers.

• Recall that H1
S(Q, •) denotes the Galois cohomology set classifying •-torsors

over SpecQ unramified outside of S.

• Let Ω(e,S) ⊂ P1(Q) be the set of ZS-points on P1(a, b, c). See Lemma 3.1.3.d.

• For any Ω ⊂ P1(Q), and any h > 0, we have the counting function N(Ω;h)

defined in Situation 4.1.0.a.
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The main result of this section is the asymptotic order of growth of the counting

function N(Ω(e,S);h).

Theorem 4.2.0.b. There exists an explicitly computable constant κ(e,S) > 0 such

that, for every ε > 0

N(Ω(a, b, c), h) = κ(e,S) · hχ +O(hχ/2+ε),

as h→∞. The implicit constant depends on e, S, and ε.

Proof. We argue as in Section 3.5.2. It is well known that for every spherical signature

there exists a geometrically Galois Belyi map ϕQ defined over Q. Moreover, these

maps admit integral models ϕ : P1 → P1 over ZS . The map ϕ gives rise to an fppf

Aut(ϕ)-torsor φ : P1 → P1(a, b, c), defined over SpecZS . In particular, P1(a, b, c) ∼=

[P1/Aut(ϕ)] over SpecZS . By descent, we have that

P1(a, b, c)〈R〉 =
⊔

τ∈H1(R,Aut(ϕR))

ϕτ (P1
τ (R)) =

⊔
τ∈H1

S(Q,G)

ϕτ (P1
τ (Q)).

We conclude that N(Ω(e,S);h) is the sum of N(Ω(ϕτ );h) where τ ranges over those

cohomology classes in H1
S(Q, G) such that P1

τ (Q) 6= ∅. Since for every such τ , the

twists ϕτ : P1
Q → P1

Q are geometrically Galois Belyi maps defined over Q, the result

follows by Corollary 4.1.0.c.

4.3 Counting primitive integral solutions to general-

ized Fermat equations

Situation 4.3.0.a (Counting primitive integer solutions). Here

• Let F : Axa + Byb + Czc = 0 be a spherical generalized Fermat equation with

integer coefficients.
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• Let U be the punctured cone over Z associated to F , as in Definition 3.2.1.b.

• Let G denote the triangle group 4̄(a, b, c), defined in Definition 3.1.1.a.

• Let S be the set of rational primes p dividing a · b · c or A ·B · C.

• Let ZS be the ring of S-integers.

Theorem 4.3.0.b. Consider Equation (1.1) with A,B,C ∈ Z3 nonzero and a, b, c >

1. Suppose that χ := χ(a, b, c) > 0, and that there exists at least one primitive integral

solution to F . Then, there exists an explicit constant κ(F ) > 0 such that for every

ε > 0,

N(Ω(F ), h) = κ(F ) · hχ +O(hχ/2+ε),

as h→∞. The implied constant depends on F and ε.

Proof. Without loss of generality, we assume that gcd(A,B,C) = 1. We work over

R = ZS . Our starting point is as in the proof of Theorem 4.2.0.b. Let G denote the

automorphism group scheme of a Galois Belyi map ϕ : P1 → P1 of signature (a, b, c),

defined over SpecZS . We have the partition

P1(a, b, c)〈ZS〉 =
⊔

τ∈H1(ZS ,G)

ϕτ (P1
τ (ZS)) =

⊔
τ∈H1

S(Q,G(Q̄))

ϕτ (P1
τ (Q)).

Recal that the j-map j : U → P1 is given by (x, y, z) 7→ (−Axa : Czc). Noting

that j(U(Z)) ⊂ P1(a, b, c)〈R〉 = Ω(e,S), we define TF ⊂ H1
S(Q, G(Q̄)) to be the

subset of those cohomology classes τ such that j(U(Z)) ∩ ϕτ (P1
τ (Q)) 6= ∅. Observe

that U(Z) 6= ∅ implies that TF 6= ∅. Moreover, for every τ ∈ TF we have that

(P1
τ )Q
∼= P1

Q. Each map ϕτ : P1
Q → P1

Q is descends from a map Ψτ : A2
Q → A2

Q. For
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each τ ∈ TF we have a commutative diagram of sets

V(Z) P1(Q) A2(Q)

U(Z) P1(a, b, c)〈R〉

P1(Q) A2(Q).

ϕτ

Ψτ

j

coarse

(4.7)

Explicitly, Ψτ = (Ψτ,0,Ψτ,∞) where Ψτ,0,Ψτ,∞ ∈ Z[s, t] are homogeneous polynomials

of degree #G(Q̄) = #4̄(a, b, c) satisfying the following two conditions:

(i) Ψτ,0/Ψτ,∞ = 1 + Ψτ,1/Ψτ,∞ for some Ψτ,1 ∈ Z[s, t] homogeneous of the same

degree.

(ii) The ideals generated by these polynomials in R[s, t] are perfect (a, b, c) powers.

More precisely: Ψτ,0R[s, t] = Ja0 ,Ψτ,1R[s, t] = J b1 , and Ψτ,∞R[s, t] = J c∞ for

nonzero principal ideals J0, J1, J∞ ⊂ R[s, t].

Following Beukers [7, Proof of Theorem 1.5], for each τ ∈ TF we consider the full

lattice Λτ ⊂ Q2 = A2(Q) defined as the Z-span of those pairs (s, t) ∈ Q2 such that

Ψτ (s, t) ∈ Z2. Chose integral bases
{
~ατ , ~βτ

}
for each Λτ and consider the rational

function

fτ (s, t) :=
Ψτ,0(s~ατ + t~βτ )

Ψτ,∞(s~ατ + t~βτ )
= 1 +

Ψτ,1(s~ατ + t~βτ )

Ψτ,∞(s~ατ + t~βτ )
.

By construction, we have the partition

j(U(Z)) =
⊔
τ∈TF

fτ (P1(Q)).

The result now follows from Corollary 4.1.0.c.
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