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Abstract 

 

Association of Placental Epigenetic Age Acceleration with Birthweight and Postnatal Growth in 

the First 2 Years of Life in the GLOWING Cohort (n=153) 

 

By Angela Shen 

 

 

Background: Epigenetic age acceleration has been linked to several adverse health outcomes in 

adults; however, only a few studies have examined its effects in newborns. Over the past decade, 

novel epigenetic clocks derived from placental tissue have proven to be highly accurate 

estimators of gestational age. To understand how patterns of newborn growth and development 

are influenced by gestational epigenetic age acceleration (GAA), we used a placenta epigenetic 

clock to investigate the association between GAA and newborn birthweight, as well as postnatal 

growth trajectories through the first two years of life.  

 

Methods: We utilized data from 153 mother-infant pairs enrolled in the Glowing Life 

Optimizing Wellness (GLOWING) Study conducted in central Arkansas. Gestational Epigenetic 

age was estimated using Lee’s control placental clock (CPC). Birthweight and placental tissue 

were collected upon delivery. Postnatal growth trajectories were assessed through repeated 

measurements of weight until 2 years of age. Weight gain was modeled using SITAR and 

patterns were described using two model generated parameters. We regressed birthweight z-

scores and SITAR size and intensity parameters on GAA, controlling for potential confounders. 

Sex-specific effects were also explored. 

 

Results: Infants subjected to higher placental GAA had higher birthweights, yet concurrently 

lower size and intensity parameter values, thus signifying slower rates and lower amounts of 

postnatal weight gain. We found little evidence for sex-specific differential effects.  

 

Conclusions: Our analyses revealed associations between GAA and birthweight and infant 

growth trajectories consistent with previous research. Our finding suggest higher placental GAA 

may be an indicator of heathier infants, but further research in larger, more diverse cohorts are 

needed to confirm observed associations and characterize sex-specific effects. 
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1. INTRODUCTION

The Placenta 

The placenta performs many functions imperative for proper fetal growth and development. 

As the interface between mother and fetus, the placenta facilitates maternal-fetal nutrient transport 

and supports processes including endocrine regulation, toxin and waste removal, and thermal 

regulation1. Furthermore, the placenta also produces critical hormones which maintain pregnancy2 

and serves as a physical barrier to prevent the transfer of pathogens from mother to fetus3. Due to the 

importance of the placenta, there has been a growing interest in placental research, with most 

researchers focused on elucidating placental physiology to develop tools that can detect pregnancy or 

post pregnancy complications, and identify potential health outcomes for the infant early on. Among 

of the most intriguing areas of investigation has been the exploration of placental development and 

intrauterine environment, and its influence on fetal growth and birthweight.  

Birthweight and Postnatal Growth Patterns 

Birthweight is among the most relevant indicators towards assessing infant, child, and even 

adult health. Low or aberrant birthweight is associated with increased infant morbidity, disabilities 

including cerebral palsy, and various behavioral and cognitive impairments4-6. The complex and 

multifactorial nature of birthweight makes understanding the full pathophysiology of abnormal 

birthweight difficult; however, research suggests that compromised placental function and poor 

maternal nutrition are major risk factors of low birthweight7,8. Additionally, emerging evidence 

suggests that placental aging may also play a role in influencing birthweight9,10. This, however, has 

yet to be fully explored.  

Postnatal growth, specifically postnatal weight gain, is another indicator predictive of future 

health outcomes. Excessive growth, or rapid weight gain from infancy through mid-childhood, is 

consistently associated with later life obesity and increased cardiometabolic risk factors 11-14. 

Moreover, patterns of postnatal growth are also strongly associated with birthweight for gestational 
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age, with lower birthweight newborns exhibiting “catch-up” growth (CUG) and gaining weight 

rapidly during the first 2 years of life 15,16. Research indicates that newborns of lower birthweights 

are more likely to experience rapid weight gain during infancy and have higher fat mass and total fat 

percentage at age five.17 Thus, low birthweight for gestational age may predispose newborns to an 

accelerated postnatal growth trajectory and an increased risk of an adverse cardiometabolic profile in 

the future. 

Ageing 

Ageing is a unidirectional phenomenon inevitably experienced by all cells, tissues, and 

organs, including the placenta, which grows rapidly upon implantation and is eventually discarded 

upon delivery of the fetus. As gestational time increases, placental cells accumulate characteristics of 

ageing marked by telomere shortening, cellular senescence, and mitochondrial dysfunction 18,19.  

Cellular senescence is a key biological process underlying aging and the development of age-

related tissue dysfunction19. During cellular replication, a parent cell divides into two identical 

daughter cells, requiring the unwinding and splitting of the two DNA strands in the parent cell to 

form two new daughter strands. Telomeres, which are cap-like nucleotide repeats located at the ends 

of chromosomes, serve as bioprotective mechanisms to ensure that important genetic material is 

completely copied during replication19,20. It is widely observed that telomeres tend to shorten after 

every replication cycle, and their progressive shortening eventually leads to cellular senescence 

and/or apoptosis20.  

Telomere length has been extensively studied as a reliable predictor of aging and biological 

age, and was previously considered the gold standard in investigations of age-related diseases. 

However, a growing body of evidence now suggests that its predictive ability may not be as strong as 

once purported21-23. While there is an association between decreasing telomere length with increasing 

age, evidence of substantial interindividual variation suggests that telomere length serves only as a 
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rough estimate of aging rate22,23. These limitations emphasize the need for a more robust biomarker 

for predicting age.  

Epigenetic Age as a Surrogate Measure of Biological Age 

DNA methylation (DNAm), the covalent addition of a methyl group to the fifth carbon atom 

of a cytosine ring, is now among the most promising biomarkers for predicting biological age. Within 

the last decade, several DNA methylation-based estimators of biological age, also known as 

“epigenetic clocks”, have been developed. These clocks yield highly accurate and precise estimates 

of chronological age, otherwise known as “DNA methylation age” (DNAm age), across a variety of 

tissues and at different stages of life 24-27.  

Horvath et al. developed the first and most well-known epigenetic clock in 201324, which was 

designed as a robust pan-tissue age predictor based on DNAm profiles at 353 CpG sites. Since then, 

researchers have developed many other tissue-specific and pan-tissue clocks. 

Epigenetic clocks have also been used to assess the rate of biological aging by exploring 

deviations of epigenetic (biological) age from chronological age. The difference between an 

individual’s epigenetic and chronological age is known as epigenetic age acceleration28. Epigenetic 

age acceleration within various tissues has been associated with several age-related diseases and 

conditions, such HIV and Huntington’s Disease29,30. Age acceleration has also been linked to cancer 

and cardiovascular disease in adults, physical and cognitive fitness, and been shown to be influenced 

by a broad range of environmental exposures28,31,32.  

To date, the health impacts of age acceleration have mainly been studied in adults, with little 

investigation into the potential implications and effects of accelerated aging during the gestational 

period on children’s health. This gap in research can be attributed in part to the only recent 

development of epigenetic clocks specifically designed to estimate gestational age. Now, multiple 

gestational clocks have been constructed using a wide range of CpG sites, across a variety of tissues, 
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and over the entire pediatric age spectrum. With the emergence of these clocks, there is an 

opportunity to explore associations between biological age, prenatal exposures, and children’s health.  

Current Research in Gestational Epigenetic Age Acceleration 

Gestational age can be accurately estimated using any of four newly developed epigenetic 

gestational age clocks, two of which use DNAm profiles of CpG sites in newborn cord blood (Knight 

and Bohlin)33,34, and two of which use DNAm profiles in placental tissue (Mayne and Lee)35,36. 

Studies of epigenetic gestational age acceleration have primarily used cord-blood-based gestational 

age clocks.  

Recent studies applying the Knight clock algorithm to investigate prenatal environment and 

fetal aging have shown epigenetic age deceleration to be linked to maternal history of depression and 

birth outcomes such as lowered birthweight, length, and an increased need for respiratory 

interventions 37-39.  These findings are consistent with that of another study utilizing the Bohlin 

algorithm, where epigenetic age acceleration was demonstrated to be linked to higher birthweight, 

length, and head circumference 40. Together, these findings posit epigenetic age deceleration may be 

associated with a lower developmental maturity at birth.  

However, these findings have not been consistent across the few studies using placental-

tissue-based clocks. One study using the Mayne clock algorithm reported sex differences in the 

associations between placental epigenetic aging with fetal growth, where increased placental 

epigenetic age acceleration was associated with increased odds for lower birthweight among males, 

but higher birthweight among females 9. Presently, no comparable studies have been performed with 

the placental clock presented by Lee. The inconsistent findings across different gestational epigenetic 

clocks, along with the high tissue-specificity of epigenetic age acceleration, emphasizes the need for 

additional research to investigate the effects of age acceleration specifically within the placenta. The 

placenta is a critical growth-organ and a known driver of pre-and-postnatal growth and development; 
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hence, age acceleration within the placenta may have significant impacts on short- and long-term 

child and adult health.  

 

Research Gaps 

Although birthweight has been studied as an outcome of placental epigenetic age and as an 

exposure in studies of postnatal development, no studies have bridged the gap between placental 

epigenetic age, birthweight, and patterns of infant weight gain. We aimed to fill this present 

knowledge gap by examining i) the presently unclear associations between placental epigenetic age 

acceleration and birthweight and ii) the potential links between epigenetic age acceleration and 

newborn postnatal weight gain. Our findings will provide crucial context for future investigations 

that seek to examine the effects of prenatal environmental exposures on placental age acceleration, 

particularly for exposures that are believed to impact fetal metabolic activity and postnatal growth. 

 

2. METHODS 

Subjects 

Second parity women who were of normal weight (NW, BMI 18.5-24.9 kg/m2, N=74) and 

overweight/obese (OW, BMI 25-35 kg/m2, N=79), along with their term infants were enrolled in a 

longitudinal study (GLOWING study, ClinicalTrials.gov ID: NCT01131117) aimed to explore 

associations between maternal programming of offspring growth, metabolism, and adiposity in utero. 

All mothers were recruited from 2011 to 2014 in central Arkansas and enrolled within the first 10 

weeks of gestation. Inclusion criteria included all second parity mothers ≥21 years old, BMI of 18.5–

35kg/m2 at enrollment, who had singleton pregnancies conceived without assisted fertility treatments. 

Enrollees were excluded if they smoke, take medication known to influence fetal growth (e.g., 

glucocorticoids, insulin, and thyroid hormones), have existing medical conditions (e.g., chronic renal 

failure, hypertension, malignancies, seizure disorder, lupus, serious psychiatric disorders), sexually 
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transmitted diseases, abuse alcohol, tobacco, and drugs, to limit the role of these effect modifiers on 

the outcome of interest. Additionally, mothers with pregnancy or birth complications (gestational 

diabetes mellitus, preeclampsia, eclampsia, etc.) and children with serious medical conditions were 

also excluded. Only healthy, term (≥37 weeks gestation) infants were eligible for postnatal visits.  

Institutional Review Board (IRB) Approval 

The study protocol was approved by the Institutional Review Board at the University of 

Arkansas for Medical Sciences (UAMS) and written informed consent was obtained and signed from 

all participants prior to the study. 

Anthropometry 

Maternal gestational weight gain (GWG) was calculated by taking the difference between the 

subject’s weight at first study visit (4-10 weeks gestation) and their weight at the final prenatal visit 

(36 weeks gestation). Infant birthweight was collected at birth using a tared scale (SECA). To 

evaluate postnatal growth, newborns were longitudinally followed-up at 0.5, 1, 2, 3, 4, 5, 6, 9, 12, 18, 

and 24 months (up to 11 visits) during the postnatal period. At each visit, weight was assessed using 

a tared scale (SECA).  

Self-Reported Variables 

Upon enrollment, participants were asked to self-report race, ethnicity, age, and date of last 

menstrual period. Marital status, education, and income were self-reported during the first study visit. 

At 0.5 months postpartum, mothers reported their infant’s race, sex, and their mode of delivery.  

Gestational Age 

Gestational age at birth was calculated from the date of their last menstrual period, or if 

unknown, estimated from information obtained by early ultrasound.  

Placental Sample Collection  

Placental samples were collected following a highly rigorous and systematized workflow. 

Within 30 minutes after delivery, all placentas were collected and processed within 2 hours. Placental 



7 
 

 
 

anthropometrics of size, shape, and weight were recorded following severance of the placenta from 

the umbilical cord and fetal membranes. Placental tissues were collected from the villous core, with 

maternal and fetal sides separately collected at 6 random sites (~1 sq. in) and washed thrice to 

remove maternal blood. Samples were then flash-frozen in preparation for DNA isolation. To ensure 

comprehensive representation of the highly heterogenous placenta, ~1g of the pooled tissue from the 

six collection sites were pulverized in liquid nitrogen prior to DNA isolation.  

Placental DNA Isolation  

 Genomic DNA from placental samples were isolated using TRI reagent and PureLink 

genomic DNA isolation methods. Qualitative and quantitative analysis of nucleic acids were 

conducted to ensure the collection of high-quality DNA.  

Genome-wide Methylation Profiling (GWMP) 

 DNA samples (~500 ng) were randomized across 96-well plates and sent to the Emory 

Integrated Genomics Core for genome-wide methylation profiling (GWMP). GWMP was conducted 

using Illumina Infinium MethylationEPIC (EPIC) BeadChip, which includes approximately 860,000 

CpG sites across the genome (Illumina, San Diego, CA). Principle component analysis (PCA) was 

used to assess sources of variability and potential batch effects. The methylation status of individual 

CpG loci was calculated as the ratio of fluorescent signals from 0 (indicating no methylation) to 1 

(indicating complete methylation). Samples and probes with poor detection were excluded, and data 

were normalized with functional normalization and beta-mixture quantile normalization41,42. 

Placental Cellular Heterogeneity 

The planet package in RStudio was used to perform placental cellular deconvolution to 

estimate proportions of Trophoblasts, Hofbauer cells, Endothelial cells, Stromal cells, Nucleated 

RBCs, and Syncytiotrophoblasts. 

Epigenetic Age Estimation Methods 
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Mayne et al. and Lee et al. have developed epigenetic clocks to estimate gestational age from 

DNAm profiles in placental tissue. The Mayne placental clock predicts gestational age through 62 

CpG probes from DNAm data measured on the 450k Illumina platform. This clock has been shown 

to accurately predict gestational age, with a high correlation between chronological and epigenetic 

gestational age (r=0.95, p<2.2E-16) 36. Following the Mayne placental clock, Lee et al. developed 

three more placental epigenetic clocks using an extensive collection of publicly available DNAm 

datasets to yield more accurate estimations of gestational age. These clocks include the Robust 

Placental Clock (RPC), the Control Placental Clock (CPC), and the Refined Robust Placental Clock 

(rRPC), which are tailored to measure gestational age in pregnancies unaffected by new-onset 

obstetric complications, normal pregnancies, and uncomplicated term pregnancies (GA >36), 

respectively35. 

For this analysis, placental gestational age was estimated using all three clocks, but we 

focused on the CPC, which combines placental DNAm beta values from 546 CpG sites selected by 

an elastic net regression model 35. The CPC was chosen because the datasets used in its construction 

are most comparable to the placentas and pregnancies observed in the GLOWING cohort.  

Placental epigenetic age acceleration was derived by regressing predicted epigenetic 

gestational age on chronological gestational age and extracting the residuals. Positive residuals 

represent epigenetic age acceleration, while negative residuals indicate epigenetic age deceleration.  

Statistical Analyses 

Linear mixed effects (LME) modelling is a well-established method for analyzing 

longitudinal growth data; thus, LME models were initially used to explore weight gain over time. 

However, we ultimately used the SuperImposition by Translation and Rotation (SITAR) model, a 

shape invariant mixed effects model developed by Cole et al., to model, analyze, and describe 

postnatal growth trajectories. The SITAR model estimates a single curve representing the population-

average weight gain trajectory, which is modified (translated) by the inclusion of random effects to 
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match the observed weight gain curves for each individual43. In fitting the curve, each individual’s 

deviation from the average trajectory is expressed through random effects estimates for three 

parameters: size, tempo, and intensity. SITAR size refers to differences in mean weight and is 

reflected in an up-down shift of the mean curve. SITAR tempo refers to differences in the timing of 

weight gain and is reflected in a left-right shift of the curve. Lastly, SITAR intensity refers to 

differences in the velocity or speed of weight gain and is reflected in counterclockwise-clockwise 

rotation of the curve.  

Prior to fitting the model, weight values from every visit were natural log transformed to 

meet the normality assumptions of the SITAR method. The SITAR package in RStudio was used to 

model growth trajectories for all children with at least six follow up visits44. We used the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), to determine the number of 

degrees of freedom to include in the model, and found that 8 degrees of freedom was appropriate for 

our data. We included weight measurements from up to 11 postnatal visits occuring between 0.5 to 

24 months of age. The model successfully estimated two of the three parameters—size and 

intensity— for downstream analyses.  

To assess the relationship between birthweight, weight gain and epigenetic age acceleration, 

birthweight z-scores, as well as postnatal size and intensity parameters obtained from SITAR, were 

regressed on gestational age acceleration. We used gestational age acceleration as the dependent 

variable in all our models and included several covariates to adjust for potential confounding. The 

covariates included maternal age at birth, maternal education level, pre-pregnancy BMI, gestational 

weight gain, placental cell types, and infant sex. These covariates were selected based on prior 

hypothesized associations with gestational age acceleration and their potential impact on growth 

trajectories and placental function. Maternal educational attainment was categorized into three levels 

(high, medium, or low) and was included as an indicator of socioeconomic status. Cell type 

proportions were adjusted based on their association with age acceleration. Last, we performed 
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surrogate variable analysis with thesva package in RStudio to identify the major sources of variation in 

our data which may be reflective of residual unmeasured confounding. We identified three surrogate 

variables that were included in our models as sensitivity analyses. 

 

3. RESULTS  

Study Population  

Demographics and clinical characteristics for mother-infant dyads are summarized as means 

and standard errors or counts and percentages and reported in Table 1. Among the 153 dyads 

included in the study, on average, mothers were 30.53 ± 3.49 years of age at childbirth. 86.3% 

(n=132) of mothers self-identified as White, 10.5% (n=16) self-identified as African American, and 

the remaining (n=5) self-identified as either Asian, more than one race, or were unknown/not 

reported. 88.9% (n=136) of mothers reported being married. The average gestational age at delivery 

was 39.31 ± 0.85 weeks. The average pre-pregnancy BMI was 25.91 ± 4.35 kg/m2 and average 

maternal gestational weight gain was 11.64 ± 4.28 kg. Nearly all mothers reported having completed 

high school and two-thirds (67.3%) obtained college degrees.  

The average infant birthweight was 3.53 ± 0.44 kg and 58.2% (n=89) of infants were male. 

Infant weight gain was measured from 0.5 to 24 months over a maximum of 11 postnatal visits. All 

infants attended at least 6 follow-up visits. The medians, quartiles, and counts of missing data for 

each postnatal visit are presented in Table 2.  

Epigenetic Age and Chronological Age 

We utilized the Control Placental Clock (CPC) to predict gestational age in our cohort. The 

average predicted gestational age of newborns was (38.80 ± 0.80 weeks), while the average reported 

gestational age at time of delivery was (39.31 ± 0.85 weeks). To evaluate the correlation between 

epigenetic gestational age and reported gestational age, we computed the Pearson’s correlation 

coefficient. Our analysis revealed a strong positive correlation between predicted epigenetic age and 
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reported gestational ages, as indicated by a correlation coefficient value of 0.645 (p-value < 2.2e-16). 

To calculate gestational age acceleration, we regressed predicted epigenetic age on reported 

gestational age, and extracted the residuals. 

Growth Trajectory Modeling 

Infant weight gain trajectories were modeled using SITAR and described in terms of 

parameters of size and intensity (Figure 1). SITAR size is expressed as a percent for the mean weight 

of the child, relative to the average weight for all children included in the model. Differences in the 

size parameter are reflected in an up-down shift of the child’s weight gain curve. Size in this analysis 

ranged between (-0.208 to 0.245). SITAR intensity is expressed as a percentage deviation from the 

mean weight gain velocity of all children included in the model. Differences in the intensity 

parameter are reflected as a rotation of the child’s weight growth curve. Intensity in this analysis 

ranged from (-0.146 to 0.137).  

Associations Between Acceleration with Birthweight, Size, and Intensity 

Birthweight z-scores and SITAR size and intensity were independently regressed on placental 

gestational age acceleration (Table 3 & Figure 2). The results indicate that on average, infants with 

higher GAA had slightly higher birthweights. However, p-values were large, and the confidence 

intervals crossed the null. Unadjusted models showed that infants with higher GAA had modest 

decreases in size, but confidence intervals were also wide and crossed the null. On the other hand, in 

unadjusted analyses of intensity, we observed that infants with higher GAA had lower intensity 

values, or a lower weight gain velocity.  

We then adjusted our models for potential confounders by controlling for maternal age at 

birth, maternal education level, pre-pregnancy BMI, gestational weight gain, and infant sex. These 

adjustments did not alter the associations we observed for birthweight, size, or intensity. 
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Next, we examined whether adjustments for specific placental cell type proportions were 

necessary. We regressed gestational age acceleration on placental cell types and found that only 

trophoblasts and syncytiotrophoblasts were associated with age acceleration (p-value < 0.05). Thus, 

we included these cell types in our models. While these adjustments resulted in only minor 

deviations in the parameter estimates, the confidence interval for intensity now crossed the null. 

Finally, to account for residual confounding or potential batch effects, we estimated and 

adjusted for three surrogate variables. This did not significantly alter our previous associations 

between GAA and birthweight, size, and intensity.  

Overall, our findings consistently showed that higher gestational age acceleration was 

associated with decreased SITAR intensity across all adjustment models (Figure 2C). However, 

relationships between GAA and birthweight and SITAR size were less clear, with all confidence 

intervals crossing the null. Despite this, our effect estimates consistently indicated that higher GAA 

increased birthweight and decreased SITAR size (Figure 2A &2B). 

Secondary Analyses 

Given the accumulating evidence for sex-specific differences in infant growth and 

development trajectories45,46, we performed exploratory secondary analyses to investigate whether 

there are sex differences in the associations between placental age acceleration and patterns of 

postnatal weight gain. Birthweight z-scores, SITAR sex, and intensity were regressed on gestational 

age acceleration after being stratified by infant sex (Table 4). Sex-stratified analyses were adjusted 

for the same variables as the main analyses, now excluding sex as a covariate.  

Our results did not indicate major differences between GAA and birthweight and SITAR 

intensity by sex. However, among females, birthweight effect estimates were consistently slightly 

larger, and SITAR intensity estimates were always slightly smaller than male estimates (Figure 3A & 

3C). We observed consistent differences between GAA and SITAR size by sex, with higher GAA 
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increasing SITAR size in females but decreasing SITAR size in males (Figure 3B). Despite this, all 

confidence intervals crossed the null.  

In all, we likely were underpowered to detect significant sex-specific effects between GAA 

and birthweight, SITAR intensity, and size. Notwithstanding, the divergent estimates of SITAR size 

between males and females indicate the potential for such effects, and thus, warrant further research.  

 

4. DISCUSSION  

Previous Research 

In this study, we investigated the relationship between placental age acceleration and 

newborn birthweight and postnatal growth trajectories in the first two years of life. Using SITAR, we 

derived parameters of size and intensity, which characterize each child’s mean weight gain and rate 

of weight gain, respectively. Our findings revealed that infants subjected to higher placental age 

acceleration had higher birthweights, yet concurrently lower size and intensity values, signifying 

slower rates and lower amounts of postnatal weight gain. We also conducted sex-stratified analyses 

and found little evidence for sex-specific effects between placental age acceleration and birthweight 

and postnatal weight gain.  

Our findings on the association between GAA and birthweight are consistent with previous 

investigations. Specifically, these studies showed that neonates experiencing GAA tend to be within 

the highest birthweight percentiles in their respective cohorts47,48. Although these studies used cord 

blood DNAm profiles to estimate epigenetic gestational age, the results align with our present 

findings and together, corroborate the existing hypothesis that higher GAA may serve as an indicator 

of developmental maturity.  

Very few studies have investigated gestational age acceleration and measures of growth 

beyond birth. To our knowledge, this is the first study to use a placenta-specific epigenetic clock to 

examine the association GAA with measures of weight beyond birth and across early childhood. 



14 
 

 
 

Nonetheless, our results are largely mirrored by the findings of another study which examined the 

ARIES subsample of the Avon Longitudinal Study of Parents and Children (ALSPAC) from birth 

until 10 years of age. GAA, derived from cord blood DNAm profiles, was associated with higher 

birthweight, but this association began to weaken at 9 months of age, before reversing, with each 

additional week of increased GAA resulting in a 0.6 kg reduction in weight at the 10-year mark49. 

Our findings suggest this reversal occurs during early childhood and is observable as early as 24 

months. Together, our findings indicate a discrepancy between GAA on birthweight and postnatal 

growth, with children experiencing high GAA having larger birthweights, but a slower rate of growth 

during early childhood.  

Previous research has suggested that several key postnatal factors, specifically postnatal 

weight gain, can predict future cardiometabolic risk50,51. Investigations have shown that slower 

postnatal growth rates are linked to a reduced risk of developing cardiovascular and cardiometabolic 

diseases later in life, while accelerated postnatal growth rates are considered a risk factor for such 

health problems11-14. However, emerging evidence suggests a more complicated relationship between 

growth trajectories and health, which is highly population dependent. For instance, faster postnatal 

growth in infants born pre-term appears to be associated with lower morbidity and more optimal 

neurocognitive development52. Since our cohort did not include preterm infants, our findings most 

closely align with GAA likely being a positive indicator of infant health.  

These emerging observations about GAA are particularly intriguing given that they appear to 

contradict findings in adult populations, where age acceleration is linked to a range of adverse health 

outcomes, making it a marker of poorer health28-32. Such observations provide evidence of a more 

nuanced relationship between age acceleration and health outcomes in children, where the risks 

associated with epigenetic aging depend on the life stage. GAA at birth may be a marker of healthier 

infants, but continued age acceleration through adolescence and adulthood can lead to the 

development of negative health outcomes.  
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Strengths and Limitations  

Our study has several notable strengths.  First, the large number of follow-up measurements 

of weight, covering the critical first two years of life. Compared to the ARIES study, which only 

collected weight measures from health visit records and had scheduled follow-up visits from age 7 

onwards, our study had 11 scheduled follow-up visits over two years. In scheduling set follow-up 

visits, all children were measured for anthropometrics using consistent protocol and machinery 

thereby reducing the possibility of measurement error. In all, the high density of follow-up visits and 

precise anthropometric evaluations cements our study as among the most robust assessments of GAA 

and patterns of postnatal weight gain.  

In addition to data collection methods, we have taken steps to strengthen the internal validity 

of our investigation. The exclusionary factors and variables we have adjusted for adequately account 

for potential confounding effects and eliminate potential sources of bias, giving us confidence in our 

results. Specifically, we excluded mothers who smoked during or before pregnancy, as smoking has 

been shown to have a substantial impact on the placental methylome and birthweight53,54. 

The Lee et al. Control Placental Clock was also highly suited in predicting gestational age in 

our cohort, as construction of the CPC incorporated datasets comparable to the placentas and 

pregnancies in our sample. We observed a strong correlation (r=0.645) between predicted epigenetic 

age and reported gestational age.  

The limited generalizability of our findings is an important consideration when interpreting 

our results. Our study population of predominately white, non-Hispanic, relatively healthy, second-

parity mothers who gave birth to full-term infants, is not a representative sample, and suggests we 

must exercise caution when interpreting our findings in the contexts of other populations. 

Furthermore, our recruitment of patients from a single location may hinder our ability to extend our 

conclusions to populations in diverse locations with varying sociodemographic characteristics, 

particularly given the known differences in age acceleration and the drivers of birthweight and 
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postnatal growth between racial and ethnic groups55-57. However, differences in GAA by race and/or 

ethnicity have yet to be investigated, and should explored within large, diverse cohorts.  

Although we explored sex-specific effects, our study may have been underpowered to 

evaluate and detect sex differences, which is a common issue in studies with small sex strata and can 

lead to distorted conclusions. Therefore, although we did not observe significant sex-specific effects 

in our analysis, we should not assume such effects do not exist. Future research is necessary to 

elucidate sex differences between GAA and infant birthweight and postnatal growth. 

 

5. CONCLUSION 

In our study, we have demonstrated that placental age acceleration is associated with 

newborn birthweight and postnatal growth trajectories through the first two years of life. Our 

findings indicate that infants subjected to higher placental age acceleration had higher birthweights, 

yet concurrently lower size and intensity values, signifying slower rates and lower amounts of 

postnatal weight gain. This provides supporting evidence that GAA may be a marker of healthier 

infants with positive developmental outcomes, but caution should be exercised in interpreting our 

findings in the contexts of different populations. Further research is needed to confirm our observed 

associations and to better characterize the existence of sex-specific effects between PAA, 

birthweight, and patterns of postnatal growth.  
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7. TABLES & FIGURES 
 

Table 1: Maternal and Infant Characteristics (N=153) 

N (%) or mean (SD) 

Maternal Characteristics   

Race (%)  

   African American 16 (10.5) 

   Other 5 (3.3) 

   White 132 (86.3) 

Pre-pregnancy BMI (kg/m2) 25.91 (4.35) 

Gestational Weight Gain (kg) 11.64 (4.28) 

Education Level (%)  

   College Graduate 58 (37.9) 

   Graduate Training or Degree 45 (29.4) 

   High School Graduate, GED, Associate, Partial College, or Specialized Training 50 (31.4) 

Age at Birth  30.53 (3.49) 

Marital Status (%)  

   Cohabitating 13 (8.5) 

   Married 136 (88.9) 

   Single or Divorced 4 (2.6) 

Placental Cell Composition   

   Hofbauer Cells  0.01 (0.01) 

   Stromal Cells  0.11 (0.02) 

   Endothelial Cells 0.10 (0.02) 

   nRBC  0.01 (0.01) 

   Syncytiotrophoblast 0.6 (0.05) 

   Trophoblasts 0.14 (0.04) 

Infant Characteristics  

Infant Sex (%)  

   Female 64 (41.8) 

   Male 89 (58.2) 

Birthweight (kg) 3.53 (0.44) 

Gestational Age at Birth (weeks)  39.31 (0.85) 
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Table 2: Summary Statistics of Weight (kg) at Each Visit 

Visit (month) Q1 Median Q3 Missed Visits 

0.5 3.473 3.708 3.990 3 

1 4.030 4.362 4.649 3 

2 4.992 5.385 5.782 2 

3 5.650 6.055 6.580 4 

4 6.265 6.680 7.280 8 

5 6.750 7.270 7.780 4 

6 7.190 7.720 8.344 5 

9 8.315 8.880 9.580 4 

12 9.185 9.865 10.55 8 

18 10.53 11.30 12.24 14 

24 11.42 12.52 13.50 20 

Q1:25th percentile weight 

Q3:75th percentile weight 
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Figure 1: SITAR GLOWING Growth (Weight Gain) Curves 
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 Table 3: Parameter estimates from linear regression models to examine the associations between growth 

characteristics and gestational age acceleration. 

 
* adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, infant sex 

** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, infant sex, cell types 
*** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, infant sex, 3 surrogate variables 

 

  

Model Birthweight Size  Intensity 

Unadjusted 0.1827 ( -0.0895, 0.4550) -0.0059 (-0.0291, 0.0173) -0.0133 (-0.0261, -0.0005) 

Adjusted 1* 0.1392 ( -0.1291, 0.4074) -0.0106 (-0.0336, 0.0124) -0.0139 (-0.0266, -0.0013) 

Adjusted 2** 0.1572 ( -0.1186, 0.4330) -0.0093 (-0.0329, 0.0143) -0.0110 (-0.0238, 0.0018) 

Adjusted 3*** 0.2180 ( -0.0590, 0.4949) -0.0078 (-0.0318, 0.0161) -0.0150 (-0.0282, -0.0018) 
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Figure 2: Forest Plots for Birthweight, SITAR Size, and SITAR Intensity 

 

  
* adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, infant sex 

** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, infant sex, cell types 
*** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, infant sex, 3 surrogate variables 
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Table 4: Sex stratified parameter estimates from linear regression models to examine the associations between 

growth characteristics and gestational age acceleration  

* adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education 

** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, cell types 

*** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, 3 surrogate variables 
 

  

 Birthweight Size Intensity 

Model Male Female Male Female Male Female 

Unadjusted 
0.1390 

(-0.2109, 0.4889) 

0.2555 

(-0.1998, 0.7108) 

-0.0153 

(-0.0434, 0.0129) 

0.0129 

(-0.0289, 0.0547) 

-0.0142 

(-0.0300, 0.0017) 

-0.0117 

(-0.0344, 0.0110) 

Adjusted 1* 
0.0851 

(-0.2634, 0.4335) 

0.1705 

(-0.2774, 0.6184) 

-0.0256 

(-0.0535, 0.0022) 

0.0119 

(-0.0309, 0.0546) 

-0.0172 

(-0.0330, -0.0014) 

-0.0091 

(-0.0322. 0.0140) 

Adjusted 2** 
0.0906 

(-0.2784, 0.4596) 

0.1782 

(-0.2628, 0.6193) 

-0.0243 

(-0.0535, 0.0049) 

0.0122 

(-0.0312, 0.0556) 

-0.0114 

(-0.0276, 0.0049) 

-0.0088 

(-0.0322, 0.0146) 

Adjusted 3** 
0.1651 

(-0.1908, 0.5211) 

0.2272 

(-0.2802, 0.7346) 

-0.0215 

(-0.0503, 0.0074) 

0.0138 

(-0.0345, 0.0620) 

-0.0179 

(-0.0343, -0.0015) 

-0.0084 

(-0.0339, 0.0171) 



27 
 

 
 

 

Figure 3: Forest Plots for Birthweight, SITAR Size and SITAR Intensity Stratified by Sex 

 
* adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education 

** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, cell types 

*** adjusted for maternal age, pre-pregnancy BMI, gestational weight gain, maternal education, 3 surrogate variables 
 

 

 

 


