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Abstract

Novel Statistical Methods for Analyzing Next Generation Sequencing
Data
By

Peizhou (Devin) Liao

The recent advancement of next-generation sequencing (NGS) technologies and the
rapid reduction of sequencing costs have led to extensive use of sequencing data in
disease association studies and population genetic studies. New challenges arise from
NGS data for statistical analysis, including genotype calling, inference of population
structure, and design of sequencing studies, etc. In this dissertation, we propose
some novel statistical methods for analyzing NGS data that can properly handle
these issues.

A fundamental challenge in analyzing NGS data is to determine an individual’s
genotype correctly, as the accuracy of the inferred genotype is essential to downstream
analyses. To improve the accuracy of called genotypes, in the first project, we propose
a new likelihood-based genotype-calling approach that exploits all reads and estimates
the per-base error rates by incorporating phred scores through a logistic regression
model. The approach, which we call PhredEM, uses the expectation-maximization
(EM) algorithm to obtain consistent estimates of genotype frequencies and logistic
regression parameters. It also includes a simple, computationally efficient screening
algorithm to identify loci that are estimated to be monomorphic, so that only loci
estimated to be nonmonomorphic require application of the EM algorithm. PhredEM
can be used together with a linkage-disequilibrium-based method such as Beagle,
which can further improve genotype calling as a refinement step. We demonstrate
the advantages of PhredEM over existing methods using both simulated data and
real sequencing data from the UK10K project and the 1000 Genomes project.

Inferring population structure is important for both population genetics and ge-
netic epidemiology. Principal components analysis (PCA) has been effective in ascer-
taining population structure with array genotype data but can yield biased conclu-
sions when used with NGS data having sequencing properties that are systematically
different across different groups of samples. To allow robust inference on population
structure using PCA, in the second project, we provide an approach that is based on
using sequencing reads directly without calling genotypes. Our approach is to adjust
the data from different sequencing groups to have the same read depth and error rate
so that PCA does not generate spurious components representing sequencing quality.
To accomplish this, we have developed a subsampling procedure to match the depth
distributions in different sequencing groups, and a read-flipping procedure to match
the error rates. We average over subsamples and read flips to minimize loss of infor-
mation. We demonstrate the utility of our approach using two datasets from 1000
Genomes, and further evaluate it using simulation studies.



We have recently developed TASER, an association test of rare variants with
NGS data that allows systematic differences in sequencing qualities (e.g., depth and
sequencing error rate) between cases and controls. However, it is unknown what is
the optimal design of a case-control study that has a trade-off between number of
samples and coverage of depth. In the third project, we conducted simulation studies
to evaluate how the sequencing effort should be best allocated between sample size
and depth based on factors including ancestry, sequencing error rate, and disease risk
model. We found that the best power was generally achieved by sequencing as many
samples as possible (while decreasing depth if necessary). We noted, however, when
the sequencing platform had a very high error rate (e.g., 0.5%) and rarer variants
incurred higher risks, the best power was then achieved with a medium (e.g., 10x)
depth.
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Chapter 1

Introduction



1.1 Overview

Recent technological advances in next-generation sequencing (NGS) are producing
massive amounts of sequencing data, which provide abundant information and ex-
tensive resources in disease association studies and population genetic studies. In
current NGS methods, the whole genome or some targeted regions are subdivided
into small fragments that get sequenced, and the sequencing reads are then aligned
to the reference genome. The sequencing data can suffer from errors introduced in
both the base-calling process and the alignment process. These errors cause consider-
able uncertainty in the downstream analyses based on the inferred single-nucleotide
polymorphisms (SNPs) and genotypes. Moreover, making integration of samples se-
quenced at different depths or on different platforms can yield biased results, which
partially explains the underutilization of NGS data. Finally, although sequencing
costs are declining, performing whole-genome sequencing (WGS) at high depth in
large cohort studies is still economically prohibitive, so that many NGS studies have
adopted whole-exome sequencing (WES), or have kept the design of WGS but have
chosen low or moderate depths. Given a fixed budget, it is critical to develop efficient
study designs that consider the trade-off between the number of samples and the
coverage depth, especially for detecting rare variant association. Under these circum-
stances, a variety of contexts in genetic studies, including genotype calling, ancestry
estimation, disease mapping, and design of association studies etc., have become chal-
lenging, and have been the subject of extensive research. Therefore, this dissertation
aims at developing novel statistical methods for improved genotype calling and robust
inference of population structure. Another goal of this dissertation is to evaluate the

statistical methods for testing rare variant association.



1.2 Research Topics

In the first project, we focuses on the fundamental challenge in analyzing NGS data,
i.e., to determine an individual’s genotype correctly. In the second project, we concern
inference of population structure by combining NGS data with systematic differences
in sequencing. In the third project, we explore the optimal designs for testing rare
variant associations using TASER recently developed by our group. The methods for

all three topics have undergone significant developments in recent years.

1.2.1 Genotype calling

In NGS studies, genotype calling refers to the determination of the actual genotype
for each individual at each locus. It is a fundamental challenge in analyzing NGS
data as the downstream analyses depend crucially on the accuracy of the inferred
genotype. Basically, genotype calling relies on the number of reads (i.e., read depth
T') and qualities of reads mapped to the locus. Genotypes covered by many reads can
typically be called reliably. However, when a locus is covered by only a few reads,
genotype calling is challenging because minor allele reads are indistinguishable from
sequencing errors. The sequencing error rates of individual reads comprise both base-
calling and alignment errors. The base-calling error rate ranges from a few tenths of
a percent to several percent (Nielsen et al., 2011), can vary from base to base as a
result of machine cycle and sequence context (Kircher et al., 2009), and also varies
dramatically across different sequencing platforms. The phred score has been widely
accepted as a measure of the base-calling error rate (Ewing et al., 1998; Ewing and

Green, 1998). Nominally, the phred score is defined as

Q) = —10log;, Pr(observed allele # true allele). (1.1)



Despite their widespread use, phred scores may not accurately reflect the true error
rates in base calling because they fail to account for some important factors. For
instance, the specific error pattern inherent in each nucleotide base (i.e., A, C, T and
G) is not considered in phred scores (Li et al., 2004). Additionally, phred scores do not
account for the position of the base within a read (DePristo et al., 2011). Since phred
scores might be inaccurate representations of true base-calling error rates, methods
have been developed to recalibrate base quality scores, such as the base quality score
recalibration (BQSR) option in GATK (DePristo et al., 2011) and the base alignment
quality (BAQ) option in SAMtools (Li, 2011). However, the effectiveness of recali-
bration highly depends on whether all important error predictors (e.g., machine cycle
and dinucleotide context) are included in the recalibration model. In addition, the
recalibration process can be computationally intensive (Yu et al., 2015). Compared
with the base-calling error rate, the alignment error rate has less variability and a
smaller magnitude.

A genotype-calling method generally uses a probabilistic framework, combining
base-calling error rates and a marginal (population-level) distribution of genotype
frequencies to provide an individual-level probability for each genotype (McKenna
et al., 2010; Li et al., 2009a; Martin et al., 2010). Because the error rate plays
a critical role in probabilistic genotype-calling algorithms, it is crucial that it be
correctly specified, especially when sequencing depth is low to moderate.

In the first project, we propose a new genotype-calling approach which estimates
base-calling error rates from the read data while incorporating the information in
phred scores. We model an error rate as a logistic function of the phred score. The
logistic regression model is readily integrated into a modification of the SeqEM like-
lihood which allows for a base-specific error probability. Like SeqEM (Martin et al.,
2010), our approach uses the Expectation-Maximization (EM) algorithm (Dempster

et al., 1977). Information from all individuals is used to estimate the unknown geno-



type frequencies and logistic regression parameters. We compute the probability of
each latent genotype for each individual based on parameter estimates and use the
empirical Bayes approach to assign the most likely genotype to each individual. We
show that the logistic model fits real sequencing data well, and that the unknown
parameters in our likelihood are consistently estimated. Because we allow separate
logistic regression parameters at each locus, error predictors that are the same for all
bases at a given locus (e.g., dinucleotide context) are automatically accounted for, as
in SeqEM.

To minimize the effort of calling genotypes for the large majority of loci that are
estimated to have no variation, we develop a simple, computationally efficient screen-
ing algorithm to identify loci that are estimated to be monomorphic and therefore
do not require parameter estimation using the EM algorithm. Furthermore, we show
that our approach can be used together with a linkage-disequilibrium (LD)-based
method such as Beagle to improve genotype calling. Finally, we demonstrate through
simulation studies and by comparison to gene array data that our approach is more
accurate than both SeqEM and GATK. We illustrate our new approach through an
application to two real sequencing datasets, one from the UK10K project and the

other from the 1000 Genomes project.

1.2.2 Inference of population structure

Accurate estimation of ancestry remains an important topic in both population ge-
netics and genetic epidemiology. Principal components analysis (PCA) is a powerful
tool for inference of population structure, and has been effective in visualizing genetic
data (Menozzi et al., 1978; Cavalli-Sforza et al., 1993), investigating population his-
tory and differentiation (Reich et al., 2008), and in adjusting for confounding due to
population stratification in association studies (Price et al., 2006). It is known that

the success of PCA depends on high-quality genotype data (Wang et al., 2014), such



as the data generated from genotyping arrays.

NGS of DNA is replacing genotyping arrays, and is capable of probing the en-
tirety of the human genome. However, sequencing protocols and platforms are highly
variable in different studies. Systematic sequencing differences arise when samples
sequenced at different depths or on different platforms are pooled for analysis. In
population genetics, it is common to combine samples from different resources for a
global study of population structure. In association mapping, some studies sequence
cases at higher depth than controls by design, when the cases are unique and there is
interest in identifying novel mutations (The UK10K Consortium, 2015). Some stud-
ies even sample only cases for sequencing and intend to compare them with publicly
available sequenced controls such as the 1000 Genomes (The 1000 Genomes Project
Consortium, 2010) or UK10K (The UK10K Consortium, 2015). In both settings,
the controls typically have systematically different sequencing qualities, e.g., depth
and/or base-calling error rate, from the cases. Even when their overall depths are
similar, their depth in individual regions may be different; this can easily occur when
different exome capture kits were used for cases and controls, and one kit captures a
certain exonic region better than the other.

Traditional methods for performing PCA lead to incorrect differentiation of pop-
ulations when applied to genotype calls from low or moderate coverage NGS data
(Fumagalli et al., 2013). Such a problem becomes much worse if samples from multi-
ple sequencing groups are all used to infer population structure. Recently, extensions
of PCA have been made to utilize sequencing reads directly without calling genotypes.
However, to date, no method exists to account for systematic sequencing differences
to accurately estimate population structure.

In the second project, we provide a new approach to inferring population structure
while explicitly accounting for the difference in read depth and error rates; it is based

on sequencing reads directly without calling genotypes. The underlying approach is to



adjust the data so that the sequencing quality appears to be equal among groups. We
first describe a subsampling procedure to match the depth distributions in different
sequencing groups, and a read-flipping procedure to adjust the data so that the error
rates in different sequencing groups agree with the group having the largest error rate.
Once the data are processed in this way, we calculate the variance-covariance matrix
of the proportion of reads that are for the minor allele; this variance-covariance matrix
does not have any spurious PCs corresponding to differences in sequencing quality. We
then repeat the subsampling and allele-flipping procedures and average the resulting
variance-covariance matrices, to minimize loss of information. We show that the
information remaining is more than enough to make reliable inference of population
structure. We demonstrate the performance of our method with two examples using
data from the 1000 Genomes Project, one involving three discrete Asian populations
and the other involving a continuous admixture of two populations. We further

evaluated our method using simulation studies.

1.2.3 Sequencing design for rare variant association studies

NGS represents a powerful tool to fully understand the role of genetic variation un-
derlying human diseases and traits. WGS or WES allow researchers to examine the
contribution of variants across the full MAF spectrum in complex disease (Goldstein
et al., 2013; Lee et al., 2014; Sham and Purcell, 2014), leading to great success in
discovery of genes and causal variants over the past few years (Bamshad et al., 2011;
lossifov et al., 2014; Gilissen et al., 2014). We anticipate that NGS studies will con-
tinue to expand our understanding of complex trait architecture for some time to
come.

Despite the falling cost of sequencing in recent years, it is still prohibitively ex-
pensive to conduct large-scale NGS studies using high-coverage sequencing. A key

factor in the success of sequencing studies is the allocation of sequencing resource, in



particular, how to divide the sequencing effort between the number of samples and
the coverage depth (Sampson et al., 2011; Li et al., 2011; Sims et al., 2014). The
efficient allocation of sequencing effort is essential for rare variant association studies
because the accurate calling of rare variants inevitably requires each position being
covered by a sufficient number of reads in the presence of the sequencing errors (Shen
et al., 2011), while to have adequate power for detecting the rare variant associa-
tion generally requires a large number of samples (Lee et al., 2014). Moreover, for
the most commonly used case-control design in studying rare variant association, the
total sequencing investment is not necessarily split equally between cases and con-
trols. Indeed, controls are generally less interesting than cases so that controls may
be sequenced at a much lower depth compared with cases (The UK10K Consortium,
2015). There are even NGS studies that sequence cases at lower depth than the public
controls available (Luo et al., 2017).

In the third project, we systematically explore the power of rare variant associa-
tion testing under the constraint of limited cost being available for sequencing controls
while cases having been sequenced at a good coverage. We used TASER recently de-
veloped in Hu et al. (2016), which allows for systematic differences in sequencing
between cases and controls, to perform the association test. Because the underlying
disease model is generally unknown, we develop the omnibus TASER which com-
bines multiple weight functions and maintains good power regardless of the true risk
model. Via realistic simulations, we assess the impact of factors including ancestry,
sequencing error rate, and disease risk model on the power. Our results show that,
given a fixed budget, low-coverage sequencing of a large number of controls is gen-
erally preferred rather than moderate- to high-coverage sequencing of fewer controls.
However, if the sequencing platform has high error rates and rarer variants incurred

higher risks, the best power was then achieved with a moderate (e.g., 10x) depth.



1.3 Literature Review

1.3.1 Methods for calling genotypes

In early NGS studies, genotype calling proceeds by first filtering out reads of low phred
scores, and then counting the number of alleles observed; if the number of minor al-
lele reads (R), falls within some prespecified range, a homozygous or heterozygous
genotype would be called (Hedges et al., 2009; Harismendy et al., 2009). This stan-
dard procedure works well with high-coverage sequencing data. However, the major
disadvantage of this procedure is that by using fixed cutoff, it ignores the information
about the allele frequency and the individual read quality. Another disadvantage is
that this simple genotype calling method provides no quantification of uncertainty
associated with the called genotype (Nielsen et al., 2011).

Most of recently developed genotype-calling methods use a probabilistic frame-
work that provides posterior probabilities for potential genotypes by combining base-
calling error rates and a prior distribution of genotype frequencies (McKenna et al.,
2010; Li et al., 2009a; Martin et al., 2010). Specifically, at a particular locus, the read
data X, including T', R, and @, is used to calculate the genotype likelihood Pr(X|G)
where G denotes the true genotype. In conjunction with a genotype prior, Pr(G), the
posterior genotype probability is calculated as Pr(G|X) o« Pr(X|G)Pr(G). These
probabilistic methods generally differ in their approach to obtaining the error rates.
For example, GATK uses error rates that are calculated directly from phred scores
or recalibrated scores by applying equation (1.1), neither of which is precisely cor-
rect as discussed in 1.2.1. SAMtools obtains an error rate from the minimum of the
phred-based error rate and the mapping error rate, so that the error rate is always
adjusted downwards (Li, 2011). In addition, bases with low phred scores (e.g., @ < 20
or 30) are typically filtered out as part of quality control (QC) procedures. However,

choosing a threshold for phred scores always involves a tradeoff: high thresholds may
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result in loss of useful information by eliminating bases that are correctly called, while
low thresholds leave a large number of erroneously-called bases in the data, leading
to false-positive variant calls. Instead of relying on phred scores, Martin et al. (2010)
proposed SeqEM, a genotype-calling algorithm that estimates the error rate using
the read data itself. However, the fundamental assumption of SeqEEM that, at each
locus, there is a uniform error rate for each read is generally not true, given the con-
siderable variability in error rates implied by the variability in phred scores. Because
SeqEM ignores phred scores entirely, the valuable information about errors encoded in
phred scores is lost. Another difference among probabilistic methods is the approach
to estimating the allele frequency. The majority of probabilistic methods such as
GATK and SAMtools, estimate the allele frequency based on a single locus. Nielsen
et al. (2012) presents a strategy to first estimate the Site Frequency Spectrum (SFS)
jointly for all loci, and then use the resulting SE'S to define better priors for calling
genotypes.

The aforementioned approaches generally concern calling genotypes independently
for each locus. However, it has been shown that utilizing the pattern of LD at nearby
loci can further improve genotype calling accuracy, especially with low coverage se-
quencing data (Nielsen et al., 2011; Li et al., 2011). Several genotype imputation
methods have been developed to infer genotypes by using the information at linked
loci (Browning and Yu, 2009; Howie et al., 2009; Li et al., 2010; Marchini and Howie,
2010). The single-locus-based genotype calling approaches can be used together with
LD-based imputation methods to incorporate LD information, which substantially

improves the accuracy for genotype calling.

1.3.2 Methods for inferring population structure

PCA was initially introduced to analyze the genetic data in Menozzi et al. (1978), and

has become the most common approach for inferring ancestry (Patterson et al., 2006;



11

Price et al., 2006; The Wellcome Trust Case Control Consortium, 2007; Yang et al.,
2010). The top components explain the difference in genetic variation among the
samples, which can be used to correct for confounding due to population stratification
in a variety of ways (Price et al., 2006; Epstein et al., 2007; Luca et al., 2008).
Construction of PCs based on genotype data is straightforward and computationally
efficient (Jackson, 2003), which requires highly accurate genotype calls.

With the unprecedented volume of sequencing data being produced in recent years,
methods have been developed for performing PCA utilizing the sequencing reads di-
rectly. Skoglund and Jakobsson (2011) obtained allele count data for PC calculation
by randomly sampling one read from each individual at each position, in order to
allow comparison between modern, high-quality data and the low-pass ancient data.
Similarly, Malaspinas et al. (2014) developed a tool that samples a read at each posi-
tion and compares the read count data with an existing reference panel of genotype
data using multidimensional scaling. A major disadvantage of these methods is that
it leads to great loss of information in the presence of sequencing errors. Fumagalli
et al. (2013) proposed replacing the genotypic covariance matrix by its expected value
with respect to the posterior genotype distribution given read data. Through explicit
modeling of genotype probability distributions, the PCs can be accurately estimated
when sequencing qualities are the same across the samples. However, the method of
Fumagalli et al. (2013) does not take any measure to deal with differential sequencing
qualities in terms of depth and error rates. Wang et al. (2014) proposed comparing
each sequenced study sample to a set of reference individuals whose ancestral infor-
mation is known and whose genome-wide array genotype data are available. This
method seems to allow differences in depth but nevertheless assumes a constant error
rate for all study samples. The same applies to the improved approach in Wang et al.

(2015).
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1.3.3 Design of NGS studies for testing rare variant associa-

tions

Over the past few years, the optimal design of sequencing-based rare variant associa-
tion studies has been extensively explored, and the benefits of low-coverage sequencing
are often highlighted (Li et al., 2011; Pasaniuc et al., 2012; Xu et al., 2016). However,
all these studies focus on the scenario with equal sizes of independent case-control
samples that are sequenced as part of the same experiment design. Because the se-
quencing qualities are the same, the conventional burden tests (Li and Leal, 2008;
Madsen and Browning, 2009; Price et al., 2010) or variance component tests such as
C-alpha (Neale et al., 2011) and SKAT (Wu et al., 2011) can be used for association
testing based on genotype calls. Additionally, Skotte et al. (2012) proposed to re-
place genotype calls by their expected value given the observed sequencing data (i.e.,
genotype dosages), which results in higher power and better control of type I error
than methods using called genotypes.

Recently, many discussions in the literature suggest that association testing using
data with systematically different sequencing qualities (e.g., read depth and error
rate) in case and control cohorts generates false signals if called genotypes or genotype
dosages are used for the main effect (Derkach et al., 2014; Hu et al., 2016). To adjust
for the confounding effect induced by genotype calls, Derkach et al. (2014) proposed
a robust score test that uses genotype likelihoods whose differential variances in high-
and low-depth samples are explicitly accounted for. One limitation of this method is
that it requires correctly known locations of variants. Because the called genotypes
are used to determine the variant locations, it still yields inflated type I error. Instead
of calling genotypes, Hu et al. (2016) recently developed a likelihood-based burden
test that directly models sequencing reads. We refer to Hu’s method as TASER that
is the name of their software. TASER includes a simple, computationally efficient

screening algorithm to first identify a set of ‘known’ variants (i.e., estimated to be
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polymorphic). Then it computes the burden test statistic by adding up the score
statistics at each ‘known’ variant with certain weights. Finally, TASER assesses the
significance of the test statistic using bootstrap replications. One important feature
of TASER is that it is at least as powerful as the standard genotype calling approach
when the latter controls type I error.

Though methods have been developed to make valid inference when cases and
controls are sequenced separately or at different depth, it remains unclear what is
the most efficient study design that considers the trade-off between the sample size
(n) and the coverage per sample (¢), in order to maximize the power for detecting
associations of rare variants. Thus, further work is required to select the optimal
combination of n and ¢, especially for studies where, as is the common practice,
cases are sequenced at high depth but a fixed budget is assigned to the sequencing of

controls.

1.4 Outline

In Chapter 2, in Section 2.1, we introduce the PhredEM approach, the screening algo-
rithm, and PhredEM with LD refinement. In Section 2.2, we report the results from
simulation studies for comparing the performance of PhredEM to SeqEM, without
and with LD refinement. In Section 2.3, we apply PhredEM to real sequencing data
from the UK10K project and the 1000 Genomes project to illustrate the practical use
of PhredEM. In Section 2.4, we provide a summary and some detailed discussions.
In Chapter 3, in Section 3.1, we present the subsampling and read-flipping proce-
dure to adjust the sequencing data; we also describe two datasets from 1000 Genomes
project and the simulation design. We report in Section 3.2 all results by compar-
ing our method with some existing methods. We conclude our work with a brief

discussion in Section 3.3.
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In Chapter 4, in Section 4.1, we describe the omnibus TASER and our simulation
design in details. We report the results from simulation studies in Section 4.2. We
summarize our work and discuss some limitations in Section 4.3.

In the final chapter, we summarize all three projects and outline some possible

topics as directions for future research.
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Chapter 2

PhredEM: A
Phred-Score-Informed
Genotype-Calling Approach for

Next-Generation Sequencing

Studies

This Chapter is joint work with Dr. Yijuan Hu and Dr. Glen A. Satten. The paper

has been published in Genetic Epidemiology (Liao et al., 2017).
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2.1 Methods

2.1.1 PhredEM

We first consider one biallelic locus at a time. For the ¢-th individual, let G; denote
the underlying true genotype (coded as the number of minor alleles), T; denote the
total number of alleles that are mapped to the locus, and R; (R; < T;) denote the
number of mapped alleles that are called to be the minor allele. The phred scores
are represented by Q; = (Qi1, ..., Qir,)’, where Q; is the phred score associated with
the k-th called allele and the prime (’) indicates the transpose of a vector. At each
locus, values of T;, R;, and Q; can be easily extracted from the pileup files produced
by SAMtools. Let €; be the true base-calling error rate of the k-th allele. We relate

€;x to Q;r through the logistic regression model

log( ik )—ﬁowl@-k, (2.1)

1_€ik

where 5, and (; are unknown regression parameters that are locus specific. Let
0 = (8o, 1) and € (0) = exp(Bo + S1Qix)/{1 + exp(Bo + £1Qux)}. Equation (2.1)
is motivated by the fact that the phred score is a highly informative predictor of the
base-calling error, even though (1.1) does not hold in the exact sense. In the Results
section, we demonstrated that the logistic model fits the real sequencing data well.
Without loss of generality, we order the T; alleles so that the first R; alleles are
called to be the minor allele and the rest the major allele. Assuming that the errors
of the T; alleles are independent of each other, the probability of observing R; copies
of the minor allele out of 7T; alleles can be described as a sequence of independent

Bernoulli trials. Specifically, given the true genotype G;, the total number of alleles
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T;, and the phred scores Q;, the probability of observing R; is written as
[T (@) TTiip o {1 — (@)} Gi=0

Po(Ri|Gi, T;, Qi) = (0.5)T: G, =1 (2.2)

\ Hﬁ;l{uqk(e))m{;&“ ex(0) Gi=2.

Suppose that the sample consists of n unrelated individuals. Then the likelihood

function takes the form
Lo@,m) = [ D Po(Rilg,T:, Q) Pxlg), (2:3)

where Pr(g) is the genotype frequency characterized by . Under Hardy-Weinberg
Equilibrium (HWE), 7 consists of a single parameter 7 for the minor allele frequency
(MAF). Then, Pr(0) = (1 — m)? Pr(1) = 27(1 — 7), and Pr(2) = w2 Under
Hardy-Weinberg Disequilibrium (HWD), « = (m, f)’ where 7 and f are the MAF
and the fixation index Fl, respectively. Then, Pr(0) = (1 — f)(1 — m)* + f(1 — =),
Pe(1) =271 —7)(1 — f), and P(2) = (1 — f)7* + f~.

The proposed likelihood is closely related to several existing methods. When
p1 = 0, the error rate is independent of the phred score, and expression (2.3) reduces
to the likelihood of SeqEM. When 5y = 0, 5; = —1og(10)/10 and € is small, expression
(2.1) is approximately equal to (1.1), and our model reduces to the Bayesian geno-
typer implemented in GATK. However, our likelihood fully exploits the read data and
the phred scores, both of which could improve genotype-calling accuracy. Note that it
is not necessary to filter out low-quality alleles, which still provide some information
about 6. Because our model uses the read call data to adjust the relationship between

phred scores and the error rate at each locus, it can be considered as a kind of phred
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score recalibration, except that the recalibration is done simultaneously with fitting
other parameters to best fit the observed data. Like other multi-sample calling meth-
ods, our method also estimates the genotype frequencies and regression parameters
by utilizing information across all individuals in the sample.

We may obtain the maximum likelihood estimate (MLE) of @ and 7 by maximizing
the likelihood (2.3) via the EM algorithm described in the Appendix 2.6.1. However,
if a locus has little variability (e.g., a monomorphic locus, singleton or doubleton) so
that there are very few reads for the minor allele in the study sample, the MLE of
f1 based on (2.3) may be unreliable (Firth, 1993). To improve stability, we propose
to modify the MLE of 3; by leveraging information from other loci. Specifically, we
introduce a Gamma distribution I'(—51; k, ¢) as a penalty (or prior) for —f;, where
r and ¢ are the shape and scale hyper-parameters, respectively. We first use the
method of moments to obtain estimates xk and 5 based on the MLEs of #; from a
set of loci that are either all or mostly estimated to be monomorphic; for loci that
are estimated to be monomorphic, all reads for the minor allele can be treated as
errors, and ordinary logistic regression can be used to estimate @ at each locus. For
genome- or exome-wide data, any region can be used as most loci are estimated to
be monomorphic; the full EM algorithm only needs to be run for the few loci that
are estimated to be polymorphic. We then obtain the maximum penalized likelihood

estimators (MPLEs) by maximizing the penalized likelihood

-~

LZ(Q,TP) = F<_B1;/’%7 ¢>Lo<07ﬂ-) (24>

Note that the MPLEs are asymptotically equivalent to the MLEs, as the Gamma
penalty becomes negligible when the sample size n grows.
Denote the MPLEs by 7 and 6. We can estimate the probability distribution of

the true genotype G; for the i-th individual from their read count data 7T; and R; and
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their phred scores Q; using the formula

P4(Rilg, T, Qi) Pz (g)

Pr(Gz :g|RZ77—ZL7Ql7§7%) - 5
S Ps(Rilg', T:, Qi) P (g')

(2.5)

for g = 0, 1 and 2. At a single locus, genotype calls can be made by assigning each
individual the genotype that their data assigns the highest estimated probability.
Individuals with no read covering the locus are not assigned any genotype. Because

the proposed method incorporates the phred scores and uses the EM algorithm, we

refer to it as PhredEM.

2.1.2 Screening algorithm

The majority of loci in the human genome are monomorphic (The International SNP
Map Working Group, 2001), and are as such of little interest in downstream analy-
ses. To avoid running the full PhredEM algorithm at loci that are estimated to be
monomorphic, we propose a simple and computationally efficient algorithm to iden-
tify and ‘screen out’ these loci; an earlier version of this screening algorithm that
does not incorporate phred scores was first proposed in Hu et al. (2016). We assume
HWE holds, as loci that might be called monomorphic must have either zero or ex-
tremely low MAFs. Then 7r contains only a single parameter m. We see that formula
(2.5) assigns all mass to G; = 0 when 7 = 0; thus loci with 7 = 0 would be called
monomorphic if PhredEM was applied to obtain 7. To determine whether 7 = 0

without fitting PhredEM, let pl*(7) denote the profile likelihood for 7, namely,
pl*(m) = max log L(0, ).

We show in the Appendix 2.6.2 that pl*(7) is a concave function of m, so that a
negative value for the derivative of pl*(7) at 7 = 0 implies 7 = 0; in other words,

we should screen out loci at which the derivative of pl*(7) at 7 = 0 is negative. At
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m = 0, we can easily evaluate this derivative, because the part L,(6,7) reduces to
that of a logistic regression model in which we assign an outcome variable Y;;, = 1 to
a minor allele read and Y;; = 0 to a major allele read and regress Y;, on ;. Since
our screening algorithm only involves fitting a standard logistic regression model plus
a penalty term to solve for @ and calculating a derivative function, it can significantly
reduce the computing time that is needed to run PhredEM on whole exome or genome
data.

A simple variant of the screening algorithm can also be used when estimating the
parameters xk and ¢ for the gamma penalty term. If we first apply the screening
algorithm using the unpenalized profile likelihood pl(7) = maxg log L, (0, ), we can
easily find all loci having 7 = 0 without running the full EM algorithm to maximize
(2.3) at all loci. If the MLE of 7 is zero, then y and f; can be estimated using
standard logistic regression since all minor allele reads are errors. The few loci for

which 7 > 0 can either be excluded, or the full EM algorithm can be used to estimate

Bo and S;.

2.1.3 PhredEM with LD refinement

Our approach does not use LD information. It is well known that use of LD patterns
can substantially improve genotype calling for variants having moderate or high mi-
nor allele frequencies (Nielsen et al., 2011). However, we can easily incorporate LD
information into our approach by calculating the genotype likelihood at each locus
using (2.2), evaluated at the MPLE, and then using this genotype likelihood as input
to Beagle (Browning and Yu, 2009).
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2.2 Simulation Study

We conducted simulation studies to assess the performance of PhredEM (P) and
PhredEM followed by Beagle (PB), relative to SeqEM (S) and SeqEM followed by
Beagle (SB). We considered a sample size of 1,000 (results based on a sample size
of 200 are reported in Supplemental Figure S2.1 and Supplemental Tables S2.1 and
S2.2). In each replicate, for each individual we first generated a pair of haplotypes of
European ancestry having length 100 kb using the coalescent simulator cosi (Schaffner
et al., 2005). We then generated sequencing reads with fixed length 100 bp that
mimic reads from the Illumina HiSeq 2000 single-end sequencing platform (Minoche
et al., 2011). Specifically, for each read from an individual, we randomly selected one
of the two haplotypes, randomly picked the starting position of the read along the
haplotype, and simulated 100 phred scores from the empirical distribution observed in
the UK10K data (Figure 2.2[a]). To incorporate the fact that base-calling errors occur
at the end of the reads more frequently than at the beginning (Minoche et al., 2011),
we rearranged the phred scores so that the last 15 bases of the read had the 15 lowest
scores in a descending order; the first 85 bases thus received a random permutation
of the remaining scores. Then, the base calls of the read were generated based on the
underlying haplotype and error rates calculated from equation (1.1); we used (1.1)
because it is more favorable to GATK than to our method. For each individual, we
drew the total number of reads to be generated from a negative-binomial distribution
with mean 1,000 x ¢ so as to achieve a pre-specified average read depth c. We
considered three average depths: 6x, 10x, and 30x. In applying PhredEM and SeqEM,
we first called genotypes with HWE and, if the estimated MAF was greater than 5%,
we re-called genotypes with HWD (starting at parameter values obtained from HWE).
The hyper-parameters for the Gamma prior for 5, were estimated based on the MLEs
of £ from the 100k loci in each replicate. All results reported here were based on

200 replicates of the entire process.
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We first assessed the performance of PhredEM, SeqEM, PB, and SB in truly
monomorphic loci. A monomorphic locus is mis-called if there is at least one call of
the minor allele in the study sample. Figure 2.1(a) shows that, with or without LD
refinement, PhredEM made fewer mistakes among monomorphic loci than SeqEM at
all depths. In addition, LD-refinement has negligible improvement upon PhredEM at
monomorphic loci.
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Figure 2.1: Mis-call rates at monomorphic loci in the analysis of (a) the simulated
data, (b) the UK10K SCOOP data, and (c) the 1000 Genomes CEU data.

P and S represent PhredEM and SeqEM. PB, SB, and GATK-B represent PhredEM,
SeqEM, and GATK, each followed by Beagle.

We then compared the four methods in calling genotypes for rare variants. We
grouped variants into four categories based on the true minor allele counts (MACs):
1, [2, 10], [11, 20], and [21, 100], where MAC = 1 corresponds to singletons. As
shown in Table 2.1, the overall number of mis-called genotypes obtained by PhredEM
was less than that by SeqEM in all scenarios; for most cases, PhredEM reduced
by almost one half the number of mis-called genotypes compared with SeqEM. For
instance, when the MAC was between 11 and 20 and depth was 6x, SeqEM mis-
called an average of 2.96 genotypes among 997 individuals whereas PhredEM mis-
called 1.58. As expected, both methods became more accurate as the average read
depth increased. Nevertheless, the performance of PhredEM was noticeably better

than SeqEM at depth as high as 30x. We further examined the mis-called genotypes
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stratified by the underlying genotype. In both the strata of homozygotes (G' = 0) and
heterozygotes (G = 1), PhredEM mis-called fewer genotypes than SeqEM. Applying
Beagle after PhredEM substantially improved the performance of PhredEM alone,
except for singletons at which the two methods have comparable mis-call rates. The

superiority of PhredEM over SeqEM remained after applying Beagle to both methods.

Table 2.1: Average number of mis-called genotypes per variant for rare variants in the simulation studies.

Overall Stratified

G=0 G=1
MAC Depth N P S PB SB No P S PB SB N1 P S PB SB
1 6x 997.1 0.241 0.311 0.274 0.338 996.1 0.065 0.072 0.096 0.096 1 0.176 0.239 0.178 0.242
10x 999.7 0.074 0.135 0.088 0.159 998.7 0.016 0.033 0.039 0.051 1 0.058 0.102 0.049 0.108
30x 1000 0.001 0.004 0.002 0.006 999.0 0 0.001 0.001 0.003 1 0.001 0.003 0.001 0.003
[2,10] 6x 997.1 0.525 0.845 0.439 0.691 993.5 0.106 0.112 0.162 0.193 3.6 0417 0.730 0.275 0.496
10x 999.7 0.191 0.315 0.142 0.243 996.2 0.049 0.060 0.063 0.082 3.5 0.140 0.253 0.079 0.161
30x 1000 0.004 0.009 0.003 0.007 996.4 0.001 0.002 0.002 0.004 3.6 0.003 0.007 0.001 0.003
[11,20] 6x 997.0 1.579 2959 0.779 1.306 982.2 0.387 0.514 0.243 0.429 14.7  1.156 2409 0.529 0.868
10x 999.7 0.551 1.011 0.212 0.381 984.9 0.156 0.176 0.090 0.138 14.7 0380 0.819 0.121 0.241
30x 1000 0.011 0.026 0.005 0.010 985.1 0.004 0.007 0.003 0.005 14.8 0.007 0.019 0.002 0.005
(21, 100] 6x 997.0 4.197 7.633 1.416 2.217 947.8 0.667 2.108 0.347 0.696 48.5 3.136 5.131 1.051 1.489
10x 999.7 1.457 2722 0.361 0.603 949.9 0.347 0.606 0.126 0.210 49.1 1.002 1.998 0.230 0.381
30x 1000 0.032 0.068 0.009 0.016 949.6 0.008 0.015 0.004 0.007 49.6 0.024 0.051 0.005 0.009

P, S, PB and SB represent PhredEM, SeqEM, PhredEM followed by Beagle, and SeqEM followed by Beagle, respectively. N, Ny and Nj are the average
numbers of individuals covered by at least one read. G is the true genotype; the case G = 2 is omitted as it is barely seen for rare variants. MACs of 1,
10, 20, and 100 correspond to MAFs of 0.0005, 0.005, 0.01, and 0.05, respectively, given the sample size of 1,000.
For common variants, we stratified the results based on five MAF intervals. As
shown in Table 2.2, PhredEM outperformed SeqEM in both the overall and strati-
fied number mis-called. Overall, PhredEM correctly called 3-4 more genotypes than
SeqEM at depth < 10x. The number mis-called by PhredEM increases as the MAF
increases because the information in the phred scores is not used when G = 1, which
can be seen from (2.2). Furthermore, minor allele homozygotes are more likely to be
mis-called than major allele homozygotes due to the smaller prior probability of the
former. As expected, applying Beagle after PhredEM substantially improved geno-
type calling by PhredEM alone for common variants, and the improvement was most
profound for heterozygotes (G = 1). This marked improvement was also shown in
Supplemental Table S2.3 where the error rates are reported given the called variants

instead of the true variants as in Table 2.2.
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We further examined the phred scores at loci having genotypes that are called
differently by PhredEM and SeqEM. In Table 2.3, we displayed the average phred
score associated with major and minor alleles at such loci, stratified by the underlying
genotype (G) and genotypes called by PhredEM (Gp) and SeqEM (Gs). At loci
with (Gp,Gs) = (0,1), regardless of the value of G, the major alleles tend to have
high phred scores whereas the minor alleles tend to have low scores, explaining why
PhredEM called these loci major allele homozygotes; the average phred scores for
minor alleles are consistently lower under G = 0 than that under G = 1, because in
the former case the minor alleles are all errors and in the latter case the minor alleles
are a mixture of errors and true alleles. Similarly, for loci with (Gp,Gs) = (2,1),
the major alleles tend to have low scores, which are even lower under G = 2 than
those under G = 1. In other cases when PhredEM called heterozygous genotypes, we
observe high average phred scores for both major and minor alleles. These patterns of
phred scores confirm that PhredEM worked as expected. While the results in Table
2.3 pertain to common variants, those for rare variants are similar and are shown in

Supplemental Table S2.4.
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Figure 2.2: UK10K SCOOP data. (a) Distribution of phred scores. (b) Logistic
regression model and generalized additive model (GAM) fit to the sequencing data
at loci that were identified as monomorphic.

2.3 Application to the UK10K SCOOP Data

To confirm that the results from our simulations hold when analyzing real sequencing
data, we analyzed data from the Severe Childhood Onset Obesity Project (SCOOP)
cohort sequenced as part of the UK10K project. The sequenced SCOOP cohort
consists of 784 UK Caucasian patients with severe early onset obesity, who were
whole-exome sequenced using the Illumina HiSeq 2000 platform with an average depth
of ~60x. We first used SAMtools to generate pileup files from BAM files, filtering
out reads that are PCR duplicates, have mapping score < 30, or have improperly
mapped mates. From the pileup files, we extracted read count data and phred scores.
The distribution of the phred scores is shown in Figure 2.2(a).

Using the SCOOP sequencing data, we checked the fit of the logistic regression
model in (2.1). First, we applied our screening algorithm to identify loci that were
estimated to be monomorphic (i.e., # = 0). At such loci, we could reliably treat
all minor allele reads as errors. Assigning Y = 1 and 0 for minor allele reads and

major allele reads, respectively, we can determine the relationship between Pr(Y =
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1) and the corresponding phred scores (). To create a subset of such data that is
computationally manageable, we randomly selected 1,000 monomorphic loci from
each of the 22 chromosomes and randomly picked one individual from each locus,
forming a dataset of 22,000 (Y, Q) pairs. Then, we fit the logistic regression model
in [2.1] and, as a gold standard, fit a smooth spline function of phred scores using
the generalized additive model (GAM) (Wood, 2006). Figure 2.2(b) shows the fitted
curves and pointwise 95% confidence intervals from the two models. The logistic
regression fit always fell within the 95% confidence region of the GAM. Thus, we
conclude that over the range of phred scores found in real data, the logistic model
adequately describes the relationship between phred scores and base-calling error rates
well.

To facilitate the evaluation of PhredEM and especially the comparison with Se-
qEM, we first selected a set of genotypes that can serve as gold standard. Specifically,
we downloaded from the UK10K website the VCF files for the SCOOP cohort, which
contained genotypes called by SAMtools and filtered by GATK. In addition, we ex-
cluded a variant if its average depth across samples is less than 20. We excluded
a genotype whose genotype likelihood (on the phred scale) was < 20 (i.e., nominal
genotyping error rate > 0.01) and excluded a variant completely if it has more than
20% of genotypes with likelihood < 20. These exclusion criteria ensured that all
selected genotypes were called with particularly high quality. We thus refer to these
genotypes as ‘true’ genotypes. After applying the exclusion criteria, there remain
416,402 loci in the entire exome. Since the loci with true genotypes were selected
towards having high read depth, both PhredEM and SeqEM would perform well if
applied to the original data. To create sequencing data with low or median depth,
we then subsampled the observed reads with equal probability.

We based the estimation of hyper-parameters x and ¢ on 100k random loci that

were reliably estimated to be monomorphic (i.e., with coverage > 60x and the MLE
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of the MAF 7 is zero); these 100k loci mimic real sequencing data in which the vast
majority of loci are monomorphic whereas the 416,402 loci extracted from the VCF
files are mostly polymorphic. We then applied PhredEM and SeqEM to call genotypes
assuming HWE at first and, if the estimated MAF was over 5%, we re-called genotypes
assuming HWD. The computation time for PhredEM to call the subsampled UK10K
data depends on the average depth. For example, it took ~5 h on an Intel Xeon
E5-2660 machine with 2.60 GHz and 6.4 GB memory to call genotypes at the 416,402
loci in the 6x dataset.

The numbers of mis-called genotypes, averaged over all variants on chromosomes
1-22 and stratified by MAF ranges, are displayed in Table 2.4. For rare variants
(MAF < 0.05), the pattern in the number of mis-called genotypes by PhredEM and
SeqEM agreed well with the results in the simulation section, with PhredEM generally
producing more accurate genotype calls. The biggest difference occurred when the
variants were relatively rare, i.e., MAF € (0.001,0.01]; when the average read depth
was ~06x, PhredEM generated an average of 1.9 more correct genotypes out of 757
individuals than SeqEM for loci with MAFs in this range. For common variants (MAF
> 0.05), the differences between the two methods were smaller, possibly because
phred scores at heterozygous loci are not informative; this also explains the increase
in genotype-calling error rates with increasing MAF found in Table 2.4. As seen in
the simulation results, applying Beagle after PhredEM improved the performance of
PhredEM alone for all variants except for the very rare ones (e.g., MAF € (0,0.001]).
The phred scores at loci with differently called genotypes by PhredEM and SeqEM are
summarized in Supplemental Table S2.6. These results exhibited the same patterns
seen in the simulated data. The mis-call rate at monomorphic loci (Figure 2.1 [b])

also show the same pattern seen in the simulated data (Figure 2.1 [a]).
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To gain more insights into the mechanisms of PhredEM and SeqEM, we listed
in Table 2.5 the raw data at eight loci (from the subsampled dataset at 6x) that
were called differently by PhredEM and SeqEM. Generally, base calls with low phred
score are error-prone, and PhredEM treats these unreliable calls as likely errors when
calling the genotype. By contrast, SeqEM depends heavily on the proportion of minor
allele reads among the total reads and ignores the quality measure of each allele. For
example, at Locus 1, the six major alleles were of high quality while the two minor
alleles were likely to be errors. In this case, PhredEM distinguishes between alleles
of different qualities and produced the correct genotype but SeqEM, which cannot

account for low quality alleles, calls the incorrect genotype.

Table 2.5: Eight example loci in the UK10K SCOOP data (subsampled to

6x).
Reads Phred scores Genotype
Locus M m M m True P S
1 6 2 21 36 37383942 916 0 0 1
2 6 1 18 18 27 36 39 40 33 0 1 0
3 4 1 20 34 34 36 15 1 0 1
4 5 1 2532 32 34 39 37 1 1 0
5 1 5 35 20 25 38 40 40 1 1 2
6 1 5 14 33 37 38 38 40 1 2 1
7 1 4 32 30 34 37 39 2 1 2
8 2 5 1117 30 34 35 36 39 2 2 1

M and m represent major and minor alleles, respectively. True is the
true genotype. P and S represent the called genotypes by PhredEM and
SeqEM, respectively.

2.4 Application to the 1000 Genomes CEU Data

To compare PhredEM to GATK, we considered data from the CEU samples in the
1000 Genomes project. It is hard to make this comparison using simulated data, since

it is difficult to construct BAM files for the simulated data, and because the 100KB
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region we simulated is to short to train the BQSR model used in GATK. It is also
hard to make this comparison using the UK10K SCOOP data, as BAM files for the
subsampled data are not easily available. In the CEU cohort, 99 unrelated individuals
were whole-genome sequenced with an average depth of ~7.3x. We adopted the same
filters for the reads as in the analysis of UKI0K SCOOP data. As the 99 CEU
samples have also been genotyped 