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Abstract

Novel Statistical Methods for Analyzing Next Generation Sequencing

Data

By

Peizhou (Devin) Liao

The recent advancement of next-generation sequencing (NGS) technologies and the
rapid reduction of sequencing costs have led to extensive use of sequencing data in
disease association studies and population genetic studies. New challenges arise from
NGS data for statistical analysis, including genotype calling, inference of population
structure, and design of sequencing studies, etc. In this dissertation, we propose
some novel statistical methods for analyzing NGS data that can properly handle
these issues.

A fundamental challenge in analyzing NGS data is to determine an individual’s
genotype correctly, as the accuracy of the inferred genotype is essential to downstream
analyses. To improve the accuracy of called genotypes, in the first project, we propose
a new likelihood-based genotype-calling approach that exploits all reads and estimates
the per-base error rates by incorporating phred scores through a logistic regression
model. The approach, which we call PhredEM, uses the expectation-maximization
(EM) algorithm to obtain consistent estimates of genotype frequencies and logistic
regression parameters. It also includes a simple, computationally efficient screening
algorithm to identify loci that are estimated to be monomorphic, so that only loci
estimated to be nonmonomorphic require application of the EM algorithm. PhredEM
can be used together with a linkage-disequilibrium-based method such as Beagle,
which can further improve genotype calling as a refinement step. We demonstrate
the advantages of PhredEM over existing methods using both simulated data and
real sequencing data from the UK10K project and the 1000 Genomes project.

Inferring population structure is important for both population genetics and ge-
netic epidemiology. Principal components analysis (PCA) has been effective in ascer-
taining population structure with array genotype data but can yield biased conclu-
sions when used with NGS data having sequencing properties that are systematically
different across different groups of samples. To allow robust inference on population
structure using PCA, in the second project, we provide an approach that is based on
using sequencing reads directly without calling genotypes. Our approach is to adjust
the data from different sequencing groups to have the same read depth and error rate
so that PCA does not generate spurious components representing sequencing quality.
To accomplish this, we have developed a subsampling procedure to match the depth
distributions in different sequencing groups, and a read-flipping procedure to match
the error rates. We average over subsamples and read flips to minimize loss of infor-
mation. We demonstrate the utility of our approach using two datasets from 1000
Genomes, and further evaluate it using simulation studies.



We have recently developed TASER, an association test of rare variants with
NGS data that allows systematic differences in sequencing qualities (e.g., depth and
sequencing error rate) between cases and controls. However, it is unknown what is
the optimal design of a case-control study that has a trade-off between number of
samples and coverage of depth. In the third project, we conducted simulation studies
to evaluate how the sequencing effort should be best allocated between sample size
and depth based on factors including ancestry, sequencing error rate, and disease risk
model. We found that the best power was generally achieved by sequencing as many
samples as possible (while decreasing depth if necessary). We noted, however, when
the sequencing platform had a very high error rate (e.g., 0.5%) and rarer variants
incurred higher risks, the best power was then achieved with a medium (e.g., 10×)
depth.





Novel Statistical Methods for Analyzing Next Generation

Sequencing Data

By

Peizhou (Devin) Liao

M.S., Emory University, 2016

B.S., Nankai University, 2012

Advisors:

Yijuan Hu, Ph.D. and Glen A. Satten, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Biostatistics

2017



Acknowledgement

First and foremost, I would like to sincerely thank my advisors, Dr. Yijuan Hu

and Dr. Glen, A. Satten, for their guidance, inspiration, and tremendous support

over the past five years. It has been a great honor to work with them. They have

taught me strong analytical and technical skills, and have constantly stimulated my

thoughts. The passion and enthusiasm they have for their research was contagious

and motivational for me, even during tough times in my Ph.D. studies. I am also

grateful to them for helping me improve the ability to work independently as well

as collaboratively that a successful statistician must have. I remember they always

encourage me to think harder and work harder whenever I struggle with research

projects. In my future endeavors, their supervision will never be forgotten.

I would also like to thank my dissertation committee members, Dr. Michael P.

Epstein and Dr. Zhaohui (Steve) Qin, for all their contributions of time, thoughtful

comments, and creative ideas. Their invaluable suggestions have led to substantial

improvement in this dissertation.

I owe special thanks to Dr. Jeanie Park for providing me the opportunity to

work as a biostatistician in her lab. Dr. Park has been supportive since the days

I started working on her chronic kidney disease projects. The open discussions we

have constitute one of the most enjoyable moments for me at Emory. I also have to

thank Dr. Tianwei Yu, Dr. Hao Wu, and Dr. Qi Long, who gave me helpful advice

on conducting research in biostatistics. I would like to extend my appreciation to all

faculty and staff members in the Department of Biostatistics and Bioinformatics at

Emory, and to all my friends, with whom I shared many precious moments over the

past five years.

Finally, I wish to express my deepest gratitude to my whole family for their love



and support. I cannot complete this work without their unconditional dedication. I

hope this dissertation could be the perfect present to my entire family.



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Genotype calling . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Inference of population structure . . . . . . . . . . . . . . . . 5

1.2.3 Sequencing design for rare variant association studies . . . . . 7

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Methods for calling genotypes . . . . . . . . . . . . . . . . . . 9

1.3.2 Methods for inferring population structure . . . . . . . . . . . 10

1.3.3 Design of NGS studies for testing rare variant associations . . 12

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 PhredEM: A Phred-Score-Informed Genotype-Calling Approach for

Next-Generation Sequencing Studies 15

2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 PhredEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Screening algorithm . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 PhredEM with LD refinement . . . . . . . . . . . . . . . . . . 20

2.2 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Application to the UK10K SCOOP Data . . . . . . . . . . . . . . . . 27

i



2.4 Application to the 1000 Genomes CEU Data . . . . . . . . . . . . . . 31

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2 Proof of concavity of pl∗(π) . . . . . . . . . . . . . . . . . . . 37

2.7 Supplemental Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Robust Inference of Population Structure from Next-Generation Se-

quencing Data with Systematic Differences in Sequencing 44

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Estimating the per-base error rate . . . . . . . . . . . . . . . . 45

3.1.2 Pruning SNPs and picking ancestry informative markers . . . 46

3.1.3 Handling systematic differences in sequencing . . . . . . . . . 47

3.1.4 Application to stratified and admixed populations from 1000

Genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Inference on a stratified population from 1000 Genomes . . . . 52

3.2.2 Inference on an admixed population from 1000 Genomes . . . 54

3.2.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Matching the read distributions in different sequencing groups

when sample sizes of the sequencing groups differ . . . . . . . 63

3.4.2 Choosing the read-flipping probability . . . . . . . . . . . . . 63

3.4.3 Sampling MAFs for three populations . . . . . . . . . . . . . . 64

3.4.4 Simulating read count data . . . . . . . . . . . . . . . . . . . 64

ii



3.4.5 A simulation study assuming three groups with differential se-

quencing qualities . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Supplemental Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Optimal Design of Next-Generation Sequencing Studies for Testing

Rare Variant Associations 71

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Omnibus TASER . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2.1 Generating European and African haplotypes . . . . 72

4.1.2.2 Generating individual genotypes and phenotypes . . 73

4.1.2.3 Generating sequencing read count data . . . . . . . . 74

4.1.2.4 Sequencing designs . . . . . . . . . . . . . . . . . . . 74

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Simulating read count data . . . . . . . . . . . . . . . . . . . 80

4.5 Supplemental Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Summary and Future Work 83

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography 88

iii



List of Figures

2.1 Mis-call rates at monomorphic loci in the analysis of (a) the simulated

data, (b) the UK10K SCOOP data, and (c) the 1000 Genomes CEU

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 UK10K SCOOP data. (a) Distribution of phred scores. (b) Logis-

tic regression model and generalized additive model (GAM) fit to the

sequencing data at loci that were identified as monomorphic. . . . . . 27

S2.1 Mis-call rates of monomorphic loci when n = 200. . . . . . . . . . . . 43

S2.2 Distribution of mapping scores in the UK10K SCOOP data. . . . . . 43

3.1 Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in the analysis of the

stratified 1000 Genomes data with three discrete Asian populations . 53

3.2 Q-Q plots of− log10 (observed p-values) (y-axis) versus− log10 (expected p-values)

(x-axis) in the analysis of the stratified 1000 Genomes data with three

discrete Asian populations. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Agreement between estimated proportions of African ancestry calcu-

lated using each method (y-axis) and TG (x-axis) for the analysis of

an admixed population from the 1000 Genomes Project. . . . . . . . 55

3.4 Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in simulation studies

with 4× average depth and 1% average error rate in controls. . . . . . 58

iv



3.5 Scatter plots of PC3 (x-axis) versus PC4 (y-axis) in simulation studies

with 4× average depth and 1% average error rate in controls. . . . . . 59

3.6 Power (y-axis) at the nominal significance level of α = 0.05 over dif-

ferent ORs (x-axis) based on 1000 cases and 1000 controls. . . . . . . 60

3.7 Mean differences (×100) of top ten PCs between cases and controls in

simulation studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

S3.1 Distributions of locus-specific mean depths observed in the 1000 Genomes

data (top panel) and generated in the simulation studies (bottom panel). 66

S3.2 Q-Q plots of− log10 (observed p-values) (y-axis) versus− log10 (expected p-values)

(x-axis) in the analysis of the stratified 1000 Genomes data with three

discrete Asian populations without adjusting for PCs. . . . . . . . . . 66

S3.3 Agreement between estimated proportions of African ancestry calcu-

lated using each method (y-axis) and TG (x-axis) for the analysis of

an admixed population from the 1000 Genomes Project. . . . . . . . 67

S3.4 Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in simulation studies

with 7× average depth and 0.1% average error rate in controls. . . . . 68

S3.5 Scatter plots of PC3 (x-axis) versus PC4 (y-axis) in simulation studies

with 7× average depth and 0.1% average error rate in controls. . . . . 69

S3.6 Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in simulation studies

with three sequencing groups. . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Power of the omnibus TASER for different combinations of n0 and c0

for European population. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Power of the omnibus TASER for different combinations of n0 and c0

for African population. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

S4.1 Power of TASER with different weights for different combinations of

n0 and c0 for European population using ε0 = 0.1%. . . . . . . . . . . 81

v



S4.2 Power of TASER with different weights for different combinations of

n0 and c0 for European population using ε0 = 0.5%. . . . . . . . . . . 82

vi



List of Tables

2.1 Average number of mis-called genotypes per variant for rare variants

in the simulation studies. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Average number of mis-called genotypes per variant for common vari-

ants in the simulation studies. . . . . . . . . . . . . . . . . . . . . . 24

2.3 Average phred scores associated with major (M) and minor (m) alle-

les at loci that are called differently by PhredEM and SeqEM in the

simulation studies for common variants. . . . . . . . . . . . . . . . . 26

2.4 Average number of mis-called genotypes per variant in analysis of the

UK10K SCOOP data (subsampled to achieve different depths). . . . 30

2.5 Eight example loci in the UK10K SCOOP data (subsampled to 6x). 31

2.6 Average number of mis-called genotypes per variant in the analysis of

the 1000 Genomes CEU data. . . . . . . . . . . . . . . . . . . . . . . 33

S2.1 Average number of mis-called genotypes per variant for rare variants

in the simulation studies when n = 200. . . . . . . . . . . . . . . . . . 37

S2.2 Average number of mis-called genotypes per variant for common vari-

ants in the simulation studies when n = 200. . . . . . . . . . . . . . . 38

S2.3 Average number of mis-called genotypes per locus in the simulation

studies when n = 1, 000. . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



S2.4 Average phred scores associated with called major (M) and minor (m)

alleles at loci that are called differently by PhredEM and SeqEM in

the simulation studies for rare variants when n = 1, 000. . . . . . . . . 40

S2.5 Average number of mis-called genotypes per locus in the analysis of

the 1000 Genomes CEU data. . . . . . . . . . . . . . . . . . . . . . . 40

S2.6 Average phred scores associated with called major (M) and minor (m)

alleles at loci that are called differently by PhredEM and SeqEM in

analysis of the UK10K SCOOP data (subsampled to achieve different

depths). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

S2.7 Specificity and Sensitivity in the analysis of the 1000 Genomes CEU

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Type I error (divided by the nominal significance level of 0.05) . . . . 55

4.1 Characteristics of deleterious rare variants in the base populations . . 73

4.2 Empirical type I errors for TASER with different weights. . . . . . . . 76

viii



1

Chapter 1

Introduction



2

1.1 Overview

Recent technological advances in next-generation sequencing (NGS) are producing

massive amounts of sequencing data, which provide abundant information and ex-

tensive resources in disease association studies and population genetic studies. In

current NGS methods, the whole genome or some targeted regions are subdivided

into small fragments that get sequenced, and the sequencing reads are then aligned

to the reference genome. The sequencing data can suffer from errors introduced in

both the base-calling process and the alignment process. These errors cause consider-

able uncertainty in the downstream analyses based on the inferred single-nucleotide

polymorphisms (SNPs) and genotypes. Moreover, making integration of samples se-

quenced at different depths or on different platforms can yield biased results, which

partially explains the underutilization of NGS data. Finally, although sequencing

costs are declining, performing whole-genome sequencing (WGS) at high depth in

large cohort studies is still economically prohibitive, so that many NGS studies have

adopted whole-exome sequencing (WES), or have kept the design of WGS but have

chosen low or moderate depths. Given a fixed budget, it is critical to develop efficient

study designs that consider the trade-off between the number of samples and the

coverage depth, especially for detecting rare variant association. Under these circum-

stances, a variety of contexts in genetic studies, including genotype calling, ancestry

estimation, disease mapping, and design of association studies etc., have become chal-

lenging, and have been the subject of extensive research. Therefore, this dissertation

aims at developing novel statistical methods for improved genotype calling and robust

inference of population structure. Another goal of this dissertation is to evaluate the

statistical methods for testing rare variant association.
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1.2 Research Topics

In the first project, we focuses on the fundamental challenge in analyzing NGS data,

i.e., to determine an individual’s genotype correctly. In the second project, we concern

inference of population structure by combining NGS data with systematic differences

in sequencing. In the third project, we explore the optimal designs for testing rare

variant associations using TASER recently developed by our group. The methods for

all three topics have undergone significant developments in recent years.

1.2.1 Genotype calling

In NGS studies, genotype calling refers to the determination of the actual genotype

for each individual at each locus. It is a fundamental challenge in analyzing NGS

data as the downstream analyses depend crucially on the accuracy of the inferred

genotype. Basically, genotype calling relies on the number of reads (i.e., read depth

T ) and qualities of reads mapped to the locus. Genotypes covered by many reads can

typically be called reliably. However, when a locus is covered by only a few reads,

genotype calling is challenging because minor allele reads are indistinguishable from

sequencing errors. The sequencing error rates of individual reads comprise both base-

calling and alignment errors. The base-calling error rate ranges from a few tenths of

a percent to several percent (Nielsen et al., 2011), can vary from base to base as a

result of machine cycle and sequence context (Kircher et al., 2009), and also varies

dramatically across different sequencing platforms. The phred score has been widely

accepted as a measure of the base-calling error rate (Ewing et al., 1998; Ewing and

Green, 1998). Nominally, the phred score is defined as

Q = −10 log10 Pr(observed allele 6= true allele). (1.1)
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Despite their widespread use, phred scores may not accurately reflect the true error

rates in base calling because they fail to account for some important factors. For

instance, the specific error pattern inherent in each nucleotide base (i.e., A, C, T and

G) is not considered in phred scores (Li et al., 2004). Additionally, phred scores do not

account for the position of the base within a read (DePristo et al., 2011). Since phred

scores might be inaccurate representations of true base-calling error rates, methods

have been developed to recalibrate base quality scores, such as the base quality score

recalibration (BQSR) option in GATK (DePristo et al., 2011) and the base alignment

quality (BAQ) option in SAMtools (Li, 2011). However, the effectiveness of recali-

bration highly depends on whether all important error predictors (e.g., machine cycle

and dinucleotide context) are included in the recalibration model. In addition, the

recalibration process can be computationally intensive (Yu et al., 2015). Compared

with the base-calling error rate, the alignment error rate has less variability and a

smaller magnitude.

A genotype-calling method generally uses a probabilistic framework, combining

base-calling error rates and a marginal (population-level) distribution of genotype

frequencies to provide an individual-level probability for each genotype (McKenna

et al., 2010; Li et al., 2009a; Martin et al., 2010). Because the error rate plays

a critical role in probabilistic genotype-calling algorithms, it is crucial that it be

correctly specified, especially when sequencing depth is low to moderate.

In the first project, we propose a new genotype-calling approach which estimates

base-calling error rates from the read data while incorporating the information in

phred scores. We model an error rate as a logistic function of the phred score. The

logistic regression model is readily integrated into a modification of the SeqEM like-

lihood which allows for a base-specific error probability. Like SeqEM (Martin et al.,

2010), our approach uses the Expectation-Maximization (EM) algorithm (Dempster

et al., 1977). Information from all individuals is used to estimate the unknown geno-
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type frequencies and logistic regression parameters. We compute the probability of

each latent genotype for each individual based on parameter estimates and use the

empirical Bayes approach to assign the most likely genotype to each individual. We

show that the logistic model fits real sequencing data well, and that the unknown

parameters in our likelihood are consistently estimated. Because we allow separate

logistic regression parameters at each locus, error predictors that are the same for all

bases at a given locus (e.g., dinucleotide context) are automatically accounted for, as

in SeqEM.

To minimize the effort of calling genotypes for the large majority of loci that are

estimated to have no variation, we develop a simple, computationally efficient screen-

ing algorithm to identify loci that are estimated to be monomorphic and therefore

do not require parameter estimation using the EM algorithm. Furthermore, we show

that our approach can be used together with a linkage-disequilibrium (LD)-based

method such as Beagle to improve genotype calling. Finally, we demonstrate through

simulation studies and by comparison to gene array data that our approach is more

accurate than both SeqEM and GATK. We illustrate our new approach through an

application to two real sequencing datasets, one from the UK10K project and the

other from the 1000 Genomes project.

1.2.2 Inference of population structure

Accurate estimation of ancestry remains an important topic in both population ge-

netics and genetic epidemiology. Principal components analysis (PCA) is a powerful

tool for inference of population structure, and has been effective in visualizing genetic

data (Menozzi et al., 1978; Cavalli-Sforza et al., 1993), investigating population his-

tory and differentiation (Reich et al., 2008), and in adjusting for confounding due to

population stratification in association studies (Price et al., 2006). It is known that

the success of PCA depends on high-quality genotype data (Wang et al., 2014), such
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as the data generated from genotyping arrays.

NGS of DNA is replacing genotyping arrays, and is capable of probing the en-

tirety of the human genome. However, sequencing protocols and platforms are highly

variable in different studies. Systematic sequencing differences arise when samples

sequenced at different depths or on different platforms are pooled for analysis. In

population genetics, it is common to combine samples from different resources for a

global study of population structure. In association mapping, some studies sequence

cases at higher depth than controls by design, when the cases are unique and there is

interest in identifying novel mutations (The UK10K Consortium, 2015). Some stud-

ies even sample only cases for sequencing and intend to compare them with publicly

available sequenced controls such as the 1000 Genomes (The 1000 Genomes Project

Consortium, 2010) or UK10K (The UK10K Consortium, 2015). In both settings,

the controls typically have systematically different sequencing qualities, e.g., depth

and/or base-calling error rate, from the cases. Even when their overall depths are

similar, their depth in individual regions may be different; this can easily occur when

different exome capture kits were used for cases and controls, and one kit captures a

certain exonic region better than the other.

Traditional methods for performing PCA lead to incorrect differentiation of pop-

ulations when applied to genotype calls from low or moderate coverage NGS data

(Fumagalli et al., 2013). Such a problem becomes much worse if samples from multi-

ple sequencing groups are all used to infer population structure. Recently, extensions

of PCA have been made to utilize sequencing reads directly without calling genotypes.

However, to date, no method exists to account for systematic sequencing differences

to accurately estimate population structure.

In the second project, we provide a new approach to inferring population structure

while explicitly accounting for the difference in read depth and error rates; it is based

on sequencing reads directly without calling genotypes. The underlying approach is to
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adjust the data so that the sequencing quality appears to be equal among groups. We

first describe a subsampling procedure to match the depth distributions in different

sequencing groups, and a read-flipping procedure to adjust the data so that the error

rates in different sequencing groups agree with the group having the largest error rate.

Once the data are processed in this way, we calculate the variance-covariance matrix

of the proportion of reads that are for the minor allele; this variance-covariance matrix

does not have any spurious PCs corresponding to differences in sequencing quality. We

then repeat the subsampling and allele-flipping procedures and average the resulting

variance-covariance matrices, to minimize loss of information. We show that the

information remaining is more than enough to make reliable inference of population

structure. We demonstrate the performance of our method with two examples using

data from the 1000 Genomes Project, one involving three discrete Asian populations

and the other involving a continuous admixture of two populations. We further

evaluated our method using simulation studies.

1.2.3 Sequencing design for rare variant association studies

NGS represents a powerful tool to fully understand the role of genetic variation un-

derlying human diseases and traits. WGS or WES allow researchers to examine the

contribution of variants across the full MAF spectrum in complex disease (Goldstein

et al., 2013; Lee et al., 2014; Sham and Purcell, 2014), leading to great success in

discovery of genes and causal variants over the past few years (Bamshad et al., 2011;

Iossifov et al., 2014; Gilissen et al., 2014). We anticipate that NGS studies will con-

tinue to expand our understanding of complex trait architecture for some time to

come.

Despite the falling cost of sequencing in recent years, it is still prohibitively ex-

pensive to conduct large-scale NGS studies using high-coverage sequencing. A key

factor in the success of sequencing studies is the allocation of sequencing resource, in
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particular, how to divide the sequencing effort between the number of samples and

the coverage depth (Sampson et al., 2011; Li et al., 2011; Sims et al., 2014). The

efficient allocation of sequencing effort is essential for rare variant association studies

because the accurate calling of rare variants inevitably requires each position being

covered by a sufficient number of reads in the presence of the sequencing errors (Shen

et al., 2011), while to have adequate power for detecting the rare variant associa-

tion generally requires a large number of samples (Lee et al., 2014). Moreover, for

the most commonly used case-control design in studying rare variant association, the

total sequencing investment is not necessarily split equally between cases and con-

trols. Indeed, controls are generally less interesting than cases so that controls may

be sequenced at a much lower depth compared with cases (The UK10K Consortium,

2015). There are even NGS studies that sequence cases at lower depth than the public

controls available (Luo et al., 2017).

In the third project, we systematically explore the power of rare variant associa-

tion testing under the constraint of limited cost being available for sequencing controls

while cases having been sequenced at a good coverage. We used TASER recently de-

veloped in Hu et al. (2016), which allows for systematic differences in sequencing

between cases and controls, to perform the association test. Because the underlying

disease model is generally unknown, we develop the omnibus TASER which com-

bines multiple weight functions and maintains good power regardless of the true risk

model. Via realistic simulations, we assess the impact of factors including ancestry,

sequencing error rate, and disease risk model on the power. Our results show that,

given a fixed budget, low-coverage sequencing of a large number of controls is gen-

erally preferred rather than moderate- to high-coverage sequencing of fewer controls.

However, if the sequencing platform has high error rates and rarer variants incurred

higher risks, the best power was then achieved with a moderate (e.g., 10×) depth.
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1.3 Literature Review

1.3.1 Methods for calling genotypes

In early NGS studies, genotype calling proceeds by first filtering out reads of low phred

scores, and then counting the number of alleles observed; if the number of minor al-

lele reads (R), falls within some prespecified range, a homozygous or heterozygous

genotype would be called (Hedges et al., 2009; Harismendy et al., 2009). This stan-

dard procedure works well with high-coverage sequencing data. However, the major

disadvantage of this procedure is that by using fixed cutoff, it ignores the information

about the allele frequency and the individual read quality. Another disadvantage is

that this simple genotype calling method provides no quantification of uncertainty

associated with the called genotype (Nielsen et al., 2011).

Most of recently developed genotype-calling methods use a probabilistic frame-

work that provides posterior probabilities for potential genotypes by combining base-

calling error rates and a prior distribution of genotype frequencies (McKenna et al.,

2010; Li et al., 2009a; Martin et al., 2010). Specifically, at a particular locus, the read

data X, including T , R, and Q, is used to calculate the genotype likelihood Pr(X|G)

where G denotes the true genotype. In conjunction with a genotype prior, Pr(G), the

posterior genotype probability is calculated as Pr(G|X) ∝ Pr(X|G) Pr(G). These

probabilistic methods generally differ in their approach to obtaining the error rates.

For example, GATK uses error rates that are calculated directly from phred scores

or recalibrated scores by applying equation (1.1), neither of which is precisely cor-

rect as discussed in 1.2.1. SAMtools obtains an error rate from the minimum of the

phred-based error rate and the mapping error rate, so that the error rate is always

adjusted downwards (Li, 2011). In addition, bases with low phred scores (e.g., Q < 20

or 30) are typically filtered out as part of quality control (QC) procedures. However,

choosing a threshold for phred scores always involves a tradeoff: high thresholds may
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result in loss of useful information by eliminating bases that are correctly called, while

low thresholds leave a large number of erroneously-called bases in the data, leading

to false-positive variant calls. Instead of relying on phred scores, Martin et al. (2010)

proposed SeqEM, a genotype-calling algorithm that estimates the error rate using

the read data itself. However, the fundamental assumption of SeqEM that, at each

locus, there is a uniform error rate for each read is generally not true, given the con-

siderable variability in error rates implied by the variability in phred scores. Because

SeqEM ignores phred scores entirely, the valuable information about errors encoded in

phred scores is lost. Another difference among probabilistic methods is the approach

to estimating the allele frequency. The majority of probabilistic methods such as

GATK and SAMtools, estimate the allele frequency based on a single locus. Nielsen

et al. (2012) presents a strategy to first estimate the Site Frequency Spectrum (SFS)

jointly for all loci, and then use the resulting SFS to define better priors for calling

genotypes.

The aforementioned approaches generally concern calling genotypes independently

for each locus. However, it has been shown that utilizing the pattern of LD at nearby

loci can further improve genotype calling accuracy, especially with low coverage se-

quencing data (Nielsen et al., 2011; Li et al., 2011). Several genotype imputation

methods have been developed to infer genotypes by using the information at linked

loci (Browning and Yu, 2009; Howie et al., 2009; Li et al., 2010; Marchini and Howie,

2010). The single-locus-based genotype calling approaches can be used together with

LD-based imputation methods to incorporate LD information, which substantially

improves the accuracy for genotype calling.

1.3.2 Methods for inferring population structure

PCA was initially introduced to analyze the genetic data in Menozzi et al. (1978), and

has become the most common approach for inferring ancestry (Patterson et al., 2006;
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Price et al., 2006; The Wellcome Trust Case Control Consortium, 2007; Yang et al.,

2010). The top components explain the difference in genetic variation among the

samples, which can be used to correct for confounding due to population stratification

in a variety of ways (Price et al., 2006; Epstein et al., 2007; Luca et al., 2008).

Construction of PCs based on genotype data is straightforward and computationally

efficient (Jackson, 2003), which requires highly accurate genotype calls.

With the unprecedented volume of sequencing data being produced in recent years,

methods have been developed for performing PCA utilizing the sequencing reads di-

rectly. Skoglund and Jakobsson (2011) obtained allele count data for PC calculation

by randomly sampling one read from each individual at each position, in order to

allow comparison between modern, high-quality data and the low-pass ancient data.

Similarly, Malaspinas et al. (2014) developed a tool that samples a read at each posi-

tion and compares the read count data with an existing reference panel of genotype

data using multidimensional scaling. A major disadvantage of these methods is that

it leads to great loss of information in the presence of sequencing errors. Fumagalli

et al. (2013) proposed replacing the genotypic covariance matrix by its expected value

with respect to the posterior genotype distribution given read data. Through explicit

modeling of genotype probability distributions, the PCs can be accurately estimated

when sequencing qualities are the same across the samples. However, the method of

Fumagalli et al. (2013) does not take any measure to deal with differential sequencing

qualities in terms of depth and error rates. Wang et al. (2014) proposed comparing

each sequenced study sample to a set of reference individuals whose ancestral infor-

mation is known and whose genome-wide array genotype data are available. This

method seems to allow differences in depth but nevertheless assumes a constant error

rate for all study samples. The same applies to the improved approach in Wang et al.

(2015).
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1.3.3 Design of NGS studies for testing rare variant associa-

tions

Over the past few years, the optimal design of sequencing-based rare variant associa-

tion studies has been extensively explored, and the benefits of low-coverage sequencing

are often highlighted (Li et al., 2011; Pasaniuc et al., 2012; Xu et al., 2016). However,

all these studies focus on the scenario with equal sizes of independent case-control

samples that are sequenced as part of the same experiment design. Because the se-

quencing qualities are the same, the conventional burden tests (Li and Leal, 2008;

Madsen and Browning, 2009; Price et al., 2010) or variance component tests such as

C-alpha (Neale et al., 2011) and SKAT (Wu et al., 2011) can be used for association

testing based on genotype calls. Additionally, Skotte et al. (2012) proposed to re-

place genotype calls by their expected value given the observed sequencing data (i.e.,

genotype dosages), which results in higher power and better control of type I error

than methods using called genotypes.

Recently, many discussions in the literature suggest that association testing using

data with systematically different sequencing qualities (e.g., read depth and error

rate) in case and control cohorts generates false signals if called genotypes or genotype

dosages are used for the main effect (Derkach et al., 2014; Hu et al., 2016). To adjust

for the confounding effect induced by genotype calls, Derkach et al. (2014) proposed

a robust score test that uses genotype likelihoods whose differential variances in high-

and low-depth samples are explicitly accounted for. One limitation of this method is

that it requires correctly known locations of variants. Because the called genotypes

are used to determine the variant locations, it still yields inflated type I error. Instead

of calling genotypes, Hu et al. (2016) recently developed a likelihood-based burden

test that directly models sequencing reads. We refer to Hu’s method as TASER that

is the name of their software. TASER includes a simple, computationally efficient

screening algorithm to first identify a set of ‘known’ variants (i.e., estimated to be
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polymorphic). Then it computes the burden test statistic by adding up the score

statistics at each ‘known’ variant with certain weights. Finally, TASER assesses the

significance of the test statistic using bootstrap replications. One important feature

of TASER is that it is at least as powerful as the standard genotype calling approach

when the latter controls type I error.

Though methods have been developed to make valid inference when cases and

controls are sequenced separately or at different depth, it remains unclear what is

the most efficient study design that considers the trade-off between the sample size

(n) and the coverage per sample (c), in order to maximize the power for detecting

associations of rare variants. Thus, further work is required to select the optimal

combination of n and c, especially for studies where, as is the common practice,

cases are sequenced at high depth but a fixed budget is assigned to the sequencing of

controls.

1.4 Outline

In Chapter 2, in Section 2.1, we introduce the PhredEM approach, the screening algo-

rithm, and PhredEM with LD refinement. In Section 2.2, we report the results from

simulation studies for comparing the performance of PhredEM to SeqEM, without

and with LD refinement. In Section 2.3, we apply PhredEM to real sequencing data

from the UK10K project and the 1000 Genomes project to illustrate the practical use

of PhredEM. In Section 2.4, we provide a summary and some detailed discussions.

In Chapter 3, in Section 3.1, we present the subsampling and read-flipping proce-

dure to adjust the sequencing data; we also describe two datasets from 1000 Genomes

project and the simulation design. We report in Section 3.2 all results by compar-

ing our method with some existing methods. We conclude our work with a brief

discussion in Section 3.3.



14

In Chapter 4, in Section 4.1, we describe the omnibus TASER and our simulation

design in details. We report the results from simulation studies in Section 4.2. We

summarize our work and discuss some limitations in Section 4.3.

In the final chapter, we summarize all three projects and outline some possible

topics as directions for future research.
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Chapter 2

PhredEM: A

Phred-Score-Informed

Genotype-Calling Approach for

Next-Generation Sequencing

Studies

This Chapter is joint work with Dr. Yijuan Hu and Dr. Glen A. Satten. The paper

has been published in Genetic Epidemiology (Liao et al., 2017).
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2.1 Methods

2.1.1 PhredEM

We first consider one biallelic locus at a time. For the i-th individual, let Gi denote

the underlying true genotype (coded as the number of minor alleles), Ti denote the

total number of alleles that are mapped to the locus, and Ri (Ri ≤ Ti) denote the

number of mapped alleles that are called to be the minor allele. The phred scores

are represented by Qi = (Qi1, . . . , QiTi)
′, where Qik is the phred score associated with

the k-th called allele and the prime (′) indicates the transpose of a vector. At each

locus, values of Ti, Ri, and Qi can be easily extracted from the pileup files produced

by SAMtools. Let εik be the true base-calling error rate of the k-th allele. We relate

εik to Qik through the logistic regression model

log

(
εik

1− εik

)
= β0 + β1Qik, (2.1)

where β0 and β1 are unknown regression parameters that are locus specific. Let

θ = (β0, β1)′ and εik(θ) = exp(β0 + β1Qik)/{1 + exp(β0 + β1Qik)}. Equation (2.1)

is motivated by the fact that the phred score is a highly informative predictor of the

base-calling error, even though (1.1) does not hold in the exact sense. In the Results

section, we demonstrated that the logistic model fits the real sequencing data well.

Without loss of generality, we order the Ti alleles so that the first Ri alleles are

called to be the minor allele and the rest the major allele. Assuming that the errors

of the Ti alleles are independent of each other, the probability of observing Ri copies

of the minor allele out of Ti alleles can be described as a sequence of independent

Bernoulli trials. Specifically, given the true genotype Gi, the total number of alleles
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Ti, and the phred scores Qi, the probability of observing Ri is written as

Pθ(Ri|Gi, Ti,Qi) =



∏Ri

k=1 εik(θ)
∏Ti

k=Ri+1

{
1− εik(θ)

}
Gi = 0

(0.5)Ti Gi = 1

∏Ri

k=1

{
1− εik(θ)

}∏Ti
k=Ri+1 εik(θ) Gi = 2.

(2.2)

Suppose that the sample consists of n unrelated individuals. Then the likelihood

function takes the form

Lo(θ,π) =
n∏
i=1

∑
g=0,1,2

Pθ(Ri|g, Ti,Qi)Pπ(g), (2.3)

where Pπ(g) is the genotype frequency characterized by π. Under Hardy-Weinberg

Equilibrium (HWE), π consists of a single parameter π for the minor allele frequency

(MAF). Then, Pπ(0) = (1 − π)2, Pπ(1) = 2π(1 − π), and Pπ(2) = π2. Under

Hardy-Weinberg Disequilibrium (HWD), π = (π, f)′ where π and f are the MAF

and the fixation index Fst, respectively. Then, Pπ(0) = (1 − f)(1 − π)2 + f(1 − π),

Pπ(1) = 2π(1− π)(1− f), and Pπ(2) = (1− f)π2 + fπ.

The proposed likelihood is closely related to several existing methods. When

β1 = 0, the error rate is independent of the phred score, and expression (2.3) reduces

to the likelihood of SeqEM. When β0 = 0, β1 = − log(10)/10 and ε is small, expression

(2.1) is approximately equal to (1.1), and our model reduces to the Bayesian geno-

typer implemented in GATK. However, our likelihood fully exploits the read data and

the phred scores, both of which could improve genotype-calling accuracy. Note that it

is not necessary to filter out low-quality alleles, which still provide some information

about θ. Because our model uses the read call data to adjust the relationship between

phred scores and the error rate at each locus, it can be considered as a kind of phred
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score recalibration, except that the recalibration is done simultaneously with fitting

other parameters to best fit the observed data. Like other multi-sample calling meth-

ods, our method also estimates the genotype frequencies and regression parameters

by utilizing information across all individuals in the sample.

We may obtain the maximum likelihood estimate (MLE) of θ and π by maximizing

the likelihood (2.3) via the EM algorithm described in the Appendix 2.6.1. However,

if a locus has little variability (e.g., a monomorphic locus, singleton or doubleton) so

that there are very few reads for the minor allele in the study sample, the MLE of

β1 based on (2.3) may be unreliable (Firth, 1993). To improve stability, we propose

to modify the MLE of β1 by leveraging information from other loci. Specifically, we

introduce a Gamma distribution Γ(−β1;κ, φ) as a penalty (or prior) for −β1, where

κ and φ are the shape and scale hyper-parameters, respectively. We first use the

method of moments to obtain estimates κ̂ and φ̂ based on the MLEs of β1 from a

set of loci that are either all or mostly estimated to be monomorphic; for loci that

are estimated to be monomorphic, all reads for the minor allele can be treated as

errors, and ordinary logistic regression can be used to estimate θ at each locus. For

genome- or exome-wide data, any region can be used as most loci are estimated to

be monomorphic; the full EM algorithm only needs to be run for the few loci that

are estimated to be polymorphic. We then obtain the maximum penalized likelihood

estimators (MPLEs) by maximizing the penalized likelihood

L∗o(θ,π) = Γ(−β1; κ̂, φ̂)Lo(θ,π). (2.4)

Note that the MPLEs are asymptotically equivalent to the MLEs, as the Gamma

penalty becomes negligible when the sample size n grows.

Denote the MPLEs by π̂ and θ̂. We can estimate the probability distribution of

the true genotype Gi for the i-th individual from their read count data Ti and Ri and
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their phred scores Qi using the formula

Pr(Gi = g|Ri, Ti,Qi; θ̂, π̂) =
Pθ̂(Ri|g, Ti,Qi)Pπ̂(g)∑2

g′=0 Pθ̂(Ri|g′, Ti,Qi)Pπ̂(g′)
, (2.5)

for g = 0, 1 and 2. At a single locus, genotype calls can be made by assigning each

individual the genotype that their data assigns the highest estimated probability.

Individuals with no read covering the locus are not assigned any genotype. Because

the proposed method incorporates the phred scores and uses the EM algorithm, we

refer to it as PhredEM.

2.1.2 Screening algorithm

The majority of loci in the human genome are monomorphic (The International SNP

Map Working Group, 2001), and are as such of little interest in downstream analy-

ses. To avoid running the full PhredEM algorithm at loci that are estimated to be

monomorphic, we propose a simple and computationally efficient algorithm to iden-

tify and ‘screen out’ these loci; an earlier version of this screening algorithm that

does not incorporate phred scores was first proposed in Hu et al. (2016). We assume

HWE holds, as loci that might be called monomorphic must have either zero or ex-

tremely low MAFs. Then π contains only a single parameter π. We see that formula

(2.5) assigns all mass to Gi = 0 when π̂ = 0; thus loci with π̂ = 0 would be called

monomorphic if PhredEM was applied to obtain π̂. To determine whether π̂ = 0

without fitting PhredEM, let pl∗(π) denote the profile likelihood for π, namely,

pl∗(π) = max
θ

logL∗o(θ, π).

We show in the Appendix 2.6.2 that pl∗(π) is a concave function of π, so that a

negative value for the derivative of pl∗(π) at π = 0 implies π̂ = 0; in other words,

we should screen out loci at which the derivative of pl∗(π) at π = 0 is negative. At
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π = 0, we can easily evaluate this derivative, because the part Lo(θ, π) reduces to

that of a logistic regression model in which we assign an outcome variable Yik = 1 to

a minor allele read and Yik = 0 to a major allele read and regress Yik on Qik. Since

our screening algorithm only involves fitting a standard logistic regression model plus

a penalty term to solve for θ and calculating a derivative function, it can significantly

reduce the computing time that is needed to run PhredEM on whole exome or genome

data.

A simple variant of the screening algorithm can also be used when estimating the

parameters κ and φ for the gamma penalty term. If we first apply the screening

algorithm using the unpenalized profile likelihood pl(π) = maxθ logLo(θ, π), we can

easily find all loci having π̂ = 0 without running the full EM algorithm to maximize

(2.3) at all loci. If the MLE of π is zero, then β0 and β1 can be estimated using

standard logistic regression since all minor allele reads are errors. The few loci for

which π̂ > 0 can either be excluded, or the full EM algorithm can be used to estimate

β0 and β1.

2.1.3 PhredEM with LD refinement

Our approach does not use LD information. It is well known that use of LD patterns

can substantially improve genotype calling for variants having moderate or high mi-

nor allele frequencies (Nielsen et al., 2011). However, we can easily incorporate LD

information into our approach by calculating the genotype likelihood at each locus

using (2.2), evaluated at the MPLE, and then using this genotype likelihood as input

to Beagle (Browning and Yu, 2009).
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2.2 Simulation Study

We conducted simulation studies to assess the performance of PhredEM (P) and

PhredEM followed by Beagle (PB), relative to SeqEM (S) and SeqEM followed by

Beagle (SB). We considered a sample size of 1,000 (results based on a sample size

of 200 are reported in Supplemental Figure S2.1 and Supplemental Tables S2.1 and

S2.2). In each replicate, for each individual we first generated a pair of haplotypes of

European ancestry having length 100 kb using the coalescent simulator cosi (Schaffner

et al., 2005). We then generated sequencing reads with fixed length 100 bp that

mimic reads from the Illumina HiSeq 2000 single-end sequencing platform (Minoche

et al., 2011). Specifically, for each read from an individual, we randomly selected one

of the two haplotypes, randomly picked the starting position of the read along the

haplotype, and simulated 100 phred scores from the empirical distribution observed in

the UK10K data (Figure 2.2[a]). To incorporate the fact that base-calling errors occur

at the end of the reads more frequently than at the beginning (Minoche et al., 2011),

we rearranged the phred scores so that the last 15 bases of the read had the 15 lowest

scores in a descending order; the first 85 bases thus received a random permutation

of the remaining scores. Then, the base calls of the read were generated based on the

underlying haplotype and error rates calculated from equation (1.1); we used (1.1)

because it is more favorable to GATK than to our method. For each individual, we

drew the total number of reads to be generated from a negative-binomial distribution

with mean 1, 000 × c so as to achieve a pre-specified average read depth c. We

considered three average depths: 6x, 10x, and 30x. In applying PhredEM and SeqEM,

we first called genotypes with HWE and, if the estimated MAF was greater than 5%,

we re-called genotypes with HWD (starting at parameter values obtained from HWE).

The hyper-parameters for the Gamma prior for β1 were estimated based on the MLEs

of β1 from the 100k loci in each replicate. All results reported here were based on

200 replicates of the entire process.
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We first assessed the performance of PhredEM, SeqEM, PB, and SB in truly

monomorphic loci. A monomorphic locus is mis-called if there is at least one call of

the minor allele in the study sample. Figure 2.1(a) shows that, with or without LD

refinement, PhredEM made fewer mistakes among monomorphic loci than SeqEM at

all depths. In addition, LD-refinement has negligible improvement upon PhredEM at

monomorphic loci.
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Figure 2.1: Mis-call rates at monomorphic loci in the analysis of (a) the simulated
data, (b) the UK10K SCOOP data, and (c) the 1000 Genomes CEU data.
P and S represent PhredEM and SeqEM. PB, SB, and GATK-B represent PhredEM,
SeqEM, and GATK, each followed by Beagle.

We then compared the four methods in calling genotypes for rare variants. We

grouped variants into four categories based on the true minor allele counts (MACs):

1, [2, 10], [11, 20], and [21, 100], where MAC = 1 corresponds to singletons. As

shown in Table 2.1, the overall number of mis-called genotypes obtained by PhredEM

was less than that by SeqEM in all scenarios; for most cases, PhredEM reduced

by almost one half the number of mis-called genotypes compared with SeqEM. For

instance, when the MAC was between 11 and 20 and depth was 6x, SeqEM mis-

called an average of 2.96 genotypes among 997 individuals whereas PhredEM mis-

called 1.58. As expected, both methods became more accurate as the average read

depth increased. Nevertheless, the performance of PhredEM was noticeably better

than SeqEM at depth as high as 30x. We further examined the mis-called genotypes
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stratified by the underlying genotype. In both the strata of homozygotes (G = 0) and

heterozygotes (G = 1), PhredEM mis-called fewer genotypes than SeqEM. Applying

Beagle after PhredEM substantially improved the performance of PhredEM alone,

except for singletons at which the two methods have comparable mis-call rates. The

superiority of PhredEM over SeqEM remained after applying Beagle to both methods.

Table 2.1: Average number of mis-called genotypes per variant for rare variants in the simulation studies.
Overall Stratified

G = 0 G = 1
MAC Depth N P S PB SB N0 P S PB SB N1 P S PB SB

1 6x 997.1 0.241 0.311 0.274 0.338 996.1 0.065 0.072 0.096 0.096 1 0.176 0.239 0.178 0.242
10x 999.7 0.074 0.135 0.088 0.159 998.7 0.016 0.033 0.039 0.051 1 0.058 0.102 0.049 0.108
30x 1000 0.001 0.004 0.002 0.006 999.0 0 0.001 0.001 0.003 1 0.001 0.003 0.001 0.003

[2, 10] 6x 997.1 0.525 0.845 0.439 0.691 993.5 0.106 0.112 0.162 0.193 3.6 0.417 0.730 0.275 0.496
10x 999.7 0.191 0.315 0.142 0.243 996.2 0.049 0.060 0.063 0.082 3.5 0.140 0.253 0.079 0.161
30x 1000 0.004 0.009 0.003 0.007 996.4 0.001 0.002 0.002 0.004 3.6 0.003 0.007 0.001 0.003

[11, 20] 6x 997.0 1.579 2.959 0.779 1.306 982.2 0.387 0.514 0.243 0.429 14.7 1.156 2.409 0.529 0.868
10x 999.7 0.551 1.011 0.212 0.381 984.9 0.156 0.176 0.090 0.138 14.7 0.380 0.819 0.121 0.241
30x 1000 0.011 0.026 0.005 0.010 985.1 0.004 0.007 0.003 0.005 14.8 0.007 0.019 0.002 0.005

[21, 100] 6x 997.0 4.197 7.633 1.416 2.217 947.8 0.667 2.108 0.347 0.696 48.5 3.136 5.131 1.051 1.489
10x 999.7 1.457 2.722 0.361 0.603 949.9 0.347 0.606 0.126 0.210 49.1 1.002 1.998 0.230 0.381
30x 1000 0.032 0.068 0.009 0.016 949.6 0.008 0.015 0.004 0.007 49.6 0.024 0.051 0.005 0.009

P, S, PB and SB represent PhredEM, SeqEM, PhredEM followed by Beagle, and SeqEM followed by Beagle, respectively. N , N0 and N1 are the average
numbers of individuals covered by at least one read. G is the true genotype; the case G = 2 is omitted as it is barely seen for rare variants. MACs of 1,
10, 20, and 100 correspond to MAFs of 0.0005, 0.005, 0.01, and 0.05, respectively, given the sample size of 1,000.

For common variants, we stratified the results based on five MAF intervals. As

shown in Table 2.2, PhredEM outperformed SeqEM in both the overall and strati-

fied number mis-called. Overall, PhredEM correctly called 3–4 more genotypes than

SeqEM at depth ≤ 10x. The number mis-called by PhredEM increases as the MAF

increases because the information in the phred scores is not used when G = 1, which

can be seen from (2.2). Furthermore, minor allele homozygotes are more likely to be

mis-called than major allele homozygotes due to the smaller prior probability of the

former. As expected, applying Beagle after PhredEM substantially improved geno-

type calling by PhredEM alone for common variants, and the improvement was most

profound for heterozygotes (G = 1). This marked improvement was also shown in

Supplemental Table S2.3 where the error rates are reported given the called variants

instead of the true variants as in Table 2.2.
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We further examined the phred scores at loci having genotypes that are called

differently by PhredEM and SeqEM. In Table 2.3, we displayed the average phred

score associated with major and minor alleles at such loci, stratified by the underlying

genotype (G) and genotypes called by PhredEM (GP) and SeqEM (GS). At loci

with (GP, GS) = (0, 1), regardless of the value of G, the major alleles tend to have

high phred scores whereas the minor alleles tend to have low scores, explaining why

PhredEM called these loci major allele homozygotes; the average phred scores for

minor alleles are consistently lower under G = 0 than that under G = 1, because in

the former case the minor alleles are all errors and in the latter case the minor alleles

are a mixture of errors and true alleles. Similarly, for loci with (GP, GS) = (2, 1),

the major alleles tend to have low scores, which are even lower under G = 2 than

those under G = 1. In other cases when PhredEM called heterozygous genotypes, we

observe high average phred scores for both major and minor alleles. These patterns of

phred scores confirm that PhredEM worked as expected. While the results in Table

2.3 pertain to common variants, those for rare variants are similar and are shown in

Supplemental Table S2.4.
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Figure 2.2: UK10K SCOOP data. (a) Distribution of phred scores. (b) Logistic
regression model and generalized additive model (GAM) fit to the sequencing data
at loci that were identified as monomorphic.

2.3 Application to the UK10K SCOOP Data

To confirm that the results from our simulations hold when analyzing real sequencing

data, we analyzed data from the Severe Childhood Onset Obesity Project (SCOOP)

cohort sequenced as part of the UK10K project. The sequenced SCOOP cohort

consists of 784 UK Caucasian patients with severe early onset obesity, who were

whole-exome sequenced using the Illumina HiSeq 2000 platform with an average depth

of ∼60x. We first used SAMtools to generate pileup files from BAM files, filtering

out reads that are PCR duplicates, have mapping score ≤ 30, or have improperly

mapped mates. From the pileup files, we extracted read count data and phred scores.

The distribution of the phred scores is shown in Figure 2.2(a).

Using the SCOOP sequencing data, we checked the fit of the logistic regression

model in (2.1). First, we applied our screening algorithm to identify loci that were

estimated to be monomorphic (i.e., π̂ = 0). At such loci, we could reliably treat

all minor allele reads as errors. Assigning Y = 1 and 0 for minor allele reads and

major allele reads, respectively, we can determine the relationship between Pr(Y =
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1) and the corresponding phred scores Q. To create a subset of such data that is

computationally manageable, we randomly selected 1,000 monomorphic loci from

each of the 22 chromosomes and randomly picked one individual from each locus,

forming a dataset of 22,000 (Y,Q) pairs. Then, we fit the logistic regression model

in [2.1] and, as a gold standard, fit a smooth spline function of phred scores using

the generalized additive model (GAM) (Wood, 2006). Figure 2.2(b) shows the fitted

curves and pointwise 95% confidence intervals from the two models. The logistic

regression fit always fell within the 95% confidence region of the GAM. Thus, we

conclude that over the range of phred scores found in real data, the logistic model

adequately describes the relationship between phred scores and base-calling error rates

well.

To facilitate the evaluation of PhredEM and especially the comparison with Se-

qEM, we first selected a set of genotypes that can serve as gold standard. Specifically,

we downloaded from the UK10K website the VCF files for the SCOOP cohort, which

contained genotypes called by SAMtools and filtered by GATK. In addition, we ex-

cluded a variant if its average depth across samples is less than 20. We excluded

a genotype whose genotype likelihood (on the phred scale) was ≤ 20 (i.e., nominal

genotyping error rate ≥ 0.01) and excluded a variant completely if it has more than

20% of genotypes with likelihood ≤ 20. These exclusion criteria ensured that all

selected genotypes were called with particularly high quality. We thus refer to these

genotypes as ‘true’ genotypes. After applying the exclusion criteria, there remain

416,402 loci in the entire exome. Since the loci with true genotypes were selected

towards having high read depth, both PhredEM and SeqEM would perform well if

applied to the original data. To create sequencing data with low or median depth,

we then subsampled the observed reads with equal probability.

We based the estimation of hyper-parameters κ and φ on 100k random loci that

were reliably estimated to be monomorphic (i.e., with coverage > 60x and the MLE
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of the MAF π is zero); these 100k loci mimic real sequencing data in which the vast

majority of loci are monomorphic whereas the 416,402 loci extracted from the VCF

files are mostly polymorphic. We then applied PhredEM and SeqEM to call genotypes

assuming HWE at first and, if the estimated MAF was over 5%, we re-called genotypes

assuming HWD. The computation time for PhredEM to call the subsampled UK10K

data depends on the average depth. For example, it took ∼5 h on an Intel Xeon

E5-2660 machine with 2.60 GHz and 6.4 GB memory to call genotypes at the 416,402

loci in the 6x dataset.

The numbers of mis-called genotypes, averaged over all variants on chromosomes

1–22 and stratified by MAF ranges, are displayed in Table 2.4. For rare variants

(MAF ≤ 0.05), the pattern in the number of mis-called genotypes by PhredEM and

SeqEM agreed well with the results in the simulation section, with PhredEM generally

producing more accurate genotype calls. The biggest difference occurred when the

variants were relatively rare, i.e., MAF ∈ (0.001, 0.01]; when the average read depth

was ∼6x, PhredEM generated an average of 1.9 more correct genotypes out of 757

individuals than SeqEM for loci with MAFs in this range. For common variants (MAF

> 0.05), the differences between the two methods were smaller, possibly because

phred scores at heterozygous loci are not informative; this also explains the increase

in genotype-calling error rates with increasing MAF found in Table 2.4. As seen in

the simulation results, applying Beagle after PhredEM improved the performance of

PhredEM alone for all variants except for the very rare ones (e.g., MAF ∈ (0, 0.001]).

The phred scores at loci with differently called genotypes by PhredEM and SeqEM are

summarized in Supplemental Table S2.6. These results exhibited the same patterns

seen in the simulated data. The mis-call rate at monomorphic loci (Figure 2.1 [b])

also show the same pattern seen in the simulated data (Figure 2.1 [a]).
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To gain more insights into the mechanisms of PhredEM and SeqEM, we listed

in Table 2.5 the raw data at eight loci (from the subsampled dataset at 6x) that

were called differently by PhredEM and SeqEM. Generally, base calls with low phred

score are error-prone, and PhredEM treats these unreliable calls as likely errors when

calling the genotype. By contrast, SeqEM depends heavily on the proportion of minor

allele reads among the total reads and ignores the quality measure of each allele. For

example, at Locus 1, the six major alleles were of high quality while the two minor

alleles were likely to be errors. In this case, PhredEM distinguishes between alleles

of different qualities and produced the correct genotype but SeqEM, which cannot

account for low quality alleles, calls the incorrect genotype.

Table 2.5: Eight example loci in the UK10K SCOOP data (subsampled to
6x).

Reads Phred scores Genotype

Locus M m M m True P S

1 6 2 21 36 37 38 39 42 9 16 0 0 1
2 6 1 18 18 27 36 39 40 33 0 1 0
3 4 1 20 34 34 36 15 1 0 1
4 5 1 25 32 32 34 39 37 1 1 0
5 1 5 35 20 25 38 40 40 1 1 2
6 1 5 14 33 37 38 38 40 1 2 1
7 1 4 32 30 34 37 39 2 1 2
8 2 5 11 17 30 34 35 36 39 2 2 1

M and m represent major and minor alleles, respectively. True is the
true genotype. P and S represent the called genotypes by PhredEM and
SeqEM, respectively.

2.4 Application to the 1000 Genomes CEU Data

To compare PhredEM to GATK, we considered data from the CEU samples in the

1000 Genomes project. It is hard to make this comparison using simulated data, since

it is difficult to construct BAM files for the simulated data, and because the 100KB
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region we simulated is to short to train the BQSR model used in GATK. It is also

hard to make this comparison using the UK10K SCOOP data, as BAM files for the

subsampled data are not easily available. In the CEU cohort, 99 unrelated individuals

were whole-genome sequenced with an average depth of ∼7.3x. We adopted the same

filters for the reads as in the analysis of UK10K SCOOP data. As the 99 CEU

samples have also been genotyped on the Illumina Omni 2.5 array, we treated these

array genotypes as the gold standard. We excluded array SNPs at which ≥5% of

the samples have missing array genotypes or are not covered by any reads. We also

removed 11,119 array SNPs where the genotypes called using sequencing data for

all three methods (SeqEM, PhredEM and GATK) indicated a MAF that differed by

more than 0.2 from the MAF based on the array genotypes. After these exclusions,

there were 1,842,422 array SNPs available for comparison.

We estimated the hyper-parameters for PhredEM based on a random subset of

100k array SNPs that are called as monomorphic using the genotype array in the 99

CEU cohort. In addition to PhredEM and SeqEM, we also applied GATK, using the

base quality score recalibration step implemented in BQSR (GATK version 3.6) and

a genotype calling step by UnifiedGenotyper with default options. It took 3.4 days

for BQSR and 1.3 days for UnifiedGenotyper to run; in contrast, it took a total of

1.7 days for PhredEM to call the same set of genotypes.

PhredEM performed better than SeqEM and GATK in general. Figure 2.1(c)

shows that, at monomorphic loci (i.e., no polymorphism in the array genotypes of the

99 samples), PhredEM has the smallest mis-call rate with or without LD refinement

whereas GATK has the highest mis-call rate. Table 2.6 displays the numbers of mis-

called genotypes at polymorphic loci, stratified by the ‘true’ MAFs (i.e., based on

array genotypes). In most strata, the numbers for PhredEM are smaller than that

for GATK, with or without Beagle. The results stratified on the estimated MAF by

each method are presented in Table S2.5, which shows similar patterns. All results
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consistently indicate that GATK tends to call too many heterozygotes at rare variants

and monomorphic loci. Table S2.7 compares the sensitivity (i.e., the probability of

calling a minor allele given a minor allele is truly present) and specificity (probability

of calling the major allele given the major allele is truly present) for the methods we

consider in Table S2.7. We find that PhredEM with the LD refinement has the highest

specificity (although the differences are tiny, they are significant and when amplified

to the genome-wide scale can represent a meaningful difference). PhredEM with

LD refinement has the best sensitivity at very low MAF by a considerable amount

(0.828, compared to 0.748 for GATK with LD refinement); for higher MAFs, GATK

with LD refinement outperforms PhredEM with LD refinement by smaller amounts

(e.g., 0.954 for PhredEM with LD vs. 0.958 for GATK with LD). When evaluating

the importance of the differences reported in Table S2.7, it is worth noting that the

number of truly polymorphic alleles with low MAF is much smaller than the number

of monomorphic alleles, so that a small difference in specificity results in more mis-

calls than a larger difference in sensitivity. This explains how GATK with LD can

have a higher sensitivity but a lower accuracy as reported in Table 2.6.

Table 2.6: Average number of mis-called genotypes per variant in the
analysis of the 1000 Genomes CEU data.

MAF N P S GATK PB SB GATK-B

(0, 0.01] 98.07 0.185 0.203 0.808 0.197 0.220 0.701

(0.01, 0.05] 98.08 0.546 0.562 0.716 0.285 0.306 0.326

(0.05, 0.1] 98.04 1.330 1.334 1.541 0.451 0.482 0.445

(0.1, 0.2] 98.02 2.553 2.519 2.781 0.724 0.749 0.685

(0.2, 0.3] 98.03 3.716 3.889 3.919 0.727 0.794 0.742

(0.3, 0.4] 98.02 4.648 4.827 4.733 0.835 0.923 0.865

(0.4, 0.5] 98.01 5.189 5.380 5.118 0.886 0.979 0.915

MAF is the minor allele frequency observed in the array genotype data.
P and S represent PhredEM and SeqEM, respectively. PB, SB, and
GATK-B represent PhredEM, SeqEM, and GATK followed by Beagle.
N is the average number of individuals covered by at least one read.
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2.5 Discussion

In this project, we have developed a phred-score-informed genotype-calling approach

for NGS studies, called PhredEM. We also proposed a simple and computationally

efficient screening algorithm to identify loci that would be called as monomorphic.

PhredEM improves the accuracy of genotype-calling by estimating base-calling errors

from both read data and phred scores, and by using all sequencing reads available

without setting a phred-score-based quality threshold. PhredEM is closely related to

the SeqEM approach, which can be viewed as a special case of PhredEM. We showed

that the logistic model relating phred score to base-calling error rate used in PhredEM

fits real sequencing data well. The software program implementing PhredEM, also

called PhredEM, is freely available at http://web1.sph.emory.edu/users/yhu30

/software.html. The webpage also contains a link to utility programs that process

raw BAM files for use as inputs to PhredEM.

In our logistic regression model (2.1), the phred score is the only predictor for the

base-calling error. Other important predictors for base-calling quality could also be

included. One interesting factor is the position in the read (Brockman et al., 2008),

although it is unclear whether this has an independent effect once the phred score is

accounted for. We did not consider the mapping score as a possible covariate because

there is little variability in mapping scores (Li et al., 2008) (see Supplemental Figure

S2.2). However, we recommend that PhredEM should be applied after excluding

alignments with mapping scores less than 30.

Our approach is similar in spirit to GATK with BQSR because we allow the

relationship between error and phred score to be determined by fit to the data, but

our approach is more accurate and computationally more tractable. Because we allow

a separate set of error parameters at each locus, we automatically account for any

covariates that are locus-dependent such as the actual alleles at each locus. We could

also consider adding other predictors of error that are included in BQSR that vary
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across reads.

We recommend using PhredEM with the HWE assumption first, because most

loci have low MAFs and HWE has a minimal effect for them. If the estimated MAF

is greater than 5%, a second pass of PhredEM could easily be made using the model

assuming HWD, which is more robust. Our numerical studies (not shown) suggest

that at medium or high read depth (≥10x), the estimated genotype frequencies based

on the calls from PhredEM converged rapidly to their true values with increasing

sample size even when assuming HWD.

PhredEM is based on several simplifying assumptions. First, the sample should

consist of independent, unrelated individuals; this is essential to the likelihood in

expression (2.3). A version of PhredEM could be constructed for trio data by modeling

the joint genotypes of parents and offspring, for example, using the conditional-on-

parental genotypes (CPG) approach of Schaid and Sommer (1993). We also assume

that errors are symmetric, i.e. that the probability of a read for the major allele

being mis-called as the minor allele is the same as the probability of the minor allele

being mis-called as the major allele. Further, PhredEM assumes that all variants are

biallelic. The biallelic assumption is reasonable because only a small fraction of SNPs

have been verified to carry three or more alleles (Hodgkinson and Eyre-Walker, 2010).

In analyzing the UK10K and 1000 Genomes data, we deleted in advance all calls for

bases that differed from the two most frequent bases at every locus.

LD information is helpful in identifying monomorphic loci and calling genotypes

for both rare and common variants. Therefore, we recommend always using Beagle

in conjunction with PhredEM when calling genotypes for NGS data.

In summary, we developed PhredEM, an improved genotype caller which reduces

the genotype-calling errors for NGS data. We also proposed a simple and com-

putationally inexpensive algorithm for screening out loci that are estimated to be

monomorphic. We showed in simulations that the proposed approach generates fewer
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incorrect calls than SeqEM regardless of the average read depth and sample size. Us-

ing the UK10K and 1000 Genomes sequencing data, we demonstrated the capability

of PhredEM to improve the genotype-calling accuracy over SeqEM and GATK in real

sequencing data.

2.6 Appendix

2.6.1 EM algorithm

In the EM algorithm, Gi (i = 1, . . . , n) is treated as missing. The complete-data

log-likelihood has the form

lc(θ,π) =
n∑
i=1

2∑
g=0

I(Gi = g)
{

logPθ(Ri|g, Ti,Qi) + logPπ(g)
}
.

Let θ(k) and π(k) be the parameter values after the kth iteration. In the E-step of

the (k+ 1)th iteration, we evaluate E{I(Gi = g)|Ri, Ti,Qi} for g = 0, 1, 2, which can

be written as

ω
(k)
ig ≡

Pθ(k)(Ri|g, Ti,Qi)Pπ(k)(g)∑2
g′=0 Pθ(k)(Ri|g′, Ti,Qi)Pπ(k)(g′)

.

In the M-step, we maximize lc(θ,π) with I(Gi = g) replaced by ω
(k)
ig . Specifically,

under HWE we update π by a closed form π(k+1) = (2n)−1
∑n

i=1(2ω
(k)
i2 + ω

(k)
i1 ),

or under HWD we update π by the same π(k+1) and update f by f (k+1) = 1 −∑n
i=1 ω

(k)
i1 /
{

2nπ(k+1)(1 − π(k+1))
}

. We use a one-step Newton-Raphson iteration to

update θ. We iterate between the E-step and M-step until the changes in the param-

eter estimates are negligible.
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2.6.2 Proof of concavity of pl∗(π)

First, we prove that, for fixed θ, the function h(π) = log
{∑

g=0,1,2 Pθ(R|g, T,Q)Pπ(g)
}

is concave. Under HWE, we write h(π) = log
{
aπ2 + b(1− π)2 + 2cπ(1− π)

}
, where

a = Pθ(R|G = 2, T,Q), b = Pθ(R|G = 0, T,Q), and c = (0.5)T . The second deriva-

tive of h(π) is

h′′(π) = −
2
{

(a+ b− 2c)π + (c− b)
}2

+ 2(c2 − ab){
aπ2 + b(1− π)2 + 2cπ(1− π)

}2 .

Because ab =
∏T

k=1 εk(θ)
{

1 − εk(θ)
}
≤ (0.25)T = c2, we obtain h′′(π) ≤ 0 and thus

h(π) is a concave function of π.

Because the sum of concave functions is still concave, logLo(θ, π) is concave in π

for fixed θ. It follows that logL∗o(θ, π) = log Γ(−β1; κ̂, φ̂)+logLo(θ, π) is also concave

in π for fixed θ. Because the pointwise supremum over θ preserves the concavity [Boyd

and Vandenberghe, 2004], pl∗(π) is concave.

2.7 Supplemental Materials

Table S2.1: Average number of mis-called genotypes per variant for rare variants in the simulation studies
when n = 200.

Overall Stratified
G = 0 G = 1

MAC Depth N P S PB SB N0 P S PB SB N1 P S PB SB

1 6x 199.4 0.196 0.276 0.211 0.318 198.4 0.019 0.063 0.029 0.096 1 0.177 0.213 0.182 0.222
10x 199.9 0.065 0.096 0.077 0.125 198.9 0.010 0.020 0.019 0.036 1 0.055 0.076 0.058 0.089
30x 200 0.001 0.003 0.002 0.004 199.0 0 0.001 0.001 0.001 1 0.001 0.002 0.001 0.003

[2, 4] 6x 199.4 0.358 0.587 0.294 0.508 196.8 0.036 0.137 0.058 0.172 2.6 0.318 0.446 0.235 0.334
10x 199.9 0.113 0.192 0.095 0.159 197.3 0.017 0.040 0.032 0.055 2.6 0.095 0.151 0.062 0.103
30x 200 0.002 0.005 0.002 0.005 197.4 0 0.002 0.001 0.002 2.6 0.002 0.003 0.001 0.003

[5, 20] 6x 199.4 1.007 1.663 0.428 0.784 189.2 0.084 0.459 0.107 0.308 10.1 0.845 1.127 0.316 0.467
10x 199.9 0.340 0.601 0.143 0.219 189.5 0.047 0.148 0.053 0.090 10.2 0.267 0.425 0.088 0.127
30x 200 0.007 0.016 0.003 0.006 189.4 0.001 0.003 0.001 0.002 10.4 0.005 0.012 0.002 0.003

P, S, PB and SB represent PhredEM, SeqEM, PhredEM followed by Beagle, and SeqEM followed by Beagle, respectively. N , N0, and N1 are the average
numbers of individuals covered by at least one read. G is the true genotype; the case G = 2 is omitted as it is barely seen for rare variants. MACs of 1,
4, and 20 correspond to MAFs of 0.0025, 0.01, and 0.05, respectively, given the sample size of 200.
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Table S2.3: Average number of mis-called genotypes per locus in
the simulation studies when n = 1, 000.

Depth P S PB SB

MAC = 0 6x 0.001 0.002 0.001 0.002
10x 0 0.001 0 0.001
30x 0 0 0 0

1 6x 0.842 0.916 0.841 0.921
10x 0.505 0.772 0.484 0.768
30x 0.028 0.081 0.024 0.072

[2, 10] 6x 0.971 1.191 0.927 1.329
10x 0.235 0.478 0.228 0.532
30x 0.004 0.008 0.003 0.009

[11, 20] 6x 1.625 3.237 0.799 1.305
10x 0.549 1.018 0.215 0.375
30x 0.010 0.025 0.004 0.008

[21, 100] 6x 4.441 8.078 1.425 2.223
10x 1.464 2.761 0.361 0.599
30x 0.033 0.068 0.009 0.015

MAF ∈ (0.05, 0.1] 6x 12.077 17.401 1.981 2.852
10x 3.645 6.328 0.491 0.701
30x 0.074 0.148 0.012 0.018

(0.1, 0.2] 6x 23.552 28.964 2.148 2.957
10x 6.399 9.960 0.637 0.798
30x 0.107 0.236 0.013 0.022

(0.2, 0.3] 6x 36.315 41.182 2.441 3.326
10x 9.660 13.713 0.806 0.952
30x 0.156 0.338 0.020 0.027

(0.3, 0.4] 6x 46.074 50.301 2.656 3.738
10x 11.698 15.930 0.892 1.005
30x 0.186 0.378 0.020 0.029

(0.4, 0.5] 6x 50.899 54.762 2.732 4.031
10x 12.901 17.172 0.985 1.104
30x 0.187 0.405 0.021 0.027

MAC and MAF are the number of minor alleles and minor allele fre-
quency based on called genotypes of each method. P, S, PB, and SB
represent PhredEM, SeqEM, PhredEM followed by Beagle, SeqEM fol-
lowed by Beagle, respectively.
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Table S2.4: Average phred scores associated with called major (M) and
minor (m) alleles at loci that are called differently by PhredEM and SeqEM
in the simulation studies for rare variants when n = 1, 000.

G = 0 G = 1
(0, 1) (1, 0) (0, 1) (1, 0)

MAC Depth M m M m M m M m

1 6x 37.1 11.2 37.7 38.9 37.5 21.5 37.0 38.6
10x 38.4 10.6 37.4 35.0 37.6 21.7 36.5 37.5
30x 37.2 11.8 37.1 35.9 38.5 22.2 37.3 37.8

[2, 10] 6x 37.1 10.6 37.1 38.0 37.4 20.1 37.1 39.0
10x 37.6 11.0 37.3 38.4 36.9 20.9 36.8 38.5
30x 37.4 11.6 36.8 36.3 37.6 24.2 37.1 37.9

[11, 20] 6x 37.1 9.9 37.1 37.2 36.9 17.7 37.1 38.9
10x 36.9 10.7 37.8 37.9 36.8 18.2 37.1 38.8
30x 36.5 11.2 36.8 35.5 37.6 21.6 36.5 38.1

[21, 100] 6x 37.2 9.6 37.1 36.8 37.2 15.8 37.1 38.7
10x 37.5 10.0 37.2 37.5 36.8 16.6 37.4 39.2
30x 37.2 10.8 37.3 36.8 37.6 19.4 37.0 38.3

G is the true genotype. (GP, GS) = (0, 1), (1, 0), etc. represents loci that are
called to be GP and GS by PhredEM and SeqEM, respectively. MACs of 1, 10,
20, and 100 correspond to MAFs of 0.0005, 0.005, 0.01, and 0.05, respectively,
given the sample size of 1,000.

Table S2.5: Average number of mis-called genotypes per locus in
the analysis of the 1000 Genomes CEU data.

P S GATK PB SB GATK-B

MAC = 0 0.304 0.323 0.505 0.297 0.339 0.498

MAF ∈ (0, 0.01] 0.455 0.586 0.163 0.312 0.452 0.157

(0.01, 0.05] 0.649 0.724 0.684 0.298 0.425 0.376

(0.05, 0.1] 1.384 1.396 2.042 0.407 0.469 0.963

(0.1, 0.2] 2.501 2.519 3.516 0.550 0.612 1.338

(0.2, 0.3] 3.752 3.778 4.446 0.712 0.784 1.228

(0.3, 0.4] 4.611 4.621 4.814 0.809 0.904 0.928

(0.4, 0.5] 5.071 5.068 5.095 0.862 0.962 0.883

MAC and MAF are the number of minor alleles and minor allele fre-
quency based on called genotypes of each method. P, S, PB, SB, and
GATK-B represent PhredEM, SeqEM, PhredEM followed by Beagle,
SeqEM followed by Beagle, and GATK followed by Beagle, respectively.
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Table S2.7: Specificity and Sensitivity in the analysis of the 1000 Genomes CEU data.

Specificity Sensitivity
MAF P S GATK PB SB GATK-B P S GATK PB SB GATK-B

(0, 0.01] 1.0 1.0 0.995 1.0 0.999 0.995 0.849 0.845 0.699 0.828 0.843 0.748

(0.01, 0.05] 0.999 0.999 0.998 0.999 0.999 0.999 0.901 0.901 0.898 0.954 0.957 0.958

(0.05, 0.1] 0.999 0.999 0.997 0.999 0.999 0.998 0.903 0.903 0.904 0.973 0.972 0.976

(0.1, 0.2] 0.998 0.997 0.996 0.998 0.997 0.998 0.902 0.905 0.910 0.977 0.978 0.980

(0.2, 0.3] 0.997 0.996 0.995 0.997 0.996 0.996 0.915 0.912 0.924 0.986 0.986 0.987

(0.3, 0.4] 0.996 0.995 0.993 0.996 0.995 0.995 0.925 0.923 0.933 0.988 0.987 0.989

(0.4, 0.5] 0.990 0.988 0.992 0.995 0.993 0.993 0.939 0.936 0.943 0.990 0.989 0.990

P and S represent PhredEM and SeqEM, respectively. PB, SB, and GATK-B represent PhredEM, SeqEM, and GATK
followed by Beagle. MAF is the minor allele frequency observed in the array genotype data. Let n0, n1, and n2

denote the average number of mis-called genotypes for G = 0, 1, and 2. Specificity = 1 − n0/N0 and Sensitivity =
1− (n1 + 2n2)/(N1 + 2N2).
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Chapter 3

Robust Inference of Population

Structure from Next-Generation

Sequencing Data with Systematic

Differences in Sequencing

This Chapter is joint work with Dr. Yijuan Hu and Dr. Glen A. Satten. The

manuscript is currently under review in Bioinformatics.
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3.1 Methods

3.1.1 Estimating the per-base error rate

We consider biallelic single-nucleotide polymorphisms (SNPs). Let G denote the

unknown true genotype (coded as the number of minor alleles) of an individual at a

SNP, T denote the number of reads mapped to the SNP, and R (R ≤ T ) denote the

number of reads carrying the minor allele. Similar to SAMtools (Li et al., 2009a),

GATK (DePristo et al., 2011), and SeqEM (Martin et al., 2010), we assume that R

given T and G follows a binomial distribution

Pε(R|T,G) =


Binomial(T, ε) if G = 0

Binomial(T, 0.5) if G = 1

Binomial(T, 1− ε) if G = 2,

(3.1)

where ε is the probability that a read allele is different from the true allele and is

referred to as the error rate. The “errors” here comprise both base-calling and align-

ment errors. We treat ε as a free parameter that is locus-specific and estimate it

from the read data using SeqEM, which is a multi-sample, single-locus genotyper (al-

though we do not use its genotyping results). Because PCA typically uses common

variants, which often do not follow Hardy-Weinberg equilibrium (HWE) in the pres-

ence of population stratification, we adopt the model allowing for Hardy-Weinberg

disequilibrium in SeqEM. Suppose there are M sequencing groups of samples with

potentially differences in sequencing qualities, referred to as groups 1, 2, . . . , and M .

Then, we obtain separate error estimates by applying SeqEM independently in each

group at each SNP.



46

3.1.2 Pruning SNPs and picking ancestry informative mark-

ers

The genome (and even the exome) has far more SNPs than are necessary for accurate

ancestry assignment using PCA. Even with genome chip data, it is common practice

to perform LD-based SNP pruning to generate a subset of nearly independent SNPs.

Thus, we propose an initial pruning step to find SNPs that have low LD and also

have enhanced chance of being ancestry-informative markers (AIMs). Because it is

not necessary to remove artifacts related to differences in sequencing quality at this

stage, we use simple methods that can be easily applied on a large scale. In particular,

we ignore differences in sequencing depth and use a simple correction for sequencing

error.

Given the model in (3.1), it is possible to show that

G =
R/T − ε
0.5− ε

is an unbiased estimator for the true genotype G, by noting that model (3.1) implies

E(R/T |T ) = (0.5 − ε)G + ε and then marginalizing over T . For each sequencing

group, we calculate G at each SNP by replacing ε with its estimator.

For SNP pruning, we then calculate the pairwise Pearson correlation coefficient

based on the values of G, and apply standard LD-based pruning (Purcell et al., 2007).

After pruning, we may use all remaining SNPs to infer population structure; alter-

natively, we may restrict to a panel of AIMs that have maximum allele frequency

differences between predefined populations. If the underlying populations are un-

known, we can pick AIMs by selecting those SNPs having the highest variance of G.

The ability to estimate genetic ancestry strongly depends on the number of AIMs

used. Because we employ a non-specific strategy to identify AIMs, we recommend

using at least 10K AIMs (Pardo-Seco et al., 2014).
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3.1.3 Handling systematic differences in sequencing

Once we have selected a set of SNPs for calculating PCs, we adjust the data so that

the sequencing quality is the same across sequencing groups. First, we subsample

read counts so that the depth distribution is the same in each sequencing group. To

illustrate our algorithm, we first consider the case where each sequencing group has

the same sample size. In this case, at each SNP we sort the observations by depth

and then match the observations in each group having the same rank order of depth

(we randomize the order among observations having the same depth in each group).

At a given SNP, each matched set thus has one observation from each sequencing

group. For each matched set, we then sample the reads from each observation (with-

out replacement) to equal the smallest depth found in that set; the data from the

observation having the lowest depth is not changed. After subsampling each matched

set, the depth for each sequencing group at the given SNP is the same. Repeating

this procedure at each SNP results in a dataset for which all sequencing groups have

the same depth at each SNP. Details on the algorithm we use when sample sizes of

the sequencing groups differ is found in the Appendix 3.4.1.

Once the depth is equal across sequencing groups, we then equalize the error rate

across sequencing groups using a read-flipping procedure. Specifically, let ε̂1, ε̂2,. . . ,ε̂M

be the estimated error rates for the M groups at a SNP. Suppose that group M has

the highest error rate, i.e., ε̂M = maxm=1,...,M{ε̂m}. We then flip each read allele

(i.e., change a minor allele read to a major allele read, or vice versa) in group m

(m = 1, . . . ,M − 1) with probability (ε̂M − ε̂m)/(1 − 2ε̂m) to achieve the same error

rate as in group M . Justification for this choice is found in Appendix 3.4.2.

After subsampling and read-flipping, we then compute the variance-covariance

matrix of R/T (use of G is no longer required as the error rates are now the same in

each sequencing group). Denote the (centered and scaled) matrix of R/T for the b-th

subsampled data by Xb. Note that to the extent that we have correctly matched the
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depth and error rates, XbX
T
b does not have any PCs that correspond to differences in

sequencing quality. To minimize loss of information, we repeat the subsampling and

allele flipping procedures B times and aggregate the variance-covariance matrices by

averaging to obtain X =
∑B

b=1XbX
T
b /B. Finally, we calculate PCs from X, which

preserves the unbiasedness of individual XbX
T
b ’s. We recommend using B = 100,

which we have found to achieve good accuracy of PCs at an affordable computational

cost in our numerical studies.

3.1.4 Application to stratified and admixed populations from

1000 Genomes

To evaluate our approach and compare with existing methods, we constructed data for

a population having three similar but distinct subpopulations. The subpopulations

were based on samples from three Asian populations in the 1000 Genomes Project:

103 Han Chinese from Beijing, China (CHB), 104 Japanese from Tokyo, Japan (JPT),

and 99 Kinh from Ho Chi Minh City, Vietnam (KHV). All samples had high-depth

whole-exome sequencing (WES) data with an average depth of 39.5× and low-depth

whole-genome sequencing (WGS) data with an average depth of 7.0×, as well as

genotype data from the Illumina Omni2.5 array. To explore the effect of systematic

differences in sequencing quality on population genetic inference, we assumed data

from two sequencing groups (e.g., two studies), one having WES data (called group

1) and the other having WGS data (called group 2). To vary the subpopulation

frequencies by group, we randomly sampled 75% of CHB, 50% of JPT, and 25% of

KHV to form group 1 and the remaining to form group 2. For some analyses we also

thinned the depth of the WGS data to ∼4× to examine the performance of different

approaches with lower depth in group 2.

To explore the effect of systematic differences in sequencing quality on associa-

tion testing in a genetic epidemiologic study, we next considered group 1 to be a set
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of cases and group 2 to be a set of controls in an association study. Because cases

and controls have different subpopulation composition, we expect to see confound-

ing by population stratification unless the effect of ancestry is correctly accounted

for; in truth no SNPs are associated with case-control status after adjustment for

population stratification. To evaluate the success of PCA methods, we construct

quantile-quantile (Q-Q) plots for testing association with all the 1,138,558 common

SNPs (i.e., minor allele frequency [MAF] ≥ 0.05) on the genotyping array, using the

score test for logistic regression model which used the array genotypes for the main

effect and the top 10 PCs as covariates. Here we used the array genotypes as the true

genotypes for the main effect in order to focus on the impact of different methods for

calculating the PCs.

To evaluate our approach and compare with existing methods in a situation with

continuous admixture, we also considered estimation of the proportion of African

ancestry for the 55 Americans of African ancestry in southwest USA (ASW) from the

1000 Genomes Project. To this end, we used WES data (∼40×) from the CEU (99

Utah residents with northern and western European ancestry) and YRI samples (108

Yoruba in Ibadan, Nigeria) but assumed only WGS data (∼6.5×) were available for

the ASW samples. We calculated PCs for all three populations together. We then

estimated the proportion of African ancestry for each individual in ASW by the ratio

of the distance between the individual’s PC1 and the centroid of PC1 in CEU and

the distance between the centroids of YRI and CEU (Ma and Amos, 2012).

In processing the sequencing data, we first used SAMtools to generate pileup files

from BAM files, restricting to exonic regions and filtering out reads that are PCR

duplicates, have mapping scores < 30, and have improperly mapped mates. From the

pileup files, we extracted read count data for each locus (i.e., base pair), excluding

reads with phred base-quality scores < 20 at this locus. Additionally, we filtered out

individual-level read count data (i.e., setting T to 0) that do not fit the binomial
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model (3.1) by a read-based quality-control (QC) procedure (Hu et al., 2016). We

excluded a locus altogether if more than 5% of samples in either group have T = 0.

We focused on SNPs with MAF ≥ 5%, which can be easily and accurately identified

from the read data using the MAF estimated by SeqEM. We also pruned these SNPs

for pairwise correlation at a threshold of r2 = 0.5. To facilitate comparison with the

truth, we further restricted to SNPs whose array genotypes are available.

3.1.5 Simulation design

To further assess the impact of different ways of calculating PCs on the power of as-

sociation tests, we conducted simulation studies based on the stratified data example

using three Asian populations from the 1000 Genomes Project described previously.

We generated allele frequencies for three populations (called populations 1, 2, and 3)

using the approach described by Fumagalli et al. (2013). Population-specific MAFs

are sampled based on FST values that differentiate the subpopulations; details can be

found in Appendix 3.4.3. Based on Tian et al. (2008) we set FST=0.0065 to differen-

tiate between CHB and JPT/KHV and then set FST=0.011 to differentiate between

JPT and KHV. We assumed 100K common SNPs (overall MAF ≥ 0.05) in each repli-

cate data set. We treated these SNPs as independent of each other and simulated the

genotypes assuming HWE within each population.

To generate the disease (case-control) status, we started with a general population

in which 1/6, 1/3, and 1/2 of individuals are from populations 1, 2, and 3, respectively.

Under the null hypothesis of no genetic association, we generated disease status Di

for the i-th individual using the risk model log{P (Di = 1)/P (Di = 0)} = α −

log(3)I{Pi=2} − 2 log(3)I{Pi=3}, where α was chosen to achieve a disease rate of ∼1%

in population 1 and Pi is the population that the i-th individual belongs to. We

then sampled until we had obtained an equal number of cases and controls. We

considered designs with 150 cases and 150 controls to mimic the sample size of our
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stratified 1000 Genomes dataset, as well as designs with 1000 cases and 1000 controls

that represent a more typical genetic association study from a single study center.

As with our original stratified data, this sampling scheme yielded an approximately

equal number of members from each of the three populations in the case-control study

population. Further, the cases in the study population comprised about ∼75% of the

study population from population 1, ∼50% of the study population from population

2, and ∼25% of the study population from population 3, which again matches the

compositions of populations in sequencing group 1 in the stratified 1000 Genomes

dataset. To calculate power we assumed an alternative hypothesis in which each copy

of the first 10 SNPs increases the odds of disease by a common log odds ratio β, so that

risk model becomes log{P (Di = 1)/P (Di = 0)} = α + β
∑10

j=1Gij − log(3)I{Pi=2} −

2 log(3)I{Pi=3}, where Gij is the genotype of the j-th SNP. Again, we sampled until

an equal number of cases and controls were drawn to form the study population.

We simulated read count data rather than raw sequencing reads for sake of com-

putational efficiency; this is reasonable as each SNP was generated independently.

We fixed the average depth at 39.5× and set the average error rate to 0.17% (as

observed in the 1000 Genomes WES data) for cases and varied the average depth

between 7× and 4× and the average error rate between 0.1% (as observed in the 1000

Genomes WGS data) and 1% (Nielsen et al., 2011) for controls. For more details

about locus-specific depth and error rate, see Appendix 3.4.4. Finally, we sampled Ri

given (Gi, Ti, ε) according to model (3.1). The whole process was repeated to generate

100 replicate data sets.
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3.2 Results

3.2.1 Inference on a stratified population from 1000 Genomes

After applying QC filters to the original WES and WGS data, we obtained 41,672

SNPs exome wide, of which 27,688 SNPs remained for calculating PCs after LD prun-

ing. We applied the proposed method, the PCA method based on called genotypes

in which the genotypes were called by SeqEM, and the PCA method based on array

genotypes which serves as the gold standard. We refer to these methods as New,

CG, and TG. In addition, we applied the Fumagalli method. We first evaluated the

methods for their ability to differentiate subpopulations. We focused on scatter plots

of PC1 versus PC2, because the first two PCs are expected to capture the majority of

genetic variability given that there are three discrete populations. The upper panel

of Figure 3.1 shows that PCs calculated using New, CG and Fumagalli inferred the

same structure as PCs calculated using TG. To investigate if the ∼7× WGS data

accounted for this, we thinned the depth of the WGS data to ∼4×, resulting in

25,158 SNPs, of which 19,114 SNPs remained for calculating PCs after LD pruning.

The lower panel of Figure 3.1 shows that New still provided a similar estimation of

population structure as TG. In contrast, both Fumagalli and CG caused group 2 to

shift away from group 1 within each subpopulation. In particular, Fumagalli shrank

group 2 towards the origin relative to group 1; this is not unexpected, because the

sequencing depth affects the accuracy with which the posterior genotype probabilities

used in Fumagalli are calculated. A two-sample t-test comparing the distance mea-

sure PC12 +PC22 between samples from group 1 and samples from group 2 confirmed

that the distances were significantly different for Fumagalli (p-value < 0.001) and CG

(p-value = 0.002) but not for New (p-value = 0.306) and TG (p-value = 0.439) for

the WGS data thinned to ∼4× depth.

Figure 3.2 shows Q-Q plots for tests of association calculated at each SNP. Because
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Figure 3.1: Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in the analysis of the
stratified 1000 Genomes data with three discrete Asian populations

Figure 3.2: Q-Q plots of − log10 (observed p-values) (y-axis) versus
− log10 (expected p-values) (x-axis) in the analysis of the stratified 1000 Genomes
data with three discrete Asian populations.
The solid black line represents the reference line of global null hypothesis of no asso-
ciation. The dashed curves represent a 95% point-wise confidence band.
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there is no true association, the extent to which these plots track the 45o line is

a measure of how well the PCs calculated by each method control for population

stratification. For CG, the departure of the observed p-values from the global null

hypothesis of no association may be too subtle to be seen clearly with the original

data at ∼7×; it is much more pronounced with the thinned data at ∼4×, with

genomic control λ = 1.17. New, Fumagalli, and TG all led to good control of type

I error (λ = 1.04); note that the type I error would be highly inflated (λ = 1.22,

Supplemental Figure S3.2) without adjusting for any PCs.

3.2.2 Inference on an admixed population from 1000 Genomes

Applying QC filters to the admixed population data resulted in 43,503 SNPs exome

wide; LD pruning reduced this number to 34,563 SNPs. After thinning the depth

of WGS to ∼4×, 24,939 SNPs remained, of which 21,215 SNPs were available for

calculating PCs after LD pruning. We calculated PCs using New, Fumagalli, CG, and

TG and compared the estimated proportions of African ancestry from each method

with that calculated using TG; these results are shown in Figure 3.3 (for values in

[0.55, 0.9]) and Supplemental Figure S3.3 (for all values). The estimates using New

agreed closely with those using TG for either the original or the thinned data. By

contrast, the estimates using Fumagalli and CG were biased; this bias was more severe

with the thinned data. We also quantified the deviation from the values obtained using

TG by calculating the sum of squared differences (SS) between estimates obtained

using each method and those obtained by TG. New had the lowest value of SS, which

was very close to zero and much lower than those of Fumagalli and CG; values of SS

are shown in Figure 3.3.
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Table 3.1: Type I error (divided by the nominal significance level of 0.05)
5K SNPs 50K SNPs 100K SNPs 10K AIMs

n c0 ε0 TG New F CG TG New F CG TG New F CG TG New F CG
300 4× 1% 1.09 1.09 1.08 1.24 1.09 1.09 1.07 0 1.09 1.08 1.07 0 1.09 1.09 1.07 1.44

0.1% 1.09 1.09 1.08 1.21 1.09 1.09 1.07 0 1.09 1.09 1.07 0 1.09 1.09 1.07 1.34
7× 1% 1.09 1.08 1.08 1.11 1.09 1.08 1.08 1.37 1.08 1.08 1.08 0 1.09 1.08 1.08 1.12

0.1% 1.09 1.09 1.08 1.10 1.09 1.09 1.08 1.16 1.09 1.08 1.08 1.78 1.09 1.09 1.08 1.10
2000 4× 1% 1.01 1.01 1.02 1.09 1.01 1.01 1.02 0 1.01 1.01 1.03 0 1.01 1.01 1.01 1.12

0.1% 1.01 1.01 1.02 1.09 1.01 1.01 1.01 0 1.01 1.01 1.01 0 1.01 1.01 1.01 1.11
7× 1% 1.01 1.01 1.02 1.03 1.01 1.01 1.02 1.05 1.01 1.01 1.01 1.10 1.01 1.01 1.01 1.06

0.1% 1.01 1.02 1.01 1.03 1.01 1.01 1.01 1.04 1.01 1.01 1.01 1.09 1.01 1.01 1.01 1.05

n is the sample size. c0 and ε0 are the average depth and average error rate in controls. New is the proposed method. F is the Fumagalli method. TG
and CG are the PCA methods based on true and called genotypes, respectively. The results are based on 10M tests.
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Figure 3.3: Agreement between estimated proportions of African ancestry calculated
using each method (y-axis) and TG (x-axis) for the analysis of an admixed population
from the 1000 Genomes Project.
SS is the sum of squared difference between the displayed method and TG. The axes
are restricted to [0.55, 0.9] to show more detail for the majority of samples; plots
showing the full range [0, 1] can be found in Supplemental Figure S3.3.
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3.2.3 Simulation studies

For calculating PCs in each replicate, we considered a random set of 5K, a random

set of 50K, and all 100K SNPs, as well as a common practice of using 10K AIMs. We

applied the New, Fumagalli, CG, and TG methods. Note that TG now refers to the

PCA method based on true genotypes.

We first verified the type I error rate for association testing in the presence of

population stratification in a wider range of scenarios than seen in the stratified (3-

subpopulation) 1000 Genomes dataset. For each simulation replicate, we tested for

association using each of the 100K SNPs using the score test for logistic regression.

We used 100 data replicates, so that the type I error results displayed in Table 4.2

are based on 10M tests. In all scenarios, New and Fumagalli had similar type I error

rates as TG (though TG had slightly inflated size when the sample size was 300).

The performance of CG was mixed; the type I error rate was sometimes inflated but

sometimes zero, depending on the scenario. Note that the scenarios in the second

and fourth rows under “5K SNPs” mostly resembled the first 1000 Genomes dataset

and had similar results.

To get more insights into the mixed performance of CG, we examined the PCs

using one replicate of data. In the scatter plots (Figure 3.4) of PC1 versus PC2

with 4× average depth and 1% average error rate in controls, we observed that CG

caused controls to shift away from cases within each population and the shift became a

complete separation when the number of SNPs used for calculating PCs was increased.

With 10K AIMs, the shift was less severe but could still be seen. With an average

depth of 7× and a much smaller average error rate (0.1%), CG still resulted in a

slight shift when calculated using a large number of SNPs (Supplemental Figure S3.4).

Because we simulated three populations, we expected PC1 and PC2 to capture all

genetic variability; thus we expect any information in PC3 and PC4 to be related to

differential sequencing. In Figure 3.5 and Supplemental Figure S3.5 we see that PC3
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calculated using New or TG have no information about subpopulation or case-control

status. However, PC3 calculated using CG can be highly informative about the case-

control status, indicating a signal arising from differential sequencing quality; this

may explain why CG sometimes had zero size. PC1–PC4 calculated using Fumagalli

exhibited differential shrinkage; interestingly, this pattern seemed to have no impact

on the type I error.

In Figure 3.6 we report the effect of PC calculation method on the power to

measure a true association; we omit CG because it did not control type I error.

New achieved almost the same power as TG in all scenarios. Fumagalli resulted in

substantial loss of power when 50K or 100K SNPs were used for inferring PCs and

the controls had 1% average error rate. We found that PC3 by Fumagalli had a large

difference in mean between cases and controls in scenarios that Fumagalli lost power

(Figure 3.7). Since no difference was expected for PCs other than PC1 and PC2, this

PC3 effect was likely the cause of the power loss.

3.3 Discussion

We have presented a robust approach to inferring population structure that is based on

analyzing raw sequencing reads directly, without calling genotypes. Our subsampling

and read-flipping procedures ensure that the sequencing qualities are matched among

all sequencing groups. As a result, the PCs generated from our method do not capture

any difference in sequencing qualities, unlike existing methods.

In evaluating our method, we considered discrete populations as well as admixed

populations. We have focused on two groups with differential sequencing qualities in

the main text, but our method also worked well for studies having three sequencing

groups (see Appendix 3.4.5 and Supplemental Figure S3.6).

In our simulation studies, we considered different numbers of SNPs for calculating
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Figure 3.4: Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in simulation studies
with 4× average depth and 1% average error rate in controls.
The plots are based on a single replicate data set generated under the null hypothesis
of no association and have data from 150 cases and 150 controls.
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Figure 3.5: Scatter plots of PC3 (x-axis) versus PC4 (y-axis) in simulation studies
with 4× average depth and 1% average error rate in controls.
The plots are based on a single replicate data set generated under the null hypothesis
of no association and have data from 150 cases and 150 controls.
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Figure 3.6: Power (y-axis) at the nominal significance level of α = 0.05 over different
ORs (x-axis) based on 1000 cases and 1000 controls.
The results are based on 1000 tests (10 disease-susceptibility SNPs per replicate and
100 replicates).



61

0
1

2
3

4

1 2 3 4 5 6 7 8 9 10

TG
New
Fumagalli

c0=4x, ε0=1%

D
iff

er
en

ce
 in

 m
ea

n

PCs

0
1

2
3

4

1 2 3 4 5 6 7 8 9 10

c0=4x, ε0=0.1%

PCs

0
1

2
3

4

1 2 3 4 5 6 7 8 9 10

c0=7x, ε0=1%

PCs

0
1

2
3

4

1 2 3 4 5 6 7 8 9 10

c0=7x, ε0=0.1%

PCs
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The y-axis represents the absolute difference in mean. The PCs were calculated using
100K SNPs in 100 replicate data sets each having 1000 cases and 1000 controls. The
odds ratio exp(β) was 1.3.

PCs. In practice, the number of SNPs needed to accurately infer population structure

and correct for population stratification relies on the degree of population differenti-

ation (Price et al., 2006). Therefore, we recommend using as many SNPs as possible

after filtering out rare SNPs, pruning for strong correlations, and prioritizing AIMs.

If this is computationally prohibitive, we recommend using AIMs and increasing the

number of AIMs used until diagnostic plots of PCs stabilize.

In association testing, we used array genotypes in the analysis of 1000 Genomes

data (or true genotypes in the simulation studies) for the main effect in the logistic

regression. In practice, array genotypes are not always available. More importantly,

sequencing studies offer many more SNPs than those on genotyping arrays. We are

currently developing methods for association analysis that is based on sequencing

reads directly (for both the main effect and the ancestry correction), without using

array genotypes or calling genotypes. In this work, we used array genotypes to ensure

that the effects we reported were due to the way PCs were calculated, rather than

(possibly differential) error in the genotype used to fit the risk model.

Our approach was based on some simplifying assumptions. First, we assumed that

the error rate at a SNP was the same across samples in a sequencing group, which was

directly estimated from the read count data without using any information on phred
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scores and mapping scores. In the analysis of the 1000 Genomes data, we filtered

out reads with mapping scores < 30 and removed bases with phred scores < 20, so

that the assumption of uniform error rate is reasonable. Second, we assumed that

errors were symmetric, i.e. that the probability of a read for the major allele being

mis-called as the minor allele was the same as the probability of the minor allele being

mis-called as the major allele.

The proposed methods are implemented in the C/C++ program TASER-PC, which

is publicly available at http://web1.sph.emory.edu/users/yhu30/software.html.

The software program TASER-PC is readily scalable to genome-wide analysis. For

example, with 1000 cases at ∼39.5× and 1000 controls at ∼4×, it took ∼7 hours on

a single thread of an Intel Xeon X5650 machine with 2.67 GHz to calculate the PCs

based on 100K SNPs and 100 repeats of the subsampling and read flipping procedures.

When only 10K AIMs were used, it took only ∼0.7 hours. In general, the computation

increases linearly with the number of individuals, the number of SNPs, and the read

depth. Additionally, our program allows parallelization of the multiple repeats of

subsampling and read flipping on multiple machines.

Our method requires the read count data at each SNP, which is readily available

in the raw variant call format (VCF) files that are generated from GATK (with field

name ‘AD’) or SAMtools (with field name ‘DP4’). Unfortunately, many publicly

available VCF files have been trimmed so that the read count information is lost

(e.g., the VCF files on the 1000 Genomes website). We have shown here, and in

other settings (Hu et al., 2016), that the information in this single field can allow for

adjustment of differential sequencing quality. For this reason, we advocate that this

information be kept in future VCF files. Alternatively, we provide software to extract

the read count data from raw BAM files.
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3.4 Appendix

3.4.1 Matching the read distributions in different sequenc-

ing groups when sample sizes of the sequencing groups

differ

We denote the sample sizes in sequencing groups 1, 2, . . . , M by n1, n2, . . . ,

nM , respectively. We assume that group 1 has the largest sample size, i.e., n1 =

maxm=1,...,M{nm}. The subsampling procedure proceeds as follows:

1. For group m (m = 2, . . . ,M), draw (n1 − nm) “pseudo” samples and add them

back to the group so as to match the sample size n1 in group 1. Specifically,

write n1 = nm × sm + tm. The “pseudo” samples consist of (sm − 1) repeats

of the entire original samples in group m and tm random samples drawn from

group m without replacement. The data (T,R) across the whole genome are

copied from the original samples to the “pseudo” samples.

2. At each SNP, sort the observations by T and then match the observations in

each group having the same rank order of T into n1 sets so that each matched

set has one observation from each group. For each matched set, we then sample

the reads from each observation (without replacement) to equal the lowest T

found in that set; the data from the observation having the lowest T is not

changed.

3. Discard the (n1 − nm) “pseudo” samples in group m (m = 2, . . . ,M).

3.4.2 Choosing the read-flipping probability

At a given SNP, let ε1, ε2,. . . ,εM be the error rates for the M sequencing groups.

Suppose that group M has the highest error rate, i.e., εM = maxm=1,...,M{εm}. Our
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goal here is to find the probability p to flip each read allele in groupm (m = 1, . . . ,M−

1) so as to achieve the error rate εM . Let Ab and Aa be the alleles before and

after flipping, respectively, and t and e be the true allele and the erroneous allele,

respectively. Because P (Aa = e) = P (Aa = e|Ab = t)P (Ab = t) + P (Aa = e|Ab =

e)P (Ab = e), we have εM = p(1 − εm) + (1 − p)εm. Solving for p, we obtain p =

(εM−εm)/(1−2εm), which can be estimated by plugging in the estimated error rates.

3.4.3 Sampling MAFs for three populations

At a SNP, we first generated the overall ancestral population minor allele frequency

(MAF) π from a uniform distribution (Pritchard and Donnelly, 2001; Price et al.,

2006) over [0.05, 0.95]. Using the Balding-Nichols model (Balding and Nichols, 1995),

we sampled the MAF for population 1, π1, and the ancestral MAF for populations 2

and 3, π23, independently from the beta distribution with parameters π(1−FST )/FST

and (1 − π)(1 − FST )/FST , where FST = 0.0065 as estimated between CHB and

JPT/KHV (Tian et al., 2008). Then, we sampled the MAFs for populations 2 and 3,

π2 and π3, independently from the same beta distribution with parameters π23(1 −

FST,23)/FST,23 and (1 − π23)(1 − FST,23)/FST,23, where FST,23 = 0.011 as estimated

between JPT and KHV (Tian et al., 2008).

3.4.4 Simulating read count data

Given an average read depth, we generated the depth T at a locus for an individual

by the same two-step strategy as described in Hu et al. (2016). Specifically, when

the average depth was 39.5×, we generated the locus-specific mean depth c using

Beta(1.2, 6.0), which was then re-scaled to achieve the mean 39.5; given c, we gen-

erated the individual T ’s from NB(c, 0.24). This mimicked the level of variability

seen in the WES data of 1000 Genomes. When the average depth was 7×, we gener-

ated c using Beta(20.2, 22.9) (and then re-scaled to achieve the mean 7) and T using
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NB(c, 0.20), which mimicked the WGS data of 1000 Genomes. When the average

depth was 4×, we generated c using Beta(22.2, 8.2) (and then re-scaled) and T using

NB(c, 0.16), which mimicked the thinned WGS data of 1000 Genomes. Supplemental

Figure S3.1 displays the distributions of locus-specific mean depths observed in the

1000 Genomes data and those generated in our simulation studies; the latter closely

resembles the former.

Given an average error rate, we sampled the locus-specific error rate from beta dis-

tributions. To achieve the average error rates of 0.17% and 0.1%, we used Beta(0.81, 450)

and Beta(0.25, 250), respectively, as observed in the WES and WGS data of 1000

Genomes. To achieve the average error rates of 1%, we used Beta(88, 8755) as used

in Hu et al. (2016).

3.4.5 A simulation study assuming three groups with differ-

ential sequencing qualities

We generated three populations in the same manner as for the two-group simulation

studies. Then we assumed three sequencing groups, group 1 having 75, 50, and 25

individuals from populations 1, 2, and 3, respectively, group 2 having 50, 100, and

50, and group 3 having 25, 50, and 75. Group 1 has an average depth of 4× and

an average error rate of 1%, group 2 has 10× and 0.17%, and group 3 has 39.5×

and 0.1%. The top two PCs are displayed in Supplemental Figure S3.6, which shows

similar patterns to Figure 3.4 (for the two-group simulation studies) for all methods.

3.5 Supplemental Materials
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Figure S3.1: Distributions of locus-specific mean depths observed in the 1000
Genomes data (top panel) and generated in the simulation studies (bottom panel).

Figure S3.2: Q-Q plots of − log10 (observed p-values) (y-axis) versus
− log10 (expected p-values) (x-axis) in the analysis of the stratified 1000 Genomes
data with three discrete Asian populations without adjusting for PCs.
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Figure S3.3: Agreement between estimated proportions of African ancestry calculated
using each method (y-axis) and TG (x-axis) for the analysis of an admixed population
from the 1000 Genomes Project.
SS is the sum of squared difference between the displayed method and TG.
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Figure S3.4: Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in simulation studies
with 7× average depth and 0.1% average error rate in controls.
The plots are based on a single replicate data set generated under the null hypothesis
of no association and have data from 150 cases and 150 controls.
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Figure S3.5: Scatter plots of PC3 (x-axis) versus PC4 (y-axis) in simulation studies
with 7× average depth and 0.1% average error rate in controls.
The plots are based on a single replicate data set generated under the null hypothesis
of no association and have data from 150 cases and 150 controls.
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Figure S3.6: Scatter plots of PC1 (x-axis) versus PC2 (y-axis) in simulation studies
with three sequencing groups.
P1G1 means population 1 in group 1, etc. The plots are based on a single replicate
data set.
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Studies for Testing Rare Variant

Associations

This Chapter is joint work with Dr. Yijuan Hu and Dr. Glen A. Satten. The

manuscript is currently in preparation.
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4.1 Methods

4.1.1 Omnibus TASER

TASER uses a weighted burden test statistic, which is the sum of the score statistic

of all ‘screen-in’ rare variants within a gene (or a function unit), to assess the associ-

ation between a gene and the trait of interest. Although TASER has well controlled

type I error for any weight functions, better choice of weights can lead to improved

power. However, the optimal prechosen weights depends on how the rare variants in-

fluence the trait, which is generally unknown. To consider multiple possible weights

simultaneously, we extend TASER by adopting a multistage permutation strategy

that combines different weights and achieves good power regardless of the nature of

the underlying association (Tang et al., 2016). This omnibus TASER treats the min-

imal p-value across weights as the test statistic, and a permutation procedure is used

to assess the significance of the test statistic. Like TASER, we adopt a sequential

stopping rule to minimize the computational cost (Besag and Clifford, 1991).

4.1.2 Simulation design

4.1.2.1 Generating European and African haplotypes

In order to make the simulations more realistic and informative, we considered a gene

which has 4 exons that are separated by 3 introns, and contains 2,419 loci in exons

and 18,029 loci in introns. This gene is very ‘typical’ in the sense that its gene coding

length corresponds to the 50% percentile of gene coding length among all genes. To

examine the effect of the site frequency spectrum (SFS) on association tests (Lin and

Tang, 2011; Moutsianas et al., 2015), we considered European and African populations

separately because African population contains a larger number of rare variant sites

than European population (Zawistowski et al., 2014). For each population, we used

Cosi2 to generate a base population of 100,000 haplotypes with the exact gene length
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that mimics LD pattern, local recombination rate and population history through a

coalescent model (Shlyakhter et al., 2014). In practice, researchers often filter variants

by their functional consequence using bioinformatics tools, in order to identify a set

of “probably” damaging variants (Lee et al., 2014). To construct a set of deleterious

variants, we simply sampled a proportion of exonic rare variants (MAF≤ 0.01) within

each population. Specifically, we drew 53.4% of extremely rare variants having MAF

<= 0.002, 46.1% of moderately rare variants having MAF ∈ (0.002, 0.005], and 40%

of less rare variants having MAF ∈ (0.005, 0.01], because the fraction of deleterious

variants declines with the increase in their MAFs (Subramanian, 2012). The charac-

teristics of the damaging rare variants in the two base populations are summarized

in Table 4.1. According to Table 4.1, more harmful rare variants exist in the African

population than those in the European population, and the total allele frequency in

the African population almost doubles that in the European population.

Table 4.1: Characteristics of deleterious rare variants in the base populations

MAF
Population Total MAFs (0, 0.002] (0.002, 0.005] (0.005, 0.01]
European 0.039 59 2 2

African 0.057 64 1 7

Variants with MAF ≤ 0.01 are defined as rare variants.

4.1.2.2 Generating individual genotypes and phenotypes

To generate individual genotypes, we sampled from the 100,000 haplotypes assuming

HWE and allowing recombination in introns (but not in exons). To generate disease

outcomes, we considered two additional risk models, one assuming equal attributable

risk (AR) for each deleterious variant:

log{P (D = 1)/P (D = 0)} = α +
m∑
j=1

Gj log(1 + AR/2πj)
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, and the other assuming equal odds ratio (OR) for each deleterious variant:

log{P (D = 1)/P (D = 0)} = α +
m∑
j=1

Gj log(OR),

where m is the total number of deleterious variants in exons, Gj and πj are the

genotype and MAF of the j-th deleterious variant, and α was set to −3 to achieve a

disease rate of ∼ 5%. The first risk model implies that rarer variants have a larger

effect on disease while the second implies that all variants have the same effect size

regardless of the MAF.

4.1.2.3 Generating sequencing read count data

At a locus, we denote the number of reads mapped to the locus and the number

of reads identical to the minor allele as T and R. We first draw the locus-specific

error rate ε from a beta distribution that yields the pre-specified average rate. Then

the per-sample depth T was simulated using the same two-step strategy as outlined

in Hu et al. (2016). For more details about sampling error rate and depth, refer to

Appendix 4.4.1. Note that at each locus, ε and T were sampled independently for

cases and controls which allows different sequencing designs as in real studies. At

last, similar to SeqEM, we simulate R given T and ε from a binomial distribution

Pε(R|T,G) =


Binomial(T, ε) if G = 0

Binomial(T, 0.5) if G = 1

Binomial(T, 1− ε) if G = 2.

4.1.2.4 Sequencing designs

We considered the study scenarios with 500 cases sequenced at high depth and with

varying number of controls that receive the fixed total investment of sequencing ca-
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pacity. For cases, we fixed the average depth to 30× which is a typical good coverage

depth for NGS studies (Telenti et al., 2016); we also set the average error rate at

0.1% (Lou et al., 2013) as cases of interest are often sequenced using state-of-the-art

sequencing technology. For simplicity, we measured the sequencing capacity by the

cost of total coverage for controls. We considered a total sequencing effort of approx-

imately 10,000× per locus. Given the total sequencing effort, we sequenced different

number of controls (n0) by choosing the average depth (c0) accordingly. To exam-

ine low- to high-coverage sequencing designs, we considered three settings including

1666@6× (sequencing 1666 controls at average depth 6), 1000@10×, and 334@30×.

We also varied the average error rate between 0.1% and 0.5% (Li et al., 2011) to

evaluate the impact of the accuracy of sequencing technology.

4.2 Results

When applying TASER on the simulated data, we considered two different weight

functions: wj = 1/
√
πj(1− πj) and wj = 1 (j = 1, 2, . . . ,m), and further obtained

the p-value for the omnibus TASER. We first evaluated the type I error of TASER

using the weighted burden test (WT) and the unweighted burden test (UT), and the

omnibus TASER (OT), and summarized the results in Table 4.2. Because TASER

use a score test, any choice of weight functions can control the type I error. Table

4.2 shows that UT tends to be slightly conservative for the scenario 334@30× and

1000@10× in both European and African populations. The type I error rate is slightly

inflated for WT when the depth is low (i.e., 6×) and the error rate is high (i.e., 0.5%).

OT has the correct type I error in all scenarios considered.

Figures S4.1 and S4.2 shows the power results for WT, UT, and OT with different

combinations of n0 and c0 in European population using ε0 = 0.1% and ε0 = 0.5%,

respectively. Compared with the optimum test (i.e., WB under equal AR and UB
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Table 4.2: Empirical type I errors for TASER with different weights.

European African
n0@c0 ε0 WT UT OT WT UT OT
334@30× 0.1% 0.008 0.010 0.008 0.009 0.009 0.008

0.5% 0.008 0.009 0.008 0.010 0.009 0.009

1000@10× 0.1% 0.009 0.009 0.008 0.010 0.008 0.008
0.5% 0.009 0.008 0.008 0.010 0.008 0.008

1666@6× 0.1% 0.011 0.010 0.010 0.010 0.010 0.009
0.5% 0.013 0.011 0.011 0.013 0.010 0.011

The nominal significance level is 0.01. Each entry is based on 10,000
replicates.

under equal OR), OT lost some power but was able to maintain power very close to

that of the optimum test, indicating that OT is robust to poor weight choice.

Figure 4.1 contrasts the power of OT for different sequencing designs in controls for

European population. With fixed sequencing effort (total 10,000× per locus), if the

average error rate is low (i.e., 0.1%), power increases significantly when the number of

controls increases from 334 to 1666 (the depth decreasing from 30× to 6×). However,

if the average error rate is too high (i.e., 0.5%), low-coverage sequencing of more

controls may reduce power compared with sequencing fewer controls at a moderate

depth. As shown in Figure 4.1, under equal AR, the scenario 1666@6× yielded lower

power than the scenario 1000@10× while under equal OR, the scenario 1666@6× still

achieves the best power. In fact, with low depth in controls, erroneous reads are

difficult to be distinguished from minor allele reads which thereby inflates the MAF

in controls, especially for extremely rare variants. Consequently, the true association

signals coming from extremely rare variants will be substantially reduced under equal

AR. For equal OR, because the power to detect association depends on the total

MAF—the higher the total MAF, the higher the power, hence, high sequencing error

rates do not decrease the overall power much using controls that are poorly covered.

The power plots for African populations are displayed in Figure 4.2, which exihibits
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the similar pattern as in Figure 4.1.
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Figure 4.1: Power of the omnibus TASER for different combinations of n0 and c0 for
European population.

4.3 Discussion

In this project, using TASER, we conducted a comparative analysis of low- to high-

coverage sequencing in the design of rare variant association studies where cases are

sequenced at high depth while sequencing controls face constant budget constraints.

We found that, to maximize the power for detecting associations, deploying low-

coverage sequencing to a large control cohort is generally more efficient than moderate-

or high-coverage sequencing of a small control cohort. However, if the sequencing error
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Figure 4.2: Power of the omnibus TASER for different combinations of n0 and c0 for
African population.

rates of controls are very high and more rare variants are believed to have greater

impact on the disease, the depth of controls cannot go too low. In this situation,

sequencing controls at moderate coverage (e.g., 10×) is the most powerful in detecting

associations.

Our simulated haplotypes preserve the realistic linkage disequilibrium (LD) struc-

tures though we do not make use of the LD information. TASER assumes inde-

pendence across rare variants when the bootstrap replicates are generated. Because

rare variants are not usually in high LD with other variants, the exploitation of LD

information is not likely to change our conclusions.
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Genetic architecture of diseases and traits differs and may be unclear. Here we

considered two commonly used disease models to provide the insight into the influence

of true risk models. A comprehensive understanding of the effect of genetic archi-

tecture on association power requires further research. For the omnibus TASER, we

restricted the possible weight functions for rare variants on two special cases: equal

weights and weights that are the inverse of the variance of the estimated MAF. Some

more sophisticated weighting functions (Lin and Tang, 2011) can be implemented to

improve the robustness of the omnibus TASER. However, it should be noted that

combining more weight functions tends to reduce the power of the omnibus TASER.

Our simulation study has a number of limitations. First, the sequencing invest-

ment is simply represented by the cost of total coverage. In reality, sequencing costs

consist of per-sample preparation costs, direct sequencing cost, and possibly the sam-

ple recruitment cost. However, we can aggregate all specific cost to estimate the

per-unit sequencing cost, which can still be used to identify optimal designs. Second,

we investigated European and African populations separately because the current

TASER approach does not allow confounders such as principal components for ances-

try. Future work should explore the optimal sequencing design using populations of

various ethnicities or admixed populations. Finally, we did not include any protective

variants in the genetic region under investigation. Burden tests have been shown to

suffer from a dramatic loss of power when variants influence the disease in different

directions or there is an excess of neutral variants. To focus on the key factors such

as site frequency spectra and disease models, we do not consider the scenario where

the gene carries both deleterious and protective variants.
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4.4 Appendix

4.4.1 Simulating read count data

Given an average read depth, we generated the depth T at a locus for an individ-

ual by the same two-step strategy as described in Hu et al. (2016). Specifically,

when the average depth was 30×, we generated the locus-specific mean depth c using

Beta(2.1, 4.1), which was then re-scaled to achieve the mean 30; given c, we gener-

ated the individual T ’s from NB(c, 0.24). When the average depth was 10× or 6×,

we generated c using Beta(20.2, 22.9) (and then re-scaled to achieve the mean) and

T using NB(c, 0.2).

Given an average error rate, we sampled the locus-specific error rate from beta

distributions. To achieve the average error rates of 0.1%, we used Beta(8.76, 8755).

To achieve the average error rates of 0.5%, we used Beta(44, 8755) as used in Hu et al.

(2016).
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4.5 Supplemental Materials
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Figure S4.1: Power of TASER with different weights for different combinations of n0

and c0 for European population using ε0 = 0.1%.
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and c0 for European population using ε0 = 0.5%.
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Chapter 5

Summary and Future Work
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5.1 Summary

Recent advances in NGS allow researchers to examine the roles of variants across

the full MAF spectrum, leading to great success in disease association studies and

population genetic studies. The unique data structure and the diverse study designs

present new challenges to statistical analysis. This dissertation aims to provide novel

statistical approaches for some of the major challenges.

We first focused on the fundamental challenge in the analysis of NGS data, i.e.,

determining an individual’s genotype correctly. To obtain accurate genotype calls,

we have developed a phred-score-informed genotype-calling approach for NGS studies,

named PhredEM. We also proposed a simple and computationally efficient screening

algorithm to identify loci that are estimated to be monomorphic. The PhredEM ap-

proach improves the accuracy of genotype-calling by estimating base-calling errors

from both read data and phred scores, and by using all sequencing reads available

without removing reads according to an arbitrary threshold for the phred score. Sim-

ulation studies show that PhredEM performs better than SeqEM, in terms of the

genotype-call error rate. We apply PhredEM to SCOOP data from the UK10K

project and CEU data from the 1000 Genomes project to illustrate its advantages

over both GATK and SeqEM.

Next, we focused on inferring population structure in the presence of differential

sequencing qualities among different groups. We have developed a subsampling pro-

cedure and a read-flipping procedure to account for the systematic differences in read

depth and error rates. To minimize loss of information, we repeat the subsampling

and allele-flipping procedures and average the resulting variance-covariance matri-

ces. We demonstrate that the PCs generated from our method do not capture any

difference in sequencing qualities, unlike existing methods, with two examples using

data from the 1000 Genomes Project, one involving three discrete Asian populations

and the other involving a continuous admixture of two populations. The simulation



85

studies further show the better performance of our method.

Finally, we explored the optimal design of NGS studies for testing rare variant as-

sociations using TASER developed by our group, which properly handles systematic

differences in sequencing between cases and controls. We used realistic and informa-

tive simulation design to investigate how to effectively allocate sequencing resource

between the sample size and read depth. We found that the best power was generally

achieved by sequencing as many samples as possible (while decreasing depth if neces-

sary). We noted, however, when the sequencing platform had a very high error rate

(e.g., 1%) and rarer variants incurred higher risks, the best power was then achieved

with a medium (e.g., 10x) depth.

5.2 Future Work

Some potential research topics related to the two projects are listed here.

1. Accounting for population stratification in testing rare-variant asso-

ciation without calling genotypes

Hu et al. (2016) proposes a likelihood-based approach to test associations for

rare variants that directly models sequencing reads without calling genotypes.

Our proposed PCs in the second project, which are also based on sequencing

reads, can be readily included in the likelihood-based association test. We can

adopt a stratification-score-based strategy (Epstein et al., 2007; Allen and Sat-

ten, 2011; Epstein, Duncan, Jiang, Conneely, Allen and Satten, 2012), which is

attractive due to the fact that the stratification score only needs to be calcu-

lated once and can be used for all regions. We use the stratification scores to

weight the contribution of each case individual to the score function to obtain

the score function that we would have seen if the confounding variable follows

that distribution observed in controls. The next step is to generate bootstrap
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datasets that have the same amount of confounding as the original data. To

this end, we carry out two separate analyses, one using weights that standard-

ize the case-control population to the control population and one using weights

that standardize to the case population, to obtain the distributions of allele fre-

quencies at rare variants that we would have seen if the confounding variable of

all subjects follows the distribution observed in controls and cases, respectively.

By drawing case and control genotypes from their respective distributions, we

build into bootstrap datasets the amount of confounding that is explained by

stratification scores. The weighted approach may lead to a loss of power. Al-

ternatively, we can model the confounding effect parametrically by specifying

the allele frequency given the confounding variable.

2. Incorporating phred scores in testing rare-variant association without

calling genotypes

The methodology described in Hu et al. (2016) estimates error rates directly

from the read data for each locus independently. Thus, considerable information

regarding errors gained through the base-calling and alignment process is lost.

It is possible to model the variability in error rates that is explained by base-

calling and alignment quality scores. Our logistic model to relate error rates to

phred scores in the first porject can replace the binomial model which assumes

a constant error rate. We can also take other predictors of error rates into

account in the logistic model such as the alignment error rates and the position

of reads. This new approach, by exploiting more information, has the potential

to further improve the statistical power for detecting rare variant associations.

3. Testing for association for rare variants in case-parent trio studies

The methods developed in Hu et al. (2016) can be extended to trio studies. We

consider developing methods that incorporate the family structure and charac-
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terize the association in terms of transmissions, while allowing the distribution

of parental genotypes to be nonparametric.
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