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Abstract 
Developing an adequate predictive regression model and indentifying appropriate 

functional and interaction relationships between its predictors is perhaps one of the 

most challenging tasks in regression analysis. Specifically, linear models applied to 

a high-dimensional dataset, such as those commonly found in clinical settings, are 

usually over-parameterized, unclear for interpretation, and have high variances for 

estimated parameters. Furthermore, traditionally used hypothesis testing 

frameworks for selection criteria have proven to be inconclusive and unreliable. The 

goal of this thesis was to overcome these challenges by integrating clinical 

experience with statistical theory and develop empirical predictive models using 

different variable selection criteria.  

This thesis also contributes to research in health-related quality of life (HRQOL) 

outcomes for the assessment of lumbar interbody fusion (IBF) efficacy. Research 

regarding statistical methods in this field is preliminary and has been limited to 

univariate analysis. In this thesis, pre-operative predictors associated with 3-month 

post-operative low back pain (LBP) improvement were determined and 

multivariate linear regression models were selected for the data from the Georgia 

Spine Patient Outcomes Registry. The results were very sensitive to the selection 

criteria used, as well as noise variables included in the full dataset. Further work in 

the analysis of lumbar IBF HRQOL outcomes needs to be done to transform the 

knowledge and teaching base from theory and person experience to one of 

statistical evidence. 
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Chapter 1 

Introduction 
1.1 Low Back Pain 

Low back pain (LBP) is a common musculoskeletal disorder marked by pain in the 

lumbar region (L1-L5 vertebrae) and in some instances, can radiate to the buttocks, 

hips, and upper thigh region. LBP affects nearly 80% of all adults at some point in 

their lives1 and is the most frequently reported type of pain in the United States2, with 

an estimated 54 million American adults experiencing LBP of at least one day in 

duration every three months.1 

LBP is classified according to the duration of symptoms from the time of onset to the 

time of resolution. Pain is classified as acute if the duration is less than 4 weeks, sub-

acute if between 4 and 12 weeks, and chronic if greater than 12 weeks. Although the 

majority of LBP cases resolve within 8 to 12 weeks of onset, symptoms become chronic 

in up to 15% of patients, resulting in episodes of intense pain, significant physical 

limitations, and decreased quality of life (QOL).2 

1.1.1 Cost Burden 

The estimated economic burden of LBP in the U.S. ranges from $84.1 billion to $624.8 

billion including both direct and indirect costs. Lost work productivity is the largest 

component of this economic burden, resulting in indirect costs ranging from $7.4 billion 

to $28 billion.3,4 LBP also results in substantial direct medical costs associated with the 
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use of healthcare resources, including primary care physician or specialist visits, as 

LBP is the second most cited reason for physician visits in the US. Overall, cases of 

chronic LBP account for the majority of the cost burden associated with LBP.3-5 

1.1.2 Pathophysiology 

The etiology of LBP symptoms varies by classification, or duration of symptoms. Cases 

of acute or sub-acute LBP are typically due to isolated incidences of trauma or acute 

injury in otherwise healthy and active individuals. On the other hand, the prevalence 

of chronic LBP is highest for individuals aged between 45 and 64 years (23.7%)1, and 

thus, these cases usually originate from one or more degenerative lumbar spine 

disorders. 

Common degenerative lumbar spine disorders that result in chronic LBP are shown in 

Figure 1.1. Due to aging, inter-vertebral discs may become desiccated and lose height, 

resulting in a degradation of the stress-buffering affect of the disc. This can lead to 

abnormal motion, instability, and rapid wearing of the vertebral body endplates. 

Decreased interbody height results in change of the diameter of the bony foramina 

where the spinal nerve roots exit, causing compression and thereby leading to painful 

symptoms in the lower extremities.  

   
Figure 1.1: X-rays of common degenerative lumbar spine disorders. (Left) DDD resulting in 
severe L4-L5 disc space collapse; (middle) degenerative spondylolisthesis marked by anterior 
displacement of L4 vertebral body over L5; (right) degenerative scoliosis with apex of coronal 
deformity at L1-L2. 
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1.2 Lumbar Interbody Fusion 

While non-surgical treatments such as physical therapy and pain management (oral 

medication or steroid injections) exist for LBP, cases of acute or sub-acute LBP 

respond the most rapidly and favorably to these conservative treatments.6 Surgical 

intervention is typically used to treat individuals with chronic LBP and severe 

degenerative lumbar spine disorder pathologies.  

Lumbar interbody fusion (IBF) is a surgical procedure that involves a discectomy, or 

complete removal of the inter-vertebral disc, and placement of a bone-graft filled cage 

to fuse two vertebral bodies (Figure 1.2). The purpose of fusion is to immobilize the 

degenerated vertebrae and eliminate the abnormal motion that leads to pain. Although 

effective, lumbar IBF has the potential to be extremely invasive, often requiring up to 

two weeks post-operative hospital stay and three months rehabilitation.6 

In patients who have additional leg pain or severely compressed nerve roots, a 

posterior decompression may be performed in addition to IBF. The decompression 

includes a direct mini-open approach to the posterior vertebra and removal of any 

bone or thickened ligaments that may be compressing on the nerve root. Finally, 

posterior instrumentation, such as percutaneous pedicle screw and rod fixation, may 

also be placed to further stabilize the spine.  

1.3 Evaluation of Efficacy 

The efficacy, usefulness, and value of a medical intervention are vital pieces of 

information for all parties involved in the healthcare system. Particularly in recent 

years as the current U.S. health economy has shifted towards managed care and other 

reforms intended to lower costs, an increased emphasis has been placed on assessing 

the benefits of an intervention against its costs and risks.8-10 As a result, there is 

growing need in the healthcare field for standardized methods of evaluating treatment 

utility and effectiveness.   
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Figure 1.2: Lumbar IBF in the treatment of degenerative scoliosis. Pre-operative (left) and 
two post-operative lumbar IBF (right) with additional pedicle screw and rod fixation. 

The first step in evaluating a medical intervention is to define a “successful outcome.” 

For the treatment of diseases such as hypertension or hypercholesterolemia, a 

successful outcome can be defined using objective measures such as biomarkers. In 

other diseases that lack these objective measures, a successful outcome has 

traditionally been defined as the absence of pathology. However, many clinicians and 

researchers have come to the realization that this definition alone cannot 

comprehensively capture the goal of an intervention. They propose that the definition 

of outcomes must extend beyond the absence of pathology and also measure health-

related QOL (HRQOL) factors, which include psychological and social well being.8  

1.3.1 HRQOL Outcomes in Lumbar IBF 

Perhaps the need for HRQOL outcomes is most evident in the treatment of chronic 

LBP using lumbar IBF, where the primary motivation for undergoing the procedure is 

often chronic LBP and excess disease burden on QOL. Although patient outcomes are 

multi-dimensional (as suggested in Table 1.1), lumbar IBF efficacy has predominantly 

been evaluated using physiologic, anatomic, and radiographic measures.  
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Table 1.1: Example outcome measures relevant to the assessment of lumbar IBF efficacy for 
treating LBP. Measures listed in the first three categories are considered “objective” measures, 
and those in the last three are considered “subjective” HRQOL outcomes. 

 Category  Measure  

     
 Spine or extremity range of motion  
 Muscle EMG activity  
 Spinal fluid endorphin levels  

 Physiologic 

 Muscle strength, endurance  
     

 Solid fusion mass  
 Disc height   Anatomic 
 Vertebral displacement  

     
 Neurologic deficits  

 Physical Exam 
 Straight leg raising  

     
 Pain duration, severity, frequency  

 Symptoms 
 Neurologic symptoms  

     
 Activities of daily living  
 Psychological function  
 Recreational activities  
 Social function  

 Functional Status 

 Health perceptions/general well-being  
     

 Employment status  
 Disability compensation  
 Days of work absenteeism  

 Role Function 

 Days of limited activity  
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If objective measures prove to be closely correlated with HRQOL outcomes, it may be 

justifiable to only collect the former. However, Deyo et al.20 state that dissociations 

between the two are extremely common in the treatment of musculoskeletal conditions. 

In other words, while HRQOL outcomes are, on average, better for patients who 

achieve a solid fusion or experience substantial correction of their disease pathology, it 

is also a common observation that a patient may experience an improvement in LBP 

even in the case of pseudarthrosis. Conversely, a patient may report little or no change 

in HRQOL despite achieving an excellent physiologic outcome. Thus, in order to 

adequately assess the effectiveness and benefit of lumbar IBF, relevant HRQOL 

outcomes must be collected and analyzed as an individual entity instead of attempting 

to infer upon them from readily available information. 

One major reason HRQOL measures have been rejected in the past may be due to its 

perceived “subjective” nature. Bias is, indeed, one of the major challenges of measuring 

HRQOL, as there is no way to reflect or account for the possibility of a patient 

exaggerating symptoms or disabilities. However, this is not to say that objective 

measures are immune to many of the same extraneous factors, as depression also 

confounds many physiologic measures, such as range of motion and strength. Deyo et 

al.20-23 illustrate this bias using inter-observer variability in the interpretation of 

radiographic measures, which are the most widely used objective measures in lumbar 

IBF efficacy (Table 1.2). This data suggests that “subjective” HRQOL measures prove 

to be as reliable, if not more, as objective radiographic measures.  

 Category  Measure  Kappa  

       
 Any abnormality  0.51  
 Facet joint sclerosis  0.33   

Lumbar Spine Interpretation 
by Musculoskeletal 

Radiologists  
 

Any narrowed discs  0.49  
       

 Sickness impact profile  0.87  
 

Self-Administered Patient 
Questionnaire  Medical history  0.79  

      
Table 1.2: Inter-observer agreement of radiographic measures compared to that of HRQOL 
measures.  
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1.3.2 HRQOL Measurement Instruments 

Instruments used to measure and quantify HRQOL can be classified as either generic 

or disease-specific.11 Generic instruments are related to health in general can be used 

regardless of the underlying pathology or intervention. One advantage of a generic 

instrument is that it allows comparisons to be made across a variety of disease 

populations.12,13 In contrast, disease-specific instruments can only measure HRQOL 

attributable to a specific disease or pathology. These instruments are generally 

sensitive to subtle changes that may not otherwise be captured using generic 

instruments. For the majority of studies that include HRQOL outcomes, both classes 

of measures are used to optimize the amount of information that is acquired. 

There are a vast number of both generic and disease-specific instruments that can be 

used to monitor a patient’s HRQOL during an intervention. The adequacy of an 

instrument for a specified research goal is evaluated based on its psychometric criteria 

of validity, reliability, and sensitivity.10-12 A description of these criteria and their 

corresponding statistical tests are shown in Table 1.3.  

 Property  Characteristic  Test Statistic  

       
 Internal consistency  Cronbach’s alpha  
 Inter-rater reliability  Cohen’s kappa   Reliability 
 
 

Reproducibility   Intraclass correlation coefficient  
       

 Concurrent validity  Pearson correlation  
 Validity 

 Predictive validity  Messick’s model  
       
 Sensitivity  Able to detect change  Guyatt’s statistic  

      
Table 1.3: Psychometric properties of HRQOL instruments and their corresponding test 
statistics.  

Selected examples of commonly used generic and LBP-specific HRQOL measurement 

instruments are presented in Table 1.4. Extensive research11,13-18 has found that the 

following instruments are most pertinent for evaluating lumbar IBF for the treatment 
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of LBP: Numeric Rating Scales, Oswestry Disability Index, and SF-36. The construct 

and psychometric properties of these instruments are discussed in Appendix A. 

1.4 Study Motivation & Goals  

Research in the efficacy of lumbar IBF has shifted towards determining factors that 

affect post-operative HRQOL outcomes. A wide range of variables have been found in 

the literature as predictive factors for outcomes following lumbar IBF.18-26 While some 

factors have been generally accepted, other cited predictive factors are contradictory, 

and thus, strong conclusions are difficult to make. These discrepancies may be a 

consequence of the hypothesis testing frameworks most commonly used in analysis, as 

research regarding statistical methodology in this field is very limited.    

Many researchers24,30-32 have cited another research challenge as the lack of large, 

clinically and radiographically well-defined patient databases. To date, most existing 

large databases are claims-based and use ICD (Internal Classification of Diseases) 

codes to collect patient information. Numerous studies across various medical 

specialties have shown the misclassifications and inaccuracies that result from this 

method of data collection.33,34 Furthermore, these databases are typically geared 

towards providing financial information to healthcare payers and hospitals, and thus, 

do not contain meaningful health status outcomes data. 

This thesis seeks to fill the present gaps in knowledge by integrating clinical experience 

with statistical theory. The primary objective is to develop multivariate regression 

models using different selection criteria to predict the magnitude of a patient’s LBP 

improvement following lumbar IBF. Secondary objectives are to statistically validate 

and compare the models’ predictive abilities. Fulfilling these objectives and developing 

an appropriate predictive model could potentially help patients and doctors assess the 

benefits of using lumbar IBF to treat LBP. 
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The remainder of this thesis is organized as follows: 

• Chapter 2 presents the model selection process and its underlying theory. The 

proposed selection criteria, along with their derivations and utilization 

procedures, are also presented. Model validation techniques are also presented. 

• Chapter 3 presents the dataset and other materials used in this thesis. 

• Chapter 4 presents the results of model selection using each of the proposed 

criteria, as well as the validation of the identified models. 

• Chapter 5 concludes the thesis with a discussion of the findings and suggestions 

for future research directions. 
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Chapter 2 

Statistical Methods 
2.1 Multivariate Linear Regression 

The model assumed in this study is a multivariate linear regression model, given by  

  

€ 

y = Xβ + ε             (2.1) 

 where 

    

€ 

y = n × 1 response vetor
X = n × p design matrix
β = p × 1 coefficient vector
ε = error terms,  where ε ~ N(0,σ 2)

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 

Classical assumptions for a linear regression model include: 

1. Linearity. The mean of the response variable is a linear combination of the 

regression coefficients and the predictor variables. 

2. Homoscedasticity. The variance of the error term is constant across all 

response variables. 

3. No multicollinearity. All predictor variables are linearly independent, i.e. 

there is no correlation between any two predictors.  
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Satisfying these assumptions imply that the model’s parameter estimates will be 

unbiased, consistent, and efficient. However, linear regression methods can still be used 

even when these assumptions are not true, as is the case in virtually all real-world 

datasets.52  

2.2 Model Selection 

The goal of model selection is to distinguish between authentic variables that are 

important in predicting a given outcome, and the noise variables that possess little to 

no predictive value.53   

One key consideration in model selection is the size, or number of parameters, of the 

model.52 In clinical settings, models with fewer predictors are easier to manage and use, 

as it requires less information to be collected. From a statistical standpoint, retaining 

excess predictors in a model tends to increase the variances of its estimated 

parameters. Similarly, the variances of the fitted values may also increase, causing a 

worsening of the model’s predictive ability. On the other hand, eliminating or 

neglecting to include key predictors can also lead to serious consequences, most 

notably, biased estimates of regression coefficients and the error variance. This bias 

stems directly from the fact that error terms in an underfit model may reflect 

nonrandom effects of the omitted predictors. In these cases, a single predictor may 

have great explanatory power for observed variances in the response variable.52 Ideally, 

a reasonable subset of variables is selected so that the resulting model is simple, 

parsimonious, and has strong predictive ability. 

Another important point to consider is the criterion used to for model selection. Each 

criterion has its own advantages and disadvantages, and can directly affect the 

conclusions that are drawn. Because there is currently no convention in lumbar IBF 

HRQOL outcomes research regarding the selection criterion, this study uses the p-

value-based stepwise selection procedures and the all-possible-regressions procedure, 

selecting variables based on Mallows’ Cp. 
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2.3 Stepwise Selection 

The stepwise regression approaches (forward stepwise, forward, backward) are based 

on standard hypothesis-testing frameworks, employing automatic search procedures to 

evaluate potential predictors based on p-values calculated from partial significance 

tests against a predetermined significance level, α. In datasets with a large number of 

potential predictors, this method is advantageous in that it provides a quick and 

simple way of assessing the significance of all predictors. While the theory upon which 

this approach is based is very widely understood and used, particularly in clinical spine 

research, this procedure also has several major drawbacks.52  

First, because the predictor variables are evaluated in a linear fashion, stepwise 

selection procedures are only able to identify a single regression model. To put into 

perspective the magnitude of information lost in this procedure, consider that a dataset 

with 50 potential predictor variables will have 250, or 1.25×1015 possible first-order 

subset models.54 Consequently, this approach often produces results that are misleading 

and counterintuitive with established clinical knowledge.  

Another weakness of this procedure pertains to the determination of α. In basic 

hypothesis testing, it has become conventional to use α = 0.05 or 0.10. In the context 

of model selection, however, there is currently no precise or methodical way of setting 

a value for α that balances significance with the power of the test against the 

alternative hypothesis.54 This is an extremely important point to consider, as different 

levels of α may also lead to different conclusions. 

2.3.1 Utilization 

Forward Stepwise Selection 

1. A simple linear regression (SLR) model is fit for each potential X variable:  

    

€ 

Y = β0 + β1X1 

2. For each SLR model, the F-statistic testing     

€ 

H0 : β1 = 0 is obtained: 

    

€ 

Fk =
SSR(Xk )
MSE(Xk )
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3. The Xk with the largest Fk is added into the model, given that its corresponding 

p-value does not exceed α. If no Xk fit the criteria, then the model selection 

procedure is terminated, indicating that none of the potential variables are 

adequate for the regression model. 

4. Suppose Xa is first entered into the model. The remaining potential X variables 

are each fit into the model already containing Xa: 

    

€ 

Y = β0 + β1X1 + β2X2  

5. For each new model, the partial F testing  is obtained: 

    

€ 

Fk =
SSR(Xk Xa )

MSE(Xk ,Xa )
 

6. The Xk with the largest 
  

€ 

Fk Xa
, given that its corresponding p-value does not 

exceed α, is the second X variable added. Otherwise, the model selection 

procedure is terminated. 

7. Suppose Xb is the second variable entered into the model. At this point, the 

procedure examines if any previously added X variables already in the model 

should be dropped by obtaining the following partial F statistic: 

    

€ 

Fk =
SSR(Xa Xb)

MSE(Xa,Xb)
 

8. If the p-value corresponding to 
  

€ 

Fa Xb
 exceeds α, then Xa is dropped from the 

model. Otherwise, Xa is retained. 

9. Steps 4-8 are then repeated for each of the remaining potential X variables 

until no further X variables can be added or deleted, at which point the 

procedure is terminated and the final model is identified. 

Forward Selection 

This procedure is a simplified version of forward stepwise selection, omitting the 

test whether previously entered variables should be dropped. 
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Backward Selection 

1. A model containing all p – 1 potential X variables is fit and a partial F statistic 

is obtained for each variable. For example, the partial F statistic for X1 is given 

by: 

      

€ 

Fk =
SSR(X1 X2,…,Xp−1)

MSE(X1,Xs ,…,Xp−1)
 

2. The Xk with the smallest Fk is dropped from the model, given that its 

corresponding p-value exceeds α. 

3. This step is repeated for all remaining potential X variables until no further 

variables can be dropped.  

2.4 Mallows’ Cp Criterion 

In contrast to the stepwise selection procedures, where only a single model is identified, 

the all-possible-regressions procedure selects a subset of adequate models. All possible 

combinations of the predictors are evaluated against a full model that contains the 

complete set of potential predictors using the Cp statistic.52 This selection method also 

directly addresses the concerns of model size and reduces the risk of overfitting by 

placing a “penalty” for increasing the number of X variables in a model, reflected in 

the model’s Cp value.55 

The major drawback of the Cp statistic is that since it is based on least squares 

estimation, it is very sensitive to outliers and other departures from the normality 

assumption of the error term. Additionally, it assumes the full model was developed 

such that its total MSE provides an unbiased estimator of   

€ 

σ 2. Fulfilling this 

assumption requires careful development of the k potential X variables, where 

important interactions are included and noise variables are excluded.55 This can prove 

to be challenging, particularly in research fields where there is little background 

literature that can assist in this evaluation.53 The determination of predictors to 

include in the full model is then essentially at the full discretion of the researcher. 
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2.4.1 Derivation 

Suppose dataset D has a total of n observations and k potential X variables. The full 

model, Y, contains all k potential X variables and is given by 

      

€ 

Yi = β0 + βjXji + εi

i =1

k

∑  for i = 1,…,n             (2.2) 

 where     

€ 

ε ~ N(0,σ 2). 

Let     

€ 

 
Y i  be the i'th fitted value and     

€ 

 
µ i  be the true mean response for the i'th subject. 

The number of X variables in a given subset model,     

€ 

Y *, is denoted by p – 1, such that 

    

€ 

0 ≤ p − 1 ≤ k . 

The squared total error for     

€ 

 
Y i , denoted by       

€ 

(
 

Y i − µi )2 , is defined as 

      

€ 

(
 

Y i − µi )2 = Ε{
 

Y i } − µi( ) +
 

Y i − Ε{
 

Y i }( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2
                  (2.3) 

 where 

      

€ 

Ε{
 

Y i } − µi = model error for the i'th fitted value
 

Y i − Ε{
 

Y i } = random error for the i'th fitted value

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

The mean squared error (MSE) for     

€ 

 
Y i  is obtained by taking the expectation of 

equation (2.3), which reduces to 

      

€ 

MSE(
 

Y i ) = Ε{
 

Y i } − µi( )
2

+σ 2{
 

Y i }         (2.4) 

 where       

€ 

σ 2{
 

Y i } is the variance of the i'th fitted value. 

Summing equation (2.4) across all n gives the total MSE for the full model, or 

      

€ 

MSE(X1,…,Xk ) = Ε{
 

Y i } − µi( )
2

i =1

n

∑ + σ 2{
 

Y i }
i =1

n

∑          (2.5) 
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The criterion measure for a subset model     

€ 

Y *, denoted by   

€ 

Γp , is obtained by dividing 

equation (2.5) by   

€ 

σ 2, the true error variance, or 

      

€ 

Γp =
1
σ 2

Ε{
 

Y i } − µi( )
2

i =1

n

∑ + σ 2{
 

Y i }
i =1

n

∑
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
           (2.6) 

If it can be assumed that Y was chosen such that equation (2.5) is an unbiased 

estimator of   

€ 

σ 2, then Cp becomes an estimator of   

€ 

Γp  (see Appendix B.1 for proof). 

Thus, the Cp value for subset model  is given by: 

      

€ 

Cp =
SSRp

MSE(X1,…,Xk )
− (n − 2p)                      (2.7) 

 where  

    

€ 

SSRp = residual sum of squares of Y *
p = number of parameters in Y *  (intercept + p − 1) 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

2.4.2 Utilization 

The “best” subset model is one where the total bias of the predicted values is 

minimized. When there is no bias in subset model     

€ 

Y * so that     

€ 

Ε{Cp} ≡ ʹ′ µ i , then the 

expected value of   

€ 

Cp ≈ p . The Cp value for full model with q parameters (i.e. q – 1 X 

variables) is, by definition, p. When the Cp value for each possible subset model is 

plotted against p, those models with little bias will fall near the line   

€ 

Cp = p . Models 

with substantial bias will fall above this line, and models below this line are 

interpreted as having no bias.  

However, if the assumption that the MSE of the full model is an unbiased estimator of 

  

€ 

σ 2 is not met, then the values of Cp will be small. Additionally, the expectation of Cp 

will likely be negative when the number of potential predictors in the full model is 

significantly fewer than the number of observations. In response to these issues, 

Gilmour56 proposed a modified statistic, denoted by   

€ 

C p , where 
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€ 

C p = Cp −
2(k − p + 1)
n − k − 3          

(2.8) 

The expected values of   

€ 

C p for models with little or no bias will be approximately p. 

This proof is given in Appendix B.3. 

2.5 Model Validation 

Model validation identifies the “best” predictive model by measuring a model’s 

predictive performance in an independent dataset (known as the validation sample). 

One such measure of predictive ability is a model’s coefficient of determination, 

denoted by R2. The R2 statistic measures the fraction of the total variability in the 

outcome variable that can be explained by the model and provides a measure of how 

well future outcomes are likely to be predicted by the model. Possible values of R2 fall 

between 0 and 1, inclusive, with a value of 1 indicating that the model can explain all 

variability of the outcome variable. However, it is important to note that a high R2 

value alone is not sufficient to deem a model “adequate,” as R2 will inherently increase 

as more predictors are added to a model. The adjusted R2 statistic addresses this 

problem by taking into consideration both the number of predictors in the models and 

the sample size.57  

A model’s predictive ability can also be measured using residuals. Recall that a model’s 

MSE quantifies the difference between predicted and observed values, and is given by 

dividing its SSR by the total number of observations. In the context of model 

validation, if a model has good predictive power, then the MSE of fitting the model on 

a validation set should be approximately equal to its MSE obtained from the training 

sample, or the dataset upon which the model was selected.52 The MSE obtained from 

the validation set is more commonly referred to as the mean squared prediction error 

(MSPR), and is given by 

    

€ 

MSPR =
SSR
n *

                   (2.9) 

 where n* is the number of observations in the validation sample.  
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Cross-validation is a commonly used validation method and entails partitioning a 

dataset into complementary subsets, performing the analysis on the training sample 

and validating the analysis on the validation sample.58 To reduce variability, this 

process may be repeated a number of times, each time using different partitions. The 

MSPR’s are then averaged across all repetitions. One major disadvantage of cross-

validation is the loss of precision that results from reducing the size of the training 

sample. This is evidenced by the fact that variances of the estimated regression 

coefficients developed from the training set will usually be larger than those obtained 

from the entire dataset, and thus this method usually requires the original dataset to 

be large enough so that this difference is minimized.52,58,59 

To obtain unbiased least squares estimates of the regression coefficients, the model 

needs to be validated externally, wherein the validation sample is obtained by 

collecting new data. When a model is selection from given data, it is implied that the 

selected model fits the data well. However, for models used to predict future outcomes, 

this validation method is comparatively more useful as it assesses the model under 

broader circumstances than those related to the original data.52 
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Chapter 3 

Study Materials 
3.1 Data Source 

Data for this study was obtained from the Georgia Spine Patient Outcomes Registry 

(Georgia Spine and Neurosurgery Center, LLC, Atlanta, GA). The GA Spine registry 

is comprised of all patients who underwent elective lumbar and/or cervical spine 

surgery at a single private neurosurgery practice starting from May 2006. All patients 

were de-identified and assigned a unique six-digit ID number upon entering into the 

registry.  

The registry records variables pertaining to patient demographics, previous medical 

history, diagnoses, summary of surgical procedure, and any intra-operative and post-

operative complications. This information was retrospectively adjudicated from 

previous medical records, physician assessments, operative notes, and anesthesiology 

reports.  

HRQOL measures were obtained prospectively using standard paper forms, which are 

kept on record for a minimum of 5 years. These measures were collected pre-operative 

and prospectively at the following time points post-operative: 1 month, 3 months, 6 

months, 12 months, 24 months, and 5 years. Scores for these HRQOL measures were 

calculated by an independent clinical data management company (PhDx Systems, Inc., 

Albuquerque, NM) using standard algorithms. The data is quality controlled and 

HIPAA (Health Insurance Portability and Accountability Act of 1996) compliant.  
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3.2 Predictor Variables 

This database was created specifically for studies pertaining to lumbar IBF outcomes, 

and thus, predictor variables recorded were chosen according to clinical judgment and 

existing knowledge. With the exception of those pertaining to post-operative 

complications, all 32 available predictors from the database were used in the analysis. 

These predictors are listed and briefly described in Table 3.1. In addition, to those 

listed in the table, the following pre-operative HRQOL measures were also included in 

the pool of potential predictor variables: BPNRS, LPNRS, ODI, SF-36 PCS, and SF-

36 MCS. 

3.3 Outcome Variable 

The predicted HRQOL outcome in this study is the difference between baseline 

BPNRS and 3-month post-operative BPNRS score. A positive value of the outcome 

variable indicates post-operative improvement, while a negative value indicates 

worsening of symptoms. This specific HRQOL measure was chosen for several reasons: 

1. LBP is the primary indication for patients undergoing lumbar IBF and the 

primary goal of lumbar IBF is to resolve LBP.   

2. The typical rehabilitation time for lumbar IBF patients is up to 3 months. 

Procedure-related pain and weakness may confound measures taken prior to 

this time point. 

3. Patient reporting of leg pain may be confounded by inability to discriminate 

between degenerative lumbar spine disorder-specific pain and other unrelated 

pain such as knee pain, which is fairly typical in an older population. 

4. ODI was not chosen because level of disability is often time-dependent, as 

patients tend to experience a certain amount of increase in disability over time 

as they age. Additionally, the primary goal of lumbar IBF is not to increase 

disability, but rather, to resolve pain.  

5. SF-36 was not chosen because it is a generic HRQOL instrument and not 

specific to LBP or degenerative lumbar spine disorders.  
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  Category  X  Variable  Description  
         

 1  AGE  Age at time of surgery (years)  
 2  BMI  Body mass index  
 3  EDU  Highest education level  
 4  GENDER  Gender  

 Demographics 

 5  SMOKE  Current smoking status  
         

 6  ASTH  Asthma  
 7  BLEED  Bleeding disorder  
 8  COPD  COPD  
 9  DEPRESS  Depression  
 10  DIABETES  Diabetes mellitus  
 11  GERD  Gastroesophageal reflux disease  
 12  HDL  Hypercholesterolemia  
 13  HEART  Cardiovascular disease  
 14  HEP  Hepatitis  
 15  HTN  Hypertension  
 16  OA  Osteoarthritis  
 17  OSP  Osteoporosis  
 18  SEIZURE  Seizure  
 19  STROKE  Stroke  

 
Co-Morbidities 

(Y/N) 

 20  ULCER  Stomach ulcer  
         

 21  DIAGNOSIS  Primary indication for surgery  
 22  EBL  Estimated blood loss (mL)  
 23  FIX  Posterior fixation (Y/N)  
 24  FUS  Fusion approach  
 25  LOS  Length of post-op stay (days)  
 26  NUMLEVS  # Levels fused  
 27  OR_TIME  Length of operation (min)  

 
Surgical 

Summary 

 28  PRIOR  Prior lumbar surgery (Y/N)  
       

Table 3.1: List and description of potential predictor variables, not including pre-operative 
HRQOL measures.  
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3.4 Sample Selection 

All patients who underwent lumbar IBF performed by a single neurosurgeon were 

identified and evaluated for inclusion based on the following eligibility requirements: 

• Baseline and 3-month post-operative BPNRS scores were available. 

• Primary indication for surgery was LBP (BPNRS > 2). 

• No reported intra- or post-operative complications. 

From these eligible patients, a training sample and a validation sample were 

assembled. The training sample included 177 patients who underwent surgery between 

January 2007 and October 2011. The validation sample included 32 patients who 

underwent surgery between November 2011 and January 2012. 
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Chapter 4 

Analysis & Results 
4.1 Univariate Analysis 

Simple linear regression was used to evaluate each potential predictor variable’s 

independent association with the outcome variable and the results are presented in 

Appendix C.1. Only three predictors, HDL (p=0.032), HEP (p=0.040), and LPNRS 

(p<0.001), were found to be significantly associated with the response variable at the 

0.05 significance level. Another three predictors, BMI (p=0.075), EBL (p=0.058), and 

PCS (p=0.056) are marginally significant in their association with the outcome 

variable.  

Collinearity among the HRQOL measures was also assessed using a scatter-plot 

matrix, shown in Figure 4.1. The figure indicates possible correlations between ODI 

and each component score of the SF-36, such that a decrease in LBP-related disability 

is correlated with increases in physical and mental QOL.  
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Figure 4.1: Scatter-plot matrix of pre-operative HRQOL variables. 
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4.2 Stepwise Selection Procedures 

Models were fit using each of the stepwise selection procedures (forward stepwise, 

forward, backwards) at significance levels 0.05, 0.10, 0.15, 0.20 and resulted in five 

unique models (Table 4.1).  

 Model  Int LPNRS  HDL  OA  PCS  AGE  BMI  PRIOR  

    
 

              
 1  2.651  0.244  ---  ---  ---  ---  ---  ---  
                   
 2  2.421  0.241  0.763  ---  ---  ---  ---  ---  
                   
 3  3.257  0.171  ---  -1.188  -0.050  0.030  ---  ---  
                   
 4  4.918  0.168  0.636  -1.172  -0.052  0.024  -0.051  ---  
                   
 5  5.075  0.176  0.586  -1.105  -0.054  0.028  -0.058  -0.639  
                   
Table 4.1: Parameter estimates of models selected from stepwise selection procedures. 

4.2.1 Regression Diagnostics 

Residuals for each model were checked for normality and heteroscedasticity, the plots 

for which are presented in Figures 4.2 through 4.6. The normal quantile plots model 

show there are several residual outliers for each model, particularly when a greater 

difference in LBP is predicted. In addition, the distribution of the residuals seems to be 

most normal for models 1 and 3. Residual variance is reasonably heteroscedastic in 

models 2 to 5, but the residual variances of model 1, which contains only one X 

variable, seems to increase as the predicted value increases, suggesting a possible lack-

of-fit for this model.  
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Figure 4.2: Model 1 residual analysis of normality and heteroscedasticity.	
  	
  
	
  
	
  

	
  
Figure 4.3: Model 2 residual analysis of normality and heteroscedasticity.	
  	
  
	
  
	
  

	
  
Figure 4.4: Model 3 residual analysis of normality and heteroscedasticity.	
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Figure 4.5: Model 4 residual analysis of normality and heteroscedasticity.	
  	
  
	
  
	
  

	
  
Figure 4.6: Model 5 residual analysis of normality and heteroscedasticity. 

4.3 Mallows’ Cp Criterion 

For this selection procedure, dummy variables were created for all non-dichotomous 

categorical predictor variables using reference cell coding methods, giving 50 total 

variables in the full model. All possible models were generated from the dataset and 

the corresponding Cp statistic was calculated for each model. Figure 4.7 presents the Cp 

plot of the 50 best models for each size. The plot shows that with the exception of the 

full model, all subset models fell beneath the reference line   

€ 

Cp = p . This suggests that 

the full model contained a significant amount of potential predictor variables that do 

not contribute to the model, and consequently, the MSE of the model was a biased 

estimator of   

€ 

σ 2. Thus, Gilmour’s modified   

€ 

C p statistic was plot against the number of 
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model parameters, and again, all but the full model fell below the line   

€ 

C p = p . 

Therefore, the model with the lowest Cp and   

€ 

C p  was assigned as model 6 for 

validation, and includes the variables BMI, DEPRESS, FIX, HDL, HEART, OA, PCS, 

STROKE, and ULCER.  

 
Figure 4.7: Cp plot of best 50 models for each model size. 

 

Figure 4.8:   

€ 

C p 	
  plot of best 50 models for each model size. 
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4.4 Model Validation 

The summary statistics for the candidate models fit on the training and validation sets 

are given in Table 4.2.  

 Model  R2 Adj R2  MSE/MSPR  
    

 
    

   Training Valid  Training Valid  Training Valid  
 1  0.068 0.163  0.063 0.108  5.915 28.978  
         
 2  0.089 0.015  0.078 -0.058  5.819 8.126  
         
 3  0.109 0.163  0.084 0.010  5.866 6.329  
         
 4  0.132 0.172  0.095 -0.077  5.800 6.222  
         
 5  0.144 0.174  0.101 -0.071  5.757 5.926  
         
 6  0.163 0.240  0.108 -0.097  5.711 5.741  
         

Table 4.2: Summary statistics for candidate models fit on training and validation sets. 
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Chapter 5 

Discussion 
Lumbar IBF has become a common treatment for patients with chronic LBP or severe 

disease pathologies who have been unresponsive to less invasive methods. This thesis 

utilized model selection methods to determine important patient factors predictive of 

post-operative LBP following lumbar IBF.  

Pre-operative LPNRS and SF-36 PCS scores were found to be independently 

associated with LBP improvement. Hepatitis and high cholesterol were also found to 

be significant univariate analysis; however, these factors have never been cited in the 

relevant literature. Furthermore, the parameter estimates of high cholesterol suggest 

that patients with this co-morbidity experience greater LBP, which is clinically 

counterintuitive.  

BMI and patient age were also deemed significantly associated with LBP improvement, 

which have been shown to influence a surgeon’s decision as to whether or not a patient 

can be expected to receive any benefits after lumbar IBF. Prior surgery has been 

shown in many studies to be predictive of post-operative HRQOL improvement, but 

was included in one model. The same is also true for the factor of depression. 

Mallows’ Cp was not the most adequate selection criterion for the purposes of this 

thesis, as the dataset contained too many noise variables. For future studies, the full 

dataset either needs to be developed such that only important variables are included, 

or a robust modification of the Cp statistic needs to be derived. Information criterion 

(BIC) are alternatives that have been shown in sociological and behavioral science such 
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as the Akaike information criterion (AIC) and the Bayesian information criterion 

research to produce intuitively reasonable results when p-values did not. For such a 

complex dataset, the information criterions are advantageous in that they base model 

selection on more theoretical considerations and objective variable assessment. 

Future studies can also use various criterion with the bootstrapping method of model 

selection, where repeated samples of cases are randomly selected with replacement, and 

the criterion is evaluated for subsets to select the best model. Studies have found that 

this method is fairly accurate in identifying the true model, particularly in larger 

datasets.   

From a clinical standpoint, a point that should be considered is the complexity of pain, 

as it has the potential to mean discomfort, burning, pins and needs, or even numbness. 

There is also an inherent difficulty of measuring the intensity of pain. Specifically, pain 

occurs within a context, and the intensity can be influenced by the meaning of the 

pain to the patient and its expected duration. Furthermore, there is no way of 

calibrating pain intensity measures between patients, as one patient may interpret an 

BPNRS score of “5” very differently from the next patient.  

Finally, the selection procedures in this thesis did not consider functions or interactions 

of variables. Future research may use this thesis as the starting point for more 

sophisticated models that consider both functions and interactions of the selected 

variables.  

Further work in the analysis of LBP HRQOL outcomes needs to be done to transform 

the knowledge and teaching base from theory and person experience to one of 

statistical evidence.  
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Appendix A 

HRQOL Instruments 
A.1 Numeric Rating Scale (NRS) 

The NRS is an ordinal scale ranging from 0 to 10 that subjectively measures pain 

intensity. A score of 0 indicates the patient is experiencing “no pain,” whereas a score 

of 10 indicates the patient is experiencing “worst possible pain.” The Back Pain NRS 

(BPNRS) and Leg Pain NRS (LPNRS) were used to obtain the severities of LBP pain 

and leg pain, respectively, for each patient.  

The NRS has not yet been thoroughly investigated, but its validity and reliability have 

been confirmed. There is no published information pertaining to the distribution or 

error of data obtained using the NRS.30 

A.2 Oswestry Disability Index (ODI) 

The ODI is a self-administered questionnaire measuring disability specific to back 

problems on a 10-item scale with 6 possible responses each. The 10 items include pain 

intensity: personal care, lifting, walking, sitting, standing, sleeping, work, social life, 

and traveling. Each item scores from 0 to 5, with higher scores indicating more severe 

disability, and an overall disability percentage is obtained. Patients scoring between 0-

20% are minimally disabled, 21-40% are moderately disabled, 41-60% are severely 

disabled, 61-80% are crippled, and 81-100% are bed-bound or exaggerating their 

symptoms.51  
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The ODI has been extensively tested and has shown good psychometric properties. 

Specifically, the ODI shows good construct validity and internal consistency. Its test-

retest reliability has also been shown to be high, but decreases the longer the wait 

between measurements.49,51  

A.3 SF-36v2TM (SF-36) 

The SF-36 is a general QOL survey comprising of 36 items that are organized into 8 

subscales: physical functioning, physical role limitation, bodily pain, social functioning, 

general mental health, emotional role limitations, vitality, and general health 

perceptions. The SF-36 also includes two questions intended to estimate self-perceived 

overall change in health status over the past year. With the exception of the overall 

change in health status questions, patients are asked to respond with reference to the 

past 4 weeks. Scores for each of the subscales are summed and linearly transformed to 

derive a physical component score (PCS) and a mental component score (MCS), each 

on a scale of 0 to 100. A lower score indicates higher QOL.49 

Although the psychometric properties of the SF-36 has been extensively tested across a 

range of patient populations, there has been limited research regarding its merit for 

degenerative spine disorder patients, and even less for lumbar IBF patients.32,42,45,46 

However, one study by Albert et al.43 tested the viability of the SF-36 to measure 

health status changes in degenerative scoliosis patients one year after undergoing 

lumbar IBF. The study demonstrated that the SF-36 was sensitive enough to detect 

improvement in the study population.  



42 

 

Appendix B 

Proofs 
B.1 Proof of Equation (2.7) 

Proof.  

Given: 

      

€ 

σ 2

i =1

n

∑ {
 

Y i } = pσ 2

E{SSRp} = E{
 

Y i } − µi( )∑
2

+ (n − p)σ 2

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 

  

€ 

Γp  can then be expressed as 

    

€ 

Γp =
1
σ 2

[E{SSRp} − (n − p)σ 2 + pσ 2]

=
E{SSRp}

σ 2
− (n − 2p)

 

Using estimators SSRp and       

€ 

MSE(X1,X2,…,Xq −1) for     

€ 

E{SSRp} and , respectively, 

gives the Cp criterion.  
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B.2 Lemma B.2 

Given: 
    

€ 

Cp =
SSRp

SSRk +1 /(n − k − 1)
− (n − 2p)  

To obtain the distribution of Cp in the case where all important predictor variables are 

included in the model, assume without loss of generality, that       

€ 

βp = … = βk = 0 .  

Cp can then be expressed as 

      

€ 

Cp = (n − k − 1)
SSEk +1SS(βp,…, βk β0,…, βp−1)

SSEk +1

− (n − 2p)

= (n − k − 1) 1 +
SS(βp,…, βk β0,…, βp−1)

SSEk +1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 
− (n − 2p)

= (k − p + 1)
SS(βp,…, βk β0,…, βp−1)/(k − p + 1)

SSEk +1 /(n − k − 1)
− (k + 1 − 2p)

= (k − p + 1)U /(k − p + 1)
V /(n − k − 1)

− (k + 1 − 2p)

 

 where 

    

€ 

U ~ χk −p+1
2

V ~ χn −l −1
2

U and V are independent

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 

Hence,  

    

€ 

Cp = (k − p + 1)F + 2p − k − 1             (Lemma B.2) 

 where     

€ 

F ~ Fk −p+1,n −k −1 
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B.3 Proof of Equation (2.8) 

Given: 
    

€ 

E{F} =
n − k − 1
n − k − 3

 

By Lemma B.2,     

€ 

E{Cp}can then be expressed as 

    

€ 

E{Cp} = (k − p + 1) n − k − 1
n − k − 3

+ 2p − k − 1

= p +
2(k − p + 1)
n − k − 3

 

Thus, for     

€ 

E{C p} = p  to be true,   

€ 

C p is defined as  

    

€ 

C p = Cp −
2(k − p + 1)
n − k − 3



45 

 

Appendix C 

Supplemental Materials 
C.1 Results of Univariate Analysis 
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 Category  X  Variable  P-Value  
         

 1  AGE  0.252  
 2  BMI  0.075  
 3  EDU  0.677  
 4  GENDER  0.393  

 Demographics 

 5  SMOKE  0.515  
         

 6  ASTH  0.770  
 7  BLEED  0.458  
 8  COPD  0.253  
 9  DEPRESS  0.338  
 10  DIABETES  0.841  
 11  GERD  0.742  
 12  HDL  0.032  
 13  HEART  0.831  
 14  HEP  0.040  
 15  HTN  0.228  
 16  OA  0.196  
 17  OSP  0.210  
 18  SEIZURE  0.474  
 19  STROKE  0.220  

 
Co-Morbidities 

(Y/N) 

 20  ULCER  0.207  
         

 21  DIAGNOSIS  0.418  
 22  EBL  0.058  
 23  FIX  0.481  
 24  FUS  0.149  
 25  LOS  0.309  
 26  NUMLEVS  0.779  
 27  OR_TIME  0.152  

 Surgical Summary 

 28  PRIOR  0.267  
         

 29  LPNRS  <0.001  
 30  ODI  0.594  
 31  PCS  0.056  

 HRQOL Measures 

 32  MCS  0.839  
      

	
  


