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Abstract 

 

Genetic risk score-based gene-smoking interaction association with heart failure 

By Qiying Wei 

Background: Multiple genetic and environmental factors contribute to the individual’s risk for 

developing heart failure. Previous studies have focused on either genetic susceptibility or environmental 

risk factors (such as cigarette smoking) for heart failure. However, the gene-environmental interaction 

effect has not been well studied for heart failure. The goal of this study is to examine gene-smoking 

interactions on heart failure risk using a genetic risk score (GRS) based on recent findings from genome-

wide association study (GWAS) of heart failure. 

Methods: A heart failure GRS including 12 loci were calculated in the UK Biobank study to examine 

gene-smoking interactions with heart failure using logistic regression models, controlling for covariates 

including age, sex, alcohol intake frequency, body mass index, diabetes history and socioeconomic status. 

Additionally, the gene-smoking interaction of individual genetic variants association with heart failure 

was assessed. 

Results: We identified significant synergistic interaction between the GRS and smoking status for heart 

failure. While GRS was positively associated with heart failure within ever-smokers or never-smokers, 

GRS was more strongly associated with heart failure among smokers (OR= 1.74 among ever-smokers, 

OR = 1.39 among never-smoker). Furthermore, compared to the low GRS group, smoking showed higher 

risk for heart failure among the high GRS group (OR = 1.28, 95%CI: 1.15-1.42), while the smoking effect 

was diminished among people with low GRS for heart failure (OR = 1.02, 95%CI: 0.90-1.16). In the 

analysis of a single genetic variant, we identified significant gene-smoking interaction of BAG3 locus on 

heart failure. 

Conclusions: Genetic risk modifies the impact of smoking on heart failure. Cigarette smoking poses 

particularly higher risk among people with high genetic risk for heart failure.  

Key words: Gene-environment interaction, genetics, smoking, heart failure, genetic risk score 

Length:  270 words 



 

 

Genetic risk score-based gene-smoking interaction association with heart failure 

 

 

By 

 

 

Qiying Wei 

 

B.S. 

Fudan University 

2018 

 

 

Thesis Committee Chair: Yan V. Sun, PhD 

 

 

A thesis submitted to the Faculty of the  

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Public Health in Epidemiology 

2020 

 

 

 

 

 



 

Abbreviations and Acronyms 

ATXN2, Human Ataxin-2; AGAP5, ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 5; 

BAG3, Bcl2-associated athanogene 3 protein; CDKN1A, Cyclin Dependent Kinase Inhibitor 1A; CI, 

confidence interval; FTO, FTO Alpha-Ketoglutarate Dependent Dioxygenase protein; HERMES, Heart 

Failure Molecular Epidemiology for Therapeutic Targets; HF, heart failure;  GRS, genetic risk score; 

ICD, International Classification of Diseases; KLHL3, Kelch Like Family Member 3 protein; OR, odds 

ratio; SNP, single nucleotide polymorphism; SYNPO2L, Synaptopodin 2 Like protein; TDI, Townsend 

deprivation index; 

 

Introduction 

Epidemiology of heart failure 

Heart failure is defined as a chronic and progressive syndrome caused by myocardial dysfunction of 

ventricular filling or blood ejection (Yancy, et al., 2013). In Europe, all-cause heart failure has been 

reported to be rising with a median prevalence of 11.8% (range 4.7–13.3%) over the past decade (Van 

Riet, et al., 2016). In contrast to vast progress being made in the treatment of other cardiac disorders, 

heart failure reportedly affects at least 26 million individuals globally, with an increasing projected 

burden of disease with the aging populations (Savarese & Lund, 2017). In addition, heart failure is an 

important contributor to mortality, with an increasing number of five-year mortality rates due to heart 

failure by 24.4 % for 60 years-olds and 54.4% for 80 year-olds (Thomas & Rich, 2007). Today, people 

aged over 65 are estimated to occupy more than 20% of the global population (Rudolph, et al., 2019), the 

prevalence and prognosis of heart failure is becoming an increasing public health concern. Furthermore, 

heart failure dramatically impacts patients’ quality of life and ability to conduct normal functions of life, 

which in turn, places a heavy burden on the health care system. 



 

While most people are at risk for heart failure, it does not affect the entire population homogeneously. 

There are several factors associated with the risk of heart failure including male sex, high body mass 

index (BMI), abdominal fat accumulation, elevated fasting blood glucose, elevated systolic blood 

pressure, elevated apolipoprotein B/ apolipoprotein A ratio, and cigarette smoking (Maheedhar, et al., 

2015). These risk factors tend to occur in combinations in patients, and thus, it is challenging to 

understand the underlying mechanism of factors individually. Specifically, smoking status is a common 

modifiable lifestyle risk factor which has been extensively studied in relation to heart failure. According 

to Jackson Heart Study, 4129 black participants without a history of heart failure or cardiovascular 

disease at baseline, after smoking cessation of more than 15 years, the heart failure risk of former light 

smokers who smoked less than 32 pack-years declined to a similar level with never smokers. Also, 

smokers of light smoking intensity showed a lower risk of heart failure development than current heavy 

smokers (Kamimura, et al., 2018). 

Etiology of heart failure 

Heart failure is a terminal stage of various cardiovascular diseases such as monogenic, hypertrophic and 

dilated cardiomyopathy (Howie, et al., 2009) and has become one of the focal points of heart disease 

prevention and treatment strategies. Within heart failure, there are two types, the right heart failure and 

the left heart failure. In most cases, right heart failure occurs after left heart failure, which is caused by 

elevated pulmonary circulation resistance and increased compensatory pressure of the right heart that 

eventually leads to right heart decompensation. Moreover, patients with heart failure could be stratified 

into acute and chronic heart failure based on ventricular remodeling and myocardial fibrosis, which is a 

consequence of cardiovascular problems with impaired left ventricular function with either reduced or 

preserved ejection fraction (Howie, et al., 2009). 

Despite a wide array of signs and symptoms that present in heart failure patients, heart failure has been 

attributed to specific subsets and stages diagnosed clinically. These include classifying stage A and stage 



 

B as asymptomatic patients with or without structural abnormalities such as LV hypertrophy, dilation or 

dysfunction (Shah, et al., 2017), and stage C and D with related symptoms such as exercise intolerance, 

muscle fatigue, dyspnea and edema in the form of leg swelling or ascites (Coats, et al., 1994). According 

to the American Heart Association and American College of Cardiology’s A-to-D staging system, stage A 

and stage B heart failure are pre-symptomatic and are often missed at the time of diagnosis. 

Pathways underlying heart failure can arise from cardiac lesions at any level, including the myocardium, 

vasculature, pericardium, heart valves, electrical system or a combination of cardiac abnormalities 

(Snipelisky, et al., 2019). The modern mechanisms involved in heart failure can be virtually conjectured 

by several established models: Hemodynamic model, Cardiorenal model, Neurohumoral model, 

Abnormal Ca2+ cycling model and Cell death model (Maheedhar, et al., 2015). At the genetic level, 

aberrant gene expression can impact contractility, calcium handling and myocardial energetics caused 

maladaptive changes in cardiac function (Dirkx, et al., 2013).  

Genetic pathways of heart failure development 

At the genetic level, multiple studies have investigated the association between clinical heterogeneity of 

heart failure and genetic susceptibility. Multigenerational cohorts from the Framingham study estimated 

that a parental heart failure prospectively leads to at least a 1.7 times increased risk of heart failure in the 

offspring. This study also found that 18% of the heart failure burden in the offspring was attributable to 

the parental heart failure. Additionally, the authors further suggested that genetic factors related to 

responses to stress can be transmitted from parent to child. The inheritance altered diastolic function 

maladaptively, increasing vascular stiffness and a propensity for sodium. (Lee, et al. 2006). Moreover, a 

nationwide Swedish adoption study has also investigated the heritability of heart failure. Results obtained 

from 21,643 adoptees, 35,016 adoptive parents and 43,286 biological parents showed that heart failure in 

a biological parent is a significant risk factor for child (OR=1.45, 95%CI: 1.04-2.03. OR =1.58, 95%CI: 

1.03-2.42 after exclusion of cardiomyopathies) (Lindgren, et al., 2018). According to the Framingham 



 

Offspring study (1,497 participants’ routine echocardiography), heart failure is related to the rising 

prevalence of left ventricle (LV) systolic dysfunction when analyzed cross-sectionally. In the longitudinal 

analysis, the study found that inheritable factors boosted the risk of heart failure. (Lee, et al. 2006) 

Risk of single nucleotide polymorphisms (SNPs) on heart failure has also been investigated by genome-

wide association studies (GWAS) studies. Previous work conducted on the UK Biobank identified 14 

regions of the human genome critical for the shape and function of the left ventricle. This study also 

determined that genes in those regions play an important role in regulation of early ventricular 

development and contraction. These regions function on LVEDV, LVESV, LVMVR and LVEF and 

influence on blood ejection in the left ventricle. In early stages, the heart has such a strong compensatory 

capability that patients could be asymptomatic with hypertrophy. In later stages of heart failure, the 

compensatory regulation is not able to sustain adequate cardiac output, resulting in weakness, shortness of 

breath, edema and other symptoms. Analysis of MRI images concluded that genetic factors contribute 

22%-39% of pathologic LV size and function, which directly hampered the cardiac pumping into the 

aorta (Aung, et al., 2019). Left ventricular dilatation blocks the myocardium in contraction and pumping 

function, putting patients at high risk of cardiovascular diseases.  Genes associated with development of 

heart failure are related to three major mechanisms. MYOZ1and SYNPO2L are highly related to cardiac 

development, BAG3 affects the protein homeostasis, and CDKN1A is associated with cellular 

senescence. (Shah, et al., 2020) Furthermore, according to the largest GWAS of heart failure to date, 12 

independent variants from 11 independent loci were significantly associated with heart failure. Eight out 

of 12 of the lead SNPs were located in introns of known genes, while others were located in intergenic 

regions or 3’-UTR. (Shah, et al., 2020)  

Research foundation and goals 

While factors such as genetics and lifestyle have been extensively studied in relation to heart failure, their 

joint effects remain to be investigated. The interaction between biologic and lifestyle/behavioral causes of 



 

cardiovascular disease is a very important mechanism for understanding both the etiology and public 

health impact of heart failure. To comprehensively describe the effects of genetic predictors of heart 

failure, it is necessary to place genetic risk within the context of known environmental risk factors. The 

joint effect of gene-environment risk factors, either additive or multiplicative, is generally greater than the 

contribution of either alone (Flowers, et al., 2012). Thus, there is a need to determine whether 

environmental factors modify the association between genetic risk factors and heart failure.  

 

Methods 

Study population  

Data used in this study were from the UK Biobank, a population-based prospective cohort study. UK 

Biobank provided a rich collection of phenotypic data from 502,616 volunteer participants aged between 

40 and 69 at the time of recruitment. Participants provided signed consent electronically and provided 

information on social demographics, lifestyle, physical measures and lab (Bycroft, et al., 2018). 

To eliminate race and ethnicity confounding bias, we selected Caucasian subjects with adequate genetic 

information. In order to further refine the subset of participants, we used ethnicity information from UK 

Biobank to define Caucasian participants categorized as White, including British, Irish and any other 

White background. The Mixed, Asian or Asian British, Black or Black British, Chinese, other ethnic 

group or no clear answer were excluded.  

Definition of heart failure 

The detailed case definitions and the UK Biobank Field codes are shown in the Supplementary Table 1. 

The case definition referred to Aragam’s article on phenotypic refinement of heart failure based on UK 

Biobank (Aragam, et al., 2019). We extracted diagnosis of heart failure from both Hospital Episode 



 

Statistics (HES) and self-reported health information. A participant is defined as a heart failure case if the 

person was classified as heart failure and cardiomyopathy for one or more times in self-reported non-

cancer illness, main ICD9/ICD10 diagnosis or secondary ICD9/ICD10 diagnosis. All other eligible 

controls without these data codes were classified into controls. To control for the bias from potential heart 

failure cases in stage A and stage B, only controls free of vascular or heart problems were included, which 

was figured out by doctor diagnosis (UK Biobank Field ID:6150). 

Statistical analysis 

We used data at baseline to assess the basic characteristics and logistic regression analysis on the gene-

environment interaction between genetic risk score and smoking status to the risk of heart failure. 

Baseline characteristics of our study sample were calculated across heart failure cases and controls as 

percentages for categorical variables and mean with standard deviation for continuous variables. 

Empirical risk factors of heart failure such as smoking, sex, alcohol intake frequency, diabetes, age, body 

mass index, socioeconomic status was obtained by programs in Python 3.4 in a Linux system.  

Genetic data were extracted using Plink2, which produced observations of single SNP and weighted 

genetic risk score for each individual. Heart failure genetic risk score (GRS) was calculated according to 

12 significant genes related to heart failure (Shah, et al., 2020). The score was based on a weighted sum 

for genetic risks of each loci: 

GRSj = w1 x1j + w2 x2j + ... + wm xmj 

Where j denotes the jth individual, the weights w1, w2, ..., wm reflects the effect sizes (according to Odds 

Ratios of each loci) and estimated in single SNP analyses of the trait. In the assessment, GRS was 

standardized in order to moderate the effect of gene on heart failure (Figure 1). In the initial data analysis 

step, genetic risk score was categorized into three levels (bottom 0%-20%, 20%-80%,80%-100%).  



 

Logistic regression was used to examine the effect of each genetic or environmental risk factor and its 

efficacy. The data analysis was conducted in R 3.6.1 and SAS 9.4 in Linux system. All models were 

adjusted for their gender, age, alcohol intake frequency, BMI, diabetes history and socioeconomic status. 

The full model was originally set as: 

ln (odds of Heart Failure) = 𝛽0 + 𝛽1 * Smoking + 𝛽2 * GRS + 𝛾1 * Age +  𝛾2 * Sex +  𝛾3 * Alcohol + 𝛾4 

*  BMI + 𝛾5 *  Diabetes + 𝛾6 *  TDI + 𝛿1 * Smoking * GRS + 𝛿2 * Age * GRS + 𝛿3 * Sex * GRS + 𝛿4 * 

Alcohol * GRS + 𝛿5 * BMI * GRS + 𝛿6 * Diabetes * GRS + 𝛿7 * TDI * GRS 

Where smoking status was dichotomized into ever-smoked and never-smoked; alcohol intake frequency 

was classified into three times a week or above and below three times a week; diabetes history was 

dichotomized into yes or no, and GRS, age, BMI and TDI were treated as continuous variables. TDI 

stands for Townsend deprivation index at recruitment, which is an indicator for socioeconomic status 

Higher TDI represents low socioeconomic status. 

Stepwise regression was used for modelling. Backward elimination was applied to obtain the final model 

for assessment, which starts with a model with all of the candidate covariates as predictors. The least 

significant covariate is dropped and the model refit. The least significant covariate in the new model is 

dropped until its p value is below α=0.05. The reduced model was set as: 

ln (odds of Heart Failure) = 𝛽0 + 𝛽1 * Smoking + 𝛽2 * GRS + 𝛾1 * Age + 𝛾2 * Sex + 𝛾3 * Alcohol + 𝛾4 

* BMI + 𝛾5 * Diabetes + 𝛾6 * TDI + 𝛿1 * Smoking * GRS 

 



 

Results 

The flow chart of data selection was shown in Figure 2. After excluding non-Caucasian participants (n = 

56,589), participants without genetic information (n = 2,778) and controls with potential heart failure 

development (n = 23,280), a total of 419,969 participants were included in the statistical analysis stage.  

Demographic information and distribution of risk factors to heart failure by case, control and total 

population with two-sample test p-values are listed in Table 2. Based on 419,969 participants, 55.13% 

have never smoked in their lifetime; 34.43% smoked previously but quit before data collection, and 

10.09% were current smokers. 63.56% of the cases and 44.58% of the controls have smoked in their 

lifetime. The smoking status had a significant influence on the outcome of heart failure across cases and 

controls, indicating present smokers had a higher odds of developing heart failure than past smokers. Both 

present and past smokers had a higher chance of developing heart failure than non-smokers. (p<0.001) 

Similarly, male gender, alcohol intake frequency (above three times a week), diabetes history, elder age, 

obesity and low socioeconomic status were all significant risk factors for heart failure. (p<0.001) Heart 

failure risk was also elevated monotonically in accordance with genetic risk scores. (p<0.001) 

Under the same smoking status, increased genetic risk leads to an increased risk of developing heart 

failure. Among the smoking population, the odds of heart failure among the high-GRS group was 1.74 

(95%CI, 1.54-1.97) times the odds of heart failure among the low-GRS group; the odds of heart failure 

among the intermediate GRS group was 1.34 (95%CI, 1.21-1.50) times the odds of heart failure among 

the low-GRS group. Among the non-smoking population, the odds of heart failure among the high-GRS 

group was 1.39 (95%CI, 1.24-1.55) times the odds of heart failure among the low-GRS group; the odds of 

heart failure among the intermediate-GRS group was 1.11 (95%CI, 1.01-1.22) times the odds of heart 

failure among the low-GRS group. All the results indicated that for the same genetic risk level, smoking 

is a significant risk factor for heart failure. These results were shown in the Supplementary Table 3. 



 

Moreover, controlling for all the environmental covariate, the risk of higher genetic risk score level was 

associated with risk of heart failure development, indicating that smoking status has a gradually 

increasing impact on the development of heart failure for individuals with higher GRS levels. Compared 

to the low-GRS group, smoking has a more significant influence on heart failure among the high-GRS 

group (OR = 1.28, 95% CI: 1.15-1.42), while the effect is almost the same between smokers and non-

smokers in low-GRS level (OR = 1.02, 95% CI: 0.90-1.16). The estimates and 95% confidence intervals 

were included in Table 4. 

In the logistic regression analysis, we applied the backward elimination to identify the appropriate 

predictive variables to fit in the regression models because most of the gene-environment interaction 

terms were insignificant. After the backward elimination step, only smoking status had a statistically 

significant interaction with GRS. The estimates of the final model (Model 6) was adopted in Table 5. 

Additionally, the relationship between probability of heart failure for smokers and non-smokers was 

presented in Figure 4. After controlling for age, sex, alcohol intake frequency, BMI, diabetes and 

socioeconomic status, people in the higher GRS group are more likely to get heart failure by smoking 

status. (β=0.18, 95% CI: 0.12-0.23) 

To evaluate the more detailed gene-environmental interaction between SNPs and smoking on heart 

failure, we measured the interaction assessment replacing the genetic risk score with the 12 loci indicated 

in HERMES study. SNP rs17617337 (BAG3) showed a significant gene-smoking interaction on heart 

failure after adjusting for known risk factors (Table 6). Interestingly, while most SNPs reported in 

previous studies showed significance association with heart failure (Table 6), three SNPs were 

insignificantly associated with heart failure in the UK Biobank sample (rs4746140 in SYNPO2L/AGAP5, 

rs11745324 in KLHL3 and rs56094641 in FTO).  



 

Discussion 

Our study aimed to examine the gene-smoking interaction associated with risk of heart failure. Cigarette 

smoking is an established risk factor for heart failure. Both current and previous smokers have a higher 

possibility of developing heart failure relative to non-smokers. We found that the prevalence of heart 

failure between previous smokers and current smokers is not significantly different, which is consistent 

with previous findings by Kamimura, et al., 2018. In addition to smoking status, factors such as male 

gender, alcohol intake frequency (above 3 times a week), diabetes history, elder age, obesity and low 

socioeconomic status all contribute to higher heart failure incidence. The GRS was significantly 

associated with heart failure, although three individual SNPs were not significantly associated with heart 

failure in the present study of UK Biobank samples. 

The significant GRSSmoking interaction on heart failure can partially explain observed inter-individual 

variability of heart failure risk. On one hand, in the population there is a range of genetic risk profiles, 

with each individual adopting a unique risk spectrum, from a low to a high genetic risk. On the other 

hand, the genetic risk occupies a position along the environmental spectrum according to an individual’s 

lifestyle. Meanwhile, the genetic risk and environmental risk (i.e. smoking) collaborates to affect the 

outcome of disease. This interaction may help explain the multifactorial pathologies that are seen from the 

relationship between genetic risk and smoking status. Smoking status has a gradually increasing impact 

on the development of heart failure for individuals with higher GRS levels than for individuals with lower 

GRS levels. After controlling for age, sex, alcohol intake frequency, BMI, diabetes and socioeconomic 

status, the probability of developing heart failure among smokers is significantly elevated in high and 

intermediate GRS groups, while the probability was not increased substantially among nonsmokers.  

The synergistic interaction between heart failure GRS and cigarette smoking also emphasizes the benefit 

of eliminating smoking exposure particularly among people with higher genetic susceptibility of heart 

failure. 



 

There are several strengths to this study, including the first exploration of gene-environmental interactions 

on heart failure using a GWAS-based GRS and a large population sample for a robust estimate. The gene-

environment interaction results may help account for the unexplained genetic risk factors on developing 

heart failure. This study also included the use of standardization method to ensure the efficacy and 

accuracy as well. Several limitations of our study merit attention. Firstly, dichotomous lifestyle such as 

smoking and alcohol may limit detailed changes within the same classified group. By dichotomizing 

smoking, we assumed that previous smokers and current smokers were in the same category and therefore 

share the same lifestyle risk of heart failure. This may not be precise, however, because although the 

former smokers  (HR = 1.44, 95%CI: 0.98-2.12) showed lower risk of heart failure than the current 

smokers  (HR = 1.44, 95%CI: 0.98-2.12), and it may not differ significantly from the current smokers(HR 

= 2.82, 95%CI: 1.71-4.64), the range is too big to make such conclusion (Kamimura, et al., 2018). 

Furthermore, because we used both non-cancer illness code, which is a self-reported measurement, and 

ICD code, which was reported from the medical organizations for heart failure definition, the two 

methods may not stand consistent with each other. Additionally, the study was constructed on the genetic 

level, which may not take into account epigenetic and polymorphisms in gene or protein expression. 

Thus, further analysis should be done to analyze these effects for other genetic effects. 

Our findings of gene-smoking interaction do not establish a causal relation of gene-environment 

interaction to the disease process. Although the genetic risk factors are hard coded in the genetic code, the 

environmental factors are modifiable. For people with higher susceptibility to heart failure, elimination of 

environmental risk exposures would reduce more risk of developing heart failure. Interventions such as 

smoking cessation, which was found to be a protective factor for developing heart failure, would be 

beneficial. In addition to this analysis on gene-smoking interaction, future studies may future explore the 

gene-environmental interactions of other environmental factors, as well as more broadly the context-

dependent genetic effects (gene-sex, gene-age and gene-gene interactions) to explain the genetic 

propensity to heart failure. 
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Tables 

Table 1. Heart failure case definition from the UK Biobank 

UK Biobank 

Field ID UK Biobank Description Code Definition 

20002 

Non-cancer illness code, self-

reported 1076 Heart failure/pulmonary edema 

20002 

Non-cancer illness code, self-

reported 1079 Cardiomyopathy 

41202, 41204 Diagnosis -main/secondary ICD 10 I11.0 

Hypertensive heart disease with 

(congestive) heart failure 

41202, 41204 Diagnosis -main/secondary ICD 10 I13.0 

Hypertensive heart and renal disease 

with (congestive) heart failure 

41202, 41204 Diagnosis -main/secondary ICD 10 I13.2 

Hypertensive heart and renal disease 

with both (congestive) heart failure and 

renal failure 

41202, 41204 Diagnosis -main/secondary ICD 10 I25.5 Ischemic cardiomyopathy 

41202, 41204 Diagnosis -main/secondary ICD 10 I42.0 Dilated cardiomyopathy 

41202, 41204 Diagnosis -main/secondary ICD 10 I42.5 Other restrictive cardiomyopathy 

41202, 41204 Diagnosis -main/secondary ICD 10 I42.8 Other cardiomyopathies 



 

41202, 41204 Diagnosis -main/secondary ICD 10 I42.9 Cardiomyopathy, unspecified 

41202, 41204 Diagnosis -main/secondary ICD 10 I43.8 

Cardiomyopathy in other diseases 

classified elsewhere 

41202, 41204 Diagnosis -main/secondary ICD 10 I50.0 Congestive heart failure 

41202, 41204 Diagnosis -main/secondary ICD 10 I50.1 Left ventricular failure 

41202, 41204 Diagnosis -main/secondary ICD 10 I50.9 Heart failure, unspecified 

41203, 41205 Diagnosis -main/secondary ICD 9 4254 Other primary cardiomyopathies 

41203, 41205 Diagnosis -main/secondary ICD 9 4280 Congestive heart failure 

41203, 41205 Diagnosis -main/secondary ICD 9 4281 Left heart failure 

41203, 41205 Diagnosis -main/secondary ICD 9 4289 Heart failure, unspecified 

 

 

 

 

 

 

 



 

Table 2. Demographic information and distribution of risk factors of heart failure by case, control 

and total population with two-sample test p-values 

Covariates Statistics Level 

HF Parametric 

P-value* 

(Case vs 

Control) 

All 

N=419969 

Case 

N=6273 

Control 

N=413696 

  

N (Col 

%) 

Never 

231546 

(55.13) 

2286 

(36.44) 

229260 

(55.42) 

<.001 

Smoking status 

N (Col 

%) 

Previous 

144613 

(34.43) 

2966 

(47.28) 

141647 

(34.24) 

  

N (Col 

%) 

Current 

42388 

(10.09) 

991 

(15.8) 

41397 

(10.01) 

  

Sex 

N (Col 

%) 

Female 

232893 

(55.45) 

1885 

(30.05) 

231008 

(55.84) 

<.001 

  

N (Col 

%) 

Male 

187076 

(44.55) 

4388 

(69.95) 

182688 

(44.16) 

  

Alcohol intake 

frequency 

N (Col 

%) 

< 

3/week 

229898 

(54.74) 

3803 

(60.72) 

226095 

(54.69) 

<.001 



 

  

N (Col 

%) 

3/w or 

more 

189786 

(45.19) 

2460 

(39.28) 

187326 

(45.31) 

  

Diabetes 

N (Col 

%) 

No 

400966 

(95.48) 

4980 

(79.39) 

395986 

(95.72) 

<.001 

  

N (Col 

%) 

Yes 

18099 

(4.31) 

1252 

(19.96) 

16847 

(4.07) 

  

Age Mean   56.58 62 56.5 

<.001 

  Median   58 63 58 

  Min   38 40 38 

  Max   73 70 73 

  Std Dev   8.01 6.17 8 

  

BMI Mean   27.32 29.91 27.29 

<.001 

  Median   26.63 29.05 26.6 

  Min   12.12 16 12.12 

  Max   74.68 62.29 74.68 



 

  Std Dev   4.75 5.77 4.72 

  

TDI Mean   -1.56 -0.64 -1.57 

<.001 

  Median   -2.34 -1.53 -2.35 

  Min   -6.26 -6.26 -6.26 

  Max   10.88 10.45 10.88 

  Std Dev   2.93 3.36 2.92 

  

GRS(standardized) Mean   0 0.15 0 

<.001 

  Median   -0.02 0.13 -0.02 

  Min   -4.36 -3.02 -4.36 

  Max   5.6 4.26 5.6 

  Std Dev   1 1.01 1 

*Categorical variables are reported as N(%). Continuous variables are reported as mean, median, 

minimum, maximum and standard deviation. 

*GRS stands for genetic risk score, standardized to fit normal distribution N(0,1). 

*TDI stands for Townsend deprivation index at recruitment, which is an indicator for socioeconomic 

status. Higher TDI represents low socioeconomic status. 



 

Table 3. Odds Ratios of heart failure according to tercile genetic risk score on different smoking 

status 

Smoking status GRS group N Point Estimate (95%CI) p-Value 

Ever smoked 

High vs Intermediate 28411 1.292 (1.180, 1.414) <.0001 

High vs low 82456 1.742 (1.543, 1.966) <.0001 

Intermediate vs low 29867 1.348 (1.211, 1.501) <.0001 

Never smoked 

High vs Intermediate 53672 1.249 (1.145, 1.362) <.0001 

High vs low 156207 1.389 (1.244, 1.550) <.0001 

Intermediate vs low 57651 1.112 (1.011, 1.223) 0.0283 

*Tercile GRS: 0%-20% (Low), 20%-80%(Intermediate), 80%-100%(High) . 

*GRS stands for genetic risk score, standardized to fit normal distribution N(0,1). 

 

 

 

 

 

 



 

Table 4. Odds Ratios of heart failure according to tercile genetic risk score (ever smoked vs never 

smoked) HF-smoke 

Odds Ratio Estimates and Wald Confidence Intervals 

Odds Ratio Estimate 95% Confidence Limits p-Value 

High GRS (top 20%) 1.280 1.151 1.422 <.0001 

Intermediate GRS (20%-60%) 1.237 1.154 1.326 <.0001 

Low GRS (bottom 20%) 1.020 0.899 1.158 0.7544 

 

*GRS stands for genetic risk score, standardized to fit normal distribution N(0,1). 

 

 

 

 

 

 

 

 



 

Table 5. Summary of backward elimination logistic regression coefficient estimates and p-values 

Variable Model 1 Model 2 

  

Estimat

e 

95% CI p-value 

Estimat

e 

95% CI p-value 

Smoke 0.18 0.12 0.23 <.0001 0.18 0.12 0.23 <.0001 

GRS 0.06 -0.25 0.37 0.71 0.07 -0.19 0.34 0.59 

Age 0.11 0.10 0.11 <.0001 0.11 0.10 0.11 <.0001 

Sex 1.05 0.99 1.11 <.0001 1.05 0.99 1.11 <.0001 

BMI 0.07 0.07 0.08 <.0001 0.07 0.07 0.08 <.0001 

Alcohol -0.29 -0.35 -0.23 <.0001 -0.29 -0.35 -0.23 <.0001 

Diabetes 0.94 0.86 1.01 <.0001 0.94 0.86 1.01 <.0001 

TDI 0.08 0.08 0.09 <.0001 0.08 0.08 0.09 <.0001 

GRS*smoke 0.06 0.01 0.12 0.02 0.06 0.01 0.12 0.02 

GRS*Diabetes -0.05 -0.12 0.03 0.20 -0.04 -0.11 0.02 0.20 

GRS*Sex 0.02 -0.04 0.07 0.57 0.02 -0.04 0.07 0.57 

GRS*Age 0.00 0.00 0.01 0.71 0.00 0.00 0.01 0.72 

GRS*alcohol 0.01 -0.04 0.06 0.72 0.01 -0.04 0.06 0.73 



 

GRS*BMI 0.00 0.00 0.01 0.88         

Variable Model 3 Model 4 

  

Estimat

e 

95% CI p-value 

Estimat

e 

95% CI p-value 

Smoke 0.18 0.12 0.23 0.58 0.18 0.12 0.23 <.0001 

GRS 0.07 -0.19 0.34 <.0001 0.12 0.07 0.17 <.0001 

Age 0.11 0.10 0.11 <.0001 0.11 0.10 0.11 <.0001 

Sex 1.05 0.99 1.11 <.0001 1.05 0.99 1.11 <.0001 

BMI 0.07 0.07 0.08 <.0001 0.07 0.07 0.08 <.0001 

Alcohol -0.29 -0.34 -0.23 <.0001 -0.29 -0.34 -0.23 <.0001 

Diabetes 0.94 0.86 1.01 <.0001 0.94 0.86 1.01 <.0001 

TDI 0.08 0.08 0.09 0.02 0.08 0.08 0.09 <.0001 

GRS*smoke 0.06 0.01 0.12 0.72 0.06 0.01 0.12 0.01 

GRS*Diabetes -0.05 -0.11 0.02 0.20 -0.05 -0.11 0.02 0.19 

GRS*Sex 0.02 -0.04 0.07 0.19 0.02 -0.04 0.07 0.53 

GRS*Age 0.00 0.00 0.01 0.52 
   

  

GRS*alcohol   
  

  
   

  



 

GRS*BMI                 

Variable Model 5 Model 6 

  

Estimat

e 

95% CI p-value 

Estimat

e 

95% CI p-value 

Smoke 0.18 0.12 0.23 <.0001 0.18 0.12 0.23 <.0001 

GRS 0.13 0.10 0.17 <.0001 0.13 0.09 0.16 <.0001 

Age 0.11 0.10 0.11 <.0001 0.11 0.10 0.11 <.0001 

Sex 1.05 0.99 1.11 <.0001 1.05 0.99 1.11 <.0001 

BMI 0.07 0.07 0.08 <.0001 0.07 0.07 0.08 <.0001 

Alcohol -0.29 -0.34 -0.23 <.0001 -0.29 -0.34 -0.23 <.0001 

Diabetes 0.94 0.86 1.01 <.0001 0.93 0.86 1.00 <.0001 

TDI 0.08 0.08 0.09 <.0001 0.08 0.08 0.09 <.0001 

GRS*smoke 0.07 0.01 0.12 0.01 0.06 0.01 0.12 0.01 

GRS*Diabetes -0.04 -0.11 0.02 0.21 
   

  

GRS*Sex   
  

  
   

  

GRS*Age   
  

  
   

  

GRS*alcohol   
  

  
   

  



 

GRS*BMI                 

 

*TDI stands for Townsend deprivation index at recruitment, which is an indicator for socioeconomic 

status. Higher TDI represents low socioeconomic status. 

*GRS stands for genetic risk score, standardized to fit normal distribution N(0,1). 

 

 

 

 

 

  



 

Table 6. Analysis of Maximum Likelihood Estimates for single SNP or SNPSmoking interaction 

associated with prevalence of heart failure.  

rsid Estimate Std P-value Interaction term Estimate Std P-value 

rs11745324 -0.02 0.03 0.61 smoke*rs11745324 -0.01 0.05 0.89 

rs140570886 0.29 0.07 <.0001 smoke*rs140570886 0.18 0.14 0.20 

rs1556516 0.12 0.02 <.0001 smoke*rs1556516 0.05 0.04 0.20 

rs17042102 0.13 0.03 <.0001 smoke*rs17042102 0.01 0.06 0.84 

rs17617337 -0.11 0.02 <.0001 smoke*rs17617337 -0.09 0.05 0.04 

rs4135240 -0.07 0.02 0.00 smoke*rs4135240 -0.03 0.04 0.52 

rs4746140 -0.05 0.03 0.05 smoke*rs4746140 -0.04 0.05 0.46 

rs4766578 -0.04 0.02 0.02 smoke*rs4766578 -0.04 0.04 0.31 

rs55730499 0.15 0.03 <.0001 smoke*rs55730499 -0.05 0.07 0.42 

rs56094641 -0.02 0.02 0.42 smoke*rs56094641 0.01 0.04 0.89 

rs600038 0.10 0.02 <.0001 smoke*rs600038 0.07 0.05 0.10 

rs660240 0.09 0.02 <.0001 smoke*rs660240 0.01 0.05 0.77 

 

  



 

Figures 

Figure 1. Distribution of weighted genetic risk score  

 

  



 

Figure 2. Flow chart of sample selection from the UK Biobank study. 

 

*Heart Failure Cases: Non-cancer illness code, self-reported (1076,1079); Diagnosis -main/secondary 

ICD 10: I11.0, I13.0, I13.2, I25.5, I42.0, I42.5, I42.8, I42.9, I43.8, I50.0, I50.1, I50.9; Diagnosis -

main/secondary ICD 9: 4254, 4280, 4281, 4289. 
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Figure 3. OR (95%CI) of heart failure among different smoking status (ever-smoking vs never-

smoking) in GRS deciles 

 

* GRS values listed in the figure ranked from 10% to 90%. 

 

  



 

Figure 4. Predicted probabilities (95%CI) of developing heart failure among different smoking 

status (ever-smoking vs never-smoking)  

 

 

 

 


