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Abstract 

 
A county-level, ecologic analysis of correlations between recent tuberculosis 

transmission and socioeconomic indicators of poverty. 
 

By Kellan Burrell 
 
 

We sought to determine if recent transmission (RT) of tuberculosis (TB) was associated 
with socioeconomic or other ecologic factors. Identification of area-level factors 

associated with RT of TB disease could help better predict geographic areas at risk for 
TB outbreaks and allow investigators to better understand TB transmission. Ecologic 
analyses involving TB transmission have rarely been published in the past due to the 
difficulty of estimating RT. We used the plausible source-case method developed by 

France et al which integrates genetic, geographic, and epidemiologic data to determine 
if a case has a plausible source case. Data was pulled from the American Community 
Survey (ACS) tables as well as from the National Tuberculosis Surveillance System 

(NTSS) and logistic modeling was used to evaluate associations. Using this measure of 
RT, we found associations between poverty, black race, Hispanic ethnicity, and 

crowding. This study is the first study, to date, to use the plausible source-case method 
as a measure of RT to evaluate county-level factors and their association with estimated 
RT. Pediatric cases were underrepresented in this study as a consequence of the criteria 

within the plausible source case method and further research is needed to evaluate if 
inclusion of pediatric cases would change these associations. Further study using 

multilevel models that integrate area-level and patient-level characteristics would allow 
for even greater understanding of the associations between SES, demographics, and risk 

factors for RT of TB. Data sources for this study are regularly produced/updated and 
readily available for research which leads to this study being easy to repeat or modify in 

order to continual evaluate the associations between SES and RT at the county level. 
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Chapter 1: Background 

Tuberculosis (TB) History, Evolution, and Biology 

Tuberculosis disease is caused by members of the Mycobacterium tuberculosis complex 

(MTBC), which includes M. tuberculosis, M. bovis, M. caprae, M. pinnepedii, and M. 

africanum(1). M. tuberculosis is the most common form of TB in humans and most of the other 

members of the MTBC cause tuberculosis in both wild and domesticated animals (1). The 

exception being M. africanum which causes TB infection in humans in some regions of Africa. 

Infection with M. tuberculosis (Mtb) is still the primary source of TB cases in those regions with 

M. africanum only accounting for 38% of smear positive cases (2).  

TB disease originated in Africa nearly 70,000 years ago and has spread from Africa following 

human migration patterns (3). Evolutionary pressures caused the disease to develop to survive in 

low density populations through long latent periods (4). The introduction of agriculture and 

domestication of agricultural animals led to increased population density and selection of strains 

that were more virulent and transmissible (3).  

The bacteria itself is slow growing and possesses a strong cell membrane structure that is largely 

impermeable to drugs or extracellular compounds (1). The cellular membrane structure of Mtb is 

like other gram-negative bacteria with an asymmetric lipid bilayer with an outer layer composed 

of glycolipids and other waxy components and an inner layer of long fatty acids (1). Drugs that 

are effective in treatment of TB often target the synthesis of these cellular membrane 

components (1).  

The characteristic of Mtb that has allowed the bacteria to persist for so long despite control 

efforts is the ability of the bacteria to go dormant. When faced with an infection the body mounts 

an immune response utilizing both granulomas, a type of cellular quarantine, and macrophages to 
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eliminate infection by taking up bacterium and digesting them. TB bacteria can sense the 

environmental conditions both within granulomas and macrophages and trigger a response that 

causes the bacteria to go dormant (1, 5). This dormant state stops replication, slows cellular 

metabolism, and activates an anaerobic metabolic pathway in order to survive for a long period 

of time (1, 5). The drastic change in the specific cellular mechanisms between active TB and 

dormant TB (also known as latent TB) make it difficult to control the spread of the disease. An 

individual that has never shown symptoms of TB disease can have latent infection and live with 

the pathogen for many years before some event triggers activation of the latent infection. 

Active versus Latent TB Infection 

The distinction between active and latent TB infection is critical to public health practice (6). 

Latent Tuberculosis Infection (LTBI) is often monitored in certain populations that are at a high 

risk for activation of the infection. These groups can be HIV infected individuals, individuals 

from countries with high endemic TB prevalence, or healthcare workers just to name a few (7). 

Identifying individuals with LTBI allows clinicians to administer treatment before the patient 

presents symptoms of the disease and before they are infectious (8). This control method 

prevents active transmission of disease and outbreaks.  

Once an individual has progressed from LTBI to active disease the strategy for prevention 

becomes much more complicated and costly (9). It is estimated that ~10% of LTBI infections 

progress to active TB (10). However, control efforts must assume that every person in contact 

with a patient has contracted the disease (10). This means that a network of contacts is formed 

around each reported case of active TB and a contact investigation is carried out (12). These 

thorough and costly (13) investigations seek to identify any individual that had close contact with 

a TB patient and test them for the disease. A positive TB test for a contact adds them to the 
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transmission network and they are referred for treatment based on if they have either LTBI or 

active infection. The overall cost to control TB is lower if preventative screenings can identify 

LTBI before it progresses into an active and infectious form of disease (9).  

TB Control Strategy 

This unique transmission dynamic leads to a multi-faceted control effort by public health 

professionals. The most pressing and direct efforts are to identify all active TB cases and 

administer treatment to the sick individuals (14). After identification and treatment of infected 

individuals the next priority is to conduct contact investigations to identify any exposed 

individuals (14). After control of active cases and identification of contacts, the final strategy is 

to conduct targeted testing/screening to identify LTBI in at-risk groups and then refer those LTBI 

positive individuals for treatment (14). As national surveillance systems for TB grow and capture 

more cases of TB, it becomes difficult to identify which clusters of disease may be related to 

recent transmission of TB disease and which cases may be activation of LTBI, TB acquired 

elsewhere, or reactivation of previous disease (15). This distinction between active or previous 

TB is important because efforts need to be focused at controlling active TB to prevent outbreaks 

(15). 

Tuberculosis in the US and Abroad  

Tuberculosis incidence in the United States of America (US) has been declining for decades 

(16). The largest proportion, >80%, of TB burden in the US is TB acquired elsewhere or 

reactivation of latent TB (17). This is a difficult form of TB to control and a large portion of 

cases from reactivation or TB acquired elsewhere are individuals from high-risk groups (17). The 

most effective method of control for TB acquired elsewhere and LTBI is targeted testing of the 

groups with highest incidence of TB from these sources. However, there are ethical concerns 
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with targeted testing that inevitably targets immigrant populations and individuals with other 

chronic comorbidities (18). Targeted testing of some groups can be costly, logistically difficult, 

and perceived as discrimination (18). It may be desirable to attempt to refine TB control in the 

~20% of cases that come from recent transmission of active TB in scenarios where targeted 

testing to prevent reactivation is difficult. Previously it was difficult to monitor or control recent 

transmission of TB because of long latent periods (15). However, recent advances in TB 

genotyping have made it easier to identify transmission chains and the probability of TB cases 

being related to one another (15).  

TB Genotyping: MIRU-VNTR, Spoligotyping, TB GIMS 

The Centers for Disease Control and Prevention (CDC) established the National TB Genotyping 

System (NTGS) in 2004 to provide genotyping services to state and local programs (18).  Mtb 

Genotyping uses a hybridization assay called spacer oligonucleotide typing (spoligotyping) to 

detect variability in direct repeat region of the M. tuberculosis DNA (19). The region contains 

several copies of a 36-base-pair sequence separated by unique spacer sequences (19). These 

sequences vary between TB strains and can be used to identify the different strains. Variable 

number of tandem repeat (VNTR) typing is used in conjunction with spoligotyping to further 

refine genetic relationships between Mtb strains. VNTR typing focuses on candidate segments of 

the DNA segment called Mycobacterial Interspersed Repetitive Units (MIRUs) that contain 

tandem repeated sequences (19). The Mtb genome has a total of 41 MIRU loci but only 12 are 

selected for MIRU-VNTR typing (19). A TB case is assigned GENType designation based on 

the results of these two analyses (18). In 2010 the TB Genotyping Information Management 

System (TB GIMS) was launched as a secure, semi-automated, web-based system to track and 

monitor TB cases based on results of genotyping. This system, coupled with geospatial analysis 
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and algorithms built into TB GIMS, allows for outbreak detection based on patterns of TB cases 

with matching GENTypes (18). Currently the system identifies higher than expected 

concentrations of a TB GENType in a specific county compared to the national distribution of 

that genotype (18). A log-likelihood ratio (LLR) is calculated and the higher the ratio then the 

greater the possibility of a recent transmission event (18).  

These methods of genotyping only consider a small percentage of the TB genome. It is possible, 

especially in areas with endemic strains of TB, for cases to have the same GENType but not be 

related through any transmission links. Whole genome sequencing (WGS) covers most of the TB 

genome and can be more readily used to identify recent transmission via genetic similarity (20). 

Simply put, if two cases in the same geographic area have TB with only a small number of single 

nucleotide polymorphisms (SNPs) difference in the genetic material of the two cultures then it is 

highly unlikely that the two cases are unrelated. Automated methods of integrating this WGS 

analysis are still underway but the technology is currently used to make prioritization decision in 

outbreak response at CDC (20). Public health professionals are trying to refine meaningful SNP 

cutoffs for identifying RT and there are new technologies in development to automate some of 

the analysis of WGS data (20). New technology aims to refine the GENType procedure and 

create automatically generated ‘strains’ that are less likely to be unrelated than the GENType 

designations currently are. This new technology is whole-genome multi-locus sequence typing 

(wgMLST) and will be used in tandem with whole-genome SNP sequencing (wgSNP) (20). 

Either of these technologies should be used in conjunction with traditional epidemiologic data to 

identify clusters of closely related cases (20). 
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TB Genotyping technology and Recent Transmission 

Recent transmission is at the center of most TB control in the US. The importance of identifying 

recent transmission and the efforts taken to develop technology that aids in the identification of 

cases that may be related through transmission chains. The culmination of the efforts to automate 

identification of recent transmission was the development of the plausible source case method 

also known as the recent transmission (RT) algorithm (21). RT as defined by the plausible source 

case method will be considered separately from recent transmission as a concept for the 

remainder of this paper. Until development of the algorithm by France et al in 2015 there was a 

disconnect between genotype-based estimates of RT and field-based epidemiologic estimates of 

RT. A method integrating epidemiologic data and genotype-based approaches was developed. 

The approach used a set of criteria to determine whether a plausible-source case could be 

identified for each case in the study period. A plausible-source case must involve a respiratory 

form of TB in a patient over 4 years of age, be diagnosed within two years of the case under 

evaluation, resided in the same geographical area, and have the same RFLP pattern as the case 

under evaluation (21). In the event a plausible-source case was identified, each case was given 

the designation of attributable to RT (21). There were exclusion criteria placed on recent arrivals 

to the US even if a plausible-source case was identified (21). This method was tested against 

both field-validated methods as a gold standard and the current genotype-based methods for 

identifying RT.  

The RT algorithm proved to perform as well, if not slightly better, than either field-based 

methods or genotype-based methods alone and overcame limitations of previous RT estimation 

approaches (21). Most notably the RT algorithm doesn’t assume that the first case in a cluster is 

the source case for the rest of a cluster, which is a weakness of the n-1 methods used prior to 
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development of the algorithm that used RFLP patterns to draw transmission chains from the first 

case of a cluster by the reported date as a source case for all others (21). 

Applications of the RT algorithm 

One aspect of the utility of the RT algorithm is the ability to modify the algorithm based on study 

needs or the environment in which the algorithm is being applied (21). Since first being 

developed the RT algorithm has been refined and used to describe RT trends based on individual 

risk factors and demographics of TB cases within the US (22). The goal of understanding these 

factors is to identify populations at higher risk for RT and guide control efforts (22). These types 

of studies have been done in the past but only using genotypic clustering which is not always 

indicative of transmission links (23, 24). Yuen et al. used the plausible source case method to 

analyze data collected from US National Tuberculosis Surveillance System (NTSS) and NTGS 

(22). Data was pulled for all cases reported between January 2011 and December 2014 and the 

RT algorithm was applied (22). Social network analysis was used to group transmission clusters 

(22). Findings from the Yuen et al. study showed that RT does not follow incidence trends. Only 

9% of the variance in RT was explained by variation in incidence and five of the eight lowest 

incidence states had counties with more than 20% of cases being attributed to RT (22). These 

results illustrated the difference between high incidence areas with endemic strains of TB that 

present as isolated reactivation cases and areas where TB outbreaks occur in an otherwise low 

incidence environment. Individual-level characteristics most strongly associated with RT were 

less than or equal to 4 years of age (Prevalence Ratio (PR) = 5.1, 95% Confidence Interval (CI) 

4.4-6.0), American Indian/Alaskan Native race (PR = 6.4, 95% CI 5.1-8.0), and homelessness 

(PR = 5.7, 95% CI 5.1-6.3) (22). A surprising result was that non-US born individuals had a 

strong negative association with recent transmission (PR = 0.3, 95% CI 0.3-0.4) (22). Non-US 
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born individuals are a group that have shown a much higher than average incidence of TB 

disease. A protective effect of being non-US born on RT is further evidence of RT trends not 

following established trends in TB incidence. Overall 14% of genotyped cases in the US between 

2012-2014 were attributable to RT (22). This is lower than the 22% of cases that are clustered 

genotypically which supports claims that genotyped-based clustering alone is insufficient for 

accurately identifying RT (22). The Yuen et al study makes a compelling case for recent 

transmission being concentrated in US born populations and most TB in non-US born 

populations being associated with TB incidence in their country of origin (22).  

Ecologic Studies before development of the RT algorithm 

Genotyped-based clustering alone has been used in the past as a proxy measure for RT despite 

the inaccuracies of genotype-based clustering as a RT measure. Despite the poor performance of 

genotype-based methods alone, a study by Oren et al found associations with county-level 

socioeconomic status (SES) measures (23). The study used data from 2004-2008 in King 

County, Washington to draw conclusions about the relationship between tuberculosis 

transmission and socioeconomic status at the block group level (23). The study used 

socioeconomic positioning (SEP) scores as their block group level measure of SES and found 

that when considered in a multilevel model with individual characteristics, the effect of SEP at 

the block group level attenuated individual risk factors, making them have a smaller association 

with risk of genotypic clustering (23). However, this study used a method of genotypic clustering 

like the GENTyping procedure discussed earlier. This method of genotypic clustering is prone to 

overestimation of recent transmission and attributing cases to clusters when they may be 

genetically diverse using more thorough methods. This is especially true when considering small 

geographic areas like a single county where there may be endemic GENTypes that would, on the 
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surface, seem to cluster but are activation of latent disease and not recent transmission. Despite 

these limitations the study found that block group levels with lower SES exhibited greater odds 

of genotypic clustering (23).  

A study by Myers et al also evaluated the association of county level SES factors on recent 

transmission of TB (24). The study used pediatric cases as a proxy for recent transmission 

because nearly all clusters linked to a case of pediatric TB involve recent transmission. The long 

latent period for reactivation cases means that it is unlikely for a case of active TB in a pediatric 

patient to not be recent transmission from another active TB case in an adult. This method of 

categorizing cases as recent transmission results in a small number of false positives but misses 

many clusters of transmission that don’t include a pediatric case.  TB case data for 10 years 

between January 1, 1993 to December 31, 2002 were collected and geocoded for the analysis 

(24). There were 3208 cases of TB in the pediatric population during the years included in the 

study resulting in a crude incidence of 4.1 cases per 100,000 person-years. Incidence rates varied 

between census tracts from 0 to 230 per 100,000 person-years. The study found that census tracts 

with lower median incomes, more Black individuals, and census tracts with more non-US born 

individuals have more new tuberculosis transmission (24). We would expect similar results in a 

nationwide study using a more accurate measure of recent transmission if pediatric TB cases are 

a good proxy for recent transmission. However, there may be important characteristics of TB 

transmission in clusters without pediatric TB cases that aren’t captured by a study focusing on 

that subset of the population.  

The link between socioeconomic status (SES) and TB  

Socioeconomic status characteristics can be risk factors for many diseases, TB is no exception 

with transmission being linked to lower income groups (25). Olson et al in 2012 found 
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significant associations between education, crowding, income, and unemployment among US-

born individuals in a dataset comprised of all reported TB cases between 1996 and 2005 (26). 

The study also found that the associations with SES and TB rates are lower and only crowding 

and income are significantly associated (26). This difference may be due to the overall higher 

rates of TB in non-US born populations which results in observing a smaller association with 

SES and TB rates overall. The study concluded that TB rates in non-US born populations are 

influence more by the experiences individuals had in their country of origin than experiences in 

the US (26). This finding aligns with findings in previous studies that show higher rates of RT in 

US-born individuals than non-US born individuals (22, 27).  

Summary of TB recent transmission research to date 

There have been several studies that evaluated SES factors related to TB rates and transmission 

(23, 24, 25, 27) and few studies that have evaluated recent transmission of tuberculosis based 

either on SES factors or individual risk factors (22, 23, 24). Despite studies finding significant 

associations between several individual risk factors, SES factors, and RT/clustering of TB, there 

have been no studies to date that use the CDC RT algorithm to evaluate associations between 

area-based SES factors and transmission of TB. The RT algorithm has potential to provide more 

accurate estimates of the significance and magnitude of associations between TB transmission 

and area-based SES factors. This understanding can allow public health professionals to have 

better situational awareness of TB in the US as well as better describe outbreaks that happen 

outside of an area that has higher TB incidence.  
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Chapter 2: Introduction 

Tuberculosis (TB) prevention and control is centered around outbreak investigation and 

identification of ongoing recent transmission (RT) of TB. TB exists in three main forms in the 

US: active disease, latent disease, and TB acquired elsewhere. TB control often lumps latent TB 

and TB acquired elsewhere into one category of disease that is considered disease from 

reactivation. Most of the TB in the US is reactivation or TB acquired elsewhere and discerning 

cases of active TB from transmission that occurred years or even decades ago is critical for 

directing resources towards stopping active transmission (22). Therefore, the concept of 

identifying RT is important to control efforts. TB acquired elsewhere is difficult to prevent and 

control with targeted testing of high-risk groups being one of the only effective interventions for 

prevention. Active TB, on the other hand, can be controlled and managed via contact 

investigations, active case finding, and cluster investigation. These control methods, however, 

are costly and conducting contact investigations around cases that appear to be clustered but are 

in fact TB acquired elsewhere wastes precious resources. Understanding the factors both at the 

county and individual level that may increase risk of RT helps focus these resources. 

Trends in TB incidence are well-documented by publications like the annual reported 

tuberculosis in the United States document. However, findings from previous studies evaluating 

RT of TB in the United States (US) shows geographical heterogeneity and poor prediction by TB 

incidence (22). Heavy focus is placed on previously known risk factors for TB disease when 

conducting outbreak investigation and casual risk assessment for TB incidence, but these factors 

are not always correlated with the outbreaks in TB disease that we see occurring throughout the 

country. We seek to determine if RT is associated with socioeconomic or other ecologic factors. 
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Identification of factors associated with RT of TB disease could help better predict geographic 

areas at risk for TB outbreaks and allow investigators to better understand TB transmission. 

Ecologic analyses involving TB transmission have rarely been published due to the difficulty of 

estimating RT. Past studies have used either clustering of genotyped isolates (23) or pediatric 

cases (24) as indicators of RT. After these earlier studies, a more accurate and systematic method 

of attributing cases to RT nationwide have been developed (21). This new method accounts for 

some of the inaccuracies in genotype clustering as a method of identifying RT. Using pediatric 

cases as an indicator of RT avoids false negatives as it is well documented that pediatric TB is 

almost always due to direct transmission. However, transmission chains do not always contain a 

pediatric case and as such this method may miss a large proportion of RT clusters and under or 

over estimate the effect of ecologic factors. Genotyped-based clustering alone has been used in 

the past as a proxy measure for RT despite the inaccuracies of genotype-based clustering as a RT 

measure. Using strictly genotyping poses an entirely different set of limitations as we know that 

these methods alone do not correlate with RT (21) as accuracy of this method is largely 

dependent on the geographic unit and time windows over which a study is conducted. The 

approach to RT identification developed by the Division of TB Elimination (DTBE) at the 

Centers for Disease Control and Prevention (CDC) better accounts for some of these 

inconsistencies and allows better understanding of RT clusters and as such will be used as the 

method by which we define RT in this study.  

The plausible source case method used in this study to estimate RT involves comparison of 

reported TB cases within the US. The method compares each reported case of TB with all other 

cases that involved a respiratory form of TB diagnosed 2 years before or 3 months after the given 

case in an individual greater than 4 years of age. The plausible source case must have also 
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resided within a set geographic distance of the given case. Genetic data originally was integrated 

into the algorithm via comparison of RFLP patterns but since the development of the algorithm 

genetic data is integrated via inclusion of more advanced genotyping data. The refining of 

genotype-based methods for identification of RT clusters is critical for improving control efforts 

and WGS is a critical component that avoids some of the false positives associated with other 

methods. Automated integration of WGS data is still being developed but we do currently have 

more accurate methods for integrating genetic data than was available when some other studies 

have been conducted. The RT algorithm in the current state has been shown to be more effective 

in estimating RT than other methods in the past (21, 22).  

We hypothesize that there will be an association between RT as defined by the plausible source 

case method developed by France et al. and county-level factors such as income, employment, 

educational attainment, health insurance, crowded housing, and population density. These factors 

have been shown in previous literature (22-27) to be linked to TB transmission dynamics.  

Methods 

Data Sources and Data Cleaning 

This study utilized data from the National Tuberculosis Surveillance System (NTSS) and the 

Annual Communities Survey (ACS) produced each year by the Census Bureau. Data from NTSS 

included patient level data on county, state, county FIPS codes, count date, variables on RT 

status (generated using an updated version of the original RT algorithm [Figure 1]), status 

variable for if the case has been genotyped, zip code, and GENType. After assigning plausible 

source cases across TB GENType clusters, the resulting case pairs are grouped into transmission 

clusters using PROC OPNET in SAS 9.4. This PROC is a social network analysis procedure that 
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links cases into clusters. This procedure is carried out regularly by statisticians and 

epidemiologists in DTBE as a part of the procedure for generating the genotyping section of the 

division annual incidence report. As such, the variable identifying a case as attributable to recent 

transmission is readily available in NTSS data available for use by guest researchers following 

proposal to the analytic steering committee for approval. Data on age, alcohol use, HIV status, 

homelessness, injection and non-injection drug use, race/ethnicity, sex, and country of origin 

were also obtained for secondary analyses but were deemed unnecessary and excluded from the 

final analysis dataset. ACS 1-year estimates were originally used as census documentation 

suggests these estimates over 5-year estimates when using economic variables that may change 

significantly year to year. However, 5-year estimates were also pulled and difference in variance 

between the 1 and 5-year estimates was negligible. The 1-year ACS estimates included data from 

only 822 counties for most variables and even though the 822 counties aligned with the counties 

in the final analysis dataset (only ~2% of counties missing for any single variable in the final 

analysis) the decision was made to use the more complete 5-year estimates which contained data 

for over 3,000 counties. The 1-year ACS estimates contain fewer counties as there are response 

level requirements for the census to publish data for a county and those response requirements 

are not met for the 1-year estimates resulting in the exclusion of many small counties. This can 

be observed by the average county population estimates for the entire US being 90,000 less using 

the 5-year estimates than when using the 1-year estimates (Tables 1&2).  

The ACS data used in the analysis was pulled from 5 different subject tables. The tables and 

variables used are included in Table 3 together with the resulting variable names in the analysis 

dataset and descriptions of each data element.  
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Data was imported into SAS 9.4 for cleaning and analysis. SAS statements were used to pull 

two-digit state Federal Information Processing Standard (FIPS) codes to be concatenated with 3-

digit county FIPS codes from the NTSS dataset. FIPS codes were used as a standard way to 

identify county and state between NTSS and ACS data and to account for any possible 

inconsistencies in county/state coding between the two datasets.  NTSS data from 2015 – 2017 

was aggregated to the county level using PROC FREQ to generate counts of TB cases per 5-digit 

FIPS code area stratified by RT status. The resulting dataset were then merged, and a proportion 

of RT was calculated from counts of genotyped cases eligible to be assessed for RT 

(denominators) and counts of cases attributed to RT (numerators) in each county. Any county 

with less than 10 total genotyped cases eligible to be assessed for RT was excluded from the 

analysis. This cutoff was to prevent counties with low case counts from skewing the distribution 

of RT proportions. PROC UNIVARIATE was used to find the overall median of the resulting 

proportions and that median was used as a cutoff for establishing a county as above or below 

median RT. The decision to dichotomize RT was made in order to establish a method to 

designate counties as having a higher proportion of RT without making the decision arbitrary. In 

previous publications, specifically the DTBE annual report, the percentage RT used for a cutoff 

was 14%. This percentage, however, was an arbitrary cutoff and we desired a method for 

categorization that could be repeated and yield a similar dichotomization of data. An arbitrary 

cutoff would not be affected by overall changes in incidence and transmission which would 

prevent the cutoff from capturing the yearly changes in TB transmission dynamics within the 

US.  

ACS data from 2016 was pulled from the American Fact Finder advanced search tool. The data 

was imported to SAS 9.4, variables renamed, and then merged together before being merged 
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with the aggregated NTSS data. Data missingness was limited due to the standardization and 

completeness of both ACS and NTSS datasets.  

Modeling Strategy and Model Selection 

Logistic regression was used for all models in the analysis. The outcome event was coded as a 

county being above the median proportion RT and each predictor was first considered alone in a 

univariate model to get univariate associations (Table 4).  

The multivariate model selection process started with a fully parameterized model containing 44 

predictors which included every predictor listed in table 3 as well as interaction terms to account 

for effect modification based on combinations race/ethnicity, employment status, country of 

origin, and income. Many of the parameters could realistically be directly related so care was 

taken to do thorough collinearity diagnostics. Condition indices (CNI’s) and variance 

decomposition proportions (VDP’s) were generated using a collinearity diagnostics SAS macro. 

CNI’s greater than 30 with 2 or more VDP’s greater than 0.5 indicated collinearity issues. The 

fully parameterized model was assessed and after each generation of CNI’s and VDP’s the 

variable with the highest VDP was dropped (care was taken to retain a hierarchically well 

formulated model) and diagnostics were run again. This process was conducted iteratively until 

there was no longer a collinearity issue. The resulting model contained parameters for proportion 

Hispanic ethnicity, proportion Black race, proportion reporting Asian race, proportion non-US 

born, more than 1 occupant per room, proportion unemployed, proportion of individuals without 

health insurance, proportion of families below poverty level, and proportion of individuals with a 

bachelor’s degree or lower. Interaction assessment was conducted after collinearity assessment 

and no interaction terms were significant and as such were dropped from the model.  
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After reviewing results from the full multivariate model, we decided to construct a parsimonious 

model containing only the significant and borderline significant parameters. This model 

contained proportion of families below the poverty level, proportion reporting black race, 

proportion reporting Hispanic ethnicity, and the crowding variable. We used Hosmer and 

Lemeshow goodness of fit tests to evaluate fit there was no evidence for lack of fit in either the 

full or the reduced parsimonious model. We also looked at the ROC curve for each model and 

found that both models had c statistics over 0.7 indicating good models. Finally, to test if the 

dropped terms were significant to the predictive value of the model, we ran a likelihood ratio test 

and found that, with a large p-value of 0.3, the dropped terms were not significant to the overall 

model. We have reported both the full multivariate and the reduced parsimonious model, but 

final conclusions are made using the parsimonious model with 4 predictors.  

Each parameter in the model is a proportion or percentage of the population in a county reporting 

the parameter. Logistic regression produces parameter estimates that, when exponentiated, 

represent the change in odds based on a 1-unit increase in the predictor. This result is not 

intuitive to interpret and as such a unit change for each parameter was derived to better portray 

the results. The range of each parameter was split into quintiles. The quintile bin widths for 

parameters ranged from 8% to 20% except for proportion of households with more than 1 

occupant per room and the proportion unemployed which were 3% and 6.8% respectively. We 

decided that 10% was an acceptable unit change for all parameters in the 8 to 20% range and 

would be less confusing to present than a specific unit change for each parameter. This unit was 

too large for crowding and unemployment parameters so 5% was selected as a unit of change for 

those parameters. A unit’s statement was added to the logistic regression procedure in SAS 
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which automatically reported odds ratios and confidence intervals in the specified unit for each 

parameter. 

We attempted to stratify data by some measure of population density as there were concerns that 

the distributions of certain factors may differ significantly between urban and rural areas. 

However, none of the delineation measures we attempted to integrate were sufficient in splitting 

suburban areas from rural areas. This will be further addressed in the strengths/limitations 

section.  

Results 

Descriptive Statistics 

Table 1 and 2 contain simple descriptive statistics of included counties, counties above median 

RT, and counties below median RT compared to overall county-level factors are of interest in 

this study. The median proportion RT that resulted from our categorization was 9.1%. The 

resulting dataset contained 280 counties with more than 10 genotyped cases eligible to be 

assessed for RT with 140 being categorized as above median RT and 140 categorized as less than 

median RT.  We see that counties included in the study (counties with more than 10 genotyped 

cases eligible for assessment for RT) are larger, on average, than counties overall in the US. 

Furthermore, we see that counties with more RT are slightly more populated than those below 

median RT. We see a very different distribution of race/ethnicity in included counties than we 

see nationally and distribution of place of birth in included counties is different from the national 

distribution. We see almost 3 times as many non-US born individuals in included counties as we 

see nationwide. It should be noted, however, that the percentages represent the average 

proportion of individuals in each county reporting a certain parameter, not the distribution of TB 
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cases in the US which would show a majority non-US born instead of the ~14% in table 1 and 2. 

Unemployment is higher in included counties and higher among counties with more TB than in 

counties with below median RT. Income is higher in included counties compared to nationally 

although poverty is similar to national levels.  

Statistical testing for difference in means was not applied to data in table 1 and 2 as the estimates 

therein come from census survey data which has inherent variance and has already been 

subjected to statistical transformation. Applying statistical tests to this type of data was deemed 

inappropriate.  

Univariate Analyses 

Univariate analyses found significant associations between counties being above the median 

proportion RT and black race, crowding, unemployment, health insurance, education, and 

poverty. Poverty was the association with the greatest magnitude of effect in univariate analyses 

with an unadjusted odds ratio (OR = 5.0, 95% CI 2.79 – 8.98). Hispanic ethnicity, country of 

origin, and Asian race were not significantly associated with a county being above the median 

RT in univariate analyses.  

Multivariate Analyses 

Adjusted ORs (aORs) were attenuated when controlling for all other factors in the full 

multivariate analysis with poverty being the only statistically significant association (Table 4). It 

is worth noting that Hispanic ethnicity (aOR = 0.7, 95% CI 0.46 – 1.01) and black race (aOR = 

1.4, 95% CI 0.99 – 1.88) were marginally significant (p-value < 0.1) in the full multivariate 

model. Crowding, to a lesser extent, was also an interesting finding to the researchers in that the 
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aOR was 3.1 and the CI spans above 17 on the far-right tail even though the left tail is at 0.54. 

This result is not statistically significant but suggests crowding can possibly have a large effect 

on the odds of elevated RT.  

However, when we apply the parsimonious model to these data, we find that the exclusion of 

Asian race, proportion non-US born, proportion unemployed, and educational attainment results 

in significant associations with the remaining variables. Hispanic ethnicity (aOR = 0.7, 95% CI 

0.52 – 0.91) exhibits a protective effect on a county having more than the median proportion RT 

and counties with a higher proportion reporting Black race (aOR = 1.3, 95% CI 1.01 – 1.74) are 

30% more likely to have more than the median proportion RT.  Crowding (aOR = 6.2, 95% CI 

1.65 – 23.16) has the largest effect and the widest confidence interval which suggests a large 

amount of variability which could represent some counties having more crowding but less RT 

than would be expected. Poverty (aOR = 4.4, 95% CI 1.97 – 10.01) also has a large effect and 

this result aligns with a priori assumptions about RT of TB.  

Discussion 

We conducted one of the first studies, to date, evaluating associations between TB recent 

transmission and county-level SES factors. We found that, when controlling for race/ethnicity, 

and crowding counties with above median RT have 4.4 times the odds (95% CI1.96 – 10.01) of 

10% more families below the poverty level. We also found a protective effect of counties with 

more Hispanic individuals (aOR = 0.7, 95% CI 0.52 – 0.91). Black race had a significant effect 

(aOR = 1.3, 95% CI 1.01 – 1.74) and crowding had a large effect (aOR = 6.2, 95% CI 1.65 – 

23.16) and a CI that extended above 23.16 on the far-right tail. We saw, overall, attenuation of 

all factors when going from univariate models to the full multivariate model. This is consistent 



22 
 

with results in previous studies (23-27) that found factors together have a smaller effect than 

alone. Median income was dropped from the original model during collinearity assessment in 

favor of retaining poverty as a parameter. Poverty is coincident with various other TB risk 

factors as areas with a larger proportion of families below the poverty level can often have more 

uninsured, more minority populations, less access to health care, crowded housing, substance 

abuse, and homelessness. This concentration of risk factors can drive transmission of TB and 

delay identification of active TB cases as people don’t seek treatment until they have exposed 

many other individuals.  

Country of origin was controlled for in the full model analysis analysis which would indicate that 

poverty is a significant factor in TB transmission regardless of if the county has a high 

proportion of non-US born individuals or not. Individual level studies using the RT algorithm 

found that RT is more common in US-Born populations (22). These two findings together 

suggest that counties with large populations of poor, US-Born individuals may be at a higher risk 

overall for outbreaks of TB clusters resulting from RT. Hispanic ethnicity in the multivariate 

model resulted in a protective effect (aOR = 0.7, 95% CI 0.52 – 0.91) where in the univariate 

model we saw a null effect (OR = 1.0 95% CI 0.89 – 1.14). This may be due to controlling for 

counties with a large immigrant population in the multivariate analysis. Cases of TB among 

Hispanic individuals are often from genotypes endemic to Mexico and are present in US-Mexico 

border states. What may be captured in the protective effect from the multivariate model is the 

clustering of Hispanic TB cases in counties with large Hispanic populations where there is very 

little TB transmission. Hispanic ethnicity spreads throughout the US so the variable alone wasn’t 

enough to capture the effect of areas in border states where TB incidence is tied TB acquired in 

Mexico. Even among US-Born individuals in these border states TB incidence may not indicate 



23 
 

RT because of long term exposures to non-US born family members from Mexico. The DTBE 

annual report publishes maps showing the spread of RT throughout the US and we can see that 

there are only a few counties along the US-Mexico border that have high levels of RT which 

would support our hypothesis on the root cause of a protective effect of Hispanic ethnicity. 

However, this matter warrants further investigation to truly understand the factors involved in the 

protective effect. Black race is statistically significant at an alpha of 0.05 (aOR = 1.3, 95% CI 

1.01 – 1.74). This result demonstrates that there is some effect of the proportion of residents 

reporting black as their race in a county on RT. In the US Black race often goes hand in hand 

with these poor communities described earlier where risk factors concentrate and access to 

medical care is either scarce or too expensive to take advantage of. The association with crowded 

housing was significant in univariate analysis but is not statistically significant when controlling 

for other factors. However, the association is significant in the final parsimonious model where 

we drop country of origin along with several other factors. This possibly represents an interesting 

dichotomy of crowding in the US between immigrant populations and US-Born populations. 

Immigrant populations often are in crowded housing situations immediately after arrival and 

there are communities across the country where refugees and other immigrants get placed or 

migrate to after entering the country. Despite crowded housing in those areas, RT is not common 

because of the dynamics of recent arrivals being involved in a recent transmission chain. This 

means that many counties may have a high proportion of households with more than one 

occupant per room but not have above median RT because the immigrant populations living in 

crowded housing haven’t contributed RT cases to the numerator for that proportion. On the other 

hand, crowded housing among US-Born individuals often coincides with individual level TB risk 

factors like poverty and homelessness. Crowded housing in US-Born communities is also likely 
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long-term crowding compared to crowded housing in immigration hubs where the individuals 

often move into less crowded living situations once they are better established in the country or 

leave the country altogether. These two extremes could be what is driving this large confidence 

interval for crowded housing when controlling for other parameters such as country of origin. 

This result, nevertheless, should not be ignored as we can see that, despite the wide confidence 

interval, there is some link with RT and crowded housing that is drawing the interval up above 

17 and we see that in the final parsimonious model the association is significant. This study was 

effective in confirming the relationship between poverty and TB RT. We can clearly see the 

impact that county-level poverty has on RT and even a small 10% increase in county-level 

poverty can increase the odds of a county being above the median RT by over 4 times. The study 

is also readily repeatable which should enable future research to account for changes in the 

overall demographic or economic characteristics of the country and TB incidence in the country. 

Both data sources used for this study are regularly collected and available to researchers for 

analysis. This data availability is a strength that is not found in studies using data collected from 

clinical data or under special data use agreements that can’t necessarily be repeated on-demand 

year after year.  

There are several weaknesses to this study design, mostly with the nature of county-level 

ecologic data. The biggest weakness in this study is the inability to accurately account for the 

variation of both within county demographics and between county demographics. Counties 

within the US vary widely both geographically and demographically and this is difficult to 

control for given the data we have available. Urban counties have more variability in economic 

and demographic profiles than rural or suburban counties. One can see this in the through the 

elevated median income of included counties compared to national averages in table 2. Counties 
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in this study were mostly urban counties and a large portion of the dataset was comprised of 

counties surrounding large population centers. This type of environment means that even an 

outlier resistant measure of center like the median can be elevated as there is a large portion of 

very wealthy individuals in the population of urban counties while there are still an above 

average number of families living below the poverty level. This is often observed as an apparent 

lack of a middle class in urban areas where there is definite split between a large population of 

wealthy individuals and a large population of very poor individuals. This dynamic of economic 

status in urban counties is difficult to account. Beyond within county variation there is diversity 

across the nation between different counties. A county at the city center in Idaho, for example, is 

very different than a county at the city center in California. There are differences both in the 

economic profile and the geographic spread of counties across the country. Counties on the west 

coast and in the middle of the country tend to be larger and sprawl across large geographic areas 

resulting in extreme variability. Comparatively counties on the east coast are smaller and often 

more concentrated both in terms of population and demographic characteristics. The issue is 

really one of large diversity and variability in some areas of the country compared to limited 

diversity in other areas of the country. Ideally these factors could be controlled via matching or 

stratification, but the nature of the RT algorithm makes it difficult to apply at smaller geographic 

levels and there are limited ways to delineate county-level data into urban and suburban areas.  

The design of the study itself is a limitation in that we are only account for county-level ecologic 

factors and are dichotomizing an outcome for the sake of applying logistic regression. Logistic 

regression is a powerful tool for analysis and provides easy to interpret results with minimal 

room for misinterpretation. However, there is some criticism that dichotomization of the 

outcome is arbitrary and could cause some associations to be missed depending on which 
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counties fall just on one side of the cut point or the other. The reason this limitation is not 

addressed, and another methodology used, is because the main goal of this study and the 

question of importance is really a question of extremes. Tuberculosis control in the US, 

specifically outbreak response and control of RT, is focused on managing the large ongoing 

outbreaks of recent transmission. The comparison we are concerned with is between counties 

with little to no RT but incident cases of TB and counties with a very large proportion of RT 

among their incident cases. Dichotomization of the outcome is enough to capture that 

comparison. The natural next step for this study is to integrate individual level data into the 

county-level analysis via hierarchical modeling. Considering individual-level and county-level 

factors together will provide the most complete picture of TB RT in the US.  

Another future direction would be to attempt to account for the weakness of underrepresentation 

of pediatric cases in analyses using the RT algorithm. Accounting for this limitation may be as 

simple as adding any case under a certain age to the numerator of cases attributable to RT if they 

have not already been captured by field epidemiology linking cases or the algorithm. However, 

the issue of what age cut off to use and how adding these cases would affect the overall analysis 

needs to be evaluated. 
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Chapter 3: Summary 

In this paper we investigated associations between county-level socioeconomic factors and 

recent transmission of TB as defined by a CDC-developed plausible source case method known 

as the RT algorithm. This algorithm integrates epidemiologic data, clinical data, and genetic data 

to identify plausible source cases for every reported case of TB over a specified time frame. The 

algorithm is run regularly across the entirety of NTSS data and helps public health professionals 

better understand how TB cases are related.  

We used NTSS data and ACS 2016 5-year estimates of SES factors at the county-level to find 

associations between several SES factors and county-level RT above the median proportion RT 

in our study population. Poverty (aOR = 4.4, 95% CI 1.97 – 10.01), Hispanic ethnicity (aOR = 

0.7, 95% CI 0.52 – 0.91), and Black race (aOR = 1.3, 95% CI 1.01 – 1.74) were significantly 

associated with RT above or below the median proportion RT.  

Crowded housing was expected to be associated with RT of TB and was significant in univariate 

analysis, but the full multivariate model showed no statistically significant association with a p-

value of 0.20. The final parsimonious multivariate model resulted in a significant association 

between crowding and median proportion RT (aOR = 6.2, 95% CI 1.65 – 23.16). Previous 

research has provided a possible explanation of the very wide confidence interval in the full 

multivariate analysis (95% CI 0.56 – 17.21) by describing an anomaly in crowded housing where 

immigrant populations often live in crowded housing but don’t contribute to elevated recent 

transmission.  

Public Health Implications 

TB control in the US is currently a multi-pronged approach. We described how TB control 

focuses on active TB transmission as well as identification and treatment of latent disease. 
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Identification of latent disease involves describing populations at a higher risk for latent infection 

and then targeting testing in those risk groups. However, we have seen that TB risk groups for 

LTBI do not align with groups at risk transmission of active, recently acquired disease. This 

study takes a step to further describe the populations or environments where recent transmission 

of active TB is taking place. This knowledge can help focus control efforts and strengthen cluster 

assessment and outbreak response.  

We also described the cost of active versus latent TB and how contact investigations around 

active cases of TB account for a large portion of the budget and manpower of state and local TB 

partners. The heterogeneity of RT and independence of RT from incidence trends means that 

unexpected outbreaks can occur in low incidence states and counties. Funding for TB control 

programs is largely linked to incidence measures and as such may be insufficient to fund 

outbreak response in low incidence states and counties. This research helps public health 

professionals better understand how RT occurs independent of incidence and may lead to further 

studies that could better anticipate outbreaks in areas otherwise untouched by TB.  

The percent decrease year to year in TB incidence in the US has started to plateau as we reach 

what may be an endemic level of TB incidence that can’t easily be reduced. A large amount of 

TB transmission in the US is among immigrant populations that acquired TB elsewhere and 

became active cases after immigration. These cases have no readily identifiable plausible source 

case and other than screening all immigrants entering the country for LTBI it is difficult to 

completely prevent these cases. However, we can reduce the incidence of cases resulting from 

recent transmission of active TB by strengthening our TB control programs. This research 

provides understanding that is pivotal to informing local, state, and federal TB control 

professionals about the specific environments that increase odds of recent transmission.  
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Possible Future Directions 

The next step for this project is to refine the model and explore other distributions and 

categorizations of RT as an outcome. Work will continue and new models and distributions will 

be integrated into the analysis. A large part of the continuing research on this topic will be the 

development of a multilevel/hierarchical model that integrates the patient level surveillance data 

with these county-level counts and proportions.  

Pediatric cases will be better represented in future analyses as the final goal is to provide as 

complete a picture of TB recent transmission in the US as possible. There are numerous ways to 

include pediatric cases and different approaches from simply adding cases that meet a certain 

criterion all the way to modifying the plausible source case method need to be explored.  

Future studies should also attempt to control for the diversity in counties and between counties. 

We described, at length, the issues with the current analysis and county-level diversity. This 

limitation may not be able to be addressed without accessing other datasets or conducting a more 

in-depth study that utilizes more robust datasets than the surveillance datasets we used in the 

analysis.  

We believe there is potential for this research to be integrated into regular surveillance if the 

models are further developed and find even more informative results. All data used in these 

analyses are regularly collected and reported in a clean and standardized format. Minimal work 

would be required to regularly reproduce updated estimates of these area-level associations with 

RT and looking at these associations regularly may provide a better understanding of 

transmission dynamics and how RT changes over time.  
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Table 1. County-Level Census Measures from 1-Year Estimates 

Characteristic Included Counties Above Median RT Below Median RT Overall United States 

Population Est1 STDEV2 Est STDEV Est STDEV Est STDEV 

2016 ACS Estimate 711302 891526 805093 
115648

8 
622102 517767 191756 460507 

Race/Ethnicity3 Mean% STDEV Mean% STDEV Mean% STDEV Mean% STDEV 

White 68.3 15.4 64.1 17.0 72.4 12.4 78.2 15.1 
Black  16.2 14.4 20.1 16.3 12.5 11.1 11.0 12.5 
Asian 5.9 6.1 6.1 7.5 5.8 4.5 11.7 13.5 
Hispanic 18.5 17.3 19.3 19.5 17.7 15.0 3.4 4.4 

Place of Birth %  %  %  %  

Non-US Born 14.3 9.1 14.4 10.5 14.2 7.5 8.2 7.3 

Occupants Per 
Room 

%  %  %  %  

More than 1 3.5 2.6 3.9 2.9 3.1 2.2 3.0 2.2 

Employment %  %  %  %  

Unemployed 3.7 1.0 3.8 1.0 3.6 0.9 3.5 1.1 
Employed 60.1 5.7 59.1 5.8 61.1 5.5 58.4 6.5 

Income USD ($)  USD ($)  USD ($)  USD ($)  

Median Income 62153 17675 57108 15568 67014 18267 58111 15303 

Health Insurance %  %  %  %  

insurance 85.7 9.1 85.6 10.5 85.8 7.5 91.8 7.3 

no insurance 8.7 4.3 9.7 4.7 7.8 3.7 8.0 4.0 

Proportion of 
Families below 
poverty level 

10.3 4.8 11.8 5.0 8.8 4.0 9.6 4.5 

Educational 
Attainment 

%  %  %  %  

Proportion 
Bachelors or Higher 

33.8 10.9 31.6 10.6 35.9 10.9 29.3 10.5 

Proportion High 
School Graduate 

87.8 5.6 86.4 5.9 89.2 5.0 88.6 5.0 

1 Estimate (Est) of the mean population for counties in each subset based on 2016 ACS data 
2 STDEV = Standard Deviation of the Mean 
3 Proportion of population reporting each race alone or in combination with one or more other races 
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Table 2. County-Level Census Measures from 5-Year Estimates 

Characteristic 
Included 
Counties 

Above Median RT Below Median RT 
Overall United 

States 

Population  Est1 STDEV2 Est STDEV Est STDEV Est STDEV 

2016 ACS 
Estimate 

711302 891526 805093 1156488 622102 517767 102930 331151 

Race/Ethnicity3 Mean% STDEV Mean% STDEV Mean% STDEV Mean% STDEV 

White 68.9 16.1 64.0 18.1 73.6 12.2 83.4 16.8 
Black  16.0 14.7 20.3 16.7 12.0 11.0 9.0 14.5 
Asian 5.5 5.9 5.4 6.8 5.7 4.9 1.3 2.7 
Hispanic 18.8 19.0 19.0 20.5 18.6 17.5 8.9 13.6 

Place of Birth %  %  %  %  

US Born 86.0 9.0 86.2 10.4 85.8 7.5 95.4 5.7 

Non-US Born 14.0 9.0 13.8 10.4 14.2 7.5 4.6 5.7 

Occupants Per 
Room 

%  %  %  %  

More than 1 3.7 3.6 4.3 4.6 3.2 2.3 2.4 2.4 

Employment %  %  %  %  

Unemployed 4.8 1.3 5.1 1.4 4.6 1.1 4.0 1.7 
Employed 59.0 6.2 57.6 6.4 60.3 5.6 54.5 8.4 

Income USD ($)  USD ($)  USD ($)  USD ($)  

Median Income 59008 16878 53642 13930 64111 17872 47973 12606 

Health Insurance %  %  %  %  

Insurance 87.9 5.2 86.6 5.4 89.1 4.8 87.7 5.3 
No Insurance 12.1 5.2 13.4 5.4 10.9 4.8 12.3 5.3 

Proportion of 
Families below 
poverty level 

11.6 5.3 13.5 5.6 9.8 4.3 12.0 5.8 

Educational 
Attainment 

%  %  %  %  

Proportion 
Bachelors or 
Higher 

32.3 11.0 29.9 10.5 34.5 11.1 20.8 9.1 

Proportion High 
School Graduate 

86.8 6.7 85.3 6.8 88.3 6.2 85.8 6.5 

1 Estimate (Est) of the mean population for counties in each subset based on 2016 ACS data 
2 STDEV = Standard Deviation of the Mean 
3 Proportion of population reporting each race alone or in combination with one or more other races 
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Table 3. Data Sources and Variable Names 

Variable Name Data Source Name in Source Notes 

Income ACS_16_5YR_DP03 HC01_VC85 
Median household 
income 

Employed ACS_16_5YR_DP03 HC03_VC06 
Percent over 16yo in 
Labor Force, Employed 

Unemployed ACS_16_5YR_DP03 HC03_VC07 
Percent over 16yo in 
Labor Force, 
Unemployed 

Insured ACS_16_5YR_DP03 HC03_VC131 
Percent Civilian 
Population with Health 
Insurance  

Uninsured ACS_16_5YR_DP03 HC03_VC134 
Percent Civilian 
Population without 
Health Insurance 

Poverty ACS_16_5YR_DP03 HC03_VC161 
Percent of Families 
Below Poverty Line in 
the last 12 months 

US-Born ACS_16_5YR_DP02 HC03_VC131 Percent US Born 

Non-US Born ACS_16_5YR_DP02 HC03_VC136 Percent Non-US Born 

White ACS_16_5YR_DP05 HC03_VC49 
Percent Reporting 
White Race 

Black ACS_16_5YR_DP05 HC03_VC50 
Percent Reporting 
Black Race 

Asian ACS_16_5YR_DP05 HC03_VC56 
Percent Reporting 
Asian Race 

Hispanic ACS_16_5YR_DP05 HC03_VC88 
Percent Reporting 
Hispanic Ethnicity 

High School Graduate or Higher ACS_16_5YR_S1501 HC02_EST_VC17 
Percent High School 
Graduate or Higher 

Bachelor’s Degree or Higher ACS_16_5YR_S1501 HC02_EST_VC18 
Percent Bachelor’s 
Degree or Higher 

Crowding ACS_16_5YR_B25014 
Sum 
HD01_VD05, 
06,07,11,12,13 

Percentage of 
households with 1.01 
occupants or more per 
room 
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Table 4. County-Level Census Measures1  

Predictor 
Above Median RT,                  

unadjusted univariate 
Above Median RT,              

adjusted multivariate 
Above Median RT,                

multivariate parsimonious 

Race/Ethnicity2 OR3 95% CI P aOR3 95% CI P aOR3 95% CI 

Hispanic 1 0.89-1.14 0.864 0.7 0.46-1.01 0.058 0.7 0.52-0.91 
Black  1.5 1.28-2.89 <0.001 1.4 0.99-1.88 0.061 1.3 1.01-1.74 
Asian 0.9 0.62-1.38 0.698 1.6 0.74-3.46 0.229 - - 

Place of Birth                 

Non-US Born 1 0.73-1.24 0.707 1.1 0.59-2.21 0.687 - - 

SES                  

More than 1 
Occupant per 
Room 

2.2 1.15-4.14 0.018 3.1 
0.54-
17.21 

0.206 6.2 1.65-23.16 

Unemployed 2.6 1.40-4.76 0.002 0.5 0.16-1.33 0.152 - - 
Proportion 
without Health 
Insurance 

2.8 1.66-4.74 <0.001 1.7 0.65-4.42 0.3 - - 

Proportion 
Below Poverty 
Level 

5 2.79-8.98 <0.001 5.5 
1.74-
17.29 

0.004 4.4 1.96-10.01 

Proportion Less 
Than Bachelor's 

0.7 0.53-0.84 <0.001 0.8 0.54-1.25 0.369 - - 

1 Characteristics from 2016 ACS 5-Year Estimates 
2 Proportion of population reporting each race alone or in combination with one or more other races 
3 Odds ratio represents a 10 percent change in each predictor except for unemployment and more than 1 occupant per 
room which represent 5 percent changes 
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