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Abstract

Inferring transmission dynamics through patterns of genetic variation
By Yeongseon Park

For a rapidly evolving population, the pattern of genetic variation is shaped by
evolutionary processes and population dynamics, providing a window to understand
the underlying dynamics. In the context of infectious disease dynamics, a rapidly
increasing number of pathogen genome sequences complements case-based inferences,
allowing a better understanding of transmission dynamics. For more robust and reliable
genome-based inference, this thesis attempts to further understand genome-based
approaches, especially during the early spread of newly emerged viruses. In particular,
this thesis focuses on considerations and challenges of phylodynamic inferences during
the early spread of newly emerged viruses or variants. I first propose a novel approach to
circumvent the phylogenetic uncertainty due to the low level of genetic variation during
early spread. Then, I examine the misspecification of generation interval distribution
for the early exponential growth phase. Next, I investigate the non-randomness in the
dataset from the over-representation of epidemiological clusters, which could intensify
when there are fewer sequences available, such as in early outbreaks. Lastly, I revisit
the relationship between transmission trees and phylogenies by reviewing the inference
approaches that infer transmission trees from phylogenetic trees. Together, this thesis
aims to advance our understanding of important considerations in phylodynamic
analyses and provides insights for improved implementation and interpretation of
these methodologies.
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Chapter 1

Introduction

The fate of genetic variation introduced into a population through mutation is shaped

by various evolutionary processes. These processes leave signatures on patterns of

genetic variation across the genome sequences of the population’s individuals. By

analyzing these patterns of genetic variation, we can infer the evolutionary processes

that shaped the population. This pattern of genetic variation can further be used

to reconstruct the evolutionary relationship between samples as a phylogeny. In a

phylogeny, each sample is located at the tip of the tree, and common ancestors are

represented at the inner nodes. The branch length indicates the evolutionary distances

between individuals, calculated based on sequence evolution models.

For rapidly evolving populations, including RNA viruses, the time scale of these

evolutionary processes can overlap with their population dynamic processes. This

leads to potential interactions that leave detectable signatures in the pattern of genetic

variation, which enables inference of their evolutionary and population dynamics

history. If the accumulation of mutations can be significantly fast, it is considered as

“measurably evolving.” To address the temporal structure in the sampled sequences,

samples from these measurably evolving populations are often analyzed using phylogeny.

The field of phylodynamics aims to identify the processes responsible for generating

1
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observed or reconstructed phylogenies, which represent the evolutionary relationships

between sampled genome sequences.

If a population is measurably evolving and sampling times are known, we can

calculate the rate of molecular evolution based on the ’molecular clock.’ The molecular

evolution rate of this clock enables the conversion of branch lengths in the reconstructed

phylogeny into calendar time based on the sampling time. The resulting time-resolved

tree provides insights into the timing of events, such as the branching of a lineage. In

the context of infectious disease, these branching events and tip dates correspond to

infection events and sampling times of infected individuals.

In the epidemiological context, a time-resolved phylogeny serves as a proxy for

a partially observed transmission tree. Population dynamic models describe the

mechanisms that generate transmission trees, and phylodynamic inferences rely on

these models to estimate parameters of interest. Phylodynamic inference primarily

relies on two major classes of population dynamic models: coalescent and birth-death

models. Under coalescent models, trees are characterized as the coalescent events

of existing lineages backward in time (Stadler et al., 2024). On the other hand,

birth-death models characterize trees through the birth and death of lineages forward

in time. Using these population dynamic models, phylodynamic approaches infer the

parameters that govern the underlying dynamics of the sampled population.

In the context of infectious diseases, phylodynamics has been used to infer the

transmission dynamics of infectious diseases. It has been used to infer key quantities

in public health, including the reproduction number, which is the expected number

of secondary infections from a single infected individual and epidemic growth rate.

This makes genome sequences a valuable source of information that complements

traditional case data for public health-related decision-making, such as planning and

evaluating the nonpharmaceutical intervention or the effectiveness of the vaccination.

As such, the importance of more robust and reliable genome-based inference is growing.



3

In this regard, this thesis aimed to further understanding of genome-based approaches

for more robust and reliable genome-based inference. In particular, this thesis will

focus on considerations and challenges of phylodynamic inferences during the early

spread of newly emerged viruses or variants.

In the context of infectious diseases, phylodynamics has been widely used to

infer transmission dynamics and estimate key public health quantities, such as the

reproduction number, which is the expected number of secondary infections caused

by a single infected individual, and the epidemic growth rate. This makes viral

genome sequences a valuable source of information that complements traditional case

data for public health decision-making, including the planning and evaluation of

nonpharmaceutical interventions and vaccination strategies. As the role of genomic

data is gaining importance, robust and reliable genome-based inference becomes

increasingly important. In this context, this thesis contributes to advancing genome-

based phylodynamic inference by examining current methods and proposing a new

approach to address key challenges during early viral spread. Specifically, it focuses

on the considerations and challenges involved in conducting phylodynamic inference

during the early spread of newly emerged viruses or variants.

Chapter 2 focuses on the low level of genetic variation in the samples. Since

the reconstruction of phylogenies relies on genetic variation in the sampled genome

sequences, insufficient genetic diversity can lead to uncertainty in phylogenetic re-

construction (Boskova et al., 2018), manifesting as unresolved relationships between

samples (Maddison, 1989). This concern is particularly relevant for pathogens with rel-

atively low mutation rates, such as SARS-CoV-2 (Markov et al., 2023). Consequently,

especially during early spread, integrating phylogenetic uncertainty becomes crucial.

This integration can be achieved through Bayesian approaches that explore the tree

space rather than considering a single given tree (Boskova et al., 2018; Park et al.,

2023). However, such integration becomes computationally intensive under substantial
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uncertainty (Park et al., 2023). Moreover, even when phylogenetic uncertainty is inte-

grated, low levels of genetic variation may still yield unreliable phylodynamic estimates

(Lam and Duchene, 2021). The impact of low genetic diversity is more pronounced in

inferences based on coalescent models, as they do not utilize sequence data sampling

time as an additional information source (Boskova et al., 2018). Furthermore, the

reconstruction of phylogenies relies on models describing sequence evolution, and these

additional parameters must be estimated alongside epidemiological parameters from

limited sequence data (Park et al., 2023). To circumvent the need to reconstruct a phy-

logenetic tree, Chapter 2 presents a novel tree-free approach to infer epidemiological

parameters using the time-series of the number of segregating sites.

In Chapter 3, systematic biases introduced by violation of model assumptions

are investigated. As in any inference approach, violation of assumptions can introduce

biases in phylodynamic analyses. A well-known example is the misspecification of

the sampling process in the birth-death model (Volz and Frost, 2014). However, even

when it is not explicitly stated in the model, there are assumptions that are shaped

by model components. These implicit assumptions may also introduce bias when

misspecified. Chapter 3 focuses on the implicit assumptions in tree models regarding

the generation interval distribution and investigates the impact of generation interval

misspecification on phylodynamic analyses.

Next, Chapter 4 focuses on the non-randomness in sequence dataset in phylo-

dynamic analyses. The importance of addressing sampling effort in phylodynamic

inferences was pointed out early by Frost et al. (2015). Although representative

sampling is ideal, real-world sampling varies spatially and temporally. Additionally,

sequence data may include epidemiologically clustered sequences. In particular, focus-

ing on the dataset with epidemiologically clustered sequences, Chapter 4 examines

the bias introduced by the clustered sequences and evaluates summary statistics that

could be used to identify the non-randomness in sequence datasets.
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Finally, Chapter 5 revisits the relationship between the phylogeny and transmis-

sion tree. Often, the phylodynamic inferences consider phylogeny to be a proxy for

the partially observed transmission tree. Yet, these two structures are conceptually

distinct, as recognized in earlier work. Focusing on the scale of ‘who-infected-whom,’

Chapter 5 reviews historical approaches to inferring transmission histories from

phylogenies. It then analyzes existing methods based on their underlying assumptions,

data requirements, and methodologies. The chapter concludes by suggesting that

the choice of approach should be guided by available data characteristics and that

systematic comparisons are needed to better inform users.
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Chapter 2

Epidemiological inference for

emerging viruses using segregating

sites

The following Article was published in Nature Communications in May 2023. Our goal

was to develop a novel tree-free inference approach to estimate key epidemiological

parameters from viral sequence data. We show that the trajectory of a number

of segregating sites, which summarizes the level of genetic variation over time, is

informative of the underlying epidemiological dynamics. We then developed an

inference approach to infer the basic reproduction number and the timing of the index

case based on the trajectory of the segregating sites. We verified the approach using

simulated datasets and applied it to the SARS-CoV-2 sequences sampled from France

from late 2019 to early 2020.

2.1 Contribution to the published work

Conceptualization, Methodology, Software, Validation, Formal analysis (Figure 1-3A,

4-5A, 7-9, Figure S1-S7, S8A-B, S10-S12), Investigation (Figure 1-3A, 4-5A, 7-9, Figure

8
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S1-S7, S8A-B, S10-S12), Writing, Visualization (Figure 1-3A, 4-5A, 7-9, Figure S1-S7,

S8A-B, S10-S12).

2.2 Published manuscript

Reproduced with permission from Springer Nature.



Article https://doi.org/10.1038/s41467-023-38809-7

Epidemiological inference for emerging
viruses using segregating sites

Yeongseon Park 1, Michael A. Martin 1,4 & Katia Koelle 2,3

Epidemiologicalmodels are commonly fit to case and pathogen sequence data
to estimate parameters and to infer unobserved disease dynamics. Here, we
present an inference approach based on sequence data that is well suited for
model fitting early on during the expansion of a viral lineage. Our approach
relies on a trajectory of segregating sites to infer epidemiological parameters
within a Sequential Monte Carlo framework. Using simulated data, we first
show that our approach accurately recovers key epidemiological quantities
under a single-introduction scenario. We then apply our approach to SARS-
CoV-2 sequence data from France, estimating a basic reproduction number of
approximately 2.3-2.7 under an epidemiologicalmodel that allows formultiple
introductions. Our approach presented here indicates that inference approa-
ches that rely on simple population genetic summary statistics can be infor-
mative of epidemiological parameters and can be used for reconstructing
infectious disease dynamics during the early expansion of a viral lineage.

Phylodynamic inference methods use pathogen sequence data to
estimate epidemiological quantities such as the basic reproduction
number and to reconstruct epidemiological patterns of incidence and
prevalence. These inference methods have been applied to sequence
data across a broad range of RNA viruses, including HIV1–4, Ebola
virus5–7, dengue viruses8, influenza viruses9, and most recently severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)10–12. Most
commonly, phylodynamic inference methods rely on underlying coa-
lescent models or birth-death models. Coalescent-based approaches
have been generalized to accommodate time-varying population sizes
and structured epidemiological models, for example, susceptible-
exposed-infected-recovered (SEIR) models and models with spatial
subdivision6, 13. Birth-death approaches14,15, where a birth in the context
of infectious diseases corresponds to a new infection and death cor-
responds to a recovery from infection, carry advantages such as cap-
turing the role of demographic stochasticity in disease dynamics,
which may be particularly important in emerging diseases that start
with low infection numbers16. Birth-death approaches have also been
expanded to incorporate the complex nature of infectious disease
dynamics including structured populations17. Both coalescent-based
and birth-death phylodynamic inference approaches rely on time-

resolved phylogenies and have been incorporated into the phyloge-
netics software packages BEAST118 and BEAST219 to allow for joint
estimation of epidemiological parameters and dynamics while inte-
grating over phylogenetic uncertainty6,20. Integrating over phyloge-
netic uncertainty is crucial when applying these methods to viral
sequencedata that are sampledover a shortperiodof timeand contain
only low levels of genetic diversity. However, integrating over phylo-
genetic uncertainty can be computationally intensive. Moreover,
phylodynamic approaches that use reconstructed trees for inference
require estimation of parameters associated with models of sequence
evolution, along with parameters that are of more immediate epide-
miological interest.

Here, we present an alternative sequence-based statistical infer-
ence method that may be particularly useful when viral sequences are
sampled over short time periods and when phylogenetic uncertainty
present in time-resolved viral phylogenies is considerable. Instead of
relying on viral phylogenies to infer epidemiological parameters or to
reconstruct patterns of viral spread, the “tree-free” method we pro-
pose here fits epidemiological models to time series of the number of
segregating sites (that is, the number ofpolymorphic sites) present in a
sampled viral population. The approach we propose here allows for
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structured infectious disease models to be considered in a straight-
forward “plug-and-play” manner. It also incorporates the effect that
demographic noise has on epidemiological dynamics. Below, we first
describe how segregating site trajectories are calculated using
sequence data and how they are impacted by sampling effort, rates of
viral spread, and transmission heterogeneity. We then describe our
proposed statistical inferencemethodand apply it to simulateddata to
demonstrate the ability of this method to infer epidemiological para-
meters and to reconstruct unobserved epidemiological dynamics.
Finally, we apply our segregating sites method to SARS-CoV-2
sequence data from France, arriving at quantitatively similar para-
meter estimates to those arrived at using epidemiological data.

Results
Segregating site trajectories are informative of epidemiological
dynamics
The number of segregating sites present in a set of sampled viral
sequences is defined as the number of nucleotide sites at which
genetic variation is present in the sample set. To determine whether
the number of segregating sites that are observed over time in a viral
population may be informative of underlying epidemiological
dynamics, we forward-simulated a classic susceptible-exposed-
infected-recovered (SEIR) epidemiological model, augmented with
viral evolution, under various sampling efforts and parameterizations
(Fig. 1; Methods). Simulations of this augmented SEIR model, initi-
alized with a single infected individual, first indicate that segregating
site trajectories are sensitive to sampling effort, as expected (Fig. 1a, b).
More specifically, we considered three different sampling strategies,
each with sequences binned in consecutive, nonoverlapping 4-day
time windows to calculate segregating site trajectories. These three
sampling strategies consisted of a strategywith full sampling effort (all
sequences per 4-day time window), one with dense sampling effort

(40 sequences per 4-day time window) and one with sparse sampling
effort (20 sequences per 4-day time window). With all three of these
sampling efforts, the number of segregating sites first increases as the
epidemic grows, with mutations accumulating in the virus population.
Following the peak of the epidemic, the number of segregating sites
starts to decline as viral sublineages die out, reducing the amount of
genetic variation present in the viral population. A comparison
between full, dense, and sparse sampling efforts indicates that low-
ering sampling effort results in a lower number of observed segre-
gating sites during any timewindow. This is because at lower sampling
effort, less of the genetic variation present in a viral population over a
given time window is likely to be sampled. The patterns shown here
across sampling strategies are robust to the time window length used
for the calculation of segregating site trajectories (Figure S1).

To assess whether segregating site trajectories could be used for
statistical inference, we first considered whether these trajectories
differed between epidemics governed by different basic reproduction
numbers (R0 values). Figure 1c shows simulations of the SEIR model
under two parameterizations of the basic reproduction number: an R0

of 1.6, corresponding to the simulation shown in Fig. 1a, and ahigherR0

of 2.0 (implemented via a higher transmission rate β). The epidemic
with the higherR0 expandedmore rapidly (Fig. 1c) and, under the same
sampling effort, resulted in a more rapid increase in the number of
segregating sites (Fig. 1d). This indicates that segregating site trajec-
tories can be informative of R0 early on in an epidemic.

We next considered the effect of transmission heterogeneity on
segregating site trajectories. Many viral pathogens are characterized
by ‘superspreading’ dynamics, where a relatively small proportion of
infected individuals are responsible for a large proportion of second-
ary infections21. The extent of transmission heterogeneity is often
gauged relative to the 20/80 rule (where the most infectious 20% of
infected individuals are responsible for 80% of the secondary cases22).

Fig. 1 | Segregating site trajectories under simulated epidemiological dynam-
ics. aDynamics of infected individuals (I) under an SEIRmodel simulatedwith anR0
of 1.6. b Segregating site trajectories under full (black dashed line), dense (black
lines), and sparse (gray lines) sampling efforts. Dense and sparse sampling corre-
spond to 40 and 20 sequences sampled per timewindow, respectively. c Simulated
infected dynamics under the SEIR model with an R0 of 2.0 (blue line) compared to
those of the R0 = 1.6 simulation (black line). d Segregating site trajectories for the
two simulations shown in panel c. e Simulated infected dynamics under the SEIR
model with transmission heterogeneity (green, dashed line) compared to those of
the R0 = 1.6 simulation (black line) without transmission heterogeneity. Transmis-
sion heterogeneity was included by setting the parameter ph to 0.06. For ease of
comparing segregating site trajectories, the transmission heterogeneity simulation
was shifted later in time (green, solid line). f Segregating site trajectories for the
shifted transmission heterogeneity simulation (green lines) and the original

simulation (black lines). g Simulated infected dynamics under the SEIR model with
changing R0. In the simulations shown in red and yellow, when the number of
infected individuals reached 400, R0 was decreased to 1.1 and 0.75, respectively.
The simulation in black has R0 remaining at 1.6. h Segregating site trajectories for
the three simulations shown in panel g. Dense sampling effortwas used to generate
all segregating site trajectories shown in panels d, f, and h. 30 randomly-sampled
segregating site trajectories are shown for each sampling effort in panel b and for
each epidemiological scenario in panels d, f, and h. In all model simulations,
γE = 1=2 days−1, γI = 1=3 days−1, population size N = 105, and the per genome, per
transmission mutation rate μ =0.2. Initial conditions are S(t0) =N-1, E(t0) = 0,
I(t0) = 1, and R(t0) = 0. For the transmission heterogeneity simulation (panel e),
Ih(t0) = 1 and Il(t0) = 0 was used instead of I(t0) = 1. A time step of τ =0.1 days was
used in the Gillespie τ -leap algorithm.
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Some pathogens like SARS-CoV-2 exhibit extreme levels of super-
spreading, with as low as 10-15% of infected individuals responsible for
80% of secondary cases10,23–25. Because transmission heterogeneity is
known to impact patterns of viral genetic diversity26, we simulated the
above SEIR model with transmission heterogeneity to ascertain its
effects on segregating site trajectories (Methods). Because transmis-
sion heterogeneity has a negligible impact on epidemiological
dynamics once the number of infected individuals is large27, epide-
miological dynamics with and without transmission heterogeneity
should be quantitatively similar to one another, with transmission
heterogeneity simply expected to shorten the timing of epidemic
onset in simulations with successful invasion21. Our simulations, para-
meterized with extreme transmission heterogeneity of 6/80, confirm
this pattern (Fig. 1e). To compare segregating site trajectories between
these simulations, we therefore shifted the simulation with transmis-
sion heterogeneity later in time such that the two simulated epidemics
peaked at similar times (Fig. 1e). Comparisons of segregating site tra-
jectories between these simulations indicated that transmission het-
erogeneity decreased the number of segregating sites during every
time window (Fig. 1f). As expected, lower levels of transmission het-
erogeneity result in less substantial decreases in the number of seg-
regating sites (Figure S2). Together, these results indicate that
transmission heterogeneity needs to be taken into considerationwhen
estimating epidemiological parameters using segregating site
trajectories.

Finally, we wanted to assess whether changes in R0 over the
course of an epidemic would leave signatures in segregating site tra-
jectories. We considered this scenario because phylodynamic infer-
ence has often been used to quantify the effect of public health
interventions onR0,most recently in the context of SARS-CoV-210,11.We
thus implemented simulations with R0 starting at 1.6 and then either
remaining at 1.6 or reduced to either 1.1 or 0.75 when the number of
infected individuals reached 400 (Fig. 1g). The segregating site tra-
jectories for these three simulations indicate that reductions inR0 over
the course of an epidemic leave signatures in this summary statistic of
viral diversity (Fig. 1h). The signatures left in the segregating site tra-
jectories reflect the epidemiological dynamics that result from the
reductions in R0. Reducing R0 to 1.1 results in a slower increase in the
number of cases and a delayed, as well as broader, epidemic peak; as
such, the number of segregating sites increases more slowly and the
decline in the number of segregating sites is not apparent over the
time period shown. Reducing R0 to 0.75 results in an immediate

decline in cases, with an observed drop in the number of segregating
sites due to the stochastic loss of viral sublineages. Similar magnitude
reductions in R0 that were implemented later on in the simulated
epidemic yielded fainter signatures of this effect in the segregating site
trajectories (Figure S3).

Epidemiological inference using segregating site trajectories
To examine the extent to which inference based on segregating sites
can be used for epidemiological parameter estimation, we generated a
mock segregating site trajectory by forward simulating an SEIR model
with an R0 of 1.6. From this simulation, we randomly sampled 500 viral
sequences (corresponding to approximately 0.78% of infections being
sampled) and binned these sequences into 4-day time windows based
on their sampling times (Fig. 2a). Figure 2b shows the segregating site
trajectory from these binned sequences. From this trajectory, we first
attempted to estimate only R0 under the assumption that the timing of
the index case t0 is known (Methods).We estimated an R0 value of 1.58
(95%confidence interval of 1.37 to 1.81; Fig. 2c), demonstrating thatour
segregating sites inference approach applied to this simulated dataset
is able to recover the true R0 value of 1.6. Lower levels of sampling
effort (100 viral sequences) resulted in an R0 estimate to 1.65 and a
broader 95% confidence interval (1.30 to 2.06; Figure S4). Instead of
random sampling of sequences, adopting a more uniformly dis-
tributed sampling strategy acted to reduce the uncertainty in the R0

estimate (Figure S5). In Figure S6,wepresent results for the same set of
sequences as those used in Fig. 2, with the sequence data binned
instead in time windows of 1 day, 2 days, 6 days, and 10 days, rather
than in a time window of 4 days. These results show that R0 estimates
are not biased by the use of different time window lengths.

Because the timing of the index case t0 (in cases with a single
introduction) is almost certainly not known for an emerging epidemic,
we further attempted to estimate both R0 and t0 using the segregating
site trajectory shown in Fig. 2b. We considered a range of R0 values
between 1.0 to 2.5 and a broad range of t0 starting 50 days prior to the
true start date of 0 and ending at the date of the first sampled
sequence. We divided this parameter space into fine-resolution para-
meter combinations (R0 intervals of 0.1 and t0 intervals of 2 days) and
ran 20 SMC simulations for every parameter combination. In Fig. 3a,
we plot the mean value of the 20 SMC log-likelihoods for every para-
meter combination in the considered parameter space. Examination of
this plot indicates that there is a log-likelihood ridge that runs between
early t0/low R0 parameter sides, indicating that inference using

Fig. 2 | Epidemiological inference on a simulated trajectory of segregating
sites. a, top The number of sampled sequences over time, binned by 4-day time
windows. Samplingwas done in proportion to the number of individuals recovering
in a time window. In all, 500 sequences were sampled over the course of the
simulated epidemic. a, bottom The proportion of sampled individuals in each time
window, obtained by dividing the number of sampled individuals by the number of
individuals who recovered during a time window. b Simulated segregating site
trajectory from the sampled sequences, by time window. c Estimation of R0 using
Sequential Monte Carlo (SMC). Points show log-likelihood values from different
SMC simulations. R0 values between 1.0 and 1.25 and between 2.0 and 2.5 were
considered with a step size of 0.1. R0 values between 1.25 and 2.0 were considered

with a step size of 0.01. Solid black curve shows themean of 20data points for each
R0 value. The vertical red dashed line shows the maximum likelihood estimate
(MLE) ofR0. The redband shows the95%confidence interval ofR0. The vertical blue
line shows the true value of R0 = 1.6. The MLE and 95% CI were obtained using the
mean log-likelihood values. The 95% CI band included the set of R0 values with log-
likelihoods that fellwithin 1.92units of the highestmean log-likelihoodvalue, based
on a chi-squared distribution with 1 degree of freedom. Model parameters for the
simulateddata set are:R0 = 1.6, γE =

1/2days−1, γI = 1/3days−1, population sizeN = 105,
t0 = 0, and the per genome, per transmission mutation rate μ =0.2. Initial condi-
tions are S(t0) =N-1, E(t0) = 0, I(t0) = 1, and R(t0) = 0. A time step of τ =0.1 days was
used in the Gillespie τ -leap algorithm.
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segregating site trajectories can in principle estimate both t0 and R0.
The parameter combination with the highest mean log-likelihood was
R0 = 1.7 and t0 = 16 days, with the true parameter combination of
R0 = 1.6 and t0 = 0 days falling within the 95% confidence region of the
estimated parameters. Our results therefore indicate that joint esti-
mation of these parameters is thus possible in cases where a single
introduction is responsible for igniting local circulation. Using our
estimates of R0 and t0, we reconstructed the dynamics of the segre-
gating sites (Fig. 4a) and unobserved state variables: the number of
susceptible, exposed, and infected individuals over time (Fig. 4b-d).
These reconstructed state variables captured the true epidemiological
dynamics, demonstrating that our segregating sites approach can be
used to infer epidemiological variables that generally go unobserved.

As mentioned in the Introduction, there are existing phylody-
namic inference approaches available that can estimate epidemiolo-
gical model parameters using viral phylogenies that have been
reconstructed from sequence data. Of particular note is the
coalescent-based inference approach developed by Volz13 that has
been implemented as PhyDyn6 in BEAST2. To compare our results
using the segregating sites approach to results using PhyDyn, we
generated mock viral nucleotide sequences from our set of 500 sam-
pled sequences (Methods) and used these nucleotide sequences as
input into PhyDyn. Assuming the same epidemiological model struc-
ture and using uninformative priors, PhyDyn was similarly able to

recover the true R0 value of 1.6 used in the forward simulation (Fig. 3b;
95% credible interval = 1.44 to 1.61). Because PhyDyn infers epide-
miological parameters using a tree-based method, the program does
not estimate the time of the index case t0. Instead, it estimates the time
of the most recent common ancestor (tMRCA) of the viral phylogeny.
The credible interval of PhyDyn’s tMRCA estimate spanned from
−26.89 to 1.87 days post the true time of the index case (t0 = 0). Times
of a most recent common ancestor, however, are generally later (and
never earlier) than the time of the index case. This is because some
viral lineages likely go unsampled and the pruning of these unsampled
lineages results in a tMRCA that canbe considerably later than the time
of the index case t028. As such, interpretation of the PhyDyn results
would almost certainly result in timing the index case t0 as less than 0
(too early), given 1.87 days as the top end of the tMRCA credible
interval. This potentially early estimate of t0 may be due to the “push-
of-the-past” effect29, which results from the assumption of determi-
nistic dynamics in the inference process when the underlying popu-
lation dynamics are stochastic (and conditioned on the persistence of
a lineage). This “push-of-the-past” effect is usually reflected in an
overestimate of the growth rate (or an overestimate in R0) in
coalescent-based inference approaches that are applied to datasets
with small population sizes during their exponential growth phase16.
Here, because R0 controls not only the rate of increase in the number
of infected individuals at the start of the simulated epidemic but also

Fig. 4 | Reconstruction of unobserved state variables. a Simulated trajectory of
the number of segregating sites (dashed red), alongside reconstructed trajectories
of the number of segregating sites (gray). b Simulated dynamics of susceptible
individuals (dashed red), alongside reconstructed dynamics of susceptible indivi-
duals (gray). c Simulated dynamics of exposed individuals (dashed red), alongside
reconstructed dynamics of exposed individuals (gray). d Simulated dynamics of
infected individuals (dashed red), alongside reconstructed dynamics of infected
individuals (gray). Reconstructed state variables were obtained by running the

particle filter using R0 and t0 parameter values randomly sampled from within the
95% CI region, with a further condition that the log-likelihood from the run
exceeded the 95% CI region log-likelihood cutoff shown in Fig. 3a. To show that
resampling of particles during the SMC performs effectively, we show in Figure S7
the dynamics of these unobserved state variables in particles that are sampled at
different time points during the SMC procedure that may be lost by the end of the
simulation as a result of resampling.

Fig. 3 | Joint estimation of the basic reproduction number (R0) and the timing
of the index case (t0) using simulated data, and comparison against PhyDyn.
a The log-likelihood surface based on the segregating site trajectory shown in
Fig. 2b is shown over a range of R0 and t0 parameter combinations. The log-
likelihood value shown in each cell is themean log-likelihood value calculated from
20 SMC simulations. Blank cells yielded mean log-likelihood values of negative
infinity. The red boundary shows the set of (R0, t0) values that fall within the 95%

confidence region. Parameter combinations within the red boundary have mean
log-likelihood values that fall within 2.996 units of the highest mean log-likelihood
value, based on a chi-squared distribution with 2 degrees of freedom. b Joint
density plot for R0 and the time of the most recent common ancestor (tMRCA), as
estimated using PhyDyn6 on the same set of 500 sampled sequences. Dashed red
line in the joint density plot shows the 95% HPD interval of the joint density.
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the time at which the simulated epidemic starts to decline, the “push-
of-the-past” effect may instead be reflected in a tMRCA estimate that
likely occurs too early. Because our inference approach implements
stochastic population dynamics, it appropriately accounts for the
push-of-the-past effect, as dophylodynamic inference approaches that
incorporate stochastic population dynamics (e.g., birth-deathmodels).

Because the impetus for developing the segregating sites infer-
ence approach was based on the extent of phylogenetic uncertainty
present early on in an epidemic, we re-applied the inference approach
to sequences sampled early on during the simulated epidemic, with
time window bins ending on days 36, 40, 44, 48, and 52 (Fig. 5a).
During each of these five-time windows, we sampled 10 sequences,
resulting in a total of 50 sampled sequences. Our results on this subset
of simulated data indicate that R0 and t0 could again be jointly esti-
mated, although the confidence intervals for R0 and t0 were both
considerably broader, as expected with a much shorter time series
(Fig. 5b). Similarly, on this same subset of data, PhyDyn’s 95% credible
intervals were considerably broader (95% credible interval forR0 = 1.48
to 10.80). For this particular time series, both the segregating sites
approach and PhyDyn tended to overestimate the true value of R0 = 1.6
(Figs. 5b, 5c). For PhyDyn, the “push-of-the-past” effect29 may have
contributed to the overestimation of R0.

To determine whether there might be an upwards bias in the
estimation of R0 using the segregating sites approach, we simulated an
additional short dataset under the same epidemiological model
structure and model parameterization, with the exception of the
mutation rate μ, which we increased from 0.2 to 0.4. To calculate the
segregating sites trajectory, we sampled from this simulation aswe did
for Fig. 5a–c, with 10 sequences sampled in each of the five time win-
dows (Figure S8a). The maximum likelihood estimates of R0 using our
segregating sites approach did not overestimate the true R0 of 1.6 in
this dataset, although the timeof the index casewas again estimated to
be slightly later than the true value of t0 = 0 (Figure S8b). Compared to
the results on the μ =0.2 short dataset (Fig. 5b), the 95% confidence
region spanned over a similar extent of parameter space. PhyDyn also
did not overestimate R0 on this μ =0.4 short dataset (Figure S8c).
Moreover, its 95% credible interval was considerably smaller than on
the μ =0.2 short dataset. This result makes sense: at higher mutation
rates, phylogenetic uncertainty is reduced and tree-based inference
approaches are expected to improve. In contrast, a low-dimensional

summary statistic, such as the number of segregating sites cannot take
advantage of the higher-dimensional structure present in the
sequence data.

Epidemiological inference using SARS-CoV-2 sequences from
France
We applied the segregating sites inference approach to a set of SARS-
CoV-2 sequences sampled from France between January 23, 2020, and
March 17, 2020 (the date on which a country-wide lockdown began).
We decided to apply our approach to this set of sequences for several
reasons. First, many of the 479 available full-genome sequences from
France over this time period appear to be genetically very similar to
one another30, indicating that one major lineage took off in France (or
at least, that most sampled sequences derived from one major line-
age). This lineage would be the focus of our analysis. Second, an in-
depth epidemiological analysis previously inferred R0 for France prior
to the March 17 lockdown measures that were implemented31. That
analysis fit a compartmental infectious disease model to epidemiolo-
gical data that included case, hospitalization, and death data. Because
our segregating sites inference approach can accommodate epide-
miological model structures of arbitrary complexity, we could adopt
the samemodel structure as in this previous analysis.We could also set
the epidemiological parameters that were assumed fixed in this pre-
vious analysis to their same values. By controlling for model structure
and the set of model parameters assumed as given, we could ask to
what extent sequence data corroborate the R0 estimates arrived at
from detailed fits to epidemiological data.

To apply our segregating sites approach to the viral sequences
from France, we first identified the subset of the 479 sequences that
constituted a single, large lineage. To keep with the “tree-free”
emphasis of our approach, we identified this subset of sequences
(n = 432) without inferring a phylogeny (Methods). Using phylogenetic
inference, however, we confirmed that our subset of sequences con-
stituted a single clade, with sequences from France falling outside of
this clade being excluded (Figure S9). To generate a segregating site
trajectory from these sequences, we defined 4-day time windows such
that the last time window ended on March 17, 2020. Figure 6a
shows the number of sequences falling into each time window.
Figure 6b shows the segregating site trajectory calculated from these
sequences.

Fig. 5 | Joint estimation of the basic reproduction number (R0) and the timing
of the index case (t0) using early samples from the simulation, with compar-
ison against PhyDyn. a Simulated trajectory of the number of segregating sites
using early sequences. Sequences were binned into 4-day windows, with 10 indi-
viduals sampled from each time window. b The log-likelihood surface based on a
segregating site trajectory shown in panel (a). As in Fig. 3a, the log-likelihood value
shown in each cell is the mean log-likelihood value calculated from 20 SMC
simulations and the 95% CI boundary shown in red contains sets of parameter

combinations that fall within 2.966 log-likelihood units of the maximum log-
likelihood. Blank cells had mean log-likelihood values of negative infinity. (c) Joint
density plot for R0 and the time of the most recent common ancestor (tMRCA), as
estimatedusing PhyDyn6 on the same set of 50 sampled sequences. Dashed red line
in the joint density plot shows the 95%HPD interval of the joint density. ForR0, only
the lower bound of the 95%HPD is shown as the upper bound is above 6. In panels
a through c, simulations were parameterized with a per genome, per transmission
mutation rate of μ =0.2.

Article https://doi.org/10.1038/s41467-023-38809-7

Nature Communications |         (2023) 14:3105 5

14



Weparameterized themodelwith a per genome, per transmission
mutation rate μ using consensus sequence data from established
SARS-CoV-2 transmission pairs that were available in the literature32–35

(Methods). Specifically, for each of the 87 transmission pairs we had
access to, we calculated the nucleotide distance between the con-
sensus sequence of the donor sample and that of the recipient sample
and fit a Poisson distribution to these data (Fig. 6c). Using this
approach, we estimated a μ value of 0.33, corresponding approxi-
mately to one mutation occurring every 3 transmission events.

Similar to the approachweundertookwith our simulated data, we
first attempted to jointly estimate R0 and the timing of the index case
t0 for this segregating site trajectory. We considered a broad para-
meter space over which to calculate log-likelihood values. Specifically,
we considered R0 values between 1.0 and 4.5 and t0 values of between
December 1st, 2019 and February 14th, 2020. We ran 10 SMC simula-
tions and calculated the mean log-likelihood for each parameter
combination (Fig. 7). We estimated R0 to be 3.0 (95% confidence
interval = 1.6 to 4.2), consistent with the R0 estimate of 2.9 (95% con-
fidence interval = 2.81 to 3.01) arrived at through epidemiological time

series analysis31. We estimated t0 to be February 8th, 2020 (95% con-
fidence interval = December 25, 2019, to February 14, 2020).

We decided to further consider an alternative model that allowed
for multiple introductions of the focal lineage into France (Methods).
This decisionwas based on evolutionary analyses that have shown that
regional SARS-CoV-2 epidemics in Europe (as well as in the United
States) were initiated through multiple introductions rather than only
a single one36. Instead of attempting to jointly estimate R0 and t0, we
attempted to jointly estimate R0 and a parameter η using the segre-
gating site trajectory. The parameter η quantifies the extent to which
transmission between France and regions outside of France is reduced
relative to transmission occurring within France. This model further
required specification of the time at which the basal genotype evolved
outside of France, which we refer to as te. We considered a broad
parameter space over which to calculate log-likelihood values (R0

values between 1.0 and 4.0 and η values between 10−8 and 10−1) and
three different te values: December 24, 2019, January 1, 2020, and
January 8, 2020 (Methods). At each of these te values, we ran 10 SMC
simulations and calculated themean log-likelihood for each parameter
combination (Fig. 8a–c). We estimated R0 to be 2.6 (95% CI = 2.0 to
4.0), 2.7 (95% CI = 2.0 to 4.0), and 2.3 (95% CI = 2.1 to 4.0), respectively,
under te = December 24, 2019, January 1, 2020, and January 8, 2020.
These results indicate that the inferred R0 values are relatively insen-
sitive to the assumed emergence time of the basal genotype outside of
France. At later assumed values of te, our estimates for η were higher,
indicating that later emergence times were compensated for by a
higher transmission rate between infected individuals outside of
France and susceptible individuals within France.

We reconstructed the unobserved state variables for themultiple-
introductions model using SMC simulations parameterized with R0

and η values that were sampled from the parameter spaces shown in
Fig. 8, using the same approach we used for reconstructing state
variables on the mock segregating sites trajectory. These recon-
structed variables are shown in Fig. 9. As expected for anepidemicwith
an R0 > 1, the total number of infected individuals increased expo-
nentially over the time period considered (Fig. 9d–f). In Fig. 9g–i, we
plot the reconstructed cumulative number of recovered individuals
over time. These cumulative trajectories indicate that by mid-March
2020, approximately 0.009% to 2.044% of individuals in France had
recovered from infection from this SARS-CoV-2 lineage. These cumu-
lative predictions can be roughly compared against findings from a
serological study that was conducted over this time period in France37.
Based on a survey of 3221 individuals, this study found that 0.41% of

Fig. 6 | Sequences and parameters used for epidemiological inference based on
SARS-CoV-2 sequences from France. a The number of sequences sampled over
time, calculated using a 4-day time window. b The segregating site trajectory cal-
culated from the binned sequences shown in panel (a). c Estimation of the per-
genome, per-transmissionmutation rate μ. The histogram shows the fraction of 87
analyzed transmissionpairswith consensus sequences that differ fromone another

by the number of mutations shown on the x-axis. The mean number of mutations
per transmission is μ =0.33 (95% CI = 0.22–0.48). Black dots represent the prob-
ability of observing 0, 1, 2, and 3 mutations assuming a Poisson distribution with a
mean of 0.33. Vertical black error bars span the probability of observing 0, 1, 2, and
3 mutations assuming Poisson distributions with mean values of 0.22 and 0.48.

Fig. 7 | Joint estimation of the basic reproduction number R0 and the time of
the indexcase t0 for the France SARS-CoV-2 data.The joint log-likelihood surface
based on the estimated segregating site trajectory for the France data. Each cell
shows the mean log-likelihood value based on 10 SMC simulations. Blank cells
indicate mean log-likelihood values of negative infinity. Gray cells indicate where
log-likelihood values were not evaluated. The red lines denote the set of parameter
values that fall within the 95% confidence interval. A few ‘islands’ of parameter
combinations that fall either outside or inside the 95% CI are apparent and are due
to the variation in the log-likelihood values obtained from the SMC simulations.
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Fig. 8 | Joint estimation of the basic reproduction number R0 and the
transmission-reduction parameter η for the multiple-introductions model
using the France data. The joint log-likelihood surface based on the estimated
segregating site trajectory for the France data is shown under three different basal
genotype emergence times: te = December 24, 2019 (a), January 1, 2020 (b), and
January 8, 2020 (c). Each cell shows themean log-likelihood value basedon 10SMC

simulations. Blank cells indicate mean log-likelihood values of negative infinity.
Gray cells indicatewhere log-likelihood values were not evaluateddue to extended
simulation time. The red lines in each panel denote the set of parameter combi-
nations that fall within the 95% confidence interval. As in Fig. 7, a few ‘islands’ of
parameter combinations are apparent due to the variation in the log-likelihood
values obtained from the SMC simulations.

Fig. 9 | Trajectories of reconstructed state variables for the France data under
the multiple-introductions model. State variables are reconstructed for the
multiple-introductions model with three different values assumed for the emer-
gence time of the basal genotype: te = December 24, 2019 (first column), January 1,
2020 (second column), and January 8, 2020 (third column). a–c Segregating site
trajectory for the France SARS-CoV-2 data (red), alongside reconstructed segre-
gating site trajectories (gray). d–f Reconstructed dynamics of the number of
infected individuals (E1 + E2 + I) over time, shown in percent of France’s population.
g–i Reconstructed dynamics of the cumulative number of recovered individuals
over time, shown in percent of France’s population. Independent estimates of the

fraction of the population that has been infected with SARS-CoV-2 by mid-March
are shown in black. Estimates are from a serological study conducted during the
time window March 9-15, 202037. j–l Reconstructed dynamics of the cumulative
number of infections in France that resulted from contact with infected individuals
outside of France. Reconstructed state variables shown in panels (a–l) were
obtained by running the particle filter using R0 and t0 parameter values randomly
sampled from within the 95% CI region, with a further condition that the log-
likelihood from the run exceeded the 95% CI region log-likelihood cutoff shown in
Fig. 8a–c, respectively.
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individuals (95% confidence interval = 0.05% to 0.88%) had gotten
infected with SARS-CoV-2 by March 9 to 15, 2020 (Fig. 9g–i). Our
estimates fall in line with these independent estimates. Of note, our
estimates should fall on the low side of these independent estimates
because other, smaller clades were also circulating in France during
the time period studied and infections with viruses from these other
clades would also contribute to seropositivity levels. We also empha-
size that this is necessarily a rough comparison because seroconver-
sion does not occur exactly at the point of recovery. It can occur over a
broader range of times, ranging from prior to recovery to many days
following symptom onset38. Finally, in Fig. 9j–l, we plotted the recon-
structed cumulative number of infections that resulted directly from
contact with individuals outside of France. By the first sampled time
window (ending on February 22, 2022), our SMC results indicate that
there were very likely repeated introductions of this lineage into
France, with the majority of sampled particles pointing towards hun-
dreds of introductions of this lineage into France by this time point.

Discussion
Here, we developed a statistical inference approach to estimate epi-
demiological parameters from virus sequence data. Our inference
approach is a “tree-free” approach in that it does not rely on the
reconstructionof viralphylogenies to estimatemodel parameters.One
benefit of using such an approach for parameter estimation of emer-
ging viral pathogens is that, early on in an epidemic, phylogenetic
uncertainty present in time-resolved viral phylogenies is significant,
and tree-based phylodynamic inference approaches would need to
integrate over this uncertainty. This is oftentimes computationally
intensive, especially when many sequences have been sampled. The
computational complexity of our “tree-free” approach, in contrast,
does not scale with the number of sampled sequences. Instead, the
runtime required for parameter inference depends on the number of
genotypes that evolve over the course of the model simulations. This
number in turn is affected by the proposed basic reproduction num-
ber, the proposed time of the index case in the single introduction
model, and the magnitude of the per genome, per transmission
mutation rate μ. A second benefit to our tree-free approach is that it
can estimate the time of the index case (in a single-introduction sce-
nario), whereas tree-based inferencemethods estimate the time of the
most recent common ancestor. This is a benefit when the question of
interest focuses on when a viral lineage emerges and starts to spread.
Instead of viral phylogenies being the data that statistically interface
with the epidemiological models, our approach uses a population
genetic summary statistic of the sequence data, namely the number of
segregating sites present in time-binned sets of viral sequences. Our
inference approach benefits from being plug-and-play in that it can
easily accommodate different epidemiological model structures.

Based on fits to a simulated data set, we have shown that segre-
gating site trajectories can be used to estimate the basic reproduction
number R0 and the timing of the index case t0 in cases where a single
introduction can be assumed. We further fit a multiple-introductions
epidemiological model to a segregating site trajectory that was cal-
culated from SARS-CoV-2 sequence data from France, estimating a
basic reproduction number R0 of approximately 2.3-2.7. These results
are consistent with previous estimates from an epidemiological ana-
lysis and consistent with a serological study conducted in mid-
March 2020.

Our inference approach relies on several assumptions that are
shared by existing phylodynamic inference methods. Most notably, it
relies on an assumption that all mutations are phenotypically neutral.
However, a recent analysis of SARS-CoV-2 sequences has shown evi-
dence for purifying selection, even early on during the pandemic39.
Indeed, within the set of SARS-CoV-2 sequences from France, we
observe 170 nonsynonymous mutations and 138 synonymous muta-
tions (a ratio of 1.23:1). Given the number of nonsynonymous sites

(n = 68,540) and the number of synonymous sites (n = 19,255) in the
SARS-CoV-2 genome, we would expect, under neutrality, a ratio of
3.56:1. This underrepresentation of nonsynonymous genetic variation
points towards purifying selection in our analyzed dataset. A more
recent analysis also raises the possibility of adaptive evolution occur-
ring during early 202040. Incorporating non-neutral genetic variation
into inference approaches such as ours and existing phylodynamic
ones is complicated, although some statistical approaches have star-
ted to tackle this goal9. In the context ofour segregating sites inference
approach, directly incorporating non-neutral evolution will increase
model complexity considerably, and assumptions would need to be
made about the distribution of mutational fitness effects. Rather than
incorporating non-neutral evolution within our approach, we can for
now consider how the occurrence of non-neutral evolution would
impact our parameter estimates. With purifying selection at play, we
would expect to see less genetic variation than in its absence. As such,
the number of segregating sites in any time window would be lower
than it would be under neutrality. Our inference approach, assuming
neutrality, would therefore bias R0 estimates to be low and, in single-
introductionmodels, the timing of the index case t0 to be late. Inmulti-
introduction models, our estimate of η would be biased high.

Our approach also assumes infinite sites and the absence of
homoplasies.While these assumptions are limitingover longer periods
of sequence evolution, our approach is intended to be used for
emerging viral pathogens, sampled over shorter periods of time, when
levels of genetic diversity are still low. As such, these assumptions will
likely not be violated in cases where this approach will come in useful.
We would also like to note that the infinite sites assumption could in
principle be relaxed, but this would make the simulations in the
inference approach substantially more costly. Furthermore, as time
goes on, not only do chances of repeated mutations at sites increase,
but genetic diversity increases. As such, phylogenetic uncertainty will
decrease, such that existing tree-based phylodynamic inference
approaches will become increasingly informative and segregating site
trajectories less informative.

While our inference approach does adopt assumptions of phe-
notypic neutrality and infinite sites, it does not assume a constant
sampling rate or a specific sampling process throughout the time
period over which sequences are collected. As we have shown in
Fig. 1b, sampling effort does impact the segregating sites trajectory:
the greater the sampling effort, the larger the number of segregating
sites. For our inference approach to perform effectively, sampling
effort therefore needs to bematched between the simulations and the
empirical data. This matching of sampling effort is implemented in the
particle filter. However, the number of samples sequenced per time
window is not particularly informative of model parameters (except in
the case of extremely high sampling effort when certain low R0 model
parameterizations cannot appropriately evaluate the expected num-
ber of segregating sites in a time window because the number of
sampled sequences exceed the number of simulated recoveries). The
reason why the number of samples is not particularly informative of
model parameters is because, under our approach, sampling of indi-
viduals does not impact the underlying epidemiological dynamics:
individuals are sampled upon recovery, once they are no longer
infectious. That the number of observed samples is not highly infor-
mative of model parameters we see as a benefit of our approach
because sampling effort and testing rates canchangedramaticallyover
the course of an emerging pandemic or over the early period of an
emerging viral lineage as surveillance efforts ramp up. In contrast,
sampling times of sequences have been shown to be highly informa-
tive of model parameters in the case of birth-death models, with
sampling process misspecification resulting in the possibility of arriv-
ing at biased parameter estimates41.

While the number of sampled sequences is largely uninformative
of model parameters, our approach does have tomake an assumption

Article https://doi.org/10.1038/s41467-023-38809-7

Nature Communications |         (2023) 14:3105 8

17



of when individuals are sampled. In our simulated dataset and in our
application to SARS-CoV-2, we assumed that individuals were sampled
as they recovered. This sampling scheme decision was based on our
understanding that the timeof symptomonset often follows peak viral
load formanyemerging viral pathogens42 and an assumption thatmost
testing early on in a pandemic involves individuals who develop
symptoms. It is important to note that if the assumed sampling scheme
is mismatched with the empirical sampling scheme, parameter esti-
matesmay be biased. For example, if individuals were instead sampled
as they transitioned from the exposed class to the infectious class,
rather than upon recovery, and we assumed in our model that indivi-
duals were sampled upon recovery, then our R0 estimates would be
biased high.

Finally, we would like to note that setting the per genome, per
transmissionmutation rate to a constant value does not correspond to
an assumption of a constant molecular clock. A constant molecular
clock requires that the number of substitutions per unit time remains
the same. Our assumption is that the mean number of nucleotide
changes that occur during a transmission event between a donor and a
recipient (at the consensus level) stays constant over time. This would
almost certainly be the case unless the fidelity of the viral polymerase
was evolving over the period considered. Changes in the substitution
rate could come about if the generation interval between transmission
events changes due, for example, to the implementation of non-
pharmaceutical interventions or increased symptom awareness. A
shortening of the generation interval (defined as the time between
infection and onward transmission) would increase the number of
transmission events that occur per unit time and thereby result in an
increase in the substitution rate. In contrast, a lengthening of the
generation interval would result in fewer transmission events occur-
ring per unit time, thereby decreasing the population-level substitu-
tion rate. Changes in the generation interval can emerge from an
underlying epidemiological model, such that our assumption of a
constant per genome, per transmission event mutation rate does not
precludeor conflictwith the observationof changes in the substitution
rate over time.

The analysis we presented here focuses on statistical inference
using sequence data alone. In recent years, there has also been a
growing interest in combining multiple data sources – for example,
sequence data and epidemiological data or serological data - to more
effectively estimate model parameters. The few existing studies that
have incorporated additional data while performing phylodynamic
inference have shown the value in pursuing this goal7,43,44. As a next
step, we aim to extend the segregating sites approach developed here
to incorporate epidemiological data and/or serological data more
explicitly. Straightforward extension is possible due to the state-space
model structure that is at the core of the particle filtering rou-
tine we use.

Our analysis focused on phylodynamic inference based on
sequence data belonging to a single viral lineage, with either a single
index case or multiple introductions from an outside reservoir. Our
approach, however, can be expanded in a straightforward manner to
multiple viral lineages. This is especially useful in cases like SARS-
CoV-2, where many regions have witnessed the introduction of
multiple clades10,45. In this case, a single segregating sites trajectory
could be calculated for each clade, such that multiple segregating
site trajectories could be simultaneously fit to under specified con-
straints such as the basic reproduction number being the same
across all clades. Different clades could also be allowed to differ in
their reproductive numbers, such that questions relating to the
selective advantage of some clades over others could be addressed.
As such, this inference method, designed for emerging pathogens
with low levels of genetic diversity, may continue to be useful for
endemic pathogens to address questions related to the emergence of
new viral lineages.

Methods
Brief overview of inference approach
Mutations occur during viral replication within infected individuals
and these have the potential to be transmitted. During the epidemio-
logical spread of an emerging virus or viral lineage, the virus popula-
tion (distributed across infected individuals) thus accrues mutations
and diversifies genetically. This joint process of viral spread and evo-
lution can be simulated forward in time using compartmental models,
with patterns of epidemiological spread leaving signatures in the
evolutionary trajectory of the virus population. Parameters of these
compartmental models that govern patterns of epidemiological
spread can thus in principle be estimated using viral sequence data.
Here, similar in spirit to existing inference approaches based on
summary statistics46–50, we develop a statistical inference approach
that fits compartmental epidemiological models to time series of a
low-dimensional summary statistic calculated from sequence data.
Specifically, we use trajectories of the number of segregating sites
from samples of the viral population taken over time for statistical
inference. Because we propose the use of our method early on in an
epidemic (or during the early expansion of a viral lineage), we focus
primarily on estimating the basic reproduction number R0 using this
inference approach.

Epidemiological model simulations and calculation of
segregating site trajectories
To simulate mock data of segregating site trajectories, we specify a
compartmental epidemiological model and simulate the model under
demographic stochasticity using Gillespie’s τ-leap algorithm. Here, we
use a susceptible-exposed-infected-recovered (SEIR) model whose
stochastic dynamics are governed by the following equations:

St +Δt = St � nS!E ð1Þ

Et +Δt = Et +nS!E � nE!I ð2Þ

It +Δt = It +nE!I � nI!R ð3Þ

Rt +Δt =Rt +nI!R ð4Þ

where:

nS!E ∼Pois β
St

N
ItΔt

� �
ð5Þ

nE!I ∼PoisðγEEtΔtÞ ð6Þ

nI!R ∼PoisðγI I tΔtÞ ð7Þ

where β is the transmission rate, N is the host population size, γE is the
rate of transitioning from the exposed to the infected class, γI is the
rate of recovering from infection, andΔt is the τ-leap time stepused.R0

is given by β /γI. The epidemiological dynamics of this model can be
simulated from the above equations alone. Additional complexity is
needed to incorporate virus evolution throughout the course of the
simulation. To incorporate virus evolution, we partition exposed
individuals and infected individuals into genotype classes, with
genotype 0 being the reference genotype present at the start of the
simulation. Mutations to the virus occur at the time of transmission,
with the number ofmutations that occur in a single transmission event
given by a Poisson random variable withmean μ, the per-genome, per-
transmission event mutation rate. We assume infinite sites such that
new mutations necessarily result in new genotypes. New mutations
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and new genotypes are both assigned integer indices in order of their
appearance. When new mutations are generated at a transmission
event, the new genotype harbors the same mutation(s) as its parent
genotype plus any newmutations. We use a sparsematrix approach to
store genotypes and their associated mutations to save on memory.

There are three types of events that occur in the SEIR model
simulations: transitions from exposed to infected; transitions from
infected to recovered; and transmission. To simulate transitions from
exposed to infected, during a time step Δt, nE!I individuals are drawn
at random from the set of individuals who are currently reside in the
exposed class. These individuals will transition to the infected class
during this time step, while retaining their current genotype statuses.
To simulate transitions from infected to recovered, during a time step
Δt, nI!R individuals are drawn at random from the set of individuals
who are currently residing in the infected class. These individuals will
transition to the recovered class during this time step. To simulate
transmission, during a time stepΔt, we addnS!E new individuals to the
set of exposed individuals. For each newly exposed individual, we
randomly choose (with replacement) a currently infected individual as
its ‘parent’. If no mutations occur during transmission, then this newly
exposed individual enters the same genotype class as its parent. If one
or more mutations occur during transmission, this newly exposed
individual enters a new genotype class, and the sparse matrix is
extended to document the new genotype and its associatedmutations
(given as integers, without a bitstring or explicit genome structure).

We start the simulationwithone infected individual carrying a viral
genotype that we consider as the reference genotype (genotype 0). To
calculate a time series of segregating sites, we define a time window
length T (T >Δt) of a certain number of days and partition the simula-
tion time course into discrete, non-overlapping time windows. During
simulation, we keep track of the individuals that recover (transition
from I to R) within a time window. For each time window i, we then
sample ni of these individuals at random, where ni is the number of
sequences sampled in a given time window based on the sampling
scheme chosen. Because we have the genotypes of the sampled indi-
viduals from the sparse matrix, we can calculate the number of segre-
gating sites si in any time window i. Since si is the number of
polymorphic sites across the sampled individuals in time window i, it is
simply calculated from the set ofmutations harbored by the sequences
of the sampled individuals. While in our simulations, we sample indi-
viduals as they recover, alternative sampling schemes can instead be
assumed. For example, individuals could be sampled as they transition
from the exposed to the infected class, or while they are in the infected
class. We chose to sample upon recovery based on symptom devel-
opment (and thereby testing) often occurring following peak viral load.

Implementation of the transmission heterogeneity model
We implement transmission heterogeneity in the epidemiological
model by splitting the infected classes into a high-transmission and a
low-transmission class, as has been done elsewhere6,10. For an SEIR
model, themodel extended to incorporate transmission heterogeneity
becomes:

St +Δt = St � nS!E ð8Þ

Et +Δt = Et +nS!E � nE!Ih
� nE!I l ð9Þ

Ih,t +Δt = Ih,t +nE!Ih
� nIh!R ð10Þ

I l,t +Δt = I l,t +nE!I l
� nIl!R ð11Þ

Rt +Δt =Rt +nIh!R +nIl!R ð12Þ

where:

nS!E ∼Pois βh
St

N
Ih,tΔt

� �
+Pois βl

St

P
Il,tΔt

� �
ð13Þ

nE!I ∼PoisðγEEtΔtÞ ð14Þ

nE!Ih
∼BinðnE!I ,pH Þ ð15Þ

nE!I l
=nE!I � nE!Ih ð16Þ

nIh!R ∼PoisðγI Ih,tΔtÞ ð17Þ

nIl!R ∼PoisðγI I l,tΔtÞ ð18Þ

The parameter pH quantifies the proportion of exposed indivi-
duals who transition to the high-transmission Ih class. Parameters βh
and βl quantify the transmission rates of the infectious classes that
have high and low transmissibility, respectively.We set the values of βh
and βl based on a given parameterization of overall R0 and the para-
meter pH. To do this, we first define, as in previous work6,10, the relative

transmissibility of infected individuals in the Ih and Il classes as c=
βh
βl
.

We further define a parameter P as the fraction of secondary infections
that result from a fraction pH of the most transmissible infected indi-
viduals. Based on given values of pH and P, we set c, as in previous

work10, to
½1�pH
pH

�
½1P�1� . With c defined in this way, pH can be interpreted as the

proportion of most infectious individuals that result in P of secondary
infections. We set P to 0.80, to make pH easily interpretable relative to
the “20/80” rule in disease ecology22. Recognizing that

R0 =
pHβh + ð1�pH Þβl

γI
in this model, we can then solve for βl:

R0γI
pHc+ ð1�pH Þ, and

set βh = cβl : Note that the interpretation of pH in the context of the
disease ecology rule is an approximation since this calculation does
not take into consideration variation in individual R0 that results from
differences in thedurationof infectionor variation in individualR0 that
results fromdifferences in the number of secondary infections that are
due to stochastic effects.

Epidemiological inference using time series of segregating sites
Our inference approach relies on particle filtering, also known as
Sequential Monte Carlo (SMC), to estimate model parameters and
reconstruct unobserved (latent) state variables. Particle filtering cal-
culates the likelihood of a parameterized model (more precisely, the
probability of observing the time-series data marginalized over the
unobserved state variables) by recurrently updating a set of particles
(Figure S10). In our case, each of these particles holds a state-space
model, which includes a process model component that simulates
underlying epidemiological and evolutionary dynamics and an obser-
vation model that relates these latent state variables to the observed
segregating sites data (Figure S11). The process model includes the
unobserved epidemiological variables (e.g., S, E, I, and R) and the
evolutionary components of the model (viral genotypes and muta-
tions). Fromone observed segregating sites data point to the next one,
the model is simulated using Gillespie’s τ-leap algorithm, as described
in the section above.

At the end of each time window, when the simulation reaches the
next observed segregating sites data point, the observation model is
used to calculate the probability of observing the observed data point
given the underlying process model. This probability is calculated as
follows. We calculate the expected number of segregating sites from
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the model simulation by performing k ‘grabs’ of sampled individuals,
with each grab consisting of the following steps:

• pick (without replacement) ni individuals from the set of indi-
viduals who recovered during time window i, where ni is the
number of samples present in the empirical dataset in window i.
This step mimics the process of sample collection at the same
effort as in the observed data. We control for sampling effort
because the extent of sampling impacts the number of
segregating sites.

• calculate the simulated number of segregating sites sisim, based
on the genotypes of the sampled ni individuals.

Between grabs, the replacement of previously sampled indivi-
duals occurs. We then calculate the mean number of segregating sites
for window i by taking the average of all k sisim values. Finally, we
calculate the probability of observing si segregating sites in window i,
given the model-simulated mean number of segregating sites, using a
Poisson probability mass function parameterized with the mean sisim

value and evaluated at si. As a special case in the calculation of this
probability, if the number of individuals who recovered during a given
time window i is less than the number that needs to be sampled (ni),
then the particle’s probability of observing the number of segregating
sites si is set to 0. The calculated probabilities serve as the weights for
the particles.

Particle weights obtained at the end of each window are used 1)
to resample particles for the next time window according to their
assigned weights and 2) to calculate the likelihood of a para-
meterized model. In the particle filtering algorithm, the likelihood is
obtained by averaging particle weights within each window and then
multiplying these average particle weights across all time windows
with observations. For time windows without observations (ni = 0),
particle weights are assigned a value of 0 if the virus has died out
stochastically and 1 if the virus continues to persist in the population.
These weights are used for resampling, but do not contribute to the
calculation of the likelihood. We adopt this approach to filter out
particles during early time windows that have undergone stochastic
extinction.

Latent state variables are reconstructed by randomly sampling a
particle at the end of an SMC simulation and plotting the values of its
simulated latent state variables over time. All of our SMC simulations
were performed with 200 particles and k = 50 grabs. Note that the
complexity of this inference method is largely independent of the
number of input sequences. This stands in contrast to phylodynamic
inference approaches that frequently down-sample sequences to
reduce runtime.

Converting simulated sequences into nucleotide sequences for
the performance comparison against PhyDyn
Simulated sparsematrices were converted to nucleotide alignments
by first generating a reference sequence with the same length as the
maximum number of mutations in the sparse matrix and choosing
an A, C, G, or T nucleotide at each site with equal probability. A
mutated sequence was generated for each genotype represented in
the sparse matrix by replacing the reference allele at that position
with another nucleotide chosen with equal probability. The final
FASTA alignment was generated by identifying the simulated
sequence associated with each sampled individual. Generation of
the simulated FASTA file was done using Python v3.9.4 with
Numpy v1.19.4.

The simulated FASTA alignment was used to generate a BEAST2
XMLfile froma templateXMLwhichwasgenerated inpartusingBeauti
v2.6.6. This template used a JC69 nucleotide substitution model with
no invariant sites. We assumed an uncorrelated log-normally dis-
tributed relaxed clock with a uniform [0.0, 1E-2] prior on themean and
a uniform [0.0,2.0] prior on the standard deviation.

A single-deme structured coalescent prior as defined by the fol-
lowing equations was implemented using PhyDyn v1.3.8:

dE
dt

=
βIS
N

� γEE ð19Þ

dI
dt

= γEE � γI I ð20Þ

dR
dt

= γI I ð21Þ

where β =R0γI . A population size of 105 with a single initially infected
individual was used. We assume infected individuals remain exposed
for an average of 2 days (1/γE) and infectious (1/γI) for an average of
3 days. R0 was estimated using a uniform [1.0, 10.0] prior. All sampled
sequences were assigned to the infected (“I”) class.

Sampled parameters and trees were logged every 1000 states and
all MCMC chains were run for at least 209M (Fig. 3b), 64 million
(Fig. 5c), 150 million (Figure S8c) iterations. The first 10% of MCMC
chains were discarded as burn-in and the ESS values of all parameters
were >200, as identified by Tracer v1.7.1 (10.1093/sysbio/syy032).

Epidemiological model structure and parameterization used in
the SARS-CoV-2 analysis
The process model we use in our application to SARS-CoV-2 sequence
data from France is based on a previously published epidemiological
model31. We base our process model on this published model to allow
for a direct comparison of inferred R0 values between our sequence-
based analysis and their analysis that focuses on SARS-CoV-2 spread in
France over a similar time period. Their analysiswas based on fitting an
epidemiological model to a combination of case, hospitalization, and
death data. Their model structure, once implemented using Gillespie’s
τ-leap algorithm, is given by:

St +Δt = St � nS!E1 ð22Þ

E1,t +Δt = E1,t +nS!E1 � nE1!E2 ð23Þ

E2,t +Δt = E2,t +nE1!E2 � nE2!I ð24Þ

It +Δt = It +nE2!I � nI!R ð25Þ

Rt +Δt =Rt +nI!R ð26Þ

where:

nS!E1 ∼Pois β
St

N
ItΔt

� �
+Pois β

St

N
E2,tΔt

� �
ð27Þ

nE1!E2 ∼PoisðγE1E1,tΔtÞ ð28Þ

nE2!I ∼PoisðγE2E2,tΔtÞ ð29Þ

nI!R ∼PoisðγI I tΔtÞ ð30Þ
The parameters are the transmission rate β, the rate of transi-

tioning from the E1 class to the E2 class γE1, the rate of transitioning
from the E2 class to the I class γE2, and the rate of transition from the I
class to the R class γI . The average duration of time spent in the E1 class
given by 1=γE1 = 4 days, the average duration of time spent in the E2
class given by 1=γE2 = 1 day, and the average duration of time spent in
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the infected class given by 1=γI = 3 days. Their model assumes that the
transmission efficiency β of exposed class 2 (E2) and that of the
infected class I are the same; their model considers E2 and I as distinct
classes to interface with the case data, where symptoms are assumed
to not appear before an individual has transitioned to class I. We
maintain themodel structurewith E1, E2, and I rather than reducing it to
a model structure with just a single E and a single I class to keep the
same overall distribution of infection times as in their model.

Because SARS-CoV-2 dynamics are characterized by substantial
levels of transmission heterogeneity10,23,51 and we have shown in Fig. 1
that transmission heterogeneity impacts segregating site trajectories,
we expanded the compartmental epidemiological model for SARS-
CoV-2 described above to include transmission heterogeneity in a
manner similar to the one we used in Fig. 1. Based specifically on the
analysis by Paireau and colleagues52, we set pH to 0.10, such that 10% of
infections are responsible for 80% of secondary infections. Analogous
to the approach we undertook for the simulated data, we jointly esti-
mated R0 and t0 using the segregating site trajectory shown in Fig. 6b.

Based on phylogenetic analyses that have indicated that early
introductions of SARS-CoV-2 into focal regions likely resulted from
multiple introductions rather than a single one, we considered a
modified version of the epidemiological model that would allow for
multiple introductions. The modification relied on the incorporation
of infections within France that resulted from direct contact with
infected individuals outside of France, termed the viral “reservoir”.
Similar to the approach adopted by some existing phylodynamic
analyses12, the viral populationdynamics in this reservoir are simplified
to exponential growth. This infected population from outside of
France acts as another source of infection for susceptible individuals
within France, allowing for multiple introductions of SARS-CoV-2 into
France.

As in the focal region, new genotypes are expected to emerge in
the outside reservoir. As we assume an infinite sites model, the geno-
types that emerge in the outside reservoir and in the focal region will
not overlap except in the basal genotype that is first introduced to the
focal region. For this reason, and because the basal genotype is
expected to be considerably more common than any of the viral
genotypes that stem from it, we consider only the repeated intro-
duction of the basal genotype into France. Starting at the time of
emergence of the basal genotype in the outside reservoir (te), we let
the number of individuals infected with this basal genotype Yt grow
exponentially:

Yt = e
;rðt�teÞ ð31Þ

where r is the intrinsic growth rate of the basal genotype. Based on
empirical estimates53,54, we set the intrinsic growth rate to 0.22 day−1.
To set te, we first identified the genotype sampled in France that is
genetically closest to the reference strain Wuhan/Hu-1 (MN908947.3).
This basal genotype differs fromWuhan/Hu-1 by 4 nucleotides: C241T,
C3037T, C14408T, and A23403G. Using GISAID data, we then identi-
fied sequences with collection locations outside of France that carried
all four of thesemutations that define the basal genotype. The earliest
of these sequences including the four basal genotype-defining
mutations was collected on January 25, 2020, in Australia, suggesting
that the basal genotype had been circulating prior to January 25, 2020.
Considering the potential delay between emergence and the time of
first detection, we considered three distinct te values: December 24th,
2019, January 1st, 2020, and January 8th, 2020.

Individuals infected in this outside reservoir can transmit their
infection to susceptible individuals within France. The rate at which
they transmit the infection is reduced relative to the rate at which
infected individuals within France transmit the infection to susceptible
individuals within France. We let the factor by which transmission is
reduced be given by the factor η. During a τ-leap timestep, the number

of individualswithin Francewhobecome infected fromcontactwith an
infected individual outside of France is therefore given by:

nO
S!E1 ∼Pois βη

St

N
YtΔt

� �
ð32Þ

Aswe are considering only the transmission of the basal genotype
from infected individuals in the outside reservoir to susceptible indi-
viduals in France, all of these newly infected individuals will carry the
basal genotype unless mutation occurs during the transmission pro-
cess. Our simplifying assumption that only the basal genotype can be
introduced into France from the outside reservoir ignores the possi-
bility that genotypes that are derived from the basal genotype enter
France from the outside reservoir. Strictly speaking, we think this
assumption is unlikely to bemet. However, at very early time points in
France’s epidemic,mostof the genotypes outside of France should still
be the basal genotype, and only at later time points should the fre-
quencies of derived genotypes increase outside of France. Introduc-
tion of these derived genotypes at these later time points could result
in the establishment of viral sublineages in France. However, because
autochthonous infections would be high at this point, these viral
sublineages would very likely go unsampled. As such, we do not think
that our assumption of only the basal genotype being introduced into
France would have a dramatic effect on our results. We can consider,
however, the effects that violation of this assumption would have on
our parameter estimates: if derived genotypes were introduced into
France and sampled (or their descendants sampled), then the number
of segregating sites that would have evolved within France would be
lower than we are currently taking it to be. As such, our current esti-
mate of R0 would be biased high.

Estimation of the per genome, per transmission event
mutation rate
Weset the per-genome, per-transmissionmutation rate parameterμ to
0.33. This is based on the fit of a Poisson distribution to the number of
de novo substitutions that were observed in 87 transmission pairs of
SARS-CoV-2 from four studies32–35. Accession numbers for 78/87 of
these transmission pairs are available in Table S1. Accession numbers
for the remaining pairswere providedby the corresponding authors of
the relevant publication34. Sequence data were aligned to Wuhan/Hu-1
(MN908947.3)55 using MAFFT v.7.46456. Insertions relative to Wuhan/
Hu-1 were removed and the first 55 and last 100 nucleotides of the
genome were masked. De novo substitutions for each pair were
identified in Python v.3.9.4 (http://www.python.org) using NumPy
v.1.19.457. Ambiguous nucleotides were permissively included in the
identification of de novo substitutions (e.g., an R nucleotide was
assumed to match both an A and a G). The mean number of substitu-
tions between transmission pairs is the maximum likelihood estimate
for the rate parameter of the Poisson distribution. The 95% confidence
interval was calculated using the exact method using SciPy v.1.5.458.

The value for μ = 0.33 is consistent with population-level sub-
stitution rate estimates for SARS-CoV-2, which range from 7.9 ×10−4 to
1.1 ×10−3 substitutions per site per year28,59. With a genome length of
SARS-CoV-2 of approximately 30,000 nucleotides and a generation
interval of approximately 4.5 days60, these population-level substitu-
tion rates would correspond to per genome, per transmission muta-
tion rates of between 0.29 and 0.41, respectively.

Estimation of segregating site trajectories for the France data
We downloaded all complete and high-coverage SARS-CoV-2 sequen-
ces with complete sampling dates sampled through March 17th, 2020
(https://doi.org/10.55876/gis8.230123mt) in France and uploaded
through April 29th, 2021 from GISAID61. Sequences were aligned to
Wuhan/Hu-1 using MAFFT v.7.464. Insertions relative to Wuhan/Hu-1
were removed. Any sequences with fewer than 28000A, C, T, or G
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characters were removed. Following this filtering protocol, our dataset
included 479 sequences. We masked the first 55 and last 100 nucleo-
tides in the genomeaswell as positionsmarked as “highly homoplasic”
in early SARS-CoV-2 sequencing data (https://github.com/W-L/
ProblematicSites_SARS-CoV2/blob/master/archived_vcf/problematic_
sites_sarsCov2.2020-05-27.vcf). Pairwise SNP distances were calcu-
lated in a manner that accounted for IUPAC ambiguous nucleotides in
Python using NumPy. To subset these data to a single clade circulating
within France, we identified the connected components of this pair-
wise distance matrix with a cutoff of 1 SNP in Python using SciPy and
identified the shared SNPs relative to Wuhan/Hu-1 between all
sequences in each connected component. The largest connected
component contained 308 sequences which shared the substitutions
C241T, C3037T, C14408T, and A23403G. Our final dataset included
these 308 as well as 124 sequences from connected components that
shared these four substitutions relative to Wuhan/Hu-1. We included
connected components in which all sequences had an N at any of the
four clade-defining sites of the largest connected component. Two
sequenceswere excluded as they differed fromall other sequences in
the dataset by > 7 SNPs. This dataset includes 112 of the 186 sequen-
ces analyzed in Danesh et al.11. Sequences were binned into four-day
windows, aligned such that the last window ended on the latest
sampling date. The number of segregating sites in each window was
calculated in Python using NumPy. Ambiguous nucleotides were
permissively considered in the calculation of segregating sites, e.g.,
an N nucleotide was assumed to match all four nucleotides, whereas
an R nucleotidewas assumed tomatch only A andG nucleotides. This
matching assumption results in a lower bound estimate for the
number of segregating sites in any time window. If we instead count
an N nucleotide at a site as a mutation, the number of segregating
sites in each time window is much larger (Figure S12a). However, it is
unlikely that an N nucleotide indicates a mutation; it is much more
likely that anN indicates an inability to call a nucleotide based on low
read depth or poor quality scores at a site. If we count N nucleotides
as matching observed variation but count other ambiguous nucleo-
tides (e.g., R) as mutations, the segregating site trajectory is barely
affected (Figure S12b). This is because there are very few non-N
ambiguous nucleotides in the dataset. As such, our parameter esti-
mates on the France dataset are unlikely to be impacted by our
assumption of ambiguous nucleotides matching observed genetic
variation at their respective sites.

Phylogenetic analysis of SARS-CoV-2 sequences from France
To confirm that the subset of sequences from France obtained from
finding connected components formed an evolutionary lineage/
clade, we first combined the 479 sequences sampled from France
with 100 randomly-selected complete, high-coverage sequences
sampled from outside France through March 17th, 2020 and uploa-
ded to GISAID through April 29th, 2021. These sequences were
aligned to Wuhan/Hu-1 using MAFFT, insertions were removed, and
the sites described above were masked. This alignment was con-
catenated with the aligned sequences from France. IQ-Tree v. 2.0.762

was used to construct a maximum likelihood phylogeny, and
ModelFinder63 was used to find the best fit nucleotide substitution
model (GTR + F + I). Small branches were collapsed. TreeTime v.
0.8.064 was used to remove any sequences with more than four
interquartile distances from the expected evolutionary rate, rooting
at Wuhan/Hu-1. Treetime was also used to generate a time-aligned
phylogeny assuming a clock rate of 1 ×10−3 substitutions per site per
year with a standard deviation of 5 ×10−4 substitutions per site per
year, a skyline coalescent model, marginal time reconstruction,
accounting for covariation, and resolving polytomies. Maximum
likelihood phylogenies were visualized in Python using Matplotlib v.
3.3.365 and Baltic (https://github.com/evogytis/baltic).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The simulated data generated in this study are available at https://
github.com/koellelab/segregating-sites. The transmission pair data
used to estimate the per-genome, per-transmission event mutation
rate is provided in Table S1. The SARS-CoV-2 viral genome sequences
used in the France analysis are available fromGISAID (Supplementary
information; https://doi.org/10.55876/gis8.230123mt). Due to the
size of datasets, source data (excluding genome sequences down-
loaded from GISAID) are available at https://github.com/koellelab/
segregating-sites.

Code availability
Python code used for generation of all figures is available on GitHub:
https://github.com/koellelab/segregating-sites.
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Figure S1. Segregating site trajectories under different time window lengths. Segregating site trajectories for the 

simulation shown in Figure 1a under dense (orange) and sparse (blue) sampling effort, when trajectories are calculated 

using time window lengths of (a) 2 days; (b) 4 days (as in Figure 1b); and (c) 6 days. Under the dense sampling scheme, 

sampling effort is 20 sequences per 2 day time window (a), 40 sequences per 4 day time window (b), and 60 sequences 

per 6 day time window (c). Under the sparse sampling scheme, sampling effort is 10 sequences per 2 day time window 

(a), 20 sequences per 4 day time window (b), and 30 sequences per 6 day time window (c). 30 randomly-sampled 

segregating site trajectories are shown for each sampling effort. Black lines each show a single representative segregating 

site trajectory. These lines are included to highlight the extent of sampling noise present under different window sizes. 
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Figure S2. Segregating site trajectories under different levels of transmission heterogeneity. (a) Simulated dynamics of 

infected individuals (I) under an SEIR model with an R0 of 1.6 and incorporating various levels of transmission 

heterogeneity compared to those of the original R0 = 1.6 simulation without transmission heterogeneity. Transmission 

heterogeneity simulations shown are all shifted in time to align their epidemic peaks with the simulation without 

transmission heterogeneity (black line; pH = 0.8). The transmission heterogeneity simulations considered span from low 

levels of transmission heterogeneity (pH = 0.3), to intermediate levels of transmission heterogeneity (pH = 0.15), to high 

levels of transmission heterogeneity (pH = 0.06). (b) Segregating site trajectories for the simulations shown in (a). All 

simulations are densely sampled (40 sequences sampled per 4-day time window). 
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Figure S3. Segregating site trajectories under transmission reduction scenarios implemented at a later time point of the 

simulated epidemic. (a) Simulated dynamics of infected individuals (I) under an SEIR model. Changes in R0 occurred when 

the number of infected individuals reached 1000. The simulation in red has R0 decreasing to 1.1. The simulation in yellow 

has R0 decreasing to 0.75. The simulation in black has R0 remaining at 1.6. (b) Segregating site trajectories for the three 

simulations shown in (a). All simulations are densely sampled (40 sequences sampled per 4-day time window).  
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Figure S4. Epidemiological inference on a simulated trajectory of segregating sites, with lower sampling effort than in 

Figure 2. (a) The number of sampled sequences over time, by time window. Sampling was done in proportion to the 

number of individuals recovering in a time window. In all, 100 sequences were sampled over the course of the simulated 

epidemic. (b) Segregating site trajectory from the set of sampled sequences. (c) Estimation of R0 using SMC. The maximum 

likelihood estimate for R0 was 1.65 [95% CI = 1.30 to 2.06].
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Figure S5. Epidemiological inference on a simulated trajectory of segregating sites, with uniform rather than 

proportional sampling. (a) The number of sampled sequences. Uniform sampling was performed by sampling 13 

sequences per 4-day time window. Time windows with fewer than 13 sequences available were not included in the 

analysis. As such, here, only 494 sequences were used for inference. (b) Simulated segregating site trajectory from the 

sampled sequences. (c) Estimation of R0 using SMC. The estimate for R0 was 1.58 [95% CI = 1.51 to 1.62].  
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Figure S6. Epidemiological inference on the same set of sampled sequences as in Figure 2, binned at different time 

window lengths. For all time window lengths, the same set of 500 proportionally-sampled sequences were used. Columns 

show results by time window length: 1, 2, 4, 6, and 10 days, respectively. Top row (panels a,d,g,j,m): The number of 

sampled sequences over time, binned by time window. Middle row (panels b,e,h,k,n): Segregating site trajectories from 

the set of binned sequences. Bottom row (panels c,f,i,l,o): Estimation of R0 using SMC. Panel c: the estimate for R0 was 

1.64 [95% CI = 1.36 to 1.75]. Panel f: the estimate for R0 was 1.55 [95% CI = 1.36 to 1.79]. Panel i (reproducing the results 

shown in Figure 2): the estimate for R0 was 1.58 [95% CI =1.37 to 1.81]. Panel l: the estimate for R0 was 1.49 [95% CI = 1.31 

to 1.75]. Panel o: the estimate for R0 was 1.59 [95% CI = 1.38 to 1.82]. 
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Figure S7. Resampling of particles during SMC allows for loss of low-weight particles with latent state variables that 

deviate from true ones. (a) Simulated trajectory of the number of segregating sites (dashed red), alongside reconstructed 

trajectories of the number of segregating sites (black lines). Gray lines show reconstructed segregating site trajectories 

from particles that were randomly sampled throughout the SMC procedure. (b) Simulated dynamics of susceptible 

individuals (dashed red), alongside reconstructed dynamics of susceptible individuals (black lines). Gray lines show 

reconstructed susceptible dynamics from particles that were randomly sampled throughout the SMC procedure. (c) 

Simulated dynamics of exposed individuals (dashed red), alongside reconstructed dynamics of exposed individuals (black 

lines). Gray lines show reconstructed dynamics of exposed individuals from particles that were randomly sampled 

throughout the SMC procedure. (d) Simulated dynamics of infected individuals (dashed red), alongside reconstructed 

dynamics of infected individuals (black lines). Gray lines show reconstructed dynamics of infected individuals from 

particles that were randomly sampled throughout the SMC procedure. Reconstructed dynamics from randomly sampled 

particles show state variables spanning from the sampled time point to the previous time point only. SMC simulations 

were run with R0 = 1.7 and t0 = 16, corresponding to the parameter combination with the highest mean log-likelihood 

value (see Figure 3a). 
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Figure S8. Joint estimation of the basic reproduction number (R0) and the timing of the index case (t0) using early samples 

from the short, µ = 0.4 simulation, with comparison against PhyDyn. (a) Simulated trajectory of the number of 

segregating sites using early sequences. Sequences were binned into 4-day windows, with 10 individuals sampled from 

each time window. (b) The log-likelihood surface based on a segregating site trajectory shown in panel (a). As in Figure 3a, 

the log-likelihood value shown in each cell is the mean log-likelihood value calculated from 20 SMC simulations and the 

95% CI boundary shown in red contains sets of parameter combinations that fall within 2.966 log-likelihood units of the 

maximum log-likelihood. Blank cells had mean log-likelihood values of negative infinity. (c) Joint density plot for R0 and 

the time of the most recent common ancestor (tMRCA), as estimated using PhyDyn 6 on the same set of 50 sampled 

sequences. Dashed red line in the joint density plot shows the 95% HPD interval of the joint density. The simulation was 

parameterized with a per genome, per transmission mutation rate of µ = 0.4.   
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Figure S9. Inferred phylogenies for the sequences sampled from France, January 23-March 17, 2020. (a) Divergence tree, 

showing the number of nucleotide substitutions from Wuhan/Hu-1. Sequences from France are colored in blue, with dark 

blue coloring indicating sequences that were included in our single-lineage analysis and light blue coloring indicating 

sequences that were excluded from our analysis. Tips colored in gray denote genetically similar sequences sampled from 

outside of France during this time period. (b) Time-aligned maximum likelihood phylogeny, with coloring of sequences as 

in panel (a). (c) Plot showing genetic distances between sequences in the focal (dark blue) clade and the reference 

sequence Wuhan/Hu-1. A linear fit to these data yields a substitution rate of 8.11 x 10-4 substitutions per site per year, 

comparable to other reported substitution rates inferred for SARS-CoV-2 1.  
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Figure S10. Depiction of the segregating sites inference approach using particle filtering. (a) Panel showing an observed 

segregating sites trajectory (top) and a schematic of a state-space model (bottom). A segregating site trajectory is obtained 

from available sequence data by first binning viral samples into consecutive, non-overlapping time windows according to 

their collection dates. The trajectory is then calculated by counting the number of polymorphic sites in the set of viral 

sequences in each time window. In a state-space model, the process model simulates underlying dynamics of latent 

variables over time. Here, the process model comprises the boxes labeled Xi (with i = 0, 1, …T-1, T) and the arrows between 

these boxes. The measurement model (depicted by the arrows between Xi and Yi) relates the underlying state variables to 

the observed data Yi. The observed data are the number of segregating sites over the time windows. (b) The particle 

filtering algorithm starts with a number of particles (shown as gray circles aligned in the first column), each initialized with 

initial state X0. During a time window, the process model of each particle is simulated forward, arriving at a latent state X1 

at the end of the first time window. This is depicted by the black lines connecting the columns of particles. The 

measurement model is then used to calculate the weight of each particle (represented by the size of the light gray circles), 

which is defined as the probability of observing a given number of segregating sites for the time window i (si) based on 

each particle’s simulated dynamics. We used Poisson distribution with rate parameter λ = mean si
sim (see Figure S11). 

Based on their weights, particles are sampled with replacement to generate a new set of particles for the next window. 

This resampling is shown using dotted lines that horizontally connect light gray circles to the gray-colored particles. This 

process continues until the last time window. Overall likelihoods of a given model parameterization are calculated by 

averaging the weights of the particles during each observation time window and then multiplying these average weights 

across time points. 
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Figure S11. Depiction of the state space model. (a) Depiction of an epidemiological SEIR process model. The latent 

variables X in this process model are {S, E, I, and R}. Exposed and infected individuals are categorized by genotype, each 

of which has a unique set of mutations. Genotypes are shown as red-colored integers. A viral genotype of a donor is 

inherited by a recipient unless one or more mutations occur during the transmission event (bottom left).  The occurrence 

of one or more mutations at transmission results in the recipient being infected with a new genotype, with this new 

genotype harboring the new mutation(s) as well as inheriting the existing set of mutations from the donor genotype. New 

mutations are numbered chronologically upwards from the current maximum mutation number. (b) Depiction of the 

measurement model. In addition to simulating the epidemiological dynamics specified by the process model, we keep 

track of the number of individuals of each genotype that have recovered during a given time window. In time window i, 

we then randomly sample ni of these recovering individuals, where ni  denotes the number of viral samples that are binned 

in window i in the empirical data set. We calculate the number of segregating sites in this simulated sample of ni 

sequences. Here, with ni = 4, the number of segregating sites is si
sim = 3. These correspond to mutations 4, 8, and 9, because, 

for each of these sites, not all four sampled individuals carry the mutation. We repeat this process k times, with k ‘grabs’ 

of ni = 4 recovering individuals and then calculate the mean number of segregating sites for that time window across these 

k grabs. Yi in the state space model is given by this mean number of segregating sites in this time window i.  
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Figure S12. The effect of ambiguous nucleotides on the segregating site trajectory for France. (a) Segregating site 

trajectories calculated under different ambiguous nucleotide assumptions. The blue line shows the segregating site 

trajectory under the permissive assumption described in the main text (e.g.,  an R nucleotide matches both an A nucleotide 

and a G nucleotide). Under this assumption, an N nucleotide cannot increase the number of segregating sites observed in 

a time window, and an R nucleotide can only do so if the site at which it is found otherwise carries only T, C, and/or Y 

nucleotides. The green segregating site trajectory assumes that all ambiguous sites are mutations. Under this assumption, 

an N nucleotide increases the number of segregating sites observed in a time window unless that site already has all 4 

nucleotides present, and an R nucleotide increases the number of segregating sites unless both an A and a G nucleotide 

are already present at that site. The orange segregating site trajectory assumes that N nucleotides match existing genetic 

variation but that other ambiguous nucleotides are considered as mutations. (b) Segregating site trajectories, as in panel 

(a), showing only the ambiguous nucleotide assumptions that correspond to the orange and blue lines in panel (a). 
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Table S1. Transmission pairs used to estimate the per-genome, per-transmission event mutation rate µ. Accession 

numbers of the consensus sequences from the donor and the recipient of the transmission pair are provided. 

Study Donor Recipient # SNPs 

Popa et al. 2020 EPI_ISL_419656 EPI_ISL_437993 0 

Popa et al. 2020 EPI_ISL_419656 EPI_ISL_437994 0 

Popa et al. 2020 EPI_ISL_437994 EPI_ISL_437995 0 

Popa et al. 2020 EPI_ISL_437994 EPI_ISL_438017 0 

Popa et al. 2020 EPI_ISL_437994 EPI_ISL_438003 0 

Popa et al. 2020 EPI_ISL_437994 EPI_ISL_438005 0 

Popa et al. 2020 EPI_ISL_437994 EPI_ISL_437998 0 

Popa et al. 2020 EPI_ISL_437994 EPI_ISL_583869 0 

Popa et al. 2020 EPI_ISL_438005 EPI_ISL_438013 0 

Popa et al. 2020 EPI_ISL_438005 EPI_ISL_438014 0 

Popa et al. 2020 EPI_ISL_437998 EPI_ISL_438008 1 

Popa et al. 2020 EPI_ISL_438008 EPI_ISL_438007 1 

Popa et al. 2020 EPI_ISL_583869 EPI_ISL_438011 0 

Popa et al. 2020 EPI_ISL_583869 EPI_ISL_583870 0 

Popa et al. 2020 EPI_ISL_583869 EPI_ISL_438019 0 

Popa et al. 2020 EPI_ISL_583869 EPI_ISL_438016 0 

Popa et al. 2020 EPI_ISL_583869 EPI_ISL_583880 0 

Popa et al. 2020 EPI_ISL_438016 EPI_ISL_438022 0 

Popa et al. 2020 EPI_ISL_438022 EPI_ISL_438038 1 

Popa et al. 2020 EPI_ISL_583870 EPI_ISL_438020 1 

Popa et al. 2020 EPI_ISL_583870 EPI_ISL_438018 0 

Popa et al. 2020 EPI_ISL_583870 EPI_ISL_583871 1 

Popa et al. 2020 EPI_ISL_583870 EPI_ISL_475770 1 

Popa et al. 2020 EPI_ISL_583871 EPI_ISL_583876 0 

Popa et al. 2020 EPI_ISL_583871 EPI_ISL_583877 0 

Popa et al. 2020 EPI_ISL_583871 EPI_ISL_583872 0 

Popa et al. 2020 EPI_ISL_583872 EPI_ISL_583875 0 

Popa et al. 2020 EPI_ISL_583872 EPI_ISL_583878 0 

Popa et al. 2020 EPI_ISL_583875 EPI_ISL_438052 1 

Popa et al. 2020 EPI_ISL_583875 EPI_ISL_438053 0 

Popa et al. 2020 EPI_ISL_583875 EPI_ISL_438051 0 

Study Donor Recipient # SNPs 

Braun et al. 2021 EPI_ISL_484813 EPI_ISL_484807 0 

Braun et al. 2021 EPI_ISL_484919 EPI_ISL_484926 1 

Braun et al. 2021 EPI_ISL_484919 EPI_ISL_484950 0 

Braun et al. 2021 EPI_ISL_484926 EPI_ISL_484950 1 

Braun et al. 2021 EPI_ISL_484921 EPI_ISL_484961 0 

Braun et al. 2021 EPI_ISL_484921 EPI_ISL_484818 0 

Braun et al. 2021 EPI_ISL_484961 EPI_ISL_484818 0 

Braun et al. 2021 EPI_ISL_484952 EPI_ISL_484911 0 

Braun et al. 2021 EPI_ISL_484973 EPI_ISL_484977 0 

Braun et al. 2021 EPI_ISL_484976 EPI_ISL_495484 0 

Braun et al. 2021 EPI_ISL_495461 EPI_ISL_509895 0 

Braun et al. 2021 EPI_ISL_509876 EPI_ISL_509982 0 

Braun et al. 2021 EPI_ISL_509876 EPI_ISL_509991 0 

Braun et al. 2021 EPI_ISL_509876 EPI_ISL_509986 0 

Braun et al. 2021 EPI_ISL_509982 EPI_ISL_509991 0 

Braun et al. 2021 EPI_ISL_509982 EPI_ISL_509986 0 

Braun et al. 2021 EPI_ISL_509991 EPI_ISL_509986 0 

Braun et al. 2021 EPI_ISL_509897 EPI_ISL_509878 0 

Braun et al. 2021 EPI_ISL_509897 EPI_ISL_509866 2 

Braun et al. 2021 EPI_ISL_509878 EPI_ISL_509866 2 

Braun et al. 2021 EPI_ISL_428254 EPI_ISL_428256 0 

Braun et al. 2021 EPI_ISL_436627 EPI_ISL_436628 0 

Braun et al. 2021 EPI_ISL_425176 EPI_ISL_427427 0 

James et al. 2020 EPI_ISL_467433 EPI_ISL_467467 2 

James et al. 2020 EPI_ISL_467433 EPI_ISL_467435 1 

James et al. 2020 EPI_ISL_467433 EPI_ISL_467458 1 

James et al. 2020 EPI_ISL_467446 EPI_ISL_467468 0 

James et al. 2020 EPI_ISL_467446 EPI_ISL_467451 0 

James et al. 2020 EPI_ISL_467444 EPI_ISL_467466 1 

James et al. 2020 EPI_ISL_467444 EPI_ISL_467456 1 

James et al. 2020 EPI_ISL_467444 EPI_ISL_467455 1 
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Popa et al. 2020 EPI_ISL_438051 EPI_ISL_438085 0 

Popa et al. 2020 EPI_ISL_475770 EPI_ISL_583881 1 

Popa et al. 2020 EPI_ISL_583880 EPI_ISL_438025 0 

Popa et al. 2020 EPI_ISL_438039 EPI_ISL_438063 0 

Popa et al. 2020 EPI_ISL_438100 EPI_ISL_438098 1 

Popa et al. 2020 EPI_ISL_438035 EPI_ISL_438034 0 

Popa et al. 2020 EPI_ISL_438035 EPI_ISL_438036 0 

Popa et al. 2020 EPI_ISL_438035 EPI_ISL_438037 0 

Braun et al. 2021 EPI_ISL_421299 EPI_ISL_421306 0 

Braun et al. 2021 EPI_ISL_421323 EPI_ISL_421290 0 

Braun et al. 2021 EPI_ISL_421327 EPI_ISL_421319 0 

Braun et al. 2021 EPI_ISL_421328 EPI_ISL_421325 0 

Braun et al. 2021 EPI_ISL_421332 EPI_ISL_421287 0 
 

James et al. 2020 EPI_ISL_467444 EPI_ISL_467432 1 

James et al. 2020 EPI_ISL_467444 EPI_ISL_467433 0 

James et al. 2020 EPI_ISL_467444 EPI_ISL_467442 0 

Lythgoe et al. 2021 NA NA 0 

Lythgoe et al. 2021 NA NA 2 

Lythgoe et al. 2021 NA NA 1 

Lythgoe et al. 2021 NA NA 0 

Lythgoe et al. 2021 NA NA 0 

Lythgoe et al. 2021 NA NA 0 

Lythgoe et al. 2021 NA NA 1 

Lythgoe et al. 2021 NA NA 2 

Lythgoe et al. 2021 NA NA 0 
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Sequence data downloaded from GISAID. 
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Chapter 3

Common misspecification of the

generation interval leads to the

underestimation of R in

phylodynamic inference

3.1 Abstract

Generation intervals are distributions that describe the time between infection and

onward transmission. They are a key epidemiological quantity because, together with

the reproduction number R, they determine the population-level growth rate of a

pathogen and its doubling time. Conversely, when fitting epidemiological models

to data, assumed generation intervals impact R inference. This is well-known from

studies that have used case data for R inference, with many studies emphasizing the

importance of choosing an accurate distribution for the generation interval. In the

phylodynamic inference of R, the generation interval distribution is often not explicitly

mentioned, and the impact of generation interval misspecification has been studied less.
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Here, we explore the impact of a commonly assumed (but rarely empirically accurate)

exponential generation interval distribution on the estimation of R in phylodynamic

inference. Using phylodynamic simulations and inference on these simulated datasets,

we find that during the early exponential growth of an epidemic, if the generation

interval is assumed to be exponentially distributed when it actually has a lower

variance, then estimates of R will be biased low. Furthermore, uncertainty in the

biased R estimates will be small. This underestimation under exponential distribution

is largely restored by using the longer mean generation interval, suggesting that the

underestimation could be explained by the r−R relationship. Our work highlights the

importance of acknowledging implicit generation interval assumptions in phylodynamic

inference and points to the need for methodological developments in phylodynamic

inference to provide greater flexibility in the specification of accurate generation

intervals.
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3.2 Introduction

The time between the infection of an individual and onward transmission from that

individual is known as the generation interval (Svensson, 2007). Together with the

reproduction number R, the generation interval is key in determining how fast an

infectious disease will spread through a population: a disease with a shorter generation

interval will spread more rapidly through a population than a disease with a longer

generation interval, provided that they have the same supercritical R. Generation

intervals also play an important role in R estimation. During the exponential growth

of an early epidemic, reproduction numbers are generally calculated from intrinsic

growth rates r, which could be inferred from case data to quantify the rate at which

the number of incidence changes over time. The calculation of R from r depends

on the relationship between r and R, which is a function of the generation interval

(Wallinga and Lipsitch, 2007).

The generation interval between a donor-recipient pair is a specific, single length

of time. However, there is inherent variation in the generation interval between

transmission pairs as well as between a donor and their recipients in instances where

the realized number of secondary infections exceeds one. To capture this variation, the

generation interval of an infectious disease is generally described with a distribution

rather than by a single value. Often, the empirical shape of the distribution is not

known and is difficult to estimate as infection of an individual is rarely observed (Park

et al., 2022).

In place of the empirical distribution, theoretical distributions are often used to

model the generation interval. These include the gamma distribution, the Weibull

distribution, and the log-normal distribution, all of which have only positive/non-

negative support. This ensures that an individual does not transmit an infection

prior to themselves becoming infected. The theoretical distributions that are most

commonly used to model the generation interval often have high probability densities
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around their mean values, such that the variance of the distribution is lower than its

mean. This reflects observed biological characteristics of most infectious diseases, such

as secondary infections rarely occurring immediately following a primary infection.

Appropriately capturing the variation in the generation interval (rather than only the

mean of this distribution) is crucial when estimating the reproduction number from

the epidemic growth rate, as it contributes to the quantitative relationship between r

and R (Wallinga and Lipsitch, 2007; Park et al., 2019).

Many models implicitly assume a generation interval distribution. In the classic

susceptible-infectious-recovered (SIR) compartmental model, the generation interval

is exponentially distributed, with the mean being the inverse of the rate of leaving

the infectious compartment. More realistic generation interval distributions can be

implemented by incorporating an additional compartment in the model that represents

individuals who have been exposed (E) but have not yet become infectious. In these

SEIR models, an infected individual stays in the exposed compartment before moving

to the infectious compartment, delaying the time until a secondary infection can

occur. This results in the generation interval distribution that is skewed toward later

time-since-infection time points.

In practice, however, exponentially distributed generation intervals are often

assumed, likely because of mathematical simplicity. These distributions have the

highest probability density at small values and generally higher coefficients of variation

than empirical generation interval distributions. The assumption of exponentially

distributed generation interval (when the true generation interval distribution has

a smaller coefficient of variation) is known to lead to lower estimates for R when

using time series of case data for R inference (Wallinga and Lipsitch, 2007). This

is because the intrinsic growth rate r is usually estimated first from case data, and

the R corresponding to this growth rate is smaller under an assumed exponential

distribution than the R corresponding to this growth rate under a generation interval
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distribution with a smaller (< 1) coefficient of variation (Wallinga and Lipsitch, 2007).

While misspecification of the generation interval distribution is increasingly being

recognized as introducing biases in epidemiological inference based on incidence data,

little attention has focused on generation interval misspecification in phylodynamic

inference. In phylodynamics inference approaches, the generation interval distribution

is oftentimes implicitly assumed. For example, birth-death models implicitly assume

an exponentially distributed generation interval because they assume a constant

birth rate (corresponding to a constant transmission rate) and a constant death rate

(corresponding to an exponentially distributed infectious period).

Here, we explore the impact of generation interval misspecification on phylodynamic

inference of the reproduction number R. Because the most common assumption in

phylodynamic inference is that the generation interval distribution is exponentially

distributed, we focus specifically on the impact of this misspecification when the ‘true’

(that is, empirical) generation interval distribution has a smaller coefficient of variation

of less than one. Our approach relies on the simulation of mock viral sequence datasets

and the subsequent application of phylodynamic inference approaches to these mock

datasets to quantify the biases in R estimation under the implicit assumption of an

exponentially distributed generation interval.

3.3 Methods

3.3.1 Model structure for simulating mock datasets

We forward-simulated epidemiological dynamics using a susceptible-exposed-infectious-

recovered (SEIR) model without susceptible depletion, which reduces to an exposed-

infectious (EI) model (Figure 3.1A). In this model, a newly infected individual enters

the exposed (E) compartment. An exposed individual either becomes infectious at

rate γ or is sampled, which occurs at rate ψ. Here, we assume that the sampled
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individual does not transmit the infection after being sampled for the pathogen genome

and thus is removed from the exposed compartment. Individuals who transition to

the infectious class (I) recover from this class at rate δ or are removed from this

compartment through sampling at rate ψ. In this model, an individual stays in

the exposed (E) and infectious (I) compartments for an average of LE and LI days,

respectively. LE is given by 1
γ+ψ

and LI is given by 1
δ+ψ

. The generation interval of

this model can be approximated as the convolution of two exponential distributions

with means of LE and LI (Figure 3.1B). With this compartmental structure, the

reproduction number R in the model is given by:

R = (
β

δ + ψ
)(

γ

γ + ψ
) (3.1)

In our model, we assumed that the sampling occurs from both exposed and

infectious compartments so that the assumption regarding the sampling process aligns

with the assumption in the constant birth-death-sampling model. The sampling

probability ps is calculated as:

ps = (
ψ

γ + ψ
) + (

γ

γ + ψ
)(

ψ

δ + ψ
) (3.2)

The first term captures the probability that an individual who becomes infected is

sampled while in the E compartment. The second term captures the probability that

an individual who becomes infected is sampled while in the I compartment. The

second term includes the factor ( γ
γ+ψ

) because not all individuals who become infected

transition to the infectious class (some are sampled in the E class and therefore

removed from being infected).

We simulated the epidemiological dynamics from this compartment model using

Gillespie’s tau-leap algorithm (Gillespie, 2001). For the rate of becoming infectious
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(γ) and the rate of recovery (δ), we used 1/4 days−1 and 1/3 days−1, respectively. For

the sampling rate, we used ψ = 0.0015 days−1, which, using equation (2), corresponds

to the sampling probability ps of approximately 1%. The per-capita transmission rate

(β) was set to 1.01 days−1, which, using equation (1), corresponds to a reproduction

number of 3.0. Each simulation started with an index case in the infectious (I)

compartment. Simulations were run for 40 days using a τ of one minute.
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Figure 3.1: (A) Epidemiological model, consisting of exposed and infectious individu-
als. Individuals become infected by contact with infectious individuals and enter the
exposed compartment. Individuals leave the exposed compartment by either transi-
tioning to becoming infectious (at rate γ) or by being sampled (at rate ψ). Individuals
become infectious by transitioning from the exposed class and become no longer
infectious by recovering (at rate δ) or by being sampled (at rate ψ). (B) True and
misspecified generation interval distributions. The true distribution is the generation
interval distribution specified by the epidemiological model shown in panel A. Also,
exponential distributions with the same mean (orange line) as the true distribution
and adjusted mean (green line) that have the same r as the true distribution are
shown. (C) The relationship between the reproduction number R and the intrinsic
growth rate r under various generation interval distribution assumptions. The red
dashed lines indicate true R and r values.

In our stochastic epidemiological simulations, we kept track of who-infected-whom

in each simulation. To simulate the evolutionary and epidemiological dynamics, we
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assigned a viral genotype to each infected individual. At the beginning of a simulation,

the index case has a “reference” genotype with ancestral alleles only, and all other

genotypes have a set of derived alleles relative to this reference genotype. Denoting

genotypes by the set of derived alleles they carry, the reference genotype has an empty

set (Gref = Ø) of mutated sites. In comparison, genotype 1 (the first new genotype

produced) may carry two mutated sites. These would be chronologically indexed, such

that G1 = {1, 2}.

Once an individual is newly infected, the individual inherits the mutated sites of the

infector’s genotype plus any additional mutations that occur during the transmission

event. Additional mutations would result in a new genotype. We model mutation

during the transmission event as a Poisson process where the number of mutations

that occur during a transmission event is drawn from a Poisson distribution with

mean pm. We set the per-genome, per-transmission mutation rate pm to 0.33 based on

estimates from SARS-CoV-2 transmission pairs (Park et al., 2023). Since we consider

viral evolutionary dynamics early on during an epidemic, we assume that mutations

always occur at a new site rather than hitting the same site multiple times. We,

therefore, adopt an infinite sites assumption. Finally, we assume that all mutations

are fitness-neutral, consistent with assumptions made in the majority of phylodynamic

inference approaches.

Once a simulation has finished, viral genotypes of sampled individuals are converted

to nucleotide sequences for downstream BEAST analyses. Ancestral alleles for each

site are first randomly chosen from among the four nucleotide bases (‘A’, ‘T’, ‘G’, and

‘C’). The reference genotype is set as the genome carrying all ancestral alleles. Derived

alleles are then randomly chosen from among the remaining three nucleotide bases at

each site. If the viral genotype of an individual Gi has site j as an element, virus i

then has the derived allele at site j. (If site j is not included in the viral genotype,

then virus i has the ancestral allele at the site.)
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3.3.2 Bayesian phylodynamic analyses

All phylodynamic analyses were performed using BEAST v. 2.7.5 (Bouckaert et al.,

2019) using three different models: (1) the exponential growth coalescent model

(Drummond et al., 2002), (2) the multi-type birth-death model implemented in the

BDMM Prime package (Scire et al., 2022), (Vaughan and Stadler, 2024), and (3)

the PhyDyn coalescent model (Volz and Siveroni, 2018). The BDMM Prime is the

extended version of the original BDMM package (Kühnert et al., 2016), which is for

multi-type birth-death models with migration (Kühnert et al., 2016). This model

can incorporate the structured population, which could also be parameterized as a

compartment model (see 3.3.2 for details) by considering each compartment as a

“subpopulation” or a “deme” and transition between each compartment as “migration”

(Kühnert et al., 2016). The PhyDyn model is a coalescent-based model that allows

for complex population dynamics as well as population structure using generalized

coalescent rates (Volz, 2012).

For each of these three models, we specified the same model of sequence evolution:

the Jukes-Cantor substitution model (Jukes and Cantor, 1969) and a strict molecular

clock. For each model, we calculated the reproduction number from the estimated

parameters of the model. For example, for the exponential growth coalescent model,

we calculated R from the exponential growth rate, and for the birth-death model and

for PhyDyn, we calculated R from the estimated transmission rate. We obtained

the median and 95% HPD of the calculated reproduction numbers using a custom

script (available on https://github.com/yspark576/misspecified_generation_

interval). All BEAST MCMC chains were run sufficiently long to result in effective

sample size (ESS) values larger than 200 for the parameters of interest. ESS values

were calculated using LogAnalyser within the BEAST2 package. Convergence of the

MCMC chains was further assessed using Tracer v. 1.7.2 (Rambaut et al., 2018).

To investigate the impact of generation interval misspecification on phylodynamic

https://github.com/yspark576/misspecified_generation_interval
https://github.com/yspark576/misspecified_generation_interval
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inference, we first performed each of these three phylodynamic analyses under different

assumptions of the generation interval. First, to assess the bias introduced by a

misspecified exponential distribution, we compared the estimation under (1) the true

generation interval distribution and (2) the generation interval distribution that has

the same mean but is exponentially distributed. We further explored the results under

(3) an exponential distribution parameterized with a mean generation time that would

reproduce the true intrinsic growth rate r of the epidemic (Figure 3.1C). We performed

this latter analysis to determine whether a misspecified exponential distribution would

yield unbiased estimates of R when the mean of this distribution was set to a value

that would reproduce the correct epidemic growth rate.

Phylodynamic analysis under the coalescent exponential model

The coalescent model with exponential growth does not directly estimate the reproduc-

tion number R. Instead, the model estimates the intrinsic growth rate r. The estimate

of r is then used to calculate the estimated R using the r-R relationship provided

in (Wallinga and Lipsitch, 2007). This calculation requires the specification of the

generation interval distribution. Under the ‘true’ generation interval distribution of

our exposed-infectious (EI) compartment model (Figure 3.1), the r-R relationship is

given by (Wallinga and Lipsitch, 2007):

R = (1 + rLE)(1 + rLI). (3.3)

Given our δ, γ, and ψ, the LE and LI were 3.976 and 2.987 days, respectively,

close to the values of 4.0 and 3.0 days, respectively, which would have been the case

in the absence of sampling. We, therefore, use this relationship to calculate R from

estimated r values under generation interval assumption (1) (the true distribution).

Under an exponential generation time distribution, the relationship between r and R
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is given by (Wallinga and Lipsitch, 2007):

R = (1 + r′LG) (3.4)

where r′ is the growth rate under an exponentially distributed generation interval

and LG is the mean generation interval, which is given by LE + LI = 6.963. We use

this relationship to calculate R from estimated r′ values under generation interval

assumption (2) (the exponential distribution parameterized with the true mean

generation interval LG). For generation interval assumption (3), we used the same

equation (4) but with the mean generation interval adjusted to match the true intrinsic

growth rate. This adjusted mean (L′
G) is calculated by setting r = r′, and solving

for LG. Under R = 3, the adjusted mean generation interval is calculated to be

L′
G = 9.470 days.

Phylodynamic analysis under the birth-death model

The true generation interval from the EI model structure (assumption 1) was modeled

using the multi-type birth-death model implemented in the BDMM-Prime package for

BEAST 2. In this multi-type birth-death model, the exposed (E) and infectious (I)

compartments were considered as separate “demes”. Transmission is considered as a

“birth” from deme I to deme E. Individuals who become infectious “migrate” from

deme E to deme I, and recovery of an individual corresponds to a “death” from deme

I. Consistent with the structure of our simulation model, individuals in demes E

and I can be sampled. Individuals, once sampled, are removed from being considered

infected.

We set the migration rate from deme E to I to γ, the death rate from deme I

to δ, and the sampling rate from demes E and I to ψ. We estimated the birth rate

from deme I to deme E, which corresponds to β, along with the time to the index

case (T0), which is the time between the last sample date and the infection of the
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index case. The birth rate from deme I to deme E corresponds to the parameter β in

Figure 3.1A. We used a uniform prior distribution for β with lower and upper bounds

of 0.337 and 3.368 days−1, respectively, corresponding to lower and upper bounds on

R of 1 and 10, respectively. For the time to the index case (T0), the lower bound for

the uniform prior from 0 to infinity, where t0 could be anytime before the last sample

date. For the analyses, we further provided accurate information about the deme (E

or I) from which each individual was sampled.

The exponentially distributed generation interval distributions (assumptions 2 and

3) were implemented using a single-type birth-death model by setting the number of

demes to 1 in the BDMM-Prime model. In the single-type birth-death model, each

individual stays infectious for 1/(δ + ψ), and thus, the mean generation interval from

the model is 1/(δ + ψ). Also, the sampling proportion ps is fixed to the same value

used in the true model. Based on this, the death rate δ and the sampling rate ψ

for the model were calculated from ps =
ψ
ψ+δ

and ψ + δ = 1/LG, as ψ = ps/LG and

δ = (1− ps)/LG. These parameters were then fixed at these calculated values in the

analyses.

For assumption (3), L′
G was used instead of LG to calculate the death rate δ and

the sampling rate ψ. As for assumption (1), we estimated the transmission rate β

and the time to the index case (T0). We used a uniform prior for β with lower and

upper bounds, respectively, corresponding to R values of 1 and 10, using the equation

β = R(δ + ψ). For the time to the index case, we used the same uniform prior as for

assumption (1). Table 3.1 summarizes the priors used in the BDMM-Prime model

under all three generation interval distribution assumptions.

Phylodynamic analysis under a coalescent model with complex dynamics

To incorporate the EI model under a structured coalescent framework, we used the

PhyDyn package implemented in BEAST2 (Volz and Siveroni, 2018). As in the multi-
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type birth-death model, under the assumption of true generation interval distribution,

transmission is modeled as a birth event from deme I to deme E, the transition from

exposed to infectious compartments is modeled as a migration event from deme E to

deme I, and recovery from the infectious class is modeled as a death from deme I.

Sampling events from compartments E and I are modeled as death events.

As in the birth-death analyses, the values of parameters ψ, γ, and δ were fixed at

their true values, and we estimated β. For β, uniform priors with lower and upper

bounds that correspond to the R of 1 and 10, respectively, were used. As before, the

compartment from which each sampled individual was sampled was specified. The

exponential generation interval distributions were implemented with a single infected

compartment where individuals become no longer infectious, either through recovery or

sampling, with rates 1/LG and 1/L′
G, respectively, for generation interval distribution

assumptions (2) and (3). With the recovery rate fixed, the per-capita transmission

rate β was estimated. Table 3.2 summarizes the priors used in the PhyDyn model

under all three generation interval distribution assumptions. Note that sampling is

not explicitly incorporated in PhyDyn models. It is considered as a removal from the

compartment.

3.4 Results

Below, we first compare the estimated R under the true and misspecified exponential

distribution to determine whether the misspecification leads to bias in phylodynamic

inference (indicated with blue and orange in Figures 3.3, 3.4, and 3.5). In the following

section, we further investigate whether the bias could be explained by the r − R

relationship through the exponential distribution with adjusted mean (indicated with

green in Figures 3.3, 3.4, and 3.5).
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3.4.1 R is systematically underestimated under a misspecified

exponential distribution with true mean

Coalescent exponential growth model

We simulated 30 mock datasets and attempted to first estimate the intrinsic growth

rate r using the coalescent exponential growth model implemented in BEAST2 (Figure

3.2) for each of these datasets. Coalescent inference with 6 of the 30 mock datasets

did not reach convergence even after 24 million chains. These six datasets each had a

small sample size and contained little genetic variation. Below, we therefore focus on

the 24 simulations where effective sample sizes exceeded 200. As we generated our

simulated datasets using the EI model with an R of 3.0, the exponential growth rate

is expected to be 0.211 per day from Equation 3.3.

Of the 24 datasets, 22 had the true value of r contained within their 95% HPD

(Figure 3.2A). The median estimated r values are slightly higher than the true value

of r = 0.211 per day, with a bias toward higher median growth rates. This bias was

statistically significant (one-sample Wilcoxon rank test, p < 0.05, Figure 3.2B) and is

consistent with the push-of-the-past effect (Nee et al., 1994). (Stochastic simulations

of an emerging epidemic can result in various outcomes, including extinction. However,

we only considered the replicates with surviving epidemics, which tend to have a “flying

start”. As a result, the effective growth rate from those simulations is higher, which

can lead to the overestimation under the deterministic assumption of the coalescent

model.)

We converted these r estimates into R estimates using equation 3.3 for the true

generation interval distribution and using equation 3.4 for the exponential generation

interval distribution with the true mean LG. Under the true generation interval

distribution (assumption 1), the true R was included in the 95% HPD interval in 22

out of 24 datasets (Figure 3.3A). As expected, the dataset that failed to recover the
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Figure 3.2: Estimated growth rates (r) from the exponential-growth coales-
cent model. (A) The median of the posterior distribution is indicated with dots, and
the 95% HPD interval is shown as boxes surrounding the median. The dashed red
line indicates the true r. Simulations are sorted by the estimated median of r. (B)
Box plot for the median of the posterior distribution (C) Box plot for the size of 95%
HPD interval.

true R was the dataset that failed to recover the true r. The median of the estimated

R was slightly higher than the true value (one-sample Wilcoxon rank test, p = 0.041,

Figure 3.3 B), reflecting the slight bias in estimates of growth rates.

Under the exponential distribution with the same mean as the true distribution,

however, the median of the R0 estimate was significantly lower than the true value (one-

sample Wilcoxon rank test, p < 0.001), and the true R was included in the 95% HPD

of only 12 of the 24 datasets. In the remaining datasets, the R was underestimated,

and the 95% HPD failed to capture the true value. This suggests that even when the

true r was recovered, R tends to be underestimated under a misspecified exponential

distribution parameterized with the true mean. These results are consistent with

findings based on case data (Wallinga and Lipsitch, 2007; Park et al., 2019). This

underestimation could be explained by the higher growth rate under the exponentially

distributed generation interval (Figure 3.1C). To match the estimated growth rate

from the data, the model uses an exponential distribution assumption, which leads

to a lower R estimate, thereby compensating for the distribution’s naturally higher
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growth dynamics.

In addition to the underestimation of R itself, the sizes of the 95% HPD interval

estimates were also smaller under the misspecified exponential distribution compared

to the true distribution (Mann-Whitney U rank test, p < 0.001, Figure 3.3C). This

could also be explained by the r −R relationship under different generation intervals

(Figure 3.1C). Given the lower and upper bounds of the 95% HPD interval for r as

(rl, rh), we can approximate the width of the 95% HPD interval for R by calculating

f(rh) − f(rl), since R = f(r) is a monotonically increasing function. Since the

derivative of R = f(r) is greater for the true distribution compared to the exponential

distribution, f(rh)−f(rl) is greater for the true distribution, and thus the uncertainty is

underestimated under the exponential distribution. The underestimate of uncertainty

in estimates with a misspecified exponential distribution emphasizes that careful

interpretation is crucial under the misspecified generation interval.
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Figure 3.3: Estimates of R from the exponential-growth coalescent model
with different generation interval distributions. (A) The median of the posterior
distribution is indicated with dots, and the 95% HPD interval is shown as boxes
surrounding the median. The dashed red line indicates the true R. Simulates are
shown as ordered in Figure 3.2A. (B) Box plot for the median of the posterior
distribution (C) Box plot for the size of 95% HPD interval. For (B) and (C), the
asterisk indicates the p-value for the Mann-Whitney U rank test (p < 0.001 for ’***,’
p < 0.01 for ’**,’ and p < 0.05 for ’*’) comparing two distributions.
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Birth-death model

Unlike in the exponential-growth coalescent model, where r is estimated and the

generation interval distribution is only used thereafter to convert r to R, the birth-

death model incorporates the generation interval distribution into the inference itself.

Therefore, separate analyses were performed for each of the three generation interval

distribution assumptions using the same simulated datasets. In Figure 3.4, we show

the same data set as shown in Figure 3.3 for the exponential-growth coalescent model.

For the birth-death model, to obtain the estimation for R, we converted the

sampled β into R using equation 3.3.1 and obtained the median and 95% HPD

interval. Among the 24 datasets, 20 datasets had 95% HPD interval that successfully

captured the true value (Figure 3.4A). The four datasets that failed to capture the

true value underestimated the reproduction number. The median estimated R values

were slightly lower than the true value (one-sample Wilcoxon rank test, p = 0.047)

with a mean of 2.896 (Figure 3.4B).

Under the exponentially distributed generation interval, implemented as a single

deme, the true values were captured in only 4 of the 24 datasets (Figure 3.4A). The

median of the estimated R was significantly lower than the true value one-sample

Wilcoxon rank test, p < 0.0001) with a mean of 2.412 (Figure 3.4B). This suggests

that the R is underestimated even when the r −R relationship was not used directly

to estimate the reproduction number as in the exponential growth coalescent model.

Even when the generation interval is indirectly assumed in the model, the generation

interval distribution affects the estimation of the reproduction number.

As in the exponential growth coalescent model, the size of the 95% HPD interval

was also smaller under the exponential distribution (Mann-Whitney U rank test,

p < 0.001; Figure 3.4C), with a mean of 0.858 and 0.513 for the true and exponential

distribution, respectively. This again indicates that misspecification of the generation

interval distribution using an exponential distribution will bias estimates of R to be
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low and that the uncertainty in these estimates will also be too low.
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Figure 3.4: Estimates of R from the BDMM model with different generation
interval distributions. (A) The median of the posterior distribution is indicated
with dots, and the 95% HPD interval is shown as boxes surrounding the median. The
dashed red line indicates the true R. Simulates are shown as ordered in Figure 3.2A.
(B) Box plot for the median of the posterior distribution (C) Box plot for the size
of 95% HPD interval. For (B) and (C), the asterisk indicates the p-value for the
Mann-Whitney U rank test (p < 0.001 for ’***,’ p < 0.01 for ’**,’ and p < 0.05 for
’*’) comparing two distributions.

Coalescent model with complex dynamics (PhyDyn model)

Similarly to the birth-death model, the PhyDyn model incorporates the generation

interval distribution into the inference itself. Separate analyses were, therefore,

performed again for each of the three generation interval distribution assumptions

using the same simulated datasets. Figure 3.5 shows the same 24 simulated datasets

from Figures 3.3 and 3.4.

As in the BDMM model, we obtained samples of the transmission rate β from the

MCMC chains and converted them to R to obtain the posterior distribution for R.

Under the true distribution, the reproduction number was well estimated, in general,

as expected. The PhyDyn analyses presented here are still preliminary, as ESS hasn’t

been reached in many replicates. Across the 24 datasets, the obtained 95% HPD

interval captured the true value of R in 22 datasets (Figure 3.5A). The two datasets
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overestimated the reproduction number. The medians of the posterior distribution

were slightly higher, with a mean of 3.149 (Figure 3.5B), but was not significantly

different from the true value (one-sample Wilcoxon rank test, p = 0.08).

Consistent with the results from the coalescent and birth-death models, the

misspecified exponentially distributed generation interval parameterized with the true

mean leads to an underestimation of the reproduction number. Only 11 datasets

had their 95% HPD interval capturing the true value, and the underestimation of

R was observed in 13 datasets (Figure 3.5A). The median was significantly lower

than the true value (one-sample Wilcoxon rank test, p < 0.001), and the mean value

was 2.580 across 24 datasets (Figure 3.5B). The size of the 95% HPD interval under

the exponential distribution was significantly smaller (Mann-Whitney U rank test,

p < 0.001; Figure 3.5C). This shows that the underestimation of R and the uncertainty

in the estimates under exponential distribution were observed across tree models,

suggesting the importance of the generation interval distribution in phylodynamic

inferences.

3.4.2 Underestimation of R can be explained by the R − r

relationship

The analyses in Section 3.4.1 indicated that R was systematically underestimated

when the distribution of the generation interval was misspecified with an exponential

distribution rather than with the true distribution that has a smaller variance. Similar

underestimation is also observed in case-based inferences relying on the growth rate to

estimate R, as the misspecified variation affects the r −R relationships (Park et al.,

2019; Gostic et al., 2020). The exponential distribution, which has higher variation

than the true distribution, has a higher density at a shorter generation interval, which

implies that infections tend to occur earlier than in the true distribution (orange

and blue lines in Figure 3.1B, but also see (Park et al., 2019)). These infections
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Figure 3.5: Estimates of R from the PhyDyn model with different generation
interval distributions. (A) The median of the posterior distribution is indicated
with dots, and the 95% HPD interval is shown as boxes surrounding the median. The
dashed red line indicates the true R. Simulates are shown as ordered in Figure 3.2A.
(B) Box plot for the median of the posterior distribution (C) Box plot for the size
of 95% HPD interval. For (B) and (C), the asterisk indicates the p-value for the
Mann-Whitney U rank test (p < 0.001 for ’***,’ p < 0.01 for ’**,’ and p < 0.05 for
’*’) comparing two distributions.

drive the faster growth of the epidemic and, therefore, lead to a higher growth rate

given a reproduction number (Park et al., 2019). Namely, under the misspecified

exponential distribution, the estimated r corresponds to a lower R compared to the

true distribution with smaller variance (orange and blue lines in Figure 3.1C, but also

see Park et al. (2019); Gostic et al. (2020); Diekmann and Heesterbeek (2000)).

In the following section, motivated by case-based inferences, we investigate whether

the growth rate can explain the underestimation of R in phylodynamic inferences

by performing phylodynamic analyses under a new exponential distribution that is

expected to obtain the true growth rate given a true reproduction number (green line

in Figure 3.1C). The new exponential distribution has a higher mean (L
′
G) of 9.470,

equivalent to the true mean (LG) of 6.963. The calculation of the adjusted mean is

discussed in Section 3.3.2. If the growth rate is the main driver of the underestimation,

estimates under the exponential distribution with the adjusted mean will perform

better than those with the true mean.
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Coalescent exponential model

We re-calculated the reproduction number from the estimated growth rate (3.2)

assuming an exponential distribution with the adjusted mean (L
′
G). As expected, the

underestimation observed with an exponential distribution parameterized with the

same mean as the true distribution is no longer observed. Among the 24 analyzed

datasets, the true R was recovered in 22 datasets, as under the true generation interval.

The datasets that failed to recover the true R were the same datasets that failed to

recover the true r and true R under the true generation interval distribution. The

median of the posterior distribution of R was slightly higher than the true value, with

a mean of 3.194 on average (one-sample Wilcoxon rank test, p < 0.001, Figure 3.3B).

The median of the estimated R was significantly different from that under the

exponential distribution parameterized with the true mean (Mann-Whitney U rank

test, p < 0.001) but was not significantly different from that under the true generation

interval distribution (Mann-Whitney U rank test, p > 0.05). This further supports

that the underestimation observed under exponential distribution with true mean is

due to the r −R relationship (Figure 3.1C). Unlike the exponential distribution with

a true mean that has a higher growth rate, the new exponential distribution with an

adjusted mean has a comparable growth rate, as the adjusted mean is longer than

the true mean. Therefore, the new distribution does not lead to a lower R estimate

to compensate for the higher growth, as observed under the exponential distribution

using the true mean.

The size of the 95% HPD interval was not significantly different under the exponen-

tial distribution with true mean and under the exponential distribution with adjusted

mean (Mann-Whitney U rank test, p > 0.05). However, the mean of the 95% HPD

interval size was larger under the adjusted mean, with 1.603 and 1.178, respectively.

Compared to the true distribution, the 95% HPD interval size was again comparable

to those under the true distribution (Mann-Whitney U rank test, p > 0.05). However,
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the mean of the interval size was slightly lower under the exponential distribution

with adjusted mean, with the mean of 1.602, compared to the mean of 2.191 under

the true distribution (Figure 3.3C).

Again, this can be explained with the slope for R = f(r) under the true and

exponential distribution (Figure 3.1C). The R = f(r) function for the true distribution

and the exponential distribution with the adjusted mean intersects at the true R.

However, as f(r) is a concave function, for r that is less than the true value, the R for

the true distribution is lower than that for the exponential distribution with adjusted

mean. Likewise, for r that is greater than the true value, the converted R is higher

under the true distribution. Together, these lower R for r < rtrue and greater R for

r > rtrue leads to the wider 95% HPD interval for the true distribution.

Birth-death model

Similarly, under the birth-death model, the exponential distribution with the longer

mean resulted in higher R estimates that were closer to the true value. Across

24 datasets, the true R was recovered in 20 datasets (Figure 3.4A). Among the

four datasets that failed to recover R, two underestimated the true value, and two

overestimated the true value. The median of the posterior distribution of R was 2.991

on average, which was very close to the true value of 3.0 (one-sample Wilcoxon rank

test, p = 0.843). The median estimates of R were significantly different from those

under the exponential distribution with the original mean (Mann-Whitney U rank

test, p < 0.001) but not significantly different from those under the true distribution

(Mann-Whitney U rank test, p > 0.05; Figure 3.4B). As in the exponential growth

coalescent model, using the adjusted mean could recover the true reproduction number,

suggesting the importance of the growth rate in the estimation of the reproduction

number. The size of the 95% HPD interval was also larger under the exponential

distribution with the adjusted mean than those with the original mean (Mann-Whitney
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U rank test, p < 0.01; Figure 3.4C). Compared to the true distribution, the 95% HPD

interval size under the exponential distribution with adjusted mean is not significantly

different. There was no significant difference between the 95% HPD interval size under

the true distribution and exponential distribution with adjusted mean.

Unlike the coalescent exponential growth model, the birth-death model estimates

the reproduction number directly without converting from the growth rate. To better

understand whether the generation interval distribution affected the estimation of the

growth rate, we further investigated the latent variables, in particular, the number

of infected individuals over time. We found that the number of infected individuals

increased at comparable rates, resulting in similar growth rate estimates despite

differences in other parameters (Figure 3.6 upper panels). The underestimation of the

reproduction number while the growth rates remain consistent across models suggests

that the generation interval distribution affects the estimation of R primarily through

the r −R relationship, as in the coalescent exponential growth model.

Coalescent model with complex dynamics

Consistent with other models, the estimated R values were higher and closer to the

true value if the adjusted mean (L
′
G) was used with the exponential distribution. The

true R was recovered in 22 datasets, except for two datasets that overestimated R

(Figure 3.5 A). The median of the R estimates was not significantly different from

the true value (one-sample Wilcoxon rank test, p = 0.16) with a mean value of 3.08.

The distribution of the median estimates from 24 datasets was higher than those from

the exponential distribution with true mean (Mann-Whitney U rank test, p < 0.001;

Figure 3.5B), but was not significantly different from those under true distribution

(Mann-Whitney U rank test, p > 0.05). The size of the 95% HPD interval was larger

than those from the exponential distribution with true mean (Mann-Whitney U rank

test, p < 0.05; Figure 3.5C), but also was significantly lower than those from the
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Figure 3.6: Example trajectory of the number of infected individuals and
growth rate.
The number of infected individuals over time is sampled during MCMC chains for
the birth-death model (upper panels) and coalescent with the complex dynamics
model (lower panels) for a simulation replicate. Each line represents a trajectory
from one chain, and 100 chains are shown. Red dashed lines show the true simulated
trajectory. For the true distribution (shown in blue), the number of infected individuals
is obtained from the number of individuals in the E and I compartments. For the
exponential distribution with true and adjusted mean (shown in orange and green),
the number of infected individuals is obtained from the number of individuals from the
I compartment. The rightmost panels show the distribution growth rate calculated
from the sampled trajectory. The vertical line inside the violin plot indicates the
median of the distribution, and the red vertical line indicates the true growth rate
calculated from the true reproduction number.
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true distribution (Mann-Whitney U rank test, p < 0.05). Again, the underestimation

of the R under the exponential distribution was not observed with a longer mean

generation interval, which resulted in a comparable growth rate, suggesting that the

underestimation is mainly governed by the r −R relationship.

As in the birth-death model, the latent variables for epidemiological dynamics were

investigated. The number of infected individuals over time showed similar patterns

across generation interval distribution, and the growth rate estimated from each

trajectory also showed similar distributions (Figure 3.6 lower panels). This further

emphasizes the role of the r −R relationship in the phylodynamic estimation of R.

3.5 Discussion

In the analysis of epidemiological case data, it is well known that the generation

interval distribution shapes the relationship between the epidemic growth rate and the

reproduction number (Wallinga and Lipsitch, 2007; Park et al., 2019). However, the

impact of this relationship on phylodynamic analyses has been less well-studied. In

this study, we focus on the impact that a commonly used but oftentimes misspecified,

exponentially distributed generation interval distribution has on the estimation of R.

We demonstrate that assuming an exponentially distributed generation interval when

the true generation interval distribution has a smaller variance leads to a systematic

underestimation of the reproduction number and erroneously high confidence in this

underestimate.

Our results were consistent with those from case-based inferences. In case-based

inferences, the growth rate can be estimated first from the incidence data and then

used to calculate the reproduction number from the estimated growth rate (Wallinga

and Lipsitch, 2007). In the exponential growth coalescent model, just as in case-based

inferences, the growth rate is estimated first, and then the reproduction number is
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estimated. Therefore, a similar bias is expected under the exponential growth coalescent

model. However, even when the generation interval is incorporated through other

model components in the BDMM and PhyDyn model, we observed the underestimation

of the R under the exponential distribution. Furthermore, the true R was recovered

when the growth rate was matched through the adjusted mean generation interval,

even with the exponentially distributed generation interval.

In our findings, the exponential distribution with adjusted mean successfully

recovered the true growth rate. Although this might suggest that the underestimation

could be explained by matching the growth rate, we emphasize that this approach

is not applicable to real-world data analysis. In our analyses, we could calculate the

adjusted mean generation interval based on the true reproduction number. However,

in the real world, we do not know the true reproduction number; it is the parameter

we aim to estimate. Therefore, our results demonstrate the role of growth rate in the

underestimation of the reproduction number rather than suggest a way to correct the

bias in existing inference approaches.

Furthermore, we acknowledge that we do not know whether the tree shape under the

exponential distribution with adjusted mean is close to that under the true distribution.

However, tree shapes appear to be mainly driven by the number of tips in the tree

(Plazzotta et al., 2016). In their study of tree shape under non-exponential infectious

periods, the difference in tree shape features under different types of non-exponential

infectious periods could be explained by the number of tips in the tree. This suggests

that the exponential distribution with adjusted mean, which is expected to have a

similar number of infected individuals since we matched the growth rate, may have

similar tree shapes and features.

Despite its importance in inference, the generation interval is a rarely observed

quantity, as it is very hard to know exactly when one is infected. Therefore, the exact

distribution for the generation interval is also rarely known. However, (Park et al.,
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2019) suggested that approximating the generation interval distribution as a gamma

distribution could be parameterized based on the mean and standard deviation or

through maximum-likelihood estimation. This provides a way to incorporate the

generation interval into inference approaches and use the known r−R relationship for

gamma distribution (Wallinga and Lipsitch, 2007). In phylodynamic analyses, however,

we are not aware of any package that allows for gamma-distributed generation intervals

in inference. Although the exposed compartment can generate the gamma distribution

when the duration in exposed and infectious compartments are similar, this represents

very limited cases. Moreover, having multiple compartments can significantly slow

down phylodynamic analyses, limiting its usability. Therefore, developing a flexible

sequence-based inference approach that can incorporate more flexible generation

interval distributions would be valuable for future research.
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3.6 Supplementary information

Parameter Prior Unit

clockRate Unif(0, Infinity)

originBDMMPrime (T0) Unif(0, Infinity) days

Assumption 1: True distn. from EI model

birthRateAmongDemesCanonical.E to I (β) Unif (0.3368, 3.3684) days−1

birthRateAmongDemesCanonical.I to E Fixed at 0 days−1

birthRateCanonical.E Fixed at 0 days−1

birthRateCanonical.I Fixed at 0 days−1

deathRateSPCanonical.E Fixed at 0 days−1

deathRateSPCanonical.I (δ) Fixed at 1/3 days−1

samplingRateSPCanonical (ψ) Fixed at 0.0015 days−1

removalProbCanonical Fixed at 1 NA

migrationRateSPCanonical.E to I (γ) Fixed at 1/4 days−1

migrationRateSPCanonical.I to E Fixed at 0 days−1

startTypePriorProbs.E Fixed at 0 NA

startTypePriorProbs.I Fixed at 1 NA

Assumption 2: Exp. distn. with original mean

birthRateCanonical (β) Unif(0.1436, 1.4362) days−1

deathRateSPCanonical (δ) Fixed at 0.1421 days−1

samplingRateSPCanonical (ψ) Fixed at 1.496× 10−3 days−1

removalProbCanonical Fixed at 1 NA

Assumption 3: Exp. distn. with adjusted mean

birthRateCanonical (β) Unif(1.056, 1.0559) days−1

deathRateSPCanonical (δ) Fixed at 0.1045 days−1

samplingRateSPCanonical (ψ) Fixed at 1.100× 10−3 days−1

removalProbCanonical Fixed at 1 NA

Table 3.1: Parameters and priors for BDMM-Prime analyses
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Parameter Prior Unit

clockRate Unif(0, Infinity)

Assumption 1: True distn. from EI model

β Unif (0.3368, 3.3684) days−1

γ Fixed at 1/4 days−1

δ Fixed at 1/3 days−1

ψ Fixed at 0.0015 days−1

E0 Fixed at 0

I0 Fixed at 1

Assumption 2: Exp. distn. with original mean

β Unif(0.1436, 1.4362) days−1

δ Fixed at 0.1436 days−1

I0 Fixed at 1

Assumption 3: Exp. distn. with adjusted mean

β Unif(0.1056, 1.0559) days−1

δ Fixed at 0.1056 days−1

I0 Fixed at 1

Table 3.2: Parameters and priors for PhyDyn analyses
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2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS

computational biology, 15(4):e1006650, 2019.

O. Diekmann and J. A. P. Heesterbeek. Mathematical epidemiology of infectious

diseases: model building, analysis and interpretation, volume 5. John Wiley & Sons,

2000.

A. J. Drummond, G. K. Nicholls, A. G. Rodrigo, and W. Solomon. Estimating mutation

parameters, population history and genealogy simultaneously from temporally

spaced sequence data. Genetics, 161(3):1307–1320, 2002.

D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting

systems. J. Chem. Phys., 115(4):1716–1733, July 2001.

K. M. Gostic, L. McGough, E. B. Baskerville, S. Abbott, K. Joshi, C. Tedijanto,

R. Kahn, R. Niehus, J. A. Hay, P. M. De Salazar, J. Hellewell, S. Meakin, J. D. Mun-

day, N. I. Bosse, K. Sherrat, R. N. Thompson, L. F. White, J. S. Huisman, J. Scire,

S. Bonhoeffer, T. Stadler, J. Wallinga, S. Funk, M. Lipsitch, and S. Cobey. Practical

considerations for measuring the effective reproductive number, Rt. PLOS Compu-

tational Biology, 16(12):e1008409, Dec. 2020. ISSN 1553-7358. doi: 10.1371/journal.

pcbi.1008409. URL http://dx.doi.org/10.1371/journal.pcbi.1008409.

72

http://dx.doi.org/10.1371/journal.pcbi.1008409


73

T. H. Jukes and C. R. Cantor. Evolution of Protein Molecules. Mammalian Protein

Metabolism, pages 21–132, 1969. doi: 10.1016/b978-1-4832-3211-9.50009-7.
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Chapter 4

Epidemiologically clustered

sequence in phylodynamic

inferences

4.1 Abstract

The sample that represents the population is a key assumption in phylodynamic

analyses. However, sequence datasets that are used in phylodynamic analyses often-

times include epidemiologically clustered sequences. This is particularly likely during

early epidemic growth of a virus or viral lineage when surveillance is targeted to an

outbreak and when publicly available databases include sequences from household

studies. These epidemiologically clustered sequences tend to be genetically highly

similar to one another and thus may potentially bias sequence-based inferences of

population-level growth rates. In this work, we investigate the bias introduced under

the presence of epidemiologically clustered sequences in the phylodynamic estimation

of the epidemic growth rate. We further evaluate various summary statistics that

characterize genetic variation in randomly and non-randomly sampled populations to

75
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determine their utility in detecting sampling bias, with the hope that these approaches

could be applied to flag and correct for sampling bias prior to conducting downstream

phylodynamic analyses. Single-dimensional statistics, such as the average pairwise

nucleotide difference (π) and Watterson’s θ, showed limited utility in identifying non-

randomness. However, the distributions of pairwise tMRCA and nucleotide differences

revealed distinctive patterns in non-randomly sampled datasets and appear to be more

promising methods for detecting non-randomness.

4.2 Introduction

Viral genome sequences are increasingly used to quantitatively characterize the popu-

lation dynamics of viral infectious diseases. With extensive genome sequencing efforts

and well-established databases such as GISAID (Elbe and Buckland-Merrett, 2017)

and NCBI GenBank that facilitated rapid sharing of pathogen genome sequences,

there are more publicly available sequences than ever before. These data allow us

to understand diverse aspects of disease dynamics (Martin et al., 2021), including

the identification of newly emerging variants (Davies et al., 2021; Viana et al., 2022),

the investigation of the introduction of a pathogen (Grubaugh et al., 2017), and

transmission dynamics (Alpert et al., 2021). However, it is important to recognize

the variation in the sampling efforts across and even within the sampled datasets,

which can introduce biases unless well addressed. Genomic surveillance efforts for

SARS-CoV-2 sequences varied across countries (Chen et al., 2022; Furuse, 2021; Brito

et al., 2022), depending on the socioeconomic factors and the availability of sequencing

laboratories (Brito et al., 2022). Sampling efforts also varied across time (Spott

et al., 2024). Additionally, certain types of studies, for instance, studies focusing on

household transmission or local outbreak clusters, may result in some epidemiological

clusters being more closely related than others within a sequence dataset.
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The importance of addressing sampling effort has been pointed out early on by

(Frost et al., 2015), and numerous studies have investigated the effects of non-random

sampling (Hall et al., 2016; Karcher et al., 2016). For example, Wohl et al. (2021)

explored sampling schemes to reduce sampling bias and Parag et al. (2020) and Karcher

et al. (2016) proposed models incorporating sampling processes in phylodynamics

and phylogeography. However, existing studies have primarily addressed spatial and

temporal non-random sampling.

Over-representation of epidemiologically clustered sequences can introduce signif-

icant biases in phylodynamic inference. While a certain degree of epidemiological

clustering naturally emerges under random sampling conditions, some transmission

clusters could be over-represented in a dataset from the aggregation of genome

sequences from different types of studies, including household transmission or contact-

trace studies. Even prior to the development of phylodynamic inference approaches,

it was known that over-representation of a part of a population could bias summary

statistics that quantify the extent of genetic (sequence) variation in a population

(Tajima, 1995). Furthermore, studies have demonstrated that non-randomly sampled

datasets with epidemiologically linked individuals can lead to an underestimation of

effective population size and a failure to detect temporal population size changes in

Bayesian skyline models (de Silva et al., 2012). Additionally, phylodynamic inference

of subtrees or genetically closer individuals has been shown to underestimate effective

population sizes under constant-size coalescent models as well as to underestimate

exponential growth rates under exponential growth coalescent models (Dearlove et al.,

2017).

Various approaches have been proposed to address biases introduced by epidemi-

ologically clustered sequences. When possible, sequence datasets can be curated to

exclude epidemiologically clustered sequences using alternative information sources

such as news articles (Fraser et al., 2009). However, relevant metadata are often miss-
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ing and unavailable, and privacy concerns restrict access to epidemiological information

(Song et al., 2022). Furthermore, the increasing volume of sequences being deposited

makes manual identification of clusters increasingly challenging. Some studies address

these issues through the down-sampling of sequences.

Here, we first evaluate the bias introduced by epidemiologically clustered sequences

on phylodynamic analysis using simulated datasets. For this, we simulated random

and non-random datasets for comparison. We then analyze one-dimensional summary

statistics quantifying genetic variation to identify potential signals of non-randomness

in datasets. Furthermore, we explore higher-dimensional statistics to assess whether

they provide additional informative signals for detecting non-random sampling.

4.3 Methods

4.3.1 Epidemiological and evolutionary simulations

To generate mock sequence datasets. We used a discrete-time branching process to

simulate underlying epidemiological dynamics. Each epidemic starts with an index

case at generation 0, and the population at generation 1 comprises all the individuals

infected by the index case. Similarly, the population in Generation 2 comprises

all the individuals infected by the individuals in Generation 1, and so on for each

subsequent generation. The number of secondary cases from an infected individual in

any generation is drawn from a negative binomial offspring distribution. The negative

binomial distribution was parameterized using a mean (corresponding to the basic

reproduction number R0, set to 2.0) and an overdispersion parameter k. In most of

our analyses, we set k to infinity, such that the offspring distribution became a Poisson

distribution with mean R0. In our analyses that focused on transmission heterogeneity,

we considered a scenario with k = 0.2. In all of our simulations, we forward-simulated

the branching process model for 12 generations and kept track of infector-infectee
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relationships. As such, our simulations generated a full transmission history (Figure

4.1).

Each infected individual is characterized by the viral genome sequence they are

infected with. The viral genome sequence of the index case was considered the

reference genotype, and all other viral genome sequences were defined based on

relative mutations compared to this reference genome. Viral mutations were assumed

to occur at transmission due to the tight transmission bottleneck that characterizes

acutely infecting viral pathogens such as SARS-CoV-2 and influenza A viruses (Martin

and Koelle, 2021; Hannon et al., 2022; Li et al., 2022; McCrone et al., 2018). The

number of new mutations that occur during transmission from a donor to an offspring

is drawn from a Poisson distribution with mean pm. We used a per transmission,

per genome mutation rate of pm = 0.33 for our simulation, based on estimates from

SARS-CoV-2 transmission pairs (Park et al., 2023). Since this mutation probability is

low and results in a limited amount of temporal signal in the simulated viral sequences,

we also simulated a scenario with a higher pm = 2.0. In all of our simulations, we

assume infinite sites.

After the sampling process was simulated (see Section 4.3.1), simulated sequences

were converted to a FASTA file where the ancestral alleles in the reference genome

were randomly assigned to one of the four nucleotides (A, T, G, C) and the derived

alleles were randomly assigned to one of the remaining three nucleotides. We first

generated the reference sequence of 20kb, then randomly chose unique sites in this

genome for each of the mutations that occurred, and then converted the ancestral

allele to the derived allele for each simulated individual based on the mutations they

carried.
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Figure 4.1: A representative transmission tree from a forward simulation.
Each node represents an infected individual, and all individuals from a generation are
horizontally aligned. Edges connecting two individuals represent the infector-infectee
relationship, with the parent being the infector and the child being the infectee.
Colored nodes represent sampled individuals. Panels (A-C) each show the same
simulated transmission tree. Colored nodes comprise the viral sequence dataset. (A)
Baseline dataset derived from the simulated transmission tree. Each individual was
sampled with probability ps. (B) Non-random sample (NS) dataset derived from the
simulated transmission tree. A proportion of the individuals in the baseline dataset
(green nodes) are contact-traced (marked with an asterisk inside the circles). All
siblings of contact-traced individuals are sampled and added to the baseline dataset.
(C) Random sample (RS) dataset derived from the simulated transmission tree. This
dataset adds additional randomly sampled individuals to the baseline dataset to match
the size of the non-random dataset in each generation.
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4.3.2 Sampling of viral sequences from simulations

We generated two types of datasets for each simulation: a dataset that includes

epidemiologically clustered individuals (non-random sample dataset; NS) and a dataset

with only randomly sampled individuals (random sample dataset; RS). To generate

these datasets, we first generated a baseline dataset, where we randomly sampled

infected individuals with a sampling probability of ps = 0.02 (Figure 4.1A). Under

the transmission heterogeneity scenario (Figure 4.6), we sampled 0.5% of the total

infected individuals, as “survived” epidemics tend to be larger than those without

transmission heterogeneity

From this baseline dataset, the non-random sample dataset (NS) was first generated

by adding epidemiologically clustered sequences (Figure 4.1B). To emulate a dataset

with epidemiologically clustered sequences, we first chose a proportion pc (here, 0.3)

of sampled individuals to be contact-traced. If an individual is contact-traced, all

of their “siblings” (that is, all of the individuals who have the same infector as the

contact-traced individual) are included in the dataset.

We then also generated a random sample dataset (RS) that matched the non-

random sample dataset in sample size by augmenting the baseline dataset with

additional, randomly sampled individuals (Figure 4.1C). Specifically, for each genera-

tion, we obtained the number of added sequences in the NS dataset and sampled the

same number of individuals randomly from that generation to the baseline dataset.

The additional randomly sampled individuals were chosen from the subset of individu-

als not already sampled in the baseline dataset (so that no individual was sampled

twice).
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4.3.3 Summary statistics for characterizing the viral sequence

datasets

We calculated summary statistics for each generation from the NS and RS datasets

and compared these calculated summary statistics to determine whether they would

be useful in identifying the presence of epidemiologically clustered sequences in viral

datasets. We first considered classic population genetic summary statistics that

quantify levels of genetic variation in a population: the average pairwise nucleotide

difference and Watterson’s θ. The average pairwise nucleotide difference was calculated

from the number of different “alleles” between each possible pair of sequences. From

n sequences, the average pairwise nucleotide difference π is calculated as follows:

π =
n−1∑
i=1

n∑
j=i+1

dij

Watterson’s θ is calculated from the number of segregating sites (i.e., the number of

polymorphic sites) present in the sampled viral population. Since each site is more

likely to be polymorphic when there are more sequences, the number of segregating

sites depends on the number of samples. Therefore, to account for the sample size,

Watterson’s θ normalizes the number of segregating sites (S) using a correction factor

(an):

θ =
S

an

where an =
∑n−1

i=1
1
i
.

We also considered two higher-dimensional summary statistics. The first was

the distribution of pairwise nucleotide differences, which is the fuller version of the

one-dimensional average pairwise nucleotide difference described above. The second

was the distribution of the pairwise time-to-most-recent-common-ancestor (tMRCA).

This summary statistic was obtained by determining the time to the most recent
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common ancestors for a pair of individuals (represented by the sequences). Since we

know the true transmission history from the simulation, we calculated the exact value

rather than inferring it from a reconstructed phylogenetic tree.

4.3.4 Assessment of bias in phylodynamic inference

We first evaluated bias in phylodynamic inference that may be introduced by epidemi-

ologically clustered sequences. To this end, we estimated the exponential growth rate

(r) under the coalescent model with exponential growth implemented in BEAST 2.7.5

(Bouckaert et al., 2019) for our NS and RS datasets. To perform BEAST analyses for

multiple datasets, a template XML file was generated by modifying an example file

generated by BEAUti program within the BEAST package. This template was used

to generate an input XML file based on the simulated FASTA files. We assumed a

JC69 nucleotide substitution model with no invariant sites and a strict clock model,

consistent with the model of sequence evolution we used to generate the simulated

sequence data. We used a uniform prior for the tree parameters, including the growth

rate and the current population size.

For each dataset, we ran three independent MCMC chains, each chain having a

length of more than 30 million states. We sampled parameters and trees in every

1,000 states. After discarding the first 10% of each chain as burn-in, we combined the

chains using the “logcombiner” tool in the BEAST 2 package. We confirmed that the

combined chain had an effective sample size (ESS) greater than 200 for the growth

rate. Finally, summary statistics of the posterior distributions (e.g., mean, median,

ESS, etc.) were calculated using “loganalyser.”
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4.4 Results

4.4.1 Characteristics of the simulated datasets

We simulated the above-described branching process until we obtained 200 independent

replicates that did not go extinct within the first 12 generations. For each of these

replicates, we generated non-random (NS) and random (RS) sequence datasets. The

baseline dataset for each replicate included roughly 2% of the total infected individuals

(Figure 4.5), as expected, given a sampling proportion of ps = 0.02. However, because

the replicates differed in the number of individuals that had become infected over the

course of 12 generations, the absolute number of samples varied considerably across the

200 replicates, ranging from a minimum of 4 to a maximum of 769 samples Figure 4.5.

The NS datasets have additional samples from contact-tracing each individual in the

baseline dataset with a probability of pc = 0.3 (Figure 4.5A). This additional sampling

comprised roughly 1% of the total infected individuals (Figure 4.5B). By design, the

RS datasets had the same number of sampled individuals as their corresponding NS

datasets. The size of these “add-on” groups (in both the NS and RS datasets) ranged

from a minimum of 0 to a maximum of 430 samples.

4.4.2 Phylodynamic inference

We estimated the intrinsic growth rate using the coalescent exponential growth model

implemented in BEAST using 10 randomly chosen branching process simulations of

the 200 we simulated. We managed to estimate growth rates for 8 out of these 10

simulations. Growth rate estimates from both the NS and RS viral datasets from

these eight simulation replicates are shown in Figure 4.2. Because the true R0 in our

simulation was 2.0, the corresponding growth rate (r) is ln(2.0) ≈ 0.693 per generation.

The median estimate of r from the eight random sample (RS) datasets was 0.761

on average, and the 95% highest posterior density (HPD) included the true growth
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Figure 4.2: Growth rates estimated under a coalescent exponential model
using simulated datasets that do or do not contain epidemiologically clus-
tered sequences. Results on random sample datasets are shown in blue, and Results
on non-random sample datasets are shown in red. Dots and error bars show the
median and the 95% HPD of the posterior distribution for each dataset, respectively.
The dotted line indicates the true growth rate, calculated from the basic reproduction
number R0 used in the forward simulations of the branching process model.

rate in each of these datasets. In contrast, the median estimate of r was 0.448 on

average (corresponding to an R0 of 1.57). Only two of the eight datasets had their 95%

HPD interval capturing the true value. These findings indicate that the inclusion of

epidemiologically clustered sequences can lead to considerable underestimation of the

growth rate. This underestimation bias can be explained by contact-traced sequences

being genetically more similar to one another than randomly sampled individuals

within a generation, leading to shorter external branch lengths and, therefore, lower

estimated growth rates.

4.4.3 Differences in one-dimensional summary statistics be-

tween random sample and non-random sample sequence

datasets

Average pairwise nucleotide differences

Figure 4.3 compares the average pairwise nucleotide differences between the 200 random

samples (RS) datasets and their matched 200 non-random samples (NS) datasets. In
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this figure, we present comparisons on a per-generation basis, starting at generation 6,

because earlier generations have fewer samples with which to calculate average pairwise

nucleotide differences. When conditioned on the same underlying dynamics, average

pairwise nucleotide differences in each generation were significantly lower in the NS

datasets that epidemiologically clustered sequences than those of the RS datasets

(p < 0.05 from both two-sided and one-sided paired sample t-test, Supplementary

table 5.1). This is consistent with the expectation that epidemiologically clustered

sequences tend to be genetically more similar, and thus, our expectation is that the

average pairwise nucleotide difference between samples will be smaller.

Over generations, average pairwise nucleotide differences also increased in both

the NS and the RS datasets as more mutations accumulated in the viral population.

In later generations, the differences in the average pairwise nucleotide differences

given the underlying dynamics became less apparent despite these differences still

being statistically significant. The mean difference in the average pairwise nucleotide

differences between the random sample and nonrandom sample datasets monotonically

decreased from 1.035 average nucleotide differences in generation 6 to 0.061 average

nucleotide differences in generation 12. This decrease can be explained by how the

non-random sampling scheme is implemented. Because this sampling scheme contact-

traces all siblings from 30% of the infected individuals that are in the baseline dataset,

and because the expected number of siblings an infected individual has (which is

R0−1 = 1) does not change over the generations, the fraction of the sequences sampled

in a given generation that derive from contact tracing is lower at higher generations.

As such, non-random sample datasets at higher generations start to resemble those

of the random sample datasets more closely, reducing the difference in this summary

statistic at higher generations.

Although average pairwise nucleotide differences were significantly lower in the

NS datasets than in the RS datasets when considered in a paired fashion (and
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thereby conditioning on the same underlying epidemiological dynamics), in the real

world, the underlying dynamics are rarely known. Therefore, to assess whether average

pairwise nucleotide differences could inform the existence of epidemiologically clustered

sequences, we need to determine whether the observed differences in the NS and the

RS datasets differ from one another when they are considered in an unpaired fashion

(such that we are not conditioning on the same underlying epidemiological conditions).

We, therefore, compared the distribution of average pairwise nucleotide differences

from the 200 simulation replicates between the NS and RS datasets. In the first

three generations examined (generations 6 through 8), the distribution of the average

pairwise nucleotide differences were significantly different from each other (p < 0.05,

two-sample Kolmogorov-Smirnov test for goodness of fit). However, in the later

generations, the distributions were no longer significantly different. Simulations at

higher mutation rates pm did not qualitatively change these results (Supplementary

Figure 4.8). This suggests that average pairwise nucleotide differences are poor

summary statistics to identify whether a dataset contains epidemiologically clustered

samples that could bias phylodynamic estimates.

Watterson’s theta

We next compared Watterson’s θ across paired NS and RS datasets. Similar to our

findings with average pairwise nucleotide differences, Watterson’s θ was significantly

lower in the NS datasets compared to the RS datasets (p < 0.05, both two-sided and

one-sided paired sample t-test, Supplementary table 5.1; Figure 4.3). However, for

Watterson’s θ, the difference between random and nonrandom datasets increased over

time, from 1.463 at generation 6 to 12.798 at generation 12.

To understand these results, recall that Watterson’s θ quantifies genetic variation

using the number of segregating sites across genome sequences. With a larger number

of sampled sequences, each site in the genome has a higher probability of being observed
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Figure 4.3: Pairwise comparisons of summary statistics from random sample
(RS) and non-random sample (NS) datasets by generation. Average pairwise
nucleotide differences (upper panels) and Watterson’s theta (lower panels) were
calculated from random and nonrandom datasets. Each dot denotes a summary
statistic calculated from sequence samples in the generation indicated. Gray lines
connect summary statistics calculated from datasets derived from the same simulation.
Distribution of the summary statistics is shown as a violin plot, and the horizontal
marker indicates the median of the distribution. Each column corresponds to a
generation (t = 6 to t = 12).
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as polymorphic. Therefore, in order to account for the sample size, Watterson’s θ is

obtained by normalizing the number of segregating sites with the correction factor

(see equation 4.3.3). When the contact-traced sequences were added to the baseline

dataset, these sequences added fewer segregating sites to the dataset than the samples

added to the RS dataset. This is because the contact-traced sequences are genetically

highly similar to the ones that are already included in the dataset (Supplementary

Figure 4.9). This can explain the lower Watterson’s θ in nonrandom samples. The

reduced decrease of Watterson’s θ in later generations could be explained by the

increased sample size at higher generations.

We next compared the distribution of Watterson’s θ from 200 simulation replicates

in an unpaired fashion. Across all generations considered (generations 6 through 12),

the two distributions were significantly different from each other (p < 0.05, two-sample

Kolmogorov-Smirnov test for goodness of fit). This finding suggests that Watterson’s

θ is likely a more promising statistic than the average pairwise nucleotide difference

for identifying when datasets may contain epidemiologically clustered sequences. In

real-world situations, however, we do not have the distribution of Watterson’s θ from a

dataset and similar patterns are observed under a higher mutation rate (Supplementary

4.8). Instead, we only obtain a single Watterson’s θ for sequences in a given generation

(or block of time). This might hinder the use of one-dimensional summary statistics

to determine if a dataset has epidemiologically clustered sequences that could bias

phylodynamic analysis.
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4.4.4 Differences in multi-dimensional summary statistics be-

tween random sample and non-random sample sequence

datasets

Distribution of pairwise nucleotide differences

Distributions of pairwise nucleotide differences are shown in Figure 4.4 for both

the RS and NS datasets. The distribution of pairwise nucleotide differences from

the RS datasets had higher densities around the distribution’s median value rather

than at the upper bound, especially during later generations. In our model, the

mutation occurs during a transmission, and the number of mutations occurring during

a transmission follows the Poisson distribution. The number of transmissions between

two individuals is the tMRCA. Therefore, the distribution of pairwise nucleotide

differences could be obtained by summing the number of mutations by tMRCA times.

Also, for both random and nonrandom datasets, the distribution expands to higher

values over generations, as expected from the accumulated genetic variation in the

viral population.

In contrast to the distributions observed for the RS datasets, the distributions

of pairwise nucleotide differences in the NS datasets have higher densities at low

pairwise nucleotide difference values. This is expected, especially during the earlier

generations, where epidemiologically clustered sequences comprise a higher proportion

of the samples. Under a higher mutation rate pm, higher densities at low pairwise

nucleotide differences were observed more clearly (Supplementary Figure 4.12). This

is partly due to the distribution expanding toward larger values, which separates the

main peak from the peak of epidemiologically clustered sequence pairs. Under the

transmission heterogeneity, the increase in the density was higher, although the peak

was not separated from the main peak.
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Figure 4.4: Comparison of pairwise nucleotide difference distributions be-
tween random and nonrandom datasets, by generation. Pairwise nucleotide
diversity values were obtained between every pair of samples in the RS dataset and in
the NS dataset by generation. Distributions of these pairwise tMRCAs are shown in
the top row for the RS dataset and in the middle row for the NS dataset, with columns
corresponding to generations. Each line shows the distribution from a single dataset
in a single generation. The bottom row summarizes the individual distributions shown
in the top and middle rows. The dotted lines show the median. The error bars show
the 25% and 75% percentiles.

4.4.5 Transmission heterogeneity

We further explored the ability to detect datasets with epidemiologically clustered se-

quences under a scenario of high transmission heterogeneity (overdispersion parameter

k = 0.2). Except for two replicates with no samples, the sample size ranged between 1

and 1820, showing considerable variation in the sample size. The add-on sample size

also varied widely, from 0 to 7104 individuals, likely because some individuals with

many siblings were chosen for the contact tracing.

As in the baseline scenario, the average pairwise nucleotide difference was signif-

icantly lower in the nonrandom dataset across all generations (p < 0.05 from both

two-sided and one-sided paired sample t-test, Supplementary table 5.1; Supplemen-

tary Figure 4.7). The difference in the π̄ between random and nonrandom datasets

decreased at higher generations, as in our findings without transmission heterogeneity.

However, the decrease in the transmission heterogeneity simulations was more pro-

nounced than that in the previous simulations. However, unlike in our analyses of
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the no-transmission heterogeneity simulations, the overall distributions of π̄ from 200

replicates were significantly different between the NS and RS datasets, even in the

later generations (p < 0.05, two-sample Kolmogorov-Smirnov test for all generations).

Watterson’s theta calculated from the transmission heterogeneity simulations was

significantly lower for the NS datasets than the RS datasets (Supplementary figure

4.7), consistent with our findings with the no-transmission heterogeneity simulations.

The overall distribution of Watterson’s θ from 200 replicates were significantly different

from each other (p < 0.05, two-sample Kolmogorov-Smirnov test for all generations).

For the distribution of the pairwise tMRCA (Supplementary figure 4.11), the local

peak at t = 1 had a very high density. This local peak remained visible even in later

generations and lowered the densities at higher tMRCA values. This pattern was

also observed in the distribution of the pairwise nucleotide difference (Supplementary

figure 4.13).

The larger reduction in the one-dimensional summary statistics and higher pairwise

tMRCA density at t = 1 in the transmission heterogeneity simulations compared to

the no-transmission heterogeneity simulations can be explained by the number of

contact-traced samples in the NS dataset under transmission heterogeneity. Under

transmission heterogeneity, most of the individuals have a small number of “siblings”,

while a few have a very large number of siblings. If an individual from a larger “family”

is contact-traced, this family cluster is larger than those from scenarios without

transmission heterogeneity, resulting in more pairs that have lower genetic diversity

and smaller tMRCA.

4.5 Discussion

In this study, we generated viral datasets that contained epidemiologically clustered se-

quences along with matched datasets that contained only randomly sampled sequences.
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Using these datasets, we explored how epidemiologically clustered sequences may bias

phylodynamic estimates of the epidemic growth rate. Furthermore, we explored the

utility of one-dimensional and multi-dimensional summary statistics to evaluate their

ability to identify datasets that may contain epidemiologically clustered sequences

prior to downstream phylodynamic analyses.

According to Waples and Anderson (2017), a truly random sample is achieved

when each individual is sampled with equal probability and independently of other

individuals. However, non-random sampling can have various forms. In de Silva

et al. (2012), non-random sampling was implemented by sampling the first individual

along a lineage. Dearlove et al. (2017) focused on random subtrees and false clusters

based on genetic distance, where a subtree is obtained by getting descendants of a

randomly chosen individual and the false cluster was obtained by selecting sequences

if branch lengths between each other are below a threshold. Here, we simulated

non-random sample datasets as a combination of randomly sampled individuals and

epidemiologically clustered individuals who are siblings of the randomly sampled

individuals. This sampling methodology was designed to emulate scenarios where

some of the sampled individuals are contact-traced and epidemiologically linked

sequences are further added to the dataset or scenarios where publicly downloaded

sequences contain clustered individuals.

Our findings demonstrate that the presence of epidemiologically clustered sequences

can result in an underestimation of the epidemiological growth rate. Similar biases

have been observed in nonparametric models of Bayesian skyline (de Silva et al.,

2012). With more non-random samples, the estimation failed to capture the growth

of the epidemic and underestimated the current effective population size. This study

further found that higher proportions of non-randomly sampled individuals led to

greater underestimation of the effective population size. (Dearlove et al., 2017) further

demonstrated that when only clustered sequences were considered, underestimation



94

of growth rate and effective population size occurred under both exponential growth

coalescent and constant size coalescent models.

To mitigate bias from clustered sequences, researchers have employed various

strategies, including down-sampling sequences (Hedge et al., 2013; Rambaut and

Holmes, 2009), or excluding all but one sequence from known epidemiological clusters

(Fraser et al., 2009). However, considering the increasing numbers of sequences

deposited from diverse studies, including contact-traced studies and household studies

(Hare et al., 2021), accessing comprehensive metadata may not always be feasible.

Consequently, we explored whether summary statistics could be useful to identify

when a dataset may contain epidemiologically clustered sequences.

Our initial analyses focused on one-dimensional summary statistics derived from

our simulated datasets. These statistics could be used for hypothesis testing for random

sampling using empirical p-values to detect non-randomness from real-world datasets.

Such p-values can be derived through the simulation of multiple replicates and counting

those that yield summary statistics greater than or equal to the observed value (North

et al., 2002). Our analyses reveal that the distribution of the π is significantly different

between random and non-random datasets only in earlier generations, suggesting a

limited utility as a tool to detect the non-randomness. On the other hand, Watterson’s

θ exhibits significant differences between random and non-random datasets, suggesting

its potential utility as a metric for hypothesis testing. However, since the distribution

from non-random datasets is nested within that of random datasets, observed statistics

are unlikely to yield p-values below 0.05, even in the presence of non-random sampling.

The multi-dimensional summary statistics we calculated and used to compare

the RS and NS datasets revealed more apparent differences between these datasets.

Specifically, distributions of pairwise nucleotide differences showed increased density

at lower values. While this pattern becomes less clear in later generations, the

existence of pairs with lower nucleotide differences may serve as an indicator of non-
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randomness in the dataset, aligning with genetic distance-based cluster identification

approaches (Wertheim et al., 2013). Although the distribution of pairwise tMRCA also

showed differences between random and non-random datasets, it is important to note

that our analysis calculated pairwise tMRCAs using true transmission trees rather

than trees inferred from sequence data. In real-world applications, transmission tree

reconstruction from sequence data would introduce additional noise, likely diminishing

any signals that could indicate that a dataset contains epidemiologically clustered

sequences.

While we calculated the summary statistics from simulated datasets, we calculated

the summary statistics for each generation rather than aggregating them. However,

the generation of sequences is not known, only their collection date. We used genera-

tions rather than collection data to examine the usability of the summary statistics

under optimal conditions, even if unrealistic. Additionally, we assumed that the

true epidemiological dynamic parameters were known, which is another unrealistic

assumption. Our results indicate that early epidemic stochasticity might limit the

ability to reliably detect when a dataset contains non-random samples, suggesting the

need for more parametric approaches, as proposed for clustering approaches (Poon,

2016).
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Figure 4.5: Sample size (A) and realized fraction of sampled individuals (B)
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included the simulated datasets with transmission heterogeneity.
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Figure 4.7: Comparison of the summary statistics from random and non-
random datasets over generations under transmission heterogeneity with
k = 0.2. The average pairwise nucleotide differences (upper panels) and Watterson’s
θ (lower panels) were calculated from random and nonrandom datasets. Each dots
represent the calculated summary statistics from a dataset at each generation. The
lines connect the datasets from the same simulation. The distribution of the summary
statistics is shown as a violin plot, and the horizontal marker indicates the median of
the distribution. Each column represents a generation from t = 6 to t = 12
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Figure 4.8: Comparison of the summary statistics from random and non-
random datasets over generations under higher pm. The average pairwise
nucleotide differences (upper panels) and Watterson’s θ (lower panels) were calculated
from random and nonrandom datasets. Each dots represent the calculated summary
statistics from a dataset at each generation. The lines connect the datasets from the
same simulation. The distribution of the summary statistics is shown as a violin plot,
and the horizontal marker indicates the median of the distribution. Each column
represents a generation from t = 6 to t = 12
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Figure 4.10: Comparison of the distribution of tMRCA under three sampling
schemes over generations under higher pm. The distribution of the pairwise
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Figure 4.12: Comparison of the distribution of pairwise nucleotide difference
under three sampling schemes over generations under higher pm. The
distribution of the pairwise tMRCA was obtained from every pair of samples in three
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Figure 4.13: Comparison of the distribution of pairwise nucleotide difference
from random and nonrandom dataset over generations transmission hetero-
geneity with k = 0.2. The distribution of the pairwise tMRCA was obtained from
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represent a generation from t = 6 to t = 12.
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Chapter 5

Transmission history reconstruction

using phylogenies

The following commentary was written in March 2022 as part of the PBEE quali-

fying exam. I begin by examining early approaches that used phylogenies to infer

transmission direction. After recognizing that transmission trees and phylogenies are

distinct entities, I review methods for reconstructing ‘who-infected-whom’ transmis-

sion histories. As existing approaches are based on diverse assumptions, data types,

and methodologies, I conclude that the choice of approach should be guided by the

characteristics of the available data and that systematic comparisons are needed to

better guide users.

5.1 Introduction

Understanding transmission dynamics is key to the effective control and management of

infectious diseases. These dynamics can be studied at different scales, from transmission

chains between individuals in an outbreak to global patterns of disease spread during

a pandemic or endemic circulation of a pathogen. Characterizing transmission chains

between individual hosts (or, more generally, infectious units) is fundamental for

112
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understanding why and where outbreaks occur. Reconstructed transmission histories

of ‘who-infected-whom’ can be used to identify the source of an outbreak and the

key attributes of the infectious units that fuel the local spread of a pathogen (Ypma

et al., 2012). Transmission histories are often depicted using a tree representation (see

Section 5.7.1).

The process of transmission tree reconstruction aims to identify all relevant infec-

tious units and the transmission process between them, including transmission timing.

As such, accurate tree reconstruction often requires extensive epidemiological data,

including contact histories of individuals and the timing of symptom development

of infected cases (Cauchemez and Ferguson, 2011). While case investigations and

contact tracing can, at times, provide these data, they are often incomplete and involve

uncertainty in observation. Pathogen genetic data have the potential to complement

these more traditional epidemiological data sources, providing the possibility of further

resolving who-infected-whom during the transmission process. Genetic data may

prove useful because pathogens, with their short generation times of minutes to days,

can accumulate mutations over the course of an outbreak. Patterns of shared (and

unshared) genetic variation can thus be informative of transmission patterns and be

used to reconstruct the history of pathogen spread (Holmes et al., 1995).

Over the last 15 years, quantitative approaches for inferring transmission histories

have undergone significant development. Approaches that integrate pathogen genetic

data to infer these histories are broadly reviewed in HALL et al. (2016). In this

review, existing approaches up to the time of publication were categorized according

to whether and how they integrated within-host genetic variation. An alternative

way to classify transmission history inference approaches is by whether an approach

adopts a ‘pairwise approach’ or a ‘phylogenetic approach.’ Pairwise approaches rely on

calculations of pairwise genetic distances between samples isolated from each infectious

unit to infer transmission histories. In contrast, phylogenetic approaches rely on the
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use of pathogen phylogenies, which reconstruct the ancestral relationships between

pathogens. In this commentary, I focus specifically on reviewing and synthesizing

quantitative approaches that have relied on phylogenies reconstructed from pathogen

genetic data to infer transmission histories. For a brief overview of phylogenetic trees

and phylogenetic inference methods, see 5.7.2.

In the following, I first discuss early work showing how phylogenetic trees can

provide insight into the structure of transmission chains even in the absence of rigorous

quantitative integration with transmission tree inference. Based on points made in

the literature, I then argue why phylogenetic trees should be more formally and

systematically incorporated into transmission tree inference rather than simply being

used as a proxy for transmission trees. Finally, I discuss statistical phylogenetic-based

transmission tree inference approaches that have been developed as phylogenetic infer-

ence methods have become more heavily used by the community of infectious disease

modelers. I end by discussing the applicability of phylogenetic-based transmission tree

inferences to real-world transmission chains and by providing my perspective on future

work that is needed to systematically compare across different inference approaches.

5.2 Early analyses using pathogen phylogenies to

infer transmission history

Early approaches that relied on pathogen phylogenies to infer transmission histories

focused on identifying the sources of infection in epidemiological investigations. In these

early studies (Esteban et al., 1996; Heinsen et al., 2000; Holmes et al., 1993; Metzker

et al., 2002), tree topologies describing the evolutionary relationships between pathogen

samples were used to ascertain the strength of evidence for a direct epidemiological

link between a putative donor and a recipient of infection. Evidence for a direct

transmission link between a donor and a recipient was provided by sample isolates
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(tips) from a putative donor and a recipient being evolutionarily more closely related

to one another than between the recipient and sampled isolates from other individuals

who were thought to be epidemiologically unlinked to the recipient. The reasoning

behind this expectation is that, since pathogens within a recipient host originated

from those in a donor host, fewer mutations (and a greater degree of evolutionary

relatedness) are expected between donor and recipient sample isolates compared to

ones between a recipient and an unlinked host. This will lead to the clustering of

pathogen isolates from donor and recipient, forming a monophyletic clade (Figure

1). When isolates from two individuals form a monophyletic clade, phylogenetic

relationships within the observed monophyletic clade can be further investigated to

ascertain the strength of evidence for a donor-to-recipient transmission chain. Within

the monophyletic clade, expected phylogenetic relationships between two individuals

linked by direct transmission can be categorized into three classes (Leitner, 2019;

Romero-Severson et al., 2016): monophyletic recipient isolates that are nested within

paraphyletic recipient isolates (PM relationship, Figure 5.1A), polyphyletic recipient

isolates that are nested within paraphyletic recipient isolates (PP relationship, Figure

5.1B), and monophyletic recipient isolates alongside monophyletic recipient isolates

that together form a sister clade relationship (MM relationship, Figure 5.1C).

PM relationships are expected to be observed when a small number of pathogen

particles transmit from a donor to a recipient through a tight transmission bottleneck.

(Transmission bottleneck size is defined as the number of pathogen particles founding an

infection, and many analyses on various pathogens have found transmission bottleneck

sizes to be small, particularly for respiratory viruses (Lythgoe et al., 2021; Martin

and Koelle, 2021; McCrone and Lauring, 2017). Due to the presence of these tight

transmission bottlenecks, this nested PM structure is expected for many pathogens.

The PM relationship can also arise from indirect transmission from a donor to a

recipient through an intermediate, unsampled host. The PP relationship indicates
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Figure 5.1: Possible tree topologies under a scenario of direct transmission.
Pathogen population histories within hosts are indicated with grey curves. The host
in whom each pathogen lineage resides is indicated with colored boxes, with red
denoting the donor and blue denoting the recipient. Phylogenies of extant pathogen
lineages are shown as a tree with straight lines. Branches of phylogenetic trees are
colored according to the sampled host of each tip. (A) A hypothetical PM phylogeny
resulting from the direct transmission of a pathogen from a donor to a recipient in the
case of a stringent transmission bottleneck and little pathogen turnover. Pathogens
sampled from the recipient form a monophyletic clade. Pathogens sampled from the
donor form a paraphyletic clade. (B) A hypothetical PP phylogeny resulting from the
direct transmission of a pathogen from a donor to a recipient in the case of a loose
transmission bottleneck. Pathogens sampled from the recipient form a paraphyletic
clade. Pathogens sampled from the donor also form a paraphyletic clade. (C) A
hypothetical MM phylogeny resulting from the direct transmission of a pathogen from
a donor to a recipient in the case of a strict bottleneck and lineage turnover in both
hosts. Pathogens sampled from the recipient and the donor each form a monophyletic
clade, such that the donor-derived clade and the recipient-derived clade are sister
clades.
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that multiple pathogen lineages are transmitted from a donor to a recipient. The

transmission of multiple pathogen lineages requires transmission bottlenecks to be

loose. With the transmission of multiple pathogen lineages, the PP relationship

provides the strongest evidence for direct transmission from a donor to a recipient.

The MM relationship can occur when direct transmission from a donor to a recipient is

followed by lineage turnover within both individuals. However, MM relationships can

also arise in cases of indirect transmission from a donor to a recipient via an unsampled

host or when the two sampled individuals instead share a common source of infection

rather than being in a donor-recipient relationship. Thus, caution is required when

interpreting this relationship as evidence in support of direct transmission. These

relationships between underlying transmission scenarios and topological phylogenetic

patterns are systemically discussed and investigated in Romero-Severson et al. (2016).

Based on these theoretically expected patterns between tree topology and trans-

mission between a donor and a recipient, phylogenetic analyses of pathogen genes

have been used to contribute to epidemiological investigations. One notable real-world

instance of a phylogenetic analysis that was used as criminal evidence focused on a

gastroenterologist who was accused of attempted murder of his ex-girlfriend (hereafter,

“the victim”) through deliberately infecting her with blood or blood products obtained

from one of his HIV+ patients (Metzker et al., 2002). To investigate this accusation,

viral samples were sequenced from the patient, the victim, and HIV-positive individuals

from the local community. Phylogenetic trees were reconstructed from a portion of the

envelope gene (gp120 ) and from the reverse transcriptase (RT) gene region of the HIV

genome. In the gp120 phylogeny, the patient’s sequences and the victim’s sequences

formed a monophyletic clade. However, the relationship was an MM relationship, with

the victim’s sequences and the patient’s sequences each being monophyletic (Figure

5.2A). This sister clade relationship likely arose as a result of rapid lineage turnover in

the victim’s and the patient’s gp120 gene, as a result of positive selection acting on the
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envelope glycoprotein. While the gp120 gene region phylogeny thus points towards a

possible donor-recipient relationship between the patient and the victim, it alone does

not provide sufficient evidence for the suspected directionality of virus transmission.

Phylogenetic reconstruction from the RT gene, however, considerably strengthened

the criminal evidence. Here, the patient’s sequences formed a paraphyletic clade,

with the victim’s sequences nested within the patient’s sequences, corresponding to

a PM relationship (Figure 5.2B). This relationship appeared in 100% of bootstrap

replicates, indicating strong phylogenetic support for this clustering of patient and

victim sequences. Taken together, these phylogenetic analyses provided strong evi-

dence for the prosecution’s argument that the victim’s source of infection was the

gastroenterologist’s patient. Similar approaches were used to determine the sources of

hepatitis C virus infections in nosocomial transmission settings (Esteban et al., 1996;

Heinsen et al., 2000).

Phylogenetic relationships between sampled pathogen sequences have also been

used to determine between several possible sources of infection. For example, after

a surgeon in Baltimore tested positive for HIV, the surgeon’s patients were recalled

and tested for HIV infection. One of the identified patients had two known risk

factors for HIV infection, namely, having undergone a surgical procedure by an HIV-

positive surgeon and having received a blood transfusion. To investigate the source of

infection for this patient, a phylogenetic tree was reconstructed from viral sequences

of the patient, the surgeon, the blood donor who was found to be HIV-positive, and

other published HIV sequences. Phylogenetic reconstruction indicated that the blood

donor’s sequences and the patient’s sequences formed a monophyletic clade, with the

surgeon’s sequences forming a distinct, genetically more distant clade (Figure 5.2C).

This indicates that the patient’s and the blood donor’s viral populations were more

closely related to one another than the patient’s and the surgeon’s, such that the

source of infection was likely the blood donor rather than the surgeon (Holmes et al.,
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1993).

Figure 5.2: Reconstructed phylogenies including samples from potentially
epidemiologically-linked individuals. (A) A phylogenetic tree reconstructed from
the gp120 region of the HIV genome. Samples from the gastroenterologist’s HIV-
positive patient are labeled with a P, those from the victim are labeled with a V, and
those from HIV-positive individuals from the local community are labeled with an
LA. (B) A phylogenetic tree reconstructed from the RT region of the HIV genome.
Labeling is as in panel (A). Phylogenies in (A) and (B) are adapted from Metzker et al.
(2002) with permission (Copyright (2002) National Academy of Sciences, U.S.A.).
(C) A phylogenetic tree reconstructed from the gag gene region of the HIV genome.
Samples from the surgeon are labeled S1-S13, those from his patients are labeled
P1-P10, and those from the blood donor of the transfusion received by the patient are
labeled D1-D11. Reproduced from Holmes et al. (1993) with permission (Copyright
(1993) The Journal of infectious diseases); permission conveyed through Copyright
Clearance Center, Inc.
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5.3 Recognizing differences between transmission

trees and phylogenetic trees

Inspired by early successes in using pathogen phylogenies to identify sources of infection,

Leitner and colleagues argued that phylogenetic trees had the potential to be used

more quantitatively to infer transmission histories of viral pathogens, including HIV

(Leitner et al., 1996). More specifically, in this study, the authors focused on an

HIV transmission cluster that had full information on who-infected-whom. Inferred

phylogenies using different regions of the HIV genome were compared to the topology of

this known transmission tree. Phylogenetic trees were reconstructed using five different

inference approaches: neighbor-joining, minimum evolution, maximum likelihood,

maximum parsimony, and the unweighted pair group method using arithmetic averages

(UPGMA). A range of sequence evolution models were also considered. Based on

topological comparisons between the transmission tree and each of these inferred

phylogenetic trees, Leitner and colleagues concluded that the majority of the viral

phylogenies accurately recovered the true transmission tree.

While this early study did not make a distinction between transmission trees

and phylogenetic trees, later studies pointed out that these two types of trees are

conceptually different entities and might also differ from one another topologically for

one or more reasons (Jombart et al., 2010; Pybus and Rambaut, 2009; Romero-Severson

et al., 2014; Ypma et al., 2013). Jombart and colleagues more specifically argued that

using phylogenetic trees to identify who-infected-whom may be problematic as the

internal nodes of a phylogeny represent unobserved common ancestors and all sampled

isolates occur at the tips of the tree. In contrast, in a transmission tree, internal

nodes are commonly donor individuals, and tips are infected individuals from whom

secondary transmission did not occur (Jombart et al., 2010).

Another study pointed out that transmission trees and phylogenetic trees could
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differ from one another in terms of tree topology because of incomplete lineage sorting

(Pybus and Rambaut, 2009; Ypma et al., 2013). Incomplete lineage sorting is commonly

observed across broad taxonomic groups and has given rise to the distinction between

gene trees and species trees (Maddison and Knowles, 2006; Rosenberg and Nordborg,

2002). In the case of pathogen phylogenies, incomplete lineage sorting occurs when the

coalescence of isolates from two recipients precedes the coalescence of isolates from the

donor and either of the recipients (Figure 5.3A). This could result in a disagreement in

the topology of the transmission tree and the pathogen phylogeny: in the phylogeny,

the two recipients would be more closely related to one another than either one is to

the donor when the true transmission tree would have the donor as the source of both

recipient infections.

Finally, another study pointed out that even when a transmission tree and a

phylogeny share the same topology, their branch lengths could differ (Figure 5.3B)

(Romero-Severson et al., 2014; Ypma et al., 2013). This is especially the case with

dense sampling, as the coalescent times in time-resolved phylogenetic trees precede

the transmission times that are depicted in transmission trees. This is because, with

genetic diversity present in an infection, the time of the most recent common ancestor

of a pathogen sampled in a recipient and one sampled in a donor should be prior to

transmission occurrence. This discrepancy between the time of lineage coalescence and

the time of transmission has been termed the “pre-transmission interval” (Leitner and

Albert, 1999), and it is this interval that results in differences in the branch lengths of

the transmission tree and the phylogenetic tree.

.
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Figure 5.3: Diagrams depicting scenarios by which phylogenetic trees and
transmission trees become inconsistent with, or different from, one another.
Time progresses from left to right in both panels. Grey ovals denote hosts. (A)
A depiction of incomplete lineage sorting. The genealogical relationship between
pathogen particles sampled from an infection donor (top oval) and two recipients
(middle and bottom oval) is shown. Blue and red dots in the grey ovals denote
unsampled and sampled pathogen particles, respectively. The lineage of the sampled
pathogen particles in recipients (middle and bottom ovals marked as R1 and R2)
coalesces before it coalesces with the donor (top oval marked as D), the coalescence of
two lineages (indicated with an orange arrow) precedes the coalescence of the donor
and recipient lineages (indicated with a red arrow). Reproduced with modification
from Ypma et al. (2013) with permission (Copyright (2013) Genetics). (B) A depiction
of the pre-transmission interval. In the tree with grey ovals and red dots (tree in the
middle) connected by black lines, grey ovals, and red dots denote hosts and sampled
pathogen particles. Solid black lines indicate the pathogen lineages and dotted lines
indicate the transmission of a pathogen from one host to another. Transmission tree
representation (in red) and phylogenetic tree representation of the tree in the middle
are shown above and below. The transmission tree branches at the transmission
event, and the phylogenetic tree branches at the coalescent event. Reproduced with
modification from Ypma et al. (2013) with permission (Copyright (2013) Genetics);
permission conveyed through Copyright Clearance Center, Inc.
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5.4 Reconstructing transmission trees using phylo-

genies

Given the above studies that have highlighted the conceptual, topological, and quan-

titative differences between transmission trees and phylogenetic trees, how could

phylogenetic trees be used to infer transmission histories within an outbreak? An

early study by Cottam and colleagues acknowledged the difference between these two

tree types and then reconciled their interpretation by assigning an infectious unit to

internal nodes of the pathogen phylogeny (Cottam et al., 2008). The overarching

aim of this study was to reconstruct the transmission history of the United Kingdom

foot-and-mouth disease outbreak that occurred in 2001. During this outbreak, a total

of 20 farms were infected with the foot-and-mouth-disease virus (FMDV). While the

sources of infection for 5 of these farms had been established, the sources of infection

for the remaining 15 farms remained unknown. As the number of transmission trees

compatible with epidemiological data is large, Cottam and colleagues first used the

reconstructed phylogenetic tree to constrain the number of candidates for the recon-

structed transmission tree to a plausible set. Instead of equating the reconstructed

phylogenetic tree with the transmission tree, they then inferred the transmission tree

by assigning infected farms to the internal nodes of the reconstructed phylogenetic tree

(Figure 5.4A). The transmission tree candidates compatible with the farm-assigned

phylogenetic tree were selected, and the likelihood of each of these transmission trees

was calculated to identify the maximum-likelihood transmission tree.

Although this study showed how a phylogenetic tree can be used to infer the

transmission tree through the host assignment, it assumed the absence of within-farm

viral diversity. However, within-farm - or more generally, within-infectious unit genetic

diversity - can arise through de novo mutation that occurs within the unit and/or

by the unit receiving multiple lineages from one or more infection sources. As such,
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this assumption may or may not be an appropriate one to adopt, depending on which

pathogen is considered, the extent and duration of pathogen circulation within the

unit, the scale of the unit considered, and the contact patterns between a unit and

other units. For example, at the scale of individual hosts being the infectious unit,

adopting the assumption of no within-host genetic diversity may be reasonable for

acutely-infecting respiratory viruses. This is because within-host viral diversity in

these infections appears to be low (McCrone et al., 2018; Valesano et al., 2021). In

contrast, pathogens with longer infection durations or ones causing chronic infection

within a host may accrue genetic diversity, violating this assumption. Within-host

genetic diversity can also come about when multiple pathogen lineages initiate infection

in a host, as might be the case when the transmission bottleneck size is large (resulting

in a genetic bottleneck size that exceeds one) or when superinfection occurs (that is,

when an individual experiences infection from one donor on top of an earlier infection

from another donor) (Wymant et al., 2017).

Ignoring pathogen genetic diversity within an infectious unit, when it occurs, could

result in systematic errors in the reconstruction of transmission histories (Romero-

Severson et al., 2014; Worby et al., 2014; Worby and Read, 2015). Thus, recent

methodological developments in transmission tree inference have focused on statisti-

cally accommodating within-unit pathogen genetic diversity. Below, I review these

developments in the context of the assumptions these approaches make on the source

or sources of within-unit genetic diversity.

5.4.1 Within-unit genetic diversity stemming from de novo

mutation

A subset of developed phylogeny-based approaches for reconstructing transmission

trees in the presence of within-unit genetic diversity assumes that de novo mutations

occurring within-unit are the source of diversity. Specifically, they assume that the
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Figure 5.4: Assignment of hosts to internal nodes of a given phylogenetic
tree using likelihood-based approaches. In the phylogenetic trees shown, tips
are labeled according to the host the pathogen was sampled from. Internal nodes
are assigned to a possible host in which the associated ancestral pathogen resides.
Branches are colored based on the host in which the pathogen lineage is circulating.
Once the host assignment is complete, each phylogenetic tree is translated into a
transmission tree, shown in the ‘bean-bag’ representation below each phylogeny. (A)
The two possible host assignments (and resulting transmission histories) in the case
of no within-host pathogen diversity. Without within-host diversity, there is only
one (non-evolving) lineage present in a given host. Thus, the transmission scenario
compatible with the given phylogeny is where the ancestral pathogen is located in one
of the two hosts that are present at the tips associated with the internal node. This
limits the number of possible hosts for an internal node to two. (B) The three possible
host assignments (and resulting transmission histories) in the case of within-host
diversity. When within-host diversity (stemming from de novo mutation) is considered,
the given phylogenetic tree is consistent with all three of these different transmission
history scenarios. Reproduced with modification from Hall et al. (2015), published in
PLoS Computational Biology under a Creative Commons Attribution 4.0 International
(CC BY) license.
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genetic bottleneck during the transmission event is complete (that is, that the genetic

bottleneck size is one) and that each unit is infected only once. When within-host

diversity arising from de novo mutation is incorporated, transmission events no longer

coincide with the coalescence of pathogen lineages in the pathogen phylogeny, as

the mutation occurs during replication within a host. Thus, the coalescent event

associated with an internal node of a phylogenetic tree could have happened prior to

the transmission of a pathogen by a donor or following the transmission of a pathogen

in a recipient.

To allow for this phenomenon, Didelot and colleagues extended the conceptual

approach developed by Cottam and colleagues (Cottam et al., 2008) to explicitly

incorporate within-unit evolution arising from de novo mutation (Didelot et al., 2014).

In the development of their approach, they considered the infectious unit to be indi-

vidual hosts with relatively long-term infections. Given a time-resolved phylogenetic

tree and infection recovery times, their approach searches for a transmission tree

with the highest posterior probability while estimating additional parameters that

govern the epidemiological and within-host dynamics. Two central components for the

posterior probability calculation are the probability of observing a transmission tree

given the epidemiological parameters and the probability of observing the phylogenetic

tree given the within-host dynamics and transmission tree. The calculation for these

two probabilities is based on the model for within-host dynamics and transmission

dynamics. In their approach, the transmission dynamics are modeled by a susceptible-

infected-removed (SIR) model, and this model is used in calculating the probability of

a transmission tree given epidemiological parameters for transmission and recovery.

Within-host dynamics are modeled as a neutral coalescent process with a single pa-

rameter that quantifies the within-host effective population size. The probability of

observing the phylogenetic tree is obtained by multiplying the probability of observing

each of the tree’s subtrees, where each subtree represents evolution that has occurred
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in a single host. Subtrees are, therefore, delimited by transmission events. The

solution space of the transmission trees is explored by Markov Chain Monte Carlo

(MCMC). Similar to the original work by Cottam and colleagues (Cottam et al., 2008),

the approach developed by Didelot and colleagues is likelihood-based and relies on

a single reconstructed phylogenetic tree as input data. However, as pointed out by

Hall and coauthors 2015, inference based on a single phylogeny does not account

for phylogenetic uncertainty. The authors, however, suggest that their approach can

account for phylogenetic uncertainty by applying their method to the posterior samples

of phylogenetic trees, which are commonly provided by the software package BEAST

(Drummond and Rambaut, 2007).

While the approaches developed by Cottam and colleagues (Cottam et al., 2008)

and Didelot and colleagues (Didelot et al., 2014) both relied on single, “pre-generated”

phylogenetic trees to infer transmission trees, other inference approaches jointly

reconstruct transmission trees and phylogenies based on the same underlying model.

The earliest approach that both considered within-host diversity and co-estimated

phylogenetic trees alongside transmission trees was the approach developed by Ypma

and colleagues (Ypma et al., 2013). This approach relies on both epidemiological and

pathogen genetic data to co-estimate the phylogenetic tree and the transmission tree.

Their approach searches for the combination of transmission tree and phylogenetic

tree, along with other parameters, that have the highest probability using MCMC.

Distinct from Didelot and colleagues’ MCMC approach to searching the space of

transmission trees, Ypma and colleagues’ approach has three components in the

likelihood calculation. The first and second components are similar to the ones in

the approach by Didelot and colleagues (Didelot et al., 2014), corresponding to the

probability of observing the transmission tree and the probability of observing the

phylogenetic tree. However, different models were used for the underlying transmission

dynamics and within-host dynamics. Rather than subdividing a single phylogeny into



128

subtrees, each representing a single individual’s within-host dynamics, Ypma and

colleagues concatenated consecutive within-host genealogies by connecting a tip of

the donor’s tree to the root of the recipient tree. With this concatenation approach,

there is an assumption of a complete transmission bottleneck. Along with these two

likelihood components, the third component in Ypma and colleagues’ approach is given

by the probability of observing the observed sequences under a given phylogenetic

tree. Calculation of this probability involves specifying a model of sequence evolution

and estimating its parameters, including nucleotide substitution rates.

A second approach that co-estimates the phylogenetic tree alongside the transmis-

sion tree is an approach developed by Hall and colleagues (Hall et al., 2015). Similar

to the approach taken by Ypma and colleagues, the phylogenetic tree, transmission

tree, and other model parameters are estimated using three likelihood components.

To calculate the probability of a phylogenetic tree given a transmission tree and

other parameters, this approach subdivides the phylogenetic tree into subtrees, similar

to the approach taken by Didelot and colleagues (Didelot et al., 2014). Hall and

colleagues’ approach, however, allows for multiple samples per host as long as they

form a single monophyletic clade in the phylogeny. For the transmission dynamics,

Hall and colleagues’ approach uses individual-based modeling instead of compartmen-

tal epidemiological models. While using individual-based modeling allows for more

realism and a straightforward way by which to incorporate host heterogeneity and

non-random mixing of the host population, relying on this type of modeling introduces

additional parameters and complexity. This, in turn, increases the computational

effort to calculate likelihoods and, therefore, may limit the scalability of the approach.
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Figure 5.5: Genealogy of pathogens sampled from different hosts under
the multi-species coalescent model (A) versus the structured coalescent
model (SCOTTI; B). Red dots denote pathogen samples. Black dots denote
coalescent events. Rectangles boxing off lineages represent hosts. For each host, the
introduction and removal times (defining the exposed interval) are indicated with solid
lines. Dashed lines indicate an unsampled host with an unknown exposed interval. (A)
In the multi-species coalescent model, pathogens are assumed to be transmitted under
a complete transmission bottleneck, shown with blue rectangles connecting hosts. (B)
In a structured coalescent model, each host is modeled as a subpopulation that is
present at the same time, as indicated in the dashed rectangle. However, migration to
and from a host is restricted to the host’s exposed interval. The migration between
hosts is marked with red arrows. Multiple lineages can be introduced into a host, thus
making this model more appropriate for pathogens with loose transmission bottlenecks
and for scenarios of superinfection. Reproduced with modification from De Maio
et al. (2016), published in PLoS Computational Biology under a Creative Commons
Attribution 4.0 International (CC BY) license.
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5.4.2 Within-unit diversity stemming from multiple infection

and de novo mutation

When the source of within-unit diversity is limited to de novo mutations, the set

of possible infectious units in which a pair of pathogens diverged is limited. This

limited set is what permits the calculation of the likelihood with explicitly modeled

within-unit dynamics. However, when within-unit diversity is present and does not

stem from de novo evolution alone, the application of the approaches discussed in

the previous section may exclude the true transmission history. The incorporation of

multiple infections (either by superinfection or incomplete genetic bottlenecks) will

expand the set of possible infectious units (generally, hosts) in which the coalescence

of two pathogen lineages occurred. This expansion results from the possibility that

lineage coalescence can occur in a host that is upstream in a transmission chain from

the host that is the most recent infectious ancestor that is common to the pair of

individuals that are sampled. Thus, to allow for within-unit diversity that may stem

from multiple infections, approaches that are computationally less demanding are

needed.

To allow multiple infections and, more generally, to allow more complex scenarios

of transmission history, De Maio and colleagues developed a transmission tree inference

approach based on a structured coalescent model (De Maio et al., 2016). This stands

in contrast to the approaches detailed above that allow only for de novo-generated

within-unit diversity (Didelot et al., 2014; Hall et al., 2015; Ypma et al., 2013).

Those approaches essentially use a multi-species coalescent model (Rannala and

Yang, 2003), where the pathogen population within a host is a separate population

established by the transmission of a single pathogen lineage (Figure 5.5A). Following

infection, an infectious unit can no longer receive additional lineages; it can only

infect previously uninfected units. In contrast, a structured coalescent model considers

infectious units as subpopulations, with migration that can repeatedly occur between
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them. As such, the set of infectious units can be considered a meta-population.

Under a structured coalescent model framework, transmission events are migration

events between subpopulations. In their approach, De Maio and colleagues assume

that all infectious units (subpopulations) have equal and constant population sizes

(Figure 5.5B). Each host has an exposure interval that starts with an introduction

time and ends with a removal time. Within this exposure interval, the pathogen

population within a host migrates to other hosts at equal rates. Consideration of this

process backward in time, migration (that is, transmission) of a pathogen provides an

opportunity for a lineage in a host to coalesce with another lineage in another host.

The way by which migration occurs between subpopulations allows for scenarios such

as the transmission of multiple lineages from one host to another host (that is, an

incomplete genetic bottleneck) and superinfection (infection of a host from multiple

donors) that were not considered within the realm of possibilities under previous

approaches.

Both the structured coalescent transmission tree reconstruction approach and

the approaches before it rely on likelihood calculations for inference. Further, they

are based on only a few (if not one) samples per infected host. With advances in

sequencing technology and decreases in the cost of sequencing, more samples per

host are now often available. More recently developed approaches have, therefore, by

design, focused on more effectively exploiting this higher within-individual sampling

effort (Dhar et al., 2022; Sashittal and El-Kebir, 2019, 2020; Wymant et al., 2017).

The underlying idea of these approaches is similar to earlier approaches (Metzker

et al., 2002; Esteban et al., 1996; Heinsen et al., 2000; Holmes et al., 1993) to infer

the epidemiological relationship between two infected hosts. Based on the work by

Romero-Severson and colleagues that shows how cladistic relationships (the PM, PP,

and MM relationships described above) can be used to infer the transmission direction

between two individuals (Romero-Severson et al., 2016), these recent methods use a
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parsimony-based approach to reconstruct the transmission tree.

The approach by Wymant and colleagues relies on data sets with multiple samples

per host generated either by deep-sequencing technology or the longitudinal sampling

of a single host (Wymant et al., 2017). Their approach reconstructs the transmission

tree by assigning hosts to internal nodes of the phylogenetic tree. The assignment

of a host is done by minimizing the number of infections with the Sankoff algorithm

(Sankoff, 1975), which is typically used for ancestor reconstruction for a phylogenetic

tree. However, they modified the algorithm so that it can handle the ‘unassigned’ state

where the host is suspected to be outside of the samples or the topological signal for a

host assignment is ambiguous. In addition, to address the limitation of the Sankoff

algorithm, which may generate an unrealistic scenario of a single introduction where

multiple introductions are plausible, they introduced penalties for high within-host

diversity. This results in the assignment of two lineage introductions (instead of

a single introduction) when the genetic distance between two samples from a host

exceeds a given threshold. In this approach, multiple phylogenetic trees that are

generated from different regions of the pathogen genome can be assigned to a host

and integrated over to reconstruct a transmission tree.

Several other recently developed approaches also rely on parsimony for transmission

tree reconstruction. While Wymant and colleagues’ approach reconstructs a single

host assignment for each phylogenetic tree, an approach developed by Dhar and

colleagues (Dhar et al., 2022) acknowledges that there could be many optimal host

assignments that result in the same minimal number of infections. Thus, among

those optimal host assignments, they select the trees with the minimum number of

back-transmissions (that is, reinfections). A similar approach developed by Sashittal

and El-Kebir (Sashittal and El-Kebir, 2019) specifically aims to account for a loose

transmission bottleneck. While allowing for co-transmission of multiple lineages via a

loose transmission bottleneck, they search for the most parsimonious tree. In contrast
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to the Dhar and colleagues’ approach (which searches for trees with the minimum

number of back-transmissions among trees with the minimum number of infections),

Sashittal and El-Kebir’s approach minimizes the number of co-transmissions from

trees with the minimum number of infections.

5.5 Perspectives

5.5.1 Inference methods rely on different assumptions, ap-

proaches, and data

Although transmission trees and phylogenetic trees differ from one another conceptually,

phylogenetic trees contain valuable information and could be used in transmission tree

reconstruction. Specifically, these two trees can be reconciled with one another through

host assignment to internal nodes of a phylogenetic tree. While some approaches

assign hosts to internal nodes based on a single, ‘pre-generated’ phylogenetic tree,

other approaches jointly infer the transmission tree and the phylogenetic tree. Above,

I reviewed phylogeny-based approaches for inferring transmission histories according

to the assumptions these approaches adopt regarding the source of genetic variation

within a host (or infectious unit). Early approaches did not consider within-host

genetic variation, assuming that pathogen genetic differences arose during the process

of transmission (Cottam et al., 2008). Later approaches allowed for within-host

pathogen genetic variation generated by de novo mutation and/or infection with

multiple lineages (De Maio et al., 2016; Dhar et al., 2022; Didelot et al., 2014; Hall

et al., 2015; Sashittal and El-Kebir, 2019; Wymant et al., 2017; Ypma et al., 2013).

Where within-host genetic diversity can stem from is a central assumption for the

inference approaches, as it determines the set of host assignments that are compatible

with a given phylogenetic tree.

The assumptions of simpler within-host dynamics limit the set of potential trans-



134

mission histories by limiting the potential host (or infectious unit) locations of ancestral

pathogens. In Cottam et al. (2008), which does not consider within-host evolution,

pathogens sampled from two different hosts must find their most recent common

ancestor in one of the two hosts (Figure 5.4A). However, when within-host variation

generated fromde novo mutations is allowed, this opens a new possibility where the

most recent common ancestor existed in another host that transmitted to both of

the sampled hosts (Figure 5.4B). As such, this increases the potential location of the

ancestor pathogen from two to three hosts, expanding the space of the transmission

tree. The incorporation of unsampled hosts and multiple infections further adds

complexities to the relationship between a phylogenetic tree and a transmission tree.

In the likelihood-based approaches reviewed (De Maio et al., 2016; Didelot et al.,

2014; Hall et al., 2015; Ypma et al., 2013), the likelihood of a transmission tree is

calculated based on explicitly modeled within-host dynamics. This makes the inference

computationally expensive. In addition, these approaches must, therefore, specify

assumptions regarding the underlying within-host dynamics. However, these dynamics

are not always well characterized, and simplifications are adopted for computational

ease. Commonly, these approaches assume that the within-host evolutionary dynamics

are governed by the Kingman coalescent (Kingman, 1982), which is clearly an oversim-

plification for pathogens with complex within-host life cycles and dynamics. Further,

because these likelihood-based approaches model transmission dynamics given the

epidemiological data, they require epidemiological data that may, at times, be missing

or inaccurate.

More recent parsimony-based inference approaches (Dhar et al., 2022; Sashittal

and El-Kebir, 2019; Wymant et al., 2017), however, have other limitations. First,

because they infer transmission histories from the within-host diversity of hosts, they

require multiple samples per host, either by longitudinal sampling from a host or by

deep-sequencing. Although this type of data is becoming more readily available due
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to advances in deep-sequencing technology, it is not always available. In addition,

although different parsimony algorithms are used by different approaches, there are

no clear criteria to determine the most reasonable parsimony algorithms.

5.5.2 Choice of inference method to use should be based on

data characteristics

Which of the above-described approaches should be used for transmission tree inference

based on several factors? The first is the type of genetic data required for the inference

method. For instance, all of the parsimony-based approaches reviewed here (Dhar

et al., 2022; Sashittal and El-Kebir, 2019; Wymant et al., 2017) require multiple

samples from an infected host, and the presence of within-host pathogen genetic

diversity. Although these types of data are becoming increasingly available thanks to

the falling cost of sequencing, they might not be available in all cases. In addition,

within-host diversity might require different approaches to be appropriately captured.

For instance, while short reads in deep sequencing data could capture the within-host

diversity in HIV-1 infections due to the high mutation rate of this virus (Wymant

et al., 2017), short reads may not be able to capture the within-host diversity of

a Staphylococcus aureus infection, resulting from a bacterial pathogen with a low

mutation rate. This is because the read length may be too short to provide enough

opportunity for mutations to occur (Hall et al., 2019). In this case, the within-host

diversity needs to be captured by sequencing multiple colony picks (Hall et al., 2019).

In addition to the type of sequence data, another factor that should be considered

is the completeness of the sequence and the presence of epidemiological data. Each

inference method has different assumptions regarding the observation and sampling of

hosts. Most of the inference methods reviewed here (Cottam et al., 2008; Dhar et al.,

2022; Didelot et al., 2014; Sashittal and El-Kebir, 2019; Ypma et al., 2013) assume

that all hosts are observed and sequenced. Without knowing that there is a missing



136

host, algorithms used in these approaches may assign an incorrect host to an internal

node. Thus, violation of these assumptions may lead to incorrect host assignment and

reconstruction of the transmission history.

Biological characteristics, including the life cycles of a pathogen, also need to be

considered. For instance, pathogens with frequent co-infection and weak transmission

bottlenecks may violate the assumptions regarding the source of within-host diversity.

When pathogens are located in different body compartments, the sampling sites and

the compartment that is primarily responsible for the transmission of pathogens should

also be considered so that within-host diversity can be appropriately captured.

5.5.3 Systematic comparisons are needed to evaluate the

performance of inference approaches

Due to differences in the types of data used and differences in the underlying transmis-

sion assumptions, systematic comparisons between different methods are challenging.

This is, in part, may be the reason why there are so few systematic comparisons

that exist that have evaluated the relative performance of transmission tree infer-

ence approaches. Of the comparisons that have been conducted, one examined both

phylogeny-based and genetic distance-based approaches (Firestone et al., 2019). In this

study, they used simulated datasets for a foot-and-mouth disease outbreak to compare

the accuracy of different approaches for the inference of transmission networks between

farms and substitution rates. To assess the robustness of the inference methods to

unsampled premises, comparisons were made with all genomic data available and again

with only 50% of the genomic data available. When the genomic data were available

for all premises, the genetic distance-based approach by Lau and colleagues (Lau et al.,

2015) showed the highest accuracy among the nine compared approaches, correctly

identifying the source of 73% of the infected premises (Firestone et al., 2019). A

modified version of Cottam and colleagues’ phylogeny-based approach came in second
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in terms of performance. Lau and colleagues’ approach showed the best performance

when only 50% of infected farms were sampled.

A second study that aimed to conduct a systematic comparison across inference

methods examined the performance of approaches, including both phylogeny-based

and distance-based approaches. In the context of a low genetic diversity outbreak of

Mycobacterium tuberculosis (Sobkowiak et al., 2022). In this study, both simulated

and real-world data were used in the comparison. In this analysis, Outbreaker2

(Campbell et al., 2018) performed best, with the highest sensitivity, defined as the

proportion of true transmission links that were correctly identified.

Although these two studies provided valuable insight regarding the performance of

different inference approaches, more systematic comparisons are needed. In particular,

it is not well studied how uncertainty and incompleteness of genetic and epidemiological

data affect transmission tree inference. Among inference methods that assume complete

observation and sampling of infected hosts (Cottam et al., 2008; Dhar et al., 2022;

Didelot et al., 2014; Sashittal and El-Kebir, 2019; Ypma et al., 2013), the method

suggested by Ypma and colleagues is the only study that included assessment for how

the approach performs in the case of unobserved or unsampled data. This lack of

knowledge regarding the potential biases due to violation of assumptions limits the

applicability of inference methods to very limited circumstances. More comparative

studies would facilitate the appropriate application of inference methods on empirical

datasets. Further, because different pathogens have different characteristics, any

systematic comparison should consider various datasets as one benchmarking test

based on a pathogen with some characteristics that may not be reflective of performance

on data from another pathogen with different characteristics.
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5.6 Conclusion

Although transmission trees and phylogenetic trees are conceptually different from

one another, phylogenetic trees have the potential to inform transmission histories,

complementing traditional epidemiological data. With more studies that systematically

assess the performance of inference approaches under various conditions, researchers

will be better guided to choose an inference method that is most appropriate for

the type of data that is available to them and for the specific characteristics of their

pathogen of study.



139

5.7 Supplementary information

5.7.1 Tree representations of transmission history

During the process of pathogens spreading through a population, pathogens transmit

from infected hosts to susceptible hosts. Each transmission can be considered a

transmission link between hosts, with sequential transmissions forming a chain of

transmission. These chains of transmission can be represented by a rooted tree

structure when every infected host is infected by only a single infectious contact

and when re-infection does not occur (Welch, 2011). A complete transmission tree

exhaustively summarizes an outbreak, including the identity of every host infected

during the outbreak and the time of infection and recovery of each infected host

(Welch, 2011). In a complete transmission tree (Figure 5.6A), the timeline of infection

is shown for each infected individual, with a connecting horizontal line between the

time of infection and the time of recovery of a single individual. Transmission of the

infection is shown as a branching event, stemming from the donor of the infection to

the recipient of the infection, which is represented as a new horizontal line with its

timeline of infection.

Depicted transmission trees can also be incomplete, omitting some degree of detail,

for example, the timing of transmission events or the timing of infection and recovery

(Figure 5.6B). This simplified depiction of transmission dynamics occurring during an

outbreak has been termed a “beanbag” tree (De Maio et al., 2016). In beanbag trees,

each node represents an infectious unit, and each directional edge between a pair of

connected nodes represents a transmission event. Depending on the scale of the study,

an infectious unit can be an individual or a premise (e.g., a household or a farm).
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Figure 5.6: Transmission tree depictions. (A) A complete transmission tree,
showing infection times and recovery times of all individuals infected during an
outbreak, along with information on who-infected-whom. Each horizontal line indicates
the timeline of infection, from the time of infection (start of the horizontal line) to the
time of recovery (end of the horizontal line). Here, recovery events are labeled with
the time of recovery and the identity number of the host, respectively. The branching
of the tree indicates the transmission event, and the associated internal node is labeled
with the transmission time, the recipient of the transmission, and the donor of the
transmission, respectively. Reproduced from Welch (2011) with permission (Copyright
(2011) Welch). (B) An example of an incomplete (“bean-bag”) transmission tree.
Hosts are labeled with numbers or letters. Reproduced from Cottam et al. (2008)
with permission (Copyright (2008) Royal Society B: Biological Sciences); permission
conveyed through Copyright Clearance Center, Inc.
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5.7.2 Reconstructing and dating phylogenetic trees

What is a phylogenetic tree?

Phylogenetic trees are a key concept in the field of evolutionary biology. They

describe the evolutionary relationships between different sampled taxa (e.g., species,

individuals). The structure of phylogenetic trees includes nodes and edges. The

external nodes are also called ‘tips’ or ‘leaves’, and the edges are also called ‘branches.’

Sampled taxa, located at the tips of a tree, are related to one another through

evolutionary descent from common ancestors. These common ancestors are depicted

as internal nodes. The length of branches connecting nodes reflects the amount of

evolutionary change between them.

Reconstructing a phylogenetic tree from sequence data

While a phylogeny can be reconstructed based on many different types of character

data, one of the most commonly used data types is nucleotide sequences. Each site in

a nucleotide sequence serves as a character, and the four nucleotides are the possible

character states that provide information to infer the evolutionary relationships

between taxa. Reconstruction of a phylogenetic tree from nucleotide sequence data

starts with the alignment of viral sequences to allow for comparison across homologous

sites (Figure 5.7). For the phylogenetic tree reconstruction, two different approaches

are available: distance-based approaches and optimality approaches.

Distance-based approaches use calculated distances between pairs of sequences to

reconstruct a phylogeny. The distances between sequences are calculated based on

a sequence evolution model that describes the probability of substitution from one

nucleotide to another. The simplest model of sequence evolution is JC69 (Jukes and

Cantor, 1969), where all substitutions occur with equal probability. One example

of a distance-based approach is the least-squares method, which searches for a tree
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that has the minimum difference between the expected difference of the tree and

the observed difference in sequence pairs. Other distance-based approaches include

minimum evolution, UPGMA, and neighbor-joining approaches.

Optimality approaches instead consider each nucleotide site as a separate character,

and all nucleotide sites are considered for each of the sampled sequences. Optimality

approaches include maximum parsimony, maximum likelihood, and Bayesian methods.

The maximum parsimony approach searches for a tree that minimizes the number

of evolutionary changes needed to explain the observed sequences. This approach

does not explicitly incorporate a model of sequence evolution. In contrast, maximum

likelihood and Bayesian methods reconstruct phylogenies using likelihood calculations

that involve models of sequence evolution. More specifically, the likelihood is given by

the probability of observing a set of sampled sequences, which can be calculated under

a specified phylogeny (including topology and branch lengths) and a parameterized

model of sequence evolution.

Reconstructing a phylogenetic tree from sequence data

In reconstructed phylogenetic trees, branch lengths often represent the genetic distance

between nodes and thus cannot be directly used to infer the temporal ordering of

branching events. Branch lengths, however, can be converted into units of time, pro-

viding a common frame of reference to compare the branching events in a phylogenetic

tree to epidemiological events of interest, such as transmission events. The conversion

relies on molecular clock models, which are based on the assumption that the genetic

difference between two taxa is proportional to the time since their divergence. Using

the genetic differences between taxa and their sampling times, the substitution rate

can be estimated, and this estimated substitution rate is used to convert branch

lengths from units of genetic differences to units of time. This is done by dividing

genetic differences by the substitution rate. Before time-resolving (otherwise known
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as “dating”) a phylogenetic tree, it is recommended to test whether enough temporal

signal is present in the dataset through approaches such as root-to-tip regression

(Korber et al., 2000; Rambaut et al., 2016).

Figure 5.7: Workflow for phylogenetic tree reconstruction and time-
calibration of a phylogenetic tree. Reproduced with modification from Guinat
et al. (2021) with permission (Copyright (2021) Trends in ecology & evolution); per-
mission conveyed through Copyright Clearance Center, Inc.

5.7.3 Supplementary Table
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Chapter 6

Conclusion

Traditionally, infectious disease surveillance has relied primarily on case data. How-

ever, the increasing availability of genome sequences has opened new opportunities

to better understand infectious disease dynamics, especially when case detection is

incomplete due to asymptomatic infections or when reporting rates are unstable due

to limited testing capacity. This is possible because genome sequences contain the

footprints of past events in the form of genetic variations. By analyzing patterns

of genetic variation in sampled genomes, phylodynamics, and other genome-based

approaches have uncovered diverse aspects of viral spread and evolution. Furthermore,

the unprecedented scale of sampling and rapid sharing of genome sequences during

the COVID-19 pandemic set the foundation for both pandemic-scale phylodynamic

inferences and genome-based surveillance during very early spread. These new applica-

tions present unique challenges that require further methodological development and

evaluation. This thesis aimed to further understanding of genome-based approaches,

especially during the early spread of newly emerged viruses.

In Chapter 2, I focused on the challenges due to the low level of genetic variation

during the early spread of the virus and proposed a novel tree-free approach that

estimates epidemiological parameters from the segregation site trajectory. Since
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this approach does not rely on phylogenetic reconstruction, it circumvents the need

to integrate over phylogenetic uncertainty, which can be computationally intensive

when genetic diversity is low. An additional benefit is that this approach uses a

particle-filtering algorithm. Due to the ‘plug-and-play’ property of particle filtering,

the underlying simulation model used here could be replaced with other models of

interest.

In Chapter 3, I investigated how generation interval misspecification affects

phylodynamic estimation of the reproduction number during early exponential growth.

While the impact of misspecification on case-based inference was recognized earlier

by Wallinga and Lipsitch (2007), less attention has been paid to phylodynamic

approaches. I compared phylodynamic estimates under three generation interval

distributions and demonstrated that ignoring the distribution’s shape and focusing

solely on the mean generation interval can lead to an underestimation of the basic

reproduction number. Notably, this underestimation was not observed when the

growth rate was matched, even under an exponential distribution. However, currently,

few phylodynamic approaches can incorporate flexible generation interval distributions.

In Chapter 4, I examined epidemiologically clustered sequences. I demonstrated

that clustered sequences in a dataset can lead to an underestimation of the epidemic

growth rate. I then showed that one-dimensional summary statistics cannot effectively

capture differences between randomly sampled datasets and non-randomly sampled

datasets with clustered sequences. However, the distributions of pairwise tMRCA and

pairwise nucleotide diversity that have higher dimensions could capture signatures from

pairs within the same clusters. Further work is needed to develop an approach that

uses these summary statistics to identify non-randomness in datasets. Additionally,

since this work relies on a discrete-time model, expansion to a continuous-time model

is necessary for better applicability to real-world data.

In Chapter 5, I reviewed the relationship between the phylogenetic tree and the
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transmission tree. Even long before the phylodynamic approaches were established,

pathogen phylogenies have been used to better understand the transmission dynamics.

The earlier approaches relied on the phylogenetic relationships between sampled

pathogen sequences to identify the source of infection (Esteban et al., 1996; Heinsen

et al., 2000; Holmes et al., 1993; Metzker et al., 2002). However, it was later that

recognized that the transmission tree and the phylogenies are conceptually different

entities (Jombart et al., 2010; Pybus and Rambaut, 2009; Romero-Severson et al.,

2014; Ypma et al., 2013). Based on this recognition, a number of approaches have been

suggested (Cottam et al., 2008; Ypma et al., 2013; Didelot et al., 2014; Hall et al., 2015;

De Maio et al., 2016; Wymant et al., 2017; Dhar et al., 2022; Sashittal and El-Kebir,

2019), which rely different type of data, assumptions and approaches. As such, I

conclude that a systematic comparison, especially under the missing sample, is needed

to facilitate the appropriate application of inference methods on empirical datasets.

This chapter focuses on the ’who-infected-whom’ level dynamics. However, in order

to understand how pathogen phylogeny can be used to estimate the epidemiological

dynamics, further investigation at the host population level is needed.

Viral genome sequencing is increasingly becoming routine in infectious disease

surveillance and monitoring protocols worldwide, and viral genome sequences have

become an important source of complementary information that enhances and extends

traditional epidemiological case data. As such, these genomic data now serve as a

critical component in public health-related decision-making, thus the need for robust

and reliable inference approaches is increasing. Future work in this field should

consider the potential biases introduced by violations of assumptions in genome-based

inferences when applying existing approaches and interpreting the results. Additionally,

more methodological developments are needed to better accommodate more realistic

assumptions, which may become more feasible with the growing availability of genome

sequence data.
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