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Abstract 

Neocortical-Medial Temporal Lobe Interactions during Visuospatial Memory Formation 
and Implications for Screening of Memory Impairment in Alzheimer’s Disease 

 
By Rafi Haque 

 
 
 
 
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by pathological 
changes prior to onset of clinical symptoms. The earliest site of cortical pathology is the medial 
temporal lobe (MTL), a region critical for the formation of memories. The presence of pathology 
within the MTL has generated interest in developing memory assessments that involve the MTL 
and may identify individuals with memory impairment due to AD.  To address this need, we 
developed a visuospatial memory paradigm that requires participants to retrieve their past 
memories and recognize differences between these memories and the current experience. We 
presented this memory paradigm while recording electrophysiological activity in visual 
association areas and the MTL. Successful recognition of visuospatial memories was associated 
with increases in 80-120 Hz power within visual association areas and the MTL and also 
accompanied by 8-12 Hz communication between these regions. We then developed a version of 
this visuospatial memory paradigm that strictly uses eye movements as an index of retrieval. 
Visuospatial memory performance based on eye movements was substantially reduced in 
participants with AD and could differentiate the two populations with high sensitivity and 
specificity. To improve the scalability of this assessment, we developed an iPad-based version of 
the memory task that utilizes iTracker, a convolutional neural network (CNN) architecture used to 
track eye movements on Apple devices. We found that the iPad-based implementation could also 
differentiate cognitively impaired participants from healthy controls with high sensitivity and 
specificity. This work advances our understanding of the neocortical-MTL interactions underlying 
visuospatial memory formation and provides a passive, sensitive, and efficient memory assessment 
that may be used to identify individuals at risk of future memory impairment. 
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Chapter 1: Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized 

histopathologically by the presence of amyloid-beta (Aβ) peptides in extracellular senile plaques 

and the formation of intracellular, neurofibrillary tangles (NFTs) composed of  microtubule-

associated protein tau 1,2. The presence of AD pathology prior to the onset of clinical symptoms 

has generated considerable interest in identifying individuals during the earliest stages in the AD 

neuropathological spectrum before severe cognitive impairment. Memory tasks that are mediated 

by the medial temporal lobe (MTL), the earliest site of pathology in AD, offer promise for early 

detection of decline in AD. When initially exposed to an experience, memories are generated and 

stored through feedforward and feedback interactions between the neocortex and MTL. When 

presented with a similar experience, the previous experience can be retrieved through reactivation 

of these neocortical-MTL interactions. These interactions therefore provide an internally generated 

memory to which new experiences may be compared. Memory paradigms have recently been 

developed that require the detection of violations between past and present experience. These 

memory paradigms may identify the neocortical-MTL interactions underlying violations between 

past and present experience and whether the detection of such violations are impaired in AD.  

 

1.1 Molecular Pathogenesis and Pathophysiology of Alzheimer’s Disease 

Insights into the pathogenesis of AD arose from the pioneering neuropathological observations of 

senile plaques and NFTs by Alois Alzheimer9, and the discovery eighty years later that these 

plaques consist of a 39-43 amino acid peptide now known as amyloid-beta (Aβ)  (Fig. 1) 3. Aβ is 

derived from the sequential cleavage of the Aβ-precursor protein (APP) by β-secretase and 𝛾-

secretase to primarily yield two major isoforms, Aβ40 and Aβ42, along with various C- and N-
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terminally truncated and/or modified isoforms. In the disease state, Aβ acquires a β-strand-rich 

molecular conformation, a state prone to self-assemble into oligomers, diffuse plaques, and dense-

core (amyloid) plaques. Many dense-core plaques, which are thought to represent a late stage of 

development, are surrounded by degenerating neurites as well as activated microglia and 

astrocytes2. Soluble Aβ oligomers, rather than dense core plaques,  are now thought to be a key 

toxic intermediary linked to early synaptic injury in loss and  reflect the earliest stages of AD 4.  

The role of Aβ in AD pathogenesis is further supported by genetic mutations in rare, autosomal-

dominant, familial cases of AD. These mutations in APP and presenilin 1 and 2 components of the 

𝛾-secretase complex are associated with the overproduction and/or accumulation of Aβ as well as 

a more aggressive disease course, including an early age of onset compared to sporadic cases of 

AD5–8. These studies implicate the Aβ peptide as a causative agent in triggering a sequence of 

events that ultimately leads to NFTs, neuronal dysfunction, synaptic loss, cerebral atrophy, and 

dementia4,9 – at least in these rare families with autosomal dominant mutations.   
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Figure 1.  Aβ-immunoreactive deposits (brown) in the neocortex 
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NFTs are also a core lesion that, along with Aβ plaques, defines all cases of AD 2,10–13. NFTs are 

intracellular deposits of hyperphosphorylated, microtubule-associated protein, tau. Tau typically 

binds tubulin to control the stability of microtubules and regulate axonal transport. In its 

hyperphosphorylated form, tau self-assembles to form paired helical filaments at the ultrastructural 

level and NFTs at the light microscopic level 2,10–13. The emergence of NFTs follows a 

characteristic spatiotemporal progression across brain regions, known as the Braak stages 12. 

Cortical NFTs initially appear in layer II and III of the trans-entorhinal region (stage I) and progress 

to the hippocampal formation (stage II) 13. NFTs then deposit in basal areas of the temporal lobe 

(stage III) and neocortical association areas (stage IV) followed by deposition in motor and sensory 

areas in stages V and VI. Unlike amyloid pathology, NFTs often correlate with neuronal loss and 

symptom progression in AD 13, beginning with subtle memory deficits followed by multi-domain 

cognitive impairment 14–17. The presence of NFTs and associated MTL neurodegeneration prior to 

the onset of clinical symptoms suggest individuals at risk of cognitive decline may be identified 

during the earliest stages of AD.  

 

1.2 Clinical Assessment of Cognitive Impairment in Alzheimer’s Disease 

Memory loss is the earliest detectable clinical feature of AD and characterized by insidious 

anterograde long-term episodic amnesia. As the disease progresses, individuals develop other 

cognitive impairments, including executive dysfunction, attentional impairment, and visuospatial 

dysfunction. In its later stages, individuals exhibit severe dementia and rely solely on their 

caregivers to carry out simple tasks. As these symptoms progress, care becomes overwhelmingly 

difficult and often necessitates placement in long-term care facilities. In the terminal-stages, 

complications such as dehydration, malnutrition, and infection frequently culminate in death.  
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A clinical evaluation dementia begins once there are concerns about an individual’s memory or 

cognition. An important part of the diagnostic evaluation of dementia is the clinical history from 

both the patient and the caregiver. Clinical criteria for dementia  includes a slow progressive 

history of insidious onset, cognitive decline in more than one domain 18. To obtain an objective 

measurement of cognition, clinicians administer general cognitive screenings such as the Montreal 

Cognitive Assessment (MoCA) 19.  The MoCA  is a 30-point assessment administered in 

approximately 15 minutes that measures cognitive domains including memory, visuospatial, 

executive, attention, language, abstract reasoning, and orientation.  MoCA performance for healthy 

controls, MCI and AD populations are 25.57 ± 2.75, 23.41 ± 3.38, and 15.30 ± 5.5120. The MoCA 

shows robust differences between healthy controls and AD participants however fails to reliably 

differentiate healthy controls from MCI, especially in the early stages. Even when  most predictive 

sections of the MoCA are used -- memory, executive, and orientation, the MoCA shows a 

sensitivity and specificity of only 0.73 and 0.62 in differentiating healthy controls from MCI 21. 

The MoCA also suffers from severe ceiling effects, depends considerably on socio-educational 

variables and is influenced by the language of administration. These short-comings have generated 

considerable interest in the development of new screening assessments that assess memory, the 

cognitive domain affected earliest in AD. 

 

Detailed neuropsychological testing is also sometimes used for identifying cognitive impairment.  

Memory deficits are established through performance on neuropsychological tasks measuring 

verbal recall such as the Rey Auditory Verbal Learning Test (RAVLT) 22 and Free Cued Selective 

Reminding Test 23,24. These tests have been successful in detecting memory impairment 25–30. 
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However, these tests require at least 30-45 minutes to be administered by trained personnel and 

are often underused for symptomatic individuals because of the resource demands necessary to 

implement in clinical settings. Participants often do not like the experience of verbal learning tests, 

due to the perceived poor performance on such tests. The development of new memory 

assessments that involve the MTL and that can be administered rapidly may identify individuals 

at risk for future memory decline compared to current cognitive assessments.  

 

1.3 The Medial Temporal Lobe and Memory Formation  

 
The MTL system consists of the hippocampus, entorhinal cortex, perirhinal cortex, and 

parahippocampal circuits, cortical areas that are organized hierarchically based on their 

neuroanatomical projection patterns 31,32.  Initial insights into the involvement of the MTL in 

memory formation arose from studies in patient HM who received bilateral resection of the MTL 

in order to treat the symptoms of intractable epilepsy 33. Following removal of the MTL, HM 

exhibited severe memory impairment for everyday experiences, without any deficits in visual 

perception, language abilities, or motor learning. Early studies in non-human primates rigorously 

tested the MTL’s involvement in memory formation through the development of the delayed object 

recognition memory tasks. During these tasks, NHPs were presented with an object and then after 

a delay,  presented with the original object along with a novel object. NHPs with large MTL lesions 

were impaired in identifying the original object for Delay Match to Sample (DMS) task and the 

novel object in Delay Non-Match to Sample (DNMS) tasks, especially when significant delay 

exists between the two presentations were present 34–40. 
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To clarify the role of individual regions of the MTL in memory formation, selective lesions were 

performed to the perirhinal cortex, parahippocampal cortex, and the hippocampus proper to a 

variant of the DNMS task that measures spontaneous exploration of novel objects compared to 

familiar objects. The results from these studies indicated consistent deficits in the exploration of 

novel objects following selective lesions of the perirhinal cortex 41–44, compared to the inconsistent 

deficits from lesions of the hippocampus and parahippocampal cortices 41,42,44–46. In contrast, 

relatively small lesions of the hippocampus and parahippocampal resulted in deficits in the 

exploration of on object that is moved from its original location or environment 42,43,47. Double 

dissociation experiments in rats revealed that parahippocampal damage produced a deficit in 

object-location recognition memory while perirhinal damage resulted in a deficit in object-object 

recognition memory 43. These studies have led to the hypothesis that interactions between the 

neocortical areas and the hippocampus may underlie the formation of visuospatial memories 43,48–

50 

1.4 Neocortical and Medial Temporal Lobe Interactions during Visuospatial Memory 

Formation  

The hippocampal-neocortical system consists of a set of cortical areas that are arranged in a 

hierarchy based on their neuroanatomical projection patterns 31,32,51,52.  In the neocortex, 

feedforward  projections typically originate in supragranular layers and terminate in granular layer 

IV while feedback (FB) connections begin in infragranular layers and terminate outside of the 

granular layer IV 51,52.  The entorhinal cortex lacks a granular layer IV and therefore, once reaching 

the entorhinal cortex, feedforward projections from perirhinal and parahippocampal cortices 

terminate  on layer II neurons 31. Neocortical input from layer II cells of the entorhinal cortex are 

transmitted in feedforward direction through the hippocampal trisynaptic pathway consisting of 
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the dentate gyrus, the recurrent CA3-pyramidal system, and CA1 53. The hippocampus returns this 

feedforward input back to the neocortex via feedback projections onto neurons in layer V of the 

entorhinal cortex. Layer V entorhinal neurons relays this input back to supragranular layers of 

perirhinal and parahippocampal cortices via feedback projections 31.  

 

Based on these feedforward and feedback interactions, a model of visuospatial memory formation 

has been developed that involves a distributed set of interactions involving the neocortex and 

hippocampus 53–57. When exposed to an experience, feedforward and feedback interactions 

between the neocortex and the MTL form a neural representation of that experience 54,56–58. When 

presented with a similar visual experience, the previous experience can be retrieved through 

autoassociative reaction of these neocortical-MTL representations54,56,59,60. Any difference between 

the current experience and our memories is hypothesized to be detected by neocortical-medial 

temporal lobe circuits. Based on this framework, neocortical-hippocampal circuits  are constantly 

building and updating an internal model of the world in order to detect when current experience is 

in violation with past experience 53,61–65.  While this framework presents computationally efficient, 

generalizable approach for memory formation, the neocortical-medial temporal lobe interactions 

that underlie the detection of violation between current and past experiences remain unknown.  

These interactions may be elucidated using memory paradigms that require participants to compare 

old experiences to the current experience. In one such paradigm, participants are presented with 

natural scenes and objects that they encode into memory 66–68. The participants are then presented 

with repeated versions of the images or the images with an object added or removed. Successfully 

recognizing this manipulation requires participants to not only retrieve the past visual experience 

but to also then compare the retrieved memory with the present image. The recognition of this 
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manipulation can be measured by asking participants whether the image changed during the second 

viewing and identifying the number of correct responses. MTL damage impairs the explicit 

identification of these manipulations providing preliminary evidence that neocortical-MTL 

interactions may be involved in detecting differences between past and present experience 66–68 

 

1.5 Visuospatial Memory Assessments Screening for Memory Impairment 

An important advantage of these visuospatial memory paradigms is that memory retrieval can be 

assessed simply using eye movements. Successful recognition of a manipulation has been 

associated with increased viewing of the manipulated region compared to unchanged parts of the 

image 66–68. Viewing of the manipulation also increases during successful compared to 

unsuccessful recognition. Participants with MTL damage also show impairment in viewing  these 

manipulations compared to age-matched controls 66–69. These studies suggest that visuospatial 

memory paradigms based on eye movements are sensitive indicators of entorhinal-hippocampal 

function, the cortical region vulnerable to NFT deposition and neurodegeneration. These 

paradigms may serve as an early indicator of memory impairment in AD compared to general 

cognitive screening methods.  

 

Using eye movements as an index of memory offers a number of practical benefits compared to 

verbal learning tests used to assess memory impairment in AD 70–72. Memory paradigms that use 

eye movements as an index of retrieval allow for rapid assessment of memory with little instruction 

and minimal user input while predicting memory loss with high sensitivity and specificity 73,74.  

These paradigms appear to be strikingly less distressing and frustrating to both research 

participants and clinical patient populations than traditional neuropsychological tasks and also 
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avoids issues related to task comprehension and explicit memory judgements. Conventional tasks 

are also subject to differences in effort, literacy, cultural variation, and decision-making capacity 

which can confound the measures of memory. Eye-movement based memory paradigms may 

provide a more practical solution to tracking longitudinal cognitive status in early stages of AD, 

especially when compared with current methods to measure cognitive and memory impairment. 

 

1.6 Thesis Aims 

In this thesis, a visuospatial memory paradigm was developed based on prior work showing 

increased exploration of added or removed objects to a previously viewed image depends on the 

MTL. This task may identify the neurophysiological interactions between the neocortex and MTL 

during visuospatial memory formation and provide a passive, sensitive, and efficient assessment 

of memory impairment in individuals with Alzheimer’s disease and other disorders involving MTL 

circuits. To these hypotheses, the aims of the thesis are provided below: 

 

Aim 1. To identify the neocortical-MTL interactions that underlie visuospatial memory 

performance in humans.  

The neocortical-MTL interactions that underlie the detection of violations between current and 

past experiences (i.e., memory) remain unknown. We will administer a visuospatial recognition 

memory paradigm to participants undergoing seizure monitoring for medically refractory epilepsy. 

We will record neural activity from visual association areas and the MTL using intracranial EEG 

electrodes and quantify the differences in spectral power and coherence that occur within and 

between these regions during successful recognition of a manipulation. 

 



 11 

Aim 2. To assess visuospatial memory performance based on eye movements during healthy aging, 

MCI, and AD 

MTL damage produces deficits in visuospatial memory performance based on eye movements. 

Visuospatial memory tasks based on eye movements may offer a passive, sensitive, and efficient 

assessment of memory performance in AD.  Visuospatial Memory EyeTracking Test (VisMET) 

will be administered in a cohort of healthy, MCI and AD populations. We hypothesize that 

visuospatial memory performance will be impaired in participants with MCI and AD compared to 

healthy controls. To test this hypothesis, we will quantify differences in viewing time of objects 

removed or added to an image between these populations and develop a logistic regression model 

to estimate cognitive impairment and disease status. 

 

Aim 3. To develop a tablet-based version of visuospatial memory performance based on eye 

movements in order to identify cognitive impairment in AD 

 

Current administration of eye-movement based memory paradigms require face-to-face 

administration by a technician within a clinical setting using a standalone eye-tracker. We will 

develop an iPad based version of VisMET that utilizes  iTracker, a deep convolutional neural 

network used to track eye movements on the iPad. We will administer the mobile version of 

VisMET in a cohort of control and cognitively-impaired populations. We hypothesize that 

visuospatial memory performance will be impaired in healthy controls compared to cognitively-

impaired participants. To test this hypothesis, we will quantify differences in viewing time of 

objects removed or added to an image between these populations and develop a logistic regression 

model to estimate cognitive impairment and disease status.  
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Chapter 2:  Neocortical-Medial Temporal Lobe Interactions during Visuospatial Memory 

Formation 

2.1 Introduction  

When initially exposed to any experience, we rely upon our memories to set our expectations. 

These expectations determine the extent to which any experience involves new information. For 

example, when we enter our home, we rarely consider the fact that the couch is still next to the 

wall since that arrangement has been embedded in our memory. Conversely, coming home to find 

the couch on the other side of the room would be surprising and violate our expectations for how 

the room should look based on our memory. 

 

From a computational perspective, it would be efficient to dedicate more cognitive resources when 

an experience is novel or if it violates our expectations 62,75–79. This is because identical experiences 

contain no new information whereas novel or unexpected experiences do. This hypothesis, termed 

predictive coding, has been articulated in computational and theoretical accounts of brain 

processing and posits that neural activity is optimized to maximize information 62,65,77,80,81. A key 

requirement of this hypothesis is that the expectations and predictions to which new experiences 

are compared are stored in memory. For simple visual and auditory stimuli, sensory expectations 

are learned through a lifetime of observing and processing the statistical regularities of the natural 

world and are stored as memory in the brain networks and synaptic weights of primary visual and 

auditory cortex 82–85. Efficiently processing new sensory inputs involves comparing those inputs to 

our expectations for how the visual and auditory world should appear 62,65,77,80,81. 
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However, it is unclear if and how such expectations are established when considering single 

episodes or events that we experience. We rely upon episodic memory to encode and remember 

these events 86. An important property of episodic memory is that we can form episodic memories 

even when the experiences we are remembering arise from just a single exposure. From this single 

exposure, episodic memories may enable us to form expectations of present and future experience. 

When initially exposed to an experience, interactions between the neocortex and MTL store a 

distributed representation of experience 54,87–92. When presented with a similar experience, the 

previous experience can be retrieved through autoassociative reactivation of these neocortical-

MTL representations 53,54,59,93,94. This framework therefore provides an internally generated 

memory to which new experiences may be compared. Any difference between past and present 

experience should violate the expectations set by our episodic memory and therefore signal an 

error in the predictions we had established for the new experience. 

 

Here we examine whether comparing a new experience to an episodic memory indeed evokes a 

prediction error signal, and the neural mechanisms that underlie this process in the human brain. 

We were specifically interested in how such error signals are represented in the neocortex and the 

MTL, as the interactions between them underlie our ability to encode and retrieve episodic 

memories 53,58. We presented participants with images of natural scenes and objects that they 

encoded into memory. We then tested their memory for these images by presenting them with the 

same images. We manipulated some of the images to either remove objects from or add objects to 

the original scene during the testing phase. We explicitly asked participants to determine if the 

scene had been manipulated. Successfully recognizing this manipulation therefore requires 

participants to not only retrieve the past visual experience but to also then compare the retrieved 
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memory with the present image. We examined changes in intracranial EEG (iEEG), captured 

through subdural electrodes implanted for seizure monitoring, and how these changes were 

temporally related to eye movements that participants made as they scanned the new scenes during 

recognition testing. We found that recognizing manipulated images, and therefore successfully 

identifying a difference between past and present experience, evoked a narrowband high frequency 

prediction error signal in visual association cortex that then propagated towards the MTL. During 

successful recognition of these manipulations, this error signal was also accompanied by elevated 

low frequency coherence between the neocortex and MTL. These results therefore provide a direct 

account of how violations of the expectations set by the episodic memory of a previous experience 

are encoded in the human brain.  

     

2.2 Materials and Methods 

2.2.1 Participants 

14 participants (7 male; 40.9 ± 12 years) participants with drug resistant epilepsy underwent a 

surgical procedure in which platinum recording contacts were implanted subdurally on the 

cortical surface as well as within the brain parenchyma. In each case, the clinical team 

determined the placement of the contacts to localize epileptogenic regions. The Institutional 

Review Board (IRB) approved the research protocol, and informed consent was obtained from 

the participants and their guardians. All analyses were performed using custom built Matlab code 

(Natick, MA).  
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2.2.2 Visuospatial Recognition Memory Task  

Participants performed a visuospatial recognition task (Fig. 2a). During the encoding portion of 

the task, we sequentially presented participants a set of four color images. Each image was a natural 

scene containing between one to five items, such as an animal, person, or object, and we instructed 

the participants to remember each scene. We presented each image for five seconds, and a white 

fixation cross appeared for one second before each image. Immediately following the list of four 

images, we then presented the same images during the recognition testing portion of the task and 

tested the participants on their memory for the images. The images during recognition testing were 

presented in the same order. Critically, we manipulated some of the images presented during 

recognition testing by either adding or removing an item from the scene. We therefore presented 

three different types of images during recognition testing - added, removed, or repeated - 

depending on whether a manipulation had been performed and the type of manipulation. For most 

analyses, we considered added and removed trials together as the manipulated condition. We 

selected images from an open access database of images from Pixabay (Munchen, Germany) and 

Pexel (Fuldabruck, Germany). We used Adobe Photoshop (San Jose, CA) to remove an item from 

each of the original images. We used the image with the removed item as the image to be tested 

during recognition testing for the removed condition, and as the image to be remembered during 

the encoding period for the added condition. 

During recognition testing, participants viewed the images until they made their response. They 

indicated whether the image was the same or changed using left and right arrow keys. We divided 

the recognition trials into manipulated correct, manipulated incorrect, and repeated correct trials 

depending on whether there was a manipulation of the image and on the participant’s response. If 

the participant indicated the image was manipulated, we then presented a mouse cursor at the 
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center of the screen and instructed the participant to identify the location of the manipulated item 

using a mouse click. We removed all trials in which the response time for identifying the location 

was greater than 10 seconds. For each image, we defined a critical region as a rectangular region 

around each item. Based on whether the mouse click fell within this rectangular region, we 

therefore determined if the participant was able to correctly identify the location of the manipulated 

item (Fig. 2d). Participants completed one to two sessions during the monitoring period. Each 

session was approximately an hour of testing and contained 60 lists of images, where each list 

contained the sequential presentation of four images during encoding and the same (or 

manipulated) four images during recognition testing. Participants completed a total of 784 ± 195 

trials during the monitoring period.  

2.2.3 Intracranial EEG (iEEG) Recordings 

Depending on the amplifier and the discretion of the clinical team, intracranial EEG (iEEG) signals 

were sampled at 1000 or 2000 Hz. For clinical visual inspection of the recording, signals were 

referenced to a common contact placed subcutaneously, on the scalp, or on the mastoid process. 

The recorded raw iEEG signals used for analyses were referenced to the system hardware 

reference, which was set by the recording amplifier (Nihon Kohden, Irvine CA) as the average of 

two intracranial electrode channels. We re-referenced these raw signals using bipolar referencing 

(see below) in order to mitigate any effects of volume conduction or any biases introduced by the 

system hardware reference. All recorded traces were resampled at 1000 Hz, and a fourth order 2 

Hz stopband butterworth notch filter was applied at 60 Hz to eliminate electrical line noise. 

We collected electrophysiological data from a total of 1716 subdural and depth recording contacts 

(122 ± 5.9 per participant; PMT Corporation, Chanhassen, MN). Subdural contacts were arranged 

in both grid and strip configurations with an inter-contact spacing of 10 mm. Contact localization 
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was accomplished by co-registering the post-op CTs with the post-op MRIs using both FSL Brain 

Extraction Tool (BET) and FLIRT software packages and mapped to both MNI and Talairach 

space using an indirect stereotactic technique and OsiriX Imaging Software DICOM viewer 

package. The resulting contact locations were subsequently projected to the cortical surface of a 

Montreal Neurological Institute N27 standard brain 95. Pre-operative MRIs were used when 

postoperative MR images were not available. 

 

We divided projected electrode contacts into four regions of interest based on their location relative 

to the Desikan-Killiany atlas96: lateral occipital (LOC), parietal (PAR), posterior temporal (PT), 

and medial temporal lobe (MTL). We assigned all electrodes with locations in the lateral occipital 

complex as LOC electrodes, and all electrode contacts in the superior and inferior parietal lobe as 

PAR electrodes. We identified all electrodes with locations in the posterior part of the superior, 

middle, or inferior lateral temporal cortex or that lay over the posterior aspect of the fusiform gyrus 

as PT electrodes 97. We designated all depth electrode contacts within the hippocampus and all 

subdural contacts that lay along MTL structures, including the parahippocampal gyrus and 

entorhinal cortex, and that were medial to the collateral sulcus as MTL electrodes. 

 

We analyzed iEEG data using bipolar referencing to reduce volume conduction and spurious 

signals introduced by the system reference. The choice of referencing largely depends on the 

assumptions regarding the spatial distribution of the signal of interest 98. Bipolar referencing offers 

a practical approach for examining local events with spatial distributions that are smaller than the 

inter-electrode distance of our recordings since it will filter out activity at the larger spatial scale 

that is common to both electrodes that may be introduced by the system reference or that may 
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result from volume conduction. In addition, because each neighboring bipolar channel records 

activity from similar brain regions through similar electrode contacts, bipolar referencing ensures 

that any referencing that is applied to each recorded iEEG trace is performed using a reference 

electrode that shares similar impedance and noise profiles. Finally, bipolar referencing has also 

been noted to be superior to the average reference montage in reducing muscular artifacts in iEEG 

99. We defined the bipolar montage in our data set based on the geometry of iEEG electrode 

arrangements. For every grid and strip, we isolated all pairs of contacts that were positioned 

immediately adjacent to one another. Bipolar signals were then calculated by finding the difference 

in the signal between each pair of immediately adjacent contacts. The resulting bipolar signals 

were treated as new virtual electrodes (henceforth referred to as electrodes throughout the text), 

originating from the midpoint between each contact pair. All subsequent analyses were performed 

using these derived bipolar signals. 

 

High frequency activity can be associated with epileptiform activity in addition to cognitive 

processes. Therefore we implemented several measures to provide the most conservative sampling 

of non-pathological signals possible. We implemented a previously reported automated trial and 

electrode rejection procedure based on excessive kurtosis or variance of iEEG signals 97. We 

calculated and sorted the mean iEEG voltage across all trials, and divided the distribution into 

quartiles. We identified trial outliers by setting a threshold, Q3+w*(Q3-Q1), where Q1 and Q3 are 

the mean voltage boundaries of the first and third quartiles, respectively. We empirically 

determined the weight w to be 2.3. We excluded all trials with mean voltage that exceeded this 

threshold. The average percent removed across all sessions in each participant due to either system-



 19 

level noise or transient epileptiform activity was 1.7 ± 0.2% of all electrodes and 2.8 ± 0.1% of all 

trials. 

In addition to system level line noise, eye-blink artifacts, sharp transients, and inter-ictal discharges 

(IEDs) can confound the interpretation of our results. We therefore implemented a previously 

reported automated event-level artifact rejection 100. We calculated a z-score for every iEEG time 

point based on the gradient (first derivative) and amplitude after applying a 250 Hz high pass filter 

(for identification of epileptogenic spikes). Any time point that exceeded a z-score of 5 with either 

gradient or high frequency amplitude was marked as artifactual, and 100 ms before and after each 

identified time point was also classified as an artifact. We visually inspected the resulting iEEG 

traces and found that the automated procedure reliably removed IEDs and other artifacts. In total, 

following bipolar referencing and exclusion of electrodes because of artifact, our pre-processed 

data set consisted of 1716 bipolar electrodes (123 ± 5.9 per participant).  

2.2.4 Eye Movement and Fixation Detection  

In a subset of participants (n=8), we tracked the locations of their gaze on the screen using a 

Tobii X3-120 EyeTracker (Stockholm, Sweden) that sampled eye movements at 120 Hz. At the 

start of each session, participants performed a calibration procedure in order to convert eye 

rotations into a set of gaze positions relative to the screen. For each participant, we extracted raw 

eye movement data during the experimental session and converted the movements into a set of 

fixations using a dispersion-based algorithm 101. We defined each fixation point as a point on the 

screen upon which gaze continually remained within 2 degrees of visual angle for a period of 

100 ms or more. We excluded the remaining six participants from the analysis due to the 

inability to calibrate the participants or collect eye movement data due to clinical constraints.  
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2.2.5 Spectral Power     

We quantified spectral power and phase by convolving iEEG signals with complex valued Morlet 

wavelets (wavelet number 6) 102. We extracted data from all encoding and recognition trials, 

beginning with the presentation of the image on the screen until the image was removed during 

encoding or until the response during recognition testing and localization, for our analyses. In all 

trials, we included a 1000 ms buffer on both sides of the clipped data. To generate corresponding 

power spectrograms, we calculated spectral power using 32 logarithmically spaced wavelets 

between 2 and 431 Hz. We then squared and log-transformed the continuous-time wavelet 

transform to generate a continuous measure of instantaneous power. To account for changes in 

power across experimental sessions, we z-scored power values separately for each frequency and 

for each session using the mean and SD of all respective values for that session. We binned the 

continuous time z-scored power for each frequency into 200 ms epochs spaced every 100 ms (50% 

overlap) and averaged the instantaneous power over each epoch, and performed subsequent 

analyses on these binned values.  

2.2.6 Spectral Coherence 

We computed the magnitude squared spectral coherence between every electrode pair using one 

second temporal epochs during the recognition period (MATLAB function ’mscohere’) 103,104. We 

computed the coherence between individual electrode contacts, rather than between bipolar virtual 

contacts, since bipolar referencing has been shown to remove low frequency coherence between 

iEEG electrodes 105. In this case, before computing coherence between any electrode pair, we re-

referenced the signal from each electrode to a global common average in order to eliminate 

common mode signals that would arise from the system level reference or from artifacts. We 
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calculated the coherence between two time series, x(t) and y(t), in two electrode contacts as a 

function of frequency:  

𝐶(𝑓) = 	
|𝑃𝑥𝑦(𝑓)|!

𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓) 

where PXX and PYY are the power spectral densities and PXY is the cross-spectral density. We 

generated a coherence spectrum for each temporal epoch, frequency, electrode pair and trial. We 

then z-scored coherence values separately for each electrode pair using the mean and SD of all 

coherence values for the session.  

2.2.7 Generation and Characterization of Cross-Correlograms         

We computed a cross-correlation of the spectral power time series between pairs of electrodes 

spanning PT and MTL and spanning PAR and MTL in order to examine the temporal relation of 

high frequency activity between visual association cortex and MTL. We used the first second of 

data following image presentation during recognition testing for this analysis. In each electrode, 

we extracted the continuous time series of spectral power and divided this trace into non-

overlapping 10 ms bins by averaging the time series over each bin. We used these 10 ms bins to 

compute the cross-correlations for computational efficiency and to generate more temporally 

smoothed representations of the cross-correlations between electrode pairs. For every electrode 

pair, in each trial, we computed the time-lagged cross-correlation between the time series of binned 

values. We then averaged these cross-correlations across trials, thus generating a true cross-

correlogram for each pair of electrodes in each participant that we can compare to a chance 

distribution and that we can use to identify the time lag of high frequency activity between the 

electrode pair. 
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We generated a chance cross-correlogram for each electrode pair characterizing the baseline cross-

correlation that would be expected by chance given the presentation of a stimulus  and to which 

the true correlogram could be compared 94,106,107. For every pair of electrodes, we generated this 

chance distribution by computing the cross-correlation of the power time series of one electrode 

during a randomly chosen individual trial with the time series of the other electrode from another 

randomly chosen trial. We repeated this procedure 100 times, and averaged across all permutations 

to generate an average chance cross-correlogram for that electrode pair. The difference between 

the true cross-correlogram and the chance cross-correlogram reflects the extent to which two 

signals are cross-correlated greater than chance given the presentation of a stimulus. 

 

To assess significant coupling for a single electrode pair, we compared the true distribution of 

cross-correlation values between -50 ms to 50 ms to the chance distribution in this same window 

using a paired t-test. To assess significant coupling between two regions across participants, we 

first averaged the true and chance cross-correlation values over this window for each electrode 

pair, and then computed the average difference between the true and chance cross correlograms 

across all electrode pairs between two regions for a single participant. We then compared the 

distribution of these average differences across participants to 0 to assess significance (p < .05, 

paired t-test). To determine the relative timing of high frequency power between two regions, we 

identified the peak time of each correlogram for every pair of electrodes between two regions. We 

computed the average peak time across electrode pairs between the two regions for each 

participant, and assessed whether the distribution of average peak times across participants was 

significantly different than zero (p < .05, paired t-test).  
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2.2.8 Metrics of Reinstatement  

To quantify reinstatement of representations during the recognition period, we conducted a 

representational similarity analysis using methods described previously 93,108. Briefly, we binned 

the continuous time z-scored power for each frequency into 200 ms epochs spaced every 100 ms 

(50% overlap) and averaged the instantaneous power over each epoch. For each temporal epoch, 

we subsequently averaged the z-scored power across bins within two frequency bands contained 

within the 80-120 Hz band. For every temporal epoch in each trial, we constructed a feature vector 

composed of the average z-scored power for every electrode within a given region of interest and 

for every frequency band. For each encoding temporal epoch, i, and for each retrieval temporal 

epoch, j, we define feature vectors as follows:  

𝐸" = [𝑧#,#(𝑖)	. . . 𝑧#,%(𝑖)	. . . 𝑧&,%(𝑖)] 

𝑅' = [𝑧#,#(𝑗)	. . . 𝑧#,%(𝑗)	. . . 𝑧&,%(𝑗)] 

 

where zl,f (i) is the z-scored power of electrode l = 1 ... L at frequency band f = 1 ... F in temporal 

epoch i. For L electrodes and F frequency bands, we thus create a feature vector at each temporal 

epoch that contains K = L*F features, which represents the distributed spectral power across all 

electrodes and across the two frequency bands at a single moment in time. 

 

To quantify reinstatement during trial n, we calculated the cosine similarity between encoding and 

recognition feature vectors Ei and Rj for all pairs of encoding and recognition temporal epochs 

during that trial. Cosine similarity gives a measure of how close the angles of two vectors are in a 

multidimensional space. We chose cosine similarity over Pearson’s correlation to measure 
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reinstatement because if all of the elements of two feature vectors show increases in power from 

baseline, with small additional random noise, then these two vectors should have high measured 

reinstatement. Pearson’s correlation, a centered version of cosine similarity, would give a low 

correlation in this case because of the noise fluctuations, whereas the cosine similarity would be 

high, consistent with our interpretation of reinstatement. Thus, for each trial, n, we generate a 

temporal map of reinstatement values: 

 

𝐶((𝑖, 𝑗) =
𝐸" 	 ∗ 	𝑅'

||𝐸"||	||𝑅'||
 

 

where Cn(i,j) corresponds to the reinstatement of neural activity across all electrodes and all 

frequencies between encoding epoch i and retrieval epoch j during trial n. We computed the 

reinstatement maps separately for all trials for each participant and averaged the reinstatement 

maps across participants.  

 

2.2.9 Temporal Dynamics of Spectral Power 

We compared the peak times of the spectral power time series for LOC, PT, PAR, and MTL in 

order to examine the temporal relation of high frequency activity through the visual hierarchy. We 

identified the peak time for a particular region by calculating the time during which the average 

spectral power time series across participants reached its maximum value. We then computed the 

difference in the peak times between two regions to identify the temporal relation of spectral power 

between them. To assess if this difference was significant, we generated a chance distribution to 

which the true difference in peak times could be compared. We computed this chance distribution 
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by randomly switching the spectral power time series for one region with the spectral power time 

series of the other region in each participant. Hence, in each permutation, some participants would 

retain their original power time series traces in their original regions, and some participants would 

have the labels for the regions randomly switched. We then averaged these shuffled spectral power 

time across participants for each region and then computed the difference in peak times between 

the two regions in each permutation. We repeated this procedure 1000 times to generate a shuffled 

distribution of differences in peak times. We assigned p-values that characterize the difference in 

peak times between any two brain regions by comparing the true difference in peak times to the 

shuffled distribution of differences. 

 

To estimate how quickly high frequency activity increased in each brain region and how this 

compared across LOC, PT, PAR and MTL, we computed the instantaneous slope of the increases 

we observed in the time series of high frequency spectral power. We computed the difference in 

spectral power between adjacent time bins (200 ms overlapping bins incremented by 100 ms) and 

then averaged these estimates of instantaneous slopes across all time points within the first 500 ms 

after image presentation. Within each brain region in each participant, we computed the average 

instantaneous slope across all visually responsive electrodes. We compared the distribution of 

average values across participants between two brain regions using an unpaired t-test (p < .05) in 

order to assess whether the rise in high frequency activity was different between the regions across 

participants. 

 

To determine whether the differences in high frequency 80-120 Hz spectral power that we 

observed between conditions arose at different times in different brain regions, we performed two 



 26 

analyses. In both cases, we explicitly generated a time course of the average difference between 

conditions that showed any significant difference between conditions in each brain region in each 

participant. In the first analysis, we identified the time points that exhibited the first significant 

difference in spectral power between conditions in each electrode within a region. We then 

averaged these first time points across all significant electrodes within each region in each 

participant. We compared the distribution of these time points of first differences across 

participants between brain regions (unpaired t-test, p < .05). In the second analysis, we used the 

rise in the average time series across all significant electrodes of the differences in spectral power 

to estimate the first time point when this difference deviates from zero and to estimate the time 

point when the increase in high frequency power reached 50% of its peak. We used this approach 

to generate a more temporally precise estimate of when this signal first increased above baseline 

since in our main analysis we generated the time series using overlapping 200 ms bins incremented 

every 100 ms. To estimate this initial time of deviation, we identified the time point of the peak 

difference between conditions and the time point of the local minimum that immediately preceded 

the peak difference. We then fit a line to these two time points and identified the time point when 

that line intersected with zero. We designated this as the time point at which the difference between 

conditions first deviates from baseline. We compared the distribution of these first significant time 

points across participants between brain regions using an unpaired t-test. We similarly identified 

when the rise of spectral power reached 50% of the peak and compared the distribution of 50% 

time points across participants between each brain region. Finally, we compared the estimated time 

points at which we first observed a rise in the difference in high frequency power between 

conditions to the time points at which we observed overall increases in high frequency power in 

the MTL across conditions. In a similar manner, we used the average time series of spectral power 
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across significant MTL electrodes to estimate the first time point when overall 80-120 Hz power 

deviated from baseline in the MTL.  

2.2.10 Statistical Analyses 

We employed a non-parametric clustering based procedure to identify significant time, 

frequency, or time frequency epochs for differences in power, coherence, and reinstatement 

between conditions (Fig. 2d-f, 3a-d, 5b-c, 7b, Supplementary Fig. 10-13)109 . The procedures for 

all analyses were identical with the exception that clusters identified for coherence and 

reinstatement analysis were generated across the two dimensions of encoding and retrieval time. 

The clustering procedure identifies contiguous temporal or time-frequency clusters exhibiting 

significant differences between two conditions (e.g. manipulated correct and repeated correct), 

with the null hypothesis that across participants, each epoch showed no difference between the 

conditions. For each time or time-frequency window, we computed the true t-statistic and p-

value across participants between the two conditions by comparing the distribution of average 

values across all visually responsive electrode within each brain region across participants. The 

p-value for each individual time point or time-frequency window in the true case, however, does 

not take into account the multiple comparisons that are made in across time points. 

 

To correct for multiple comparisons across time points, we randomly permuted the participant-

specific averages between the two conditions. In practice, this translates to randomly reversing 

the sign of the difference within each participant and recomputing the mean difference across 

participants. For n participants, this results in an empiric distribution of 2n possible mean 

differences that are all equally probable under the null hypothesis. We generated the empiric 

distribution from 1000 permutations for every time point and calculated t-statistics for each time 
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point in each permutation. We identified clusters containing time points or time-frequency 

windows that were adjacent in time (or in time-frequency space) that exhibited a significant 

difference between trial types (where in each time point, p < .05 unless specified otherwise) in 

both the true case and in each permutation. For each cluster of significant time points identified 

in the true and permuted cases, we defined a cluster statistic as the sum of the t-statistics within 

that temporal cluster. We retained the maximum cluster statistic during each of the 1000 

permutations to create a distribution of maximum cluster statistics. We assigned p-values to each 

identified cluster of the true data by comparing its cluster statistic to the distribution of maximum 

cluster statistics from the permuted cases. Clusters were determined to be significant if their p-

value calculated in this manner was less than .05.    

We used a similar procedure to identify electrodes showing a significant difference between 

conditions (Fig. 4b,c Supplementary Fig. 9). The clustering procedure identifies contiguous 

temporal clusters exhibiting significant differences between the two conditions with the null 

hypothesis that across trials, each epoch showed no differences between the participants. In this 

case, we created a permuted distribution by randomly switching the condition of one trial with 

the condition of another and then computing the mean difference between the conditions. We 

repeated this procedure 1000 times to create an empirical distribution and compared the true 

difference to the empiric distribution of mean difference. We then identified the maximum 

cluster statistic of the true data and compared to the cluster statistic of the permuted distribution 

to correct for multiple comparisons. Clusters were determined to be significant if their p-value 

calculated in this manner was less than .05.  
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2.3 Results 
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Figure 2. Visuospatial Memory Task Behavior Performance. 

a) Participants viewed a set of images followed by the same set of images containing either a 

removed, added, or repeated object. Participants indicated whether the image was the same or 

changed. If changed was selected, participants identified the location of the change using a mouse 

click. b) Probability of recognition for the added, removed, and repeated conditions across 

participants. c) Mean response times were compared for correct and incorrect responses for added, 

removed, and repeated conditions across participants. d) Representative eye-movement recordings 

during the encoding, recognition, and identification of the manipulation. The gaze path (yellow) 

was converted into fixations (red) and the percentage of fixations within the critical region (green) 

was calculated for each condition. The location of the mouse click (blue) was used to determine 

the number of manipulated or repeated objects that were successfully located. e) Probability of 

fixation within critical region for correctly recognized added, removed, and repeated objects across 
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participants. The critical region for the condition was selected to be a random object within the 

image to assess the probability of baseline fixations on an object f) Probability of viewing time 

within critical region for correctly and incorrectly identified images. g) Probability of mouse click 

within critical region for correctly recognized added and removed conditions across participants. 

All error bars indicate standard error of mean. Asterisks (*,**,***) indicate significance at p <0.05, 

p <0.01, and p <0.001. using two-sided paired t-test.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 32 

14 participants (7 male, 40.9 ± 12 years) with intracranial electrodes placed for seizure monitoring 

performed a visuospatial recognition memory task (Fig. 2a; see Methods). During the encoding 

portion of the task, we presented images of natural scenes containing different items to participants 

and instructed them to remember the images. We then subsequently presented the same images 

during the recognition phase of the task and tested their memory for the images. We either added 

or removed an item from some of the images that were presented during the recognition phase and 

instructed the participants to indicate whether each image was identical to the one they had 

encoded or if it had been manipulated. We therefore designated the three different types of images 

presented during recognition testing as repeated, added, or removed versions of the original images 

based on the manipulation we performed. If the participant indicated that the image had been 

manipulated, we then instructed them to identify the location of the manipulation using a mouse 

click on the screen (Fig. 2a). 

Participants successfully recognized 65 ± 5, 68 ± 4, and 88 ± 3% of the added, removed, and 

repeated images, respectively, during testing with a mean response time of 2.65±0.23, 2.41±0.19, 

and 2.51±0.17s (Fig. 2b,c). Response times were significantly faster when participants correctly 

recognized removed and repeated images compared to when they were incorrect (removed, t(13) 

= −2.31, p = .038, paired t-test; repeated t(12) = −2.85, p = .014) but not when comparing correct 

and incorrect added images (t(13) = −1.36, p = .195). 

In a subset of participants (n = 8), we recorded the location of each participant’s gaze as they 

scanned the images during recognition testing (Fig. 2d; see Methods). Participants spent at least 

one fixation on 83 ± 4% of successfully recognized added items, but on only 34±4% of the regions 

in which items were removed when successfully recognizing a removed image (t(7) = 11.2, p = 

.00001; Fig. 2e). However, participants spent a greater percentage of time viewing both the added 
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item and the region of the removed item during correct compared to incorrect trials (added, t(7) = 

4.93, p = .002; removed, t(7) = 2.52, p = .040, paired t-test; Fig. 2f). In addition, participants were 

able to correctly identify the location of the manipulation when successfully recognizing that items 

had been added or removed in 82 ± 6 and 70 ± 6% of the trials, respectively (Fig. 2g). These data 

together suggest that participants were able to successfully recognize when and where an image 

was manipulated even though they were more likely to explicitly fixate on the manipulation only 

when an item was added. 

   

2.3.1 80-120 Hz power progresses down the visual hierarchy and reflects specific visual 

experience 

We examined intracranial EEG (iEEG) recordings captured from intracranial electrode contacts 

in all participants as they performed the visuospatial recognition task (Fig. 3a; see Methods). In a 

representative example electrode in the posterior temporal cortex, we found a narrowband 

increase in 80-120 Hz power that was reliably detected across all trials during the recognition 

period (Fig.  3b). We divided electrode contacts in each participant into four regions of interest - 

lateral occipital cortex (LOC), parietal cortex (PAR), posterior temporal cortex (PT), and the 

medial temporal lobe (MTL) - based on the known feedforward organization within the visual 

hierarchy 51,52 (Supplementary Fig. 8). In each of these regions across participants, we observed a 

consistent increase in high frequency power centered around 80-120 Hz when averaged across 

all trials during the recognition period (Fig. 3c). We focused subsequent analyses on changes in 

spectral power within this narrowband of high frequency activity. 

When examining all recognition trials, we found that 80-120 Hz power exhibited a significant 

increase above baseline within 200 ms after image presentation in all regions (p < .001, 
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permutation procedure; see Methods; Fig. 3d). This rise in 80-120 Hz peaked within 600 ms in 

all regions, but peaked at a significantly earlier time following image presentation in LOC and 

PT compared to MTL (p < .05, permutation procedure). The rise in 80-120 Hz activity was 

significantly faster in LOC, PAR, and PT compared to MTL (LOC v MTL, t(14) = 2.26, p = .04; 

PAR v MTL, t(16) = 3.14, p = .006; PT v MTL t(17) = 2.84, p = .011; see Methods), suggesting 

that image presentation during the recognition period evokes a rise in 80-120 Hz power that 

progresses down the visual hierarchy. 

 

Given that the images presented during recognition testing were similar, but not identical, to the 

images presented during encoding, we investigated whether the patterns of 80-120 Hz power that 

arose along the visual hierarchy following image presentation during recognition testing were 

also similar to the patterns of 80-120 Hz power present during encoding. For each image 

presented during encoding and during retrieval, we constructed a distributed representation of 

80-120 Hz power across all electrode contacts at each time point following image presentation. 

We computed how similar the distributed representation of power at each time point during 

recognition testing to the representation present at every time point when encoding the same 

image (see Methods). We found that viewing the same image, regardless of whether the image 

was manipulated, reinstated the distributed pattern of 80-120 Hz power that was present during 

encoding across participants (Fig. 3e). 

 

We compared the true reinstatement of these distributed patterns of 80-120 Hz power to the 

reinstatement observed after shuffling the trial labels in order to assess whether this 

reinstatement was specific to each individual image (see Methods). Viewing the images during 
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recognition testing significantly reinstated the specific distributed patterns of activity for each 

image as compared to the shuffled trials beginning 100 ms after the image presentation (p < .001, 

permutation test; Fig. 3e). We then computed a time series of the mean level of reinstatement 

during recognition testing within each region by using all encoding epochs that demonstrated 

item-specific reinstatement when considering all electrodes. Across participants, we found that 

viewing the image during recognition testing resulted in significant item-specific reinstatement 

in the LOC, PT, PAR, and MTL (p < .05, permutation test; Fig. 3e), suggesting that the 

progression of high frequency power down the visual hierarchy contains information regarding 

the specific image being viewed.  
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Figure 3. Feedforward transmission of 80-120 Hz power between neocortical-MTL circuits 
reflect specific visual experiences 

a) Intracranial electrode locations for all 14 participants. Each color corresponds to an individual 

participant. b) In a representative electrode in PT, narrowband increases in power in the 80-120 

Hz band were observed at the single trial level. Across all trials in this electrode, images during 

the recognition period elicited increases in power at this frequency as indicated by the warmer 

colors. c) Image presentation during the recognition period elicited increases in 80-120 Hz power 

across participants in LOC, PT, PAR, and MTL. d) Average 80-120 Hz power during the 

recognition period in lateral occipital complex (LOC), posterior temporal (PT), parietal cortex 

(PAR), and medial temporal lobe (MTL) across participants. Time courses were generated with a 

200 ms sliding window in 100 ms steps (50% overlap) locked the second viewing of the image. 
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Dots indicate significant increases in power compared to average session power that survived 

corrections for multiple comparisons e) Average observed and shuffled reinstatement across all 

participants. The difference in average reinstatement between the observed and chance 

reinstatement reflects item-specific reinstatement across all participants. The black outline 

constitutes all epochs that exhibited significant differences between the observed and chance 

representations that survived corrections for multiple comparisons f) Average item-specific 

reinstatement in LOC, PAR, PT, and MTL across participants. Dots indicate significant increases 

in item-specific reinstatement that survived corrections for multiple comparisons. All error bars 

indicate standard error of mean. All multiple comparisons corrections were performed using a 

non-parametric permutation procedure.  
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2.3.2 80-120 Hz power increases within visual association areas and the MTL when present 

visual experience differs from the remembered experience 

 

 

 

Figure 4. Visual association areas and MTL circuits increase in 80-120 Hz power when present 
and past visual experience are in violation 

a) Average 80-120 Hz power for a set of posterior temporal electrodes across manipulated correct 

(black), manipulated incorrect (blue), and repeated correct (red) trials. Time courses were 

generated with a 200 ms sliding window in 100 ms steps (50% overlap) locked the second viewing 

of the image. Blue and red dots indicate significant increases in power for the manipulated correct 

compared to the manipulated incorrect and repeated correct condition, respectively, that survived 

corrections for multiple comparisons. b) Visualization of electrodes showing significant increases 
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in 80-120 Hz power from baseline (white) that survived corrections for multiple comparison. 

c)Visually responsive electrodes (white) that showed significant increases in 80-120 Hz power for 

the manipulated correct compared to the manipulated incorrect (blue), manipulated correct 

compared to the manipulated repeated (red), or both (purple) that survived corrections for multiple 

comparisons. d) Time courses of 80-120 Hz power across participants for LOC, PAR, PT, and 

MTL for the manipulated correct, manipulated incorrect, and repeated correct conditions locked 

to the second viewing of the image. All error bars indicate standard error of mean. All multiple 

comparisons corrections were performed using a non-parametric permutation procedure.  
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Participants in our task were able to correctly identify when a visual image was manipulated 

compared to the image they had remembered. We were interested in examining the neural 

mechanisms underlying this ability to recognize the difference between past and present visual 

experience. We therefore compared the item-specific increases in 80-120 Hz power that progress 

down the visual hierarchy between conditions. In an example participant, we examined a set of 

electrodes arranged in linear strip from posterior to anterior regions of the PT. Viewing the 

manipulated images resulted in a significantly greater and more prolonged increase in 80-120 Hz 

power in individual electrode contacts when compared to viewing a repeated image or viewing an 

image that had been manipulated but that was incorrectly identified as being repeated (p < .001, 

permutation test; see Methods; Fig. 4a). This difference was specific to two electrode contacts and 

was not present on the most posterior contact and was more attenuated in the anterior contact, 

suggesting that correctly identifying a difference between a presented and remembered image 

results in difference in 80-120 Hz power only within specific regions of the visual association 

cortex. 

 

We examined the changes in 80-120 Hz between conditions in all electrode contacts in all 

participants. We first identified any electrode contact that demonstrated a significant difference in 

80-120 Hz power at any point during recognition testing compared to baseline when averaged 

across all trials (Fig. 4b). We found that 43% of electrode contacts across participants exhibited a 

significant increase in 80-120 Hz power from baseline (p < .05, permutation test; see Methods; 

17% of electrode contacts showed a significant decrease). We designated these electrode contacts 

as visually responsive. Visually responsive electrode contacts were primarily located in LOC, 

PAR, PT, and MTL and were relatively absent from the anterior lateral temporal cortex. We then 
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investigated how activity within these visually responsive electrodes changed between conditions. 

We found that 35% and 31% of visually responsive electrode contacts demonstrated significantly 

greater 80-120 Hz power at some point when viewing manipulated images that were correctly 

identified as compared to repeated images and as compared to images that were not correctly 

identified as manipulated, respectively (p < .05, permutation test; Fig. 4c, red and blue electrodes 

respectively). 21% of the electrodes exhibited a significant increase in both comparisons (p < .05, 

permutation test; Fig. 4c, purple electrodes). In contrast, less than 5% of electrode contacts 

demonstrated a significant decrease in 80-120 Hz power in any of these comparisons (p < .05, 

permutation test; Supplementary Fig. 9). 

 

Although these data suggest that a large subset of electrode exhibit significantly greater 80-120 Hz 

power at some time point when viewing manipulated images, we were specifically interested in 

understanding the time course of these changes. We therefore examined the average time series of 

80-120 Hz power in each condition across all visually responsive electrode contacts in each region. 

Across participants, as in the example set of electrodes, we found that electrodes within PT, PAR, 

and MTL exhibited significantly higher and more prolonged 80-120 Hz power when viewing and 

correctly identifying manipulated images than when viewing repeated or incorrectly identified 

manipulated images (p < .01, permutation test; Fig. 4d). We did not observe a significant difference 

between conditions in the LOC (p > .05, permutation test). The differences observed between the 

conditions were specific to the 80-120 Hz frequency band (Supplementary Fig. 10) and reflected 

temporally discrete increases in 80-120 Hz power within each trial (Supplementary Fig. 11). 

Moreover, these differences were not present during the encoding period (Supplementary Fig. 12), 
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as overall 80-120 Hz power was enhanced when viewing the images during recognition testing 

compared to encoding in PT, PAR, and MTL in all three conditions (Supplementary Fig. 13). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



 43 

 

Figure 5. Visual association areas and MTL circuits increase in 80-120 Hz power when present 
and past visual experience are in violation for both added and removed conditions. 

a) Average spectrogram relative to the first fixation on successfully recognized added objects for 

a representative electrode in PT. b) Time courses of 80-120 Hz for visually responsive electrodes 

across participants for the added correct, added incorrect, and repeated correct conditions locked 

to the first fixation on the added object. c) Time courses of 80-120 Hz power across participants 

for LOC, PAR, PT, and MTL for the removed correct, removed incorrect, and repeated correct 

conditions locked to the second viewing of the image. Time courses of 80-120 Hz power across 

participants for LOC, PAR, PT, and MTL for the added correct, added incorrect, and repeated 

correct conditions locked to the second viewing of the image. Blue and red dots indicate significant 

increases in power for the added/removed correct compared to the added/removed incorrect and 

repeated correct condition, respectively, that survived corrections for multiple comparisons via 

permutation procedure.     
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In a subset of participants, we recorded eye movements during recognition testing in order to 

determine whether the observed changes in 80-120 Hz power were temporally related to viewing 

the manipulated item. We focused on the added condition because participants were significantly 

more likely to make a fixation to the added item than to the location of the removed item in 

manipulated images (Fig. 3e). In a representative example, we found that the increase in 80-120 

Hz power locked to the time of the fixation on the manipulated item across all trials (Fig. 5a). 

Across participants, we found that fixating on the added item resulted in a significantly higher 

level of 80-120 Hz power that was locked to the fixation during trials that were correctly identified 

as manipulated compared to incorrect trials and to trials with no manipulation (p < .001, 

permutation test; Fig. 5b). Hence, the observed differences in 80-120 Hz power appear to be 

triggered by viewing an item that was not present in a remembered visual image. 

One concern regarding the differences we observed in 80-120 Hz power between manipulated and 

repeated images is that these differences could have been driven by the stimulus properties of the 

image presented during recognition testing. For example, some of the manipulated images 

contained items that were added to the original image, and the increases in 80-120 Hz power may 

simply be due to the additional visual input from the added item. To examine this possibility, we 

separately analyzed the trials in which manipulated images contained an added item or had an item 

that was removed and compared them to the repeated images and to the corresponding incorrectly 

identified manipulated images. Both the added and removed conditions demonstrated similar 

significant increases in 80-120 Hz power compared to the repeated correct and manipulated 

incorrect conditions (p < .05, permutation test; Fig. 5c). These data therefore confirm that the 

observed increases in 80-120 Hz power arise due to manipulation of the image and are not related 

to specifically how the image had changed.  
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2.3.3 Differences in 80-120 Hz power during manipulated images progress down the visual 

hierarchy  

We were interested in examining the time course of this 80-120 difference signal that arises when 

viewing a manipulated image across brain regions. The goal was to distinguish whether this signal 

progresses from posterior to anterior brain regions similar to routine visual processing  or whether 

this difference signal is first detected in higher order brain regions such as the MTL that are 

explicitly involved in encoding and retrieving the associations present in each image. We first 

examined the direction of propagation of overall 80-120 Hz power between neocortical association 

areas and the MTL. In an example pair of electrodes located in the PT and MTL, we computed a 

cross correlation of 80-120 Hz power using the first second of data following image presentation 

during recognition testing (Fig. 6a). Across all trials in this example pair, the cross-correlation 

demonstrated a clear peak that was significantly greater than chance (p < .01, permutation 

procedure; see Methods) and that 80-120 Hz power in PT preceded MTL with a consistent delay. 

We repeated these cross-correlations across all participants using all visually responsive electrode 

pairs between brain regions. Across participants, we found a significant peak in the cross-

correlation of 80-120 Hz power between PT and MTL (t(7) = 5.23, p = .0012, paired t−test; see 

Methods; Fig. 6b) and between PAR and MTL (t(4) = 5.0, p = .008). We used the time of the peak 

of each cross-correlation to quantify the delay in 80-120 Hz activity between brain regions and 

averaged the peak delay across participants (Fig. 6c; see Methods). The increases in 80-120 Hz 

power in PT significantly preceded the increases in MTL by an average delay of 38 ± 9 ms across 

participants (t(7) = 2.06, p = .005, paired t-test). No differences in delay were observed between 

the PAR and MTL (t(4) = .30, p > .05, paired t-test). 
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Figure 6. Differences in 80-120 Hz power when present visual experience is different from the 
past visual experience emerge earlier in the visual association cortex than in the MTL. 

 a) Representative cross-correlation of 80-120 Hz power between a PT and MTL electrode in an 

example participant. The chance cross-correlation is indicated by the white line. b) Average 

cross-correlation of 80-120 Hz power between the PT and MTL electrodes across participants. c) 

Average peak times (latency) of 80-120 Hz cross-correlograms for PT-MTL and PAR-MTL 

electrode pairs across participants. Average latency between PT and MTL electrodes was 

significantly greater than zero (p < .05, paired t-test). d) Average time series of differences 

between the manipulated and repeated correct conditions (left) and manipulated correct and 

incorrect conditions (right) in PT, PAR, and MTL across participants (200 ms sliding windows, 

50% overlap; image appears at t = 0). e) Average estimated onset of differences in 80-120 Hz 

power between conditions in PT, PAR, and MTL across participants. Asterisks (*,**) indicate 

significance at p < .05 and p < .01, two-sided unpaired t-test. f) Average estimated onset of 80-

120 Hz MTL power (activation) across participants.  
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We next examined whether the difference signals that arose in 80-120 Hz power when viewing an 

image that had been manipulated also progressed in a feedforward direction along the visual 

hierarchy. We visualized the time course of these differences in each brain region across 

participants and identified the first time point exhibiting a difference in 80-120 Hz power when 

comparing manipulated to repeated conditions and when comparing manipulated correct to 

incorrect trials (Fig. 6d; see Methods). Across participants, the differences in 80-120 Hz power 

between manipulated and repeated conditions arose significantly earlier in PT and PAR compared 

to MTL (PT v MTL, t(16) = −3.21, p = .005, unpaired t-test; PAR v MTL, t(14) = −3.32, p = .005; 

Fig. 6e). These differences began at 271 ± 46 and 295 ± 21 ms after the image presentation in PT 

and PAR, respectively, but only started at 477 ± 45 ms in the MTL. Across participants, the 

differences in 80-120 Hz power between manipulated and repeated conditions also reached 50% 

of the peak significantly earlier in PT and PAR compared to MTL (PT v MTL, t(16) = -2.63, p = 

.018, unpaired t-test; PAR v MTL, t(14) =-2.81, p = .013).  PT also exhibited significant differences 

earlier than MTL (t(16) = -2.44$, p = .026). We found similar temporal patterns of activation when 

comparing manipulated correct and incorrect conditions (Fig. 6e), demonstrating that the 

differences that are detected between past and present visual experience are captured by increases 

in 80-120 Hz power that also propagate from posterior to anterior brain regions along the visual 

hierarchy.  

Although specific differences in activity between manipulated and repeated conditions arose in the 

MTL only after those differences were detected in the visual association cortex, we hypothesized 

that the ability to detect any difference between past and present experience required initially 

retrieving the past experience, and therefore activation of the MTL. We were therefore interested 

in when the differences in 80-120 Hz power that we observed in PT and PAR occurred with respect 
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to overall activity in the MTL. Based on the increase in 80-120 Hz power observed across all trials 

following the presentation of the image during recognition testing (Fig. 3d), we estimated the first 

time point at which MTL activity exceeded baseline as above (97.2 ± 16 ms; see Methods)(Fig. 

2.5f). We then compared this time point to the first time points exhibiting a difference in activity 

between conditions in PT and PAR. In both cases, we found that overall activation of the MTL 

preceded the detection of a difference between past and present visual experience in the visual 

association cortex (PT v MTL, t(16) = −3.58, p = .003; PAR v MTL, t(14) = −7.43, p = 3.18 x 10-

6, unpaired t-test ). Substantial previous evidence have linked memory retrieval with activation of 

the slow gamma band within the MTL 110–115. We compared activity between the manipulated 

correct and repeated correct/manipulated incorrect condition across all frequencies. In contrast to 

the PAR and PIT, MTL also showed a second peak in the 20-50 Hz band when comparing the 

manipulated correct to the manipulated incorrect and repeated correct conditions (Supplementary 

Fig. 10b).  We found these differences in 20-50 Hz power were significant from 600 to 900 ms  

within the MTL (p <.01, permutation test; Supplementary Fig. 10c) during the successful 

recognition, but not within the PAR or PT. 

Successfully identifying whether an image has been manipulated during recognition testing 

requires comparing that image to a retrieved memory. Because our data suggest that retrieval may 

involve activation of the MTL, we were interested in whether neural communication between the 

MTL and the visual association cortex where differences were first detected might underlie this 

process. Low frequency oscillatory coherence has previously been linked with neural 

communication between brain regions 116, and so we examined oscillatory coherence between 

electrode pairs in the data (see Methods). In a representative single trial, we observed clear 

evidence of phase-lagged alpha oscillations, and consequently alpha coherence, between a pair of 
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electrodes in the MTL and PT, suggesting that these two regions may become synchronized during 

the recognition period (Fig. 7a). We computed the coherence at all frequencies between all visually 

responsive PT and MTL electrodes during the recognition period across participants and found 

alpha coherence between the two regions significantly increased 300 to 1600 ms after the 

presentation of the image when examining all trials (p < .05, permutation procedure; Fig. 7b), 

suggesting that comparing past to present visual experience involves some communication 

between the MTL and visual association cortex. We did not find evidence of significant coherence 

between the MTL and PAR (p > .05, permutation procedure). We then examined coherence 

between PT and MTL electrodes separately for the manipulated correct, repeated, and manipulated 

incorrect conditions (Supplementary Fig. 14). Alpha coherence between these brain regions 

appeared more robust and more prolonged during the manipulated correct trials compared to the 

other conditions. We computed the mean level of alpha coherence over the recognition period and 

found significantly greater alpha coherence for the manipulated correct condition compared to the 

manipulated incorrect condition (t(7) = 2.61, p = .03, unpaired t-test; Fig. 7c), but only marginally 

greater coherence when compared to the repeated condition (t(7) = 1.91, p = .09). 
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Figure 7. Alpha coherence increases between MTL and PT increases when past and present 
visual experience are in violation. 

a) iEEG traces from representative PT and MTL electrodes indicating low frequency coherence at 

the single trial level. Across all trials in this electrode pair, coherence spectrum showed a peak in 

the low frequency band. b) Average coherence spectrum for all PT-MTL across participants. The 

black outline constitutes all epochs that exhibited significant differences compared to baseline that 

survived corrections for multiple comparisons (p < .05, permutation procedure). c) Comparison of 

average low frequency PT-MTL coherence across participants between manipulated correct and 

repeated correct/manipulated incorrect conditions. Asterisks (*) indicate significance at p<.05 

using two-sided unpaired t-test.  
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2.4. Discussion 

 

In this work, we observed an increase in 80-120 Hz oscillations that progressed from visual 

association areas to the MTL that contained information regarding the specific image being 

viewed. When the present image was in violation with the previously viewed image, we found 

increases in 80-120 Hz oscillations that specifically occurred after fixating on the region of the 

image that was in violation. Critically, the violation between past and present experience was 

detected in visual association areas earlier than the MTL. The detection of this violation was also 

accompanied by elevated low frequency coherence between the visual association areas and the 

MTL. Together these observations provide a direct account of how violations of the expectations 

set by the episodic memory of a previous experience are encoded within neocortical-MTL circuits.  

 

Episodic memory formation relies on distributed set of interactions between the neocortex and 

MTL 53,58. During an experience, the MTL receives input from sensory association cortices and 

transmits this input back to association areas 54,87–92 These forward and feedback interactions 

between the neocortex and MTL enable the formation of distributed neural trace through 

associative synaptic modification. When presented with a similar visual experience, neocortical-

MTL interactions reactivate the distributed representation present during the original 

experience54,89,93,94,117.  

 

Expanding on this framework, these data suggest neocortical-MTL interactions may enable the 

comparison of the present experience with the remembered experience during episodic memory 

retrieval. Our data is largely consistent with predictive coding theory,  which suggest neocortical-
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MTL circuits generate an internal model of the world in order to predict external input 61–65. Under 

this framework, higher order neocortical circuits send a feedback signal to lower order neocortical 

circuits in order to predict external visual input. The comparison of the predicted  and actual  input 

are transmitted from low order areas to high order areas via feedforward interactions in order to 

improve this internal model 81,118.  

 

While this framework presents a computationally efficient, generalizable approach for cortical 

processing, the principles of predictive coding are largely supported by phenomenon within lower 

order circuits. For example, surround suppression within the retina and the receptive field 

properties of end-stopping cells in primary visual areas are canonical examples of how neural 

activity reflects a comparison between an external input and expectations of that input based on an 

internal model 62,77,119,120. The expectations of sensory features are largely learned based on the 

natural statistics of the world and formed in order to reduce redundancy in representation62,75–79. If 

predictive coding is a computationally, generalizable approach for cortical processing, such 

principles should extend beyond simple sensory features to single events or episodes. In contrast 

to simple visual features, episodes are often only experienced just once. The generation of 

expectations for events may therefore rely on the MTL, a cortical area necessary for rapid one trial 

learning 121,122. Our data demonstrate that such expectations for single events are formed from 

episodic memory and violation of such expectations involve a distributed interactions between 

neocortical circuits and the MTL. 

 

The oscillatory mechanisms underlying visuospatial memory formation has largely focused on 

gamma oscillations within the rat hippocampal system 111–113,123. Hippocampal CA1 shows the 
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presence of two types of gamma oscillations, slow (20-50 Hz) and fast gamma  (60-140 Hz) 

oscillations 110,124. Fast gamma oscillations within CA1  are thought to originate from the medial 

entorhinal cortex and contain representations regarding the current location of the animal within a 

spatial environment 110,113. In contrast, slow gamma oscillations within CA1 arise from input from 

CA3 and codes the past and future trajectories of the animal within a spatial environment 110,113,125. 

It has been proposed that fast gamma supports the coding of representations that are currently 

being experienced while slow gamma promotes the retrieval of memories associated with the 

current experience112,113,126,127. Consistent with this distinction, our data show increases in fast 

gamma oscillations within the MTL arise from neocortical circuits  and contain information 

regarding the current image being viewed while slow gamma oscillations exhibit  increases in 

activity specifically within the MTL during successful recognition of a manipulation. 

 

However, we propose that fast gamma oscillations within neocortical-MTL circuits reflect a 

difference between the current experience and expectations of the experience, rather than the 

current experience alone. The primate visual system consists of a set of cortical areas that exhibit 

neurophysiological asymmetries 51,52.  Whereas feedforward interactions are characterized by 

interareal synchronization of higher frequencies, feedback interactions are mediated by interareal 

synchronization of the lower frequencies 128–131. Based on these physiological asymmetries, 

prediction errors are hypothesized to be transmitted in a feedforward direction by high frequencies 

while predictions are thought to be transmitted in a feedback direction by low frequencies 81,118. 

Our data showed differences in 80-120 Hz power that were detected in visual association areas 

prior to the MTL during the recognition of manipulation and  suggests the comparison of the 

predicted  and actual  input may be transmitted in a feedforward direction by high frequencies. We 
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also found increases in alpha coherence between neocortical-MTL circuits during the successful 

compared to unsuccessful recognition of manipulation  consistent with the idea that predictions 

being transmitted between neocortical-MTL circuits by lower frequencies. 

 

As both past and present experience are represented in the MTL initially, one might expect the 

detection of differences between past and present experience to occur in MTL prior to visual 

association areas. Remarkably, the detection of differences between past and present experience 

occurred in the opposite direction. A possible explanation is that sensory association areas may 

serve as a comparator circuit that detects and transmits unexpected input to the MTL.  The MTL 

then selectively encodes and retrieves the representations  associated with unexpected input to 

generate future expectations. Based on this framework, feedforward induction of 80-120 Hz 

activity between visual association areas and the MTL may promote the encoding of future 

expectations. Feedback induction of alpha oscillations may enable the transmission of these 

expectations from the MTL to visual association areas.  Whether or not the causal induction of 

these feedforward and feedback interactions between visual association areas and the MTL 

improves successful detection of a manipulation remains a future direction of this work.  
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Figure 8. Distribution of Electrodes in LOC, PAR, PT, and MTL 

All electrodes within lateral occipital complex (LOC), posterior temporal (PT), parietal (PAR), 

and medial temporal lobe (MTL) ROIs 
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Figure 9. Electrodes showing decreases in 80-120 Hz power between the conditions 

Visually responsive electrodes (white) that showed significant decreases in 80-120 Hz power for 

the manipulated correct compared to the manipulated incorrect (blue), manipulated correct 

compared to the manipulated repeated (red), or both (purple). 
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Figure 10. Spectral power differences when predicted and present visual input are in violation 

a) Spectrograms of power differences between the manipulated correct and manipulated incorrect 

and repeated correct conditions across participants in PAR, PT, and MTL. b) Average difference 

between the manipulated and manipulated incorrect/repeated correct trials across participants for 

each frequency c) Average 20-50 Hz power in PAR, PT, and MTL for manipulated correct (black), 

repeated correct(red), and manipulated incorrect (blue).  Blue and red dots indicate significant 

increases in power for the manipulated correct compared to the manipulated incorrect and repeated 

correct condition, respectively, that survived corrections for multiple comparisons (p < .05, 

permutation procedure )  
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Figure 11. 80-120 Hz events increase when predicted and present visual input are in violation 

a) iEEG signal filtered in the 80-120 Hz band and extraction of instantaneous power using Hilbert 

transform. Events were defined as time points where the Hilbert envelope exceeded 2 standard 

deviations above the mean amplitude of the filtered traces for 20 ms. b) Rasters plots of 80-120 

Hz events in a representative electrode in PT for the manipulated correct, manipulated incorrect, 

and repeated correct condition. c) Average event rate for a PT electrodes across manipulated 

correct (black), manipulated incorrect (blue), and repeated correct (red) trials. Time courses were 

generated with a 200 ms sliding window in 100 ms steps (50% overlap) locked the second viewing 

of the image. Blue and red dots indicate significant increases in rate for the manipulated correct 

compared to the manipulated incorrect and repeated correct condition, respectively, that survived 

corrections for multiple comparisons (p < .05, permutation procedure ) d) Time courses of 80-120 
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Hz event rate across participants for LOC, PAR, PT, and MTL for the manipulated correct, 

manipulated incorrect, and repeated correct conditions locked to the second viewing of the image. 
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Figure 12. Time courses of 80-120 Hz power during encoding 

Time courses of 80-120 Hz power across participants for LOC, PAR, PT, and MTL for the 

manipulated correct, manipulated incorrect, and repeated correct conditions locked to the first 

viewing of the image. No significant differences were observed for the manipulated correct 

compared to manipulated incorrect and repeated correct images (p < .05, permutation procedure). 
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Figure 13. Time courses of 80-120 Hz power during encoding and recognition 

Time courses of 80-120 Hz power across participants for LOC, PAR, PT, and MTL for the 

removed correct, removed incorrect, and repeated correct conditions during the first and second 

viewing of the image. Blue, red, and black dots indicate significant increases in power for the 

second viewing compared to the first viewing (p < 0.05, permutation procedure). 
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Figure 14. Spectrograms of average PT-MTL coherence 

Average coherence spectrum for PT-MTL electrode pairs for the manipulated correct, manipulated 

incorrect, and repeated correct conditions across participant 
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Chapter 3: Visuospatial Memory Performance during Healthy Aging, Mild Cognitive 

Impairment, and Alzheimer’s Disease 

3.1 Introduction 

 

In the previous chapter, we showed that visuospatial memory formation involves a set of 

interactions between the visual association areas and MTL. As pathological changes in AD 

develop within the MTL years before the onset of clinical symptoms, we hypothesized visuospatial 

memory formation may be impaired in participants with AD. Memory impairment in AD and other 

conditions has typically been established through performance on neuropsychological tasks 

measuring verbal recall.  These conventional memory tests typically require trained personnel, a 

considerable amount of time to administer, and are often underused for symptomatic individuals 

because of the resource demands necessary to implement in clinical settings.  Visuospatial memory 

paradigms based on eye movements may offer a passive, sensitive, and efficient assessment of 

memory performance in Alzheimer’s disease. 

 

The aim of the current study was to develop a passive, efficient, and sensitive paradigm that 

assesses visuospatial memory and evaluate its performance in healthy controls and memory-

impaired subjects. Building on previous work with eye-tracking for assessing memory 73,74 and 

adapting a previously well studied task 66–68, we developed VisMET, which uses eye movements 

rather than explicit memory judgements in order to assess memory. Participants were asked to 

view a set of naturalistic images followed by the same set of images with either an object removed 
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or a new object added in order to alter the visuospatial relationships between the objects and 

locations. The amount of time viewing these manipulations compared to unchanged parts of the 

images was used to measure memory of either a previously viewed object and location (removed 

condition), or a new object and location (added condition). This four-minute paradigm was 

administered to 296 control or memory-impaired participants (mild cognitive impairment, MCI or 

AD) recruited from the Emory Healthy Brain Study and Alzheimer’s Disease Research Center. 

Visuospatial memory performance was compared in healthy aging and at different stages of AD. 

 

3.2 Methods 

3.2.1 Participants 

296 participants were recruited from research and clinical populations, including the Emory 

Healthy Brain Study (EHBS) and the Alzheimer’s Disease Research Center (ADRC) (Table 1.1). 

Research participants received detailed evaluations that included neuropsychological testing and 

for ADRC subjects a diagnosis (healthy controls, MCI, or AD) reached after review by an 

interdisciplinary team of research neurologists, geriatricians, and neuropsychologists. A group of 

symptomatic subjects was evaluated in the Emory Memory Disorders Clinic where they received 

a comprehensive clinical evaluation consisting of standardized neuropsychological testing, 

neurological exam, brain imaging, and bloodwork, with a diagnosis by a board-certified behavioral 

neurologist’s best clinical judgment. Controls were defined by normal memory and general 

cognition with preserved functional abilities. MCI was defined by impaired memory (single or 

multiple domain, based on cognitive testing) with preserved functional abilities, while AD was 

defined as impairment in two or more cognitive domains and functional abilities. The Montreal 

Cognitive Assessment (MOCA) was used as a common test across the EHBS, ADRC, and clinic 
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populations. Both age and education were significantly different between healthy controls and 

MCI (unpaired t-test, p<10-5; p<10-3) and AD populations (unpaired t-test, p<10-10; p<10-3) and 

therefore used as co-variates in later analysis. 

Table 1 Demographics of Controls, MCI, and AD Participants 
 Controls MCI AD 
Number 182 74 40 
Age 63.8 ± 7.4 70.8 ± 7.9 74.3 ± 7.5 
Gender 
(M/F) 

50/132  38/36 20/20 

Race  
(Cau/AA/NA/Asi/Oth) 

154/21/1/4/2 66/6/2/0/0 38/2/0/0/0 

Education 16.6 ± 2.2 15.6 ± 2.5 15.3 ± 2.8 
MoCA 26.7 ± 2.1 21.8 ± 3.9 14.6 ± 4.8 

 

3.2.2 Visuospatial Memory Eye-tracking Test (VisMET)  

Participants performed a memory paradigm based on eye movements (Fig. 15). During the 

encoding phase, participants were simply asked to ‘enjoy’ viewing a set of color images without 

any other explicit instructions (i.e., they were not informed they were being given a memory task). 

The images were selected for their positive aesthetic appeal. During the recognition phase, the 

participants viewed a modified version of the same set of images in the same order with either an 

item removed (“removed condition”) or an item added (“added condition”). Images were selected 

from an open access database of images from Pixabay and Pexel and edited by a medical illustrator 

using Adobe Photoshop. Images were selected to be interesting and with varying degrees of 

complexity.  
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Figure 15. Visuospatial Memory Eyetracking Test (VisMET) 

Participants were asked to view a set of images for 5 seconds with a 1 second inter-stimulus 

interval each during the encoding phase. During the recognition phase, participants viewed the 

same set of images with either one item removed (removed condition) or one item added (added 

condition). The manipulated regions used to quantify memory performance are indicated by the 

yellow box, which was not visible during viewing. The final test parameters consisted of the 

presentation of two sets of 10 original-manipulated pairs (7 with removed condition and 3 with 

added condition) with a delay of 1 minute in between the original and manipulated presentations. 

The entire task took 4 minutes. 

 

Images were presented on a 24’’ monitor 26’’ away from the screen at a visual angle of 27 x 20 

degrees. Each image was shown for 5 seconds, with a white fixation cross appearing for 1 second 
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between images. Each set consisted of original images followed by the presentation of slightly 

manipulated images, i.e. object added or removed. Performance was initially assessed over a range 

of image numbers and delay periods with a minimum of 10 images and a maximum of 20 images. 

Presenting 10-20 images resulted in a delay of 1-2 minutes between the original and manipulated 

images. The final test parameters consisted of the presentation of two sets of 10 original-

manipulated pairs (7 with removed condition and 3 with added condition) with a delay of 1 minute 

in between the original and manipulated presentations. Images with 2-3 objects or focal points for 

the removed condition and 3-5 objects for the added condition were selected as optimal for 

assessing memory performance.  We also only added or removed items in non-central locations to 

minimize the impact of delayed eye movements from the fixation cross at the center of the 

calibration screen preceding each image. 

3.2.3 Eye movement detection 

The locations of an individual’s focus on the screen were estimated using an EyeTribe Infrared 

Scanner which sampled at 30 Hz. The scanner was attached to the bottom panel of a computer 

screen that was mounted to the wall using an adjustable arm to allow adaptation to participants of 

different heights. This hardware comprises a linear array of infrared LEDs that illuminate the eye 

and allow for the capture of pupil and corneal reflection using a near-infrared sensitive camera. 

The rotation of the eye was determined by the relative positions of the corneal and pupillary 

reflections. At the start of each session, participants performed a 9-point calibration procedure in 

order to convert eye rotations into a set of gaze positions relative to the screen. A small number of 

participants were excluded from the analysis (8.3%) who could not calibrate to the eye tracker or 

did not make any attempts to view the images.  
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3.2.4 Fixation Detection 

For each participant, raw eye movement data was extracted using the EyeTribe Software and the 

data was analyzed off-line using custom scripts in MATLAB (MathWorks, Natick, MA) and 

Python. Raw gaze positions were converted into a set of fixations using a dispersion-based 

algorithm101. Each fixation was defined as a point of gaze continually remaining on the screen 

within 2 degrees of visual angle for a period of 100 ms or more.   

3.2.5 Measurement of Visual Exploration 

We developed methods to quantify visual exploration for each participant by measuring the 

viewing of the unmanipulated object during the first presentation (Fig. 16A). To quantify viewing 

of unmanipulated objects during the encoding phase, we identified the location of each object to 

be removed or added by drawing a rectangle, defined by the x,y coordinates of its four corners, 

around each object. This region was identified as the ‘critical region’ (average size: 8.8 x 7.5 visual 

angles). The number of fixations and the percentage of time viewing the critical region was 

calculated for each original image presentation. The percentage of time spent in the critical region 

was averaged across all original image presentations for each subject (Metric 1). We also 

calculated the percentage of all original image presentations with at least one fixation in the critical 

region for each subject (Metric 2). The calculated metrics varied depending on the specific images 

presented to each participant. To correct for this variation, each participant’s metrics were 

normalized by the mean and standard deviation of the metrics derived from the viewing behavior 

of the control population (# subjects > 25 for each set) viewing the same images. These metrics 

were compared between healthy controls and memory-impaired participants (MCI/AD) using an 

unpaired student t-test. Of note, the images for the added condition during the original presentation 
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contained critical regions without any objects (Fig. 16). Therefore, we expected these eye 

movement-based metrics to be nearly zero for the added condition in the first viewing of the 

images. 

3.2.6 Measurement of VisMET Performance 

A similar approach was used to quantify viewing of the manipulated objects during the recognition 

phase. A rectangular critical region was drawn outlining the location of the removed or added 

object. The number of fixations and the percentage of viewing time within the critical region was 

calculated for each manipulated image presentation. The metrics for the added and removed 

conditions were derived separately for each participant. For each participant, we calculated the 

average percentage of time spent in the critical region across all manipulated images (Metric 1). 

We also calculated the percentage of manipulated images with at least one fixation in the critical 

region for each participant, with separate measurements for the removed and added objects (Metric 

2). As before, these metrics were normalized by the mean and standard deviation of the healthy 

controls viewing the same image sets. These metrics of memory performance were compared 

across age groups and disease categories using an unpaired student t-test. Although both metrics 

were calculated for the added and removed conditions, we focused on Metric 1 for the added 

condition since spending at least one fixation in the critical region did not necessarily constitute 

successful memory. We focused on Metric 2 for the removed condition since the viewing time of 

many of the manipulated images was zero. 

 

VisMET offers the option to vary the task difficulty, and as a result, track memory performance at 

different degrees of severity of impairment. The difficulty for remembering an image was defined 

based on the performance of healthy persons. The higher the percentage of healthy people that 



 70 

viewed the manipulated critical region, the lower the difficulty for that image. Formally, difficulty 

for an image containing a removed object was the percentage of healthy people that spent at least 

one fixation in the critical region. The difficulty for an image containing an added object was the 

percentage of time spent in the critical region. Images were binned into categories based on their 

difficulty (0-25, 25-50, 50-75, and 75-100 percent of healthy controls showing the response) and 

performance was compared between healthy and memory-impaired participants for each of these 

bins. Of note, bins 50-75 and 75-100 were not analyzed for the added condition as no images had 

an average viewing time greater than 50% within the critical region. 

 

3.2.7 Logistic Regression Models 

Using a leave one out cross validation procedure, we quantified whether visuospatial memory 

performance on the task could be used as a screening tool for measuring cognitive impairment and 

predicting a diagnosis of MCI and AD. Two logistic regression classifiers were trained, each using 

a combination of three features: viewing time in the critical regions (added condition), percentage 

of critical regions viewed (removed condition), and age. The output of the models predicted the 

likelihood of accurately predicting performance on a standard measure of cognitive impairment 

(MoCA ≤ 23 or MoCA > 23) and disease status (healthy control or MCI/AD), respectively. The 

performance of the model was assessed using the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve.  To conduct this analysis, participants needed to view images 

for both the added and removed condition. This analysis could only be completed with data from 

participants who viewed image sets that included both types of manipulations (added and 

removed). Thus, only the subset of participants (n= 126) that received the final version of the task 

were analyzed (Table 2). 
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Table 2. Demographics of Controls, MCI, and AD Participants in Final Version 

  Controls MCI AD 
Number 77 27 22 
Age 64.5 ± 7.5 69.5 ± 9.5 76.0 ± 7.0 
MoCA 26.7 ± 2.0 21.3 ± 4.0 13.5 ± 5 

 

 

3.3 Results 

3.3.1 Visual Exploration in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s 

Disease during Encoding 
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Figure 16. Visual Exploration of Later Removed Objects during Encoding Phase 

(A) Participants viewed images during the encoding phase containing an object that was removed 

in the future during the recognition phase as indicated by the yellow critical region. (B) Healthy 

controls, MCI, and AD participants fixated on approximately 90% of the subsequently removed 

objects. The MCI group viewed the same percentage of critical regions as healthy controls (p > 

0.05, unpaired t-test) while the AD group viewed slightly fewer critical regions than healthy 

controls (p < 0.001, unpaired t-test) C) Healthy, MCI, and AD participants all spent roughly 30% 

of the time viewing the critical regions, with no significant differences across groups. Asterisks in 

each panel indicate significant differences in performance as shown (*0.05, **0.01, ***0.001, 

****0.0001; unpaired t-test). 
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The inability to shift attentional resources may lead to inadequate viewing of the to-be manipulated 

item, which could confound later assessments of visuospatial memory performance. For these 

reasons, we first evaluated baseline attentional shifts in eye movement during image viewing to 

ensure that controls and memory-impaired participants all had adequate opportunity to encode the 

images.  

The control, MCI, and AD participant groups all made at least one fixation within the critical 

regions containing a later removed object for nearly 90% of the images. The MCI group viewed 

the same percentage of critical regions as healthy controls (p > 0.05, unpaired t-test) while the AD 

group viewed slightly fewer critical regions than healthy controls (p < 0.001, unpaired t-test) (Fig. 

16B). In the encoding phase, we also compared the average viewing time in the critical region 

containing a later removed object. Healthy controls spent 30 ± 0.6% of the viewing time in the 

critical regions, with similar amounts for MCI (28 ±  0.8 %, p > 0.05, unpaired t-test) and AD (28 

± 1.5%, p > 0.05, unpaired t-test) populations (Fig. 16C). In summary, controls and memory-

impaired participants viewed nearly 90% of the critical regions containing a later removed object, 

spending roughly 30% of the viewing time in the critical regions. These results indicate that the 

subject groups had similar viewing behavior with adequate opportunity to encode the majority of 

the images, and that any differences in visuospatial memory were unlikely due to differences in 

viewing behavior or attention.   

The encoding phase also included a set of images in the first presentation containing “empty” 

regions where items were subsequently added for the recognition phase. All three populations 

fixated on less than 5% of these empty critical regions with a viewing time of less than 1%. 

Therefore, the viewing behavior during the added condition for the groups also did not suggest 

any major differences that would confound later assessments of visuospatial memory. 
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3.3.2 VisMET Performance in Healthy Aging 

The visuospatial memory paradigm in this study required memory for a complex set of associations 

between objects and locations and was assessed passively using eye movements rather than 

explicitly. We sought to evaluate whether visuospatial memory showed age-related declines in 

performance and how these differences compared to age-related declines in verbal free recall 

performance. We hypothesized that healthy older participants would show impairments in 

discerning the manipulated objects compared to healthy younger participants. To test this 

hypothesis, we compared the percent viewing time and the percentage of trials with at least one 

fixation in the critical region across three age groups [50-59, 60-69, 70+]. We compared these 

metrics separately for the added and removed conditions.  

 

The group of 50-59 year-old individuals performed better on the memory task than the 60-69 and 

70+ age groups.  The 50-59 age group fixated within 58 ± 3% of the critical regions with a removed 

object, whereas this percentage dropped for the older controls (45 ± 3% for the 60-69 year olds, 

and 46 ± 3% for the 70+ year olds) (Fig. 17A). These results were significant when comparing the 

percentage of the critical regions viewed by the 50-59 age group to the 60-69 (p < 0.001, unpaired 

t-test) and the 70+ age groups (p < 0.01, unpaired t-test). There was no difference in performance 

between the 60-69 and 70+ age groups. Similar age-related declines in memory were observed 

when using viewing time within critical regions as a performance metric (Fig. 17B). The 50-59, 

60-69, and 70+ age groups spent 12 ± 0.9%, 9.3 ± 0.8%, and 10 ± 1% of the time viewing the 

critical regions with a removed object (Fig. 17B). The 50-59 age group spent significantly more 

time in the critical regions compared to the 60-69 (p < 0.01, unpaired t-test) and the 70+ (p < 0.05, 

unpaired t-test) age groups. We did not find such differences for the added condition (p > 0.05, 
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unpaired t-test; data not shown). These results indicate that healthy adults aged 50-59 show better 

memory performance for the removed condition compared to healthy adults over the age of 60.  

 

To compare these results to a commonly used neuropsychological measure of memory, we 

assessed age-related differences in delayed free recall performance using the Free Cued and 

Selective Reminding Test (FCSRT). In this population, the 50-59, 60-69, and 70+ age groups 

remembered 77 ± 1%, 76 ± 1%, and 70+1.6% of the words. The 50-59 age group did not show any 

significant differences in verbal free recall compared to the 60-69 age group (p > 0.05, unpaired t-

test; Fig. 17C). Rather, age-related decline in free recall performance became apparent later in the 

70+ age group (p < 0.001, unpaired t-test). Collectively, these results suggest visuospatial memory 

performance for the removed condition provides a means to detect age-related memory decline 

earlier than the FCSRT. 
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Figure 17. Age-related Changed in VisMET Performance. 

A) Younger participants (50-60) viewed more of the critical regions containing removed objects 

compared to older participants (60-70, 70+). (B) Younger participants (50-60) spent a greater 

percentage of viewing time in the critical regions containing the removed object compared to older 

participants (60-70, 70+). (C) For comparison, memory scores on the free recall portion of the 

FCSRT are shown. Asterisks in each panel indicate significant differences in performance as 

shown (*0.05, **0.01, ***0.001, ****0.0001; unpaired t-test). 
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3.3.3 VisMET Is impaired in Mild Cognitive Impairment and Alzheimer’s Disease   

We compared visuospatial memory performance among healthy, MCI, and AD populations 

separately for the removed and added conditions. We first quantified viewing of the removed 

objects during the recognition phase (Fig. 15). The critical region for the removed objects was an 

empty location and as a result, the percentage of critical regions in which a visual fixation was 

recorded was a strong indicator that the removed object had been successfully remembered (Fig. 

18A). Control participants fixated on nearly twice as many of the critical regions compared to MCI 

(p < 10-8, unpaired t-test) and AD (p < 10-10, unpaired t-test) populations (Fig. 18B). We also 

quantified viewing time within the critical regions for the removed condition. Control participants 

spent a significantly greater percentage of the viewing time in the critical region compared to MCI 

(p < 0.001, unpaired t-test) and AD populations (p < 10-4, unpaired t-test).  

 

We varied the difficulty among the manipulated images to determine if this would alter task 

performance (see Methods). We hypothesized that the more difficult images, operationally defined 

by the percentage of healthy controls with viewing behavior indicative of intact recall, to remember 

would best distinguish controls and memory-impaired subjects. The largest differences between 

control and MCI/AD participants were observed for images that were recognized as different by 

only 25-50% of the control participants (p <10-5, unpaired t-test; p < 10-8, unpaired t-test). Notably, 

the easiest images (operationally defined as viewing behavior indicative that they were 

“remembered” by 75 to 100 percent of the participants) could only distinguish healthy controls 

from AD but not from MCI (p > 0.05, unpaired t-test). Thus, by controlling the difficulty of 

manipulated images, we were able to create a potential method to track memory performance 

across varying degrees of memory impairment.  
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Next, we determined whether viewing of the added object in the delayed presentation was also 

different among healthy, MCI, and AD groups. The critical region for the added condition 

contained an item that was not present during the encoding phase (Fig. 18D). Control participants 

with intact memory spent a greater percentage of time viewing the critical region containing the 

added object (p < 0.01, unpaired t-test) (Fig. 18E) and viewed a greater percentage of the critical 

regions compared to MCI populations (p < 0.01, unpaired t-test). There was a similar relationship 

between the control and AD populations (p <10-4, unpaired t-test; p <10-9, unpaired t-test). We also 

assessed the impact of image difficulty for the added condition (see Methods). Although both bins 

were able to separate healthy controls from memory-impaired populations, manipulated images 

with 25-50% viewing time in the critical region showed the most significant differences between 

the healthy controls and MCI (p <10-4, unpaired t-test) and AD populations (p <10-4, unpaired t-

test) (Fig. 18F).  

 

Although we expected that such differences in viewing would be due to lack of recognition of the 

changes in the images viewed previously, we also evaluated potential effects of eye movement-

related differences in fixation accuracy across the participant groups. To control for possible 

differences in fixation accuracy, we quantified the average distance to the fixation cues during the 

first and second half of the task in visual angles. We found decreases in fixation accuracy between 

the first and second half of the tasks in the x direction (1.35 ±  0.05 and 1.92 ±  0.07 visual angles; 

unpaired t-test, < 0.05) but not the y direction (1.30 ± 0.05 and 1.14 ± 0.07 visual angles; unpaired 

t-test, p > 0.05).  Importantly, there were no differences in fixation accuracy in MCI and AD 

participants compared to healthy controls for the first or second half of the experiment (unpaired 
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t-test, p>0.05). We also did not observe any significant correlation between a participant’s 

performance and the distance to the fixation dot (r=-0.03, p>0.05). From these results, the variation 

in performance for each group is unlikely due to the changes in fixation accuracy throughout the 

experiment but rather, differences in memory of the removed objects when comparing the controls 

and memory-impaired subjects with MCI or AD.  
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Figure 18. VisMET Performance in Mild Cognitive Impairment and Alzheimer’s Disease 

Participants viewed images with either an object removed (A) or added (D) as indicated by the 

yellow critical regions, which was invisible to the viewer. (B) Subjects with MCI and AD showed 

impaired visuospatial memory performance (removed condition) compared to controls. (C) 

Control subjects viewed a greater percentage of the critical regions compared to AD participants 

regardless of the extent of difficulty between the original and manipulated presentations. The less 

difficult images better distinguished healthy and MCI individuals. Asterisks indicate significant 

differences in performance between healthy controls and MCI (*0.05, **0.01, ***0.001, 

****0.0001; unpaired t-test). (E) Memory performance for the added condition was impaired (i.e., 

less time viewing the added object) in the MCI and AD populations compared to controls. (F) 

Manipulated images with high difficulty showed the most significant differences in performance 

between healthy and MCI participants as indicated by the asterisks. Viewing times for any of the 
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added objects did not exceed 50% and as a result, difficulty could not be measured at higher 

viewing times.  

3.3.4 VisMET as a screening tool for cognitive impairment and disease status 

Visuospatial memory performance showed robust differences between healthy controls and 

memory-impaired participants. The reliability of these differences suggest that visuospatial 

memory performance may be used as a screening tool. To evaluate VisMET as a screening tool 

for cognitive impairment, we trained a logistic regression classifier using a combination of three 

features: viewing time in the critical regions (added), percentage of critical regions viewed 

(removed), and age. The output of the models estimated the likelihood of cognitive impairment as 

measured by the Montreal Cognitive Assessment, a widely-used screening tool used to test a range 

of cognitive domains including memory, attention, executive function, and language. The 

performance of the model was assessed using the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve of a leave one out cross validation analysis. 

 

When training the models to predict cognitive impairment (MoCA ≤ 23), we found VisMET 

performance was able to achieve an AUC of 0.85 compared to an AUC of 0.71 and 0.56 when 

using age and education alone. This model was able to achieve a sensitivity and specificity of 0.83 

and 0.74, respectively, using a cutoff probability of 0.64 (Fig. 19A). To further evaluate VisMET, 

we identified the specific cognitive domains that may be assessed by the task. We correlated 

visuospatial memory performance to other neuropsychological assessments given to the study 

population, regressing out age and education and correcting for multiple comparisons. We found 

robust correlations with the CERAD Word List Delayed Recall, Benson Complex Figure Delayed 

Recall and to a lesser extent, verbal and category fluency tests (Table 3). Based on these results, 
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VisMET performance offers a sensitive screening method to identify cognitive impairment, 

particularly for the memory domain.  

Table 3. Correlations between VisMET Performance and Other Neuropsychological Instruments 

 Removed 
Condition 
N=114 

Added 
Condition 
N=65 

General Cognition   
MoCA 0.32 (p<10-3) 0.20 
Memory    
CERAD Delayed Recall 0.37 (p<10-4) 0.33 (p<0.01) 
Benson Delayed Recall 0.41 (p<10-5) 0.20 
Attention   
Trails A Time -0.07 0.13 
Forward Span 0.17 0.19 
Backward Span 0.07 -0.05 
Executive Function   
Trails B Time -0.16 0.08 
Verbal Fluency (FAS) 0.21  0.13 
Category Fluency (Animals) 
 

0.21 (p<0.001) 0.17 

 

We next aimed to determine the sensitivity of VisMET performance in estimating disease status. 

We trained a logistic regression classifier with the same three features as before, but instead the 

output of these models was the diagnostic classification of healthy controls, MCI or AD. Memory 

performance estimated MCI/AD status with an AUC of 0.85 compared to 0.73 and 0.58 when 

using age and education alone (Fig. 19B). Using all of the features, the model achieved a sensitivity 

and specificity of 0.85 and 0.75 with a cutoff probability of 0.63.  

 

We further explored the relationship between VisMET performance and disease status. Each 

participant’s raw performance (% of critical regions viewed and % viewing time) was normalized 

using the mean and standard deviation of healthy controls viewing the set of images. We then 

plotted each participant’s performance on this 2D feature space (Fig. 19C). The lower left quadrant 
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of this plane indicated below average performance for both the added and removed condition and 

as expected, nearly all of the MCI/AD participants were in this lower left quadrant. Interestingly, 

a significant portion of healthy controls’ performance fell in this same quadrant, with memory 

performance on VisMET similar to those with MCI and AD. Together, these results suggest that 

VisMET can be used as a sensitive tool for separating healthy controls from MCI/AD and to 

identify a population of healthy controls with an AD-like memory profile. 
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Figure 19. VisMET performance predicts cognitive impairment and disease status 

 (A) Viewing of the removed and added objects during the recognition phase could accurately 

predict performance on the Montreal Cognitive Assessment (MoCA ≤ 23 or MoCA > 23), a 

standard measure of cognitive impairment. (B) Viewing of the removed and added objects could 

separate those clinically diagnosed with MCI/AD from healthy controls.  (C) Memory performance 

was visualized on a two-dimensional plane representing performance. Most MCI/AD participants 

fell within the lower left quadrant of the plane indicating below average performance for both the 

added and removed condition. Healthy participants within this quadrant exhibited a memory 

profile indicative of AD.  
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3.4 Discussion 

The aim of this study was to develop an easily administered, enjoyable, and sensitive paradigm for 

detecting mild memory deficits, and assess its performance in a large group of healthy controls as 

well as a population of patients with memory impairment. To this end, 296 participants were 

presented with a memory paradigm in which we used eye movements to infer memory. Using eye 

tracking as an index of memory, we found that memory performance on the task is both age-related 

and different between healthy and MCI/AD participants. Performance was also dependent on the 

difficulty of the original and manipulated images, which allows for the task to be sensitive across 

a broad range of memory abilities. A multivariate model of memory performance on the task 

predicted cognitive impairment and AD status with high sensitivity and identified a subpopulation 

of healthy controls with relatively weak performance on the task.  

 

A few studies have examined whether memory can be measured using eye movements and to 

determine whether memory measured using eye movements depends on the hippocampus66–68. In 

these studies, participants were presented with a series of images and cued with a question about 

the relationships between the objects within the scene 66. These images were followed by another 

set of images that were either novel, repeated or manipulated. Participants spent more time viewing 

the manipulated regions only when they were unable to verbally report the manipulation had 

occurred. In these early studies, cueing the participants towards the manipulation could have 

influenced later assessments of memory. Later studies replicated this paradigm without cueing the 

participants toward the manipulation during the first presentation67,68, and found that increased 

viewing of the manipulated region only occurred when participants were aware of the 

manipulation. Moreover, the viewing time and explicit identification of the manipulation was 
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reduced in a small group of amnestic patients with non-specific damage to the medial temporal 

lobe. Although the role of cueing and delay in eye-movement based memory need to be carefully 

examined in future studies 135,136, these initial studies provided evidence for the use of eye 

movements as an indicator of memory dysfunction.  

 

To extend these findings, we evaluated the ability of eye movements to predict memory 

impairment in normal aging and found an age-related decline in memory performance. Although 

a number of studies have shown memory decline with age 137–139, the pattern of memory decline is 

unclear. Most cross-sectional aging studies measure memory decline using verbal learning 

paradigms and show a linear decrease in episodic memory function starting in the 20’s and 

progressing through the rest of adult life 140,141. In contrast, longitudinal studies of aging show a 

very different pattern, demonstrating a decline in memory performance only after the age of 60-

65 140,141. A potential reason for this difference stems from the varying levels of education 

attainment for the different age groups in cross-sectional studies. When education is controlled in 

cross-sectional studies, declines in memory appear after the age of 60 137. More recently, the effect 

of aging on memory has been investigated using mnemonic discrimination paradigms 142,143. These 

paradigms find an entirely different trend than previous cross-sectional studies, namely that 

memory begins to decline around age 20 but plateaus in the 60-90 range. We also found a similar 

trend with performance on visuospatial memory starting to plateau after 60 years of age. To clarify 

the effects of aging on these different types of memory, longitudinal studies need to be conducted 

administering these paradigms in the same cohort of patients to allow for proper comparison.   
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Visuospatial memory performance was also evaluated in a group of participants with memory 

impairment due to AD. Memory impairment due to AD has typically been established using verbal 

learning tests such as the Rey Auditory Verbal Learning Test and the Free Cued Selective 

Reminding Test. Formal neuropsychological tests of memory are often resource intensive, 

requiring trained personnel and considerable amount of time to administer. Moreover, the explicit 

responses and awareness of performance deficits often leads to frustration or even distress for 

impaired subjects – sometimes to the point of discontinuing the task or declining future 

assessments. Even for symptomatic individuals, memory is often not assessed because of the 

resource demands of these tests in a clinical setting. Compared to other paradigms, memory was 

assessed passively using eye movements rather than instructing the participants or requiring 

explicit memory judgements. Using eye movements as an index of memory offers a number of 

practical benefits compared to explicit forms of retrieval 70–72. Without the collection of explicit 

instructions or behavioral responses, we were able to assess memory passively in only a few 

minutes. Anecdotally, the paradigm appears to be strikingly less distressing and frustrating to both 

research participants and clinical patient populations than traditional neuropsychological tasks and 

also avoids issues related to task comprehension and explicit memory judgements. Conventional 

tasks are also subject to differences in effort, literacy, cultural variation, and decision-making 

capacity which can confound the measures of memory. Although the current study did not formally 

address the ability of this task to overcome these limitations, these potential advantages were 

important considerations in the development of the task and remain to be investigated. 

 

Cognitive impairment in AD and related disorders has typically been established using cognitive 

screening tools such as the MoCA or MMSE. These tests often suffer from floor and ceiling effects 
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due to their inability to change task difficulty for the specific population being tested. To address 

this issue, we created a means to change the difficulty of the task. In doing so, we were able to 

create a set of images that could potentially track the transition from MCI to AD but also ones that 

could track the transition from healthy to MCI. Even without adjusting the difficulty of the items, 

we found that visuospatial memory performance was highly sensitive for predicting cognitive 

impairment and disease status. The task also showed a large variation in performance among 

healthy controls.  One possible explanation is that successful recognition of the manipulation can 

occur even when participants do not view the manipulation.  Alternatively, we speculate that 

healthy controls performing similarly to memory-impaired subjects may be at higher risk for AD, 

although this needs to be studied carefully using a longitudinal design, and with biomarkers for 

preclinical AD. These findings come in support of recent work suggesting that separating similar 

visual images rely on the same circuits affected in the preclinical stages of AD 143–145.  

 

Our data provides further support for the use of eye movements to measure objective memory 

impairment. In previous work, eye-tracking was used to assess novel object recognition memory 

using the visual paired comparison task 73,74. The amount of time viewing a novel image when 

placed side by side with an old image could differentiate healthy controls from memory-impaired 

participants. To extend these findings, we developed a task that assesses memory for the 

relationship between an object and its location (visuospatial memory). Compared to previous 

methods, we developed a method to assess memory capacity across a broad range of memory 

impairment, and using machine learning techniques we could estimate cognitive impairment and 

disease status with high sensitivity. An open question remains whether memory based on eye 

movements can predict future memory decline earlier than standard verbal memory assessments. 
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Based on the role of the entorhinal-hippocampal circuit in visuospatial memory, we hypothesize 

visuospatial memory to be an earlier predictor of entorhinal-hippocampal degeneration, as occurs 

in early AD, compared to current assessments and therefore predict earlier memory decline than 

standard memory assessments. Nonetheless, this visuospatial memory paradigm based on eye 

movements offer a passive, sensitive, and efficient memory paradigm capable of detecting 

objective memory impairment and predicting disease and cognitive status. 
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Chapter 4: Deep convolutional neural networks and transfer learning for measuring 

cognitive impairment using eye-tracking in a distributed tablet-based environment 

4.1 Introduction 

In the previous chapter, we developed the Visuospatial Memory Eye-tracking Test (VisMET), an 

eye-movement based memory paradigm that provides a passive, efficient, and sensitive assessment 

of cognitive impairment in Alzheimer’s disease 146. During this task, participants are presented 

with a set of images followed by the same set of images with an object removed or added (Fig. 

20). The amount of time viewing these manipulations could differentiate healthy participants from 

those with MCI and AD.  A major limitation of this platform for administration of VisMET is that 

it requires the use of an external eye tracker, which is often expensive and widely unavailable. As 

a result, large scale screening for memory loss remains difficult. Convolutional neural networks 

have recently been used to demonstrate eye-tracking on the mobile phone and tablet. These 

networks are trained with the crops of both the eyes and the face and have enabled gaze estimation 

without the need for an external eye tracker. Whether the accuracy of these networks is sufficient 

to assess visuospatial memory performance based on eye movements remains unknown.  

 

We developed an iPad based version of VisMET that utilizes iTracker, a convolutional neural 

network (CNN) architecture used to track eye movements on Apple devices 147. We trained this 

architecture using a public data set of over 1.5 million images of human faces unrelated to the 

study population 147, and then updated the network using a transfer learning paradigm using 

approximately 90,000 images collected from research and clinical populations. We administered 
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a four-minute memory test to 250 healthy controls (MoCA > 24) and cognitively-impaired 

participants (MoCA ≤ 24) recruited from the Emory Healthy Brain Study (EHBS) and the Goizueta 

Alzheimer’s Disease Research Center (ADRC) at Emory. We compared memory performance 

between these two populations and found performance could be used as a screening tool for 

identifying cognitive impairment. This tablet-based version of VisMET has potential to enable  

large scale screening of memory loss. 

    

4.2 Materials and Methods      

4.2.1 Participants 

A total of 552 participants were recruited from the EHBS and ADRC and were administered the 

VisMET using either the tablet or the EyeTribe (Table 4). All participants received detailed 

evaluations that included neuropsychological testing, although the specific batteries varied. The 

MoCA was used as a common test to evaluate cognitive performance across the EHBS and ADRC 

populations. A MoCA greater than 24 was considered normal, and MoCA less than or equal to 24 

was indicative of cognitive impairment 148. The research participants from the EHBS were further 

classified as healthy controls, MCI, or AD by an interdisciplinary team of research neurologists, 

geriatricians, neuropsychologists, and clinical participants from the ADRC received a clinical 

diagnosis by a sub-specialty trained cognitive neurologist. Participants recruited from the EHBS 

primarily consisted of healthy controls whereas participants recruited from the ADRC consisted 

of participants at different stages of MCI and AD. All procedures followed were in accordance 

with the ethical standards of the responsible committee on human experimentation. 
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Table 4 Demographics of Controls, MCI, and AD Participants 

 Tablet EyeTribe 
Number 250 302 
Age 72.3 ± 9.1 64.0 ± 8.1 
Gender 
(M/F) 

111/140  115/187 

Race  
(C/AA/As/Oth) 

199/41/8/2 270/20/4/4 

Education 16.4 ± 2.3 16.2 ± 2.5 
MoCA 20.0 ± 7.1 25.0 ± 4.8 
EHBS/ADRC 83/167 240/62 

*C=Caucasian, AA = African American, As = Asian, Oth - Other 

4.2.2 Mobile Device Data Capture 

VisMET was presented to participants using iPad Air 9.7” tablets with a viewable screen area of 

154 x 203 mm and a resolution of 1536 x 2048 pixels. Each iPad was running at least iOS 10, 

capturing a series of frames from the ‘selfie’ camera at a resolution of 720p and sampling rate of 

30 Hz. The selfie camera has an aperture of f/2.2 and a focal length of 31 mm.    

4.2.3 Calibration Procedure    

Each participant was seated in front of an iPad that was attached to a stand in portrait orientation. 

A silhouette of a face appeared on the iPad screen to center the participant’s face, resulting in an 

approximate distance of 350 mm between the iPad and the participant’s eyes. The calibration 

procedure sequentially presented 16 random numbers and letters, 35 x 35 pixels in size, at random 

locations on the screen. Participants were instructed to say the letters and numbers aloud to increase 

their attention and assess their understanding. Characters were presented for 1.3 seconds without 

delay, long enough for participants to find and say the character aloud. The locations of the 

characters served as labels to train the CNN and support vector regression (SVR) models for gaze 

estimation (Fig. 20). We removed frames collected during the first 250 ms of each character to 
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reduce periods during which participants were transitioning from one character to the next. We 

also removed frames collected from the first four calibration dots to accommodate learning the 

calibration procedure. 

4.2.4 Visuospatial Memory Eye-tracking Task (VisMET)   

VisMET was administered to assess memory passively using eye movements rather than explicit 

memory judgments. As MoCA was delivered to both populations within clinic and research sites, 

we used MoCA as the standard of cognitive performance for this paper. The only instruction given 

to participants was to enjoy the images. The task begins with the presentation of 20 images of 

scenes for a duration of five seconds, followed by a slightly modified set of images with either one 

object added (six trials) or removed (14 trials) from each image (Fig. 20). The delay between the 

first and second presentation of each image was approximately one minute. The images were 

presented on the top half of the iPad screen since eye-tracking accuracy has been shown to decrease 

as a function of distance from the iPad camera 147. The added condition was removed from further 

analysis due to the limited number of total trials. The images were selected to contain 2-5 objects 

based on visual inspection. This selection was performed prior to the collection of eye tracking 

and provided a method for filtering out images that would likely lead to a diffuse pattern in 

viewing. 
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Figure 20. Distributed tablet-based environment for measuring memory peformance 

Participants were presented with a calibration procedure followed by VisMET on iPad devices. 

The task consisted of the  presentation of a set of images followed by the same set of images with 

an object added or removed. While the task was running, the mobile application sampled images 

of a participant's face at 30 Hz using the built-in 'selfie' camera. Upon task completion, the images 

were uploaded to the cloud for face and eye detection, and then used to train a CNN to estimate 

gaze. For each subject, a support vector regression (SVR) was trained using the gaze estimations 

from the CNN as input. Gaze estimations from the SVR were then used to extract memory features. 
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4.2.5 Regression Tree Face and Eye Detection    

The CNN required a face crop, left eye crop, right eye crop, and face grid vector to estimate eye 

gaze locations. In previous work, crops were detected using built-in face and eye detection libraries 

on Apple mobile devices but led to a significant amount of data loss (39%). To prevent such data 

loss, we calculated bounding boxes for crops using the dlib library149 through OpenCV’s Python 

interface 150, an implementation that uses an ensemble of regression trees for facial feature 

alignment 151. If three or more consecutive frames crossed an eye-aspect ratio of 0.1, the frames 

were omitted 152. Frames without detected faces or eyes were also removed from future analysis. 

The mean percentage of valid frames per subject was 93%. 

4.2.6 Convolutional Neural Network Training Datasets  

We used two separate datasets for training the CNN: MIT’s GazeCapture and Emory’s ADRC set. 

MIT’s dataset consisted of 1450 people and approximately 1.5 million frames. To improve the 

accuracy of gaze estimates, significant variability was introduced when creating MIT’s data-set. 

By crowdsourcing administration, participants were administered the task in a wide variety of 

settings and lighting conditions with 75% of the participants collected through Amazon 

Mechanical Turk, 16% were collected from UGA’s campus, and the 9% collected using app store 

downloads. Participants were also asked to move continuously throughout the task and encouraged 

to change the orientation of the device to further increase the variability in the dataset 147. Emory’s 

dataset consisted of 250 people and approximately 90,000 frames. Key differences exist between 

MIT’s and Emory’s datasets: (1) MIT’s was comprised of camera frames collected from both 

Apple mobile phone and tablet devices. (2) Face and eye crops for the MIT set were generated 
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from Apple’s built-in face and eye detection libraries rather than the offline OpenCV python 

interface described above. The labels of the MIT set were the location of characters using a 

different calibration procedure 147.   

4.2.7 Convolutional Neural Network and Support Vector Regression for Tablet-Based Gaze 

Estimation  

Method 1: Method 1 involved training a CNN with 90,000 frames collected during the calibration 

phase from a total of 250 Emory participants using a five-fold cross validation procedure, where 

the set of images used to train the CNN is different than the set of images used to extract participant 

memory performance. For each fold, we randomly divided the participants into train, validation, 

and test splits consisting of 125, 62, and 63 participants, respectively. The features for the CNN 

consisted of a face crop, left eye crop, right eye crop, and face grid vector extracted from each 

frame (Fig. 20). The labels of the network were the locations of the character during the calibration 

procedure. The CNN model was implemented in PyTorch and trained for 35 epochs with a batch 

size of 16, a weight decay of 0.0001, and momentum of 0.9. A global learning rate of 0.0001 was 

used and decayed by a factor of 10 every five epochs. The model with the lowest validation error 

was used to generate gaze estimations. These gaze estimations were used to evaluate the average 

Euclidean distance to the target character for the train, validation, and test participants.  

   

Method 2: Method 2 involved training the network using approximately 1.5 million frames from 

the GazeCapture dataset 147. This dataset consisted of 1450 participants with an 80%, 10%, 10% 

train, validation, and test split. For Method 2, the CNN was first trained with the inputs and labels 

from the MIT dataset using the same hyperparameters and training procedures as Method 1. This 
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pre-trained model was then retrained using inputs and labels from the Emory dataset as described 

in Method 1.  

Method 3: Method 3 expanded on Method 1 by adding a support vector regression (SVR) layer for 

each participant separately. The features for the SVR were the gaze estimations from the final layer 

of the CNN from Method 1 while the labels were the location of the characters. These features and 

labels were separated into a train, validation, and test split of 50%, 25% and 25%. For each 

participant, we used the estimates from the test set to calculate the average Euclidean distance to 

the target character. We report this average error of the test set (Table 2.2) for the train, validation, 

and test participants from Method 1. 

Method 4: Rather than using the CNN described in Method 1 to generate features for the SVR, 

Method 4 used gaze estimates from the final layer of the CNN from Method 2 to generate features. 

      

4.2.8 Re-Calibration of Gaze Estimations Between Successive Images 

Between each set of images, a red fixation dot was presented in the center of the viewing frame to 

reset a participant’s gaze to the center. For each fixation dot, we calculated the median vertical and 

horizontal distance between the location of the fixation dot and the gaze estimations generated 

from the SVR. We shifted the estimations from the SVR for a particular image by the vertical and 

horizontal distances calculated from the preceding fixation dot. We performed these adjustments 

to account for any translations in gaze estimations throughout the task. 
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4.2.9 EyeTribe-Based Gaze Estimation   

Using an EyeTribe Infrared Scanner (Copenhagen, Denmark), participant gaze locations were 

estimated at a sampling rate of 30 Hz. This eye-tracking scanner uses a linear array of infrared 

LEDs to illuminate the eye and allow for the capture of pupil and corneal reflection. The rotation 

of the eye was determined by the relative positions of the corneal and pupillary reflections. The 

scanner was attached to the bottom of a computer monitor that was mounted to the wall using an 

adjustable arm to accommodate participants of different heights. At the start of each session, 

participants completed the calibration procedure to convert eye rotations into a set of gaze 

positions relative to the screen. More information can be found in 153.   

4.2.10 Feature Extraction   

After gaze positions were estimated for each subject using the methods described above, the gaze 

estimations were converted into a set of fixations using a dispersion-based algorithm 101. Each 

fixation was defined as a point of gaze continually remaining on the screen within 2 degrees of 

visual angle for a period of 100 ms or more. Data were analyzed off-line using custom scripts 

written in MATLAB and Python.    

Measurement of Visual Exploration: We developed methods to quantify visual exploration for 

each participant by measuring the viewing of the unmanipulated object during the first presentation 

of the image (Fig. 21A). To quantify viewing of unmanipulated objects during the learning phase, 

we identified the location of each object to be removed (”critical region”) by drawing an ellipse 

around the object (defined by the x,y coordinates of the center, major, and minor axis). The number 

of fixations within the critical region and the percentage of time viewing the critical region was 

calculated for each original image presentation. The percentage of time spent in the critical region 
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was averaged across all original image presentations for each subject (Metric 1). We also 

calculated the percentage of all original image presentations with at least one fixation in the critical 

region for each subject (Metric 2). 

Measurement of Memory Performance: We developed a similar approach to quantify viewing of 

the region containing the manipulated objects as a measure of memory 146. An ellipse was drawn 

outlining the location of the removed object. The number of fixations and the percentage of 

viewing time within the critical region was calculated for each manipulated image presentation. 

For each participant, we calculated the average percentage of time spent in the critical region across 

all manipulated images (Metric 1). We also calculated the percentage of manipulated images with 

at least one fixation in the critical region for each participant (Metric 2). 

      

4.2.11 Logistic Regression Models for Detection of Cognitive Impairment    

We quantified whether memory performance on the task could serve as a screening tool for 

cognitive impairment. The test participants from Methods 3 and 4 were further divided into a train 

and testing set using an 80/20 split. Logistic regression classifiers were trained using either age (as 

a baseline) or the percentage of removed objects viewed. The output of the model estimated the 

performance on a standard measure of cognitive impairment (MoCA ≤ 24 or MoCA > 24). Using 

a five-fold cross validation procedure, the performance of the model was assessed using the area 

under the receiver operating characteristic curve (AUROC).     
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4.3 Results   

4.3.1 Performance Evaluation of Tablet-Based Methods for Gaze Estimation 

Table 5 shows the average distance between the gaze estimate and the target character for each of 

the tablet-based methods. Implementing SVR (Methods 3 and 4) reduced testing error substantially 

compared to methods using the CNN alone (Methods 1 and 2). We also observed a significant 

improvement when training the network with both datasets rather than the Emory dataset alone 

(Method 2 vs 1 and Method 4 vs 3). The method implementing both of these approaches (Method 

4) outperformed all other methods with a testing error of 2.72 cm, which was comparable to the 

2.58 cm and 2.12 cm errors from previous studies 147. These results replicated the feasibility of 

performing eye-tracking on the tablet, showing improved performance with support vector 

regression, and extended previous studies by implementing a transfer learning approach for gaze 

estimation. 

Table 5. Performance of Tablet-Based Methods of Gaze Estimation 

Method Model Dataset Train Error 
(cm) 

Valid Error 
(cm) 

Test Error (cm) 

1 CNN Emory 4.90 ± 0.18 4.83 ± 0.26 4.90 ± 0.15 
2 CNN MIT+Emory 3.87 ± 0.20 3.75 ± 0.16 3.89 ± 0.30 
3 CNN+SVR Emory 3.20 ± 0.06 3.20 ± 0.08 3.30 ± 0.06 
4 CNN+SVR MIT+Emory 2.71 ± 0.12 2.68 ± 0.09 2.72 ± 0.15 
          

4.3.2 Assessment of Visual Exploration on the Tablet and EyeTribe 

Figure 4.2 shows viewing of the critical region during the initial presentation of images for healthy 

controls and cognitively-impaired participants. The differences in viewing between the 

populations was first evaluated using the EyeTribe, a proprietary commercial eye-tracker. Healthy 

controls viewed 94% of the later removed objects, slightly more than the 87% viewed by 
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cognitively impaired participants (p < 10-5, unpaired t-test; Fig. 21C). This relative change of 8% 

was preserved when using the tablet to generate gaze estimations (p < 0.05, unpaired t-test; Fig. 

21C). We also compared the average viewing time of the later removed objects between healthy 

controls and cognitively-impaired patients (Fig. 21B). Both EyeTribe and tablet-based methods 

produced relative changes in viewing time of 6-8% between healthy controls and cognitively-

impaired participants (p < 0.05, unpaired t-test; Fig. 21B). From these results, we conclude that 

initial viewing of later removed objects is similar for both populations on either platform. 
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Figure 21. Visual exploration of later removed objects using a tablet and EyeTribe for gaze 
estimation  

 (A) Participants viewed images containing an object that was removed later as indicated by the 

white critical region (invisible to the viewer). The red line illustrates gaze path estimations using 

the EyeTribe and tablet. (B) Healthy controls (MoCA > 24) and cognitively impaired participants 

(MoCA <= 24) spent comparable amounts of time in the critical region  across all platforms (6-

8% relative change). Tablet based-methods 3 and 4 produced estimates that reduced viewing time 

in the critical region by 26% and 18% compared to the EyeTribe.  (C) Healthy controls viewed a 

similar number of critical regions  compared to cognitively-impaired participants across all 

platforms (8% relative change). Tablet based-methods 3 and 4 produced estimates that reduced the 

percentage of critical regions viewed  by 27% and 15% compared to the EyeTribe. 
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We hypothesized the differences in viewing estimates between the tablet and EyeTribe were 

primarily driven by the accuracy of the gaze estimates. In support of this hypothesis, we observed 

that the differences in viewing time and viewed objects between the platforms were reduced to 7% 

and 11% after removing participants with a calibration error greater than 2cm. We also found 

tablet-based method 4 produced viewing estimates more comparable to the EyeTribe than tablet-

based method 3 (Fig. 21), most likely due to its higher accuracy (Table 5). From these observations, 

we conclude that the differences in viewing between the platforms are primarily driven by the 

accuracy of gaze estimates. These results also suggest that the calibration errors in Table 5 extend 

beyond calibration and generalize to the task.  

4.3.3 Assessment of Cognitive Impairment on the Tablet and EyeTribe    

Figure 4.3 shows the differences in viewing of the manipulated regions between cognitively-

impaired participants and healthy controls. Using the EyeTribe, control participants viewed 54% 

of the removed objects, nearly twice as many viewed by cognitively impaired participants (p < 10-

14, unpaired t-test). Tablet-based methods 3 and 4 produced relative increases of 24% and 29% 

when comparing to healthy controls to cognitive impaired participants, respectively (p < 10-6, 

unpaired t-test; p < 10-9, unpaired t-test). When using only participant data with a calibration error 

less than 2cm, healthy controls viewed nearly twice as many of the critical regions as cognitively 

impaired participants, comparable to differences produced by the EyeTribe. We also compared 

average viewing time between control and cognitively impaired participants on both platforms. 

Both the tablet methods and the EyeTribe showed significant increases in viewing time for healthy 

controls compared to cognitively impaired participants (p < 10-4, unpaired t-test; p < 10-7, unpaired 

t-test; p < 10-10, unpaired t-test). In summary, we find both platforms are capable of distinguishing 

control and cognitively impaired participants and produce comparable viewing of the manipulated 
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regions, especially when the calibration errors are low. 

The differences in cognitively impaired participants and controls during the recognition phase 

could be purely driven by fewer fixations, especially considering the lower viewing time for 

objects during the learning phase. We found a small but reliable decrease in the average number 

of fixations for cognitively impaired participants (11.0 ± 0.2) compared to healthy controls (11.8 

± 0.3) (p < 0.05, unpaired t-test). To ensure these viewing differences were not the primary driver 

of the differences between the two populations, we first calculated the correlation between MoCA 

and VisMET performance and found this correlation was 0.32 ± .01 across the testing folds. For 

comparison, we performed the same correlation partialling out the average number of fixations 

made by the participants during the recognition phase and found the correlation was 0.29 ± 01. 

These results indicate that the differences between the two groups during the recognition phase are 

largely driven by the memory of the manipulated objects. 
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Figure 22. Memory of removed objects using a tablet and EyeTribe for gaze estimation  

 (A) Participants viewed images where an object was removed as indicated by the white critical 

region (invisible to the viewer). The red line illustrates gaze path estimates for EyeTribe and tablet-

based methods.  (B) Healthy controls (MoCA >24) spent a greater percentage of their time in the 

critical regions compared to cognitively impaired participants (MoCA <= 24) across platforms.(C) 

When using the EyeTribe, control participants (MoCA > 24) viewed twice as many of the removed 

objects compared to cognitively impaired participants. Tablet-based methods 3 and 4 produced 

relative increases of 24% and 29% when comparing healthy controls to cognitively impaired 

participants. 
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4.3.4 Tablet Administration of VisMET as a Screening Tool for Cognitive Impairment  

Viewing of the manipulated regions showed robust population differences between cognitively-

impaired participants and healthy controls using the tablet. Based on these results, we hypothesized 

that viewing of the manipulated region could be used as a screening tool for cognitive impairment. 

Figure 4.4 shows the extent to which viewing of the manipulated region can separate healthy 

controls from cognitively-impaired participants. When using the EyeTribe gaze tracking hardware, 

viewing of the manipulated region could estimate cognitive impairment (MoCA ≤ 24) with an 

AUC of 0.76 compared to an AUC of 0.66 and 0.70 when using tablet-based methods 3 and 4, 

respectively (Fig. 23A). Furthermore, we compared performance to age, a well-established risk 

factor for cognitive impairment. Using age as an estimate of cognitive impairment resulted in 

AUCs of 0.68 and 0.63 for desktop and tablet-based administrations, respectively. Overall these 

results suggest that VisMET outperforms age as an estimator of cognitive impairment. 

Finally, we quantified testing AUC for tablet-based method 4 after removing participants that did 

not reach a specific calibration error threshold (Fig. 23), indicating the need for re-calibration. By 

requiring a calibration error of 2 cm, we were able to achieve a testing AUC of 0.76 for the mobile 

application(Fig 23B,C).  These results demonstrate that the mobile version of VisMET can provide 

equivalent accuracy of cognitive impairment estimates compared to a commercial eye-tracker.  
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Figure 23. VisMET estimates cognitive impairment on the tablet and EyeTribe  

 (A) Viewing of the removed objects could accurately estimate performance on the Montreal 

Cognitive Assessment (MoCA <= 24 and MoCA >24), a standard measure of cognitive 

impairment. Tablet-based method 3, tablet-based method 4, and the EyeTribe estimated MoCA 

performance with an AUC of 0.66, 0.70, and 0.76, respectively.  (B) Participants with a calibration 

error less than 2 centimeters achieved an AUC of 0.76 equivalent to the performance achieved 

using the EyeTribe. (C) Average ROC Curve across testing folds of estimating cognitive 

impairment in participants with a calibration error less than 2 cm. 
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4.4 Discussion     

Currently, a key clinical criterion for the diagnosis of MCI is objective cognitive impairment, 

primarily detected using general cognitive screenings such as the MoCA and Mini-Mental Status 

Exam. These conventional memory tests typically require trained personnel, a considerable 

amount of time to administer, and are often underused in the clinic as individuals are intimidated 

by perceived poor performance on such tests. To address these concerns, the novel contribution of 

this work was the development of a mobile version of VisMET that performs eye-tracking using 

the standard front-facing camera of an iPad by leveraging a deep convolutional neural network 

together with a transfer learning approach. Experimental validation using 250 participants from 

the ADRC at Emory confirms the ability to estimate cognitive impairment within a clinical setting 

with an AUC of 0.76, equivalent to the accuracy of desktop-based eye-trackers. This study 

provides an easily administered, sensitive paradigm that can track cognitive impairment at multiple 

clinical centers. 

The primary measure of cognitive impairment in this study was the amount of time participants 

spent viewing the manipulated region which has previously shown to correlate most with memory 

performance compared to performance on other cognitive domains. Memory formation has been 

shown to rely on the entorhinal-hippocampal circuit in the brain, the initial site of cortical 

pathology in AD. For this reason, memory performance may precede measures of cognitive 

impairment and predict cognitive decline in AD earlier than the MoCA. Certain images in the task 

may be more or less successful in estimating cognitive impairment than others, and also show 

variability in identifying cognitive impairment during different stages of AD. Detailed 

investigation of this hypothesis remains a future direction of this work. 
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The purpose of this study was to validate a mobile version of VisMET that could be used to 

standardize assessment of cognitive performance at multiple clinical centers under the testing 

conditions developed in this study. However, generalization of the trained CNN beyond the 

conditions in this study cannot be assured. In particular, if the iPad is handheld, lighting conditions 

are different, or if more than one face is on the camera, we expect a drop in performance. A more 

challenging test of the developed algorithm would be to deliver the paradigm remotely. This is 

likely to require the retraining of the CNN using frames collected from a wide variety of real-world 

settings, with a range of lighting and background motion changes. If accurate memory performance 

can be obtained in such a way, we could potentially use this approach with a cloud-based pipeline 

for widespread screening of cognitive impairment. Moreover, the ease of administration would be 

conducive for longitudinal assessments to potentially track cognitive impairment over time. 

Chapter 5: Future Directions and Conclusions 

5.1 Summary 

In the third chapter, we developed the Visuospatial Memory Eyetracking Test (VisMET) and 

administered this paradigm to healthy controls and participants with MCI and AD. We found that 

VisMET performance was age-related and also showed significant impairment in MCI and AD 

participants compared to healthy controls. Performance was also dependent on the difficulty of the 

original and manipulated images, which allows for the task to be sensitive across a broad range of 

memory abilities. A multivariate model of memory performance on the task predicted cognitive 

impairment and AD status with high sensitivity and identified a subpopulation of healthy controls 

with relatively weak performance on the task.  Based on the results from this study, VisMET 
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offered a passive, sensitive, and efficient memory paradigm capable of detecting objective memory 

impairment and predicting disease and cognitive status. 

We sought to overcome the reliance on an external desktop-based eye tracker, which is often 

expensive and widely unavailable. To increase the availability of VisMET, we developed a tablet-

based version of VisMET that utilized iTracker, a deep convolutional neural network capable of 

tracking eye movements on the iPad. We implemented a transfer learning protocol  and performed 

a subject-specific SVM in order to improve the accuracy of eye-tracking on the tablet. 

Experimental validation using 250 participants from the ADRC at Emory confirms the ability to 

estimate cognitive impairment within a clinical setting with an AUC of 0.76, equivalent to the 

accuracy of standalone eye-trackers. This study provided an easily administered, sensitive 

paradigm that can track cognitive impairment at multiple clinical centers. 

We also investigated the neurophysiological interactions between the neocortex and MTL that 

underlie visuospatial memory performance in humans. We administered a visuospatial memory 

task that requires participants to indicate whether an image was manipulated or repeated while 

recording intracranial EEG in visual association areas and the MTL. Successfully recognizing this 

manipulation therefore requires participants to not only retrieve the past visual experience but to 

also then compare the retrieved memory with the present image. We found that recognizing 

manipulated images, and therefore successfully identifying a difference between past and present 

experience, evoked a narrowband high frequency prediction error signal in visual association 

cortex that then propagated towards the MTL. During successful recognition of these 

manipulations, this error signal was also accompanied by elevated low frequency coherence 

between the neocortex and MTL. Together, the results provide a direct account of how violations 
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of the expectations set by the episodic memory of a previous experience are encoded in 

neocortical-MTL circuits. 

5.2 Future Directions 

5.2.1 Visuospatial Memory Performance in Healthy Participants 

In the third and fourth chapters, we found significant variability in visuospatial memory 

performance in healthy participants. We expect this variability could arise from a number of 

different reasons. One potential explanation for this variability may be the different viewing 

strategies used by the participants during the recognition of a manipulation. We found that 

participants often did not fixate on the critical region of the removed object even though they were 

successfully able to locate the removed object when explicitly asked to. There may be a group of 

healthy participants who do not fixate on the critical region but successfully recognize the 

manipulation, which would explain the low VisMET performance in healthy controls. A second 

potential explanation is that the variability in VisMET performance arises from AD pathological 

processes. VisMET performance may provide a sensitive  measure of subtle cognitive impairment 

that tracks the extent of neurodegeneration and AD pathology within the MTL in healthy controls.  

 

Future work could quantify the relationship between VisMET performance and the presence of 

AD pathology, especially within healthy controls. Recent advances in molecular profiling 

technology have enabled identification of the proteomic landscape in order to develop unbiased, 

data-driven network models of AD 154,155. Molecular networks for synaptic injury, 

neuroinflammation, and other pathophysiological mechanisms have been strongly linked to 

cognitive trajectory and the hallmark pathologies, even in preclinical stages of disease. These 
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molecular networks may prove useful in identifying if AD explains any of the variance in 

performance in healthy controls. To ensure the variability in performance arises from AD 

pathology, images could be selected that best explain the variability in AD pathology in healthy 

participants. Our preliminary studies indicate certain images are more useful than others in 

explaining cognitive impairment in AD. Similar studies could be conducted to determine if certain 

images better estimate the variance in AD pathology in healthy controls.  

 

The development of VisMET for remote delivery may aid in screening for images that best explain 

variance in AD pathology in healthy controls. This is likely to require the retraining of the CNN 

using frames collected from a wide variety of real-world settings, with a range of lighting and 

background motion changes. If accurate memory performance can be obtained in such a way, we 

could potentially use this approach with a cloud-based pipeline in order to screen for images that 

best explain the variance in AD pathology of healthy controls. Moreover, the ease of 

administration would potentially reduce variability in performance within an individual due to the 

ability to administer VisMET multiple times. Remote delivery of VisMET may be conducive for 

longitudinal assessments to potentially track cognitive impairment over time. 

5.2.2 Neurophysiological Mechanisms of Visuospatial Memory Recognition 

Recognition memory within the MTL was largely driven by differences in 80-120 Hz 

power rather slow gamma activity observed in the rodent MTL 126. A potential explanation for this 

discrepancy is that many of the MTL electrodes in this study were located in entorhinal cortex and 

parahippocampal gyrus. Therefore 80-120 Hz activity may reflect neocortical input into rather than 

activity within hippocampus. This neocortical input may induce slow gamma oscillations within 

hippocampal circuits and enable the selective encoding and retrieval of the representations 
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associated with unexpected input. An alternative explanation for the different frequency profiles 

in rodents and humans are the intrinsic differences in the frequencies mediating memory-related 

interactions within the brain for the two species 156,157. Evidence for narrowband slow gamma 

activity within human hippocampal circuits has been limited. Rather, gamma activity within 

human hippocampal circuits has largely been characterized by broadband activity with preferences 

for frequencies ranges outside of the slow gamma band 158. These studies have primarily been 

conducted using larger recording electrodes, averaged activity across many trials, and used 

imprecise methods of hippocampal localization. Determining the human analog of slow gamma 

oscillations may prove useful in the future as these oscillations have been shown to promote 

recognition memory, rescue memory deficits in AD models, and reduce AD pathology via 

microglia activation within rodent hippocampal circuits 112,114,159,160. Future studies need to be 

conducted to determine the interactions of these gamma frequencies with precise recordings of the 

MTL and whether the causal induction of these frequencies can promote recognition memory and 

reduce AD pathology in humans. 

 

5.3 Conclusions 

 

Our data indicate neocortical-MTL interactions are associated with the successful visuospatial 

recognition memory and performance on this task is impaired in participants with Alzheimer’s 

disease. In Chapters 2 we show the recognition of visuospatial manipulations relies on a distributed 

set of electrophysiological interactions between the visuospatial association areas and the MTL, 

the site of early AD pathology.  In Chapter 3 and 4, eye movement recordings from both the 

desktop and tablet show that participants with MCI and AD spend significantly less time viewing 
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visuospatial manipulations. Importantly, the performance on this task showed significant 

variability across healthy controls. These studies suggest that visuospatial memory performance 

may become impaired early in the disease process and identify electrophysiological targets to 

improve visuospatial memory performance in humans. Future studies investigating how the 

molecular mechanisms underlying AD manifest in electrophysiological dysfunction and 

visuospatial memory impairment could provide novel diagnostics and therapeutics for alleviating 

the AD crisis.  
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