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Abstract 

Characterization of DNA Methylation in 
African Americans with Spontaneous Preterm Birth 

 

By Sasha Erin Parets  

 
 
African Americans are at increased risk for spontaneous preterm birth (PTB), but the 
biological mechanisms underlying PTB are not yet known.  Epigenetic factors, such as 
DNA methylation, may provide insight into the genes that are being actively regulated in 
those that deliver or are delivered preterm. The objective of this study was to evaluate 
DNA methylation in paired maternal blood and umbilical cord blood (fetal) samples to 
identify patterns specific to PTB.  Peripheral blood from African American women who 
delivered preterm (24-34 weeks) or at term (39-41weeks) was assessed for DNA 
methylation across the genome using the HumanMethylation450 BeadChip. In maternal 
samples, no sites associated after correction for multiple comparisons though 17,829 CpG 
sites associated with PTB (p<.05). Examination of paired samples, irrespective of PTB 
status, identified 5,171 CpG sites in which methylation of maternal samples predicted 
methylation of her respective neonate (false discovery rate (FDR)<.05). The majority of 
correlated CpG sites could be attributed to one or more nearby genetic variants. However, 
correlated CpG sites were significantly more likely to be in genes involved in metabolic, 
cardiovascular and immune pathways, suggesting a role for genetic and environmental 
contributions to PTB risk. The observation that maternal epigenetic differences predict 
fetal methylation may provide insight into the heritability of PTB. In umbilical cord 
blood samples, we identified ~10,000 CpG sites that associate with gestational age (GA), 
only 29 of which associated with PTB when controlling for GA, suggesting that the 
majority of CpG sites primarily reflect developmental differences between preterm and 
term samples. In order to assess the association of DNA methylation with childhood 
outcomes, we investigated DNA methylation of calcitonin (CALCA), which associated 
with GA in cord blood and PTB in maternal blood. DNA methylation of CALCA did not 
associate with or mediate the relationship between maternal depressive symptoms, a 
known risk factor for PTB and internalizing behavioral in childhood. These finding show 
the importance of DNA methylation in understanding the risk and consequences of PTB 
in African Americans.  
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Chapter 1 
 

Preterm Birth and Its Long-Term Effects:  Methylation to Mechanisms 
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Introduction 

Despite advances in healthcare, preterm birth (birth prior to 37 weeks gestation) 

remains a major global health problem [1]. Preterm birth increases risk for morbidity and 

mortality in the first year of life [2], and these consequences extend throughout 

development. For example, children born preterm have higher levels of 

neurodevelopmental disability and an increased risk of behavioral problems such as 

Attention Deficit Hyperactivity Disorder [3-5]. Being born preterm also increases risk for 

developing chronic diseases such as hypertension, type 2 diabetes, cardiovascular 

disease, obesity and psychiatric disorders [2,6,7]. Collectively, these observations support 

the developmental origin of health and disease (DOHaD) hypothesis, which conceptually 

links the prenatal and early postnatal environments to the development of chronic 

diseases [8,9]. 

The molecular mechanisms that underlie the relationship between preterm birth and 

its developmental consequences are not clear, but advocates of the DOHaD hypothesis 

believe that epigenetics may play a key role (Figure 1) [10]. Epigenetic modifications, 

such as histone modification, non-coding RNAs (ncRNA) and DNA methylation, induce 

changes in gene expression through structural alterations of DNA that are maintained 

through each round of cell division; they respond to changes in the environment, are 

potentially reversible and can be targeted for disease therapies [11,12].   

The most widely studied epigenetic modification is DNA methylation, which 

occurs when a methyl group is added to the 5’ carbon of a cytosine when it is next to a 

guanine (CpG site). Many gene promoters contain regions with a high density of CpG 

sites, called CpG islands, though CpG islands are not restricted to promoters [13]. CpG 
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islands have lower levels of methylation compared to CpG shores, which exhibit tissue 

specific methylation patterns and are more commonly identified in disease association 

studies [14].  The relationship between DNA methylation and gene expression varies 

based on its genomic context. The general consensus is that increased DNA methylation 

in the promoter region of a gene has an inverse relationship with gene expression [15]. 

Intragenic DNA methylation can positively associate with gene expression and may 

regulate alternative promoters or enhancers that are involved in tissue-specific expression 

patterns [16]. Subtle differences in the intrauterine environment may influence this tightly 

controlled process such that environmentally-induced epigenetic changes may result in 

stable phenotypic differences.  

This chapter will provide an overview of the key physiological features of 

pregnancy and spontaneous preterm birth, a major subset of all preterm births with 

unknown etiology, with specific emphasis on the emerging role of DNA methylation in 

the field.  It is not meant to serve as a comprehensive overview of preterm birth, as other 

excellent reviews of its epidemiology, management, prediction, prevention, physiology, 

and proposed mechanisms have recently been published [2-4,17-22]. Instead, this chapter 

will introduce key concepts in PTB research and highlight the paucity of DNA 

methylation studies in this field.  

Overview of Pregnancy 

Pregnancy initiates after fertilization of the female gamete and implantation of the 

embryo; it is the gestational period during which fetal development and growth occurs. 

The typical duration of human pregnancy is 280 days (40 weeks), though the actual 

length may vary considerably [23,24]. Obstetricians calculate the estimated due date of a 
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pregnancy starting from the first day of the last menstrual period (LMP) [25]. The LMP 

marks the beginning of the first trimester, which is characterized by embryonic 

implantation, organogenesis and maternal adaptations of the cardiovascular, respiratory, 

renal, endocrine and immune systems [26,27]. These changes are maintained during the 

second and third trimesters to support rapid growth and development of the fetus. 

The relationship between the mother and fetus is considered to be semi-allografic 

because the fetus is genetically distinct and can be recognized as a foreign body by the 

maternal immune system. The placental barrier regulates the maternal–fetal interface by 

controlling substances transmitted to the fetus [27,28]. Both the maternal and fetal 

circulations access the intervillous space, allowing nutrient and waste exchange, as well 

as limited immune surveillance [27,29-32]. Thus, the quality of the intrauterine 

environment is highly dependent on maternal health. 

Types of Preterm Birth 

While birth occurring before 37 weeks of gestation is considered preterm, the 

limit of viability is as low as 22 weeks in some medical centers [33]. Thus, preterm birth 

may be classified as: extreme (220/7–276/7 weeks), very early (280/7–316/7 weeks), 

moderate (320/7–336/7 weeks) and late (340/7–366/7 weeks) [2]. Multiple mechanisms may 

result in preterm birth, making it difficult to classify subjects for research [20]. Despite 

difficulties in classifying preterm birth for research purposes, clinically it may be 

categorized into three different types: spontaneous preterm birth (PTB), preterm 

premature rupture of membranes (pPROM), and medically indicated (iatrogenic) preterm 

birth. Research has identified numerous risk factors for preterm labor that results in 

preterm deliveries. Women with extreme maternal reproductive ages (<18 or >40), 
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obesity, risk taking behaviors (tobacco, alcohol or drug use), infections or allergic 

reactions, or psychosocial stress are at higher risk to have spontaneous preterm labor 

[2,34].  

African American women and those with a lower socioeconomic status are at 

increased risk to deliver preterm [2,34]. Strikingly, African American women are more 

likely to deliver preterm and early preterm, independent of socioeconomic status [35-37]. 

The Nashville Birth Cohort (NBC) was established to evaluate the factors that contribute 

to racial disparities in PTB rates [38-41]. This unique cohort was leveraged for the pilot 

studies presented in Chapters 2 and 3, in part, because it was one of the few cohorts 

available at the time that collected paired biological samples in African American women 

and fetuses that were appropriate for DNA methylation studies. DNA methylation patterns 

associate with stress [42,43], diet [44-48], smoking [49-53], inflammatory cytokine levels 

[54] and medications [55-58], and each of these factors increase risk for PTB. This 

prompted our hypothesis that DNA methylation differences in African Americans may 

contribute to the risk of PTB and long-term consequences.  

Medically indicated or iatrogenic preterm birth results from obstetrical, fetal or 

medical complications requiring early delivery for treatment or resolution. Common 

obstetrical indications for preterm delivery include gestational diabetes and severe 

preeclampsia (new onset elevated blood pressure associated with inadequate fetal growth 

or perfusion and maternal organ damage) [59]. Both these illnesses must be treated by 

delivery and adjunctive therapies to completely resolve the condition [60-63]. Fetal 

indications for delivery may also occur without maternal pathology.  

For instance, fetal hydrops, a consequence of severe fetal anemia, requires blood 
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transfusions in utero, but does not negatively impact the mother’s health. If possible 

iatrogenic preterm delivery occurs after achieving fetal lung maturity [64]. Finally, 

maternal medical disease, such as a new cancer diagnosis, may dictate an early delivery 

in order to appropriately treat a life-threatening disease without adversely impacting the 

fetus [65]. 

Premature rupture of membranes (PROM) involves a rupture of the fetal 

membranes prior to the onset of labor. In an uncomplicated term pregnancy, rupture of the 

membranes immediately precedes or occurs during labor [66], while preterm premature 

rupture of membranes (pPROM) occurs prior to 37 weeks of gestation. pPROM is 

characterized by activation of inflammatory mediators, mainly cytokines, chemokines and 

matrix metalloproteinases, that can weaken fetal membranes via proteolytic damage. The 

biggest risk factors for pPROM are placental abruption, infection, uterine or cervical 

abnormalities, and uterine over-distension [20]. 

Spontaneous PTB can happen either with or without rupture of membranes. Risk 

factors associated with PTB are similar to that of pPROM and include, but are not limited 

to, prior preterm birth, intra-amniotic infections, stress, behavior, obesity and inter-

pregnancy interval [21]. Although risk factors are well-recognized and many intervention 

strategies have been developed, (e.g., tocolytics for contractions, antibiotics and steroids 

for infection/inflammation, progesterone for cervical shortening), none of these 

interventions have reduced the risk of PTB over three decades. Development of PTB and 

pPROM treatments will be substantially enhanced by a more in depth understanding of 

their underlying molecular mechanisms. 

Proposed Mechanisms of PTB 
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There are many hypotheses about the mechanisms that may contribute to PTB. 

Some note that PTB is heritable and seek to identify the genetic risk factors [17,67,68]. 

Many note that the factors that increase risk of PTB and pPROM are also fundamental in 

maintaining a healthy pregnancy, and these hypotheses tend to focus on neuroendocrine 

and immune systems. 

Pregnancy is a period of extensive stress, during which the hypothalamic pituitary 

adrenal (HPA) axis undergoes extensive changes [69,70]. Hypothalamic corticotropin 

releasing hormone (CRH) is the primary regulator of pituitary release of 

adrenocorticotropic hormone (ACTH). In turn, ACTH stimulates the release of 

glucocorticoids from the adrenal cortex. Glucocorticoids provide negative feedback on 

the HPA axis, and inhibit at both the hypothalamic and pituitary levels. However, during 

pregnancy glucocorticoid production stimulates release of placental CRH [71]. 

The placenta releases CRH into maternal and fetal circulation in significant 

quantities. Placental CRH stimulates the maternal HPA axis, leading to an increase in 

total and free cortisol during pregnancy [72], which eventually attenuates, such that 

pregnancy becomes a period of HPA axis suppression. The HPA axis also regulates 

placental blood flow and influences the timing of parturition [73,74]. CRH stimulates 

ACTH release both from the fetal pituitary and the placenta [75,76], which in turn leads to 

release of cortisol from the fetal adrenal gland [77]. Progressive activation of the fetal 

HPA axis is important for maturation of organs such as lungs [78,79]. Furthermore, 

increased levels of placental CRH are associated with onset of labor [73,74]. 

Due to the above factors, the neuroendocrine system plays an important role in 

timing of parturition. It is therefore not unexpected that dysregulation of the 
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neuroendocrine system could be involved in the mechanism of PTB, particularly since 

stress is a risk factor for PTB [80]. Physical and psychological stress can activate the 

maternal and fetal HPA axis, which increases production of placental CRH, a vital 

hormone for fetal maturation as well as the initiation and timing of labor [81]. For this 

reason, some investigators call it the “placental clock” [18,74]. 

The neuroendocrine and immune systems are interconnected. Acute stress has an 

anti-inflammatory response, though chronic mental or physical stress can lead to a pro-

inflammatory state and even glucocorticoid resistance [18,82]. This is illustrated by a 

recent study that showed that pregnant women of low socioeconomic status are more 

likely to have glucocorticoid resistance and a dysregulated inflammatory response [83]. 

Perceived stress, cortisol, inflammation and early life socioeconomic status have been 

associated with DNA methylation differences at a variety of CpG sites [84]. Early life 

socioeconomic status may continue to impact DNA methylation in women throughout 

their childbearing years [85]. 

Over the course of a typical pregnancy, the maternal immune system is 

characterized by a shift from a pro-inflammatory state that is effective against 

intracellular pathogens such as viruses and bacteria to an anti-inflammatory state that 

targets extracellular pathogens using specific antibodies; however, it does so through a 

dynamic process [86-90]. The first trimester is characterized by a strong pro-

inflammatory state, because of the necessity to repair the endometrium after implantation 

of the blastocyst and to establish placentation [91]. At the beginning of the second 

trimester, the maternal immune system transitions to an anti-inflammatory state to 

facilitate rapid fetal growth and development [91]. During the third trimester, transition to 
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a pro-inflammatory state promotes uterine contractions and delivery of the fetus and 

placenta [91]. Pro-inflammatory cytokines stimulate prostaglandin and matrix 

metalloproteinases production, which are involved in cervical ripening, membrane 

rupture and uterine contractions [81,92]. Consistent with this, there is an increase in pro-

inflammatory cytokines in maternal plasma and migration of leukocytes to the 

myometrium prior to the onset of spontaneous term labor [93,94]. 

Inflammation is implicated in most PTB. Various infections such as urinary tract 

infections, bacterial vaginosis, sexually transmitted infections, malaria and even 

periodontal disease have associated with PTB [95,96]. Even subclinical intrauterine 

infections stimulate the release of pro-inflammatory proteins that overlap with the 

mechanism of normal parturition. Inflammation is part of the normal signaling pathway 

for parturition, and a premature activation of this pathway may lead to premature labor. 

For example, deliberate infection of mice increases pro-inflammatory cytokines  

(IL-1 and TNF-alpha) and induces labor [97]. 

Consequences of PTB 

Clinical advancements have significantly reduced the mortality rate of infants 

delivered preterm, but morbidity remains a substantial concern. It is unclear whether 

those born preterm are able to meet developmental milestones in a time frame that is 

comparable to their term-born peers. Even among those that do not have congenital 

malformations, many infants delivered preterm appear to have distinct developmental 

trajectories that differentiate them from term infants as they age. For example, some 

report that preterm infants are able to catch up in both weight and height in the first two 
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years of life [98-101], though catch up growth could continue into childhood and 

adolescence [102]. Another report suggests a life-long discrepancy in height [103]. 

In addition to the question of whether or not preterm infants catch up, it is unclear 

if there are additional consequences that result from accelerated growth rates. Catch up 

growth in early and late infancy has been associated with obesity, cardiovascular disease, 

and insulin resistance in adolescents [6,7]. For example, models of maternal under-

nutrition, as well as low protein and high fat diets, support epigenetic modifications and 

phenotypic changes in the offspring, including alterations in food preferences and 

cholesterol regulation [104-106]. Others report higher rates of behavioral and emotional 

problems as well as decreases in cognitive performance during childhood [5,107,108]. 

Similarly, studies report that children born preterm are more likely to experience slower 

motor, language and neurological development than children born at term [109]. Finally, 

children born preterm may be less likely to complete high school or seek higher 

education [110,111]. 

DNA Methylation Studies of PTB 

Numerous studies report epigenetic differences associated with gestational age 

and growth patterns [112-115]. For example, one study reported extensive gestational 

age-associated DNA methylation differences among term births and noted umbilical cord 

blood DNA methylation differences in genes implicated in labor and delivery [115]. 

However, despite extensive interest in the biological mechanisms of PTB, there are 

surprisingly few epigenetic studies of PTB (Table 1) [116-119]. Those that have been 

conducted are promising and provide insight into the mechanisms underlying PTB risk 

factors and consequences.  



11 

Because of the complexity of the maternal–fetal interface and the number of 

tissues involved in pregnancy and delivery, it is not always clear which tissue is the most 

appropriate for PTB studies. For example, a recent study evaluated myometrium, the 

middle layer of the uterine wall that induces contractions during labor [120,121]. By 

comparing DNA methylation of genes that are involved in contraction, the authors sought 

to identify differences in PTB and term birth samples. The study categorized their 53 

samples into six different delivery/labor types and found that DNA methylation of several 

CpG sites distinguished the groups [121]. A study by Burris and colleagues examined 

another maternal tissue, the cervix, which separates the uterus and vagina. They 

evaluated global methylation (long interspersed nuclear elements; LINE-1) using 

pyrosequencing in cervical swabs collected between 16–19 weeks of gestation and reported 

increased LINE-1 methylation was associated with shorter gestation. LINE-1 methylation 

is used as a surrogate for global methylation because these elements are found throughout 

the genome. In the same report, they also evaluated DNA methylation of PTGER2 

(prostaglandin E receptor 2), which plays a role in response to prostaglandins and labor 

initiation. They reported associations between DNA methylation of PTGER2 and both 

local inflammation and length of gestation [122].  

Other studies focus on the role of the placenta. For example, one study examined 

amnion tissue, the inner layer of the fetal membranes, from 121 term and preterm 

deliveries [123]. This genome-wide investigation identified CpG sites that associated 

with both labor and PTB. The authors propose that DNA methylation changes in the 

amnion may participate in labor and the etiology of preterm birth, which supports the 

idea that DNA methylation studies can provide insight into the mechanism that contribute 



12 

to causes and consequences of PTB. Similarly in a study of 206 placentas, Maccani and 

colleagues reported the association of DNA methylation of CpG sites in RUNX3 (runt-

related transcription factor 3) with smoking during pregnancy and lower gestational age, 

which has previously been implicated in long-term exposure to smoking [53]. 

Most preterm birth studies that examine DNA methylation use blood because of 

its accessibility. For example, a study using umbilical cord blood examined the association 

between DNA methylation of imprinted genes and both PTB and infection status [124]. 

While this study identified no association with PTB, they did note an association between 

methylation of PLAGL1 (pleiomorphic adenoma gene-like 1) and chorioamnionitis. DNA 

methylation of PLAGL1 has been previously associated with transient neonatal diabetes 

mellitus and hyperglycemia [124], though it has not yet been linked to immune response.  

In contrast, a comprehensive evaluation of umbilical cord blood in African Americans by 

Parets and colleagues identified thousands of CpG sites across the genome that associated 

with PTB; the associated genes were enriched for numerous development processes [125, 

Chapter 3]. This study also identified many CpG sites that were associated with PTB 

[126] and with gestational age in term births [113] in other studies. Finally, a study by 

Burris and colleagues examined LINE-1 methylation and found that it is more heavily 

methylated in maternal blood in early pregnancy. They also reported that lower maternal 

LINE-1 methylation levels in early pregnancy associated with increased risk of PTB 

while the opposite was true for umbilical cord blood [127]. While this may appear 

contrary to their previous result [122], DNA methylation is tissue specific, so results from 

blood and cervical tissue cannot be directly compared. However, each tissue may provide 

an important window into the biological processes relevant for PTB. 
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Many hope that DNA methylation studies will yield biomarkers that can be used 

to screen for preterm birth or its risk factors. One such study explored DNA methylation 

to diagnose bacterial sepsis, a generalized immune response that is likely to affect 

children who are born preterm with low birth weight or very low birth weight [128]. A 

protein encoded by CALCA (calcitonin) is proposed as an early detection biomarker for 

infection status [129]. Therefore, Tendl and colleagues examined CpG sites in the 

promoter of CALCA to assess bacterial sepsis. Though the study was preliminary, they 

report DNA methylation differences in this region in infants with early onset sepsis and 

late onset sepsis that were not present in matched controls or neonates with isolated 

infections. Epigenetic biomarkers have been utilized in a number of diseases that 

primarily affect adults [130-132]. This promising clinical study supports the role of DNA 

methylation in obstetrics and neonatal clinical care. 

DNA Methylation Studies of Long Term Outcomes of PTB 

DNA methylation may provide insight into the long-term effects of PTB. In a 

comparison of children born preterm and at term, Relton and colleagues measured 

methylation of numerous genes at birth and reported an association with body size at 

approximately 9 years [133]; methylation of a CpG site in alkaline phosphatase (ALPL) 

associated with height, and the authors discuss the role of this gene in bone 

mineralization. Similarly, a longitudinal study comparing DNA methylation across the 

genome in 12 individuals born preterm to 12 born at term reported numerous methylation 

differences at birth. Interestingly, some of those CpG sites still distinguished preterm and 

term birth at 18 years of age [126]. Despite the small sample size, this is an important 
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preliminary study that shows some evidence that DNA methylation should be further 

studied in PTB. 

Opportunities for Epigenetic Studies of PTB  

There are numerous challenges to incorporating DNA methylation into PTB 

studies, as evidenced by the paucity of literature on the subject. The studies performed to 

date are conducted with relatively small sample sizes, which may limit a study’s power to 

detect new associations or to replication previously identified associations. While some 

findings have been reproduced, larger studies will identify differences of more subtle 

effect sizes. Another challenge is that it is not clear which tissue is most informative in 

assessing DNA methylation changes in the context of PTB, and therefore this study will 

focus on whole blood since it is the most readily available. In Chapter 2 I will focus on 

identifying CpG sites that associate with PTB in maternal blood and DNA methylation 

patterns shared by maternal-fetal pairs based on PTB status. In Chapter 3, I will identify 

genes and pathways that are being regulated in umbilical cord blood from fetuses born 

preterm and at term. Finally in Chapter 4, I will perform a candidate gene study of 

calcitonin-related polypeptide alpha (CALCA) to determine if umbilical cord blood 

methylation of this gene associates with long-term behavioral consequences.  Finally, in 

Chapter 5, I will summarize and synthesize these studies in the context of the broader 

PTB field. 

Epigenome Wide Association Studies (EWAS)  

The Infinium HumanMethylation450 BeadChip, which balances coverage across 

the genome with per sample cost, is the most widely used method for interrogating DNA 

methylation in EWAS studies.  The array assesses over 485,000 CpG sites covering 99% 
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of RefSeq genes. The probes are located throughout the architecture of the gene 

(transcription start site, 5’UTR, 3’UTR, island, shores, shelves).  The Human 

Methylation450 BeadChip works using two different assays. The first assay type utilizes 

a two-probe technology in which one oligonucleotide is methylated and the other is not 

methylated. DNA methylation is then calculated based on the proportion of the amount of 

bisulfite-converted DNA that binds to each probe type after a single base extension 

reaction. The other assay uses two-color readout with one bead type.  Following a single 

base extension, it emits a fluorescent signal specific to the incorporated nucleotide. DNA 

methylation can then be calculated based on the proportion of the methylated or 

unmethylated fluorescent signal. Utilizing an epigenome-wide approach allows for a 

broad survey of DNA methylation in the context of the phenotype of interest.  

To address the lack of DNA methylation studies for PTB, we preformed a pilot 

study in the Nashville Birth Cohort to examine genome-wide methylation in paired 

maternal-fetal samples to lay a foundation and advance our understanding of the causes 

and consequences of preterm birth. 
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Table 1-1:  Overview of DNA methylation studies of PTB. 

Tissue Design N Outcome Reference 
Myometrium Candidate gene 53 PTB [121] 

Cervical swab LINE-1 & candidate 
gene 80 Gestational length [122] 

Amnion HumanMethylation27 121 PTB & labor [123] 

Placenta HumanMethylation27 206 Smoking & 
gestational age [53] 

Cord blood Candidate gene 181 PTB & infection [124] 

Cord blood HumanMethylation450 50 PTB & gestational 
age [125] 

Cord & maternal 
blood LINE-1 2393 PTB [127] 

Whole blood at 19 
years Candidate gene 113 SGA [115] 

Blood spots Candidate gene 49 Bacterial sepsis [128] 
Cord blood Illumina Cancer Panel 1 178 Child growth [133] 

Blood spots at birth & 
18 years HumanMethylation450 24 PTB [126] 
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Figure 1-1: A model for the involvement of DNA methylation in the development 
of chronic disease following preterm birth (PTB). Multiple maternal risk factors can 
increase risk of PTB through independent biological mechanisms that may produce 
changes in DNA methylation or other epigenetic mechanisms. Such risk factors 
include, but are not limited to, stress, nutrition, immune conditions that produce 
inflammation, ancestry, smoking and socioeconomic status (SES). These epigenetic 
changes influence gene expression and thus the developmental trajectory of the 
neonate. Risk of developing chronic diseases may also be influenced by genetic 
predisposition independent of PTB or independent of behavioral or environmental 
factors. 
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DNA Methylation Provides Insight into Intergenerational Risk for Preterm Birth in 

African Americans 
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Introduction 

 Though the overall rate of preterm birth has slightly decreased in recent years, 

African Americans have more than 1.5 times the risk of spontaneous preterm birth (PTB; 

<37 weeks gestation) and more than twice the risk of early PTB (< 32 weeks) when 

compared to Caucasians [1-3].  Studies to date have identified numerous maternal risk 

factors for PTB [1,4-7], such as low socioeconomic status (SES), but less than half of the 

increased risk in African Americans is explained by SES and other known risk factors 

(Figure 1-1) [8-10].  

 Personal and family history of PTB are the greatest risk factors for PTB, and 

studies estimate its heritability from 17- 30% [11-17]. However, genetic studies have not 

identified variants that account for this intergenerational risk [1,11,18-21], prompting the 

hypothesis that epigenetic factors may also contribute to PTB [17,22-24]. Few studies 

have evaluated the epigenetics of PTB, and those that have focus mostly on those born 

preterm [25-28]. Other studies focus on the short-term and long-term consequences of 

PTB for the neonate [1,29-32], in part, because of interest in the developmental origin of 

health and disease (DOHaD) hypothesis [32,33]. Because of the complexity of the 

maternal-fetal relationship it is not clear if DNA methylation patterns predictive of PTB 

may be identified in maternal or fetal samples. It is equally possible that mother who 

delivers PTB may share common epigenetic patterns with their fetuses.  

We recently evaluated DNA methylation in African American cord blood samples 

and identified thousands of DNA methylation differences between preterm (N=22) and 

term fetuses (N=28) [25]. These DNA methylation differences may underlie some of the 

consequences associated with being born preterm, though longitudinal studies will be 
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more informative for determining whether methylation differences observed at birth have 

long-term consequences or whether they simply reflect developmental differences. 

Cruickshank and colleagues performed one such study in 12 PTB cases and 12 matched 

controls [28]. They evaluated DNA methylation from blood at birth and at 18 years and 

observed substantial overlap with the PTB-associated CpGs reported birth for both 

studies.  However, the majority DNA methylation differences observed at birth were no 

longer associated with PTB status at 18 years for the majority of CpG sites examined. 

They did find 10 CpGs that continue to differ in methylation at both time points, 

suggesting the potential for a long-term epigenetic signature of PTB. These CpG sites 

should be further evaluated to determine if they have any predictive value for 

consequences of being born preterm.  If they are replicated, these CpGs may serve as a 

biological indicator of early risk.  

No study has examined genome-wide DNA methylation in the blood of women 

who deliver preterm.  However, studies have recently begun documenting the long-term 

implications of delivering preterm for maternal health.  Women who deliver preterm are 

at increased risk to develop cardiovascular and other chronic disorders as they age [34-

42].  For example, a series of studies demonstrate that mothers who deliver very preterm 

are at subsequent risk for Type 2 diabetes [38,43]. The first, conducted in primarily 

Caucasian women from the Nurses’ Health Study II, reports that women who deliver very 

early preterm are more likely to be diagnosed with Type 2 diabetes in the decade 

following pregnancy [43]. A second investigation of ~30,000 women from the Black 

Women’s Health Study also reports that early preterm birth associates with a higher risk 

of developing Type 2 diabetes even after correcting for age at first birth, family history of 
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diabetes, education, personal history of preterm birth, and body mass index [38]. They 

then demonstrated that the increased diabetes risk was independent of gestational 

diabetes history, consistent with other studies [39,40].  

The mechanism underlying the relationship between PTB and the development of 

chronic disorders later in life is not yet clear, but some suggest that inflammation or 

immune dysregulation may increase risk for PTB and other chronic disorders [38,44]. 

DNA methylation patterns regulate the functional properties of immune cells [45,46] and 

associate with inflammatory markers [47], chronic disorders [48-50] and PTB [27,51]. It 

is also possible that mothers and fetuses delivered preterm may share correlated DNA 

methylation patterns that provide insight into common genetic or environmental risk. We 

hypothesize that DNA methylation patterns may reveal genes whose regulation is unique 

to women who deliver preterm or provide insight into its intergenerational risk. 

Methods 

Nashville Birth Cohort 

 All subjects were recruited at Centennial Women’s Hospital and the Perinatal 

Research Center in Nashville, TN beginning in 2003 as part of the Nashville Birth Cohort 

(NBC) that was established to examine biological risk factors that distinguish 

spontaneous preterm from term labor.  Pregnant women were enrolled at the time of 

admission for labor at preterm or term after obtaining informed consent. Maternal 

demographic and clinical data (race, socioeconomic education, household income, 

marital status, cigarette smoking) were recorded from medical records or by interviews 

during the consenting process. Demographic and clinical data specific to the fetus were 

collected from clinical records. Gestational age (GA) was determined by maternal 
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reporting of the last menstrual period and corroboration by ultrasound dating. Birth 

weight percentile was based on GA in accordance with the United States national 

reference [52]. Race was identified by self-reporting that traced back to three generations 

from maternal and paternal side of the fetus. Only African Americans of non-Hispanic 

ethnicity were included in this study. 

Subjects were included in this study if they had contractions (rate of 2 

contractions/10 minutes) leading to delivery either at preterm or at term. Cases delivered 

preterm with intact membranes between 241/7 weeks and 340/7 weeks. Controls delivered 

(>390/7 weeks) with spontaneous term labor and delivery and no current or history of 

pregnancy-related complications including preterm birth and preterm or prelabor rupture 

of the membranes (pPROM). Subjects who had multiple gestations, preeclampsia, 

placenta-previa, fetal anomalies, and/or medical or surgical complications during 

pregnancy were excluded from the study. Subjects with any surgical procedures during 

pregnancy were treated for preterm labor or for suspected intra-amniotic infection and 

delivered at term were excluded from the control group. This study was conducted in 

accordance with the Helsinki Declaration of 1975. 

Biological Sample Collection and DNA Extraction 

Maternal peripheral blood samples were collected in EDTA tubes at time of 

admission for labor. Blood samples were centrifuged at 3,000 RPM to separate plasma, 

and buffy coats were aliquoted and stored at −80°C. DNA was extracted using the 

Autopure automated system (Gentra Systems, Minneapolis, MN). 

DNA Methylation Analysis 
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For each subject, >485,000 CpG sites across the genome were interrogated using 

the HumanMethylation450 BeadChip (Illumina, San Diego, CA). Briefly, 1 ug of DNA 

was converted with sodium bisulfite, amplified, fragmented, and hybridized on the 

BeadChip according to the manufacturer’s instructions. CpGassoc was used to perform 

quality control and calculate ß values [53]. Data points with probe detection p-values 

>.001 were set to missing, and CpG sites with missing data for >10% of samples were 

excluded from analysis; 479,808 CpG sites passed the above criteria. Samples with probe 

detection call rates <90% and those with an average intensity value of either <50% of the 

experiment-wide sample mean or <2,000 arbitrary units (AU) were excluded from further 

analysis. One sample of female DNA was included on each BeadChip as a technical 

control throughout the experiment and assessed for reproducibility using the Pearson 

correlation coefficient, to ensure that Pearson correlation coefficient >0.99 for all 

pairwise comparisons of technical replicates. For each individual sample and CpG site, 

the signals from methylated (M) and unmethylated (U) bead types were used to calculate 

a beta value as ß = M/(U+M). 

Statistical Analysis 

 MethLAB was used to test for association with PTB via linear regressions that 

modeled β-values as the outcome and PTB as the independent variable, adjusting for 

maternal age, cell composition and positional effects in the array as covariates [54]. Cell 

type proportions were estimated using publically available data (GSE36069) as a 

reference panel for applying the method described by Houseman and colleagues [55,56] 

to our data.  We examined the association between methylation of each CpG site and 

potential confounding factors including: birth weight percentile, gravidity, parity, 
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infection and smoking. In a univariate analysis, these factors did not associate with 

methylation of any CpG site after correction for multiple testing, thus, they were not 

included as covariates in the final models. Logit transformation of the β values (i.e. M 

values) did not substantially alter the results so analyses of untransformed β are presented 

to ease biological interpretation and to make comparisons to our previous study [25]. For 

all genome-wide analyses, the False Discovery Rate (FDR) was controlled at 5% using 

Storey’s q-value [57]. For all replication analyses, we set the significance threshold at a 

nominal p<.05.  

 To evaluate the relationship between DNA methylation in maternal and fetal 

samples, linear regressions compared β values for each maternal sample (predictor) to 

those of her fetus (outcome) for each CpG site while accounting for positional effects on 

the array and cellular proportions.  To compare the observed correlations to what would 

be observed if maternal and fetal methylation were completely independent, we repeated 

the analysis comparing each mother to an unrelated fetus that was matched for case 

status, positional effects, and fetal sex. We also performed an exploratory analysis that 

evaluated the relationship between methylation in preterm and term pairs separately.  

 The location of each CpG site was determined using the Illumina array annotation 

for the HumanMethylation450 BeadChip based on build 37 of the human genome. Chi-

square tests were used to compare the number of correlated CpG sites that did or did not 

occur in a particular gene region (e.g. promoter, 5′UTR, Body, 1st exon, 3′UTR, or 

intragenic regions) to the sites not associated with PTB in that gene region. We 

performed similar tests of enrichment for regions characterized by CpG density (islands, 

shores, shelves and open seas). DAVID was used to evaluate whether groups of CpG 
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sites were in genes enriched for any specific biological pathways and focused specifically 

on KEGG pathways [58,59].  

To determine if genetic variation influenced DNA methylation, methylation 

quantitative trait loci (meQTL) were identified by applying the approach described 

previously [60] to the methylation data from African American subject in the Grady 

Trauma Project [47,61-63].  Briefly, the relationship between the proportion of 

methylation at each CpG site and each SNP within 50 kb of that site was examined via 

linear regression, where methylation was modeled as a linear function of the number of 

reference alleles (0, 1, or 2).  CpG sites were excluded from the meQTL analysis if the 

probe sequence contained a SNP with a minor allele frequency greater than 1% in any 

population, as identified from the 1000 genomes project (TGP). In total, 98,741 CpG 

sites had a TGP SNP within its probe sequence, and an additional 74,712 were meQTLs 

in an African American cohort (FDR<.05).  We then plotted the odds ratio of whether 

correlated CpG sites were enriched in meQTLs at varying significance levels. 

Gene Expression 

 To evaluate whether correlated CpG sites were located in genes whose expression 

is also correlated, we used publicly available gene expression data from maternal-fetal 

pairs (GSE27272) [64]. Expression of total RNA in umbilical cord blood and maternal 

peripheral blood was evaluated using the HumanRef-8v3.0 BeadChip (Illumina). The 

data were extracted using Illumina’s BeadStudio Software v3 and then quantile 

normalized using Lumi [65]. For each gene containing a correlated CpG site, linear 

regressions were used to compare expression of each maternal sample to that of her fetus.  

Results  
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The cohort is comprised of African American women who deliver early preterm 

(GA range 24.1–34.0 weeks) and at term (39.0–40.9 weeks). As expected, the groups 

differed by GA and birthweight, but did not differ significantly by any other demographic 

or clinical factor (Table 2-1). 

Association between maternal DNA methylation and PTB 

First, we examined the association between DNA methylation at each CpG site 

and PTB.  Overall, 17,829 CpG sites associated with PTB (1.83×10-6<p<.05), but none 

remained significantly associated after correction for multiple testing (FDR<.05). Among 

the CpG sites with the strongest association were two (cg22486214, cg16980736) in 

regulatory associated protein of MTOR (RPTOR; 2.20×10-5<p<1.03×10-4).  

We have previously reported 9,637 CpG sites that associate with gestational age 

(GA) in the umbilical cord blood of fetuses born to this cohort of women [25]. CpG sites 

that associate with PTB in maternal blood are more likely to associate with GA in fetuses 

when compared to those that do not associate with PTB (5.2% vs. 3.5%; p<2.2×10-16), 

suggesting that there may be epigenetic factors shared between mothers who deliver 

preterm and their fetuses.  

Correlation between maternal and fetal methylation  

We next evaluated the relationship between maternal and fetal DNA methylation 

across the genome. We identified 5,171 CpG sites in which maternal methylation 

predicted umbilical cord blood methylation (FDR<.05; Figure 2-1), 98.8% of which 

occurred in the same direction. To empirically assess whether these differences are 

greater than expected by chance, we repeated the analysis comparing methylation from 

each mother to methylation from an unrelated fetus that was matched for PTB status and 
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sex.  Only 35 CpG sites associated between unrelated pairs (FDR<.05), suggesting that 

the high degree of correlation observed between a mother and her fetus is substantially 

greater than expected by chance. 

 A recent study by McRae and colleagues [66] evaluated heritability of DNA 

methylation patterns in a multigenerational cohort and observed that sequence variation 

accounts for the majority of intergenerational inheritance. The heritability of non-genetic 

CpG sites may provide insight into environmental factors shared between a mother and 

her fetus. Of the 7,013 CpG sites with heritability of 0.8 or greater that they identified, 

52.3% also demonstrated heritability in this cohort (p<0.05). Among the heritable CpG 

sites reported not to be influenced by sequence variants (N=3,078), 45.8% replicated in 

this cohort.  However, 2,819 (91.6%) could be attributed to sequence variation in African 

Americans.  

There is a wide range of variation in methylation levels across the 5,171 

correlated CpG sites (Figure 2-2A), that is consistent with distribution of variation in all 

CpG sites assessed on the array (Figure 2-2B). Correlated CpG sites were more likely to 

occur in regions of low CpG density (i.e. shelves and open seas) and less likely occur in 

regulatory regions near the transcription start site (i.e. promoters, 1st exon, and 5’UTRs) 

when compared to uncorrelated CpG sites (1.5×10-6<p<2.2×10-16; Table 2-2).  They were 

also more likely to be located in genes involved in metabolic (i.e. type 1 and type 2 

diabetes mellitus), cardiovascular (i.e. viral myocarditis, arrhythmogenic right ventricular 

cardiomyopathy) and immune (i.e. graft-versus host disease, allograft rejection) pathways 

(Table 3). The majority of correlated CpG sites (3,857; 74.6%) could be attributed to one 

or more genetic variants, defined as a SNP that either overlapped with the CpG’s probe 
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sequence (1393; 26.9%) or associated with the CpG as a methylation quantitative trait 

locus (meQTL; 2464; 47.7%). We also found that CpG sites that correlated between a 

mother and her fetus were enriched for meQTLs at increasing levels of significance 

(Figure 2-3), consistent with the results of McRae et al.. The remaining 1,314 CpG sites 

(25.4%) could not be attributed to genetic factors and may reflect the shared intrauterine 

environment. Both classes of CpG sites support the pathways identified in the combined 

analysis when evaluated individually (Table 2-3). Evaluation of the 200 genes containing 

CpG sites whose methylation levels are both predictive of cord blood methylation and 

associate with PTB in maternal samples also reveal enrichment for genes in the type 2 

diabetes mellitus pathway (p=.015).  

Correlated CpG sites were more likely than uncorrelated sites to associate with 

PTB in maternal samples (Table 2-2; OR=1.7; p<2.2×10-16), but there was no difference 

in the rates of CpG sites influenced by genetic versus non-genetic factors among those 

associated with PTB (p=.41). Thus, we re-examined the relationship between maternal 

and fetal DNA methylation separately in PTB and term birth pairs.  There were 79 CpG 

sites that correlated (FDR<.05) in the PTB pairs, 57 (72.2%) of which were unique to the 

PTB samples. PTB-specific sites were enriched in genes involved in vascular smooth 

muscle contraction (KEGG:04270; p=.037). Although, this may simply reflect common 

changes to the myometrium based on gestational weeks. Consistent with the results of the 

combined analysis, the majority (70.2%) of the correlated CpG sites specific to PTB were 

attributable to genetic variation.  

Correlation Between Maternal and Fetal Gene Expression 
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 We next examined whether genes containing correlated CpG sites have correlated 

gene expression levels. Correlated CpG sites (N=5,171) were located in 3,297 expression 

probes, representing 2,282 unique genes and 1015 transcript variants.  Maternal 

expression of 738 transcripts (22.3%; 2.3×10-14<p<.05) predicted fetal expression, 357 

(10.8%) of which remained associated after correction for multiple tests (FDR<.05).  The 

distribution of the expression of both maternal blood and cord blood is similar to what 

was seen in our methylation data (Figure 2-4). For example, methylation of CpG sites in 

MICB associate with PTB in maternal blood and correlate with methylation in fetal blood 

(Figure 2-5A, 2-5B).  Maternal MICB expression also predicts fetal MICB expression 

(p=1.09x10-3; Figure 2-5C). Pathway analysis of genes with correlated expression levels 

(FDR<.05) were consistent with the results of those performed with correlated CpG sites 

(data not shown).  

Discussion 

 In this study, no CpG site of large effect size was associated with PTB in African 

American women who delivered preterm, though thousand of CpG sites were nominally 

significant. Only 5.2% of the CpG sites that were associated with GA in the cord blood of 

fetuses born preterm also associated with PTB in maternal samples.  This is only slightly 

more than what would be expected by chance, suggesting that the majority of CpG sites 

associated with GA in fetuses may reflect developmental differences.  Nevertheless, our 

study does provide insight into correlated methylation and expression patterns in 

maternal-fetal pairs that were enriched in genes involved in PTB and chronic disease risk.   

 One of the biggest risk factors for PTB is a prior history or a family history. We 

identified 5,171 CpG sites in which maternal methylation predicts fetal methylation. The 
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vast majority of correlated CpG sites (98.8%) occurred in the same direction, consistent 

with a high degree of genetic and environmental similarity in these pairs. These 

correlated CpG sites were enriched in areas of low CpG density, regions of high inter-

individual variation that are more likely to associate with environmental factors and 

complex diseases [67]. Though this study did not specifically evaluate sequence 

variation, methylation of almost 75% of correlated CpG sites could be attributed to 

genetic variation such as a SNP or meQTL. The results of this study were consistent with 

those reported in a large multigenerational cohort of Caucasians [66], which determined 

that heritable CpG sites were primarily under genetic influence. African Americans and 

Caucasians have distinct patterns of genetic-epigenetic correlation [60] that may 

contribute to the increased risk for PTB and other disorders more common in African 

Americans.  

Correlated CpG sites were also enriched among genes whose expression levels 

were correlated in maternal-fetal pairs, providing a potential mechanism linking 

correlated methylation in women who deliver preterm to biological differences.  For 

example, MICB is part of the MHC class I chain, and is induced by cellular stress to 

initiate an immune response [68]. Activation of inflammatory pathways has been 

implicated in the timing of parturition specifically in PTB [11], and we observed lower 

methylation of CpGs in MICB in PTB as well as correlated methylation and expression 

patterns in maternal-fetal pairs.  These results suggest a complex relationship between 

sequence variation, DNA methylation and gene expression that should be considered in 

future studies of PTB. 
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Correlated CpG sites were enriched in genes involved in chronic disorders that are 

common in African Americans [1,34-36,69-72], suggesting an epigenetic link between 

PTB and metabolic, cardiovascular and immune dysregulation across generations.  

Though we made every effort to limit inclusion of clinical factors that could influence 

these results, such as gestational diabetes or preeclampsia, the implications of these 

findings are difficult to interpret. However, the results suggest that chronic disorders 

diagnosed subsequent to PTB may not be limited to those indicated by gestational 

diabetes or hypertension. On the contrary, spontaneous PTB with unknown etiology may 

also increase lifetime risk for chronic disorders. In general, African American women 

have higher levels of inflammation when compared to Caucasian women, and chronic 

inflammation has been presented as a potential mechanism through which PTB and other 

chronic conditions occur [11,17,24,38,44,70,73]. For example, Liu and colleagues 

examined DNA methylation of 8 imprinted genes in umbilical cord blood samples for 

association with PTB and infection status [26]. Though they did not find any association 

with PTB, they reported that PLAGL1 DNA methylation associates with 

chorioamnionitis.  Consistent with these results, correlated CpG sites exclusive to PTB 

pairs were also identified in genes involved in immune regulation.  Other environmental 

factors such as high BMI, stress, smoking and infection also increase inflammation and 

PTB risk, and DNA methylation may mediate these relationships or serve as a potential 

marker of underlying inflammation. These factors did not associate with DNA 

methylation in this cohort although future studies should include them when evaluating 

DNA methylation and inflammation.  
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 This study has a number of strengths and limitations.  The primary limitation is 

the sample size, which is in part due to the fact that we restricted the design to only 

African Americans with spontaneous PTB prior to 34 weeks gestation and uncomplicated 

controls. In this study, we did not identify any individual CpG sites that associated with 

PTB in maternal blood. Thus, it is reasonable to conclude that there are no CpG sites on 

the array that associate strongly with PTB, though evaluations of larger cohorts may 

reveal associations of more subtle effect. However, our study was well powered to detect 

CpG sites whose methylation and expression levels correlated in maternal-fetal pairs.  

 This is the first epigenetic study of maternal-fetal pairs for PTB and the first study 

of heritable CpG sites in African Americans, an understudied population with an 

increased risk of PTB. The results of this study support a complex genetic and 

environmental relationship underlying the intergenerational risk for PTB and are 

consistent with the hypothesis that pregnancy complications, including spontaneous PTB, 

may be an early indicator of future risk for mothers as well as their fetuses.  Future 

studies should prospectively examine women who are at high risk for PTB throughout 

pregnancy and beyond.  
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Table 2-1: Demographics table for maternal samples  

 
Phenotype PTB (N=16) 

Mean ± SD 
TB (N=24) 
Mean ± SD 

p-value 

Maternal Age 24.69 ± 4.7 24.13 ± 6.2 NS 
Weeks Gestation 30.2 ±3 .6 39.9 ± 0.4 <.0001 
Parity 1.2 ± 1.4 1.4 ± 1.7 NS 
BMI 29.93 ± 8.4 26.46 ± 5.9 NS 
Household Income 
      <15K 
     15-30K 
     >30K 

 
(10) 66.7% 
(2) 13.3% 
(3) 20% 

 
(11) 45.8% 
(7) 29.2% 
(6) 25% 

 
NS 
NS 
NS 

Smoking (4) 25% (5) 21% NS 
Married (5) 33.3% (5) 20.8% NS 
Employed (1) 7.1% (6) 42.9% NS 
Chorioamnionitis (9) 56% NA NS 
Granulocytes 74.7 ± 9.2 69.6 ± 7.8 NS 
Monocytes 9.8 ± 3.7 10.7 ± 3.2 NS 
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Table 2-2: Enrichment for correlation analysis of maternal and fetal blood  

 Correlated Not Correlated p-value 
CpG Islands 17.1% 31.3% < 2.2×10-16 

Shores 21.9% 23.2% 1.5×10-6 
Shelves 12.1% 9.7% 9.0×10-9 

Open Sea 49.0% 35.7% < 2.2×10-16 
Promoter 17.3% 25.2% < 2.2×10-16 

5'UTR 6.0% 8.9% 9.9×10-13 
1st Exon 2.4% 4.7% 8.9×10-15 

Gene Body 37.0% 33.2% 7.2×10-9 
3'UTR 4.9% 3.6% 1.2×10-6 

Intragenic 32.4% 24.3% < 2.2×10-16 
PTB 6.5% 3.8% <2.2×10-16 
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Table 2-3: Pathway analysis of CpG sites in genes that correlate in maternal-fetal pairs.  
The enrichment p-value indicates whether genes with correlated CpG sites are more 
likely to occur in the indicated biological pathway. The group of correlated CpGs is also 
stratified by whether or not they can be attributed to genetic variation. NS indicates that 
the p-value is not significant.  
 

 
 
 

KEGG ID  Enrichment 
p-value 

Enrichment 
p-value 

Enrichment 
p-value 

Correlated 

N=2639 

Genetic 

N=1985 

Non-genetic 

N=831 
Metabolic  

Type 1 diabetes mellitus 04940 .006 .018 NS 
Fructose and mannose 
metabolism 

00051 .028 .043 NS 

Ether lipid metabolism 00565 .034 .017 NS 
Type 2 diabetes mellitus 04930 .038  NS 
Glycolysis/Gluconeogenesis 00010 .045 NS NS 

Cardiovascular 
Arrhythmogenic right 
ventricular cardiomyopathy 

05412 .004 .031 .012 

Hypertrophic cardiomyopathy 05410 .013 NS .022 
Dilated cardiomyopathy 05414 .015  .033 
Viral myocarditis 05416 .020 .041 NS 

Immune 
Natural killer cell mediated 
cytotoxicity 

04650 .013 .018 NS 

Fc gamma R-mediated 
phagocytosis 

04666 .021 .021 NS 

Graft-versus-host disease 05332 .026 .011 NS 
Allograft rejection 05330 .040 NS NS 
     

Other 
Tight Junction 04530 9.8x10-4 .001 NS 
Endocytosis 04144 .001 .006 .036 
Focal adhesion 04510 .012 .011 .034 
Cell adhesion molecules 04514 .021 .030 NS 
ECM-receptor interaction 04512 NS NS .020 
Regulation of actin cytoskeleton 04810 NS NS .028 
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Figure 2-1: Manhattan plot of the relationship between maternal and fetal DNA 
methylation. The x-axis is the position of each CpG site by chromosome. The y-axis is 
the negative log10 of the p-value for association between maternal and fetal methylation. 
The red line indicates experiment-wide significance (FDR < .05). 
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Figure 2-2: Distribution of maternal DNA methylation for CpG sites.  The x-axis is the 
standard deviation (SD) of each CpG site’s beta values in the maternal samples. The y-
axis indicates the proportion of CpG sites in each SD category. Black represents CpG 
sites that may be attributed to genetic variation while grey represents CpG sites that 
cannot be attributed to genetic variation. Graph (A) depicts correlated CpG sites 
(n=5,171) and their distribution. Graph (B) depicts all CpG sites (n=479,808) and their 
distribution.  
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Figure 2-3: Correlated CpG sites and their enrichment in meQTLs. The x-axis is the –
log10 of the statistical threshold (alpha level) used to define meQTLs. The y-axis shows 
odds ratios comparing the odds that a correlated CpG site (vs. an uncorrelated site) is also 
a meQTL and the vertical lines represent the confidence interval for each odds ratio.  
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Figure 2-4: Distribution of maternal and cord blood expression.  The x-axis is the 
standard deviation (SD) of the log2 transformation of each transcript in (A) cord blood or 
(B) maternal blood. The y-axis indicates the frequency of transcripts in each SD category. 
Black represents transcripts that were correlated while grey represents transcripts that are 
not correlated in maternal-neonatal pairs. 
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Figure 2-5: Association of MICB in PTB, and its correlation in expression and DNA 
methylation. Graph (A) is the association of cg06284756 maternal methylation with PTB 
with the x-axis representing PTB status where 0 denotes term birth and 1 denotes PTB 
and the y-axis representing the methylation (beta values). Graph (B) is the correlation 
between maternal methylation (x-axis) for cg0628476 with fetal methylation (y-axis) 
where open circles represent pairs that are preterm and closed circles represent pairs that 
are term.  The dashed line represents correlation in PTB pairs, and the solid line 
represents correlation in term birth (TB) pairs. Graph (C) is the correlation between 
maternal MICB expression (x-axis) with fetal	  MICB expression (y-axis).	   	  	    
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Fetal DNA Methylation Associates with Early Spontaneous Preterm Birth and 

Gestational Age 
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Introduction 

Despite advances in health care, the rate of preterm birth (PTB; birth before 37 

weeks of gestation) has been increasing for the last 25 years [1]. Specifically, children 

born preterm are more likely be hospitalized and have diminished cognitive performance 

and develop behavioral problems such as ADHD during childhood [2,3]. Along these 

lines, many adult onset diseases have been linked to adverse intrauterine conditions or 

adverse pregnancy outcomes [4,5]. Thus, PTB not only imparts a difficult start but also 

considerable challenges throughout life [1,6]. Spontaneous preterm birth (PTB), which 

occurs without indications, is common and contributes to significant neonatal morbidity 

and mortality over time [7]. 

 Several epidemiologic, behavioral and biological factors (i.e. race, socioeconomic 

status, malnutrition, smoking, and infection) have been associated with PTB, but the 

mechanistic pathways that underlie the association of the risk factors to PTB are still 

unclear [8-10]. The field of epigenetics has the potential to provide a greater 

understanding of the pathways that contribute to or result from PTB [11]. Indeed specific 

risk factors may promote epigenetic changes that result in PTB or that predisposes a 

neonate to adult-onset diseases. Although epigenetic differences associate with many 

prenatal exposures and complex traits, published studies that evaluate maternal and fetal 

epigenetic changes during pregnancy, influence on pregnancy outcome, and fetal 

programming of adult-onset diseases are limited [12,13]. The study of epigenetic patterns 

during early development is likely to provide more information about environmental and 

behavioral influences on long-term outcomes than the study of individuals later in life. In 

time, such studies may suggest biomarkers for developmental outcomes. 
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DNA methylation is an epigenetic modification required for proper gene 

regulation and cellular differentiation during fetal development [14,15]. Over the first 

years of life, DNA methylation of many genes appears to be relatively stable [16,17]. 

Therefore, DNA methylation patterns of certain genes established at birth may result in a 

developmental trajectory with long-term consequences. We have previously shown that 

DNA methylation of certain genes associates with gestational age (GA) in term deliveries 

[18], and evidence suggests that DNA methylation differences in key genes may provide 

insight into biological pathways that underlie PTB. The primary objective of this study is 

to interrogate methylation patterns across the genome in DNA derived from umbilical 

cord blood leukocytes of a high risk African American cohort and to evaluate the 

association of each CpG site with PTB and GA.  

Methods 

This study was approved by the Institutional Review Boards of Centennial Women’s 

Hospital, Western Institutional Review Board and the University of Texas Medical 

Branch.   

Subjects and sample collection  

The Nashville Birth Cohort (NBC) was established to examine genetic risk factors 

and changes in the biochemical pathways that distinguish spontaneous preterm from term 

labor. All subjects were recruited at Centennial Women’s Hospital and the Perinatal 

Research Center in Nashville, TN beginning in 2003. Pregnant women were enrolled 

during their first clinical visit after obtaining informed consent. Maternal demographic 

and clinical data were recorded from medical records or by interviews during the 

consenting process. Demographic and clinical data specific to the fetus was collected 
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from clinical records. Gestational age of the neonate was determined by maternal 

reporting of the last menstrual period and corroboration by ultrasound dating.  Race was 

identified by self-reporting that traced back to three generations from maternal and 

paternal side of the fetus. Only African Americans of non-Hispanic ethnicity were 

included in this study. 

Subjects were included in this study if they had contractions (rate of 2 

contractions/10 minutes) leading to delivery either at preterm or term.  Cases were 

delivered preterm with intact membranes between 241/7 weeks and 340/7 weeks.  Controls 

were delivered (> 390/7 weeks) with spontaneous term labor and delivery and no current 

or history of pregnancy-related complications including PTB and preterm or prelabor 

rupture of the membranes (pPROM).  Subjects who had multiple gestations, 

preeclampsia, placenta-previa, fetal anomalies, and/or medical or surgical complications 

during pregnancy were excluded from the study. Subjects with any surgical procedures 

during pregnancy were treated for preterm labor or for suspected intra-amniotic infection 

and delivered at term were excluded from the control group. Maternal demographic and 

clinical data were collected from medical records or thorough self-report at the time of 

consent.  

Race, socioeconomic (education, household income, marital status, and insurance 

status), behavioral (cigarette smoking) factors were documented by maternal self-report. 

Intraamniotic infection was determined by amniotic fluid culture or by PCR for 16s 

ribosomal RNA. In cases where culture or PCR data were not available, infection was 

assessed with four of the following clinical or histologic symptoms: high fever (> 102oC), 
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high CRP (> 0.8 U/ml), abdominal tenderness, fetal tachycardia, mucopurulent vaginal 

discharge or histologic chorioamnionitis, funisitis.  

Biological sample collection and DNA extraction 

Umbilical cord blood samples were collected in EDTA tubes soon after placental 

delivery. Blood samples were centrifuged at 3,000 RPM to separate plasma, and buffy 

coats were aliquoted and stored at -80oC.  DNA was extracted using the Autopure 

automated system (Gentra Systems, Minneapolis, MN).  

DNA methylation analysis 

For each subject, > 485,000 CpG sites across the genome were interrogated using 

the HumanMethylation450 BeadChip (Illumina, San Diego, CA)[19,20]. Briefly, 1 ug of 

DNA was converted with sodium bisulfite, amplified, fragmented, and hybridized on the 

HumanMethylation450 BeadChip (Illumina, San Diego, CA) according to the 

manufacturer’s instructions. CpGassoc [21] was used to perform quality control and 

calculate ß values. Data points with probe detection p-values >.001 were set to missing, 

and CpG sites with missing data for >10% of samples were excluded from analysis; 

483,830 CpG sites passed the above criteria. Samples with probe detection call rates 

<90% and those with an average intensity value of either <50% of the experiment-wide 

sample mean or <2,000 arbitrary units (AU) were excluded from further analysis.  One 

sample of male DNA was included on each BeadChip as a technical control throughout 

the experiment and assessed for reproducibility using the Pearson correlation coefficient, 

to ensure that Pearson correlation coefficient >0.99 for all pairwise comparisons of 

technical replicates. For each individual sample and CpG site, the signals from 
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methylated (M) and unmethylated (U) bead types were used to calculate a beta value as ß 

= M/(U + M).  

Statistical Analysis 

We used MethLAB [22] to test for association with PTB via linear regressions 

that modeled β-values as the outcome and PTB as the independent variable, adjusting for 

GA, gender, chip, and row on the chip.  Based on previous reports and the potential 

contribution to PTB we examined the association of birth weight percentile, gravidity, 

parity, infection and smoking as confounding factors in our analysis; these factors did not 

associate with methylation of any CpG site after adjustment for multiple testing 

(FDR<.05; data not shown). Birth weight percentile was based on estimated gestational 

age (GA) in accordance with the United States national registry [23]. We subsequently 

used MethLAB to fit similar linear regressions that modeled GA as the independent 

variable, adjusting for gender, chip, and row on the chip. Because it has been suggested 

that logit-transformed β values (a.k.a. M values) may perform better in statistical analyses 

[24], we also examined associations with M values using the strategy described above.  

Because there was no significant difference between the results, we present results based 

on untransformed β to ease biological interpretation. 

The location of each CpG site was determined using the Illumina array annotation 

for the HumanMethylation450 BeadChip based on build 37 of the human genome.  We 

tested for enrichment among GA-associated sites by comparing the number of GA-

associated CpG sites that did or did not occur in a particular gene region (e.g. promoter, 

5’UTR, Body, 1st exon, 3’UTR, or intragenic regions) to the number of non-GA-

associated sites that did or did not occur in that gene region, using Fisher's exact test.  We 
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then performed similar tests of enrichment for CpG-rich regions defined as islands or 

CpG poor regions defined as shores [25,26]. CpG sites with 1000 Genomes Project 

variants physically contained within the Illumina probe were noted in the analyses but not 

excluded a priori. In addition we examined whether significant GA-associated CpG sites 

were enriched or depleted on the X chromosome using Fisher's exact test.  

 We used GSEAPrerank [27,28] to evaluate whether GA-associated CpG sites 

were located in genes that were enriched for specific biological processes and cellular 

components.  Significance of the gene ontology enrichment was corrected for an 

FDR<.05 following 1000 permutations.   

Results 

The cohort, described in Table 3-1, consists of African American preterm (GA range 

24.1-34.0 weeks) and term (39.0-40.9 weeks) births. Though the groups differed by GA 

and birthweight, they did not differ significantly in demographic or clinical factors.  

Preterm Birth (PTB) 

After accounting for multiple comparisons (FDR <.05) and confounding factors 

(gender, gestational age, and chip effects), 29 CpG sites associate with PTB 

independently of GA (Figure 3-1A; Table 3-2; 5.7x10-10<p<2.9x10-6 ;-

.17<Δβ<.26).  Based on annotation with data from the 1000 Genomes Project, 5 of these 

29 CpG probes (17.2%) do contain a SNP (estimated average minor allele frequency of 

15.5%), suggesting that we could be observing a genetic rather than an epigenetic 

association for these 5 CpG sites; the methylated and unmethylated signals for these five 

sites are shown in Figure 3-2.  In some cases, the pattern appears consistent with SNP-

induced methylation differences, while in other cases there is no strong pattern of 
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clustering. Results were not significantly altered by adjustment for maternal smoking, or 

infection, birth weight percentile, and gravidity (data not shown) nor were they altered by 

logit-transformation of the beta values. Among the CpG sites associated with PTB, we 

observed increased DNA methylation of a site (cg13250001) in GSK3B (glycogen 

synthase kinase 3 beta; p=1.7 x10-6; Δβ=-.06) and decreased methylation of a CpG site 

(cg25376491) in MAML1 (mastermind-like 1; p=1.8 x10-6; Δβ=.14) in fetuses with PTB. 

In addition, 3 other CpG sites in GSK3B and 4 in MAML1 were nominally associated 

with PTB (p<.05). 

Gestational Age 

Our above analyses of PTB all included GA as a covariate because PTB and GA 

are by definition correlated (r=.93), and there is overwhelming agreement in the 

association of DNA methylation with PTB unadjusted for GA, or GA itself (Figure 3-3).  

In fact, 9637 CpG sites associated with GA independent of gender and chip effects (FDR 

<.05; 9.5x10-16<p<1.0x10-3; −.024<Δβ per week<.023; Figure 3-1B). GA-associated CpG 

sites were depleted in the promoter, first exon and 3’UTR regions and enriched in the 

5’UTR, gene body and intragenic regions (2.2x10-16<p<2.6x10-3; Table 3-3) when 

compared to CpG sites that were not associated with GA via Fisher's exact test. 

Associated CpG sites were also depleted in CpG islands (14.9% vs. 31.3%; p<2.2x10-16) 

and enriched in CpG shores (34.1% vs. 22.8%; p<2.2x10-16). Examining the 

directionality of GA-associated CpG sites, 61.8% (5958 CpG sites) had lower 

methylation in subjects with lower GA; these CpG sites were twice as likely to be located 

in CpG islands (p<2.2x10-16; Table 3-3) and less likely to occur in the gene body 

(p<2.2x10-16;) and 3’UTR (p=1.5x10-9).  While the sample size was not sufficient to look 
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for sex-specific differences (i.e. interactions between age and sex), we did note a 

depletion of GA-associated CpG sites on the X chromosome (.5% vs. 2.4 %; p<2.2x10-

16); both the depletion of GA-associated variants on CpG islands and the X chromosome 

are consistent with a previous report of age-associated methylation in children [29].    

Gene set enrichment analysis (GSEA) was used to gain further insight into the 

functional context of GA-associated CpG sites (FDR<.05; Table 3-4). Prominent 

biological processes that were enriched in GA-associated CpG sites were related to 

embryonic development. For example, 9 sites in the 5’UTR and body of histone 

deacetylase 4 (HDAC4, 1.3.x10-11<p<9.8x10-4; −.0023<Δβ per week<-.01) have higher 

methylation levels in fetuses with lower GA. HDAC4 is involved in numerous identified 

pathways including system development and multicellular organismal development, 

anatomical structure development, organ development, and nervous system development.  

Several other CpG sites involved in epigenetic regulation during development were also 

identified.  Specifically, CpG sites in the gene body of DNMT1 (DNA methyltransferase 

1; p=3.4x10-5; t=-4.7; Δβ per week=-.0034), the gene body of DNMT3A (p=6.7x10-4; t=-

3.7; Δβ per week=-.0042), the 5’UTR of DNMT3B (4.5x10-6<p<8.4x10-4; 3.6<t<5.3; 

.0040<Δβ per week<.0053) and the 5’UTR of TET1 (tet methylcytosine dioxygenase 1; 

1.5x10-7<p<2.7x10-4; 4.0<t<6.4; .0046<Δβ per week<.01) also associate with GA. 

Among the enriched cellular components are several groups that relate to 

extracellular regions.  Remodeling of the extracellular matrix is required to support 

pregnancy and parturition [30] and increased attention has recently been focused on the 

role of matrix metallopeptidases (MMPs) and tissue inhibitors of metalloproteinases 

(TIMPs) in preterm birth [31]. In this study, 4 CpG sites in the promoter of MMP9 
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(5.6x10-7<p<3.2x10-4; 4.0<t<6.0; .0021<Δβ per week<.0033) had higher methylation 

with increasing gestational age. MMP9 is involved in the breakdown of the extracellular 

matrix in the process of cervical ripening, and increased expression has been seen in 

pPROM compared to preterm birth with intact membranes [32]. Furthermore, one CpG 

site in the gene body of the MMP9 inhibitor, TIMP2 also associates with GA (p=1.4x10-

5; t=-5.0; Δβ per week=-.0053). 

To complement our discovery approach, we evaluated the association between 

CpG sites in genes that had been associated with GA in a previous study that used a less 

dense array with 27,578 CpG sites [18] (Table 3-5). 21 of 26 CpG sites (80.8%) 

significantly associated with GA in the previous study replicate in the present cohort (7.5 

x10-11<p<.05; -8.1<t<8.9; -.01<Δβ per week<.01).  Notably, methylation of a CpG site in 

corticotrophin-releasing hormone binding protein (CRHBP) increased with decreasing 

GA (t=-4.49; p=6.5x10-5; Δβ per week=.01). CRHBP regulates corticotrophin-releasing 

hormone (CRH), a principal regulator of the hypothalamic-pituitary-adrenal (HPA) axis. 

In addition, methylation increased in a CpG site in the promoter of PIK3CD 

(phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta) with decreasing 

GA (p=2.4x10-8; t=-7.0; Δβ per week=-.0062).  The therapeutic value of PIK3CD 

inhibitors is currently being explored as anti-inflammatory drugs [33].  

One limitation of this strategy is that GA and PTB represent correlated but 

etiologically distinct phenotypes. Thus, replicating associations observed with GA may 

not capture the same breadth of candidate genes that could be explored in a study focused 

on PTB. For example, IGFBP1 has been considered as a marker for preterm in vaginal 

infection and leaking amniotic fluid [34]. We observed associations between GA and 6 
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CpG sites in insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1; 2.1x10-

12<p<1.9x10-4; -4.1<t<10.2; -.0087<Δβ per week<.02) located in the gene body though 

the direction of the association changed based on proximity of the CpG site to the CpG 

island. 

Discussion 

By examining DNA methylation across the genome, we identified 29 CpG sites 

that associated with PTB independently of GA in leukocyte DNA from high-risk African 

American fetuses.  Among these are CpG sites in GSK3B (glycogen synthase kinase 3 

beta), which is involved in neuronal migration, development, and polarization, 

particularly during early embryonic development [35,36].  Interestingly, GSK3B is a 

negative regulator of MAML1 (mastermind-like 1) [37], a component of the Notch 

pathway [38,39], and a CpG site in MAML1 also associated with PTB. GSK3B decreases 

transcription in the notch pathway through inhibition of MAML1 [37].  Consistent with 

the role of GSK3B in regulating MAML1, there was an inverse relationship in the 

associations for the CpG sites in these genes. During development, the Notch pathway is 

integral to several developmental processes including neurogenesis, cardiovascular 

function, angiogenesis as well as intestinal and bone development [40].  

Additionally, 9637 CpG sites associated with GA when it was modeled separately 

from PTB. Our analyses suggest enrichment of GA-associated CpG sites in biological 

processes involved not only in embryonic and organ development but also in 

neurogenesis, nervous system development and neuron development. These processes 

involve extensive epigenetic regulation so it is not surprising that we observed 

associations with CpG sites in genes related to shaping epigenetic patterns during 
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development: HDAC4, DNMT1, DNMT3A, DNMT3B, and TET1.  For example, CpG 

sites in TET1 and DNMT3B have lower DNA methylation in subjects with shorter GA. 

TET1 functions to hydroxylate 5’methylcyctosine(mC) into 5’hydroxymethyl cytosine 

(hmC) [41]. TET1 has been implicated is normal embryogenesis, and the depletion of 

TET1 leads to low birth weight (LBW) in mouse pups [42].  TET1 promotes active 

demethylation while DNMT3B promotes de novo methylation; these two processes are 

highly involved in the establishment of tissue-specific DNA methylation patterns during 

development [41,43]. Though these results are indicative of the developmental time 

sampled (i.e. 32 versus 38 weeks), they may also support the hypothesis of epigenetic 

programming during fetal development [44].   

The cellular components most enriched for genes with GA-associated CpG sites 

were primarily related to the extracellular region. Genes such as MMP9 and TIMP2 are 

integral to the process of parturition [45]. MMP9 has previously been considered as a 

biomarker for preterm birth [46] and has been thought to play a role in premature rupture 

of the membranes (PROM) because of its role in the degradation of the amniochorion 

basement membranes [47]. MMP9 levels are higher following PROM when compared to 

term deliveries, while TIMP2 levels decrease. DNA methylation differences in these and 

other genes related to extracellular matrix function support further study of the role of the 

fetal extracellular matrix throughout pregnancy and during parturition.  

Many studies of fetal programming or prenatal exposures focus on fetuses with 

intrauterine growth restrictions or that were small for gestational age. Recent studies in 

the field support associations between GA and both DNA methylation and gene 

expression differences, but note lesser or no associations with birth weight [18,48]. 
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Similarly, in this study we identified numerous associations between DNA methylation 

and PTB, which is measured by GA, but no associations with percentile birth weight.  

Based on this, Stunkel and colleagues hypothesize that birth weight may be a less 

appropriate measure of adverse outcomes than GA [48].  Along these lines, we identified 

associations between GA and DNA methylation of CpG sites in insulin-like growth factor 

2 mRNA binding protein 1 (IGF2BP1), a developmentally regulated gene that binds 

IGF2 and has been a focus of the fetal programming literature [49]. DNA methylation in 

IGF2 has been linked to various pregnancy-related conditions including birth weight [50]. 

IGFBP proteins are secreted from the placenta, decidua and fetal membranes in 

increasing amounts across gestation and are abundant in amniotic fluid [51].   Detection 

of IGFBP-1 in cervical–vaginal secretions is reliably used to detect preterm premature 

rupture of the membranes, which precedes 40% of spontaneous PTB cases [52,53]. 

However, we were not able identify PTB-associated DNA methylation differences.  

Our results were consistent with previous studies of DNA methylation in 

gestational age.  Despite differences between cohorts and study design, we replicated 

>80% of CpG sites associated with GA in a previous study [18] further supporting the 

role of these genes in  embryonic development and parturition. For example, CpG sites in 

CRHBP associated with GA. CHRBP binds CRH limiting its activity, and changes in the 

relative ratios of CRH to CRHBP associate with timing of birth [54,55].  Prior to 

parturition, CRHBP levels decrease while CRH levels increase facilitating labor in both 

term and preterm deliveries [56]. In women who deliver preterm there is a decrease in 

plasma levels of CRHBP compared to women who deliver term [57]. 
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The goal of this study was to identify associations between DNA methylation and 

PTB.  However, PTB is defined by GA at birth; thus, the differences observed may 

correspond to differences in the developmental stage versus the causes or consequences 

of PTB.  In this study, the correlation between association tests for PTB and GA is strong 

(r=.93; Figure 3-3), and delineation of these factors is complex, particularly in a study 

with a relatively small sample size. Thus, larger studies will be required to identify DNA 

methylation differences exclusive to PTB. Future studies of methylation as a risk factor 

for PTB should also focus on maternal methylation during pregnancy; a prospective study 

design could avoid confounding due to differences in GA by sampling at standardized 

time points, and could allow comparisons between maternal and fetal methylation 

changes. However, even with our relatively small sample of fetal cord blood DNA, we 

were able to identify robust associations using a stringent phenotype definition that 

compared samples from early preterm and later term deliveries in a high-risk cohort; in 

general, African American women are 3-4 times more likely than Caucasian women to 

deliver in the early preterm period [7]. Another limitation is the use of whole umbilical 

cord blood.  While an ideal design would examine DNA methylation in a single cell type, 

this approach and our results were consistent with previous studies [18,58].  Still, our 

results support the idea that epigenetic differences exist in fetuses born at different 

gestational ages.  Recent studies suggest that DNA methylation patterns in many genes 

may be relatively stable over the first two years of life [16,17], and further studies will be 

necessary to determine whether persisting differences in DNA methylation may underlie 

the physiological correlates of PTB.  
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Table 3-1:  Clinical and demographic characteristics of the cohort.  All subjects are 
African American.  
 
Phenotype PTB (N=22) Term Birth (N=28) p-value* 

Mean + SD Mean +/- SD  
Male, % (14) 63.6% (11) 39.3% NS 
Gestational age, weeks 30.8+ 3.3 39.8+0.4 <.0001 
Birthweight, grams 1524.1 + 638.1 3304.9+ 333.4 <.0001 
Birthweight percentile 32+ 27.7 47+ 25.3 NS 
Gravidity 2.2+ 1.5 2.4+ 2.7 NS 
Maternal Age 25.5+5.2 21.0+4.6 NS 
Employed (5) 22.7% (8) 36.3% NS 
Married (7) 35.0% (7) 25.0% NS 
Maternal Smoking (5) 22.7% (5) 17.9% NS 
Income     
     <15K (12) 54.5% (12) 42.9%  
     15-30K (5) 22.7% (8) 28.5% NS 
     >30K (5) 22.7% (8) 28.5%  
 
* NS indicates the p-value is not significant (p>.05) 
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Table 3-2: 29 CpG sites that associated with PTB (adjusted for GA). Δβ represents the 
average methylation difference between early PTB and term birth after adjustment for 
covariates 

 
Probe ID Gene Δβ t-statistic p-value 

cg04549583  -0.133 -8.30 5.70x10-10 
cg13290254  0.122 7.52 5.77x10-9 
cg03254336  0.178 6.87 4.24x10-8 
cg16447680 KIAA0748 -0.131 -6.60 9.84x10-8 
cg03272932  0.175 6.54 1.19x10-7 
cg03152187 SEPT9 -0.112 -6.15 3.91x10-7 
cg18721397 SUB1 0.259 6.12 4.31x10-7 
cg03706951  -0.142 -6.04 5.57x10-7 
cg13514049  0.129 6.01 6.13x10-7 
cg01142526 N4BP3 -0.049 -5.92 8.00x10-7 
cg03901454  0.174 5.86 9.65x10-7 
cg19787650 FAM49B 0.181 5.85 9.88x10-7 
cg20253872 AMPD2 -0.174 -5.85 1.00x10-6 
cg06320380 TNS1 -0.111 -5.79 1.20x10-6 
cg23471393  0.185 5.79 1.23x10-6 
cg26501007  0.135 5.75 1.38x10-6 
cg13250001 GSK3B -0.062 -5.68 1.70x10-6 
cg20519581  0.224 5.68 1.73x10-6 
cg04212285 PTPRN2 0.155 5.67 1.75x10-6 
cg25376491 MAML1 0.14 5.66 1.82x10-6 
cg00101629 KAZN 0.147 5.65 1.86x10-6 
cg19921917 PALLD 0.177 5.61 2.15x10-6 
cg12207930 MED12L 0.198 5.59 2.24x10-6 
cg10131972 TXNRD2 -0.077 -5.59 2.25x10-6 
cg09964921  0.162 5.57 2.44x10-6 
cg01476222 TRAF6 0.144 5.56 2.49x10-6 
cg03318906 RAB11FIP1 0.128 5.54 2.60x10-6 
cg01621943  0.185 5.54 2.65x10-6 
cg13749927 DDB2 -0.070 -5.51 2.91x10-6 
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Table 3-3: Enrichment analysis. To examine whether there is an enrichment in certain 
regions that associated with GA, or whether there is an enrichment of a certain direction 
of a t-statistic for associated CpG sites. Note that each row in the table represents a 
Fisher's exact test that tests for enrichment of associated or unassociated sites for the 
relevant category (e.g. CpG islands).  
 
 

 
* NS indicates the p-value is not significant (p>.05) 

 

 
GA-

associated 
Not GA-

associated p-value 
(+) GA-

associated 
(-) GA-

associated p-value* 
CpG Islands  14.9% 31.3% < 2.2x10-16 18.4% 9.4% < 2.2x10-16 
CpG Shores 34.1% 22.8% < 2.2x10-16 33.4% 35.2% NS 
Promoter 22.9% 25.0% 2.5x10-6 25.3% 18.7% 4.7x10-14 
5' UTR 10.1% 8.8% 6.0x10-6 8.6% 12.5% 1.7x10-9 
1st Exon 3.1% 4.7% 4.7x10-15 3.0% 3.3% NS 
Gene Body 35.0% 33.3% 4.4x10-4 29.6% 43.7% < 2.2x10-16 
3' UTR 2.9% 3.6% < 2.2x10-16 2.1% 4.3% 1.5x10-9 
Intragenic 26.0% 24.6% .003 31.4% 17.1% < 2.2x10-16 
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Table 3-4: Gene enrichment analysis of CpG sites that associated with GA (FDR<.05). 
NES is the normalized enrichment score.  
GO Term: Biological Processes Size NES FDR q-value 
Neuron differentiation 29 2.69 0.001 
Generation of neurons 33 2.53 0.003 
Multicellular organismal development 307 2.39 0.006 
Anatomical structure development  309 2.32 0.007 
System development 258 2.24 0.011 
Neurogenesis 34 2.23 0.011 
Cellular morphogensis during differentiation 16 2.17 0.014 
Neuron development  20 2.09 0.023 
Embryonic development  24 2.08 0.022 
Organ development 171 2.04 0.026 
Nervous system development 133 2 0.033 
Skeletal development  34 1.95 0.042 
Anatomical structure morphogenesis  122 1.9 0.048 
Negative regulation of biological process 183 -2.18 0.043 
Apoptosis GO 127 -2.17 0.036 
Positive regulation of I-kappaB kinase NF-kappaB cascade  23 -2.13 0.042 
GO Term: Cellular Components    
Extracellular region part 75 3.13 <.001 
Extracellular region 97 3.02 <.001 
Extracellular space 48 2.66 <.001 
Proteinaceous extracellular matrix  26 2.24 0.009 
Extracellular matrix 26 2.2 0.009 
Extracellular matrix part 20 2.05 0.017 
Intracellular organelle part  219 -2.12 0.042 
Organelle part  219 -2.12 0.021 
Nuclear part  102 -2.08 0.019 
Microtubule cytoskeleton  37 -2.03 0.023 
Nucleus  313 -2.02 0.02 
Ribonucleoprotein complex  17 -1.97 0.026 
Membrane enclosed lumen  73 -1.93 0.029 
Cytoskeletal part  53 -1.93 0.025 
Nuclear lumen  66 -1.92 0.023 
Organelle lumen  73 -1.91 0.023 
Cytoskeleton  105 -1.9 0.022 
Nucleoplasm 56 -1.87 0.025 
Nucleoplasm part  37 -1.79 0.038 
Cell cortex  16 -1.74 0.048 
Non membrane bound organelle  138 -1.73 0.047 
Intracellular non membrane bound organelle  138 -1.73 0.046 
Macromolecular complex  166 -1.71 0.049 
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Table 3-5: Replication of CpG sites previously associated with GA [18]. Δβ per week 
represents the average increase in β-value associated with each additional week of GA. 
 
Probe ID Gene Δβ per week t-statistic p-value 
cg09523691 ATG12 -.0030 -3.33 .0020 
cg16536918 AVP -.0065 -3.08 .0039 
cg25551168 AVP -.0067 -3.61 8.7x10-4 
cg01143454 C20orf141 -.0034 -1.66 .10 
cg26799474 CASP8 -.0087 -4.03 2.6x10-4 
cg13813391 CMTM2 -.0067 -3.99 2.9x10-4 
cg21842274 CRHBP -.014 -4.49 6.5x10-5 
cg11540997 DUOX2 .0032 3.27 .0023 
cg14409083 EMP1 -.0052 -3.00 .0047 
cg15626350 ESR1 .011 3.83 4.6x10-4 
cg20291222 GLIPR1L2 -.0065 -3.63 8.4x10-4 
cg16098726 GP9 .0018 1.30 .20 
cg14423778 MBNL1 -.0064 -2.96 .0052 
cg05294455 MYL4 .010 4.83 2.3x10-5 
cg26267561 OXT -.0029 -1.43 .16 
cg20994801 PIK3CD -.0061 -7.01 2.4 x10-8 
cg15561986 POMT2 -.0029 -3.55 .0010 
cg00594952 RIMS3 .0035 3.21 .0027 
cg22417398 SCYL1 .-.0033 -4.48 6.7x10-5 
cg10652277 SLC30A9 1.4x10-4 .58 .57 
cg16301617 TMC6 .-.011 -6.86 3.8x10-8 
cg26385222 TMEM176B .0057 3.42 .0015 
cg00411097 TMEM184A -.0073 -5.63 1.8x10-6 
cg27210390 TOM1L1 .0086 8.92 7.5 x10-11 
cg06051311 TRIM15 -.011 -8.08 8.8 x10-10 
cg09244244 TTC37 -.0025 -1.53 .13 
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Figure 3-1: Manhattan plots depicting the association of all CpG sites with (A) PTB and 
with (B) GA.  The y-axis is the negative log10 of the p-value for the association while the 
x-axis is position on each chromosome. The dashed line indicates experiment-wide 
significance. 
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Figure 3-2: Scatter plots of the unmethylated vs. methylated signals (A versus B) for the 
five PTB-associated CpG sites that have 1000 Genomes SNPs within the probe. 
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Figure 3-3: Correlation between the t-statistics depicting association analysis of CpG 
sites with PTB (x-axis) compared to GA (y-axis). All CpG sites are depicted whether or 
not they were associated with the outcome. In order to compare more directly compare 
the results from analyses of PTB and GA, we reversed the sign of the t-statistics for PTB 
in this plot.  
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Introduction 

 Maternal depression during pregnancy is a risk factor for preterm delivery [1], but 

maternal depression associates with lower gestational age even among term deliveries 

(GA) [2]. Furthermore, maternal depression during pregnancy increases the risk of 

behavioral problems in children [3]. A prominent hypothesis, known as the 

developmental origins of health and disease (DOHaD), suggests that the intrauterine and 

early life environments can increase risk for the development of chronic diseases over the 

lifespan [4]. DOHaD was first proposed based on the Dutch Hunger Winter famine 

studies, which first connected the gestational environment to increased rates of 

cardiovascular disease [5], psychiatric disorders [6] and metabolic dysregulation [7,8] in 

adults. Later studies showed epigenetic differences in this group [9,10], prompting the 

hypothesis that epigenetics may mediate the relationship between intrauterine and early 

life environment and outcomes later in life.  

Recently, this concept has been demonstrated in an animal model.  Jiao and 

colleagues examined genome-wide expression of the hippocampal region of offspring of 

stress pregnant mice who developed depression during adulthood [11]. They found 3 

transcripts (NDN, USP29, and αCGRP) that were differentially expressed according to 

whether the mother was stressed or not during pregnancy. They found that CALCA 

methylation mediated the relationship between this gestational environment and the 

development of depression. Furthermore, when they administered a protein encoded by 

CALCA, there was an increase in depressive symptoms in the adult mice.   Conversely, 

when they administered its antagonist, there was a decrease in depressive symptoms. 

Depressive symptoms were measured using well-accepted behavioral measures such as 
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the forced swim test [12], during which a mouse with depressive symptoms would spend 

more time floating then swimming. This comprehensive study not only showed the 

importance of the gestational environment in programming long-term behavioral effects, 

but it also suggests that CALCA plays a role in mediating the relationship between 

maternal depressive symptoms and offspring behavior. Based on this study, we 

prioritized calcitonin (CALCA) in order to examine whether CALCA methylation in 

umbilical cord blood mediates the relationship between maternal depressive symptoms 

during pregnancy and the development of internalizing behaviors during early childhood. 

In the literature CALCA is implicated in the timing of delivery as well as 

regulation of the intrauterine environment [13-15]. For example, a protein encoded by 

CALCA is involved in implantation and angiogenesis of the placenta, which is necessary 

for a normal pregnancy [15]. DNA methylation of CALCA has also been proposed as a 

biomarker for bacterial sepsis in preterm neonates [14]. In data generated in our lab, CpG 

sites in CALCA associated with GA in cord blood [13], preterm birth (PTB) in maternal 

blood, and correlate between a mother and her fetus. In addition, CALCA has previously 

associated with psychiatric outcomes [11,16]. SNPs within CALCA associate with 

schizophrenia, Parkinson’s disease and depression [16]. Proteins encoded by CALCA 

have been used to treat osteoporosis [17], mania [18] and have been proposed as a 

treatment for bipolar disease [19]. Antagonists to the proteins have been used to treat 

migraines [20-22], suggesting the potential for treatment if CALCA regulation at birth is 

predictive of childhood behavioral problems. 

CALCA has six exons that produce two polypeptides through alternative splicing 

of exon 4 [23]. One of these polypeptides is calcitonin and is comprised of exons 1-4 and 
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is involved in calcium homeostasis through parathyroid regulation [24,25]. The other 

protein is calcitonin gene-related peptide (CGRP) and is made up of exons 1-3, 5 and 6 

and is primarily expressed in the nervous system [26]. CGRP is involved in multiple 

functions such as vasodilation in the peripheral and cerebral blood vessels [27,28]. It is 

involved in placental implantation, trophoblast invasion, fetal organ development, and 

hormone signaling through the placenta [29]. Furthermore, injection of CGRP into the 

paraventricular nucleus stimulates the hypothalamic-pituitary-adrenal (HPA) axis, which 

is involved in stress response [30,31]. HPA axis dysfunction associates with depression 

[32]. Depressed women and their neonates have higher levels of plasma cortisol, 

suggesting that the maternal depression can signal across the maternal and fetal HPA 

axes [33]. It is therefore, important to evaluate the regulation and expression of CALCA 

and its potential role in the relationship between maternal depressive symptoms, PTB, 

and childhood behavioral outcomes.  It is with all this is mind that we hypothesized that 

maternal depression during pregnancy associates with childhood internalizing behavioral 

outcomes through CALCA methylation in humans. Findings in this study can bring 

insight into the mechanism of the association between maternal depression with length of 

GA and childhood outcomes.  

Methods 

Subject Selection 

 To our knowledge, there is no spontaneous PTB cohort that has child behavioral 

data or psychiatric measure from the mothers available. Therefore, we used subjects from 

the Women’s Mental Health Program (WMHP) at Emory University, a cohort comprised 

of primarily term deliveries. Women with psychiatric illnesses were prospectively 
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assessed to evaluate the perinatal course of their illness and the impact that illness has on 

their offspring. Mothers completed an intake questionnaire for demographic, 

socioeconomic, medical and psychiatric history, and were administered the Beck 

Depressive Inventory (BDI) to assess depression symptoms [34]. Women were evaluated 

at four to six week intervals throughout pregnancy to assess maternal depression and 

stress. Depressive symptoms scores at each time point were used to calculate the area 

under the curve (AUC) across pregnancy. To calculate the AUC each patient must have 

been seen at least three times during pregnancy. In total, data throughout pregnancy were 

available for 148 Caucasian and 132 African-American women who also provided 

umbilical cord blood for methylation.  

 A subset of the children born to these women was evaluated for behavior 

problems between 3 and 5 years of age (N=155).  The children were administered the 

Childhood Behavioral Checklist (CBCL) [35] to assess behavioral outcomes. The CBCL 

is given to the parents and an alternative caregiver that assesses the child in syndrome 

scales and in DSM scales. CBCL syndrome scale is comprised of one total summary 

score and then grouped into externalizing and internalizing behaviors, which are also 

summary scores. In this study we focus on internalizing behaviors, because of the 

previous association in mice between maternal stress during gestational environment and 

depressive behavior. [11] Internalizing behaviors include withdrawal behaviors, 

anxiety/depression, and somatic symptoms.  

Biological Sample Collection and DNA Extraction 

 Umbilical cord blood samples were collected at birth, and processed within 2 h of 

delivery. Blood was centrifuged at 4°C to separate out plasma and then frozen, at −80°C 
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until processing. DNA was extracted from the cellular fraction at the Emory Biomarker 

Service Center using a Qiagen Biorobot M48. 

DNA methylation  

 The HumanMethylation27 BeadChip was used to interrogate > 27,000 

independent CpG sites across the genome. In brief, 1ug of genomic DNA was bisulfite-

converted, and analyzed using the HumanMethylation27 BeadChip procedure according 

to the manufacturer's instructions (Illumina). For a technical replicate we used a single 

female genomic DNA sample to assess chip quality and chip-to-chip variability in signal. 

Samples with probe detection call rates <90% or with an average intensity value of either 

<50% of the experiment-wide sample mean or <2,000 arbitrary units (AU) were excluded 

from the analysis. For each sample, the signals from methylated (M) and unmethylated 

(U) bead types were used to determine a β value for each queried locus. Each β value is 

calculated as β = M/(U + M).  

 MethLAB [36] was used to test linear models where the β is logit transformed 

and modeled as the independent variable and the phenotype of interest (i.e. CBCL scores 

or BDI) is the response variable and adjusted for cell type proportions, fetal sex, and chip 

effects. The HumanMethylation27 array has 8 probes (Figure 4-1) in the CALCA gene.  

To examine the relationship between maternal BDI and gestational age (GA), we 

modeled BDI as the independent variable and GA as the outcome. For all test we used a 

Bonferroni correction for the 8 CALCA probes. In order to evaluate whether CALCA 

DNA methylation mediated the relationship between maternal depressive symptoms or 

GA and internalizing behaviors, we used a Sobel test [37], which tests for indirect effects 

of the casual variable on an outcome. 
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Regulation of CALCA expression 

 In order to examine the association between CALCA DNA methylation and 

expression in tissues relevant to birth outcomes and behavior (umbilical cord blood, 

placenta and brain regions), we used publically available data. To understand the role of 

CALCA in pregnancy we first evaluated the relationship of DNA methylation and 

expression in cord blood and placenta. In the GEO datasets GSE36831, expression of 

umbilical cord blood (N=48) and placenta (N=48) was examined using the HumanHT-12 

V3.0 (Illumina) that contains 3 CALCA transcripts (ILMN_1702566, ILMN_2327244, 

ILMN_1807034; Figure 1). We next assessed whether brain regions play an important 

role in the regulation of CALCA because of its previous association with maternal 

depression during pregnancy. In GSE15745 [38] expression of the frontal cortex 

(N=130), pons (N=119), cerebellum (N=118), and temporal cortex (N=124) was 

examined using the HumanRef-8 v2.0 (Illumina) that contains 2 CALCA transcripts 

(ILMN_1702566, ILMN_2327244; Figure1).  DNA methylation was evaluated using the 

HumanMethylation27 BeadChip (Illumina) in both datasets. We used linear regression to 

compare CALCA CpG sites to CALCA transcripts. All expression data was log2 

transformed. 

Results 

 The cohort is primarily comprised of Caucasian infants born in the late preterm 

and term range (Table 4-1). Maternal depressive symptoms associate with lower GA 

(p=7.55x10-4, t=-3.41) but do not predict any internalizing CBCL outcomes (p>.05).  

Similarly, GA does not predict any of the CBCL outcomes assessed (p>.05).  
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Association between fetal CALCA methylation and prenatal exposures 

 First, we examined the association between maternal depressive symptoms 

throughout pregnancy and fetal CALCA methylation. Both cg09188980 (t=-2.32, p=.021) 

and cg14348532 (t=-2.11 p=.036) associated with maternal depressive symptoms, but 

neither CpG site overcame the significance threshold for multiple test correction 

(p>.0063).  Similarly, we evaluated the relationship between fetal CALCA methylation 

and GA. Only one CpG site (cg09188980; t=3.02,p=.0028; Figure 4-2) associated after 

multiple test correction; however, methylation of cg14348532 (t=2.51p=.013) was also 

nominally associated with GA.   

Association of fetal CALCA methylation and internalizing behaviors 

 We next examined whether CALCA DNA methylation at birth would predict 

internalizing behavior between the ages of 3-5 years. We found one CpG site 

(cg22183706) that associated with internalizing behaviors (t=-2.21, p=.029), 

anxiety/depression (t=-2.00, p=.048), and withdrawal behavior (t=-2.66, p=.0088). 

However, cg22183706 did not remain associated after multiple test correction. No other 

CpG site associated with any of the 4 behavioral outcomes examined (data not shown).   

 We also tested whether fetal CALCA methylation mediated the relationship 

between maternal depression during pregnancy and the development of childhood 

behavioral problems and found no association. Similarly, when we evaluated whether 

fetal CALCA methylation mediated the relationship between GA and childhood 

internalizing behaviors, there was no association. 

Regulation of CALCA expression 
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 We evaluated the relationship between CALCA methylation and CALCA 

expression in tissues whose expression related to birth outcomes and behavior. Although 

there was no association after multiple test correction in any of the tissues examined, 

some findings are nominally significant and may be important for follow-up. For 

perinatal tissues we evaluated the regulation of CALCA expression in umbilical cord 

blood and in placenta. In cord blood, methylation of cg09068492 associated with 

increased exon 3 expression (ILMN_2327244; t=2.07; p=.043). In placenta, cg01971122 

associated with decreased expression in 2 probes located in exon 2 and exon 3 

(ILMN_1702566, t=-2.71, p=.0095; ILMN_2327244, t=-2.55, p=.014). For evaluating 

behavior we assessed the relationship between CALCA methylation and expression in 

different brain regions. In the frontal cortex, cg09068492 associated with decreased 

expression in exon 6 (ILMN_1807034, t=-2.13, p=.035). In the pons, cg10467022 

associated with increased expression in exon 2 (ILMN_1702566, t=2.11, p=.036).  There 

was no association of CALCA DNA methylation and expression in cerebellum or the 

temporal cortex.   

Discussion  

 In this study, we examined the association of CALCA DNA methylation with 

perinatal maternal depression, gestational age, and childhood internalizing behaviors. 

However, after multiple test correction we found no evidence that CALCA methylation 

associated directly with maternal depressive symptoms or childhood behaviors. 

Furthermore, there was no association between GA and CBCL. GA may not predict 

CBCL in these data because our cohort is primarily born at term.  We next evaluated 

whether CALCA methylation mediates these relationships. There was no evidence that 
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CALCA methylation mediates the relationship between maternal depressive symptoms 

and childhood internalizing behaviors. We also evaluated whether maternal depressive 

symptoms during pregnancy and GA associate and whether that association was mediated 

by CALCA methylation. Maternal depressive symptoms associated with lower GA, which 

is consistent with prior studies that reported the association of maternal depression during 

pregnancy with preterm birth [1,39]. Furthermore, CALCA methylation associated with 

lower GA. However, CALCA methylation did not mediate the relationship between 

maternal depressive symptoms during pregnancy and GA, though we recognize that this 

study is not well powered to test for mediation.  

 When we examined the regulation of CALCA expression, we found that different 

CpG sites predicted CALCA expression in different tissues. Methylation did not predict 

expression after multiple test correction, but that may be because we lacked a number of 

variables to adjust for technical and biological artifacts that influence power. 

Interestingly, in the frontal cortex, a CALCA CpG site associated with expression of exon 

6, which would be exclusively included in the polypeptide CGRP that is primarily found 

in the nervous system.   

 Overall, this study provides no evidence that CALCA methylation mediates the 

relationship between maternal depressive symptoms, gestational age and childhood 

internalizing behaviors in our cohort.  We might not have had the power to detect the 

relationship between DNA methylation in CALCA and maternal depressive symptoms, 

GA, or internalizing behavior. However, other studies that evaluate other tissues or a 

wider range of CpG sites may be capable of detecting more subtle effects. The original 

study was performed in hippocampus of mice and therefore may not be reflected in cord 



107 

blood or in humans. Finally, the results of this study do not preclude other genes from 

mediating the relationship between the intrauterine environment and development of 

subsequent childhood behavioral outcomes.  
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Table 4-1: Demographic table of the WMHP umbilical cord blood samples 

Phenotype Prenatal                                             
N=280 

Maternal Age, years, Mean ± SD 33.74 ± 4.7 
Weeks Gestation, Mean ± SD 38.87 ±1.1 
Granulocytes, proportion, Mean ± SD 55.54 ± 8.6 
Lymphocytes, proportion, Mean ± SD 
Fetal Sex, N,% male 

31.12± 7.6 
(80) 51.6% 

White, N, % (148) 95.5% 
BDI, area under the curve, Mean ± SD 376.78±311.13 

3-5 year follow up; N=155 
Anxiety/depression, t score, Mean ± SD 52.35±4.41 
Internalizing, t score, Mean ± SD 46.99±10.38 
Withdrawn, t score, Mean ± SD 53.31±5.14 
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Figure 4-1: Schematic of CALCA. Green horizontal lines represent 2 CpG islands in this 
region. Verticles lines represent mRNA probe locations on the HumanHT-12 V3.0. Light 
blue verticle lines are CpG sites assessed on the HumanMethylation27 BeadChip.  
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Figure 4-2: Association between DNA methylation in CALCA (cg09188980) with GA. 
The x-axis representing GA measured in weeks and the y-axis representing the 
methylation (logit transformed beta values). 
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 Despite research and the advancement of healthcare systems in the US, the rate of 

preterm birth (PTB) remains high. Prevention strategies have not been successful at 

reducing the PTB rate, and interventions for PTB after initiation of labor are only 

intermittently successful.  Advancement has been primarily in the management of the 

acute clinical needs of neonates that are born preterm [1]. However, PTB is still the 

primary cause of mortality in the first year [2], and the morbidities of being born preterm 

can last throughout life as children born preterm are more likely to develop chronic 

diseases [3,4]. Though the literature reports numerous risk factors that increase risk for 

PTB, the dire consequences of this condition cannot be fully addressed until the 

mechanisms that contribute to PTB are identified.   

 The objective of this pilot study was to examine DNA methylation in women and 

their fetuses to identify differences specific to PTB versus term birth (TB).  

Characterization of the genes being regulated in PTB may provide a greater 

understanding of the mechanisms that contribute to or result from PTB. We focused on 

DNA methylation in African Americans, a group with the highest risk for PTB, 

independent of socioeconomic status or other social factors [5,6]. Race-specific DNA 

methylation patterns distinguish African Americans from Caucasians [7]. DNA 

methylation patterns associate with race, and examining DNA methylation in the group 

with high risk for PTB may provide increased power to detect associations.  

 First we evaluated DNA methylation in maternal blood taken at delivery and 

found no association of large effect size between methylation of any CpG site and PTB. 

One limitation in this analysis is that maternal peripheral blood may not be the best tissue 

for studying PTB.  The identity of the appropriate tissues is obscured by our lack of 
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understanding of the biological mechanisms underlying PTB.  Blood could be the right 

tissue if a key mechanism that contributes to PTB is a systemic problem such as 

inflammation or disruption of the neuroendocrine system. However, if PTB is primarily 

triggered by localized factors such as intrauterine infection, blood is unlikely to be 

informative.  Other tissues such as the myometrium may be appropriate because of its 

role in labor progression. Though DNA methylation patterns are tissue specific, some are 

consistent across tissues [8-10]. Therefore, future studies should establish epigenetic 

reference panels in multiple tissues throughout pregnancy and early development. This 

will serve as an important resource for interpreting the functional significance of PTB-

associated DNA methylation differences that have already been identified. Future studies 

should also include prospective sample collection that could be used to assess DNA 

methylation patterns throughout pregnancy in multiple tissues. Prospectively collected 

tissues can be used to infer whether genes with PTB-associated regulation patterns cause 

PTB or are simply a consequence of it.  Similarly, longitudinal studies may identify CpG 

sites that are informative for identifying and monitoring those at risk for delivering 

preterm or other adverse pregnancy outcomes. It should also be considered that DNA 

methylation is unlikely to be the only mechanism that is regulating gene expression. 

Therefore, a comprehensive approach should be taken that includes other epigenetic 

modifications, gene expression and proteomics.  

 Second, correlation between maternal and fetal DNA methylation was 

characterized to determine if DNA methylation patterns were shared based on PTB 

status.  More than 5000 CpG sites associate between a mother and her fetus; correlated 

CpG sites could primarily be attributed to nearby genetic variation. In this analysis we 
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also identified CpG sites that correlate in paired PTB but not term birth samples. Similar 

to the results of the overall analysis, the majority of the CpG sites could be attributed to 

nearby genetic variation. This suggests that a complex relationship between genetic and 

epigenetic variation may contribute to the intergenerational transmission of PTB.  

Third, the relationship between DNA methylation and gestational age (GA) was 

examined to identify CpG sites that distinguish early PTB from TB. We identified 

~10,000 CpG sites that associated with GA in cord blood. We hypothesized that 

differences in methylation would reflect mechanisms underlying PTB risk. If this 

hypothesis were correct, a significant overlap between CpG sites that associated with GA 

in cord blood and with PTB in maternal blood would be observed. However, no CpG site 

associated with PTB in maternal samples after multiple test correction, and only 5.2% 

overlapped between cord blood and maternal blood at a nominal significance level.  This 

comparison does not support the hypothesis that DNA methylation differences in these 

samples reveal common mechanisms underlying PTB. In umbilical cord blood, 

examination of the relationship between DNA methylation and PTB while adjusting for 

GA identified only 29 associated CpG sites. Interestingly, the majority of those sites 

could be attributed to a nearby genetic variant or a SNP directly in the probe sequence.  

This result is consistent with the observations from Chapter 2 that support a complex 

relationship between genetic and epigenetic factors in those with PTB. However, a 

significant limitation of this analysis is that we did not specifically evaluate sequence 

variation in this cohort. Future studies should include genotyping in order to better 

understand the relationship between genetics and epigenetics in PTB.  It is very possible 

that the majority of the CpG sites that we identified primarily reflect developmental 
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differences.  If this is true, they should replicate in cord blood from another PTB cohort. 

We were able to replicate 42% of the CpG sites that associated with PTB in a Caucasian 

cohort conducted by Cruickshank and colleagues [11]. However, we may not have been 

powered to detect PTB-specific CpG sites in this pilot study. Furthermore, comparing 

PTB samples with term birth samples may have identified CpG sites that represent 

developmental differences.  

Finally, recognizing that the majority of GA-associated CpG sites are likely to 

reflect developmental differences, it remains unclear whether those developmental 

differences increase risk for long-term outcomes in children born preterm. DNA 

methylation of CpG sites in calcitonin (CALCA) associates with GA in cord blood, PTB 

in maternal blood and has been reported to mediate the relationship between gestational 

environment and later life behavior [12].  Thus, we evaluated the relationship between 

CALCA DNA, the intrauterine environment and childhood behavioral problems. In this 

study, CALCA methylation did not associate with maternal depressive symptoms during 

pregnancy. Furthermore, CALCA methylation did not associate with the development of 

internalizing, withdrawn or somatic behaviors or anxiety/depression in early childhood. 

CALCA methylation also did not mediate the relationship between maternal depressive 

symptoms and childhood behavioral outcomes. These negative results could have 

occurred for various reasons. Firstly, the relationship of CALCA methylation and the 

development of internalizing behaviors might not have manifested itself yet because the 

mouse study evaluated depression like behaviors in adult mice and we are evaluating it in 

children. Secondly, future studies should provide a focused examination in postmortem 

brain tissue from children who were born preterm. However, in such studies follow-up 
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cognitive and behavioral outcomes could not be assessed. Translating animals studies 

into human cohort studies is complicated by the availability of tissues in human cohorts 

specifically hippocampus in this study. Animal studies could begin to incorporate 

peripheral tissues, such as blood or saliva, into ongoing studies that focus on brain.  This 

would better enable translation of those findings to human cohorts. However, a candidate 

gene approach may not be the most efficient way to address the overall question; 

genome-wide studies would be most informative. 

 Overall, this study had several limitations that are inherent to a pilot study using 

the HumanMethylation450 BeadChip. For example, the small sample size limited our 

power to only detect associations of large effect size. The addition of more samples will 

allow us to detect associations between CpG sites and PTB that have smaller effects. One 

limitation of using the HumanMethylation450 BeadChip is the limited coverage of the 

genome.  Furthermore, by bisulfite converting the DNA we are unable to differentiate 

between 5’ methylcytosine (5mC) and 5’hydroxymethylation (5hmC). 5hmC is an 

intermediate step from 5mC to demethylated CpG sites, though it is also a stable 

methylation state in its own right [13].  Future studies should incorporate evaluating 

5hmc and 5mc to better understand the dynamic changes between the two in relation to 

PTB.  

	  	   The results of this study provide insight into the patterns of DNA methylation in 

PTB. Our data suggest that it may not be simply genetic or epigenetic, but a complex 

interplay between two that contributes to PTB risk and its long-term consequences. In 

order to better understand this, future studies should use multi-generation cohorts with 

longitudinal collection of comprehensive phenotypic and biological measures to enable 
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hypothesis testing.  This dissertation lays the foundation for future work examining the 

relationship between DNA methylation and the prevention, causes, and consequences of 

PTB. 
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