
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements
for an advanced degree from Emory University, I hereby grant to Emory University
and its agents the non-exclusive license to archive, make accessible, and display
my thesis or dissertation in whole or in part in all forms of media, now or hereafter
known, including display on the world wide web. I understand that I may select
some access restrictions as part of the online submission of this thesis or disserta-
tion. I retain all ownership rights to the copyright of the thesis or dissertation. I
also retain the right to use in future works (such as articles or books) all or part of
this thesis or dissertation.

Signature:

Piotr Wendykier Date

High Performance Java Software for Image Processing

By

Piotr Wendykier
Doctor of Philosophy

Mathematics

James G. Nagy
Advisor

Michele Benzi
Committee Member

Alessandro Veneziani
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

High Performance Java Software for Image Processing

by

Piotr Wendykier
M.Sc., Adam Mickiewicz University, 2003

Advisor: James G. Nagy, PhD

Abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy
in Mathematics

2009

Abstract

High Performance Java Software for Image Processing
By Piotr Wendykier

Parallel computing has been used for scientific computing applications since the
1960s, when the first supercomputers were developed. However, only recently
have these programming paradigms become useful for software running on desk-
top and notebook computers. In this dissertation we demonstrate the advantage
of exploiting modern computer architectures in scientific computing with multi-
threaded programming in Java for applications in image processing. A significant
contribution of this work is an open source, multithreaded high performance sci-
entific computing Java library called Parallel Colt. In addition, on top of Parallel
Colt, we have implemented six ImageJ plugins for deconvolution, super-resolution,
fast Fourier transforms and image cropping. Hence, we are able to provide soft-
ware to solve important problems in real image processing applications, and which
can effectively make use of multi-core CPUs available on affordable desktop and
notebook computers.

High Performance Java Software for Image Processing

by

Piotr Wendykier
M.Sc., Adam Mickiewicz University, 2003

Advisor: James G. Nagy, PhD

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements of the degree of
Doctor of Philosophy

in Mathematics
2009

Acknowledgments

I would like to thank my advisor James Nagy for his wonderful support and
guidance. This work would not be the same without his tireless dedication.

I am also thankful to my committee members Michele Benzi and Alessandro
Veneziani for their time and insightful comments that allowed me to improve this
thesis.

I wish to thank Julianne Chung, Tracy Faber, Sarah Knepper, Nivedita Raghu-
nath and John Votaw, for their collaboration.

Last, but no least, I am very grateful to my wife Miroslawa Wendykier for
many sacrifices she made while I was pursuing this work.

To my family

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Inverse Problems . 3

1.3 Regularization . 6

1.4 Outline of This Work . 9

2 Deconvolution and Super-resolution 11

2.1 Deconvolution . 11

2.1.1 Spectral Deconvolution 13

2.1.2 Iterative Deconvolution 22

2.2 Motion Correction of PET Brain Images 28

2.2.1 Motion Detection . 30

2.2.2 Mathematical Formulation 35

1

2.2.3 Determining Head Positions 36

2.3 Super-Resolution . 39

3 Java in Scientific Computing and Imaging 42

3.1 Why Java? . 42

3.2 Related Work . 44

3.3 Parallel Colt . 48

3.3.1 Colt . 49

3.3.2 Concurrency . 50

3.3.3 Multidimensional Arrays 51

3.3.4 Iterative Solvers . 55

3.3.5 Linear Algebra . 56

3.3.6 Trigonometric Transforms 58

3.3.7 Accuracy . 60

3.3.8 Other Additions . 64

3.3.9 Examples of Usage . 65

3.3.10 Benchmarks . 66

4 Implementation 73

4.1 Parallel Spectral Deconvolution 73

4.1.1 Description and Usage 74

4.1.2 Benchmark . 77

4.2 Parallel Iterative Deconvolution 81

4.2.1 Description and Usage 81

4.2.2 Benchmark . 92

4.3 Parallel HRRT Deconvolution 93

4.3.1 Description and Usage 94

4.3.2 Benchmark . 98

4.4 Parallel Super-Resolution . 104

4.4.1 Description and Usage 104

4.4.2 Benchmark . 109

4.5 Parallel FFTJ . 109

4.5.1 Description and Usage 110

4.5.2 Benchmark . 112

4.6 Lincoln Papers . 114

4.6.1 Description and Usage 114

4.6.2 Benchmark . 120

5 Conclusions 122

Appendix A 124

6.1 Fast Fourier Transform . 124

Appendix B 127

7.1 Popularity of Parallel Colt . 127

7.2 Popularity of JTransforms . 128

7.3 Popularity of ImageJ Plugins . 130

7.4 Lines of Code . 130

Bibliography 132

List of Figures

2.1 Spectral vs. iterative image deblurring. 15

2.2 (a) The Polaris Vicra mounted on the rear of the scanner gantry

using the 80/20 T-slot system. (b) Reference tool mounted inside

the scanner (inset – another view of the reference tool) [97]. . . . 31

3.1 Accuracy of complex, 1D FFT (power of two sizes). The vertical

axis is the root mean square error,
‖x− ifft(fft(x))‖2√

n
, where x is

a vector whose size n is shown on the horizontal axis. 62

3.2 Accuracy of complex, 1D FFT (prime sizes). The vertical axis

is the root mean square error,
‖x− ifft(fft(x))‖2√

n
, where x is a

vector whose size n is shown on the horizontal axis. 63

4.1 Parallel Spectral Deconvolution GUI. 75

4.2 Astronaut image: blurred and restored data. 78

4.3 Head image (63rd slice): blurred and restored data. 80

5

4.4 Parallel Iterative Deconvolution GUI. 83

4.5 Iterative Deconvolve 3D GUI. 85

4.6 MRNSD options panel. 87

4.7 WPL options panel. 88

4.8 HyBR options panel. 90

4.9 Spatially Variant PSF panels. 91

4.10 Start cluster image: blurred and restored images. 92

4.11 Parallel HRRT Deconvolution GUI 97

4.12 Visual segmentation editor. 97

4.13 Segmentation I of the motion data used with Hoffman phantom

data. 99

4.14 Segmentation II of the motion data used with Hoffman phantom

data. 99

4.15 Comparison of MRNSD, HyBR and OSEM for Hoffman phan-

tom data (segmentation II, nearest neighbor interpolation, single

precision). 101

4.16 Comparison of trilinear and nearest neighbor interpolation for Hoff-

man phantom data (MRNSD, segmentation II, single precision). . 102

4.17 Comparison of segmentation I and segmentation II for Hoffman

phantom data (MRNSD, nearest neighbor interpolation, single pre-

cision). 102

4.18 Comparison of single and double precision for Hoffman phantom

data (MRNSD, segmentation II, nearest neighbor interpolation). . 103

4.19 Parallel Super-Resolution GUI 106

4.20 HyBR options panel. 107

4.21 Cancer cell from a rat’s prostate: low-resolution, interpolated and

high-resolution images. 108

4.22 MRI: low-resolution, interpolated and high-resolution images (only

a single slice is shown). 108

4.23 Parallel FFTJ GUI. 111

4.24 Satellite image: input image, frequency spectrum (logarithmic),

and phase spectrum. 112

4.25 Architecture diagram of the Papers of Abraham Lincoln project

[66]. 115

4.26 Collection of Lincoln papers [66]. 118

4.27 Lincoln Papers GUI. 120

List of Tables

3.1 Additional methods in Parallel Colt. In the first column, "All"

refers to all supported matrix data types, including single preci-

sion (complex and real), double precision (complex and real), 32-

bit and 64-bit integers, etc. 54

3.2 Comparison of MATLAB and Parallel Colt expressions for a sam-

ple set of matrix operations. 66

3.3 Performance in Gflops for single precision, real input 2D FFT. . . 69

3.4 Performance in Gflops for double precision, real input 2D FFT. . . 70

3.5 Performance in Mflops for the sparse matrix-vector multiplica-

tions y = Ax and y = ATx (numbers in brackets show the

performance of y = ATx). 72

8

4.1 Average execution times (in seconds) for 2D spectral deblurring

(numbers in brackets include the computation of the regulariza-

tion parameter). 79

4.2 Average execution times (in seconds) for 3D spectral deblurring

(numbers in brackets include the computation of the regulariza-

tion parameter). 80

4.3 Average execution times (in seconds) for 2D iterative deblurring. . 93

4.4 Average execution times (in seconds) for 3D iterative deblurring. . 93

4.5 Comparison of timings (in seconds), iterations, and relative errors

for Hoffman phantom data (trilinear interpolation, single preci-

sion). 103

4.6 Comparison of timings (in seconds), iterations, and relative errors

for Hoffman phantom data (nearest neighbor interpolation, single

precision). 104

4.7 Average execution times (in seconds) for Parallel Super-Resolution.109

4.8 Average execution times (in seconds) for 2D and 3D single preci-

sion, real forward Fourier transforms. 113

4.9 Total execution time (in seconds) of the workflow for the whole

sequence (1133 image scans) and a single image scan. 121

1

Chapter 1

Introduction

1.1 Motivation

Image processing is a general term used to refer to computational methods that

manipulate, modify, or analyze images. The input to the computational method

is usually an image (e.g. photographs or video frames) and the output can either

be an image or a set of characteristics or parameters related to the image. Typical

image processing operations include: geometric transformations, interpolation,

super-resolution, image restoration, image registration, image segmentation and

image recognition. In this thesis, we develop algorithms and high-performance

computing software for image processing, with a particular focus on geometric

transformations, interpolation, super-resolution and image restoration.

2

Due to recent improvements in personal computer architecture, it is possible to

efficiently manipulate large digital images on commodity hardware. Since practi-

cally all modern personal computers are equipped with powerful multi-core CPUs

and GPUs, there is an urgent need to provide image processing libraries and appli-

cation programming interfaces (APIs) that are aware of that architecture and are

able to fully utilize it.

Until relatively recently, improvements in CPU performance have been achieved

by increasing the clock speed, execution optimization, and by maximizing the size

of on-chip cache. The clock race ended in 2003, when all chip manufacturers

reached hard physical limits: increasing heat generation and power consumption,

lack of suitable cooling hardware, current leakage problems, and increasing length

of wire interconnects. October 2001 marks the beginning of a new era in CPU

manufacturing when IBM (Armonk, NY) released the POWER4 microprocessor,

the world’s first multi-core processor. Since then, all new processors have been

designed to consist of two or more independent cores on a single die. Six years

later, in February 2007, NVIDIA (Santa Clara, CA) publicly released CUDA SDK

[89], a set of development tools to write algorithms for execution on graphic pro-

cessing units (GPUs). General-Purpose computation on GPUs (GPGPU) became

available on virtually all desktop computers. Although software vendors have

3

started parallelizing their products, the vast majority of existing code is still se-

quential. In practice this means, for example, that only one-fourth of a quad-core

CPU (which is currently standard in a desktop computer) is utilized by a given

program.

Parallel computing has been used for scientific computing applications since

the 1960s, when the first supercomputers were developed. However, only re-

cently have these programming paradigms become useful for software running

on desktop and notebook computers. In this work we demonstrate the advantage

of exploiting modern computer architectures in scientific computing with multi-

threaded programming in Java for applications in image processing. Our aim is

to provide software that is robust, efficient, flexible, and easy to use on affordable

desktop and notebook computers. This work mainly focuses on image processing

operations that require solving large-scale ill-posed inverse problems.

1.2 Inverse Problems

Inverse problems appear in many science and engineering applications and have

been extensively studied by many applied mathematicians. The fact that most

inverse problems cannot be solved analytically has triggered substantial research

4

on the development of computational methods that find approximate solutions.

In image processing applications, ranging from biology and medicine to physics

and astronomy, the goal of solving inverse problems is to reconstruct certain at-

tributes of an image that were obfuscated in the acquisition process. We start the

discussion of inverse problems from the formal definition.

Definition 1.1 Let H1 and H2 denote Hilbert spaces and let K : H1 → H2

be a (possibly nonlinear) operator. An inverse problem is to find f ∈ H1 such

that g = K(f), where K is an operator describing the relationship between data

g ∈ H2 and model parameters f , and is a representation of the physical system.

A well known example of an inverse problem is the Fredholm integral equation

of the first kind in one space dimension

g(t) =

∫ b

a

k(t, s)f(s)ds, (1.1)

The continuous kernel k(t, s) and the function g(t) are given and the goal is to

find the function f(s). If the kernel k(t, s) is a function only of the difference

of its arguments, k(t, s) = k(t − s), and the limits of integration are ±∞, then

equation (1.1) becomes

g(t) =

∫ ∞
−∞

k(t− s)f(s)ds = k ∗ f, (1.2)

5

where ∗ denotes the convolution of the functions k and f . An analytic solution of

equation (1.2) is given by

f(s) = F−1
[
F [g(t)](ω)

F [k(t)](ω)

]
=

∫ ∞
−∞

F [g(t)](ω)

F [k(t)](ω)
e2πiωtdω, (1.3)

where F and F−1 are the forward and inverse Fourier transforms respectively.

Many inverse problems suffer from ill-posedness, so in the rest of this chapter we

introduce techniques used to solve ill-posed inverse problems.

Definition 1.2 [115] Let K : H1 → H2. An operator equation

g = K(f) (1.4)

is said to be well-posed provided

1. for each g ∈ H2 there exists f ∈ H1, called a solution, for which (1.4)

holds;

2. the solution f is unique; and

3. the solution is stable with respect to perturbation in g. This means that if

Kf∗ = g∗ and Kf = g, then f → f∗ whenever g → g∗

A problem that is not well-posed is said to be ill-posed.

6

Most inverse problems that arise in imaging applications are ill-posed. As a

consequence, the matrices in the computational problem (obtained by discretizing

the operator equation (1.4)) are very ill-conditioned and an accurate solution can-

not be computed with standard linear or nonlinear solvers. To obtain an accurate

solution of such problems, one has to use solvers that include some regularization

techniques. Without regularization, the naïve inverse solution is usually domi-

nated by noise and therefore it is a very poor approximation of the desired true

solution.

1.3 Regularization

Regularization involves introducing additional information in order to stabilize an

ill-posed inverse problem in the presence of noise. This information is usually in

the form of a penalty: restrictions on smoothness of the solution or bounds on the

vector space norm. We begin by showing why regularization is needed, and how

it can be done through spectral filtering. To simplify the discussion, we assume a

linear ill-posed inverse problem of the form

g = Kf true + η . (1.5)

7

This expression is a discrete form of the operator equation (1.4) where, K is a

large, ill-conditioned matrix that models the operator K, η is a vector that models

additive noise (usually unknown), and g is a vector representing the data g. The

goal is to find an approximation of the vector f true. In addition, K is assumed to be

an n× n normal matrix [105], meaning that it has a spectral value decomposition

(SVD)1

K = Q∗ΛQ , (1.6)

where Λ is a diagonal matrix containing the eigenvalues of K, Q∗ is the complex

conjugate transpose of Q, and Q∗Q = I. We assume further that the eigenvalues

are ordered so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0. Using the spectral decomposi-

tion, the inverse solution of (1.5) can be written as

f inv = K−1g = K−1(Kf true + η) = f true + K−1η = f true +
n∑
i=1

η̂i
λi

qi , (1.7)

where η̂ = Qη and qi is the ith column of Q∗. That is, the inverse solution is

comprised of two terms: the desired true solution and an error term caused by

noise in the data. To understand why the error term usually dominates the inverse

solution, it is necessary to know the following properties of ill-posed problems:

1We realize that “SVD” usually refers to “singular value decomposition”. We do not think

there should be any confusion because our discussion of filtering can be done using the singular

value decomposition in place of the spectral value decomposition.

8

• Assuming the problem is scaled so that |λ1| = 1, the eigenvalues, |λi|, decay

to, and cluster at 0, without a significant gap to indicate numerical rank.

• The eigenvectors qi corresponding to small |λi| tend to have more oscilla-

tions than the eigenvectors corresponding to large |λi|.

These properties imply that the high frequency components in the error are highly

magnified by division of small eigenvalues. The computed inverse solution is

dominated by these high frequency components, and is in general a very poor

approximation of the true solution, f true.

In order to compute an accurate approximation of f true, or at least one that is not

horribly corrupted by noise, the solution process must be modified. This process

is usually referred to as regularization [56, 115]. One class of regularization meth-

ods, called filtering, can be formulated as a modification of the inverse solution

[56]. Specifically, a filtered solution is defined as

f reg = K†rg = Q∗ΦΛ−1Qg, (1.8)

where Φ = diag (φ1, φ2, . . . , φn) and Λ−1 = diag
(

1
λ1
, 1
λ2
, . . . , 1

λn

)
. The filter

factors, φi, satisfy φi ≈ 1 for large |λi|, and φi ≈ 0 for small |λi|. That is, the

large eigenvalue (low frequency) components of the solution are reconstructed,

while the components corresponding to the small eigenvalues (high frequencies)

9

are filtered out. Different choices of filter factors lead to different methods; pop-

ular choices are the truncated SVD (or pseudo-inverse), Tikhonov, and Wiener

filters [56, 115, 49]. Some of these methods are discussed in Section 2.1.1. In this

work we mainly focus on the efficient implementation of state of the art solvers

for ill-posed inverse problems.

1.4 Outline of This Work

In this dissertation we develop new, open source Java software for scientific com-

puting and image processing with an emphasis on solving large-scale inverse

problems. The rest of this work is organized as follows. Chapter 2 describes math-

ematical theory and computational methods for solving two important classes of

image processing algorithms: deconvolution and super-resolution. In Chapter 3

we motivate the choice of Java for our imaging applications and describe a high-

performance Java library for scientific computing and image processing, which

we call Parallel Colt. Chapter 4 discusses the details of the implementation, usage

examples and benchmarking of various image processing algorithms implemented

on top of Parallel Colt. Conclusions are summarized in Chapter 5. In Appendix

A we describe the derivation of a fast Fourier transform algorithm and Appendix

10

B provides information about software packages that use the libraries and plugins

described in this work.

11

Chapter 2

Deconvolution and Super-resolution

This chapter describes mathematical theory and computational methods for solv-

ing two important classes of image processing algorithms: deconvolution and

super-resolution.

2.1 Deconvolution

In applications such as astronomy, medicine, physics and biology, scientists use

digital images to record and analyze results from experiments. Environmental

effects and imperfections in the imaging system can cause the recorded images

to be degraded by blurring and noise. Image restoration (sometimes known as

deblurring or deconvolution) is the process of reconstructing or estimating the true

image from the degraded one. Image deblurring algorithms can be classified into

12

two types: spectral filtering methods and iterative methods. Another classification

divides these algorithms into methods that do not require any information about

the blur (also called blind deconvolution algorithms) and methods that need that

information. In this work we only discuss the latter ones. Information about

the blur is usually given in the form of a point spread function (PSF). A PSF is

an image that describes the response of an imaging system to a point object. A

theoretical PSF can be obtained based on the optical properties of the imaging

system. The main advantage of this approach is that the obtained PSF is noise-

free. The experimental technique, on the other hand, relies on taking a picture of

a point object, for example in astronomy this can be a distant star.

Mathematically, image deblurring is the process of computing an approximation

of a vector f true (which represents the true image scene) from the linear inverse

problem (1.5). Here, K is a large, usually ill-conditioned matrix defined by the

PSF, and g is a vector representing the recorded image, which is degraded by

blurring and noise. We assume that the PSF, and hence K, is known, but the

noise η is unknown. Because K is usually severely ill-conditioned, some form of

regularization needs to be incorporated. As was already mentioned in Section 1.3,

many regularization methods compute solutions of the form

13

f reg = K†rg, (2.1)

where K†r can be thought of as a regularized pseudo-inverse of K. The precise

form of K†r depends on many things, including the regularization method, the

data g, and the blurring matrix K [57]. Note that

f reg = K†rg = K†rKf true + K†rη , (2.2)

so such regularization methods attempt to balance the desire to have K†rK ≈ I

while at the same time keeping K†rη from becoming too large.

2.1.1 Spectral Deconvolution

Spectral filtering methods exploit structure of the matrix to efficiently compute the

singular (or spectral) value decomposition of K, and use this information to con-

struct K†r. The spectral filtering algorithms include many well known techniques

for image deblurring such as the Wiener filter [49] and the pseudo inverse filter.

But general approaches, such as truncated spectral decompositions and Tikhonov

regularization [57] also belong to this group. Whether or not these techniques

work well depends on special structure of the PSF (and hence of K) and on the

imposed boundary conditions [57].

14

The computational efficiency of spectral filtering methods for image deblurring

with a spatially invariant PSF requires efficient discrete Fourier transform (DFT)

and discrete cosine transform (DCT) routines. Although these deconvolution al-

gorithms can be very efficient, and they are fairly easy to implement they have

many limitations. First, efficient implementation requires the blur to have a very

special structure, and this almost always means spatially invariant. In the case

of spatially variant blurs, DFT and DCT based methods do not provide the right

basis to use in filtering algorithms. It is possible to generalize the filtering ideas,

using the singular value decomposition, but generally these approaches are very

expensive. One exception is if the space variant blur is separable (i.e., the blurring

operation can be separated into components involving a single vertical and a sin-

gle horizontal blur). In this case, the matrix K can be represented as a Kronecker

product of two smaller matrices. Another limitation of spectral filtering methods

is that it is not possible to include additional constraints, such as nonnegativity, in

the reconstruction algorithms. Figure 2.1 shows a comparison between the spec-

tral and iterative methods; in practice the reconstruction quality is usually much

better when an iterative algorithm is used.

15

PSF Blurred image Restored image (spectral) Restored image (iterative)

Figure 2.1: Spectral vs. iterative image deblurring.

Boundary Conditions

If the blur is assumed to be spatially invariant, then the PSF is the same regardless

of the position of the point source in the image field of view. In this case, if we

also enforce periodic boundary conditions, then K has a circulant matrix structure

[57], and the spectral factorization

K = F∗ΛF , (2.3)

where F is the DFT matrix; a d-dimensional image implies F is a d-dimensional

DFT matrix. In this case, the matrix F does not need to be constructed explicitly;

we simply need a call to a function to evaluate the DFT. Efficient implementations

of DFTs are usually referred to as fast Fourier transforms (FFT) [33] (see Section

6.1). Computations such as the matrix-vector multiplications Fb and F∗b are

16

done by functions calls

Fb ⇔ fft(b) (forward FFT)

F∗b ⇔ ifft(b) (inverse FFT)

The eigenvalues of K can be obtained by computing an FFT of the first column

of K, and the first column of K can be obtained directly from the PSF [57].

If the image has significant features near the boundary of the field of view, then

periodic boundary conditions can cause ringing artifacts in the reconstructed im-

age. In this case, it may be better to use reflexive boundary conditions. But

changing the boundary conditions changes the structure of K, and it no longer has

the Fourier spectral decomposition given in equation (2.3). However, if the PSF

is also symmetric (as in the case of atmospheric turbulence), then K is a mix of

Toeplitz and Hankel structures [57], and has the spectral value decomposition

K = CTΛC , (2.4)

where C is the DCT matrix; a d-dimensional image implies C is a d-dimensional

DCT matrix. In this case, the matrix C does not need to be constructed explicitly;

we simply need a call to a function to evaluate the DCT. As with FFTs, there are

very efficient algorithms for evaluating DCTs. Furthermore, computations such

17

as the matrix-vector multiplication Cb and CTb are done by functions calls

Cb ⇔ dct(b) (forward DCT)

CTb ⇔ idct(b) (inverse DCT)

The eigenvalues of K can be obtained by computing a DCT of the first column of

K, and the first column of K can be obtained directly from the PSF [57]. Note that

in the case of the FFT, F has complex entries and thus computations necessarily

require complex arithmetic. However, in the case of the DCT, C has real entries,

and all computations can be done in real arithmetic.

Truncated SVD

For this method [56] the filter factors have the simple form

φi =


1, i = 1, . . . , k

0, i = k + 1, . . . n

(2.5)

The truncation parameter k determines the number of SVD components used in

the regularized solution

fk = K†kg =
k∑
i=1

ĝi
λi

qi, (2.6)

18

where ĝ = Qg, and qi is the ith column of Q∗. In other words, the Truncated

SVD solution fk is obtained by first replacing the ill-conditioned matrix K by the

rank-k matrix Kk defined as

Kk =
k∑
i=1

qiλiq
∗
i , (2.7)

followed by computing the minimum-norm least squares solution to

min ‖f‖22 subject to min ‖g −Kkf‖22 (2.8)

Tikhonov

For the Tikhonov method [56], the regularization filter factors are of the form

φi =
|λi|2

|λi|2 + α2
, (2.9)

where the scalar α is called a regularization parameter, and usually satisfies

|λn| ≤ α ≤ |λ1|. Note that smaller α lead to more φi approximating 1. This

particular choice of the filter factors yields the following minimization problem

min
f

{
‖g −Kf‖22 + α2 ‖f‖22

}
(2.10)

with a solution vector given by

19

ffilt =
n∑
i=1

|λi|2

|λi|2 + α2

ĝi
λi

qi, (2.11)

where ĝ = Qg, and qi is the ith column of Q∗.

Generalized Tikhonov

The above Tikhonov method is a special case of more general approach called

damped least squares or generalized Tikhonov regularization [57]. The minimiza-

tion problem for this method takes the form

min
f

{
‖g −Kf‖22 + α2 ‖Df‖22

}
(2.12)

where D is a regularization matrix, usually an approximation to a derivative oper-

ator. One should notice that the damped least squares approach is equivalent to the

Tikhonov approach when D is equal to the identity matrix. To find the regularized

solution to problem (2.12), one attempts to balance between the size of two differ-

ent terms. The first term, ‖g −Kf‖22, measures the goodness-of-fit of the solution

f . If its value is too large, then the solution does not fit the data g very well, and

if the value is too small, then the solution is probably corrupted by the noise in

the data. The second term ‖Df‖22, called the regularization term, measures the

smoothing. The value of this term should be small if f is a good quality solution

20

(i.e. the deblurred image matches our expectation) and it should be large when

the reconstruction contains a large component of inverted noise. The regulariza-

tion parameter α allows to keep the balance between the minimization of these

two terms. If α is too small, then the solution will be influenced too much by the

noise in the data. Conversely, if the value of α is too large, then the solution will

be over-smoothed, i.e. the details in the deblurred image will not be visible. In

the next section we present three of the most common methods for choosing the

optimal value for the regularization parameter.

Parameter Choice Methods

The regularization parameter is problem dependent, and in general it is nontriv-

ial to choose an appropriate value. Various techniques can be used, such as the

discrepancy principle, the L-curve, and the generalized cross-validation [56, 115].

There are advantages and disadvantages to each of these approaches [70], espe-

cially for large-scale problems.

The discrepancy principle [79] method relies on having a good approximation

of the expected value of the error in the data (δ = ‖η‖22). If this information

is given, then the value of α should be chosen so that the norm of the residual

(‖g −Kffilt‖2) is approximately equal δ. As the error approaches zero (δ → 0),

21

then the filtered solution approaches the exact solution (ffilt → f true), i.e. the

discrepancy principle is convergent as the error norm goes to zero, but it tends to

find values of the regularization parameter that over-smooth the solution.

The L-curve criterion [55] is a log-log plot of the norm of the regularized solu-

tion (‖ffilt‖2) versus the corresponding residual norm (‖g −Kffilt‖2) for each of

a set of regularization parameter values. This plot is usually in the shape of the

letter L and the optimal value of α lies at the corner, or at the location of maximum

curvature. This method fails as the error norm approaches zero.

The generalized cross-validation (GCV) [46] criterion relies on the principle

that if we remove a data value, then a good choice of the regularization param-

eter should be able to predict the missing data point well. GCV determines the

parameter α as a minimum of the GCV functional

G(α) =
‖(I−KQ∗ΦΛ−1Q)g‖22

(trace(I−KQ∗ΦΛ−1Q))2
, (2.13)

where KQ∗ΦΛ−1Q is the matrix that maps the right hand side g onto the regular-

ized solution ffilt. For Tikhonov regularization, the above formula can be written

in the simplified form

G(α) = n
n∑
i=1

(
α2 |ĝi|
|λi|2 + α2

)2
/(

n∑
i=1

α2

|λi|2 + α2

)2

, (2.14)

22

where ĝ = Qg. Standard optimization routines can be used to minimize G(α).

GCV also fails to converge to the true solution as the error norm goes to zero.

Moreover, the graph of G can be very flat near its minimum value which makes

it hard to determine that value numerically. However, despite the limitations, this

parameter choice method usually works best in practice.

From the above discussion it is clear that no parameter choice method is perfect.

In this work we use the generalized cross-validation approach.

2.1.2 Iterative Deconvolution

With iterative methods, a sequence of approximations of f is constructed, where

hopefully subsequent approximations provide better reconstructions. Mathemati-

cally this is equivalent to solving a particular optimization problem involving K

and g, which could be formulated as something simple like a linear least squares

problem, or something more complicated that incorporates (possibly nonlinear)

constraints. As with spectral filtering methods, regularization must be incorpo-

rated using, for example, a priori constraints, or through appropriate convergence

criteria, or even a combination of such techniques. All the algorithms consid-

ered here have the general form shown in Algorithm 1. The most computation-

ally expensive operations are performed in line 3 of this algorithm and include a

23

matrix-vector product with K and a linear system solve involving the precondi-

tioner P. In most cases, both of these operations can be efficiently implemented

using trigonometric transforms or with sparse matrix computations. The goal of

preconditioning is to speed-up the convergence, but also not too significantly in-

crease the computational cost per iteration.

Algorithm 1 General form of iterative deconvolution algorithms.
1. f0 = initial estimate of f

2. for j = 0, 1, 2, . . .

3. fj+1 = computations involving fj , K, preconditioner P and other quantities

4. determine if stopping criteria are satisfied

5. end

Well known examples of iterative image reconstruction algorithms include ex-

pectation maximization (EM) type approaches (such as the Richardson-Lucy al-

gorithm [101]), conjugate gradient (CG) type methods [111], and many others; see

for example [29, 14, 72]. One important advantage of using iterative algorithms

is that they can be used on a much wider class of blurring models, including spa-

tially variant blurs. Although iterative methods are generally more expensive than

spectral filtering methods for simple spatially invariant blurs, they are much more

efficient for difficult spatially variant blurs. Moreover, it is much easier to incor-

porate constraints (e.g., nonnegativity) in the algorithms. The main disadvantages

24

of iterative methods are the need to determine how to incorporate regularization

(to stabilize the iterative method in the presence of noise), and how to determine

an appropriate stopping iteration. Hybrid approaches [90, 15, 31] that combine

a conjugate gradient type iterative method with a spectral factorization can be

effective in overcoming these disadvantages.

In this work we consider four iterative solvers: hybrid bidiagonalization regular-

ization (HyBR) [31], conjugate gradient for least squares (CGLS) [16], modified

residual norm steepest descent (MRNSD) [84], and the nonnegatively constrained

Landweber iteration [14].

HyBR is an efficient iterative method that combines an iterative Lanczos bidi-

agonalization method with a singular value decomposition-based regularization

method to stabilize the semiconvergence behavior that is characteristic of many

ill-posed problems. In other words, HyBR can automatically choose regulariza-

tion parameters and stop the iteration process based on the data. Unfortunately,

this algorithm does not enforce nonnegativity constraints, and the storage require-

ments grow as the iterations proceed.

Due to its fast convergence, Krylov subspace methods are attractive for iterative

image deblurring, however, they do not find a nonnegative solution. CGLS is a

conjugate gradient method applied to the normal equations. The stopping criterion

25

of CGLS is based only on the value of the relative residual, thus this method is

not able to determine an appropriate stopping iteration. An advantage of CGLS is

that it is faster than HyBR (CGLS does not need to compute the stopping criterion

parameters).

MRNSD is a nonnegatively constrained steepest descent method on the normal

equations. Although it produces a nonnegative solution, MRNSD also lacks a

sophisticated stopping criterion, such as the one implemented in HyBR. Moreover,

it can converge very slowly compared to CGLS and HyBR.

The nonnegatively constrained Landweber iteration is a very simple stationary

iterative method with slow convergence rate. Similar to CGLS and MRNSD,

Landweber iteration is not able to detect the semiconvergence without a good

estimate of the noise level. However, the computational cost per iteration for this

method is the lowest out of the four algorithms considered here.

Matrix-Vector Products

In Section 2.1.1 we described how to perform matrix-vector products efficiently

when the PSF is spatially invariant and the boundary conditions are assumed to be

either periodic or reflexive. There is another approach commonly used in practice

- zero boundary conditions. In that case, matrix K has a Toeplitz structure, which

26

does not have a spectral decomposition by means of fast trigonometric transforms.

However, the Toeplitz matrix can be embedded into a larger circulant matrix, and

then the matrix-vector product computations are done by padding the image with

an appropriate number of zeros and using FFTs as for periodic boundary condi-

tions.

When a generic spatially variant blur is considered, then every pixel in the im-

age can have its own point spread function. Implementing this approach may not

be feasible in practice, but it is often appropriate to assume that for small subre-

gions of the image, the PSF is spatially invariant. Interpolation can then be used to

combine the individual PSFs into an approximation of the spatially variant blur-

ring operator. If piecewise constant interpolation is used, then the spatially variant

PSF matrix has the following structure

K =

p∑
i=1

DiKi, (2.15)

where Ki are Toeplitz matrices, except for those corresponding to the border,

where their structure depends on the boundary conditions. Di are diagonal matri-

ces with kth diagonal entry of Di equal one if the kth point is in region i, and zero

otherwise. The matrix-vector products involving spatially variant PSFs are com-

puted by overlap-add and overlap-save methods [82], where the fast algorithms

27

for spatially invariant blur are used on each subregion of the image.

Preconditioning

Every preconditioner matrix P for ill-posed inverse problems should satisfy the

following general properties:

• P is relatively inexpensive to construct,

• It is relatively inexpensive to solve linear systems of the form Px = y,

• The preconditioned system should satisfy P−1Kr ≈ I, where Kr = Q∗ΦΛQ.

The last condition, refers to the rate of convergence, which is faster when more of

the large eigenvalues are clustered around 1. The process of image deconvolution

requires solving linear systems with highly structured matrices, including circu-

lant, Toeplitz and Hankel. Preconditioners for such systems have been widely

studied in the literature [26, 80, 81]. In this work we consider a method, where

the preconditioner is constructed to be a circulant approximation of matrix K.

When the PSF is spatially invariant, then there exist very inexpensive methods

[27, 28] (based on FFTs) to construct the circulant preconditioner by solving one

of the following minimizations problems

28

min ‖K−P‖F or min ‖K−P‖1 (2.16)

over all circulant matrices, P. For spatially variant blurs a similar approach is

used, however, in that case we construct a preconditioner using a single PSF that is

the average of all given PSFs. Although this technique is not optimal, it works well

in practice and makes the implementation much easier than creating a separate

preconditioner for each PSF [83].

2.2 Motion Correction of PET Brain Images

Deconvolution is also used in medical imaging, where sharper images with more

visible details directly translate to better diagnosis. Patient movement during

positron emission tomography (PET) scanning introduces motion blur and re-

duces the resolution of the image. While some patient motion can be tolerable

in low-resolution imaging systems, with new PET scanners, even small amount

of motion can degrade image quality. The resolution of latest PET scanners ap-

proaches 2 mm, however it is only attainable when the subject is motionless. On

the other hand, it is unreasonable to expect patients to keep their heads perfectly

still, unless the acquisition time is very small. Thus, one can either prevent or

29

correct for subject motion during the scan. A cooperative patient, with the aid of a

head restraint system, can often limit the movement to within 2-4 mm for the du-

ration of a PET study. However, even with that restraint system, translations in the

range of 5mm and rotations of 1 degree have been observed [18, 50]. Even more

movement may be expected when patients suffer from psychiatric or neurologic

diseases.

However, if it is possible to continuously measure the position of the head, this

positional information can be used to correct the measured data. Different meth-

ods for head motion tracking and correction have been described in the literature.

Position monitoring has been implemented using light-emitting diodes (LEDs)

[95], magnetic field [50] and infrared [45, 77] sources and targets to track pa-

tient head position. A commercial system able to make measurements such as

these is the VICRA stereo camera from NDI (Northern Digital, Waterloo, On-

tario, Canada). It provides estimates of the position of markers placed on the head

at up to 20 Hz. Given that object positioning information is available, there are

different ways to use it to correct patient motion.

Motion correction methods that have been reported in the literature fall into three

general categories [41]. Sinogram rebinning described by Bloomfield [18], Buhler

[22], Menke [77] and Rahmim [98] involves using the known subject movement

30

to move counts into the position where they would have been detected had the

patient not moved. This method requires list mode reconstructions and careful

consideration of scanner normalization. A second approach is the multiple ac-

quisition frame (MAF) method described by Picard and Thompson [95] wherein

short duration frames are acquired and each is corrected for motion prior to sum-

ming to create the final image. However, this method uses only the average head

motion within a frame and hence does not correct for large head movements. More

recently, known patient motion has been incorporated into a system response func-

tion used during maximum likelihood expectation maximization (MLEM) recon-

struction of the emission image [99]. Since this method involves system matrix

modification, it requires detailed understanding of the geometry of the scanner as

well as detector response characteristics and attenuation. In this work we consider

only the last approach.

2.2.1 Motion Detection

This section describes a fairly simple procedure for tracking and recording patient

movements during a PET scan. See Figure 2.2 for an illustration of the tracking

device mounted on the rear of the scanner gantry and the reference tool mounted

inside the scanner.

31

Figure 2.2: (a) The Polaris Vicra mounted on the rear of the scanner gantry using

the 80/20 T-slot system. (b) Reference tool mounted inside the scanner (inset –

another view of the reference tool) [97].

The mobile, or patient, target is attached to the patient’s head using a modified

swimming cap. This (hopefully) prevents the target from moving independently of

the patient’s head, which would cause inaccurate information to be recorded. The

patient target is composed of four passive markers that reflect infrared light. The

tracker, shown in front of the PET machine in the figure, emits infrared light. The

light is reflected off the four markers, and their orientation (as a unit quaternion

q̇ = q0 + iqx + jqy + kqz) and position (as a vector [px, py, pz]) are calculated;

this provides motion information in six degrees of freedom. These measurements

are made multiple times per second and stored, resulting in fairly accurate motion

32

information.

As the tracker is not attached to the PET machine, it is possible that it may

accidentally be moved. In order to account for any unintentional tracker move-

ment, four passive markers are attached to the PET machine itself; this is called

a reference target. A computer connected to the tracker records the position and

orientation of the reference target in addition to the patient target.

It is important to realize that we now have three different coordinate systems to

work with:

• the reference coordinate system,

• the patient target coordinate system, and

• the image coordinate system.

Note that both the reference space and the image space are fixed; the target space

is attached to the patient’s head and moves as the patient moves.

Following the procedure from [97], let X be some point that is measured with

respect to each of these coordinate systems: XR is with respect to the reference

space, XT is with respect to the target space, and XI is with respect to the image

33

space. We can relate these coordinate systems using transformation matrices as

XI = CXR

XR = QXT (2.17)

XT = MIXI

Note that, by construction, MI = Q−1C−1; thus, we only need to determine two

of the transformation matrices to be able to represent a point in any of these three

coordinate systems.

The transformation matrix C is invariant under patient movement; it is the cali-

bration matrix that relates the reference space and the image space, both of which

are fixed. If the reference target does not move once it is attached to the PET

machine, this calibration matrix need only be computed once and then used for all

future scans. See [97] for a description of how this matrix is computed.

The 4 × 4 matrix Q (see Eq. (2.18)) represents the transformation between the

reference and target coordinate frames for some orientation and position (which

we call the pose) of the head:

34

Q =



q20 + q2x − q2y − q2z 2(qxqy − q0qz) 2(qxqz + q0qy) px

2(qyqx + q0qz) q20 − q2x + q2y − q2z 2(qyqz − q0qx) py

2(qzqx − q0qy) 2(qzqy + q0qx) q20 − q2x − q2y + q2z pz

0 0 0 1


(2.18)

Since the patient target is attached to the patient’s head, a particular point in the

patient’s brain has a constant position in the target space. In other words, XT is

invariant under patient movement. If we consider some point XT before and after

a discrete movement, where positions after movement are denoted by ′, then

X′T = XT

M′
IX
′
I = MIXI (2.19)

Q′−1C−1X′I = Q−1C−1XI

X′I = CQ′Q−1C−1XI

Thus, the transformation from some point before movement to the corresponding

point after movement is given by CQ′Q−1C−1.

Since we take all of the motion information recorded during the scan and break

it up into several bins, each of which has a fairly distinct pose, we can consider XI

as coming from the first bin, or the initial pose. Then, every movement is given

in relation to the first pose. Thus, we need to compute Q−1 only once and so, for

35

each distinct pose j after the first one, we compute the transformation from the

initial pose to the jth one as CQjQ
−1C−1, where Qj is the matrix Q computed

by using the average quaternion and position vector of the jth pose.

2.2.2 Mathematical Formulation

We now consider how to use the transformation matrices described in the previous

section to set up a system of equations. From above, we have

Xi = CQiQ
−1C−1X1 (2.20)

where Xi is a point in the ith bin, C is the calibration matrix, Qi is determined by

Eq. (2.18) using the motion information of the ith bin, Q−1 is the inverse of Q1,

and X1 is the corresponding point in the first bin. Having these transformation

matrices allows us to determine displacements on our regular 3D grid of voxels

and by using interpolation we can create displacement matrices Ki. Each Ki is a

large, sparse matrix that contains the interpolation weights for bin i; for trilinear

interpolation, each row contains at most eight entries. If nearest neighbor interpo-

lation is used, each row contains at most one entry and its value is always 1. Thus,

if f is the true 3D image stored in vector form, then Kif produces an image that

is in the same pose as the patient’s head was, on average, during the time frame

corresponding to bin i.

36

If only a single image g is acquired during the PET scan, then we have

Kf ≈ g, (2.21)

where

K =
n∑
i=1

wiKi. (2.22)

n, in the above equation denotes a number of bins and weights wi are calculated

using the segmentation of the motion information described in the next section.

Note that, in exact arithmetic, K1 is just the identity matrix and the equality in

equation (2.21) is not possible due to the presence of noise (it is an example of

ill-posed inverse problem). To solve the system of equations (2.21) we use one

of four iterative solvers: HyBR, CGLS, MRNSD or ordered subsets expectation

maximization (OSEM) [65]. Spectral deblurring methods cannot be applied to this

problem, because matrix K does not have any special structure and its eigenvalues

cannot be computed by fast trigonometric transforms.

2.2.3 Determining Head Positions

We have developed an algorithm for the segmentation of the motion informa-

tion that automatically determines distinct head positions (the number of bins).

In the previous work [97] this step was done manually by plotting the values of

37

q0, qx, qy, qz, px, py, pz (against time) and then dividing them into intervals by

visual inspection. MATLAB code for this automated method is shown in Algo-

rithm 2. In lines 2 - 9, the variables are initialized. Then, in lines 10 - 18, the

weighted average motions avgMotions are computed. Finally, in the last part of

the algorithm, the segmentation seg is calculated from avgMotions using the

tolerance tol (the standard deviation of the weighted average motions (line 19)).

38

Algorithm 2 Segmentation of the motion information.
1. function seg = ComputeSegmentation(motions, params)

2. sr = params.samplingRate;

3. minSegSize = params.scanDuration / sr;

4. fs = params.timeOffset * sr;

5. ls = fs + params.scanDuration * sr - 1;

6. period = 1.0 / params.samplingRate;

7. quatsWeight = params.quaternionsPercentage / 100.0;

8. avgQuats = zeros(ls - fs + 1, 1);

9. avgTrans = = zeros(ls - fs + 1, 1);

10. for k=1:4

11. avgQuats = avgQuats + Normalize(motions(fs:ls,k));

12. end

13. avgQuats = avgQuats * quatsWeight;

14. for k=5:7

15. avgTrans = avgTrans + Normalize(motions(fs:ls,k));

16. end

17. avgTrans = avgTrans * (1.0 - quatsWeight);

18. avgMotions = Normalize(avgQuats + avgTrans);

19. tol = std(avgMotions);

20. seg(1) = 0; i = 2; seg(i) = period;

21. refValue = avgMotions(1);

22. for k = 2:length(avgMotions)

23. if(abs(avgMotions(k) - refValue) >= tol)

24. if ((seg(i) - seg(i - 1)) < minSegSize)

25. refValue = avgMotions(k);

26. seg(i) = seg(i) + period;

27. else

28. refValue = avgMotions(k);

29. i = i + 1; seg(i) = seg(i-1) + period;

30. end

31. else

32. seg(i) = seg(i) + period;

33. end

34. end

35. seg(i) = params.scanDuration;

39

2.3 Super-Resolution

In most image processing applications it is desirable to have images with high spa-

tial resolution. One approach to obtain such images is to build sophisticated de-

vices having intrinsically high-resolution capabilities. However, these techniques,

in addition to being costly, suffer from other limitations that are difficult to over-

come [94]. Super-resolution [30] is a less expensive alternative that recently has

gained popularity in digital imaging and video applications. One very interesting

application of this technique is in surveillance cameras, where super-resolution

can help for instance in a criminal investigation.

Super-resolution is an image fusion and reconstruction problem, where an im-

proved resolution image is obtained from several geometrically warped, low-

resolution images of the same scene. Here we assume that the geometrical warp-

ing is limited to affine transformations and each of these images is shifted / ro-

tated by subpixel displacements. The high-resolution image is not only an image

that has more pixels (like in the case of interpolation), but it also has more visi-

ble details. The subpixel displacements guarantee that each low-resolution image

contains different information about the same scene. If the low-resolution im-

ages were shifted by an integer multiple of the pixel size, then the process of

super-resolution would be equivalent to an interpolation in the sense that the re-

40

construction would not have more visible details. It should be emphasized that

super-resolution is the only nonlinear inverse problem that is considered in this

work; all deconvolution methods discussed above were formulated as linear in-

verse problems.

Suppose we have acquired m low-resolution images g(1),g(2), . . . ,g(m) that

meet the assumptions described in the previous paragraph.The process of super-

resolution can be modeled in the following way

g = K(y)f + η, (2.23)

where

K(y) =



DS(y(1))

DS(y(2))

...

DS(y(m))


, y =



y(1)

y(2)

...

y(m)


, g =



g(1)

g(2)

...

g(m)


, η =



η(1)

η(2)

...

η(m)


.

In the above equation, D, called a decimation matrix, transforms a high-resolution

image into a low-resolution image. Matrix S models a geometric distortion (affine

transformation) of the high-resolution image, f and it is defined by the parameter

vector y(i). This vector contains six values that uniquely define an affine transfor-

mation in a 3D space. Finally, a vector η models additive nose.

41

At this point it should be clear that the super-resolution problem requires esti-

mating both the values for the geometric distortions (y) and the unknown high-

resolution image (f). In other words, the reconstruction process can be split into

two steps: (1) estimating the relative displacement of each point in each image

from points in a reference image and (2) solving a linear ill-posed inverse prob-

lem to obtain the high-resolution image. In mathematical terms this process can

be formulated as a nonlinear least squares problem

min
f ,y

φ(f ,y) = min
f ,y
‖g −K(y)f‖22 (2.24)

which can be solved using a Gauss-Newton approach [88].

Here we assume problem (2.24) is solved by the reduced Gauss-Newton method

with HyBR used as a linear solver (see Algorithm 3). Jψ in line 5 of Algorithm 3

denotes the Jacobian of the reduced cost functional as described in [30].

Algorithm 3 Reduced Gauss-Newton Algorithm with HyBR.
1. choose initial y0

2. for k = 0, 1, 2, . . .

3. fk = HyBR(K(yk),g)

4. rk = g −K(yk)fk

5. dk = arg min
d
‖Jψd− rk‖2

6. yk+1 = yk + dk

7. end

42

Chapter 3

Java in Scientific Computing and

Imaging

In this chapter we motivate the choice of Java for our imaging applications and

describe Parallel Colt [119], a high performance Java library for scientific com-

puting and image processing.

3.1 Why Java?

Although Java was not designed to be a scientific computing language [25], it has

several unique features that are attractive for high-performance scientific comput-

ing. Because distributions are available for virtually all computing platforms, Java

is an extremely portable programming language. In addition, starting in 2007,

43

Java has become an open source project, allowing anyone to modify and adapt it

to their needs. Java has native support for multithreading, and since version 5.0

[108] it is equipped with concurrency utilities in the java.util.concurrent

package. Moreover, the performance of the latest version of Java (6.0) is com-

parable to the performance achieved by programs written in Fortran or C/C++

[7, 52]. Finally, sophisticated imaging functionality is built into Java, allowing for

efficient visualization and animation of computational results. This is especially

important for our work in image processing, but is also useful in many areas of

scientific computation, such as computational fluid dynamics.

However, because of certain design choices, there are also disadvantages to us-

ing Java in scientific computing. These include no primitive type for complex

numbers, an inability to do operator overloading, and no support for IEEE ex-

tended precision floats. In addition, Java arrays were not designed for high-

performance computing; a multi-dimensional array is an array of one-dimensional

arrays, making it difficult to fully utilize cache memory. Moreover, Java arrays are

not resizable, and only 32-bit array indexing is possible. Finally, GPGPU is cur-

rently not possible in Java. There are libraries, such as JCuda [67], that provide

Java bindings to CUDA, but they are only wrappers to underlying C code.

44

3.2 Related Work

There are many Java libraries for scientific computing [96], however, in this sec-

tion we only review the projects that are closely related to our work. MATLAB

(The MathWorks, Natick, MA), although not written in Java, is probably the

most widely used commercial application in these areas of study. MathWorks

introduced multithreading in MATLAB R2007a, but even in the latest version

(R2009a) the usage of multiple threads is limited. In particular, most of the lin-

ear algebra algorithms, such as matrix decompositions, are still sequential. This

situation will probably change in the next release, due to the fact that the package

Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) [24] is

already available. GPU based computations are available in MATLAB through a

third-party toolbox called Jacket [5]. Jacket does not introduce a new API, but

instead allows programs written in the native M-Language to be automatically

wrapped into a GPU compatible form. Currently Jacket supports only NVIDIA

graphic cards and, compared to standard MATLAB, its functionality is very lim-

ited (in particular, none of the LAPACK [8] routines are supplied).

JScience [34] is an open source package written by Jean-Marie Dautelle with

the ultimate goal to “create synergy between all sciences (e.g. math, physics,

sociology, biology, astronomy, economics, etc.) by integrating them into a sin-

45

gle architecture”. It supports multithreaded computations through the real-time

programming library Javolution. Current features include modules for measures

and units, geographic coordinates, mathematical structures (e.g. group, ring, vec-

tor space), linear algebra, symbolic computations, numbers of arbitrary precision,

physical models (e.g. standard, relativistic, high-energy, etc.) and currency con-

versions. Nonetheless, JScience provides almost no support for image processing,

and its linear algebra module is very limited, containing only the LU factorization.

In addition, there is no class that represents a tensor (e.g., a 3D image array), no

matrix sub-ranging, and no FFTs.

Matrix Toolkits for Java (MTJ) [60] is a collection of matrices, linear solvers

(direct and iterative), preconditioners, least squares methods and matrix decom-

positions written by Bjørn-Ove Heimsund. This library is based on BLAS [17]

and LAPACK [8] for dense and structured sparse computations and on Templates

[13] for unstructured sparse computations. By default JLAPACK [37] is used,

but MTJ can be configured to use native BLAS and LAPACK libraries (such as

ATLAS [126]). Moreover, the library supports distributed computing via an MPI-

like interface. However, MTJ does not supply multithreading, tensors, complex

matrices, matrix sub-ranging, and FFTs.

OR-Objects [39] is a collection of 500 Java classes developed by DRA Systems.

46

It contains packages for linear programming, graph algorithms, matrix and linear

algebra, numerical integration, probability and statistics, and geometry. Although

OR-Objects is a freeware library, the source code is unavailable, which makes it

much less attractive from our point of view. Moreover, analogous to JScience

and MTJ, OR-Objects does not provide FFTs, tensors, complex matrices and its

multithreaded functionality is limited only to BLAS.

UJMP [11] is a new project that aims to provide classes for storing and pro-

cessing matrices with interfaces to external data sources (such as databases) and

matrix libraries (including Parallel Colt). It allows to handle data that does not fit

into main memory (the matrix size can be up to 263 rows or columns). In addi-

tion, UJMP supports n-dimensional arrays and visualization methods for matrices.

However, this package is also not designed for image processing. In particular,

UJMP does not provide any parallel algorithms, complex matrices and Fourier

transforms.

Mines Java Toolkit (JTK) [53] is a Java package for science and engineering

written by Dave Hale. JTK is implemented in 90% pure Java (OpenGL and LA-

PACK functionality is provided by Java Native Interface (JNI) wrappers). The

toolkit provides many algorithms for digital signal processing, including vari-

ous local and recursive filters and FFTs, a system for 2D graphics, unstructured

47

meshes of triangles and tetrahedra, and several optimization algorithms. However,

their FFTs are not multithreaded and the size of a 1D transform cannot exceed

720720 (due to the prime-factor FFT algorithm of Temperton [110]). Moreover,

Mines Java Toolkit does not support tensors, complex matrices and matrix sub-

ranging.

Commons-Math [9] is software developed by the Apache Software Foundation

with a goal of providing a library of lightweight, self-contained mathematics and

statistics components addressing the most common problems not available in the

Java programming language. The current version (2.0) provides extensive func-

tionality for statistics, integration, interpolation, random numbers, linear algebra,

optimization, ordinary differential equations, genetic algorithms and FFTs. How-

ever, all the algorithms are sequential, there are only 1D Fourier transforms avail-

able, and there is no support for tensors.

ojAlgo [92] is a Java library developed by Optimatika, Stockholm Sweden.

ojAlgo provides algorithms for linear algebra, optimization, finance, and chart

visualization. Some algorithms are multithreaded and the library supports n-

dimensional arrays. However, image processing functionality is limited; for ex-

ample, there are no FFTs and no support for sparse matrices.

JAMA [62] is a basic linear algebra package for Java developed by MathWorks

48

and National Institute of Standards and Technology (NIST). It only supports real

dense matrices Cholesky, LU, QR, SVD and eigenvalue decomposition.

Jampack [51] is a collection of Java classes written by G. W. Stewart and NIST.

Jampack fully supports complex matrices, but its functionality is as limited as

JAMA library. Besides the five factorizations provided by JAMA, Jampack also

supports the Hessenberg form and the Schur Decomposition.

ImageJ [100] is an open source image processing program written in Java by

Wayne Rasband at the U.S. National Institutes of Health (NIH). Besides having a

large number of options for image editing applications, ImageJ is designed with

a pluggable architecture that allows developing custom plugins; over 500 user-

written plugins are currently available. Due to this unique feature, ImageJ has

become a very popular application among a large and knowledgeable worldwide

user community. ImageJ is used as a front-end to Parallel Colt, our image pro-

cessing engine that overcomes many deficiencies of the libraries outlined above.

3.3 Parallel Colt

Parallel Colt is a reimplementation of Colt [64] with the following goals: (1)

provide an open source Java library for high performance scientific computing that

49

utilizes modern hardware architectures, (2) provide an image processing engine

with an emphasis on performance and usability.

3.3.1 Colt

Colt [64] is an open source library for high-performance scientific computing in

Java written by Wolfgang Hoschek at CERN. It provides efficient and usable data

structures and algorithms for data analysis, linear algebra, multi-dimensional ar-

rays, statistics, histogramming, Monte Carlo simulation and concurrent program-

ming. The project is currently inactive; the latest version (1.2.0) was released

in September 2004. We have chosen to adapt Colt to fit our purpose of having

a powerful computing engine for image processing. Our choice was motivated

primarily by the fact that Colt has support for uniform, versatile and efficient

multi-dimensional arrays (matrices) [63]. In particular, views operations defined

on multi-dimensional arrays allow sub-ranging, striding, transposition, slicing, in-

dex flipping, cell selection as well as sorting, permuting and partitioning of the el-

ements. This is almost the same range of functionality as provided by MATLAB.

In the rest of this section we summarize all the changes and new functionalities

that we introduced in Parallel Colt.

50

3.3.2 Concurrency

Multithreading in Colt 1.2.0 is limited to a subset of BLAS routines: matrix-

matrix and matrix-vector multiplications, as well as the generalized matrix scal-

ing/transform. All other algorithms included in the library are sequential. More-

over, Colt uses Doug Lea’s EDU.oswego.cs.dl.util.concurrent package

for concurrency instead of the improved, more efficient and standardized classes

(java.util.concurrent) which are included in a standard Java distribution

since version 5.0. Concurrency in Colt requires setting a maximum number of

threads before the first use, as opposed to Parallel Colt, where multithreading is

enabled by default (if the number of available CPUs is greater than one). Java

utility classes for concurrent programming contain the cached thread pool fea-

ture that we have found to be very useful. This type of pool creates new threads

as needed, and reuses previously constructed threads when they become avail-

able, thereby improving the performance of programs that execute many short-

lived asynchronous tasks. Because almost all element-by-element operations and

BLAS routines can be split into asynchronous tasks, Parallel Colt uses the cached

thread pool for low-level concurrency.

51

3.3.3 Multidimensional Arrays

There are many problems in image processing where double precision is unneces-

sary. This is usually the case when the source image is saved in a grayscale 8-bit

format (integers from 0 to 255). From the computational point of view, single pre-

cision has two advantages over double precision: arithmetic operations are faster

with single precision numbers and they require only half the storage of double

precision numbers. All algorithms in Colt 1.2.0 that use floating-point numbers

are implemented in double precision, in particular, only double precision multidi-

mensional arrays are available. Therefore, in Parallel Colt we have added single

precision equivalents to all double precision based objects.

In Colt, a single contiguous one-dimensional Java array is used to store elements

of all dense 2D and 3D matrices. The elements of 2D matrices are addressed in

row-major order and the elements of 3D matrices are addressed in (in decreasing

order of significance): slice-major, row-major and column-major order. However,

there are two problems with this approach. First, matrix decomposition algorithms

typically expect input matrices to use column-major order. Second, since Java

array indices must be 32-bit integer values, the 1D array cannot contain more

than 231 elements, which is a significant limitation for large-scale problems. To

overcome these difficulties, Parallel Colt provides additional data structures for

52

dense matrices: a 2D dense matrix addressed in column-major order as well as

2D and 3D dense matrices where elements are stored in two-dimensional and

three-dimensional Java arrays respectively.

The original Colt project supports three types of 2D sparse matrices: row-

compressed, tridiagonal, and the general sparse matrix that uses a hashmap to

store the nonzero elements. However, it is beneficial for some applications to use

alternative sparse storage schemes. Therefore, in Parallel Colt we have added a

column-compressed sparse matrix (for fast column access) and a diagonal matrix

(for more efficient computations involving only a single diagonal).

Another new and important type of object added to Parallel Colt is a multi-

dimensional array of complex numbers. This object is essential for operations

involving FFTs. Because there is no primitive type for complex numbers in Java,

we decided to store an array of complex numbers as a one-dimensional array of

doubles (or floats), interleaving the real and the imaginary parts. This type of

storage guarantees much better performance than defining a new object that rep-

resents a complex number, and then storing an array of such objects. Currently

Parallel Colt does not support linear algebra algorithms (except matrix-matrix and

matrix-vector multiplications) for complex matrices.

In addition to matrices holding floating-point elements, Parallel Colt fully sup-

53

ports matrices holding integer elements (both 32-bit and 64-bit versions). These

type of objects are useful for processing RGB images, where the values of red,

green and blue channels are packed into single 32-bit integer values.

Colt is equipped with three different sorting algorithms: quicksort, mergesort

and binary search, which complement the java.util.Arrays class. Moreover,

these algorithms are used to sort elements of multidimensional arrays. In Parallel

Colt we have implemented a multithreaded version of quicksort that works both

on arrays of primitive types and arrays of objects.

Entirely new functionality added to Parallel Colt concerns the input / output

(I/O) operations. We have adapted a matrix / vector reader and writer from MTJ

[60]. The classes in cern.colt.matrix.io package allow performing I/O op-

erations on matrices and vectors stored in Matrix Market Exchange Formats [87].

Finally, Parallel Colt’s implementation of multidimensional arrays includes many

additional methods, which are summarized in Table 3.1.

54

Matrix type Method

All 1D reshape

All 2D and 3D vectorize

All real getMaxLocation, getMinLocation, getNegativeValues,

getPositiveValues, normalize

Dense 1D complex fft, ifft

Dense 1D real fft, ifft, getFft, getIfft, dht, idht, dct, idct, dst, idst

Dense 2D complex fft2, ifft2, fftColumns, ifftColumns, fftRows, ifftRows

Dense 2D real fft2, ifft2, fftColumns, ifftColumns, fftRows, ifftRows, getFft2,

getIfft2, getFftColumns, getIfftColumns, getFftRows, getIfftRows,

dht2, idht2, dhtColumns, idhtColumns, dhtRows, idhtRows, dct2,

idct2, dctColumns, idctColumns, dctRows, idctRows, dst2, idst2,

dstColumns, idstColumns, dstRows, idstRows

Dense 3D complex fft3, ifft3, fft2Slices, ifft2Slices

Dense 3D real fft3, ifft3, getFft3, getIfft3, getFft2Slices, getIfft2Slices, dht3, idht3,

dht2Slices, idht2Slices, dct3, idct3, dct2Slices, idct2Slices, dst3,

idst3, dst2Slices, idst2Slices

Table 3.1: Additional methods in Parallel Colt. In the first column, "All" refers

to all supported matrix data types, including single precision (complex and real),

double precision (complex and real), 32-bit and 64-bit integers, etc.

55

3.3.4 Iterative Solvers

Once all types of sparse and dense matrices have been implemented, we have

added to Parallel Colt a set of iterative solvers and preconditioners. The following

solvers and preconditioners have been adapted from MTJ [60].

Solvers [13] [47]:

• BiConjugate Gradients (BiCG)

• BiConjugate Gradients stabilized (BiCGstab)

• Conjugate Gradients (CG)

• Conjugate Gradients squared (CGS)

• Generalized Minimal Residual using restart (GMRES)

• Iterative Refinement (Richardson’s method)

• Quasi-Minimal Residual (QMR)

• Chebyshev iteration

Preconditioners [47] [102] [113]:

• Diagonal (uses the inverse of the diagonal as preconditioner)

56

• Incomplete Cholesky without fill-in (ICC)

• Incomplete LU without fill-in (ILU)

• Incomplete LU with fill-in (ILUT)

• Symmetrical Sucessive Overrelaxation (SSOR)

• Algebraic Multigrid (AMG)

Besides the above solvers and preconditiones, Parallel Colt also supports the fol-

lowing preconditioned and non-preconditioned solvers for ill-posed inverse prob-

lems:

• Hybrid Bidiagonalization Regularization (HyBR)

• Modified Residual Norm Steepest Descent (MRNSD)

• Conjugate Gradient for Least Squares (CGLS)

3.3.5 Linear Algebra

Multithreaded dense linear algebra in Parallel Colt is provided by JPlasma [117],

which is our Java port of Parallel Linear Algebra for Scalable Multi-core Archi-

tectures (PLASMA) [24]. An important matrix factorization for image processing

57

applications is the singular value decomposition (SVD), but currently PLASMA

does not have support for it. Therefore, Parallel Colt implements two sequential

SVD algorithms. One is the original Colt version, which is essentially a slightly

modified Jama [62] implementation, and the other is a divide-and-conquer rou-

tine from JLAPACK (dgesdd). Note that our present use of the SVD in image

processing is within a Krylov subspace method that enforces regularization on a

(small) projected linear system; see [31].

Besides including JPlasma and JLAPACK in Parallel Colt, we have also added

the following dense linear algebra operations: Kronecker product of 1D and 2D

matrices (complex and real), Euclidean norm of 2D and 3D matrices computed as

a norm of a vector obtained by stacking the columns of the matrix on top of one

another, and backward and forward substitution algorithms for 2D real, upper and

lower triangular matrices.

Finally, we have implemented and included in Parallel Colt a Java version of the

Concise Sparse Matrix Package (CSparse) [35], which we call CSparseJ [116].

Although CSparseJ is not multithreaded, it provides a set of matrix factorizations

(LU, Cholesky and QR) that are much more efficient on sparse matrices than

their dense equivalents. In the previous version of Parallel Colt, we used the

same matrix factorization algorithms both for sparse and dense matrices (sparse

58

matrices were converted to a dense form).

3.3.6 Trigonometric Transforms

Trigonometric transforms, including the Discrete Fourier Transform (DFT) [33],

the Discrete Hartley Transform (DHT) [58], the Discrete Cosine Transform (DCT)

[6] and the Discrete Sine Transform (DST) [128], are important tools in image

processing applications. To provide trigonometric transform functionality to Par-

allel Colt, we have integrated a library that we developed for this purpose, called

JTransforms [125]. We remark that all transforms are implemented as public

methods in 1, 2, and 3-dimensional dense matrices (see Table 3.1). In addition,

they can be applied to matrix subranges.

JTransforms is the first, open source, multithreaded FFT library written in pure

Java. The code was derived from the General Purpose FFT Package by Ooura

[91] and from Java FFTPack [129] by Zhang. Ooura’s library is a multithreaded C

and Fortran implementation of the split-radix FFT algorithm. In order to provide

more portability both POSIX threads and Windows threads are used in the imple-

mentation. Moreover, the code is highly optimized and in some cases runs faster

than FFTW [42]. Even so, the package has several limitations arising from the

split-radix algorithm. First, the size of the input data has to be a power-of-two in-

59

teger. Second, the number of computational threads must also be a power-of-two.

Finally, one-dimensional transforms can only use two or four threads. To over-

come the power-of-two limitation we have adapted Zhang’s Java code which is

a straightforward translation of the mixed-radix algorithm from FFTPACK [109].

Since Java FFTPack contains only sequential algorithms for 1D transforms (real

and complex), we have implemented multithreaded 2D and 3D transforms. In

the case of 1D transforms when the size of the vector is not a power-of-two,

JTransforms uses a sequential implementation. However this limitation does not

affect the performance of multidimensional transforms because threads are used

at higher levels. As a result, the current version of JTransforms can be used for

arbitrarily sized data.

There are some important distinctions between our Java code and Ooura’s C

implementation. First, JTransforms uses a thread pool, while the original package

does not. Although thread pooling with POSIX threads is possible, there is no

code for this mechanism available in the standard library, and therefore many

multithreaded applications written in C do not use thread pools. This has the

added problem of causing overhead costs of creating and destroying threads every

time they are used. Another difference between our code and Ooura’s FFT is the

use of automatic multithreading. In JTransforms (and in Parallel Colt), threads

60

are used automatically when computations are done on a machine with multiple

CPUs. Conversely, both Ooura’s FFT and FFTW require manually setting up the

maximum number of computational threads. Lastly, JTransforms’ API is much

simpler than Ooura’s FFT, or even FFTW, since it is only necessary to specify

the size of the input data; work arrays are allocated automatically and there is no

planning phase.

3.3.7 Accuracy

There are two aspects about the accuracy of floating-point arithmetic in Java. The

first is related to the internal design and implementation of Java’s floating-point

arithmetic. There are several flaws in this implementation [69]. First of all, Java

does not completely conform to the IEEE 754 standard, since it does not sup-

port the flags for IEEE 754 exceptions: Invalid Operation, Overflow, Division-by-

Zero, Underflow, Inexact Result. In other words, no event occurs when the value

of a floating-point number becomes either Infinity or NaN. Moreover, Java does

not provide capability to work with the IEEE extended precision, even though

over 95% of today’s computers have hardware that can support these types of

numbers. Finally, of two traditional policies for mixed precision evaluation, Java

chose the worse. However, our experience shows that Java’s floating-point arith-

61

metic is good enough for applications in image processing. This is supported by

the fact that usually the pixels of an image are stored as integers (byte and short)

or as a single-precision floats, thus the double (or even single) precision arithmetic

provides a sufficient amount of accuracy.

Another aspect of the accuracy is related to the stability of an algorithm and

round-off errors. In the previous release of Parallel Colt we observed inaccurate

results for trigonometric transforms when the size of the input data was an integer

with a large prime factor. The inaccurate results were caused by the mixed-radix

FFT algorithm. When encountering a large prime factor, a slow, O(n2), discrete

Fourier transform algorithm was used. It is known [103], however, that in these

situations the root mean square error isO(
√
n), where n is the size the input data.

The original FFTPACK library is also burdened with this error. In the current

version of Parallel Colt (and JTransforms) we have fixed all the accuracy issues

by implementing Bluestein’s FFT algorithm [19]. Figures 3.1 and 3.2 show that

both single and double precision FFTs in Parallel Colt are as accurate as FFTs in

MATLAB. Jacket’s FFTs, on the other hand, are much less accurate when the size

of the data is a prime number. Since the source code of CUFFT library (used by

Jacket) is not available, we can only speculate that the Jacket’s accuracy problems

are also caused by the mixed-radix FFT algorithm. The length of the vertical error

62

bars in these figures is equal to two standard deviation units.

1

1.4

1.8

2.2

Size

R
M

S
 e

rr
or

Single precision

 8
19

2

 1
63

84

 3
27

68

 6
55

36

13
10

72

26
21

44

Jacket
MATLAB
Parallel Colt

x10−7

10
−15.7

10
−15.6

10
−15.5

Size

R
M

S
 e

rr
or

Double precision

 8
19

2

 1
63

84

 3
27

68

 6
55

36

13
10

72

26
21

44

Jacket
MATLAB
Parallel Colt

Figure 3.1: Accuracy of complex, 1D FFT (power of two sizes). The vertical axis

is the root mean square error,
‖x− ifft(fft(x))‖2√

n
, where x is a vector whose size

n is shown on the horizontal axis.

63

10
−6

10
−5

10
−4

10
−3

10
−2

Size

R
M

S
 e

rr
or

Single precision

99

7

 4
99

9

 9
97

3

 4
99

99

 9
99

91

24
99

89

Jacket
MATLAB
Parallel Colt

10
−14

10
−12

10
−10

10
−8

10
−6

Size

R
M

S
 e

rr
or

Double precision

99

7

 4
99

9

 9
97

3

 4
99

99

 9
99

91

24
99

89

Jacket
MATLAB
Parallel Colt

Figure 3.2: Accuracy of complex, 1D FFT (prime sizes). The vertical axis is the

root mean square error,
‖x− ifft(fft(x))‖2√

n
, where x is a vector whose size n is

shown on the horizontal axis.

64

3.3.8 Other Additions

To support new kinds of matrices described in Section 3.3.3 we had to implement

some new data structures. In particular, we have added new hashmaps holding

(key,value) associations of type (long -> double), (double -> long), (long -> float),

(float -> long), (long -> long), (int -> long) and (long -> int). In addition, since

the HyBR solver requires the 1-dimensional minimization routine (fmin), we have

included the nonlinear optimization package [114] into our library.

Unit testing is an important part of every library, but it is absolutely crucial for

mathematical software. Therefore, Parallel Colt contains a unit test framework

based on JUnit [3]. The framework allows to write and run new test cases in a

very intuitive way. We currently have available 6552 tests to check all the func-

tionalities provided by sparse and dense matrices and iterative solvers.

Finally, a highly configurable benchmark framework for Parallel Colt has been

developed. At this time we provide benchmarks for dense matrices (holding com-

plex and real numbers) as well as for iterative solvers. In the configuration files,

the user can define such properties as the number of threads, the size of the ma-

trix, the number of repeats (to compute average time), and the path to the matrix

file (stored in Matrix Market Exchange Formats). The timings computed by these

benchmarks are automatically saved in text files.

65

3.3.9 Examples of Usage

Table 3.2 shows eight examples of different operations in MATLAB and in Paral-

lel Colt. Since Java is a statically typed language, all variable names (along with

their types) must be explicitly declared. MATLAB, on the other hand, is a dy-

namically typed language so there is no need to declare anything. An assignment

statement binds a name to an object of any type and later the same name may be

assigned to an object of a different type. This feature makes MATLAB expres-

sions generally much more concise than the corresponding expressions in Java.

Another essential difference between MATLAB and Parallel Colt arises from the

inability to do operator overloading in Java (compare the matrix times vector ex-

pressions). Aside from these two differences, the expressions in Table 3.2 show

that the same level of abstraction is used in MATLAB and Parallel Colt.

66

Description MATLAB Parallel Colt

Copy of A B = A; DoubleMatrix2D B = A.copy();

Transpose of A B = A’; DoubleMatrix2D B = A.viewDice();

Matrix times vector B = A*x; DoubleMatrix2D B = A.zMult(x);

2D FFT of A B = fft2(A); DComplexMatrix2D B = A.getFft2();

FFT along columns of A B = fft(A,2); DComplexMatrix2D B = A.getFftColumns();

Cosine of A (in-place) A = cos(A); A.assign(DoubleFunctions.cos);

Sum all entries of A s = sum(A(:)); double s = A.zSum();

Location of max of A [i, j] = find(A == max(A(:))); double[] max = A.getMaxLocation();

Table 3.2: Comparison of MATLAB and Parallel Colt expressions for a sample

set of matrix operations.

3.3.10 Benchmarks

In Section 3.3.8 we remarked that Parallel Colt is equipped with framework for

performing benchmarks. Here we present benchmark results of two important

computational kernels used in deconvolution and super-resolution algorithms: FFT

and sparse matrix-vector product.

67

FFT

For many image deblurring problems, matrix-vector multiplications are done most

efficiently with FFTs. Thus, FFTs can be considered a key computational kernel

in spectral and iterative image deblurring algorithms. In this section we bench-

mark the performance of 2D real FFTs. As a testbed for our benchmarks we used

a machine equipped with two Quad-Core Intel Xeon E5472 processors operating

at 3.0 GHz, 32GB RAM, and an NVIDIA Tesla C1060. The theoretical peak per-

formance of these processors is equal to 12 Gflops (4 floating-point operations per

cycle due to SSE extensions) per core or 96 Gflops for the whole machine. The

system was running Ubuntu Linux 9.04 (64-bit), NVIDIA CUDA 2.3, MATLAB

R2009b, AccelerEyes Jacket 1.2, Sun Java 1.6.0_16 (64-Bit Server VM) and Im-

ageJ 1.43h. The following Java options were used: -d64 -server -Xms10g

-Xmx10g -XX:+UseParallelGC -XX:ParallelGCThreads=1.

We benchmarked single and double precision, real input 2D FFTs in native

MATLAB, MATLAB with Jacket, and Parallel Colt. The benchmarking method-

ology was adapted from FFTW [43]. First, we run the warm up phase (the first

two calls require more time) which is not incorporated into the results. Then, we

measured the FFT performance by performing repeated FFTs (100 times) of the

same zero-initialized array. To compute the performance in Gflops we used the

68

following formula

Gflops = 2.5 ·N · log2(N)/(wall-clock time in nanoseconds),

where N is number of data points (the product of the FFT dimensions). This

formula does not count the flops accurately; it is however a convenient scaling,

based on the fact that the radix-2 Cooley-Tukey algorithm asymptotically requires

2.5 · N · log2(N) floating-point operations. Depending on the size of the input

data, different FFT algorithms (with different computational complexity) are used

both in MATLAB and Parallel Colt. Therefore, especially in MATLAB , it is

hard to predict which algorithm will be used on the given machine and with the

given input data. Benchmark results for Jacket include the time required for data

transfer to and from the GPU memory. The maximum 8 threads were used in

MATLAB and Parallel Colt. In addition, for Parallel Colt, one thread was used

for the garbage collector, by specifying the flag -XX:ParallelGCThreads=1.

It should be noted that the amount of GPU memory is a serious limitation for

large-scale problems. On the hardware available for the tests reported here, the

largest matrix size that fit into the GPU memory was 8192 × 8192 (4096 × 4096

for double precision). The benchmark results are reported in Tables 3.3 and 3.4.

The reader should only compare the difference in performance between MATLAB

, Jacket and Parallel Colt and not among the different sizes for the same library

69

(we are aware of the fact that the formula used for computing Gflops undercounts

the FFT work when N is not a power-of-two). The performance of all three li-

braries is comparable, with native MATLAB having some advantages for smaller

data sizes. It should be emphasized that multithreaded FFTs were introduced in

MATLAB R2009a; the performance of these routines in the previous versions

was significantly lower. The other important conclusion that can be drawn from

these results is that although the GPU-based single precision FFTs outperform

both native MATLAB and Parallel Colt algorithms in most cases, they are much

less accurate when the matrix dimensions are not a power-of-two numbers (see

Figure 3.2).

Size MATLAB Jacket Parallel Colt

2000× 2000 4.50 3.43 1.89

2048× 2048 1.82 3.64 2.22

4000× 4000 4.73 3.21 3.10

4096× 4096 1.85 3.38 2.66

8000× 8000 2.21 3.26 2.59

8192× 8192 1.92 3.53 2.55

16000× 16000 1.73 - 1.75

16384× 16384 1.85 - 2.50

Table 3.3: Performance in Gflops for single precision, real input 2D FFT.

70

Size MATLAB Jacket Parallel Colt

2000× 2000 2.76 1.40 1.61

2048× 2048 1.12 1.72 1.88

4000× 4000 2.18 1.39 2.05

4096× 4096 1.15 1.87 2.08

8000× 8000 1.24 - 1.34

8192× 8192 1.13 - 1.81

16000× 16000 1.16 - 1.24

16384× 16384 1.10 - 1.64

Table 3.4: Performance in Gflops for double precision, real input 2D FFT.

Sparse Matrix-Vector Product

Sparse matrix-vector product is a key operation for all iterative solvers. Here we

present the performance comparison of this operation in MATLAB and Parallel

Colt. MATLAB uses compressed-column format for storing sparse matrices. In

Parallel Colt both compressed-column and compressed-row formats are available,

but in this benchmark we only tested the former one. It should be emphasized

that the latest release of MATLAB, R2009a, does not support single precision

sparse matrices and its sparse matrix-vector product implementation is sequential.

71

Parallel Colt, on the other hand, supports multithreaded sparse matrix-vector op-

erations. However, there are two restrictions. When A is in compressed-column

format, at most two threads are used to compute y = Ax, and when A is in

compressed-row format, at most two threads are used to compute y = ATx.

These limitations arise from the fact that it is not possible to split the job for these

particular computations (with the associated storage format) into asynchronous

tasks; all threads have to operate on the whole vector y. Therefore, in our imple-

mentation, if one of these situations occur and two threads are being used, then

the first thread operates on the output vector y and the second thread works on its

local copy of vector y. A reducing addition is performed at the end of the multi-

plication. Our experiments have shown that using more than two threads for these

cases slows down the performance.

The machine described in the previous section (with the same Java options) was

also used for this benchmark. To compute the performance in Mflops we used the

following formula

Mflops = 2 · nnz/(wall-clock time in microseconds),

where nnz denotes the number of nonzero elements in a matrix. Table 3.5 shows

the performance of two operations y = Ax and y = ATx, where A is a sparse

matrix and x is a dense vector. Four different matrices were used in this test.

72

A random matrix (the first row in Table 3.5) was generated using the MATLAB

command A=sprand(1e6,1e6,1e-7), and the other three matrices come from

the University of Florida Sparse Matrix Collection [36]. It can be seen that Parallel

Colt outperforms MATLAB for all tested matrices. This difference is much more

significant for the transpose operation, where Parallel Colt uses multiple threads.

Matrix Nonzeroes MATLAB Parallel Colt (double) Parallel Colt (single)

Random 100,000 14.1 (17.8) 14.7 (30.4) 20.6 (46.3)

Rajat31 20,316,253 264.3 (300.0) 356.6 (669.5) 451.5 (1048.0)

Nlpkkt120 95,117,792 349.4 (366.7) 719.0 (1061.3) 1247.9 (1668.8)

S3dkq4m2 2,455,670 402.9 (417.7) 668.8 (1094.3) 1200.9 (1711.9)

Table 3.5: Performance in Mflops for the sparse matrix-vector multiplications

y = Ax and y = ATx (numbers in brackets show the performance of y = ATx).

73

Chapter 4

Implementation

This chapter describes the implementation of various image processing algo-

rithms as plugins for ImageJ. Parallel Colt is used as a computational engine for

all implemented algorithms and all the plugins support a batch mode, so in partic-

ular, they can be called from an ImageJ macro.

4.1 Parallel Spectral Deconvolution

Parallel Spectral Deconvolution [123, 125] is an ImageJ plugin for spectral image

deblurring. The code is based on methods described in [57]. The graphical user

interface (GUI) for the current version (1.11) is illustrated in Figure 4.1.

74

4.1.1 Description and Usage

Parallel Spectral Deconvolution implements Tikhonov- and TSVD-based image

deblurring assuming either periodic of reflexive boundary conditions. Although

the plugin can handle arbitrary-sized 2- and 3-dimensional images, its usage is

limited to grayscale images. To deconvolve a color image, the user would have to

split the channels and deblur each channel separately.

There are seven drop-down lists (combo-boxes) available in the plugin’s GUI.

From the Image list, the user can choose a blurred image. PSF list is for selection

of a point spread function image. The content of these two lists depends on what

is currently open in ImageJ - if no image windows are displayed, then both lists

are empty. The next two lists (Method and Stencil) allow the user to choose an

algorithm used for deconvolution (Generalized Tikhonov, Tikhonov or TSVD) and

a stencil (for Generalized Tikhonov only). The stencil is used for creating a reg-

ularization matrix (an approximation of a derivative operator) and by default the

Laplacian matrix is used. The Resizing combo-box is used to choose whether or

not to resize (pad) the blurred image to the next power-of-two size before process-

ing. This feature is available mainly for performance reasons (FFTs are computed

faster when the size of the data is a power-of-two number). Note that if the size

of each dimension of a blurred image is already a power-of-two number, then the

75

image will not be padded even if the Next power of two option is selected. To

display a padded image, the Show padded image check-box needs to be selected.

The Output list allows to specify the type of the reconstructed image (i.e. num-

ber of bits per pixel). Finally, in the Precision combo-box the user can choose a

floating-point precision used in computations. Practice shows that single precision

is sufficient for most problems.

Figure 4.1: Parallel Spectral Deconvolution GUI.

There are a few other important options in the GUI that require some explana-

tion. The Threshold check-box and text field are used to remove negative values

from the reconstructed image. Since it is not possible to impose nonnegativity

76

constraints in the spectral algorithms, the threshold option is the only way to get

a nonnegative solution. If the threshold option is enabled, then all values in the

reconstructed image that are less than the value specified in the threshold text field

are replaced by zero. In the Max number of threads (power of 2) text field the user

can specify how many computational threads will be used. By default this value

is equal to the number of CPUs available on the given machine.

Parallel Spectral Deconvolution has an option to automatically compute the

value of a regularization parameter (Auto regularization parameter check-box).

If this box is selected, then the generalized cross-validation (GCV) algorithm is

used. Since GCV may fail to find an optimal value of a regularization parameter, it

is possible to manually adjust the automatically computed value (Regularization

parameter text field and slider). Once the initial deconvolution is finished, the

Regularization parameter text field and slider, as well as the Update button are

enabled. At this point, the user can change the value of a regularization parameter

either by using the slider or by entering a new value in the text field. The Update

button is used to recompute the solution with the new value of a regularization

parameter. This functionality allows to save computational time, because most of

the objects that are already in memory do not need to be reevaluated (only the new

filter factors and an inverse FFT have to be computed).

77

4.1.2 Benchmark

We have compared the performance and the quality of reconstruction of Paral-

lel Spectral Deconvolution with another ImageJ plugin called DeconvolutionJ.

DeconvolutionJ [75] is a plugin written by Nick Linnenbrügger that implements

spectral deconvolution based on the Regularized Wiener Filter [49]. The plugin

has a number of limitations. It can handle arbitrary-sized 2- and 3-dimensional

images, although it requires the PSF image to be the same size as the blurred im-

age, and it must be centered in the field of view. In addition, the regularization

parameter of the Wiener filter must be specified manually and there is no update

option to efficiently deblur the same image with different values of the regulariza-

tion parameter. Last, but not least, DeconvolutionJ is a serial implementation, and

therefore cannot take advantage of modern multi-core processors.

To benchmark the plugins we have generated two test images and then we have

run the software on the machine described in Section 3.3.10. Figure 4.2 shows

the true 2D image (the picture of Ed White performing the first U.S. spacewalk

in 1965 [85]) as well as the blurred and reconstructed data. The true image has

4096 × 4096 pixels. The blurred image was generated by reflexive padding of

the true data to size 6144× 6144, convolving it with Gaussian blur PSF (standard

deviation = 20), adding 1% white noise and then cropping the resulting image

78

to the size of 4096 × 4096 pixels. To better illustrate the quality of deblurring,

we display a small region of the blurred and reconstructed images. In Parallel

Spectral Deconvolution (denoted by PSD in Figure 4.2), we used Tikhonov regu-

larization with reflexive boundary conditions and regularization parameter equal

0.004. Similarly, in DeconvolutionJ, we used no resizing (the image size was al-

ready a power-of-two), double precision for complex numbers and the same value

for the regularization parameter.

Blurred image Blurred image (crop) Restored image (PSD) Restored image (DeconvolutionJ)

Figure 4.2: Astronaut image: blurred and restored data.

Table 4.1 presents average execution times among 10 calls of each method. All

timings are given in seconds and the numbers in brackets include the computation

of the regularization parameter. One should notice a significant speedup, espe-

cially from 1 to 2 threads. The last row in Table 4.1 shows the execution time

for DeconvolutionJ, which is over 7 times greater than the worst case of Paral-

lel Spectral Deconvolution (Generalized Tikhonov, 1 thread) and over 30 times

79

greater than the best case of Parallel Spectral Deconvolution (TSVD, 8 threads).

Method 1 thread 2 threads 4 threads 8 threads

TSVD 6.2 (17.0) 3.9 (11.3) 2.8 (9.4) 2.0 (8.0)

Tikhonov 6.7 (19.1) 4.3 (12.0) 3.1 (9.3) 2.1 (8.5)

Generalized Tikhonov 8.3 (18.0) 5.1 (12.1) 3.7 (9.5) 2.8 (6.9)

DeconvolutionJ 61.01 - - -

Table 4.1: Average execution times (in seconds) for 2D spectral deblurring (num-

bers in brackets include the computation of the regularization parameter).

For 3D deblurring, the test image (see Figure 4.3) was a T1 weighted MRI image

of Jeff Orchard’s head [93]. The size of this image was equal 128 × 256 × 256

pixels. The blurred image was generated by zero padding of the true data to size

128×512×512, convolving it with a Gaussian blur PSF (standard deviation = 1),

adding 1% white noise and then cropping the resulting image to the size of 128×

256× 256 pixels. Figure 4.3 shows the 63rd slice of the blurred and restored data.

In Parallel Spectral Deconvolution, we used the reflexive boundary conditions and

regularization parameter equal 0.02. In DeconvolutionJ, we used exactly the same

parameters as for the 2D benchmark and 0.01 for the regularization parameter.

80

Blurred image Restored image (PSD) Restored image (DeconvolutionJ)

Figure 4.3: Head image (63rd slice): blurred and restored data.

In Table 4.2, we have collected all timings. Once again, the execution time for

DeconvolutionJ is almost 6 times greater than the worst case of Parallel Spectral

Deconvolution (Generalized Tikhonov, 1 thread) and over 27 times greater than

the best case of Parallel Spectral Deconvolution (TSVD, 8 threads).

Method 1 thread 2 threads 4 threads 8 threads

TSVD 3.2 (6.6) 1.9 (4.5) 1.2 (3.1) 0.9 (2.6)

Tikhonov 3.8 (12.2) 2.3 (8.4) 1.5 (5.3) 1.1 (3.8)

Generalized Tikhonov 4.0 (15.9) 2.6 (9.1) 1.6 (5.9) 1.2 (4.7)

DeconvolutionJ 23.45 - - -

Table 4.2: Average execution times (in seconds) for 3D spectral deblurring (num-

bers in brackets include the computation of the regularization parameter).

81

4.2 Parallel Iterative Deconvolution

Parallel Iterative Deconvolution [122] is an ImageJ plugin we developed for iter-

ative image deblurring. The code is based on the RestoreTools MATLAB toolbox

and on Iterative Deconvolve 3D plugin. The GUI for the current version (1.11) is

illustrated in Figure 4.4.

4.2.1 Description and Usage

We start the discussion about the implementation of iterative deconvolution by

reviewing two packages related to our work.

MATLAB’s Image Processing Toolbox contains some methods for image restora-

tion, but these have several limitations. For example, they cannot be used with

spatially variant blurs. The RestoreTools [83] package contains several additional,

modern algorithms which have been studied in the inverse problems and numeri-

cal analysis literature. In addition, the toolbox can be easily used for 2D and 3D

images and its object oriented design allows users to incorporate efficient compu-

tational kernels in their own algorithms. The package includes iterative methods

for unsymmetric (CGLS [16], HyBR [31]) and symmetric blurs (MR2 [54]), as

well as an algorithm that enforces nonnegativity constraints (MRNSD [84]). To

82

accelerate convergence of iterative methods, preconditioners are provided (with

automatic choice of certain tolerances) based on FFTs, DCTs and the SVD. All

the algorithms work for both spatially invariant as well as spatially variant blurs.

Moreover, three types of boundary conditions (zero, periodic and reflexive) can

be used in a reconstruction. There are two limitations in the current release: no

graphical user interface and no support for color images.

Iterative Deconvolve 3D [38] is an ImageJ plugin written by Robert Dougherty,

OptiNav Inc (the GUI is shown in Figure 4.5). Whereas RestoreTools, and our

Parallel Iterative Deconvolution package provide a variety of tools and algorithms

for image deblurring, Iterative Deconvolve 3D contains only a single method: a

nonnegatively constrained Landweber iteration [14], where a regularized Wiener

filter is used as a preconditioner. Besides the fact that the code is sequential, this

plugin has two limitations. First of all, it requires a PSF image to be centered

in the field of view. Moreover, it uses a Discrete Hartley Transform (DHT) that

works only when the size of the data is a power-of-two number. This means that a

blurred image and a PSF need to be padded to the next power-of-two size before

processing. When the FFT or DHT are used for image deblurring, padding is

almost always necessary (to avoid ringing artifacts), but it is enough to pad each

side of a blurred image with an amount that is only half of the size of the PSF

83

image. This property is not exploited in Iterative Deconvolve 3D. Instead, the

size of the PSF is disregarded and the blurred image is always padded to the next

power-of-two size that is at least 1.5 times larger than the original image. Since

usually a blurred image is much larger than the PSF image, this type of padding

results not only in very poor performance but it also requires much more memory.

Figure 4.4: Parallel Iterative Deconvolution GUI.

Our Parallel Iterative Deconvolution plugin implements several methods that can

be used for image deblurring, including MRNSD, CGLS, HyBR and Landwe-

ber algorithms. The first three methods are derived from RestoreTools, and the

84

Landweber algorithm is a parallel version of Iterative Deconvolve 3D with some

enhancements. In particular, we have fixed the two aforementioned limitations of

the original plugin. Similarly to Parallel Spectral Deconvolution the usage of the

plugin is limited to grayscale images.

There are eight drop-down lists (combo-boxes) available in the plugins’s GUI.

The first two lists (Blurred image and PSF) have exactly the same functions as

in the spectral deconvolution plugin. The next two lists (Method and Precondi-

tioner) allow to select an algorithm used for deconvolution (MRNSD, WPL, CGLS,

HyBR) and a preconditioner. Currently only the FFT-preconditioner is available

(WPL uses the Wiener Filter as a preconditioner). The tolerance for the precon-

ditioner is computed automatically (via Generalized Cross Validation) by default

(Auto check-box), but it is also possible to specify the value manually. In the

Boundary combo-box the user can choose from three types of boundary condi-

tions: Reflexive, Periodic or Zero. The first type, reflexive, is usually the best

choice. The Resizing combo-box allows to specify how the blurred image will be

padded before processing. Minimal resizing means that the pixel data in each di-

mension of a blurred image are padded by the size of the corresponding dimension

of a PSF image. If the Next power of two option is selected, then the pixel data in

each dimension of a blurred image are padded to the next power-of-two size that is

85

greater or equal to the size of an image obtained by minimal padding. Finally, the

Auto option chooses between the two other options to maximize the performance.

The Output and Precision combo-boxes have again the same functionality as in

the case of Parallel Spectral Deconvolution.

Figure 4.5: Iterative Deconvolve 3D GUI.

There are a few other elements available in the GUI. The Options button (next to

the Method combo-box) is used to display a dialog window with advanced pref-

erences for each algorithm (all of these options are described in the following

subsections). In a typical usage scenario, there is no need to change the advanced

preferences, since the default values are usually optimal. In contrast, Dougherty’s

Iterative Deconvolve 3D GUI (Figure 4.5) shows all available options in one win-

86

dow which may discourage less experienced users. The Max number of iterations

text field is used to specify how many iterations a given method should perform.

It is a maximal value, which means that the process of reconstruction may stop

earlier (when the stopping criterion is met). If the Show iterations check-box is

selected, then the reconstructed image will be displayed after each iteration. Fi-

nally, in the Max number of threads (power of 2) text field the user can enter

how many computational threads will be used. We now describe the available

advanced features provided by the Options button.

MRNSD and CGLS Options

MRNSD has only three advanced properties (see Figure 4.6). The Stopping toler-

ance text field allows to manually specify the value that will be used as a stopping

criterion. By default that value is computed automatically. When the Threshold

option is enabled, then all values in the reconstructed image that are less than the

value specified in the threshold text field are replaced by zero. However, since

MRNSD is a nonnegatively constrained algorithm, this option is not very useful

and is disabled by default. Finally, selecting Log convergence has the effect of

displaying the convergence progress in a separate Log window.

The CGLS options panel looks exactly the same as the MRNSD options panel.

87

The only difference is that the Threshold option is enabled by default, since it is

not a nonnegativity constrained method.

Figure 4.6: MRNSD options panel.

WPL Options

WPL (see Figure 4.7), similarly to MRNSD, is a nonnegatively constrained algo-

rithm, therefore the Threshold option is disabled by default. Moreover, the Log

mean pixel value to track convergence has the same functionality as in the case

of MRNSD - the convergence history is displayed in the separate Log window.

If Normalize PSF is selected, then the point spread function is normalized before

processing. To reduce artifacts from features near the boundary of the imaging

volume the user should use the Perform anti-ringing step option. The Detect di-

vergence property stops the iteration if the changes appear to be increasing. For

WPL, inputs in decibels are permitted (Data (image, psf and result) in dB). This is

uncommon in optical image processing, but is the norm in acoustics. The Wiener

88

filter gamma defines the tolerance for the preconditioner. Setting this parameter

to zero turns off the preconditioner. The Low pass filter x and y settings, in pixels,

provide a way to smooth the results and accelerate convergence. Zero should be

chosen to disable this function. Finally, the Terminate iteration if mean delta less

than x% is used as a stopping criterion.

Figure 4.7: WPL options panel.

HyBR Options

In the HyBR options panel (see Figure 4.8) the properties relevant to regulariza-

tion are grouped in the box called Regularization options. The Method combo-box

allows to decide how the regularization parameter will be computed. If the user

89

selects None, then the value of the parameter has to entered in the Parameter text

field. When WGCV (Weighted Generalized Cross-Validation) is chosen, then the

user has to specify the weight (Omega) manually. In the Begin regularization after

this iteration text field the user can decide after which iteration the regularization

will begin. Before that iteration the QR factorization is used to solve the least

squares problem on the projected subspace at each iteration.

In addition to regularization properties, it is possible to adjust five other options.

In the Inner solver combo-box the user can choose the solver that will be used

at each iteration. Currently it can be either Tikhonov or None. If None is se-

lected as an inner solver, then the QR factorization is used to solve the projected

least squares problem. In the Stopping tolerance text field the user can enter a

value that will be used to detect flatness in the GCV curve as a stopping crite-

rion. If Reorthogonalize Lanczos subspaces is selected, then during the process of

Lanczos bidiagonalization, the subspaces will be reorthogonalized. This process

requires more memory and usually does not improve the quality of reconstruction,

so by default it is disabled. The Threshold check-box should be selected, because

HyBR does not compute a nonnegative solution. The Log Convergence has the

same functionality as for all other methods.

90

Figure 4.8: HyBR options panel.

Spatially Variant PSF

There are three elements in the Parallel Iterative Deconvolution’s GUI that have

not been described above, namely: Spatially variant PSF check-box, Define and

Edit buttons. These elements allow to work with spatially variant PSFs (i.e. if

there are multiple PSF images associated with a single blurred image). Figure 4.9

shows two dialog windows that appear when either the Define or Edit button are

clicked. In the Create Spatially Variant PSF panel the user can specify the number

of PSFs in the form of 2D (or 3D) matrices. Then, after clicking the OK button,

the Edit Spatially Variant PSF panel will appear. This dialog contains a grid of

91

buttons that are used to enter paths to the PSF files.

Figure 4.9: Spatially Variant PSF panels.

A 2D image reconstructed with Parallel Iterative Deconvolution is shown in

Figure 4.10. It is a picture of a star cluster, courtesy of the Space Telescope

Science Institute [4]. The blurred image was generated using a spatially variant

blur that simulates images from the original Hubble Telescope. Moreover, some

amount of read-out and Poisson noise has been added (consult the README file

[104] for details). 25 point spread functions from different regions (see middle of

Figure 4.10) of the field of view are provided to test image deblurring algorithms.

The reconstructed image was obtained after running 39 iterations of MRNSD with

an FFT-preconditioner and reflexive boundary conditions.

92

Blurred image Locations of PSFs Restored image

Figure 4.10: Start cluster image: blurred and restored images.

4.2.2 Benchmark

To benchmark Parallel Iterative Deconvolution and Iterative Deconvolve 3D, we

used the same test images as for the spectral deconvolution case. Tables 4.3 and

4.4 present average execution times (among ten calls) required to perform five

iterations of the preconditioned algorithms in single precision. In the case of Par-

allel Iterative Deconvolution, one should observe a significant speedup, especially

from 1 to 2 threads. In addition, our implementation of the Landweber algorithm

outperforms Iterative Deconvolve 3D (denoted by ID3D in the tables) by over 52

times for 2D problems and for almost 44 times for 3D problems (8 threads).

93

Method 1 thread 2 threads 4 threads 8 threads

CGLS 169.6 110.0 67.2 48.9

MRNSD 179.0 116.8 72.2 52.3

HyBR 183.5 125.6 80.7 58.9

WPL 38.7 21.4 12.3 8.8

ID3D 460.2 - - -

Table 4.3: Average execution times (in seconds) for 2D iterative deblurring.

Method 1 thread 2 threads 4 threads 8 threads

CGLS 85.6 54.3 31.2 21.7

MRNSD 91.5 58.7 33.5 23.1

HyBR 95.5 61.9 36.5 26.1

WPL 26.4 13.9 8.12 5.7

ID3D 250.1 - - -

Table 4.4: Average execution times (in seconds) for 3D iterative deblurring.

4.3 Parallel HRRT Deconvolution

Parallel HRRT Deconvolution [121] is an ImageJ plugin we developed for motion

correction of PET brain images. The goal of Parallel HRRT Deconvolution is to

provide an efficient software that is easy to use by PET technicians. Figure 4.11

shows a GUI for the plugin.

94

4.3.1 Description and Usage

To our knowledge, no other Java software for motion correction of PET brain

images currently exists. There is a software package written by Raghunath et al

[97], however it requires a deep knowledge of the IDL (ITT Visual Information

Solutions, Boulder, CO) programming language and its performance is too low

for clinical usage. That package implements a modified version of the ordered

subsets expectation maximization (OSEM) algorithm [65] (the subsets are defined

in image space rather than in projection space as is normally done). The time

required to deconvolve a typical image with Raghunath’s software ranges from

an average of 6-15 min for 5 and 20 movements, respectively, and uses only two

subsets. The time taken to perform the deconvolution increases with the number

of subsets used. Moreover, even with the ordered subsets technique the storage

requirements are still too high (at least 8GB of RAM memory is needed).

Parallel HRRT Deconvolution implements four iterative solvers (MRNSD, CGLS,

HyBR and OSEM) and has superior performance compared to previously used

IDL code. A typical usage scenario of the plugin involves the following steps:

1. Start ImageJ.

2. Open a blurred image either by using File>Open or File>Import (ImageJ’s

95

menu).

3. Run the plugin by going to Plugins>Parallel HRRT Deconvolution (Im-

ageJ’s menu).

4. Select a file with a calibration matrix (plugin’s GUI).

5. Select a file with motion information (plugin’s GUI).

6. Enter the values for sampling rate, scan duration and time offset.

7. Click Deconvolve button (plugin’s GUI).

8. Adjust the segmentation (if necessary) (visual segmentation editor).

9. Click Continue button (visual segmentation editor).

If the reconstruction is not satisfactory, the user can change the default settings in

the Options panel. The current version of the plugin supports two types of inter-

polation schemes (Nearest neighbor and Trilinear) to construct the displacement

matrices, four different types of the output image (Same as source, Byte (8-bit),

Short (16-bit) and Float(32-bit)) and two precision choices (Double and Single)

used by the algorithms. Moreover, the maximal number of iterations, the maxi-

mal number of threads and show iterations options can be adjusted in the plugin’s

GUI. The Solve button allows to use a different solver and/or the maximal number

96

of iterations for the current data stored in memory. This option saves a lot of com-

putational time, since the preprocessing work needed to prepare input data for a

solver is already generated, and does not need to be recomputed.

The algorithm described in Section 2.2.3 does not always generate the optimal

segmentation, therefore we developed an easy way to manually adjust the seg-

ments. The integral part of the plugin constitutes the visual segmentation editor

illustrated in Figure 4.12. This tool allows for editing the automatically generated

segmentation in a very intuitive way. The segmentation graph displays normal-

ized motion information (which are called Data series) against the scan time (in

seconds). The vertical lines plotted on top of the segmentation graph are the seg-

mentation markers. The numerical values (horizontal axis) corresponding to each

marker line are displayed in the segmentation table dialog. To remove an un-

wanted marker line, the user needs to right-click on the appropriate value in the

segmentation table and choose Delete from the pop-up menu. A unique color is

assigned to each marker line and the corresponding row in the table simplifies

finding the appropriate value. Adding a new marker line is even simpler; the user

just left-clicks on the segmentation graph. Finally, the segmentation can be saved

in a file (using the Save button in the segmentation table dialog) and used later

(when Auto segmentation in the plugin’s GUI is not selected).

97

Figure 4.11: Parallel HRRT Deconvolution GUI

Figure 4.12: Visual segmentation editor.

98

4.3.2 Benchmark

To show how the plugin works, we simulated motion blur of a software-generated

Hoffman phantom image with 256× 256× 95 voxels. The motion blurred image

was generated using random motion information, trilinear interpolation and 10%

of normally distributed noise. The reconstruction algorithms were run by using

two different segmentations of the motion data (see Figure 4.13 and 4.14). In

the first case, the motion information was divided into seven segments and in

the second case into 14 segments. Tables 4.6 and 4.5 report the results (number

of iterations, relative error and execution time (in seconds)) for nearest neighbor

and trilinear interpolation. OSEM was run with two subsets. For segmentation I

we report the number of iterations required to obtain the best solution (smallest

relative error), the value of the smallest relative error and the time required to

compute the reconstruction (in seconds). For segmentation II, we report relative

errors and timings both for the number of iterations required to obtain best solution

and for the number of iterations from segmentation I. The numbers in brackets

indicate results when HyBR automatically stopped the reconstruction.

99

Figure 4.13: Segmentation I of the motion data used with Hoffman phantom data.

Figure 4.14: Segmentation II of the motion data used with Hoffman phantom data.

The following conclusions can be derived from these results. First of all, trilin-

ear interpolation is not only computationally much more expensive than nearest

neighbor interpolation, but also requires up to eight times more memory. More-

100

over, trilinear interpolation does not improve the reconstruction significantly (see

Figure 4.16), thus, we recommend using nearest neighbor interpolation for most

problems. From the three methods that we have tested here (see Table 4.6), HyBR

was the fastest and OSEM was the slowest. However, in terms of the quality of

reconstruction (i.e. relative error and visual inspection), MRNSD outperformed

the other two methods (see Figure 4.15). Figure 4.17 shows that the solution ob-

tained from MRNSD, when using segmentation II, is visually better (but not sig-

nificantly) than the reconstruction generated from segmentation I. Finally, Figure

4.18 illustrates that double precision does not improve the reconstruction. Overall,

MRNSD with segmentation II, nearest neighbor interpolation and single precision

was the best choice for the software generated Hoffman phantom data.

101

Blurred image MRNSD

HyBR OSEM

Figure 4.15: Comparison of MRNSD, HyBR and OSEM for Hoffman phantom

data (segmentation II, nearest neighbor interpolation, single precision).

102

Nearest Neighbor Trilinear

Figure 4.16: Comparison of trilinear and nearest neighbor interpolation for Hoff-

man phantom data (MRNSD, segmentation II, single precision).

Segmentation I Segmentation II

Figure 4.17: Comparison of segmentation I and segmentation II for Hoffman

phantom data (MRNSD, nearest neighbor interpolation, single precision).

103

Single Precision Double Precision

Figure 4.18: Comparison of single and double precision for Hoffman phantom

data (MRNSD, segmentation II, nearest neighbor interpolation).

Method Segm. Iterations Relative error Time

MRNSD I 15 0.3060 96.8

MRNSD II 15 0.2196 234.2

OSEM I 7 0.3041 106.3

OSEM II 7 0.2460 241.3

OSEM II 14 0.2379 292.1

HyBR I 2 (10) 0.3182 (0.4086) 77.3 (85.9)

HyBR II 2 0.2544 196.1

HyBR II 3 (10) 0.2434 (0.2910) 199.8 (221.3)

Table 4.5: Comparison of timings (in seconds), iterations, and relative errors for

Hoffman phantom data (trilinear interpolation, single precision).

104

Method Segm. Iterations Relative error Time

MRNSD I 13 0.3098 15.5

MRNSD II 13 0.2344 31.5

MRNSD II 15 0.2339 32.7

OSEM I 7 0.3094 21.4

OSEM II 7 0.2522 53.8

OSEM II 11 0.2490 63.2

HyBR I 2 (9) 0.3277 (0.3636) 9.4 (14.1)

HyBR II 2 0.2678 22.15

HyBR II 3 (9) 0.2676 (0.3166) 22.9 (28.5)

Table 4.6: Comparison of timings (in seconds), iterations, and relative errors for

Hoffman phantom data (nearest neighbor interpolation, single precision).

4.4 Parallel Super-Resolution

Parallel Super-Resolution [124] is an ImageJ plugin for super-resolution. The

code is based on Julianne Chung’s MATLAB scripts. Figure 4.19 shows a graph-

ical user interface for the plugin.

4.4.1 Description and Usage

To our knowledge, no other Java implementation of the super-resolution problem

currently exist. The plugin implements the solution scheme based on the Reduced

105

Gauss-Newton method described in Section 2.3 where HyBR is used to solve a

regularized least squares problem in each iteration. Analogous to other plugins

described in this chapter, Parallel Super-Resolution can handle arbitrary-sized 2-

and 3-dimensional images, but its usage is limited to grayscale images. In ad-

dition, the geometrical warping of low-resolution images is limited to the linear

affine transformations.

There are six drop-down lists available in the plugin’s GUI. From the Images

list, the user can choose a set of low-resolution images. For 2D images this must

be a 3D grayscale stack and for 3D images, the input must be in the form of a 4D

grayscale hyperstack. The next list, called Reference, allows to choose a reference

image. It contains the indices of all 2D input images in a 3D stack (or the indices

of 3D input stacks in a 4D hyperstack). On the right of the Reference list, there

are two text fields that are used to specify scaling factors (the same factors are

used for x and y dimension and possibly a different factor for the z dimension).

The next two combo-boxes (Solver and Method) allow to choose a non-linear and

a linear solver. However, in the current version of the plugin, both of these lists

contain only a single item (Gauss-Newton as a non-linear solver and HyBR as a

linear solver). The Output and Precision lists provide the same functionalities as

for previously described ImageJ plugins.

106

The Number of iterations text field is used to specify how many iterations of

Gauss-Newton should be performed (2 iterations by default). To specify the max-

imal number of iterations for HyBR (10 iterations by default) or change any other

HyBR parameters, the user has to click on the Options button. The HyBR options

dialog is illustrated in Figure 4.20. The Show iterations check-box, if selected,

allows to display the reconstructed image after each Gauss-Newton iteration. Fi-

nally, in the Max number of threads text field the user can specify how many

computational threads will be used.

Figure 4.19: Parallel Super-Resolution GUI

107

Figure 4.20: HyBR options panel.

Figures 4.21 and 4.22 show reconstructions of 2D and 3D data together with the

low-resolution reference and interpolated (using quintic B-spline) images. The

low-resolution images were created by rotations and translations of the reference

images. Moreover, 1% of normally distributed noise has been added to this data.

The image in Figure 4.21 is a cancer cell from a rat’s prostate, courtesy of Alan

W. Partin, M.D., Ph.D., Johns Hopkins University School of Medicine. The input

data comprised of 33 2D images of size 32× 32 and the reconstructed image was

of the size 256 × 256. For 3D test data (see Figure 4.22) we used an MRI image

from MATLAB’s Image Processing Toolbox. In that case, there are 23 3D low-

resolution images of size 32 × 32 × 7 and the high-resolution image was of the

108

size 128× 128× 7. As can be seen from these figures, the high-resolution images

obtained from the super-resolution process contain significantly more details than

the corresponding interpolated images.

Low-resolution image Interpolated image Reconstructed image

Figure 4.21: Cancer cell from a rat’s prostate: low-resolution, interpolated and

high-resolution images.

Low-resolution image Interpolated image Reconstructed image

Figure 4.22: MRI: low-resolution, interpolated and high-resolution images (only

a single slice is shown).

109

4.4.2 Benchmark

To benchmark the Parallel Super-Resolution plugin we used the data shown in

Figures 4.21 and 4.22. Table 4.7 contains the results of this benchmark as aver-

age execution times (in seconds) for different numbers of threads. One can easily

notice that the scalability of the plugin is very poor. The main reason of this be-

havior lies in the data structures and algorithms used in the implementation. The

most computationally intensive operations involve sparse matrix-matrix products

and sparse matrix-vector products. Only the second operation is currently mul-

tithreaded, but its performance depends strongly on the structure of the sparse

matrix. Nonetheless, the overall performance of the plugin is satisfactory.

Size 1 thread 2 threads 4 threads 8 threads

(33)× 32× 32 8.46 8.34 8.17 8.45

(23)× 32× 32× 7 54.37 54.09 52.66 53.58

Table 4.7: Average execution times (in seconds) for Parallel Super-Resolution.

4.5 Parallel FFTJ

Parallel FFTJ [120] is an FFT plugin for ImageJ. The code is derived from FFTJ

(version 2.0) [75] written by Nick Linnenbrügger. Figure 4.23 shows the graphical

110

user interface for the plugin. Although ImageJ has a built-in FFT functionality,

these operations require images of power-of-two size; FFTJ plugin does not have

this limitation.

4.5.1 Description and Usage

Parallel FFTJ has the same functionality as FFTJ, but its performance is much bet-

ter. There is one significant difference between these two plugins: Parallel FFTJ

applies scaling when the inverse FFT is chosen, while FFTJ scales only the for-

ward FFT. Contrary to all other software described in this chapter, the code for the

GUI of Parallel FFTJ was copied from FFTJ 2.0. The plugin can handle arbitrary-

sized 3D volumes as well as single 2D images. Besides defining the input images

(both real and imaginary parts), the user can choose the complex number preci-

sion (Single or Double), FFT direction (Forward or Inverse) and the number of

computational threads (must be a power-of-two number). For the output of the

transformation (the other dialog window in Figure 4.23), it is possible to choose

one of the two Fourier domain origins (At point (0,0,0) or At Volume-Center).

Once this decision is made, the following images can be displayed: real Part,

imaginary part, Fourier frequency spectrum, logarithmic Fourier frequency spec-

trum, Fourier phase spectrum, Fourier power spectrum, and logarithmic Fourier

111

power spectrum.

Figure 4.23: Parallel FFTJ GUI.

Figure 4.24 shows the satellite image (real input data) and the corresponding fre-

quency (ln(1+|fft2(image)|)) and phase (arctan(im(fft2(image)), re(fft2(image))))

spectrum. The images were computed using a froward Fourier transform with the

origin at volume center.

112

Input image Frequency spectrum (logarithmic) Phase spectrum

Figure 4.24: Satellite image: input image, frequency spectrum (logarithmic), and

phase spectrum.

4.5.2 Benchmark

The performance of Parallel FFTJ was compared to its predecessor - FFTJ 2.0.

Table 4.8 contains the timings for computing 2D and 3D single precision, real for-

ward Fourier transforms. For the power-of-two sizes Parallel FFTJ outperforms

FFTJ significantly (over 23 times speedup for 4096 x 4096 image (1 thread)).

However, the whole power of Parallel FFTJ is revealed for data sizes which are

not power-of-two (over 14832 times speedup for 4000 x 4000 image (1 thread)).

These results can be explained by the fact that FFTJ 2.0 uses a very naïve imple-

mentation of the discrete Fourier transform (DFT) algorithm when the size of the

data is not power-of-two number (see Algorithm 4).

113

Size FFTJ Parallel FFTJ (1 thread) Parallel FFTJ (8 threads)

4000 x 4000 24770.01 1.67 0.89

4096 x 4096 28.62 1.23 0.62

100 x 200 x 200 373.25 0.43 0.17

128 x 256 x 256 5.38 0.70 0.38

Table 4.8: Average execution times (in seconds) for 2D and 3D single precision,

real forward Fourier transforms.

Algorithm 4 FFTJ 2.0 implementation of 1D DFT algorithm.
1. void DFT1D(Direction dir, ComplexNum[] src, int len, ComplexNum[] buf) {

2. for (int i = 0; i < length; i++) {

3. buf[i].setValue(0, 0);

4. double arg = -2d * Math.PI * i / len;

5. if (direction == INVERSE)

6. arg = -arg;

7. for (int k = 0; k < len; k++) {

8. double cosarg = Math.cos(k * arg);

9. double sinarg = Math.sin(k * arg);

10. buf[i].addValue(src[k].getRealValue() * cosarg -

11. src[k].getImagValue() * sinarg,

12. src[k].getRealValue() * sinarg +

13. src[k].getImagValue() * cosarg);

14. }

15. }

16. // scaling for forward transformation

17. if (dir == FORWARD)

18. for (int i = 0; i < len; i++)

19. buf[i].divideByValue(len);

20. // Copy the data back

21. for (int i = 0; i < len; i++)

22. src[i].setValue(buf[i]);

23. }

114

4.6 Lincoln Papers

Lincoln Papers [118] in an ImageJ plugin for automatic classification and crop-

ping of scanned paper documents. The graphical user interface for the plugin is

illustrated in Figure 4.27.

4.6.1 Description and Usage

The main goal of the Papers of Abraham Lincoln project [66] at the University of

Illinois’ National Center for Supercomputing Applications (NCSA) is to promote

learning about Abraham Lincoln via a web-based interface. The architecture dia-

gram of the project is shown in Figure 4.25. The website (client-side) consists of

an HTML file with Google Map loaded, a search form, predefined data sets, and

a JavaScript script. The server-side consists of a PHP file and MySQL database.

The server returns the result as an XML response to the AJAX engine. The user

functionalities include searching the database, viewing the results, viewing in-

dividual documents, editing or transcribing them, deleting existing postings or

adding new ones.

115

Figure 4.25: Architecture diagram of the Papers of Abraham Lincoln project [66].

From the computational point of view, the project requires automatic classifi-

cation and cropping of very large collections of scanned paper documents. These

documents represent the incoming and outgoing correspondence of Abraham Lin-

coln. Some documents are scanned together with a color scale bar in order to pre-

serve the color scale. The average image size is about 150 MB. Currently, there

are about 23,000 scanned document images (3.45 TB), but the expected amount

is 200,000 or 300,000 images (45 TB). The collection (illustrated in Figure 4.26)

is characterized by a large variability of paper and ink colors in image scans and

the density of writing (text to background ratio). Finally, position of the color

scale bar differs among subsets of the documents. Manual cropping would require

116

about 5 years for a single full-time person with 2 minutes allocated for opening,

cropping and saving an image.

To process this large amount of data, the algorithms for automatic classifica-

tion of images containing the documents with or without additional background

patterns have been designed by the Image Spatial Data Analysis Group at NCSA

[66]. Then, the images with background are automatically analyzed to identify

the crop region containing only the text portion of the documents. Finally, the al-

gorithms are applied to a large volume of images that consists of 1,000 to 100,000

pages. The whole workflow is divided into the following stages:

1. convert the image from RGB to HSB color space

2. create a grid of tiles from each image

3. select the training tile (auto or semi-auto methods)

4. compute the histogram of hue for the training tile

5. select the similarity threshold for comparing histograms (auto or semi-auto

methods)

6. compute the histogram of every tile

117

7. compare the histogram of every tile with the histogram of a training tile and

assign labels "with or without color bar"

8. extract the crop area based on tile labels

9. crop the image.

The sequential algorithms for all the stages have been implemented by Melvin

Casares and Peter Bajcsy. In order to run efficiently the whole process on multiple

multi-core architectures, it was necessary to parallelize the most computationally

intensive stages that include: image color space transformation, image tiling, im-

age histogram, and image classification. The contribution of this work is an Im-

ageJ plugin that provides a robust and scalable Java implementation of the whole

process.

118

Fi
gu

re
4.

26
:C

ol
le

ct
io

n
of

L
in

co
ln

pa
pe

rs
[6

6]
.

119

Two combo-boxes available in the plugin’s GUI (Input images extension and

Cropped images extension) allow to choose a format for input and output images.

Currently six types of images are supported: TIF, JPG, PNG, PGM, BMP, ZIP.

The Number of threads text field allows the user to define a maximal number of

computational threads. The remaining thirteen text fields are used to define the

paths to the input and output files and directories.

Since the process requires a lot of time-consuming input/output (I/O) operations,

a parallel I/O library has been developed. The code for this library is derived from

ImageJ and allows to speed up reading and writing images when a parallel file

system is available. The multithreaded implementation is based on the approach

discussed in [20]. In particular, we divide the indices of the pixel array among

multiple threads and each thread uses its own RandomAccessFile (from java.io

package) object to set the file-pointer offset and then read / write the corresponding

part of the image. Currently the parallel I/O library supports reading and writing

of uncompressed TIF files and reading of LZW-compressed TIF files. Sequential

algorithms are used for the other file formats, however the parallelization approach

is general enough to be applied to any image coding format.

120

Figure 4.27: Lincoln Papers GUI.

4.6.2 Benchmark

The Lincoln Papers plugin has been benchmarked on SGI Altix 3700 Bx2 super-

computer (Cobalt) [86] equipped with 512 Intel Itanium 2 Processors (1.60 GHz,

9MB L3 Cache), 3TB of RAM memory, Linux kernel: 2.6.16.54-0.2.5 and BEA

JRockit R27.6 Java distribution. The test data consisted of 1133 image scans with

average image size equal 93.8 MB. For the parallel file installed on Cobalt, we

121

were able to achieve best performance for four I/O threads. Table 4.9 shows a

total execution time of the workflow for the sequence of 1133 image scans as well

as for a single image. The number of I/O threads varied according to the formula:

number of I/O threads = min(4, number of computational threads).

It can be concluded from these data that the code is scalable up to 16 threads,

which means that the whole collection (300,000 images) can be cropped within

217 hours using only 16 CPUs and 4GB RAM. In addition, if one can run 31

separate Java processes on Cobalt, where each process uses 16 threads, then the

whole collection can be cropped within 7 hours (vs. 5 years of manual cropping).

Scans 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads

1133 21306.1 12470.2 8420.3 5143.8 2947.7 3467.3

1 18.8 11.0 7.4 4.5 2.6 3.1

Table 4.9: Total execution time (in seconds) of the workflow for the whole se-

quence (1133 image scans) and a single image scan.

122

Chapter 5

Conclusions

In this work we have demonstrated the advantage of exploiting available hard-

ware on modern computer architectures in scientific computing and image pro-

cessing with multithreaded programming in Java. A significant contribution of

our work is an open source, multithreaded Java library for high performance sci-

entific computing, Parallel Colt. The current features of Parallel Colt, combined

with the front-end functionality of ImageJ, constitute a powerful, portable and

user-friendly solution for large-scale image processing.

We have also implemented six ImageJ plugins that utilize many functionali-

ties available in Parallel Colt. Parallel Spectral Deconvolution and Parallel Iter-

ative Deconvolution are the first open source software packages that provide a

complete solution to PSF-based image deconvolution. Parallel HRRT Deconvo-

lution, currently used in the Department of Radiology, Emory University School

123

of Medicine, allows to improve the quality of PET brain images. Parallel Super-

Resolution is the first ImageJ plugin for reconstructing of a high-resolution image

from a set of low-resolution data. Parallel FFTJ is a reimplementation of fast

Fourier transform plugin for ImageJ that, contrary to its predecessor, allows for

real-time visualization of Fourier space characteristics. Finally, Lincoln Papers

provides an efficient implementation for the problem of automatic classification

and cropping of scanned paper documents with color scale bars.

Thus, we are able to provide Java software to solve important problems in real

image processing applications, and which can effectively make use of multi-core

CPUs available on affordable desktop and notebook computers.

124

Appendix A

6.1 Fast Fourier Transform

A fast Fourier transform (FFT) algorithm is the most efficient method to com-

pute the discrete Fourier transform (DFT), with a complexity of Θ(N log(N)) to

compute a DFT of a d-dimensional array containing N components. An FFT al-

gorithm was first proposed by Gauss in 1805 [59], but it was the 1965 work by

Cooley and Tukey [33] that is generally credited for popularizing its use. The

most common variant of the algorithm, called radix-2, uses a divide-and-conquer

approach to recursively split the DFT of size N into two parts of size N/2. Other

splittings can be used as well, including mixed-radix and split-radix algorithms

[112].

The split-radix algorithm requires the lowest arithmetic operation count to com-

pute a DFT when N is a power-of-two [68]. The algorithm was first described in

1968 by Yavne [127] and then rediscovered in 1984 by Duhamel and Hollmann

[40]. The idea here is to recursively divide a DFT of size N into one DFT of length

125

N/2 and two DFTs of length N/4. As a result, the split-radix algorithm can only be

applied when N is a multiple of 4. Further details about split-radix algorithm can

be found in [112]; here we only present the decomposition. The DFT of vector x

of length N is defined as

yk =
N−1∑
n=0

xnω
nk
N (6.1)

where k = 0, · · · , N−1 and ωN = exp(−2πi/N). We want to express summation

(6.1) in the form of three summations of size N/2, N/4 and N/4 respectively. Let

nm denote an index variable such that nm = 0, · · · , N/m − 1. Then, we can

define the elements with even indices by x2n2 . Similarly, the elements with odd

indices can be defined by x4n4+1 (when the index = 1 mod 4) and x4n4+3 (when

the index = 3 mod 4). This allows us to write equation (6.1) in the following way

yk =

N/2−1∑
n2=0

x2n2ω
n2k
N/2 + ωkN

N/4−1∑
n4=0

x4n4+1ω
n4k
N/4 + ω3k

N

N/4−1∑
n4=0

x4n4+3ω
n4k
N/4 (6.2)

where ωmnkN = ωnkN/m. One should notice that the three sums in equation (6.2)

correspond to one DFT of size N/2 and two DFTs of size N/4. All these subtrans-

forms can be now computed by using the same splitting recursively. Thus we can

write the split-radix decomposition as

yk = uk + ωkNzk + ω3k
N z

′

k (6.3)

where uk (k = 0, · · · , N/2− 1) is the result of the DFT of length N/2, and zk and

126

z
′

k (k = 0, · · · , N/4 − 1) are results of two DFTs of length N/4. It can be shown

that by using scheme (6.3), many unnecessary calculations are performed. This is

due to the fact that the so-called twiddle factors ωkN and ω3k
N are related

ω
k+N/4
N = −iωkN

ω
3(k+N/4)
N = iω3k

N (6.4)

After applying this relation to equation (3), we get the final form of the split-radix

decomposition

xk = uk +
(
ωkNzk + ω3k

N z
′

k

)
xk+N/2 = uk −

(
ωkNzk + ω3k

N z
′

k

)
(6.5)

xk+N/4 = uk+N/4 − i
(
ωkNzk − ω3k

N z
′

k

)
xk+3N/4 = uk+N/4 + i

(
ωkNzk − ω3k

N z
′

k

)
for k = 0, · · · , N/4− 1.

127

Appendix B

7.1 Popularity of Parallel Colt

Parallel Colt has been used in the following software projects.

• NPAIRS/PLS-J [106] is a Java program developed at Rotman Research

Institute (Canada), capable of performing both nonparametric, prediction,

activation, influence, reproducibility, re-sampling (NPAIRS) [107] and par-

tial least squares (PLS) [76] analysis.

• TomoJ [78] is an ImageJ plugin that provides a user friendly interface for

alignment, reconstruction, and combination of multiple tomographic vol-

umes and includes the most recent algorithms for volume reconstructions

used in three-dimensional electron microscopy (the algebraic reconstruc-

tion technique and simultaneous iterative reconstruction technique) as well

as the commonly used approach of weighted back-projection.

128

• Incanter [74] is a Clojure-based, statistical computing and graphics en-

vironment for the Java Virtual Machine. Clojure was chosen because its

seamless integration with Java and ability to use the large number of exist-

ing Java libraries for data access, data processing, and presentation.

• JQuantLib [48] is a comprehensive framework for quantitative finance,

written in Java. It provides a wide range of mathematical and statistical

tools for the valuation of shares, options, futures, swaps, and other financial

instruments. It also supports tools related to risk and money management.

• Endrov [61] is a multi-purpose image analysis program similar to ImageJ,

but with some additional functionalities. Current features include 2D and

3D visualization of image data and annotation, visualization of 3D isosur-

faces, support for large data sets (50GB+), data compression, infinite num-

ber of channels, batch processing, integration with external tools such as

MATLAB image filters and analysis tools, non-destructive real-time appli-

cation of image operations, and 5D regions of interests.

7.2 Popularity of JTransforms

JTransforms has been used in the following software projects.

129

• MusicReader [73] is a commercial software for musicians. It offers solu-

tions for many problems musicians have with traditional sheet music, both

individually and in orchestras and ensembles.

• Spectro-Edit [44] is a software that reads PCM audio files and shows the

audio visually in a time vs. frequency plot. It is possible to paint out any

part of the visualization and play back the audio subject to the modifications.

• Yaprnn (Yet another pattern recognizing neural network) [21] is a project

that uses a neural network trained by the backpropagation algorithm to rec-

ognize patterns (audio and visual data).

• Jkis [2] is a speech enhancement application written in Java.

• 3dsearch [1] is a 3D shape search engine written in Java. The system uses

the spheric harmonics transform (SHT) to form a shape descriptor.

• ExpertEyes [23] is an open source eyetracking application built in Java.

• METgames [71] is a software for collaborative online activities for acous-

tics education and psychoacoustic data collection.

130

7.3 Popularity of ImageJ Plugins

ImageJ plugins developed as a part of this work have been used in the following.

• Fiji [10] is an image processing package based on ImageJ. Fiji enhances

ImageJ by shipping with a set of plugins in a coherent menu structure, and

comprehensive documentation. The aim of the project is to simplify the

installation of ImageJ, the usage of ImageJ, the usage of specific, power-

ful ImageJ plugins and the development of plugins using ImageJ. Currently

Parallel Spectral Deconvolution and Parallel Iterative Deconvolution plug-

ins are available in Fiji.

• MBF ImageJ [32] is a customized distribution of ImageJ bundled with plu-

gins useful for microscopy. A detailed manual for each plugin is also pro-

vided. Parallel Spectral Deconvolution is a part of this package.

• Parallel Spectral Deconvolution has been used in the article by R. Barbier

et al [12].

7.4 Lines of Code

The following list shows the total number of lines of code for each project.

131

• Parallel Colt 0.9.1: 202,595

• JTransforms 2.3: 48,230

• JPlasma 1.0: 5,171

• CSparseJ 1.0: 5,728

• Parallel Spectral Deconvolution 1.11: 10,245

• Parallel Iterative Deconvolution 1.11: 20,143

• Parallel HRRT Deconvolution 1.5: 8,863

• Parallel Super-Resolution 1.2: 5,202

• Parallel FFTJ 1.3: 1,339

• Lincoln Papers 1.0: 7,220

• TOTAL: 314,736

Bibliography

[1] 3dsearch Project, 2009. http://code.google.com/p/3dsearch/.

[2] Jkis Project, 2009. http://code.google.com/p/jkis/.

[3] JUnit Project, 2009. http://www.junit.org/.

[4] Space Telescope Science Institute, 2009.

http://www.stsci.edu/resources/.

[5] AccelerEyes. Jacket, 2009. http://accelereyes.com/.

[6] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. Trans-

actions on Computers, C-23(1):90–93, 1974.

[7] B. Amerdo, V. Bodnartchouk, D. Caromel, C. Delbé, F. Huet, and G. L.

Taboada. Current state of Java for HPC. Technical Report inria-00312039,

INRIA, 2008.

132

133

[8] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Don-

garra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and

D. Sorensen. LAPACK Users’ guide (third ed.). SIAM, Philadelphia, PA,

1999.

[9] Apache Software Foundation. Commons-Math Project, 2009.

http://commons.apache.org/math/.

[10] I. Arganda-Carreras, A. Cardona, E. Frise, G. Jefferis, V. Kaynig, G. Lan-

dini, M. Longair, S. Preibisch, S. Saalfeld, J. Schindelin, B. Schmid,

C. Sicker, J. Tinevez, D. White, and P. Tomancak. Fiji Project, 2009.

http://pacific.mpi-cbg.de/wiki/index.php/Main_Page.

[11] H. Arndt, M. Bundschus, and A. Nägele. Towards a next-generation matrix

library for Java. In 33rd Annual IEEE International Computer Software

and Applications Conference, 2009.

[12] R. Barbier, J. Baudot, E. Chabanat, P. Depasse, W. Dulinski, N. Estre, C. T.

Kaiser, N. Laurent, and M. Winter. Performance study of a megapixel sin-

gle photon position sensitive photodetector EBCMOS. In 5th International

Conference on New Developments In Photodetection, 2008.

134

[13] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd

Edition. SIAM, Philadelphia, PA, 1994.

[14] M. Bertero and P. Boccacci. Introduction to Inverse Problems in Imaging.

IOP Publishing Ltd., London, 1998.

[15] Å. Björck. A bidiagonalization algorithm for solving large and sparse ill-

posed systems of linear equations. BIT, 28(3):659–670, 1988.

[16] Å. Björck. Numerical Methods for Least Squares Problems. SIAM,

Philadelphia, PA, 1996.

[17] L. S. Blackford, J. Demmel, J. J. Dongarra, I. Duff, S. Hammarling,

G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,

K. Remington, and R. C. Whaley. An updated set of Basic Linear Alge-

bra Subprograms (BLAS). ACM Transactions on Mathematical Software,

28(2):135–151, June 2002.

[18] P. M. Bloomfield, J. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livier-

atos, R. Fulton, and T. Jones. The design and implementation of a motion

135

correction scheme for neurological PET. Phys Med Biol, 48:959–978, Apr

2003.

[19] L. I. Bluestein. A linear filtering approach to the computation of the dis-

crete Fourier transform. Northeast Electronics Research and Engineering

Meeting Record, (10):218–219, 1968.

[20] D. Bonachea, P. M. Dickens, and R. Thakur. High-performance file I/O

in Java: Existing approaches and bulk I/O extensions. Concurrency and

Computation: Practice and Experience, 13(8-9):713–736, 2001.

[21] L. Bronstein, S. Sauerstein, F. Rodemund, O. Boroda, F. Schwabe,

T. Kwanka, and A. Gruner. Yaprnn Project, 2009.

http://code.google.com/p/yaprnn/.

[22] P. Bühler, U. Just, E. Will, J. Kotzerke, and J. van den Hoff. An accu-

rate method for correction of head movement in PET. IEEE Trans Med

Imaging, 23:1176–1185, Sep 2004.

[23] T. Busey and R. Akavipat. ExpertEyes Project, 2009.

http://code.google.com/p/experteyes/.

136

[24] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. A class of parallel

tiled linear algebra algorithms for multicore architectures. Technical report,

Innovative Computing Laboratory, 2007.

[25] J. Byous. Java technology: the early years, 2003.

http://java.sun.com/features/1998/05/birthday.html.

[26] R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz sys-

tems. SIAM Review, 38:427–482, 1996.

[27] T. F. Chan. An optimal circulant preconditioner for Toeplitz systems. SIAM

J. Sci. Stat. Comp., 9:766–771, 1988.

[28] T. F. Chan and J. A. Olkin. Preconditioners for Toeplitz-block matrices.

Numer. Algo., 6:89–101, 1993.

[29] T. F. Chan and J. Shen. Image Processing and Analysis: Variational, PDE,

Wavelet, and Stochastic Methods. SIAM, Philadelphia, PA, 2005.

[30] J. Chung and J. G. Nagy. Nonlinear least squares and super resolution. J.

Phys.: Conf. Ser., 124(1):P–012019, 2008.

137

[31] J. Chung, J. G. Nagy, and D. P. O’Leary. A weighted GCV method for

Lanczos hybrid regularization. Elec. Trans. Numer. Anal., 28:149–167,

2008.

[32] T. Collins. MBF ImageJ Project, 2009.

http://www.macbiophotonics.ca/imagej/.

[33] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation

of complex Fourier series. Mathematics of Computation, 19(90):297–301,

1965.

[34] J. Dautelle. JScience Project, 2007. http://jscience.org/.

[35] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadel-

phia, PA, 2006.

[36] T. A. Davis. The University of Florida Sparse Matrix Collection, 2009.

http://www.cise.ufl.edu/research/sparse/matrices/.

[37] D. M. Doolin, J. J. Dongarra, and K. Seymour. JLAPACK - compiling

LAPACK Fortran to Java. Sci. Program., 7(2):111–138, 1999.

138

[38] R. Dougherty. Extensions of DAMAS and benefits and limitations of de-

convolution in beamforming. In 11th AIAA/CEAS Aeroacoustics Confer-

ence, 2005.

[39] DRA Systems. OR-Objects, 2000. http://opsresearch.com/OR-Objects/.

[40] P. Duhamel and H. Hollmann. Split radix FFT algorithms. Electronic Let-

ters, 20:14–16, 1984.

[41] T. L. Faber, N. Raghunath, D. Tudorascu, and J. R. Votaw. Motion correc-

tion of PET brain images through deconvolution: I. Theoretical develop-

ment and analysis in software simulations. Phys Med Biol, 54(3):797–811,

Feb 2009.

[42] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.

Proceedings of the IEEE, 93(2):216–231, 2005.

[43] M. Frigo and S. G. Johnson. FFT benchmark methodology, 2009.

http://www.fftw.org/speed/method.html.

[44] J. Fuerth. Spectro-Edit Project, 2009.

http://code.google.com/p/spectro-edit/.

139

[45] R. R. Fulton, S. R. Meikle, S. Eberl, J. Pfeiffer, C. J. Constable, and M. J.

Fulham. Correction for head movements in PET using an optical motion-

tracking system. IEEE Trans. Nucl. Sci, 49:116–123, 2002.

[46] G. H. Golub, M. Heath, and G. Wahba. Generalized Cross-Validation as

a method for choosing a good ridge parameter. Technometrics, 21(2):215–

223, 1979.

[47] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins

Studies in Mathematical Sciences). The Johns Hopkins University Press,

October 1996.

[48] R. Gomez. JQuantLib Project, 2009.

http://www.jquantlib.org/index.php/Main_Page.

[49] R. C. Gonzalez and P. Wintz. Digital Image Processing, chapter 5.

Addison-Wesley Pub. Co, 1977.

[50] M. V. Green, J. Seidel, S. D. Stein, T. E. Tedder, K. M. Kempner, C. Kertz-

man, and T. A. Zeffiro. Head movement in normal subjects during simu-

lated PET brain imaging with and without head restraint. J. Nucl. Med.,

35:1538–1546, 1994.

140

[51] G.W. Stewart. Jampack project, 2009.

ftp://math.nist.gov/pub/Jampack/Jampack/AboutJampack.html.

[52] D. Hale. The Java and C++ platforms for scientific computing. Techni-

cal Report CWP-547, Center for Wave Phenomena, Department of Geo-

physics, Colorado School of Mines, 2006.

[53] D. Hale. Mines Java Toolkit (JTK), 2009.

http://inside.mines.edu/%7Edhale/jtk/index.html.

[54] M. Hanke. Conjugate gradient type methods for ill-posed problems. Pitman

Research Notes in Mathematics, Longman Scientific & Technical, Harlow,

Essex, 1995.

[55] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-

curve. SIAM Rev., 34(4):561–580, 1992.

[56] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM,

Philadelphia, PA, 1997.

[57] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images Matrices,

Spectra and Fitering. SIAM, Philadelphia, PA, 2006.

141

[58] R. V. L. Hartley. A more symmetrical Fourier analysis applied to transmis-

sion problems. In Proceedings of IRE, 1942.

[59] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast

Fourier transform. ASSP Magazine, IEEE [see also IEEE Signal Process-

ing Magazine], 1(4):14–21, 1984.

[60] B. Heimsund. Matrix toolkits for Java, 2007.

http://ressim.berlios.de/.

[61] J. Henriksson. Endrov Project, 2009.

http://www.endrov.net/index.php/Main_Page.

[62] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R. Pozo,

and K. Remington. JAMA : A Java Matrix Package, 2005.

http://math.nist.gov/javanumerics/jama/.

[63] W. Hoschek. Uniform, versatile and efficient dense and sparse multi-

dimensional arrays, 2000.

http://acs.lbl.gov/%7Ehoschek/publications/ACMJava2000.pdf.

[64] W. Hoschek. Colt Project, 2004.

http://dsd.lbl.gov/%7Ehoschek/colt/index.html.

142

[65] M. Hudson and R. Larkin. Accelerated image reconstruction using ordered

subsets of projection data. IEEE Trans. Med. Imag, 13:601–609, 1994.

[66] Image Spatial Data Analysis Group at NCSA. The Papers of Abraham

Lincoln Project, 2009. http://isda.ncsa.uiuc.edu/lpapers/index.html.

[67] JCuda. JCuda Project, 2009. http://www.jcuda.org/jcuda/JCuda.html.

[68] S. G. Johnson and M. Frigo. A modified split-radix FFT with fewer arith-

metic operations. IEEE Trans. Signal Processing, 55(1):111–119, 2007.

[69] W. Kahan and J. D. Darcy. How Java’s floating-point hurts everyone every-

where, 1998. http://www.cs.berkeley.edu/%7Ewkahan/JAVAhurt.pdf.

[70] M. E. Kilmer and D. P. O’Leary. Choosing regularization parameters in

iterative methods for ill-posed problems. SIAM J. Matrix Anal. Appl.,

22:1204–1221, 2001.

[71] Y. E. Kim, T. M. Doll, and R. Migneco. Collaborative online activities for

acoustics education and psychoacoustic data collection. IEEE Transactions

on Learning Technologies, 99(2), 2009.

[72] R. L. Lagendijk and J. Biemond. Iterative Identification and Restoration of

Images. Kluwer Academic Publishers, Boston/Dordrecht/London, 1991.

143

[73] Leonè MusicReader. MusicReader, 2009. http://www.musicreader.net/.

[74] D. Liebke. Incanter Project, 2009.

http://wiki.github.com/liebke/incanter.

[75] N. Linnenbrügger. FFTJ and DeconvolutionJ, 2002.

http://rsb.info.nih.gov/ij/plugins/fftj.html.

[76] A. R. Mcintosh, F. L. Bookstein, J. V. Haxby, and C. L. Grady. Spatial

pattern analysis of functional brain images using partial least squares. Neu-

roimage, 3:143–157, 1996.

[77] M. Menke, M. Atkins, and K. Buckley. Compensation methods for head

motion detected during PET imaging. IEEE Trans. Nucl. Sci, 43:310–317,

1996.

[78] C. Messaoudi, T. Boudier, C. Sorzano, and S. Marco. TomoJ: tomogra-

phy software for three-dimensional reconstruction in transmission electron

microscopy. BMC Bioinformatics, 8(1):288, 2007.

[79] V. A. Morozov. On the solution of functional equations by the method of

regularization. Soviet Math. Dokl., 7:414–417, 1966.

144

[80] J. G. Nagy and D. P. O’Leary. Preconditioned iterative regularization for ill-

posed problems. In Numerical Linear Algebra and Scientific Computing,

number 3162, pages 141–163, 1993.

[81] J. G. Nagy and D. P. O’Leary. Restoring images degraded by spatially-

variant blur. SIAM J. Sci. Comput, 19:1063–1082, 1996.

[82] J. G. Nagy and D. P. O’Leary. Fast iterative image restoration with a space-

varying PSF. In Advanced Signal Processing Algorithms, Architectures,

and Implementations IV, number 3162, pages 388–399, 1997.

[83] J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image de-

blurring: A MATLAB object-oriented approach. Numerical Algorithms,

36(1):73–93, May 2004.

[84] J. G. Nagy and Z. Strakoš. Enforcing nonnegativity in image reconstruc-

tion algorithms. In D.C. Wilson et. al., editor, Mathematical Modeling,

Estimation and Imaging, volume 4121, pages 182–190, 2000.

[85] NASA. Great images in NASA. Ed White performs first U.S. spacewalk.,

1965. http://grin.hq.nasa.gov/ABSTRACTS/GPN-2006-000025.html.

145

[86] NCSA. SGI Altix 3700 Bx2 (Cobalt), 2009.

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/SGIAltix/.

[87] NIST. Matrix Market Exchange Formats, 2009.

http://math.nist.gov/MatrixMarket/formats.html#MMformat.

[88] J. Nocedal and S. Wright. Numerical Optimization. New York: Springer,

1999.

[89] NVIDIA Corporation. CUDA Zone, 2009.

http://www.nvidia.com/object/cuda_home.html.

[90] D. P. O’Leary and J. A. Simmons. A bidiagonalization - regularization

procedure for large scale discretizations of ill-posed problems. SIAM J.

Sci. Stat. Comp., 2:474–489, 1981.

[91] T. Ooura. General Purpose FFT (Fast Fourier/Cosine/Sine Transform)

Package, 2006. http://www.kurims.kyoto-u.ac.jp/%7Eooura/fft.html.

[92] Optimatika. ojAlgo Project, 2009. http://ojalgo.org/index.html.

[93] J. Orchard. His brain, 2007. http://www.cs.uwaterloo.ca/%7Ejorchard/mri/.

146

[94] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image re-

construction: a technical overview. Signal Processing Magazine, IEEE,

20(3):21–36, 2003.

[95] Y. Picard and C. J. Thompson. Motion correction of PET images using mul-

tiple acquisition frames. IEEE Transactions on Medical Imaging, 16:137–

144, 1997.

[96] R. Pozo and R. Boisvert. Java numerics, 2009.

http://math.nist.gov/javanumerics/.

[97] N. Raghunath, T. L. Faber, S. Suryanarayanan, and J. Votaw. Motion cor-

rection of PET brain images through deconvolution: II. Practical imple-

mentation and algorithm optimization. Phys Med Biol, 54(3):813–829, Feb

2009.

[98] A. Rahmim, P. Bloomfield, S. Houle, M. Lenox, C. Michel, K. R. Buckley,

T. J. Ruth, and V. Sossi. Motion compensation in histogram-mode and list-

mode EM reconstructions: beyond the event-driven approach. IEEE Trans.

Nucl. Sci, 51:2588–2596, 2004.

147

[99] A. Rahmim, J. C. Cheng, K. Dinelle, M. Shilov, W. P. Segars, O. G. Rous-

set, B. M. Tsui, D. F. Wong, and V. Sossi. System matrix modelling of

externally tracked motion. Nucl. Med. Commun., 29:574–581, 2008.

[100] W. S. Rasband. ImageJ, U. S. National Institutes of Health, Bethesda,

Maryland, USA, 2009. http://rsb.info.nih.gov/ij/.

[101] H. W. Richardson. Bayesian-based iterative method of image restoration.

Journal of the Optical Society of America, 62(1):55–59, January 1972.

[102] Y. Saad. ILUT: a dual threshold incomplete ILU factorization. Numerical

Linear Algebra with Applications, 1:387–402, 1994.

[103] J. C. Schatzman. Accuracy of the discrete Fourier transform and the fast

Fourier transform. SIAM Journal on Scientific Computing, 17(5):1150–

1166, 1996.

[104] Space Telescope Science Institute. Star cluster readme, 2009.

ftp://ftp.stsci.edu/software/stsdas/testdata/restore/sims/star_cluster/README.

[105] G. W. Stewart. Matrix Algorithms, Volume 1: Basic Decompositions.

SIAM, Philadelphia, PA, 1998.

148

[106] S. Strother, A. R. McIntosh, I. Somji, A. Oder, N. Spreng, J. Waller,

F. Wong, D. Wright, G. Yourganov, and R. Zhao. PLS/NPAIRS-J Project,

2009. http://code.google.com/p/plsnpairs/.

[107] S. C. Strother, J. Anderson, and L. K. Hansen. The quantitative evalua-

tion of functional neuroimaging experiments: The NPAIRS. NeuroImage,

15(4):747–771, 2002.

[108] Sun Microsystems. New features and enhancements J2SE 5.0, 2004.

http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html.

[109] P. N. Swarztrauber. FFTPACK Project, 2004.

http://www.cisl.ucar.edu/css/software/fftpack5/.

[110] C. Temperton. Implementation of a self-sorting in-place prime factor FFT

algorithm. Journal of Computational Physics, 58:283–299, 1985.

[111] H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems.

Cambridge University Press, Cambridge UK, 2003.

[112] C. Van Loan. Computational Frameworks for the Fast Fourier Transform.

SIAM, Philadelphia, PA, 1992.

149

[113] P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid based on

smoothed aggregation for second and fourth order problems. Computing,

56:179–196, 1996.

[114] S. Verrill. Nonlinear Optimization Java Package, 2009.

http://www1.fpl.fs.fed.us/optimization.html.

[115] C. R. Vogel. Computational Methods for Inverse Problems. SIAM,

Philadelphia, PA, 2002.

[116] P. Wendykier. CSparseJ Project, 2009.

http://sites.google.com/site/piotrwendykier/software/csparsej.

[117] P. Wendykier. JPlasma Project, 2009.

http://sites.google.com/site/piotrwendykier/software/jplasma.

[118] P. Wendykier. Lincoln Papers ImageJ plugin, 2009.

http://code.google.com/p/google-summer-of-code-2008-ncsa/.

[119] P. Wendykier. Parallel Colt Project, 2009.

http://sites.google.com/site/piotrwendykier/software/parallelcolt.

[120] P. Wendykier. Parallel FFTJ Project, 2009.

http://sites.google.com/site/piotrwendykier/software/parallelfftj.

150

[121] P. Wendykier. Parallel HRRT Deconvolution Project, 2009.

http://sites.google.com/site/piotrwendykier/software/deconvolution/

parallelhrrtdeconvolution.

[122] P. Wendykier. Parallel Iterative Deconvolution Project, 2009.

http://sites.google.com/site/piotrwendykier/software/deconvolution/

paralleliterativedeconvolution.

[123] P. Wendykier. Parallel Spectral Deconvolution Project, 2009.

http://sites.google.com/site/piotrwendykier/software/deconvolution/

parallelspectraldeconvolution.

[124] P. Wendykier. Parallel Super-Resolution Project, 2009.

http://sites.google.com/site/piotrwendykier/software/parallelsuperresolution.

[125] P. Wendykier and J. G. Nagy. Large-scale image deblurring in Java.

In Computational Science - ICCS 2008, 8th International Conference,

Kraków, Poland, June 23-25, 2008, Proceedings, Part I, pages 721–730,

2008.

[126] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra soft-

ware ATLAS. In Proceedings of Supercomputing 1998, 1998.

151

[127] R. Yavne. An economical method for calculating the discrete Fourier trans-

form. In AFIPS Fall Joint Computer Conference, pages 115–125, 1968.

[128] P. Yip and K. R. Rao. A fast computational algorithm for the discrete sine

transform. IEEE Trans. Commun., 28(2):304 – 307, 1980.

[129] B. Zhang. Java FFTPack Project, 2005. http://jfftpack.sourceforge.net/.

