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Abstract 

  

Characterizing the Molecular Mechanisms Underlying the Health Effects of Fine Particulate 

Matters among Susceptible Populations via Multi-Omics Analysis 

 

By Zhenjiang Li 

 

In this dissertation, I explored and extended the existing advanced exposure assessment approach 

of fine particulate matter (PM2.5) and investigated the potential mediating role of metabolomic 

signatures, DNA methylation, and their interplay in the development of PM2.5-related adverse 

health outcomes. The dissertation applied an analytical framework that used high-dimensional 

mediation analysis to the analysis of metabolomic and epigenomic data (separately and 

simultaneously) in two cohorts, Emory Alzheimer’s Disease (AD) Research Center Brain Bank 

and the Atlanta African American Maternal-Child Cohort, to unravel the biological mechanisms 

underlying the associations of PM2.5 with AD-related neuropathology and preterm/early-term 

birth, respectively. In the brain bank cohort, we detected multiple CpG sites in prefrontal cortex 

tissues that mediated associations between PM2.5 exposure and AD-related neuropathology 

markers. Some of these CpG sites are located in genes related to neuroinflammation and 

neuroinflammation-mediated necroptosis in brain tissues, implicating neuroinflammation a 

potential underlying mechanism of PM2.5 neurotoxicity. In the prospective birth sample of 

African American pregnant people, metabolomic signatures detected in early-pregnancy serum 

samples were found to mediate the adverse effects of long- and short-term exposure to PM2.5 on 

the risk of preterm birth and early-term birth (ETB). Specifically, biological pathways involved 

in folate metabolism and glycine and serine metabolism were found to have an important role in 

the biological mechanism underlying PM2.5 toxicity on early birth. In addition, I employed multi-

omics integration techniques and identified latent factors, derived from metabolomic and 

epigenomic data, that statistically mediated the association between PM2.5 exposure and the risk 

of ETB, which provide important information about the interplay between metabolic features and 

DNA methylation that appears to play a critical role in PM2.5 toxicity. The findings of the 

dissertation indicate that the use of omics techniques is valuable for capturing a holistic picture 

of the biological changes in human body responding to the PM2.5 exposure and unravelling their 

role in disease development. With a focus on the vulnerable populations, the older adults and 

pregnant women, the current project shed light on the molecular mechanisms of the pathogenesis 

of ETB and AD, which is key to risk assessment and intervention development among these 

populations.   
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Chapter 1  
 

Introduction 
 

Fine particulate matter (PM2.5) refers to the particles in the air that have an aerodynamic diameter 

of 2.5 micrometers or less.1 PM2.5 is the most studied air pollutant in previous literature and emitted 

from a variety of sources including mobile vehicles, industrial and agricultural activities.2 In 

addition to the well-established health impacts of PM2.5 on respiratory and cardiovascular 

diseases, emerging evidence in the past decade has documented that specific populations, such 

as pregnant people and older adults, are particularly vulnerable to the adverse effects of PM2.5, 

leading to a range of adverse health outcomes including adverse birth outcomes and 

neurodegenerative disorders.3 Despite the mounting evidence underlying adverse health effects 

associated with exposures to PM2.5, the underlying biological mechanisms elicited from PM2.5 

exposures have not been fully understood. Moreover, studying the biological mechanisms of 

PM2.5 exposure among vulnerable populations is essential, which can help in the development of 

targeted interventions and inform regulatory decisions related to the air quality control, such as 

setting specific permissible exposure limits for those populations. 

It is biologically plausible that exposure to PM2.5 could have adverse effects on Alzheimer's 

disease among the older adults as well as on birth outcomes among pregnant people. Evidence 

so far suggests oxidative stress and inflammation to be the major pathways underlying the toxicity 

of PM2.5 on central neural systems.4 Apart from oxidative stress and inflammation, PM2.5 may also 

exert adverse effects on central neural system via neuronal apoptosis with synaptic damage.4 

PM2.5 is capable of inducing the generation of free radicals, impairing mitochondrial function, and 

eventually disrupt the cellular balance in the amount of oxidants and antioxidants.5 In vitro, PM2.5 

was shown to trigger the increase of cellular redox oxidative species (ROS) and reduction of the 

ratio of reduced glutathione (GSH) vs. oxidized glutathione (GSSG), and cause mitochondrial 
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malfunction in human neuroblastoma cell line.6 The GSH/GSSG ratio has been the most widely 

used dynamic indicator of oxidative stress. In oligomeric beta-amyloid (Aβ)-simulated microglia of 

mice, an elevated level of ROS was observed following PM2.5 exposure, and the enhancement in 

oxidative stress was potentially induced by mitochondrial damage.7 The presence of Aβ plaques 

in the brain is one of the hallmarks of AD, in the deposition of which microglia plays can an 

essential role. As for systemic inflammation, it is the major defense mechanism against eternal 

stimuli, but prolonged inflammation may be harmful. Alteration in inflammatory pathways has been 

proposed as an important mechanism of PM2.5 toxicity.5 Neuroinflammation is recognized as a 

possible link between PM2.5 exposure and neurological disorders.4 In vivo, Bhatt et al. found an 

increased level of cytokines belonging to the chemokine-chemoattractant class, Aβ (an inducer 

of microglia activation and neuroinflammation), and amyloid-associated pathology (i.e., early 

Alzheimer-like changes) in the brains of mice exposed to PM2.5 chronically.8 Tyler et al. found that 

acute exposure to ultrafine particulates (UFP) induced significant changes in the expression of 

several cytokines, including C-C motif chemokine ligand 5, chemokine C-X-C motif ligand 1, 

transforming growth factor β, and tumor necrosis factor (TNF) α, in the murine hippocampus 

assessed by transcription profiling.9  

In addition to the health impact on Alzheimer’s disease, a body of epidemiological studies has 

reported the imbalance between oxidants and antioxidants served as a potential promoter of 

several pregnancy-related disorders, including preterm birth and low birth weight10. For example, 

prenatal exposure to PM2.5 was found to promote ROS levels and the expression of genes 

involved in oxidative stress response in cord blood.11 An elevated expression of interleukin (IL)-4 

was found in the fetal portion of the placenta in rats exposed to PM2.5 before and during 

pregnancy;12 in the mouse model, maternal exposure to PM2.5 increased the levels of cytokines, 

including IL-1β, IL-6, and TNF- α, in offspring.13 Nachman et al. reported a monotonic positive 

relationship between PM2.5 exposure during preconception and pregnancy and intrauterine 

inflammation which is a risk factor for preterm birth and low birth weight.14 In sum, the mechanisms 
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underlying can be multifactorial, and several central biological pathways, such as oxidative stress 

and systemic inflammation, may drive the adverse effects of PM2.5 exposure.  

By uncovering the pathological processes at molecular level, we will be able to obtain a more 

accurate risk assessment and provide a basis for protecting the susceptible populations from the 

daily exposure to PM2.5. Advances in the understanding of the molecular mechanisms can lead 

to clinical and policy measures that can address the challenge of PM2.5 for pregnant women and 

older adults. 

Advances in omics technologies (i.e., genomics, epigenomics, transcriptomics, proteomics, 

metabolomics, and microbiomics) permit the collection of high-dimensional molecular data from 

individuals and offers the potential to characterize the biological mechanisms comprehensively.15 

Environmental health researchers are increasingly leveraging omics technologies to investigate 

the associations of environmental stressors with disease mechanisms and phenotypes.16 The use 

of high-throughput metabolomics has become more widespread in the field of environmental 

health research to detect the biological alterations that arise from chronic or acute exposure to air 

pollution.17 The application of metabolomic and epigenetic data in the Atlanta AA Maternal-Child 

Cohort and ADRC brain bank, respectively, can contribute to identifying changes in metabolic or 

DNA methylation profiles that are associated with PTB/ETB and AD-related neuropathology 

markers, respectively. Moreover, the rapid generation of omics data further motivates the 

researchers to integrate the multi-omics data to obtain a more comprehensive view of progression 

of diseases resulted from the environmental contaminants.16 In general, two integration strategies 

were employed: posteriori (analyzing omics data separately) and a priori (analyzing omics data 

simultaneous) integration, which are applicable to different conditions. For example, if two omics 

datasets are measured in the same biospecimens, both posteriori and a priori integration can be 

employed, which enables a higher flexibility to evaluate direct relationships between metabolites 

and DNA methylation and how they may relate to a phenotype. The integration of multi-omics 

data will contribute to evidence supporting causation by identifying the biomarkers indicative of 



4 
 

changes each molecular level and cross-validating the functional activity of identified biological 

pathways. For example, metabolomics and genome-wide DNA methylation data can provide 

complementary information about the underlying biological mechanisms involved in the 

development of diseases.18 Metabolomics focuses on the study of small molecules (metabolites), 

while genome-wide DNA methylation examines changes in gene expression that occur without 

changes to the DNA sequence. DNA methylation can regulate the expression of genes involved 

in metabolic pathways, which, in turn, can impact the levels of metabolites produced in these 

pathways. Conversely, certain metabolites produced in metabolic pathways, such as those 

involved in one-carbon metabolism, can influence DNA methylation by providing methyl groups.19 

By combining these two approaches, researchers can gain a more comprehensive understanding 

of how genetic and environmental factors interact to affect disease development and progression. 

With omics data, we will be able to examine the mediating role of metabolic perturbations and 

DNA methylation changes at CpG sites via high-dimensional mediation analysis. Mediation 

analysis can provide strong support for causal mechanisms between an exposure and 

outcomes.15 The combination of mediation analysis and omics technologies permit the collection 

of high-dimensional molecular data and the identification of potential molecular intermediates 

lying between an exposure and an outcome, which has been readily applied in epidemiological 

research to increase the plausibility of causal inference.20,21 Although a handful of high-

dimensional mediation frameworks have been published in recent years,22-26 the application in 

environmental health research is scarce. Recent applications of omics technologies within 

population-based settings present new opportunities for identifying molecular intermediates and 

related biological pathways linking the observed associations between environmental stressors 

and diseases from observational studies.16 Although efforts have been made to identify the 

mediating role of metabolomics and epigenomics for the associations of air pollution with birth 

outcomes,27,28 most previous studies were preformed based on the meet-in-the-middle framework 

which was prone to biases.29 Thus, the application of the high-dimensional mediation analysis is 
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necessary to further our knowledge on the adverse effects of traffic-related PM2.5 on birth 

outcomes and neuropathology. 

 

Dissertation Aims 
 

In this dissertation, I focused on investigating critical, functional roles of metabolome, epigenome, 

and their interrelationships as mediators of PM2.5 toxicity on susceptible populations including 

pregnant women and people over 55 years old. These investigations provided novel mechanistic 

insights into the biological pathways by which exposure to PM2.5 impacts birth outcomes and AD-

related neuropathology.  

Aim 1 estimated the concentrations of ambient PM2.5 from 2012 to 2019 in metropolitan Atlanta. 

I used a fusion approach to combine the highly-spatially-resolved land-use random forest model 

and the highly-temporally-resolved Community Multi-Scale Air Quality model to generate a PM2.5 

database with weekly averaged concentrations and a spatial resolution of 200m. 

Aim 2a investigated how perturbations in epigenome mediated the associations between traffic-

related PM2.5 and AD-related neuropathology markers among an older population. I performed 

the Meet-in-the-Middle approach and high-dimensional mediation analyses to identify 

methylations at CpG sites that potentially mediated the associations.  

Aim 2b investigated how perturbations in metabolome mediate the associations of ambient PM2.5 

with preterm and early-term birth in the Atlanta African American (AA) Maternal-Child cohort. I 

performed the Meet-in-the-Middle approach and high-dimensional mediation analyses to identify 

metabolic perturbations that potentially mediated the associations.  

Aim 3 optimized and applied a workflow for the integration of metabolomic and epigenomic data 

to identify biological mechanisms underlying the toxicity of PM2.5 associated with adverse 

pregnancy outcomes. I optimized a workflow to incorporate existing bioinformatic tools, including 

mixOmics and MOFA2, for the assessment of how information from one omics level informed 
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another to bridge the gap from PM2.5 to preterm and early-term birth in the Atlanta AA Maternal-

Child Cohort. 
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Chapter 2 Application of a Fusion Approach to Obtain Spatially 

Resolved (200m) Ambient Fine Particulate Matter in Metropolitan 

Atlanta 
 

Introduction 
 

Fine particulate matters (PM2.5), particles with aerodynamic diameters less than or equal to 2.5 

micrometers, has been regulated by the National Ambient Air Quality Standards (NAAQS) as a 

criteria air pollutant since 1997 in the United States (U.S.), which is a significant contributor to 

individual exposure to air pollution.30 Extensive research endeavors have been undertaken thus 

far, demonstrating the causal relationship of PM2.5 with respiratory and cardiovascular diseases, 

and emerging evidence in the past decade has documented the potential adverse health effects 

of PM2.5 across the life span including birth outcomes in early life and neurodegenerative 

disorders in late life.3  

Ground monitoring, personal measurement, and air quality modeling are the major 

approaches for air pollution exposure assessment and have distinct advantages and 

disadvantages.31 Ground monitoring sites, which are usually used for estimating exposures at 

residence, are usually spatially sparse compared the density of study population, limiting the 

capacity of characterizing the spatial variation in individual exposure.32 Previous studies 

demonstrated that exposure assessment relying on ground monitoring can introduce 

measurement error, since the lack of a spatially resolved monitoring network can underestimate 

spatial variation in pollutant concentrations.33 Personal measurement can obtain more accurate 

estimates of individual exposures. However, it usually involves the use of portable equipment 

and is labor intensive and costly, limiting its potential application in large-scale epidemiological 

studies and investigation on the long-term effects of air pollution. Air quality modeling addresses 

the disadvantages of ground monitoring and personal measurement. The air quality models 

usually generate spatially and temporally resolved concentration by developing algorithms 
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incorporating traffic volume, emission rate, land use, chemistry, physics, and meteorology, or 

aerosol optical depth. However, specific model results are often limited by either spatial 

resolution or an inability to capture complex chemistry and a vast array of emissions sources. 

 The metropolitan Atlanta area has a population of about 6.14 million people. The 

development of spatially and temporally resolved PM2.5 concentrations can help estimate the 

personal health burden related to PM2.5 exposure, facilitate the research to investigate the 

adverse impacts of PM2.5 on various health outcomes, and finally inform policy making. Local 

institutions in the metropolitan Atlanta area have been dedicated to generating air pollution 

databases containing PM2.5 concentrations that are both spatially and temporally resolved with 

the goal of satisfying the aims. The Atlanta Regional Commission (ARC) collaborating with the 

Georgia Environmental Protection Division developed a regionally applicable dispersion 

modeling methodology which allows the evaluation of traffic-related pollution at a high spatial 

resolution.34 Dr. Russell’s research group at Georgia Tech has advanced and applied air quality 

models over the years, such as a calibrated Research LINE source (R-LINE) dispersion model 

for PM2.5, carbon monoxide, and nitrogen oxides,35 and a fusion approach combining R-LINE 

model predictions and Community Multi-Scale Air Quality (CMAQ) model predictions.36  

Based on the previous work, the current study aimed to develop an air quality model that 

can simulate weekly averaged PM2.5 concentrations with a spatial resolution of 200m in 

Metropolitan Atlanta from 2012-2019.  

 

Methods 
 

This work describes the development of weekly-averaged ambient PM2.5 data using land-use 

random forest and fusion methods covering the Metropolitan Atlanta area from 2012-2019. The 

air quality model was done in two stages. First, we developed a land-use random forest model 

to estimate the annually-averaged traffic-related PM2.5. We utilized high-density traffic 
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monitoring data, land use data, and surface PM2.5 data to train a random forest model capable 

of accurately predicting annual traffic-related PM2.5 concentrations at a spatial resolution of 

200×200 meter. Then, we adopted a fusion approach that integrated the traffic-related PM2.5 

data and publicly available chemical transport simulations to estimate weekly-averaged PM2.5 

concentrations,36 which incorporating comprehensive chemistry and emission sources, at a 

spatial resolution of 200×200 meter. 

 

Land-use random forest model 

The land-use random forest model was trained based on the PM2.5 predictions of the Research 

LINE-source (R-LINE) dispersion model in 2015. The R-LINE predictions in Metropolitan Atlanta 

were requested from Atlanta Regional Commission (ARC), and the detailed process of model 

development can be found elsewhere.34 Briefly, the R-LINE data cover a 20-county regional 

geography of 16,585 km2 at 200 m resolution for 2015, which result in over 400,000 grid cells 

evenly distributed throughout the region. The model incorporates inputs, including 

meteorological parameters generated using AERMET37 and AERMINUTE37 and emission rates 

of PM2.5 from regional roadways estimated by the ARC travel demand model38 and the Motor 

Vehicle Emission Simulator 2014.39 The annual averages of PM2.5 concentrations were 

calculated based on the application of Stability Array method and calibrated by the regional 

PM2.5 monitors.34 Then, we specified four types of inputs for the land-use random forest model: 

traffic monitoring data, route inventory, land-use data, and the surface PM2.5 data. Traffic 

monitoring data were collected by and shared through the courtesy of the Georgia Department 

of Transportation (GDOT).40 The GDOT traffic monitoring data were based on actual 

measurements and contained accurate road geometry with traffic volume. We used the 2012-

2019 GDOT annual average daily traffic (AADT) datasets joined to the roadway characteristics 

(RC) tables and AADT at each traffic monitoring site. Four input variables were estimated from 

the GDOT data: the shortest distance from the centroid of grid cell in R-LINE to the nearest 
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road, the sum of road length in each grid cell, the sum of AADT of roads in each grid cell, and 

the AADT measured at traffic stations within or nearest. We further classified GA roads into 

state highway routes, and others (i.e., public and private roads) according to the GDOT route 

inventory, and we estimated the aforementioned input variables by road types, respectively. The 

land cover data were accessed via Multi-Resolution Land Characteristics Consortium. The 

National Land Cover Database (NLCD) provided nationwide data on land cover at 30m 

resolution with 16 classes based on a modified Anderson Level II classification system.41 We 

downloaded the NLCD data for 2011, 2013, 2016, and 2019. More details about the 

classification system can be found here.42 We calculated the proportions of each class in every 

grid cell as the input variables of land use, and the land-use data were matched to temporally 

adjacent years. The surface PM2.5 data were obtained from Atmospheric Composition Analysis 

Group.43 The authors estimated annual ground-level PM2.5 for 1998-2020 by combining Aerosol 

Optical Depth (AOD) with a chemical transport model, and subsequently calibrated to global 

ground-based observations using a Geographically Weighted Regression (GWR), as detailed in 

the reference.43 We downloaded the annual data with a spatial resolution of 0.01×0.01 degree 

and join the R-LINE grid cells with the surface PM2.5 data spatially. The land-use random forest 

model was trained based on the data in 2015 with the R package randomForest.44 Two user-

defined parameters, the number of trees and the number of variables randomly tried at each 

split, were determined by a balance of the running time and maximizing the out-of-bag R2 value.  

 

Fusion approach 

To estimate the weekly-averaged ambient PM2.5 concentrations in Metropolitan Atlanta from 

2012-2019, we adopted a fusion approach. The details of the approach can be found 

elsewhere.36 Briefly, we fused PM2.5 data from two models: one described above, and the 

Community Multi-Scale Air Quality (CMAQ) model. The CMAQ model is a chemical transport 

model developed by U.S. EPA,45 which simulates daily air pollution concentrations, accounting 
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for emissions, meteorology, chemical reactions, and physical transport. The daily predictions of 

ambient PM2.5 are available at 12km resolution and calibrated by a Bayesian space-time 

downscaler model by regional monitoring data.46 We downloaded the CMAQ data for 2012-2019 

from U.S. EPA and averaged the daily concentrations to weekly estimates.47 Then, we used a 

smooth curve fitting method to interpolate the 12km gridded outputs to 200m.48 Then, we 

spatially matched the grid cells of the land-use random forest model with those of the CMAQ 

data. To simulate the fused results, we used the following equation: 

𝑃𝑀200𝑚 = [(𝐶𝑀𝐴𝑄12𝑘𝑚 − 𝑅𝐿𝐼𝑁𝐸200𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑] + 𝑅𝐿𝐼𝑁𝐸200𝑚  

where 𝑃𝑀200𝑚  denotes the weekly ambient PM2.5 concentrations for grid cells at 200m 

resolution; 𝐶𝑀𝐴𝑄12𝑘𝑚 denotes the weekly ambient PM2.5 concentrations at 12km resolution 

derived from the CMAQ model; 𝑅𝐿𝐼𝑁𝐸200𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ denotes the averaged traffic-related PM2.5 

concentrations of the R-LINE grid cells matched to the corresponding CMAQ grid cells. 

 

Evaluation methods 

The fusion approach predictions were compared with observations collected by ground 

monitoring sites of U.S. EPA Air Quality System (AQS). There were eleven monitoring sites 

within the 20-county area in Metropolitan Atlanta. We downloaded the daily monitoring data via 

the R package RAQSAPI and averaged the daily data to the weekly. Then, the monitoring sites 

were spatially matched with the grid cells of fusion models, and the Pearson correlation 

between PM2.5 predictions and measured data was calculated.  

All spatial analyses were conducted by QGIS (version 3.28.2), and model development was 

conducted by R (version 4.0.2).  

 

Results 
 



12 
 

The land-use random forest model generated an annual traffic-related PM2.5 dataset with the 

model performance quantified by out-of-bag R2 (79.78%) and root-mean-square error (RMSE, 

0.2373 µg/m3). Then, the fusion approach generated 416638 grids of approximate 200×200m 

within the 16,585-km2 study area, and for each year from 2012-2019, the 53 weekly averages of 

ambient PM2.5 concentrations were calculated for each grid (Figure 1A). According to the annual 

average throughout the study area (Figure S1), there was a long-term decreasing trend, but the 

changes over years were slight (an averaged decreasing rate of 0.43% per year). As showed by 

the weekly averages per year (Figure 1B), we did not observe a seasonal pattern of PM2.5 

concentrations. The mean of weekly averages had a range from 9.03 to 10.89 µg/m3
 (Figure 1A) 

for 2012-2019. The spatial variability was illustrated by the annual averages per grids (Figure 2). 

Major highways are clearly visible on spatial distribution maps of the estimates from the fusion 

approach, indicating the capacity of the fusion approach in capturing small-scale spatial 

gradients. 

 To evaluate the performance of the fusion approach, we collected the actual measures of 

ambient PM2.5 concentrations from the ground monitoring sites of U.S. Environmental Protection 

Agency (EPA) Air Quality System (AQS). The 11 ground monitoring sites distributed unevenly 

throughout our study area with more in the urban areas and fewer in the suburban areas (Table 

1 & Figure S2). Only four of the 11 monitoring sites had the data coverage from 2012-2019 

(Table 1). We averaged the daily measures of PM2.5 to obtain the weekly averaged 

concentrations and spatially join the monitoring sites with the closest girds of the fusion 

approach. At these monitoring sites, the fusion approach yielded a Pearson’s correlation from 

0.75 to 0.96. In other words, the estimates of the fusion approach were strongly correlated with 

the actual measures.   

 

Discussion 
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In the current analysis, we developed an air quality model that estimated the weekly averaged 

ambient PM2.5 concentrations with a spatial resolution of 200m in the Metropolitan Atlanta area 

from 2012-2019. Specifically, we employed a fusion approach to combine a spatial-resolved 

dispersion model (i.e., R-LINE model) and a temporal-resolved chemistry and transport model 

(i.e., CMAQ model), and obtained an air pollution database with a high spatial resolution and 

good temporal resolution. The resulting database, therefore, can capture the spatial and 

temporal variation of PM2.5 from the traffic-related and ambient sources. We also validated the 

model performance was validated by comparing with actual measures of ambient PM2.5 

collected at 11 ground monitoring sites of U.S. EPA AQS in the study area, and we reached a 

strong correlation (overall Pearson correlation: 0.81).  

Mounting epidemiological evidence has associated numerous health outcomes with PM2.5 

exposures.3 Accurate exposure assessment is indeed a crucial prerequisite for obtaining 

accurate epidemiological estimates.49,50 The primary methods used in previous literature have 

been personal monitoring, ambient monitoring networks, and modelling.31 While ambient 

monitoring networks can be too sparse that might be less capable of capture the spatial 

exposure variability, and personal monitoring is labor intensive and costly, the modelling 

approach is free of aforementioned limitations.51 The fusion approach used in the current 

analysis provides a computationally efficient approach for estimating spatially and temporally 

resolved air pollutant concentrations from a myriad of emissions sources and chemical 

transformations. The resulting database can be applied to air pollution studies to estimate the 

either long-term or short-term individual exposure for participants lived in metropolitan Atlanta 

from 2000-2019. Any epidemiological studies conducted in metropolitan Atlanta can also 

leverage this PM2.5 database to calculate participant exposures and expand the original scope 

of research to evaluate the potential modifying effects of PM2.5 exposure. 
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The land-use random forest model generated the annual concentration database of traffic-

related PM2.5. Although it serves as an intermediate product for the ambient database, it could 

also be used in research investigating the long-term exposure to traffic-related PM2.5 in urban 

areas. Traffic-related PM2.5 is defined as emissions directly from the tailpipes of vehicles and 

from the wear and tear of brakes and tires.52 These particles tend to contain more toxic 

substances, such as metals and organic carbon, than ambient PM2.5.53 Traffic-related PM2.5 

concentrations are highest near busy roads and highways and can vary depending on traffic 

volume, speed, and composition. Ambient PM2.5, on the other hand, includes particles from a 

variety of sources, such as power plants, industrial facilities, and wildfires, as well as particles 

that have been transported over long distances.54 These particles tend to be smaller and have a 

higher concentration of sulfates, nitrates, and organic compounds than traffic-related PM2.5. 

Ambient PM2.5 concentrations can vary by location and time of year and are influenced by 

factors such as weather conditions and regional air pollution levels. 

However, the model presented in the current analysis have several limitations. First, the 

traffic monitoring data obtained from GDOT was collected by the traffic stations distributing 

throughout Georgia, and the number of these stations have been increasing over the years.40 

Thus, the land-use random forest model might offer more accurate predictions of traffic-related 

PM2.5 for latest years. Second, the akima interpolation can cause estimation artifacts and biases 

under certain circumstances. For example, akima interpolation can be sensitive to outliers in the 

original data, leading to estimates that are skewed away from the true values. Thirdly, the use of 

ambient measurement at residence as a surrogate for personal exposure inevitably leads to 

exposure misclassification to some extent due to failing to account for daily mobility and indoor 

sources of PM2.5. Finally, because of data availability, the current database only covers the 

metropolitan Atlanta, which constrain its broader adoption. Despite these limitations, our 

approach has several notable strengths in addition to the spatial and temporal resolution. The 

land-use random forest model and fusion approach provide a fast way to obtain spatially- and 
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temporally-resolved PM2.5 database with acceptable prediction performance. The regionalized 

model fits the epidemiological research conducted in the local area better, and the model can 

lead to higher exposure variability for the study populations in the urban areas. Finally, the PM2.5 

database has a wide temporal coverage that enables the estimation of long-term effects of 

PM2.5 on health outcomes. 

 

Conclusions 
 

We generated a spatially- and temporally-resolved ambient PM2.5 database from 2012-2019 in 

the metropolitan Atlanta. The database can be leveraged for epidemiological studies and 

environmental justice studies that aim to estimate accurate individual PM2.5 exposures and PM2.5-

related health effects. The database can be applied to large-scale study populations with 

acceptable cost and exposure variability, which can potentially facilitate the investigation of the 

health effects of PM2.5 in diverse populations and on diverse outcomes. 
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Tables and figures 
 

 

Figure 1. Overview of the weekly average of ambient PM2.5 concentrations per year estimated 

by the Fusion approach from 2012 to 2019. A. Weekly averaged concentrations of ambient 

PM2.5 across Metropolitan Atlanta by years. B. Statistics of weekly averaged concentrations of 

ambient PM2.5. Abbreviations: Q1, the first quartile; Q3, the third quartile; IQR, interquartile 

range; SD, standard deviation.  
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Figure 2. Annual averages of ambient PM2.5 concentrations of 2015 estimated by the fusion 

approach in the Metropolitan Atlanta.  

µg/m
3
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Table 1. Ground monitoring sites of U.S. Environmental Protection Agency (EPA) Air Quality 

System (AQS) within the study area. 

Site ID County City Local site name Data coverage 

13-063-0091 Clayton Forest Park Forest Park 2012-2019 

13-067-0003 Cobb Kennesaw Kennesaw 2012-2019 

13-067-0004 Cobb Powder Springs Macland Aquatic 2012 

13-089-0002 DeKalb Not in a city South DeKalb 2012-2019 

13-089-2001 DeKalb Doraville Doraville 2012 

13-121-0032 Fulton Atlanta E. Rivers School 2012 

13-121-0039 Fulton Atlanta Fire Station #8 2012-2019 

13-121-0056 Fulton Atlanta NR-GA Tech 2015-2019 

13-135-0002 Gwinnett Not in a city Gwinnett 2012-2018 

13-139-0003 Hall Gainesville Gainesville 2012-2018 

13-223-0003 Paulding Not in a city Yorkville, King 2012-2017 
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Figure 3. The correlation of weekly-averaged ambient PM2.5 concentrations between measures 

at ground monitors of U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) 

and predictions estimated by the fusion model over the study period (2012-2019). R denotes the 

Pearson’s correlation coefficient. Each scatter plot represents the results for a ground 

monitoring site within the study area, which is labelled with the primary identifier for the site (site 

ID).  
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Appendix for Chapter 2 
 

 

Figure S1. Annual average of PM2.5 concentrations calculated from the PM2.5 predictions of the 

fusion approach in the study area. 
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Figure S2. The distribution of Ground monitoring sites of U.S. Environmental Protection Agency 

(EPA) Air Quality System (AQS). The yellow drop pins denote the locations of monitoring sites. 
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Chapter 3 Differential DNA Methylation in the Brain as Potential 

Mediator of the Association between Traffic-related PM2.5 and 

Neuropathology Markers of Alzheimer’s Disease 
 

Background  
 

Exposure to traffic-related air pollution (TRAP) is a significant contributor to public health burden 

with various well-characterized and emerging detrimental health effects.3 Fine particulate matter 

(PM2.5), which has been regulated by the National Ambient Air Quality Standards (NAAQS) as a 

criteria air pollutant since 1997 in the United States (U.S.),30 is an important component of 

TRAP mainly resulting from tailpipe exhaust, brake wear, tire wear, and resuspended dust.55 A 

previous study has demonstrated PM2.5 from traffic emissions has higher toxicity compared to 

other natural sources in terms of oxidative potential, cell viability, genotoxicity, oxidative stress, 

and inflammatory response.56 The literature to date demonstrates that exposure to PM2.5 is 

associated with a series of neurological disorders, including dementia and Alzheimer’s disease 

(AD).57,58  

AD is the most common cause of dementia and its hallmark pathologies include 

accumulation of beta-amyloid (Aβ plaques) outside neurons and aggregation of 

hyperphosphorylated tau protein (neurofibrillary tangle, NFT) inside neurons in the brain.59 In 

the U.S., 9.30 and 75.68 million people are estimated to develop clinical AD or preclinical AD by 

2060,60 and the total direct medical costs of AD at the national level is estimated to reach $259 

billion by 2040.61 Due to the growing public concern with these substantial increases in the 

prevalence of AD, investigations on interventions to prevent progression and onset of AD have 

targeted the potentially modifiable risk factors of AD, including air pollution.62  

Different biological pathways have been discussed underlying the association between air 

pollution and AD development. PM2.5 exposure might directly infiltrate the brain63 and accelerate 

AD pathogenesis and development via neuroinflammation, oxidative stress, and Aβ 
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accumulation.64 Increasing evidence from human and animal studies proposes that 

perturbations in DNA methylation (DNAm), which regulate the expression of genes, are 

associated with indicators of AD as well as PM2.5 exposure. However, the tissue specificity of 

DNAm has limited the ability of previous studies to formally investigate mediation.  

While there is no conclusive evidence of an association between AD and DNAm in blood,65 

a growing body of evidence suggests robust association in brain tissues.65 DNAm alterations in 

a number of genes were observed to be associated with AD pathology and neuroinflammation 

in brain tissues, such as amyloid precursor protein (APP),66 microtubule-associated protein tau 

(MAPT),66 apolipoprotein (APOE) promoter region,67 homeobox A3 (HOXA3),68 interleukin-1 

beta (IL-1β),69 interleukin-6 (IL-6),69 and claudin-5 (CLDN5) genes.70  

The association of PM2.5 with DNAm in blood has been extensively studied71, and one study 

found that DNAm in interleukin-10 (IL-10), IL-6, tumor necrosis factor (TNF), toll like receptor 2 

(TLR2) genes, which play key roles in neuroinflammation,72 was significantly altered in response 

to short-term exposure to PM2.5 and its species.73 However, to the best of our knowledge, no 

human studies have been published on the association between PM2.5 exposure and DNAm in 

the brain, which is the most relevant tissue when studying AD. The only evidence to date comes 

from in-vivo and in-vitro studies. Tachibana et al. demonstrated with a mouse model that 

prenatal exposure to diesel exhaust altered DNAm in brain tissues collected from 1- and 21-

day-old offspring, and the differentially methylated CpG sites were enriched in the gene 

ontology (GO) terms related to neuronal development.74 Wei et al. exposed human 

neuroblastoma cells to PM2.5 collected at a near-road site and found that DNAm was 

hypermethylated in the promoter regions of neurexin 1 (NRXN1) and neuroligin 3 (NLGN3) 

genes encoding synaptic neuronal adhesion molecules that mediate essential signaling at 

synapse.75  

Given the limited evidence of an association between PM2.5 exposure and DNAm in the 

brain, the mediating role of DNAm for the association between PM2.5 and AD pathology has not 
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been well studied. Only one study investigated DNAm in mouse brain; these investigators failed 

to find evidence for DNAm as a potential mediator of the association between particulate matter 

exposure and increased cytokines and Aβ levels associated with early AD-like pathology.8  

The current study investigated the relationship among PM2.5, DNAm and AD neuropathology 

in the post-mortem human brain among the brain donors of the Emory Goizueta AD Research 

Center (ADRC) brain bank. We recently showed a significant association between traffic-related 

PM2.5 exposure and increased AD neuropathology in this dataset (Christensen et al. 2023). To 

elucidate the biological mechanisms for this association, we here investigated whether 

differential DNAm in the prefrontal cortex tissues mediates the association between long-term 

exposure to traffic-related PM2.5 and the levels of AD-related neuropathological markers. This 

hypothesis was tested using a combination of the Meet-in-the-Middle (MITM) approach and 

high-dimensional mediation analysis.  

 

Methods 
 

Study design 

The current cross-sectional analysis included study participants recruited by the Emory 

Goizueta ADRC. The ADRC was founded in 2005 and has maintained a brain bank to facilitate 

AD research. The study participants were research participants evaluated annually, and others 

were patients treated by Emory Department of Neurology physicians and diagnosed clinically 

with AD (biomarker defined) or probable AD. The prefrontal cortex tissues were obtained from 

the participants who had consented to donate biospecimens to the ADRC brain bank. There 

were 1011 donors enrolled by the third quarter of 2020. After applying the following inclusion 

criteria, 187 donors remained eligible for the current study: 1) the availability of residential 

addresses within Georgia (GA) state; 2) age at death equal to or over 55 years; 3) deceased 

after 2007; 4) no missing values in neuropathology outcomes and key covariates including age 
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at death, race, sex, educational attainment, and APOE genotype. Among these donors, 

genome-wide DNAm was measured in 161 available samples, and after quality control, 159 

were included in the current analysis. Written informed consent was provided for all donors, and 

samples were obtained following research protocols approved by the Emory University 

Institutional Review Board. 

 

Neuropathology assessment 

The ADRC performed thorough neuropathologic evaluations on the brains of all donors using 

established comprehensive research evaluations and diagnostic criteria.76 These 

neuropathological assessments include a variety of stains and immunohistochemical 

preparations, as well as semi-quantitative scoring of multiple neuropathologic changes by 

experienced neuropathologists using published criteria.77 In this project, AD-related 

neuropathological changes were evaluated using Braak stage, Consortium to Establish a 

Registry for AD (CERAD) score, and a combination of Amyloid, Braak stage, and CERAD (ABC) 

score which were developed based on the Aβ plaques and NFTs.78 Braak stage is a staging 

scheme describing NFTs with six stages (Stage I-VI) with a higher stage indicating a wider 

distribution of NFTs in brain. CERAD score describes the prevalence of Aβ plaques with four 

levels from no neuritic plaques to frequent. ABC score combines the former two (along with the 

Thal score for Aβ plaque distribution across various brain regions)79 and is transformed into one 

of four levels: not, low, intermediate, or high level of AD neuropathologic changes.      

 

Air pollution assessment 

Annual concentrations of traffic-related PM2.5 were estimated for the 20-county area of 

Metropolitan Atlanta, GA for 2002-2019. The spatial resolution of the PM2.5 data were 

250×250m (for 2002-2011) and 200×200m (for 2012-2019). The grid cells of the corresponding 

side length were evenly distributed throughout the study area. The process for estimating 2002-
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2011 PM2.5 concentrations was previously published.1,35 Briefly, a calibrated Research LINE-

source dispersion (R-LINE) model for near surface releases was applied for calculating annual 

averages of traffic-related PM2.5. The model yielded a normalized root mean square error of 

24% and a normalized mean bias of 0.3% by comparing with the estimates of the receptor-

based source apportionment Chemical Mass Balance Method with Gas Constraints.35 For 

estimating 2012 to 2019 PM2.5 concentrations, we trained a land-use random forest model 

based on the 2015 annual concentrations of traffic-related PM2.5 obtained from Atlanta Regional 

Commission,34 road inventory and traffic monitoring data shared by the Georgia Department of 

Transportation,80 land cover data accessed via the National Land Cover Database,81 and 

ambient PM2.5 data obtained from Atmospheric Composition Analysis.82 The random forest 

model was trained with the R package randomForest83, and two user-defined parameters (i.e., 

the number of trees and the number of variables randomly tried at each split) were determined 

by a balance of the efficiency and the out-of-bag R2 value. The final model reached an out-of-

bag R2 of 0.8 and a root-mean-square deviation of 0.2 µg/m3. This model was used to predict 

annual traffic-related PM2.5 for 2012-2019 with a spatial resolution of 200m. Finally, we spatially 

matched geocoded residential addresses to the centroid of closest grids and calculated the 

individual long-term exposures as the average of specific exposure windows (1 year, 3 years, 

and 5 years prior to death).  

 

Genome-wide DNA methylation 

DNA was isolated from fresh frozen prefrontal cortex in 161 samples using the QIAGEN 

GenePure kit. DNAm was assessed with the Illumina Infinium MethylationEPIC BeadChips in 

batches of 167 prefrontal cortex samples including 6 replicates. The raw intensity files were 

transformed into a dataset that included beta values for each the CpG sites, and these beta 

values were computed as the ratio of the methylated signal to the sum of the methylated and 

unmethylated signals, which ranged from 0 to 1 on a continuous scale. Pre-processing and 
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statistics were done using R (v4.2.0). We followed a validated quality control and normalization 

pipeline as previously published.84 The detailed data processing and sample quality control can 

be found in the Supplementary Methods. One hundred and nine samples passed the quality 

check, and after excluding SNP probes, XY probes and other low-quality probes, 789,286 CpG 

sites remained for analysis. The final DNAm beta values were further normalized to reduce the 

probe type differences and corrected by ComBat to remove the batch effect before the 

downstream analysis.85 We estimated the cell-type proportions (neuronal vs. non-neuronal cells) 

for each sample using the most recent prefrontal cortex database and the R package minfi.86,87 

 

Covariate assessment 

The confounding structure was determined according to literature review and our previous 

studies, which was illustrated by directed acyclic graphs (DAGs) in the Supplement (Figure S1). 

Individual-level demographic characteristics [sex, race (Black vs. White), educational attainment 

(high school or less, college degree, and graduate degree), age at death, APOE ε4 genotype] 

were obtained from the medical records. APOE ε4 genotype was continuous with a 3-point scale 

(0 = no ε allele, 1 = one ε4 allele, and 2 = two ε4 alleles). Area Deprivation Index (ADI) for each 

donor was estimated at the residential address as a proxy for neighborhood socioeconomic 

status, based on a publicly available database at the level of the Census Block Group for 

2015.88 Post-mortem interval (hours) of sample collection was provided by our lab collaborators.  

 

Statistical analysis 

Previously, we found higher residential PM2.5 exposure was associated with increased AD 

neuropathology in the Emory Goizueta ADRC brain bank (Christensen et al. 2023). To identify 

DNAm patterns in brain tissue that potentially mediate the association between PM2.5 exposure 

and increased neuropathology markers, we 1) conducted an epigenome-wide association study 

(EWAS) for the long-term PM2.5 exposures 1 year, 3 years, and 5 years prior to death and then 
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investigated whether any differentially methylated CpG sites that were significantly associated 

with PM2.5 exposure in the EWAS were also associated with increased neuropathology markers; 

and 2) conducted a combination of Meet-in-the-Middle (MITM) approach and high-dimensional 

mediation analysis (HDMA) to identify any mediating CpGs that did not reach genome-wide 

significance in the EWAS of PM2.5. The MITM approach and HDMA work complementarily to 

maximize the detention of potential mediators. 

Firstly, we conducted an EWAS to assess associations of long-term PM2.5 exposures 1 year, 

3 years, and 5 years prior to death and methylation levels of CpG sites. Specifically, we used 

robust multiple linear regression models as implemented in the R package MASS to identify 

differentially CpG sites associated with PM2.5 exposures.89 To account for measured 

confounding factors, we included sex, race, educational attainment, age at death, PMI, ADI, and 

proportion of neuronal cells in the model. Potential batch effect and other unwanted variation 

were further corrected using the R packages sva90 (estimating surrogate variables included in 

the EWAS model as covariates) and Bacon.91 To account for multiple testing, the Bonferroni 

threshold was used for statistical significance (0.05 / 789,286 = 6.33×10-8).92  

Any CpG sites that were significantly associated with PM2.5 exposure were then investigated 

for their associations with neuropathology markers. These associations were extracted from an 

EWAS of each neuropathology marker (CERAD, Braak stage, ABC score) with methylation 

levels of all CpG sites, using robust multiple linear regression models with the neuropathology 

markers converted to continuous outcomes and DNAm beta values of CpG sites as exposures, 

adjusting for sex, race, educational attainment, age at death, PMI, APOE genotype, and 

proportion of neuronal cells. We used Bacon91 to control for unmeasured confounding and bias 

due to the minor inflation/deflation indicated by raw p-values. 

For the MITM, we compared the 1,000 most significant CpGs from the two sets of EWAS on 

all CpG sites for PM2.5 exposures and neuropathology markers to identify the differentially 
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methylated CpG sties that were associated with both exposures and outcomes. The MITM 

approach is widely used in high-dimensional setting to identify intermediate biomarkers.93 

Then, we conducted a HDMA using the R packages HIMA and DACT to identify any 

potential mediating CpG sites between PM2.5 exposure and neuropathology. HIMA is an R 

package for estimating and testing high-dimensional mediation effects for omics data, which 

adopts the multiple mediator model’s framework with reducing the dimensionality of omics data 

via sure independence screening and minimax concave penalty.94 The divide-aggregate 

composite null test (DACT) is a more recent method for HDMA, which utilizes the Efron 

empirical null framework to calculate a weighted sum of p-values obtained from exposure-

mediator (EWAS of PM2.5 exposure as described above) and mediator-outcome (EWAS of 

neuropathology markers as described above) models for testing the significance of all 

mediators95. After running HIMA and DACT for all CpG sites, we further corrected for multiple 

testing using the Bonferroni method. Lastly, we combined the mediating CpG sites identified by 

either HIMA or DACT and used the R package mediation to conduct a causal mediation 

analysis for them to obtain the indirect effects.96-98 The average causal mediation effect (i.e., 

indirect effect) and total effect estimated by mediation were summarized for the CpG sites with 

positive indirect effects that were in line with the hypothesized adverse effect of traffic-related 

PM2.5 on neuropathology markers. In contrast to the MITM approach described earlier, HDMA 

examine multiple mediators together in a framework of mediation analysis, which allowed us to 

ascertain the extent to which the particular indirect effects were associated with the mediators. 

To aid the interpretation of model results, we conducted a gene ontology analysis using the 

R package missMethyl based on the top 1000 CpG sites with lowest raw p-values99. The gene 

ontology analysis was conducted for the EWAS results of PM2.5 exposure as well as for the 

EWAS results of the three neuropathology markers. All CpG sites were annotated using an 

online annotation data for the ‘IlluminaHumanMethylationEPIC’.100 Additional functional insight 
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on single CpG sites was obtained by searching the corresponding CpG site in publicly available 

databases, including EWAS catalog101 and GoDMC.102  

All analyses were completed in R (v4.2.0). 

 

Results 
 

Study population characteristics 

A total of 159 donors were included in the current analysis, and their demographic 

characteristics and neuropathologic markers are described in Table 1. The average age of 

death was 76.6 years (SD=9.98) and 56% of the study population were male. The study 

population was predominantly white (89.3%) and well-educated with 123 (78.7%) completing 

college or more and living in less deprived neighborhoods (ADI: mean = 36.3, SD = 24.2). The 

majority of study sample (95.6%) were diagnosed with AD or other forms of dementia, and the 

prevalence of the APOE ε4 allele (56% with at least one APOE ε4 allele) in this population was 

much higher than that in the general population in the U.S.103  

 As illustrated by the 1-year traffic-related PM2.5 exposure (Figure 1A), donors living in urban 

areas had a higher level of PM2.5 exposure compared to those living in suburban areas.  The 

median of 1-year exposure was 1.21 µg/m3 [interquartile range (IQR)=0.78]. As PM2.5 

concentrations have decreased over the last decades, 3-year and 5-year exposures were 

slightly higher (3-year exposure: median=1.32 µg/m3 [IQR=0.74], 5-year exposure: median=1.39 

µg/m3 [IQR: 0.81]) (Figure 1B).  

  

Association between PM2.5 exposure and DNAm in the brain 

After correcting for multiple tests and adjusting for bias and measured and unmeasured 

confounding, two CpG sites (cg25433380 and cg10495669) were consistently associated with 

PM2.5 across different exposure windows (Figure 2, Table 2; summary statistics for all 789,286 



31 
 

CpG sites are provided as Table S4-6 in spreadsheets). For example, a 1 µg/m3 increase in 1-

year PM2.5 exposure was associated with 0.0065 increase in the DNAm beta value of 

cg25433380 (p = 1.58×10-8). cg25433380 and cg10495669 are on chromosome 9 and 20, 

respectively, and cg10495669 is assigned to the gene encoding RanBP-type and C3HC4-type 

zinc finger-containing protein 1 (RBCK1). The two CpG sites were not significantly associated 

with any neuropathology markers (Table 2). 

 

Meet-in-the-Middle approach and high-dimensional mediation analysis 

To identify CpG sites that mediate the association between PM2.5 exposure and neuropathology 

makers but did not reach genome-wide significance in the EWAS of PM2.5 exposure, we 

conducted the MITM approach and HDMA (DACT and HIMA). 

 For the MITM approach, we explored the overlapping CpG sites among the top 1000 CpG 

sites for the EWAS of PM2.5 and the EWAS of neuropathology markers and identified four 

overlapping CpG sites (Table S1). Specifically, DNAm in cg01835635 (APOA4 gene) was 

associated with CERAD score as well as PM2.5 exposure for the 1-year and 3-year exposure 

windows. DNAm in cg09830308 (MLKL gene) was associated with Braak stage as well as PM2.5 

exposures for the 1-year, 3-year, and 5-year windows; cg16342341 (SORBS2 gene) was 

associated with CERAD score as well as 1-year PM2.5 exposure; and cg27459981 (MLKL gene) 

was associated with Braak stage and ABC score as well as PM2.5 exposures for the 3-year and 

5-year windows.  

The HDMA via HIMA did not identify any CpG sites as significant mediators. In the HDMA 

using a combination of DACT and causal mediation analysis, we identified twenty-two CpG sites 

to mediate the positive association between PM2.5 exposure and ABC score (Table 3), while 

none were observed for Braak stage and CERAD score. One CpG site (cg16342341, SORBS2 

gene) was associated with all three exposure windows (1, 3 and 5-years prior to death), and 

eight with two exposure windows. Of note, cg16342341 (SORBS2) was also identified in the 
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MITM approach described above. The total effect estimated for all mediation analyses was 

positive but insignificant in this subsample of the cohort (see Christensen et al. 2023 for the 

significant total effect in the full cohort). The statistics of all CpG sites detected by DACT are 

summarized in the Supplement (Table S2).  

 

Secondary analyses 

A gene ontology analysis was conducted for the top 1000 CpG sites associated PM2.5 and for 

the top 1000 CpG sites associated with the neuropathology markers. None of the KEGG 

pathways reached significance after correcting for multiple tests. Therefore, we summarized the 

top 10 KEGG pathways for each of the PM2.5 exposures or neuropathology markers in the 

Supplement (Table S3). One pathway, which is the longevity regulating pathway, was 

associated with both 3-year exposure to PM2.5 and CERAD score. Eight genes (HSPA1A, 

HSPA1L, IRS1, KRAS, NRAS, RPTOR, IRS2, ATG5) in this pathway were enriched by 

differentially methylated CpG sites that were associated with 3-year PM2.5 exposure, and ten 

genes (ADCY3, ADCY5, NFKB1, PRKAG2, RPTOR, TSC2, EHMT1, ULK1, AKT1S1, ATG5) 

with CERAD score. Of note, AKT1S1 was also among the genes that were identified in the 

HDMA (DACT and causal mediation analysis). 

 

Discussion 
 

In the current study of 159 donors from the Emory Goizueta ADRC brain bank, we identified 

differential DNAm in prefrontal cortex tissues at two CpG sites to be significantly associated with 

long-term PM2.5 exposure. The two CpG sites [cg25433380 (intergenic) and cg10495669 

(RBCK1)] that were associated with PM2.5 exposure were consistently associated with long-term 

exposures to traffic-related PM2.5 1 year, 3 years, and 5 years prior to death, after controlling for 

measured and unmeasured confounding. While cg25433380 and cg10495669 were not 
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associated with increases in neuropathology markers, we identified four CpG sites that 

overlapped between the top 1000 CpG sites associated with PM2.5 and neuropathology markers 

(MITM approach) and 22 CpG sites that mediated the adverse effect of PM2.5 exposures on AD-

related neuropathology markers using HDMA. In addition, the longevity regulating pathway, was 

found to be enriched by differentially methylated CpG sites associated with PM2.5 (3-year 

exposure window) and CERAD score.  

Although there is a growing body of research on PM2.5-associated DNAm patterns in the 

human blood,71 this is the first study showing an association between PM2.5 exposure and 

differential DNAm in the brain (cg25433380 and cg10495669). Scarce evidence related to air 

pollution has been reported so far on cg25433380. On the other hand, higher DNA methylation 

levels of cg10495669 in nasal cells have been associated with 1-year ambient PM2.5 exposure 

among 503 children from Project Viva in Massachusetts state.104  RBCK1, the gene which 

cg10495669 is assigned to, is involved in carcinogenesis and inflammation pathways. The 

overexpression of RBCK1 was observed in multiple cancer cells, including renal, colorectal, and 

breast cells, in in-vitro experiments.105-107 The knockdown of RBCK1 in renal cancer cells may 

induce p53 expressions, and thus, Yu et al. proposed a model in which RBCK1 promoted the 

ubiquitination and degradation of p53, a protein playing a major role in DNA damage 

response.107 The impairment of p53 expression and activity might participate in 

neurodegeneration, as p53 can bind to genes that regulate expression of synaptic proteins, 

neurite outgrowth, and axonal regeneration, which indicated a neuroprotective role against AD 

development.108  In addition, RBCK1, as part of linear ubiquitin chain assembly complex, can 

regulate the proinflammatory-cytokines-induced nuclear factor kappa B (NF-kB) activation which 

serves as a pivotal mediator of inflammatory responses.109,110 NF-kB activation is a common 

feature of many neurodegenerative diseases,111 and the increased expression and/or activation 

of NF-kB has been largely observed in post-mortem studies of AD patients.112 However, the two 

CpG sites were not found to be associated with any neuropathology markers in the current 
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analysis. More research is warranted on these CpG sites to investigate their potential role in AD 

development with a larger sample size and participants of more diverse disease stages from 

preclinical to severe dementia.  

We identified four CpG sites (cg01835635, cg09830308, cg16342341, and cg27459981) that 

overlapped between the top 1000 CpG sites associated with both PM2.5 and neuropathology 

markers via MITM approach. Three of these CpGs (cg16342341, cg09830308 and cg27459981) 

or their related genes have been previously associated with AD or PM2.5 exposure. Cg09830308 

and cg27459981, assigned to the mixed lineage kinase domain like pseudokinase gene (MLKL), 

were both associated with Braak stage and PM2.5 exposure 3 and 5 years prior to death. MLKL 

plays a critical role in TNF-induced cell death (i.e., necroptosis). Caccamo et al. found that 

necroptosis was activated in postmortem brains of AD patients and positively correlated with 

Braak stage, and MLKL expression was significantly higher compared to control cases’ brain 

tissues.113 Similarly, Jayaraman et al. reported that necroptosis signaling was highly activated in 

the hippocampus of AD patients, as illustrated by the increased mRNA expression of genes, 

including MLKL, that encode key proteins involved in the execution of necroptosis.114 Shigemizu 

et al. detected the genetic variant of MLKL associated with AD among 3777 Japanese subjects 

over 59 years old via genome-wide gene-based burden testing on rare coding variants, and they 

demonstrated that the loss-of-function variant of MLKL played a crucial role in AD pathogenesis 

via in-vitro experiments.115 Furthermore, Wang et al. demonstrated that the knockdown of MLKL 

significantly increased the ratio of Aβ42 to Aβ40 in an AD model HEK293 cell line.116 The ratio 

was used as a potential diagnostic marker of AD.117 Collectively, traffic-related PM2.5 exposure 

might induce the TNF-mediated neuroinflammation, resulting in necroptosis, and thus contribute 

to AD pathogenesis.  

Cg16342341, assigned to the Sorbin and SH3 domain-containing protein 2 gene (SORBS2), 

was also identified as potential mediator in the HDMA, where it mediated the association of all 

PM2.5 exposure windows with ABC score. As SORBS2 is well known for its role in AD and 
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neuroinflammation118 119 and has also been associated with PM2.5 exposure in rats120, our 

findings contribute to the growing body of evidence of SORBS2 expression playing a role in 

PM2.5 associated changes in neuropathology markers of AD. SORBS2 was found to repress IL-

6 and TNF-α expression in the mouse embryonic fibroblasts,121 and Chen et al. demonstrated 

that the level of SORBS2 was lower in the brains of AD model mice compared to wild type 

mice,118 implying a role of SORBS2 in regulating neuroinflammation. In a human study of 

families multiply affected by AD, Lee et al. reported that genetic variation in SORBS2 was 

associated with age at onset of AD.119 While evidence on the association between PM2.5 

exposure and SORBS2 is more scarce, Chao et al. reported that prenatal exposure to PM2.5 

caused upregulation of microRNAs targeting SORBS2 gene in fetal rat cortex tissues120. 

In addition to cg16342341, we identified 21 other CpGs as potential mediators of the 

association between long-term exposure to traffic-related PM2.5 and ABC score using HDMA, 

and two of these CpGs have been previously reported in association with AD. Differential 

methylation in cg07963191, assigned to the dual 3',5'-cyclic-AMP and -GMP phosphodiesterase 

11A gene (PDE11A), mediated the adverse effect of the average PM2.5 exposure 3 years prior 

to death on the ABC score. PDE11A pertains to the phosphodiesterase family that plays an 

essential role in neuroplasticity and neuroprotection.122 Differential methylation in cg27297993, 

assigned to the gamma-aminobutyric acid B receptor 1  gene (GABBR1), mediated the adverse 

effect of the average PM2.5 exposure 3 and 5 years prior to death on the ABC score. GABBR1 is 

the main inhibitory neurotransmitter in the central nervous system, which was reported to be 

downregulated in the brains of AD patients.123 Iwakiri et al. observed a negative correlation 

between GABBR1 and NFT formation in the hippocampus of 16 aged subjects, suggesting that 

the increased or stable expression of GABBR1 may contribute to neuronal resistance to AD 

development.124  

To derive more functional insights from the mediating CpG sites, we conducted gene 

ontology analysis based on KEGG pathway database for the top 1000 CpGs associated with 
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PM2.5 exposure or neuropathology markers.99 Proline-rich AKT1 substrate 1 (AKT1S1) was one 

of the genes enriched in the longevity regulating pathway which was found to overlap between 

PM2.5 exposure and CERAD score. Of note, differential DNA methylation in cg00633834, which 

is assigned to AKT1S1, was also identified as potential mediator in the HDMA. AKT1S1 can 

activate mammalian target of rapamycin (mTOR)–mediated signaling pathways when 

phosphorylated,125 and mTOR signaling was observed to have higher activity in AD brains.126 As 

mTOR plays a role for maintaining the balance between protein synthesis and degradation, 

Salvatore Oddo suggested a critical role of mTOR in the accumulation of Aβ and tau proteins 

over the course of AD development from early to late stage.126  

Our study has several strengths. We established for the first time a potential mediation effect 

of DNAm for the association between PM2.5 and neuropathological changes of AD. Although 

false discovery is a problem in high-dimensional settings, we minimized the possibility of false 

discovery by verifying the indirect effect of CpG sites identified by HDMA using causal mediation 

analysis. The neuropathological changes of AD were quantified via multiple markers, including 

Braak stage, CERAD score, and ABC score, which covers the essential components (i.e., NFTs 

and Aβ plaques) for the neuropathological diagnosis of AD. Further, the neuropathology 

markers were assessed by experienced neuropathologists at Emory Goizueta ADRC following a 

standardized protocol, which minimized the misclassification bias of outcomes. Finally, the high-

resolution PM2.5 exposure assessment model enabled the characterization of spatial variation in 

individual exposure and reduced the potential measurement error.33  

Our study is not without limitations. First, the temporal sequence between mediators (DNAm 

changes) and outcomes (AD neuropathology) could not be clearly defined. Second, traffic-

related PM2.5 exposure was estimated based on the residential address of donors at death. 

Moving shortly prior to death could have introduced measurement errors in exposure 

assessment, and the selection of exposure windows was arbitrary, as the disease process of 

AD may start many years before death and vary by patients. Third, the results are from a single 
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brain bank and participants with a high APOE ε4 carrier rate, so the generalizability should be 

tested in other brain bank or autopsy cohorts. Fourth, even though most of the study population 

was White, and we controlled for race, the ancestry effect on DNA methylation might persist as 

residual confounding. Finally, the current analysis only focused on the health effect of PM2.5, 

while other air pollutants such as nitrogen oxides or ozone might also play a role for AD.127,128 

Furthermore, PM2.5 is a complex mixture and its composition varies by geographic region. From 

our analysis, we cannot determine which components, such as heavy metals, are driving the 

association with AD.129  

 

Conclusions 
 

Using a combination of Meet-in-the-Middle approach, high-dimensional mediation analysis, and 

causal mediation analysis, we identified several CpG sites mediating the adverse effects of 

long-term exposure to traffic-related PM2.5 exposure on the levels of AD-related neuropathology 

markers among prefrontal cortex tissues from 159 donors. Of note, several of these CpGs were 

identified by both approaches and located in genes related to neuroinflammation and 

neuroinflammation-mediated necroptosis. Our findings provide important information on the 

biological mechanisms underlying the PM2.5 toxicity on AD pathogenesis. Future studies 

evaluating the mediating role of DNAm on AD-related outcomes should consider: 1) performing 

the analysis among early-stage AD patients or patients with mild cognition impairment to further 

illustrate the role of PM2.5 in AD etiology; 2) performing genome-wide DNAm together with 

transcriptomics, proteomics, and/or metabolomics to capture a holistic picture of the underlying 

mechanism. Future work should investigate these findings in separate brain banks and 

determine whether the DNAm changes are found in other more accessible tissues with the goal 

of informing biomarkers of PM2.5 exposure that may be relevant to AD development. 
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Tables and figures 
 

Table 1. Selected population characteristics among the donors included in the current analysis. 

 N=159 

Age at death, mean (SD) 76.6 (9.98) 

Sex, No. (%)  

Female 70 (44.0) 

Male 89 (56.0) 

Race, No. (%)  

Black 17 (10.7) 

White 142 (89.3) 

Educational attainment, No. (%)  

High school or less 36 (22.6) 

College degree 76 (47.8) 

Graduate degree or more 47 (29.6) 

Area Deprivation Index, mean (SD) 36.3 (24.2) 

Diagnosis of dementia  

AD 86 (54.1) 

Other dementia 66 (41.5) 

No dementia 7 (4.4) 

APOE genotype  

No ε4 allele 70 (44.0) 

Single ε4 allele 68 (42.8) 

Two ε4 allele 21 (13.2) 

Postmortem interval (hours), mean (SD) 11.7 (9.68) 

Proportion of neuronal cells (%), mean (SD) 31.9 (8.21) 

Braak stage, No. (%)  

Stage 1 16 (10.1) 

Stage 2 11 (6.9) 

Stage 3 20 (12.6) 

Stage 4 17 (10.7) 

Stage 5 22 (13.8) 

Stage 6 73 (45.9) 

CERAD score  

No 35 (22.0) 

Sparse 4 (2.5) 
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 N=159 

Moderate 10 (6.3) 

Frequent 110 (69.2) 

ABC score  

Not 15 (9.4) 

Low 29 (18.2) 

Intermediate 22 (13.8) 

High 93 (58.5) 

Abbreviations: SD, standard deviation; AD, Alzheimer’s disease; APOE, apolipoprotein E; 

CERAD, Consortium to Establish a Registry for AD; ABC, a combination of Amyloid, Braak 

stage, and CERAD (ABC) score.  
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Figure 1. Statistics and distribution of PM2.5 exposures in Metropolitan Atlanta (study area), 

Georgia, United States. (A) Map of Metropolitan Atlanta with individual 1-year averaged annual 

PM2.5 exposure. The dots denote the donors’ residential address and are colored according to 

their PM2.5 exposures as showed in the legend. Red means a higher exposure level. (B) 

Statistics of individual averaged annual PM2.5 exposures for 1 year, 3 years, and 5 years. 
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Figure 2. Manhattan and QQ plots for the epigenome-wide association of PM2.5 exposures (A. 

1-year / B. 3-year / C. 5-year average exposure prior to death) and DNA methylation in 

postmortem frontal cortex tissue. λ denotes the inflation factor. Adjusted for covariates: age at 

death, sex, race, educational attainment, post-mortem interval, area deprivation index, and cell 

type composition. Unmeasured confounding and bias were adjusted with surrogate variable 

analysis and R package Bacon. Bonferroni threshold: 0.05/789,286.  
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Table 2. CpGs associated with traffic-related PM2.5 exposure prior to death and their association 

with neuropathology markers. 

CpG chr Position Gene  Coefficients a p-values b 

A. CpGs with PM2.5 exposures     

cg25433380 9 388,531 Intergenic 1-year exposure 0.0065 1.58×10-8 

    3-year exposure 0.0066 5.82×10-9 

    5-year exposure 0.0063 1.12×10-9 

cg10495669 20 137,531,767 RBCK1 1-year exposure 0.0127 1.69×10-8 

    3-year exposure 0.0128 1.78×10-8 

    5-year exposure 0.0114 5.96×10-8 

       
B. CpGs with neuropathology markers     

cg25433380 9 388,531 Intergenic Braak stage 0.08 0.729 

    CERAD 0.05 0.629 

    ABC 0.04 0.825 

cg10495669 20 137,531,767 RBCK1 Braak stage 0.02 0.929 

    CERAD 0.12 0.397 

    ABC 0.09 0.593 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; RBCK1, RanBP-type and 

C3HC4-type zinc finger-containing protein 1.  

a The coefficients for PM2.5 exposures represent the change in the beta values of CpG sites 

associated with one-unit increase in the exposures; the coefficients for neuropathology markers 

represent the change in the neuropathology markers associated with one-interquartile-range 

increase in the beta values of CpG sites. 

b The Bonferroni threshold: 0.05/789,286 ≈ 6.33×10-8. 
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Table 3. Indirect effect estimated by causal mediation analysis via the R package mediation of 

CpG sites selected by high-dimensional mediation analysis for the associations between PM2.5 

exposure and ABC score a.   

CpG chr Gene Exposure 
DACT 

p-values b 
ACME c Total effect d 

cg23932332 1 DUSP10 
3-year 4.36E-08 0.056 (0.005, 1.50E-01) 0.086 (-0.110, 2.80E-01) 

5-year 2.98E-08 0.060 (0.002, 1.70E-01) 0.104 (-0.081, 3.10E-01) 

cg08512806 1 TARBP1 
3-year 5.30E-08 0.058 (0.008, 1.30E-01) 0.084 (-0.107, 3.00E-01) 

5-year 3.82E-08 0.063 (0.009, 1.30E-01) 0.102 (-0.080, 3.10E-01) 

cg10705045 2 RNF144A 5-year 2.63E-08 0.063 (0.001, 1.40E-01) 0.109 (-0.079, 3.10E-01) 

cg17275287 2 Intergenic 
3-year 3.43E-09 0.085 (0.019, 1.70E-01) 0.079 (-0.118, 3.00E-01) 

5-year 2.00E-09 0.089 (0.020, 1.80E-01) 0.097 (-0.093, 3.00E-01) 

cg07258300 2 CYP27C1 3-year 5.43E-08 0.080 (0.020, 1.50E-01) 0.083 (-0.107, 3.00E-01) 

cg05532414 2 Intergenic 3-year 6.25E-08 0.071 (0.004, 1.70E-01) 0.090 (-0.084, 3.20E-01) 

cg07963191 2 PDE11A 3-year 3.10E-08 0.061 (0.005, 1.40E-01) 0.080 (-0.103, 3.00E-01) 

cg26109897 4 TBC1D14 3-year 2.13E-08 0.085 (0.010, 1.90E-01) 0.090 (-0.098, 3.10E-01) 

cg26877022 4 POLR2B 
3-year 4.54E-09 0.080 (0.015, 1.80E-01) 0.089 (-0.092, 3.10E-01) 

5-year 1.26E-08 0.077 (0.011, 1.80E-01) 0.107 (-0.079, 3.10E-01) 

cg16342341 4 SORBS2 

1-year 1.35E-09 0.097 (0.021, 1.80E-01) 0.034 (-0.168, 2.30E-01) 

3-year 5.45E-09 0.076 (0.017, 1.60E-01) 0.080 (-0.106, 2.80E-01) 

5-year 1.61E-09 0.078 (0.017, 1.50E-01) 0.098 (-0.093, 3.20E-01) 

cg17444747 5 COL23A1 5-year 3.26E-08 0.074 (0.015, 1.50E-01) 0.098 (-0.085, 2.90E-01) 

cg27297993 6 GABBR1 
3-year 8.30E-09 0.064 (0.009, 1.40E-01) 0.084 (-0.091, 3.00E-01) 

5-year 9.26E-09 0.066 (0.003, 1.40E-01) 0.103 (-0.076, 3.00E-01) 

cg00829961 8 Intergenic 
3-year 1.37E-08 0.075 (0.009, 1.70E-01) 0.092 (-0.092, 3.10E-01) 

5-year 3.21E-08 0.075 (0.012, 1.70E-01) 0.110 (-0.078, 3.30E-01) 

cg02987635 10 C10orf11 3-year 4.14E-08 0.063 (0.004, 1.50E-01) 0.079 (-0.099, 3.00E-01) 

cg06805557 11 APBB1 5-year 4.14E-08 0.062 (0.007, 1.30E-01) 0.101 (-0.104, 3.00E-01) 

cg19969778 11 
SIAE; 

SPA17 

3-year 8.97E-09 0.065 (0.008, 1.30E-01) 0.080 (-0.108, 3.10E-01) 

5-year 1.85E-08 0.063 (0.010, 1.30E-01) 0.098 (-0.092, 3.10E-01) 

cg20713102 15 ZSCAN2 5-year 5.05E-08 0.074 (0.014, 1.60E-01) 0.106 (-0.083, 3.10E-01) 

cg09088153 15 Intergenic 3-year 4.69E-08 0.072 (0.013, 1.50E-01) 0.089 (-0.094, 3.20E-01) 

cg27181554 16 SEPX1 
1-year 1.79E-08 0.084 (0.021, 1.80E-01) 0.039 (-0.162, 2.70E-01) 

3-year 2.73E-08 0.069 (0.015, 1.50E-01) 0.085 (-0.108, 2.80E-01) 

cg20389589 16 FAM57B 3-year 2.97E-08 0.069 (0.003, 1.60E-01) 0.084 (-0.120, 2.90E-01) 

cg06832209 16 ADGRG3 3-year 4.26E-08 0.078 (0.015, 1.60E-01) 0.089 (-0.101, 2.80E-01) 

cg00633834 19 
AKT1S1; 
TBC1D17 

5-year 3.72E-08 0.081 (0.017, 1.60E-01) 0.095 (-0.090, 2.90E-01) 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; ACME, average causal 

mediated effect (i.e., indirect effect). 
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a All CpG sites that were selected by DACT and had a positive ACME were associated with 

ABC score. 

b The p-values of mediation effect testing conducted by DACT. 

c The ACME was associated with one-interquartile-range increase in beta values of CpG sites. 

d Effect estimates, associated with 1-unit increase, of PM2.5 exposures on neuropathology 

markers. 
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Appendix for Chapter 3 
 

Methods 

Genome-wide DNA methylation quality control and processing 

All DNAm data were preprocessed to identify mislabeled and low-quality samples, exclude 

specific probes, and reduce the impact of batch effects. Raw intensity files were converted to 

methylation beta values ranging on a continuous scale from 0 to 1 for each of the CpG sites 

measured on the array. The Illumina’s 636 control probes were used via the R package 

ewastools to assess technique parameters including array staining, extension, hybridization, 

target removal, specificity, and bisulfite conversion.130 Additional sample outlier detection was 

implemented based on detection p value, beadcount, and distance from the group average in 

principal components. All samples passed the aforementioned checks. After this, participant sex 

and replicate status were also verified using XY probes and SNP probes, respectively. Then, 

the Funnorm function and Combat function was used to normalize the distributions to reduce 

technical variation and correct for differences between type I and type II probe signals. The 

following probes were further removed: XY probes, low-quality probes with missing in more than 

5% of samples, probes with poor detection p-values, probes predicted to cross-hybridize, 

probes that bind to the sex chromosomes, polymorphic probes, and probes with infinite values. 

In total, after all preprocessing steps, 159 samples and 789,286 CpG sites remained for the 

down-stream analysis. We used estimateCellCounts function in the R package minfi to obtain 

the cell-type proportions (neuronal vs. non-neuronal cells) using the reference dataset published 

previously.86,87  
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Figure S1. Directed acyclic graph of the confounding structure for the association between fine 

particulate matter exposure and neuropathology markers. PMI, post-mortem interval; ADI, area 

deprivation index; APOE, Apolipoprotein E.   
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Table S1. The overlapping CpGs associated with both traffic-related PM2.5 exposure prior to 

death and neuropathology markers. 

CpG chr Position Gene  Coefficients a p-values 

A. CpGs with PM2.5 exposures     

cg16342341 4 186,571,988 SORBS2 1-year exposure 0.0102 1.27×10-3 

cg01835635 11 116,693,535 APOA4 1-year exposure -0.0168 6.16×10-4 

    3-year exposure -0.0155 1.29×10-3 

cg09830308 16 74,734,321 MLKL 1-year exposure 0.0163 1.15×10-3 

    3-year exposure 0.0161 9.44×10-4 

    5-year exposure 0.0151 8.47×10-4 

cg27459981 16 74,734,571 MLKL 3-year exposure 0.0155 1.11×10-3 

    5-year exposure 0.0142 1.37×10-3 

B. CpGs with neuropathology markers     

cg16342341 4 186,571,988 SORBS2 CERAD 0.52 6.03×10-4 

    ABC 0.44 5.37×10-4 

cg01835635 11 116,693,535 APOA4 CERAD -0.63 4.36×10-4 

cg09830308 16 74,734,321 MLKL Braak stage -0.51 3.09×10-4 

cg27459981 16 74,734,571 MLKL Braak stage -0.82 1.70×10-5 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; SORBS2, sorbin and SH3 

domain-containing protein 2; APOA4, Apolipoprotein A-IV; MLKL, mixed lineage kinase domain 

like pseudokinase. 

a The coefficients for PM2.5 exposures represent the change in the beta values of CpG sites 

associated with one-unit increase in the exposures; the coefficients for neuropathology markers 

represent the change in the neuropathology markers associated with one-interquartile-range 

increase in the beta values of CpG sites. 
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Table S2. Indirect effect estimated by causal mediation analysis via the R package mediation of 

CpG sites selected by high-dimensional mediation analysis for the associations of PM2.5 

exposure with Braak stage and ABC score a.   

CpG chr Gene Exposure Outcome ACME c Total effect d 

cg09579061 1 ADORA1 1-year Braak -0.183 (-0.348, -5.00E-02) 0.032 (-0.318, 4.30E-01) 

cg23932332 1 DUSP10 
3-year ABC 0.056 (0.005, 1.50E-01) 0.086 (-0.110, 2.80E-01) 

5-year ABC 0.060 (0.002, 1.70E-01) 0.104 (-0.081, 3.10E-01) 

cg08512806 1 TARBP1 
3-year ABC 0.058 (0.008, 1.30E-01) 0.084 (-0.107, 3.00E-01) 

5-year ABC 0.063 (0.009, 1.30E-01) 0.102 (-0.080, 3.10E-01) 

cg10705045 2 RNF144A 5-year ABC 0.063 (0.001, 1.40E-01) 0.109 (-0.079, 3.10E-01) 

cg17275287 2 Intergenic 
3-year ABC 0.085 (0.019, 1.70E-01) 0.079 (-0.118, 3.00E-01) 

5-year ABC 0.089 (0.020, 1.80E-01) 0.097 (-0.093, 3.00E-01) 

cg05532414 2 Intergenic 3-year ABC 0.071 (0.004, 1.70E-01) 0.090 (-0.084, 3.20E-01) 

cg07963191 2 PDE11A 3-year ABC 0.061 (0.005, 1.40E-01) 0.080 (-0.103, 3.00E-01) 

cg26109897 4 TBC1D14 3-year ABC 0.085 (0.010, 1.90E-01) 0.090 (-0.098, 3.10E-01) 

cg26877022 4 POLR2B 
3-year ABC 0.080 (0.015, 1.80E-01) 0.089 (-0.092, 3.10E-01) 

5-year ABC 0.077 (0.011, 1.80E-01) 0.107 (-0.079, 3.10E-01) 

cg16342341 4 SORBS2 

1-year ABC 0.097 (0.021, 1.80E-01) 0.034 (-0.168, 2.30E-01) 

3-year ABC 0.076 (0.017, 1.60E-01) 0.080 (-0.106, 2.80E-01) 

5-year ABC 0.078 (0.017, 1.50E-01) 0.098 (-0.093, 3.20E-01) 

cg17444747 5 COL23A1 5-year ABC 0.074 (0.015, 1.50E-01) 0.098 (-0.085, 2.90E-01) 

cg27297993 6 GABBR1 
3-year ABC 0.064 (0.009, 1.40E-01) 0.084 (-0.091, 3.00E-01) 

5-year ABC 0.066 (0.003, 1.40E-01) 0.103 (-0.076, 3.00E-01) 

cg00829961 8 Intergenic 
3-year ABC 0.075 (0.009, 1.70E-01) 0.092 (-0.092, 3.10E-01) 

5-year ABC 0.075 (0.012, 1.70E-01) 0.110 (-0.078, 3.30E-01) 

cg02987635 10 C10orf11 3-year ABC 0.063 (0.004, 1.50E-01) 0.079 (-0.099, 3.00E-01) 

cg06805557 11 APBB1 5-year ABC 0.062 (0.007, 1.30E-01) 0.101 (-0.104, 3.00E-01) 

cg19969778 11 
SIAE; 
SPA17 

3-year ABC 0.065 (0.008, 1.30E-01) 0.080 (-0.108, 3.10E-01) 

5-year ABC 0.063 (0.010, 1.30E-01) 0.098 (-0.092, 3.10E-01) 

cg17562250 14 
LOC101927124; 

HEATR5A 

1-year ABC -0.077 (-0.174, -1.00E-02) 0.039 (-0.169, 2.60E-01) 

3-year ABC -0.065 (-0.169, 0.00E+00) 0.085 (-0.099, 3.00E-01) 

cg20713102 15 ZSCAN2 5-year ABC 0.074 (0.014, 1.60E-01) 0.106 (-0.083, 3.10E-01) 

cg09088153 15 Intergenic 3-year ABC 0.072 (0.013, 1.50E-01) 0.089 (-0.094, 3.20E-01) 

cg27181554 16 SEPX1 
1-year ABC 0.084 (0.021, 1.80E-01) 0.039 (-0.162, 2.70E-01) 

3-year ABC 0.069 (0.015, 1.50E-01) 0.085 (-0.108, 2.80E-01) 

cg20389589 16 FAM57B 3-year ABC 0.069 (0.003, 1.60E-01) 0.084 (-0.120, 2.90E-01) 

cg06832209 16 ADGRG3 3-year ABC 0.078 (0.015, 1.60E-01) 0.089 (-0.101, 2.80E-01) 

cg09830308 16 MLKL 

1-year ABC -0.072 (-0.161, -1.00E-02) 0.030 (-0.171, 2.40E-01) 

1-year Braak -0.152 (-0.319, -1.00E-02) 0.023 (-0.318, 3.80E-01) 

3-year ABC -0.071 (-0.151, 0.00E+00) 0.073 (-0.130, 2.90E-01) 

5-year ABC -0.073 (-0.163, -1.00E-02) 0.092 (-0.115, 3.10E-01) 

cg27459981 16 MLKL 1-year ABC -0.089 (-0.178, -2.00E-02) 0.028 (-0.198, 2.50E-01) 



49 
 

1-year Braak -0.182 (-0.364, -4.00E-02) 0.019 (-0.333, 3.60E-01) 

3-year ABC -0.086 (-0.168, -2.00E-02) 0.071 (-0.132, 2.80E-01) 

5-year ABC -0.087 (-0.179, -2.00E-02) 0.089 (-0.093, 2.90E-01) 

cg08591058 17 Intergenic 
1-year ABC -0.092 (-0.175, -2.00E-02) 0.030 (-0.162, 2.50E-01) 

3-year ABC -0.084 (-0.165, -2.00E-02) 0.073 (-0.125, 2.90E-01) 

cg26535871 17 MGAT5B 
3-year ABC -0.063 (-0.147, 0.00E+00) 0.070 (-0.129, 2.80E-01) 

5-year ABC -0.065 (-0.164, -1.00E-02) 0.089 (-0.114, 2.90E-01) 

cg00633834 19 
AKT1S1; 
TBC1D17 

5-year ABC 0.081 (0.017, 1.60E-01) 0.095 (-0.090, 2.90E-01) 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; ACME, average causal 

mediated effect (i.e., indirect effect). 

a All CpG sites that were selected by DACT and had a significant ACME were associated with 

Braak stage or ABC score. 

b The p-values of mediation effect testing conducted by DACT. 

c The ACME was associated with one-interquartile-range increase in beta values of CpG sites. 

d Effect estimates, associated with 1-unit increase, of PM2.5 exposures on neuropathology 

markers. 
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Table S3. The top 10 KEGG pathways enriched by differentially methylated CpG sites that were associated with PM2.5 exposure 

and neuropathology markers, respectively.  

Exposure/ 
outcome 

KEGG terms Description 

N of genes 
in the 
KEGG 
term 

N of 
differentially 
methylated 

genes 

p-value 
False 

discovery 
rate 

Significant genes 

1-year exposure 
path:hsa04137 Mitophagy - animal 69 8 0.0106011 1 

CSNK2B, MRAS, KRAS, NRAS, PRKN, 
AMBRA1, MAPK9, ATG5, USP15 

path:hsa00030 Pentose phosphate pathway 25 4 0.0145971 1 GPI, PGD, TALDO1, H6PD 

path:hsa04935 
Growth hormone synthesis, 

secretion and action 
117 13 0.0168878 1 

GHR, GNAI2, IRS1, KRAS, MAP3K1, NRAS, 
PRKCB, MAPK9, MAP2K1, SSTR3, 
CACNA1C, IRS2, BCAR1 

path:hsa04140 Autophagy - animal 134 13 0.0175384 1 
EIF2S1, ERN1, MRAS, IRS1, KRAS, NRAS, 
SH3GLB1, ATG16L1, AMBRA1, MAPK9, 
MAP2K1, RPTOR, IRS2, ATG5 

path:hsa05010 Alzheimer disease 359 23 0.0278593 1 

APC2, COX7C, CSNK2B, DVL3, EIF2S1, 
ERN1, ATF6, GRIN2B, APP, IRS1, KRAS, 
LRP1, LRP5, NRAS, ATP5PO, AMBRA1, 
MAPK9, MAP2K1, PSMD13, WNT6, 
CACNA1C, AXIN1, IRS2, SLC39A13, 
COX7A2L 

path:hsa04720 Long-term potentiation 64 8 0.0319516 1 
GRIA1, GRIN2B, KRAS, NRAS, PRKCB, 
MAP2K1, RAP1B, CACNA1C 

path:hsa04144 Endocytosis 244 19 0.0365904 1 

EHD1, AGAP2, AP2A2, PSD3, PIP5K1C, 
LDLRAP1, CHMP4A, HSPA1A, HSPA1L, 
SH3GLB1, RUFY2, VPS35, PARD3, RAB5A, 
SH3GL1, SH3GL2, EEA1, PARD6G, RAB11A, 
ASAP2, IQSEC1 

path:hsa01200 Carbon metabolism 105 8 0.0463284 1 
SDSL, PHGDH, GPI, PCCA, PGD, TALDO1, 
SUCLG2, H6PD 

path:hsa04213 
Longevity regulating pathway 

- multiple species 
61 7 0.0484809 1 

HSPA1A, HSPA1L, IRS1, KRAS, NRAS, 
RPTOR, IRS2, ATG5 

path:hsa05034 Alcoholism 165 11 0.0489502 1 
H4C16, GNAI2, GRIN2B, KRAS, NRAS, 
MAP2K1, H2AC14, H2AC16, H2BC14, H3C10, 
H4C3, HDAC4 
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3-year exposure 
path:hsa04930 Type II diabetes mellitus 45 8 0.0045222 0.7312499 

HK1, IRS1, PRKCZ, MAPK9, SLC2A4, 
CACNA1B, CACNA1C, IRS2 

path:hsa04213 
Longevity regulating pathway 

- multiple species 
61 9 0.0052512 0.7312499 

ADCY1, HSPA1A, HSPA1L, IRS1, KRAS, 
NRAS, PRKAG2, RPTOR, IRS2, ATG5 

path:hsa00900 
Terpenoid backbone 

biosynthesis 
23 4 0.0062322 0.7312499 ZMPSTE24, FNTA, ICMT, IDI1 

path:hsa04720 Long-term potentiation 64 9 0.0103579 0.9114961 
ADCY1, GRIA1, GRIN2B, KRAS, NRAS, 
PRKCB, MAP2K1, RAP1B, CACNA1C 

path:hsa04650 
Natural killer cell mediated 

cytotoxicity 
119 10 0.0180657 1 

HCST, PTK2B, FYN, KRAS, NFATC2, NRAS, 
PAK1, PRKCB, MAP2K1, VAV2 

path:hsa04211 Longevity regulating pathway 88 10 0.0235191 1 
ADCY1, EHMT2, CREB1, SESN3, IRS1, 
KRAS, NRAS, PRKAG2, RPTOR, IRS2, ATG5 

path:hsa05010 Alzheimer disease 359 23 0.0287495 1 

APC2, COX7C, DVL3, EIF2S1, ATF6, 
GRIN2B, APP, IRS1, KRAS, LRP1, LRP5, 
ATP2A2, NRAS, ATP5PO, AMBRA1, MAPK9, 
MAP2K1, PSMA2, PSMD13, SLC39A8, 
WNT6, CACNA1C, AXIN1, CASP8, IRS2 

path:hsa04910 Insulin signaling pathway 131 12 0.0312015 1 
HK1, ACACA, IRS1, KRAS, NRAS, PRKAG2, 
PRKCZ, MAPK9, MAP2K1, RPTOR, SLC2A4, 
IRS2 

path:hsa04144 Endocytosis 244 19 0.032739 1 

EHD1, AP2A2, PSD3, PIP5K1C, CYTH4, 
CHMP4A, HSPA1A, HSPA1L, SH3GLB1, 
VTA1, RUFY2, PRKCZ, PARD3, RAB5A, 
WIPF3, SH3GL1, EEA1, RAB11A, DNAJC6, 
IQSEC1 

path:hsa04935 
Growth hormone synthesis, 

secretion and action 
117 12 0.0330168 1 

ADCY1, CREB1, IRS1, KRAS, MAP3K1, 
NRAS, PRKCB, MAPK9, MAP2K1, SSTR3, 
CACNA1C, IRS2 

5-year exposure 
path:hsa00590 Arachidonic acid metabolism 61 7 0.0030161 1 

PLB1, ALOX5, GGT1, PLA2G4D, GPX4, 
ALOXE3, PLA2G6 

path:hsa04720 Long-term potentiation 64 9 0.0134991 1 
ADCY1, GRIA1, GRIN2B, NRAS, PPP3CA, 
PRKCB, MAP2K1, RAP1B, CACNA1C 

path:hsa04930 Type II diabetes mellitus 45 7 0.0195656 1 
HK1, PRKCZ, MAPK9, SLC2A4, CACNA1B, 
CACNA1C, IRS2 

path:hsa04931 Insulin resistance 105 11 0.021487 1 
PPARGC1B, CREB1, SLC27A1, NOS3, 
PRKAG2, PRKCB, PRKCZ, MAPK9, SLC2A4, 
IRS2, CREB5 
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path:hsa00450 
Selenocompound 

metabolism 
17 3 0.0343345 1 TXNRD2, PSTK, PAPSS1 

path:hsa00513 
Various types of N-glycan 

biosynthesis 
38 5 0.0400335 1 

HEXB, STT3A, ALG11, MAN1C1, CHST8, 
TUSC3 

path:hsa04370 VEGF signaling pathway 59 7 0.0412512 1 
PLA2G4D, NFATC2, NOS3, NRAS, PPP3CA, 
PRKCB, MAP2K1 

path:hsa00900 
Terpenoid backbone 

biosynthesis 
23 3 0.0437082 1 ZMPSTE24, FNTA, ICMT 

path:hsa04136 Autophagy - other 30 4 0.0537717 1 WIPI2, ATG16L1, RPTOR, ATG5 

path:hsa00591 Linoleic acid metabolism 30 3 0.0537983 1 PLB1, PLA2G4D, PLA2G6 

Braak stage 
path:hsa05032 Morphine addiction 88 13 0.0011824 0.4161928 

ADCY1, PDE10A, ADCY5, ADCY9, ADCY4, 
GNG7, GNGT2, GRK5, ARRB1, PDE11A, 
PDE1A, PDE3B, PDE4D, PRKCA 

path:hsa05110 Vibrio cholerae infection 49 7 0.0038668 0.6710898 
ADCY9, ARF1, KCNQ1, ATP6V0C, PLCG2, 
PRKCA, TJP1, ATP6V0D1 

path:hsa04261 
Adrenergic signaling in 

cardiomyocytes 
148 15 0.0074374 0.6710898 

CACNG3, ADCY1, ADCY5, ADCY9, CREB1, 
CREM, ADCY4, KCNQ1, PPP1CA, PPP2R1A, 
PRKCA, TPM3, CACNA1C, CACNB3, 
CACNA2D2 

path:hsa05130 
Pathogenic Escherichia coli 

infection 
189 15 0.0081416 0.6710898 

WIPF2, TUBB, CYFIP1, CYTH4, IKBKB, 
ARF1, MYO1C, MYO5C, BAIAP2L1, RAC1, 
WIPF3, TJP1, TNFRSF1A, MYH14, 
TNFRSF10A 

path:hsa04015 Rap1 signaling pathway 207 19 0.0095325 0.6710898 

ADCY1, ADCY5, ADCY9, CSF1R, CTNND1, 
ADCY4, EPHA2, FGF6, FLT4, FYB1, PRKD2, 
RAPGEF1, NGFR, EVL, PRKCA, PARD3, 
RAC1, VEGFC, FGF23, FGF18 

path:hsa04061 
Viral protein interaction with 

cytokine and cytokine 
receptor 

97 6 0.0146182 0.8213017 
CSF1R, CX3CR1, IL6R, TNFRSF1A, 
TNFRSF10A, IL18R1 

path:hsa00230 Purine metabolism 123 11 0.0163327 0.8213017 
ADCY1, PDE10A, ADCY5, ADCY9, ADCY4, 
AK4, AMPD3, GUCY2D, PDE11A, PDE1A, 
PDE3B, PDE4D 

path:hsa04151 PI3K-Akt signaling pathway 339 24 0.0215544 0.849279 

PIK3AP1, COL1A1, CREB1, CSF1R, EPHA2, 
FGF6, PHLPP2, FLT4, GNG7, GNGT2, 
IKBKB, IL6R, LAMA3, MDM2, NGFR, NOS3, 
PPP2R1A, PRKCA, RAC1, CCND1, TNXB, 
VEGFC, FGF23, FGF18, CCND3 
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path:hsa04010 MAPK signaling pathway 283 22 0.0217145 0.849279 

CACNG3, CSF1R, DUSP4, EPHA2, FGF6, 
FLT4, IKBKB, ARRB1, NGFR, PRKCA, RAC1, 
RASGRF1, RPS6KA2, TNFRSF1A, VEGFC, 
CACNA1C, CACNB3, FGF23, MKNK1, 
FGF18, CACNA2D2, CD14 

path:hsa04014 Ras signaling pathway 227 18 0.0255507 0.8993838 

CSF1R, EPHA2, FGF6, RASA3, RGL1, FLT4, 
GNG7, GNGT2, IKBKB, NGFR, PLCG2, 
PRKCA, RGL2, RAC1, RASGRF1, VEGFC, 
FGF23, FGF18, KSR1 

CERAD 

path:hsa05130 
Pathogenic Escherichia coli 

infection 
189 18 0.0009299 0.3273211 

TAB2, CYFIP1, GAPDH, CYFIP2, IL6, ARF1, 
MYO1A, MYO1C, MYO5A, MYO5B, NFKB1, 
CLDN18, BAIAP2L1, MAPK10, RAC1, 
TNFRSF1A, TRAF2, TUBB6 

path:hsa01523 Antifolate resistance 29 5 0.00559 0.8349026 ABCC4, IL6, NFKB1, SHMT1, TYMS, ABCG2 

path:hsa05146 Amoebiasis 98 10 0.0131476 0.8349026 
LAMB4, LAMA1, IL6, ITGAM, NFKB1, NOS2, 
PRKCA, PTK2, ACTN4, ACTN1 

path:hsa05131 Shigellosis 238 18 0.0143556 0.8349026 

RBCK1, TAB2, ARF1, MDM2, NFKB1, WIPI1, 
MAPK10, PTK2, RPTOR, RAC1, ELMO2, 
TNFRSF1A, TRAF2, ACTN4, TLN2, AKT1S1, 
ACTN1, ATG5 

path:hsa00430 
Taurine and hypotaurine 

metabolism 
16 3 0.0149302 0.8349026 FMO1, GGT7, BAAT 

path:hsa05171 
Coronavirus disease - 

COVID-19 
215 13 0.0162667 0.8349026 

ADAR, RPL22L1, TAB2, RPL36, IFNAR1, IL6, 
NFKB1, PRKCA, MAPK10, RPL18, RPL26, 
STAT2, TNFRSF1A, TRAF3 

path:hsa04622 
RIG-I-like receptor signaling 

pathway 
65 6 0.0166032 0.8349026 

ADAR, NFKB1, MAPK10, TRAF2, TRAF3, 
ATG5 

path:hsa03060 Protein export 23 3 0.0343889 1 SEC61A1, SEC61A2, SEC11C 

path:hsa05132 Salmonella infection 240 16 0.0352334 1 

ACTR1B, TAB2, CYFIP1, PLEKHM2, GAPDH, 
CYFIP2, IL6, ARF1, NFKB1, DCTN4, 
MAPK10, RAC1, ELMO2, TNFRSF1A, TRAF2, 
TUBB6 

path:hsa04211 Longevity regulating pathway 88 9 0.0370466 1 
ADCY3, ADCY5, NFKB1, PRKAG2, RPTOR, 
TSC2, EHMT1, ULK1, AKT1S1, ATG5 

ABC 
path:hsa04672 

Intestinal immune network 
for IgA production 

44 5 0.0102832 1 HLA-DOA, IL6, IL15, CD28, CD40 

path:hsa04940 Type I diabetes mellitus 41 5 0.0141776 1 HLA-B, HLA-DOA, PTPRN, PTPRN2, CD28 

path:hsa05330 Allograft rejection 34 4 0.018464 1 HLA-B, HLA-DOA, CD28, CD40 
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path:hsa05332 Graft-versus-host disease 38 4 0.0199458 1 HLA-B, HLA-DOA, IL6, CD28 

path:hsa00740 Riboflavin metabolism 8 2 0.0207243 1 ENPP1, ACP2 

path:hsa05320 Autoimmune thyroid disease 46 4 0.0371603 1 HLA-B, HLA-DOA, CD28, CD40 

path:hsa00130 
Ubiquinone and other 

terpenoid-quinone 
biosynthesis 

11 2 0.0407866 1 HPD, COQ5 

path:hsa05131 Shigellosis 238 16 0.0428873 1 
RBCK1, TAB2, MTOR, ITPR1, ARF1, MDM2, 
NFKB1, PLCG2, PTK2, RPTOR, RAC1, 
TNFRSF1A, C3, ACTN4, AKT1S1, ACTN1 

path:hsa05150 
Staphylococcus aureus 

infection 
90 5 0.0528039 1 CFH, HLA-DOA, KRT9, SELPLG, C3 

path:hsa04330 Notch signaling pathway 58 6 0.0547066 1 
DTX3L, DTX1, HEYL, NOTCH2, ADAM17, 
TLE2, NCOR2 
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Chapter 4 Metabolomic Signatures as Potential Mediators in the 

Relationship between Ambient Fine Particulate Matter and Pre- 

and Early-term Births in the Atlanta African American Maternal-

Child Cohort 
 

Introduction 
 

Ambient fine particulate matter (PM2.5) is a significant contributor to public health burden with 

adverse health effects well-characterized in all age groups.131-133 Specifically, pregnant people 

and fetuses are more vulnerable to PM2.5 exposure compared to the general population.10 

Existing evidence shows prenatal exposure to PM2.5 to be associated with a series of adverse 

birth outcomes, including preterm (PTB) and early-term birth (ETB),10 defined as being born 

prior to 37 weeks and 37-39 weeks’ gestation, respectively.134 PTB and ETB are among the 

leading contributors to neonatal morbidity and mortality,135 and are associated with both short-

term and long-term risks to child health.136 Globally, approximately 10% of PTB cases are 

estimated to be attributable to ambient PM2.5 exposure, with the highest burden in sub-Saharan 

Africa.137 

Communities of color and low income communities in the United States (U.S.), especially 

among African Americans (AA), experience disproportionately higher rates of PTB and ETB, 

highlighting that health disparities begin in utero.138,139 Although a significant body of research 

has explored the association between prenatal PM2.5 exposure and PTB, reported findings have 

been limited among AA communities.140  Some of the uncertainty in the results is due to the use 

of different exposure windows before and during pregnancy and the complex biological 

mechanisms involved in the etiology of PTB and ETB. Understanding the mechanisms 

underlying the toxicity of PM2.5 exposure on the risk of PTB and ETB is essential to guiding 

policies and interventions to reduce the incidence of PTB and ETB among vulnerable 

populations.  
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 High-resolution metabolomics has emerged as a powerful analytic platform in environmental 

health research used to characterize biological perturbations in the human metabolome 

associated with long-term and short-term exposures to air pollution.17 A previous study found 

alterations of the mid-pregnancy serum metabolome in several oxidative stress and 

inflammation related pathways associated with air pollution exposure among 160 American 

mothers of multiple races.141 In addition, researchers have employed metabolomics to identify 

biomarkers and pathways predictive of PTB, many of which were associated with PM2.5 

exposures.142-144 These initial findings suggest that metabolomic changes may play a mediating 

role linking PM2.5 with PTB and ETB, where prenatal PM2.5 exposure may lead to an increased 

risk of PTB and ETB through changes in various intermediate metabolites, such as pro-

inflammatory factors. By performing a mediation analysis, researchers can determine which 

metabolites mediate, and to what extent, the relationship of PM2.5 exposure with PTB and ETB. 

The identification of metabolomic mediators in observational studies can strengthen the causal 

relationship between PM2.5 exposure and PTB and ETB and, moreover, reveal the underlying 

biological mechanisms in a comprehensive perspective.27 However, only a few epidemiological 

studies have employed metabolomics as intermediate variables or mediators investigating the 

health impacts of ambient air pollution on birth outcomes,145,146 and none focus on AAs.  

 To address these critical knowledge gaps, we conducted this study in the Atlanta African 

American (ATL AA) Maternal-Child Cohort.147 We used advanced high-resolution metabolomics 

and mediation analyses to identify metabolic perturbations (i.e., altered metabolites and 

biological pathways) that mediate the association of exposures to ambient PM2.5 for four time 

windows (1-year prior to conception, 1st-trimester, 1-week prior to blood draw, and 1-month prior 

to blood draw) with the risk of PTB and ETB.  

 

Methods 
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Study population 

The current analysis included study participants enrolled in the ATL AA Maternal-Child 

Cohort.147,148 Briefly, since 2014, this prospective cohort has recruited pregnant AA women, self-

reported as U.S.-born African Americans, between 18 and 40 years of age, without chronic 

medical conditions and presenting for prenatal care with a singleton pregnancy estimated to be 

between 6 and 17 weeks of gestation at clinics of Emory Midtown Hospital (privately funded) 

and Grady Hospital (publicly funded). No other exclusion criteria were applied regarding 

pregnancy complications. Data were collected via questionnaires blood samples obtained via 

venipuncture at the enrollment visit (targeting 6-17 weeks). Additional details regarding 

recruitment and enrollment are provided elsewhere.147 In total, we analyzed data from 329 

women with valid metabolomics data available at the enrollment visit, enrolled between March 

2014 and May 2018. This study was approved by the Emory University Internal Review Board 

and written informed consent was obtained from all study participants. 

 

Air pollution exposure assessment 

Details of the air pollution exposure assignment and the specific model used have been 

previously published.149 Briefly, we used ambient PM2.5 concentrations at each participant’s 

geocoded residential address provided at the first visit as the surrogate for individual exposure. 

The residential address was spatially joined with an ensemble-based model, which integrated 

multiple machine learning algorithms and predictor variables with a spatial resolution of 1km, to 

obtain daily PM2.5 concentrations. As the exposure must precede the mediator (i.e., metabolic 

features), we selected four averaging periods including 1-year prior to conception, first trimester, 

and 1-month and 1-week prior to blood draw. The time windows except for 1-year were 

considered as short-term exposure. 

 

Gestational age at birth outcomes 
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Gestational age at birth  in completed gestational weeks was abstracted from medical records 

and  was based on the based upon the best obstetrical estimate, following the American 

College of Obstetrics and Gynecology (ACOG) guidelines,145 considering the date of delivery in 

relation to the estimated date of confinement established by the 8-14-week prenatal visit..150 

Considering completed gestational weeks, births  were classified as : PTB (>20 and <37 

weeks), ETB (≥37 and < 39 weeks), and full-term birth (FTB, ≥39 weeks).134 PTB and ETB were 

the early birth outcomes of interest, with FTB serving as the referent category. In other words, 

two binary outcome variables were generated. 

 

High-resolution metabolomics 

Non-fasting serum samples were analyzed using high-resolution liquid chromatography coupled 

with mass spectrometry (HR-LCMS, Thermo Scientific™ Q- Exactive™ HF) via established 

protocol147,151. Briefly, each sample [study samples and quality control (QC) samples] was run in 

triplicates and analyzed through two analytical columns, hydrophilic interaction liquid 

chromatography (HILIC) column with positive electrospray ionization (ESI) and C18 hydrophobic 

reversed-phase chromatography column with negative ESI. The metabolic features with mass-

to-charge ratio (mz), retention time (rt), and relative intensity were extracted by R packages 

apLCMS with xMSanalyzer,152,153 averaged, and then transformed with the natural log for down-

stream analysis. In addition, the relative standard deviation (RSD) was calculated for each 

feature across QC samples, and the missingness was estimated for study and QC samples, 

respectively. To tease out low-quality features but maximize metabolome coverage, we 

excluded features if either of these conditions was met: 1) RSD > 50% and QC missingness < 

10%; 2) Missingness of study samples < 90%. As a result, 11,269 and 9,565 metabolic features 

remained in the current analysis for the HILIC and C18 columns, respectively. The missing 

values were imputed by quantile regression imputation of left-censored data (QRILC) or random 

forest (RF).154 We classified the missing pattern [i.e., missing not at random (MNAR) vs. missing 
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at random (MAR)] using a second, correlated (Pearson’s correlation > 0.5) auxiliary feature.155 

Due to its correlation, we concluded that insights into the pattern of missing values of a given 

feature can be gained from the corresponding non-missing observations of its auxiliary feature. 

The missing values of MNAR features were imputed by QRILC, while those of MAR features by 

RF, which was recommended in a previous study systematically comparing the imputation 

performance of different algorithms.154  

 

Covariate assessment 

We determined the confounding structure based on literature review and our previous studies, 

which was illustrated via directed acyclic graphs (DAGs) (Figure S1). Individual-level 

demographic characteristics [maternal age, and maternal educational attainment (categorized 

as less than high school, high school, and some college or more)] were obtained via a 

standardized interview questionnaire. Infant sex (binary), parity (categorized as nulliparity, 

primiparity, and multiparity), tobacco and marijuana use in the month prior to pregnancy 

(binary), and alcohol use in the month prior to pregnancy (binary) were abstracted from the 

medical record. Maternal body mass index (BMI, kg/m2) was calculated using weight and height 

measured at the first visit. The meteorological covariates included the conception season (for 

long-term exposure) and averaged apparent temperature (for short-term exposure with the 

same time windows as air pollution estimates). The daily apparent temperature at the metro 

Atlanta airport were obtained from Automated Surface Observing System via R package riem.156 

 

Statistical analysis 

We summarized maternal and newborn characteristics for women stratified by the gestational 

age at birth categories of interest. We tabulated the arithmetic means and standard deviations 

(SDs) of exposures and apparent temperature averages (Table 2, Figure S2), and a descriptive 

statement of exposures was included in the main text. To identify the potential metabolic 
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features mediating the association of PM2.5 with PTB and ETB, we adopted a parallel strategy 

using the Meet-in-the-Middle (MITM) and high-dimensional mediation analysis (HDMA) 

approaches simultaneously (Figure 1).  

Firstly, we conducted a metabolome-wide association study (MWAS) for exposures and 

outcomes separately and followed a MITM approach to identify the overlapping features 

associated with both exposures and outcomes. MITM is a widely-used step in high-dimensional 

settings to identify intermediate biomarkers.93 Specifically, we conducted a series of multiple 

linear regression (i.e., exposure-mediator) models and logistic regression (mediator-outcome) 

models to evaluate the association of metabolic features with exposures and outcomes, 

respectively, using the fowling equations: 

ln(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗) = 𝛽0𝑗 + 𝛽1𝑗𝑃𝑀2.5 + 𝛽2𝑗𝐴𝑔𝑒 + 𝛽3𝑗𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽4𝑗𝑆𝑒𝑥 + 𝛽5𝑗𝐵𝑀𝐼 + 𝛽6𝑗𝑀𝐸𝑇 +

𝛽7𝑗𝑇𝑜𝑏𝑎_𝑚𝑎𝑟𝑖 + 𝛽8𝑗𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜖𝑗 Eq. (1) 

𝐿𝑜𝑔𝑖𝑡(𝑃(𝐵𝑖𝑟𝑡ℎ)) = 𝜃0𝑗 + 𝜃1𝑗 ln(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗) + 𝜃2𝑗𝑃𝑀2.5 + 𝜃3𝑗𝐴𝑔𝑒 + 𝜃4𝑗𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝜃5𝑗𝑆𝑒𝑥 +

𝜃6𝑗𝐵𝑀𝐼 + 𝜃7𝑗𝑃𝑎𝑟𝑖𝑡𝑦 + 𝜃8𝑗𝑇𝑜𝑏𝑎_𝑚𝑎𝑟𝑖 + 𝜃9𝑗𝐴𝑙𝑐𝑜ℎ𝑜𝑙 Eq. (2) 

where ln⁡(𝐹𝑒𝑎𝑡𝑢𝑟𝑒) refers to the natural log of intensity of metabolic feature 𝑗; 𝑃𝑀2.5 is the 

averaged PM2.5 exposure for a specific window, and 𝑀𝐸𝑇 is the corresponding meteorological 

covariate; 𝐵𝑖𝑟𝑡ℎ denotes PTB and ETB, and the FTB group was treated as reference; we 

included 𝑃𝑀2.5 in the mediator-outcome model to block the direct effect of PM2.5 exposure on 

the outcome, which may confound the mediator-outcome association. We constructed the two 

equations following a sophisticated causal mediation framework with adjustment of exposure-

mediator confounders and mediator-outcome confounders (Figure S1) in the Eq. (1) and Eq. (2), 

respectively.157 We used Benjamini-Hochberg adjusted p-values (FDRB-H) < 0.2 as the cut-off 

point for significance.158 To reduce Type II error and maximize the detection of potential 

mediators, we also explored the overlapping features among the top 100 features ranked by raw 

p-values. Results were presented using Manhattan plots (Figure S3 & S4 in the Supplement).  
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As a complementary means to identify the potential mediating features between PM2.5 

exposures and the gestational age at birth outcome categories, we employed HDMA via the R 

package HIMA.94 Previous researchers have developed a framework of mediation analysis that 

is able to deal with multiple mediators simultaneously and tease apart the indirect effect of 

individual mediator, which was depicted elsewhere in details.159 HIMA expands this multiple 

mediator framework to the high-dimensional setting by reducing the dimensionality of omics 

data, and the significant mediators were reported with multiple testing correction.94 Compared to 

the aforementioned MITM approach, HIMA is able to incorporate multiple mediators in a single 

mediator-outcome model, which enables us to ascertain the extent to which the indirect effects 

are explained by the mediators. Separate analysis was conducted for each column (HILIC 

positive ESI and C18 negative ESI).  

To aid the interpretation of the MITM approach and HDMA results, we conducted a pathway 

enrichment analysis using the R package metapone using raw p-values of metabolic features at 

0.05 in both MWAS. Metapone is a novel bioinformatic platform to predict functional biological 

activities of untargeted metabolomic data extracted in both positive and negative ESI together, 

which developed a pathway database combining the Small Molecule Pathway Database 

(SMPDB) and mummichog database. The inputs of metabolic features were putatively 

annotated with the related weights calculated based on the uncertainty in metabolite-feature 

matching, and then the significance of enriched biological pathways was tested taking into 

account the weight schema.160 The biological pathways associated with either PM2.5 exposures 

or outcomes with more than one metabolite enriched and a p-value < 0.05 were included for 

further detecting the overlapping pathway.  

The metabolic features associated with both PM2.5 exposure and gestational age at birth 

outcomes were identified and annotated for functional interpretation. We confirmed the identity 

of overlapping features by comparison of mz, rt, and ion dissociation patterns to authentic 

chemical reference (confidence level 1) or the annotation procedure of the R package 
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xMSannotator (confidence level 4).161 The confidence system referred to the a five level system 

of reporting standard proposed by Schymanski et al. with, for example, confidence 1 

representing the proposed chemical identity that is confirmed via comparing to an authentic 

standard.162 All analyses were completed in R (version 3.6). 

 

Results 
 

A total of 329 individuals from the Atlanta AA cohort were included in the current analysis and 

their demographic characteristics are described in Table 1, stratified by gestational age at birth 

outcome category. Participants with a PTB or ETB reported less education compared to those 

with FTB. Participants with a PTB had the lowest early pregnancy BMI, highest proportion of 

multiparity, highest infant sex ratio (Male vs. Female ≈ 3:2), and highest proportion of maternal 

tobacco and marijuana use; while those with ETB had the lowest proportion of multiparity, 

highest proportion of maternal alcohol use, and other covariates with a similar distribution 

compared to those with an FTB.  

   The median of PM2.5 exposure during the one-year prior to conception, first trimester, one-

week and one-month prior to blood draw were 10.39 [interquartile range (IQR)=1.15], 10.31 

(2.63), 9.95 (3.87), and 10.17 (3.11) µg/m3, respectively (Table 2). The long-term exposure (i.e., 

one-year average) was not correlated with the three short-term exposures, whereas the short-

term exposures were moderately to strongly correlated with each other (Figure S2A). 

Participants living in urban areas had a higher level of one-year exposure compared to those in 

suburban areas, but we did not observe the same tendency for the short-term exposure (Figure 

S2B).  

 

Metabolome-wide association analysis 
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There were 17 metabolic features associated with 1-year exposure prior to conception, 3 

features with 1st trimester, 17 features with 1-week prior to blood draw, and 1 feature with 1-

month prior to blood draw in the HILIC column (FDRB-H < 0.2). Similarly, 2 metabolic features 

were found to be associated (FDRB-H < 0.2) with 1st trimester, 20 features with 1-week, and 1 

feature with 1-month exposure in the C18 chromatography column. The detailed statistics of 

significant metabolic features were summarized in the Supplement (Table S1 & S2). Two 

features (mz: 268.1082, rt: 81.9; mz: 282.1185, rt: 119.1) associated with one-week exposure 

were confirmed as adenosine and methyladenosine, respectively, with level 1 confidence. 

Methyladenosine is a modified form of adenosine where a methyl group is added and is the 

most common modifications found in mRNA.163 One feature (mz: 391.2842, rt: 22) associated 

with both 1st-trimester and one-month exposures was confirmed as Di(2-ethylhexyl)phthalate 

(DEHP) which is a frequently used plasticizer and has a profound impact on human health.164 

We did not find any significant features in the mediator-outcome (i.e., metabolite-PTB/ETB) 

models after multiple testing correction. 

 

Meet-in-the-Middle approach 

In order to identify metabolic features that potentially mediated the association of PM2.5 

exposures with PTB and ETB, we employed different significance cutoff to detect the 

overlapping features associated with PM2.5 exposures and PTB and ETB, simultaneously (Table 

S3). We subset the top 100 features sorted by raw p-values that were associated with any 

exposure and outcome, and examined the overlapping features between exposures and 

outcomes in both columns (Figure 2, Table S3). Eleven features were identified as overlapping, 

and seven had the same direction for both coefficients of exposure-mediator, in this case PM2.5, 

and mediator-outcome models, indicative of the mediation of adverse effect of PM2.5 exposures 

on PTB and ETB. At raw p-value < 0.05, the number of overlapping features had a range from 

13 to 99 (Median=25.5) among the associations between four exposure windows and two 
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adverse outcomes (Table S3). Of note, there were 99 overlapping features potentially mediating 

the association between one-year exposure to PM2.5 prior to conception and ETB. Among the 

annotated overlapping features (Table S4), N6,N6,N6-Trimethyl-L-lysine, a metabolite involved 

in lysine degradation, was associated with 1st trimester exposure and PTB; N-Acetyl-D-

Galactosamine (Galactose metabolism) was associated with 1st trimester, one-week, one-month 

exposures and PTB; Cortexolone (Cortisol synthesis and secretion) was associated with one-

week exposure, PTB, and ETB; Picolinic acid and serotonin, both belonging to tryptophan 

metabolism, were associated with one-year exposure and ETB; Citrulline (Arginine 

biosynthesis), which was detected by both HILIC and C18 columns, was associated with one-

year exposure and ETB. 

 

High-dimensional mediation analysis   

Five features were identified using HDMA, among which three had a positive indirect effect 

estimate (Figure 2). Three features were detected by both MITM (Top 100) and HDMA (FDRB-H 

< 0.05) in the HILIC and C18 columns [arbitrarily labelled as feat_1(mz: 202.0862; rt: 227.2), 

feat_2 (mz: 1086.4312, rt: 276.9), and feat_3 (mz: 445.1996; rt: 216.4)]. One feature (mz: 

570.5164, rt: 47.7) was also detected by the MITM approach at the significance level of raw p-

values < 0.05 to be associated with one-year exposure and PTB. We were not able to confirm 

the identity of any of these features with authentic reference standards (level 1 confidence). In 

sum, eight metabolic features detect by either MITM (Top 100) or HDMA (FDRB-H < 0.05) 

potentially mediated the adverse effect of prenatal PM2.5 exposures on PTB and ETB. 

 

Pathway enrichment analysis 

Five biological pathways were found to potentially mediate the association with ETB (Figure 3): 

four for 1-year exposure prior to conception, one for the 1-week exposure, and one overlapping 

pathway was identified for PTB associated with the 1-week exposure. The pathways included 
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membrane transport [ATP-binding cassette (ABC) transporters], amino acid metabolism 

(glycine, serine, alanine, and threonine metabolism), and vitamin B9 (folate) metabolism which 

is vital for fetus growth and pregnancy. 

  

Discussion 
 

In the well-established and highly phenotyped Atlanta African American Maternal Child cohort, 

we identified eight metabolic features, which were detected in maternal serum metabolome 

during early pregnancy, with potential important roles in mediating the adverse effects of PM2.5 

exposures on the risk of PTB and ETB. We also observed perturbations in several amino acid 

and one carbon metabolic pathways that were associated with both PM2.5 and ETB.  

We employed a parallel strategy by applying both the MITM approach and HDMA to 

evaluate the mediating role of metabolomic perturbations on the association between PM2.5 and 

adverse birth outcomes. In the current analysis, the MITM approach based on MWAS is capable 

of detecting potential intermediate factors (i.e., the overlapping metabolic features) at various 

significance levels lying on a potentially biological pathway from PM2.5 exposure to PTB or ETB 

and enables the posterior identification of overlapping biological pathways which facilitates 

biological interpretation of untargeted metabolomic data. Furthermore, HDMA incorporated 

multiple metabolic features into a single mediator-outcome model, which teased apart the 

indirect effect of PM2.5 exposure on PTB and ETB and estimated the indirect effect associated a 

particular feature independent of other features. HDMA might be more in line with reality in 

situations where the relationship between PM2.5 exposure and PTB and ETB is complex and 

involves multiple biological mechanisms.  

Our study findings provide novel insights on how biological perturbations, centering around 

amino acid metabolism during early pregnancy may mediate the adverse effects of PM2.5 

exposure on preterm or early-term birth among pregnant AA people. The mechanistic insight 
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may contribute to the future development of sensitive biomarkers predicting PM2.5-related 

adverse birth outcome for effective intervention. Greater intervention may, in turn, ultimately 

alleviate health disparities associated with PM2.5 exposures among pregnant women and 

newborns. The eight metabolic mediators found to mediate PM2.5 toxicity, contributing evidence 

of a potential link between prenatal PM2.5 exposure and PTB and ETB.  

We identified seven metabolic mediators using the MITM approach from the top 100 

metabolic features of the MWAS for PM2.5 exposures, PTB and ETB. To maximize the potential 

to detect the mediators, we further used the significance level of raw p-values < 0.05 and 

identified a range of 13-99 overlapping features for different exposure-outcome associations, 

and a few features were annotated with level 1 confidence as N6,N6,N6-Trimethyl-L-lysine, N-

Acetyl-D-Galactosamine, cortexolone, picolinic acid, serotonin, and citrulline. Cortexolone, also 

known as 11-deoxycortisol, is an endogenous glucocorticoid steroid and a metabolic 

intermediate in the synthesis of cortisol which is a potential contributor to premature labor.165 In 

previous literature, an increased serum level of cortexolone was observed among male 

Sprague-Dawley rats exposed to carbon black nanoparticles for 90 days,166 while in a 

population-based cohort study of 6,670 Chinese rural residents, no significant association was 

observed between long-term residential exposure to PM2.5 and serum cortexolone level.167 On 

the other hand, the serum cortexolone level in the 3rd trimester was found to be positively 

associated with a higher risk of spontaneous premature birth (< 32 gestational weeks) in a 

prospective pregnancy biorepository in Indiana state.168 Citrulline, a non-essential amino acid, 

serves a fundamental role in the urea cycle along with arginine. Hu et al. (2021), conducted an 

exposure-interventional study of 43 healthy adults in which an air purifier was installed in 

participants’ office rooms and dormitories, and a positive association was observed between the 

short-term personal exposure to PM2.5 and plasma citrulline level, suggesting acute 

perturbations of amino acid metabolism.169 Citrulline supplementation was demonstrated to 

enhance fetal growth, protein synthesis, and placental function among rats with intrauterine 
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growth restriction, while human studies are scarce.170 More research is warranted on steroid 

hormone metabolism and amino acid metabolism to investigate their potential role in the PM2.5-

related PTB and ETB. In the current study, three metabolic features were detected via HDMA to 

mediate a positive association of prenatal PM2.5 exposures with PTB and ETB, and one 

metabolic feature (mz: 202.0862, rt: 227.2) mediated the association between 1-month 

exposure prior to blood draw, which was consistently detected by MITM and HDMA. Although 

none of the three features were annotated with level 1 confidence, the consistencies between 

MITM and HDMA suggest novel biomarkers that might lead to advances in the development of 

new interventions and prediction of birth outcomes.  

Our analysis adds to a growing body of research investigating underlying mechanisms of 

air-pollution-related adverse birth outcome by characterizing maternal metabolomic profiles.27 

Previous studies that examined the associations of the maternal metabolomics perturbations 

with air pollution exposure found that the levels of serum serine, creatinine, histidine, myo-

inositol, heptadecanoic acid, and linoleic acid in mid pregnancy were associated with high 

traffic-related air pollution during the first trimester among women of multiple races;141 five 

steroids in mid- and late-pregnancy were associated with PM2.5 exposure during early 

pregnancy in an ethnically diverse population.171 Moreover, maternal metabolomic profiles might 

be capable of predicting birth outcomes, such as gestational age, time to delivery,172 and term 

fetal growth restriction.173  

Another key finding from our analysis was the potential role that perturbed amino acid 

metabolism played in mediating the adverse effects of prenatal PM2.5 on early birth. In particular, 

we identified six overlapping biological pathways associated with PM2.5 exposures and PTB and 

ETB, some of which were also reported in previous literature to be associated with air pollution 

exposure.141,142,146,174-178 Specifically, glycine, serine, alanine and threonine metabolism were 

found to be associated with short-term exposure to black carbon, PM2.5, and distance to major 

roadways among women undergoing assisted reproduction.146,174 Yan et al. (2019) reported the 
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glycine, serine, alanine and threonine metabolism associated with elevated traffic-related air 

pollution exposure in maternal serum metabolome during early pregnancy.141 Vitamin B9 (folate) 

metabolism was found by pathway enrichment analysis in multiple previous studies among 

various study populations exposed to particulate matter and its species.142,177-180 Vitamin B9, 

also known as folate, is an essential nutrient that plays a critical role in many physiological 

processes, and one of the most important roles of folate is in the synthesis of DNA and RNA.181 

Folate is also involved in the metabolism of amino acids, such as homocysteine, and important 

for proper fetal development.182 

Collectively, these findings point to the vital roles of amino acid metabolism, centering 

around the urea cycle, creatine pathway, proline biosynthesis, histidine degradation, serine and 

cysteine biosynthesis, in mediating the effects of prenatal PM2.5 exposure on adverse birth 

outcomes (Figure 4). Of note, citrulline, as an essential part of urea cycle, was detected by the 

MITM approach in the current analysis. Amino acid metabolism broadly refers to the process by 

which the body synthesizes, metabolizes, and transforms various amino acids. Homeostatic 

balance of these molecules is especially essential during pregnancy, a unique life stage defined 

by significant maternal physiologic changes and rapid fetal growth.183 The metabolomic changes 

we observed as well as those reported previously, point specifically to perturbations in certain 

submodules of amino acid metabolism, and may elucidate the specific mechanistic pathway 

underlying the association between PM2.5 exposure and these adverse birth outcomes. As we 

hypothesize in Figure 4, serine, a non-essential amino acid, plays a critical role in carbon 

cycling of human body. It is a major source of one specific carbon pool, required for glycine-

based formation of cysteine, glucose, and other key regulating molecules in utero184. A lower 

level of plasma serine and rate of appearance were reported among healthy pregnant women 

compared to nonpregnant women,185 possibly implying high turnover of serine in the fetal 

compartment.184  
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Formate was enriched for PM2.5 exposure and PTB and ETB in the current analysis, which is 

a key intermediate in one carbon metabolism. Cumulative evidence suggested a critical role in 

pregnancy and fetus development. A high level of urine formate was significantly associated 

with a decreased incidence of fetal growth restriction,186 and the formate concenterations in 

meternal plasma were found to be lower than that in cord blood among 215 mothers at delivery, 

indicating a higher activity of one-carbon metabolism in fetuses.187 Although evidence is scarce 

on the effect of PM2.5 exposure on formate metabolism, in a study conducted by Gaskins and 

colleagues in 2019, a potential modifying effect of folate intake on the association between 

short-term exposure to air pollution and the odds of livebirth was observed among women 

undergoing assisted reproduction.188 Taken these together, we hypothesized that elevated 

exposures to PM2.5 during early pregnancy and prior to conception would result in perturbations 

in urea cycle and serine and cysteine metabolism, leading to the dysregulation of already fragile 

amino acid balance during pregnancy, which potentially contributed to enhanced protein-energy 

undernutrition, eventually leading to increased risk of PTB and ETB. 

Our study has several notable strengths in addition to the novel strategy using both the 

MITM approach and HMDA. Gestational age was well characterized in early pregnancy.147 The 

analytical cohort we analyzed was exclusively AA, a population that has been largely 

underrepresented in environmental epidemiologic studies. Finally, the workflow of the 

untargeted metabolomics profiling was well established and has been shown to successfully 

analyze many non-fasting samples previously.146,189 

Despite these strengths, we identified several key limitations and areas for future work. First, 

our results may not necessarily imply a causal relationship. These alterations could potentially 

be due to the presence co-exposure confounding, which should be explored in future mixtures 

work. Second, the serum samples were collected in early and mid-pregnancy and we were, 

thus, not able examine exposures occurring in other potentially critical exposure time windows. 
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Third, ambient PM2.5 exposure was estimated based on the residential address, which did not 

consider daily mobility patterns. 

 

Conclusions 
 

Using innovative high-resolution metabolomics and mediation analysis, we identified novel 

metabolomics signatures, centering around the amino acid metabolism and one carbon 

metabolism, mediating the adverse effects of PM2.5 exposure on the risk of PTB and ETB in a 

marginalized and understudied population. Our findings provide important information about the 

metabolic perturbations that appear to mediate the association between PM2.5 and PTB and 

ETB. This information is useful for understanding the biological mechanisms underlying PM2.5 

toxicity on pregnancy outcomes and lend support to future development of biomarker profiles 

that might facilitate the identification and potential targeting of interventions for those at elevated 

risk.  
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Tables and figures 
 

Figure 1. Graphical overview of the parallel analysis strategy to evaluate the potential mediating 

metabolic features in the current analysis. a The date of first prenatal care visit varied by 

participating mothers from 8 to 14 gestational weeks. b Metapone was an R package to conduct 

pathway enrichment analysis for untargeted metabolomics data. c Conducted by the R package 

HIMA. Mz, mass-to-charge ratio; rt, retention time; MWAS, metabolome-wide association study.  
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Table 1. Selected population characteristics by birth outcomes among the subjects enrolled in 
Atlanta African American Maternal-Child Cohort study, 2014-2018 (N = 329). 

 Preterm 
(N=65) 

Early-term 
(N=54) 

Full-term 
(N=210) 

p-value 

Maternal age, mean (SD) 24.4 (4.56) 25.1 (4.84) 25.1 (4.84) 0.592 

Maternal educational attainment, No. (%)  

Less than high school 12 (18.5) 14 (25.9) 28 (13.3) 0.042 

High school 30 (46.2) 20 (37.0) 73 (34.8)  

Some college or more 23 (35.4) 20 (37.0) 109 (51.9)  

Body mass index, mean (SD) 27.2 (6.91) 28.1 (8.17) 29.2 (7.68) 0.185 

Parity, No. (%)  

Nulliparity 28 (43.1) 16 (29.6) 104 (49.5) 0.022 

Primiparity 13 (20.0) 22 (40.7) 55 (26.2)  

Multiparity 24 (36.9) 16 (29.6) 51 (24.3)  

Infant sex, No. (%)  

Male 40 (61.5) 26 (48.1) 98 (46.7) 0.125 

Female 25 (38.5) 28 (51.9) 112 (53.3)  

Maternal tobacco or marijuana use, No. (%)  

No 36 (55.4) 33 (61.1) 119 (56.7) 0.810 

Yes 29 (44.6) 21 (38.9) 91 (43.3)  

Maternal alcohol use, No. (%)  

No 59 (90.8) 48 (88.9) 189 (90.0) 0.937 

Yes 6 (9.2) 6 (11.1) 21 (10.0)  

Season of conception, No. (%)  

Spring 19 (29.2) 12 (22.2) 52 (24.8) 0.930 

Summer 21 (32.3) 18 (33.3) 67 (31.9)  

Fall 15 (23.1) 12 (22.2) 45 (21.4)  

Winter 10 (15.4) 12 (22.2) 46 (21.9)  

Abbreviations: SD, standard deviation.  
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Table 2. Statistics of fine particulate matter (PM2.5) exposure for the four exposure windows 

among 329 pregnant people in the Atlanta African American Maternal-Child Cohort, 2014-2018. 

PM2.5 exposure (µg/m3) Q1 Q3 IQR Median Mean 

One-year exposure prior to conception 9.80 10.95 1.15 10.39 10.34 

Exposure for the 1st trimester 9.13 11.75 2.63 10.31 10.58 

One-week exposure prior to blood draw 8.19 12.07 3.87 9.95 10.38 

One-month exposure prior to blood draw 8.64 11.74 3.11 10.17 10.49 

Abbreviations: Q1, 1st quartile; Q3, 3rd quartile; IQR, interquartile range. 
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(A.2) C18 column - HDMA Indirect effect estimates FDRB-H 
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Figure 2. The overlapping and mediating metabolic features detected by the Meet-in-the-Middle 
(MITM) approach and high-dimensional mediation analysis (HDMA), respectively. Panel (A) 
shows the results of the HILIC column, and panel (B) shows the C18 column. In each panel, the 
upper plot (A.1 and B.1) shows the MITM results, while the lower shows (A.2 and B.2) the 
HDMA results. The upper plot shows the coefficients and unadjusted 95% confidence interval of 
each overlapping features estimated in the exposure-mediator and mediator-outcome models. 
The coefficient for the exposure-mediator model represented the change in log-transformed 
feature intensity associated with 10 ug/m3 increase in PM2.5 levels. The lower plot shows indirect 
effect estimate of each mediating feature. The indirect effect was also associated with 10-ug/m3 
increase in PM2.5 exposure. Metabolic features were annotated with level 4 confidence, and 
those not annotated were listed with mz and retention time. ETB, early-term birth; PTB, preterm 
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birth; mz, mass-to-charge ratio; rt, retention time; FDRB-H, p-values adjusted by Benjamini-
Hochberg (BH) procedure.   
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Figure 3. The Sankey diagram of overlapping biological pathways detected by the Meet-in-the-

Middle approach coupled with metapone. No overlapping pathways were identified between 

PM2.5 exposures and preterm birth.  
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Figure 4. Potential molecular mechanisms as illustrated as metabolic networks for the adverse 
effects of PM2.5 exposures on early-term birth among pregnant African American women. 
Molecules in martini olive, dark violet, and bice blue denoted the metabolites putatively 
annotated by metapone that were significantly associated with PM2.5 exposures, ETB, and both, 
respectively. Dash arrows denote the reactions found in non-human species.  
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Appendix for Chapter 4 
 

 

Figure S1. Directed acyclic graph of the confounding structure for the association of fine 

particulate matter exposure with preterm and early-term birth. BMI, body mass index; Smoke, 

tobacco and marijuana use in the month prior to pregnancy; Meteorology, conception season or 

averaged apparent temperature. 
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Figure S2. The correlations among fine particulate matter (PM2.5) exposures for the four 

exposure windows and the spatial variability of the PM2.5 illustrated in Metropolitan Atlanta.  
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Figure S3. Manhattan plots of metabolome-wide association analysis in the HILIC column. A. Associations between PM2.5 exposures and changes 

in intensities of metabolic features; B. Associations between changes in intensities of metabolic features and PTB or ETB, with adjustment of PM2.5 

exposures for different time windows separately. X-axis denotes the retention time (in seconds) of the metabolic features, and Y-axis denotes the 

negative log10 of p-values. Red dots indicated significant associations at FDRB-H < 0.2, and blue indicated associations at raw p-values < 0.05. 

Abbreviations: HILIC, hydrophilic interaction liquid chromatography; PM2.5, fine particulate matter; PTB, preterm birth; ETB, early-term birth; FDRB-H, 

Benjamini-Hochberg adjusted p-values.
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Figure S4. Manhattan plots of metabolome-wide association analysis in the C18 column. A. Associations between PM2.5 exposures and changes in 

intensities of metabolic features; B. Associations between changes in intensities of metabolic features and PTB or ETB, with adjustment of PM2.5 

exposures for different time windows separately. X-axis denotes the retention time (in seconds) of the metabolic features, and Y-axis denotes the 

negative log10 of p-values. Red dots indicated significant associations at FDRB-H < 0.2, and blue indicated associations at raw p-values < 0.05. 

Abbreviations: C18, hydrophobic reversed-phase chromatography; PM2.5, fine particulate matter; PTB, preterm birth; ETB, early-term birth; FDRB-H, 

Benjamini-Hochberg adjusted p-values.
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Table S1. Model statistics of metabolic features in the HILIC column associated (FDRB-H < 0.2) 

with ambient PM2.5 exposures of different time windows among 329 pregnant people in the 

Atlanta African American Maternal-Child Cohort, 2014-2018. 

Exposure mz RT Coefficients a Percent change b (95% CI) p-values FDRB-H 

One-year 150.0267 25.1 -0.50 -39.15 (-53.33, -20.65) 2.99E-04 0.1999 

 200.877 295 0.08 8.65 (3.98, 13.53) 2.64E-04 0.1999 

 293.0512 45.2 0.24 26.75 (12.49, 42.81) 1.27E-04 0.1999 

 338.2417 27.3 0.08 8.77 (3.99, 13.77) 3.02E-04 0.1999 

 366.1863 83.6 0.34 41.04 (18.32, 68.13) 1.58E-04 0.1999 

 392.2877 22 -0.65 -47.85 (-59.62, -32.65) 1.10E-06 0.0129 

 429.2403 47 -0.17 -15.60 (-22.65, -7.89) 1.79E-04 0.1999 

 444.3315 22.7 0.17 19.01 (10.14, 28.59) 1.57E-05 0.0887 

 488.3578 22.8 0.15 15.97 (7.66, 24.91) 1.21E-04 0.1999 

 500.5785 47.9 0.25 27.73 (12.11, 45.52) 2.88E-04 0.1999 

 515.6465 46.1 0.21 23.79 (10.67, 38.46) 2.35E-04 0.1999 

 568.5189 46.6 0.12 13.11 (6.10, 20.58) 2.00E-04 0.1999 

 570.5164 47.7 0.14 14.53 (6.85, 22.76) 1.61E-04 0.1999 

 646.9514 24.2 -0.07 -6.42 (-9.59, -3.15) 1.94E-04 0.1999 

 696.1942 71.6 0.09 9.70 (4.41, 15.25) 2.98E-04 0.1999 

 709.994 22 -0.10 -9.62 (-14.33, -4.64) 2.66E-04 0.1999 

 879.8333 59.5 0.26 30.15 (14.50, 47.95) 7.43E-05 0.1999 

1st trimester 391.2842 22 0.11 11.71 (6.15, 17.56) 3.07E-05 0.1731 

 392.2877 22 0.27 31.41 (15.41, 49.63) 5.22E-05 0.1960 

 459.3015 22.1 0.11 12.00 (6.30, 18.01) 3.07E-05 0.1731 

 94.521 281.7 -0.04 -3.59 (-5.04, -2.13) 3.70E-06 0.0104 

 104.0087 294.4 -0.07 -6.63 (-9.31, -3.86) 7.00E-06 0.0157 

 143.5513 62.6 -0.06 -5.36 (-7.18, -3.51) 1.00E-07 0.0009 

 152.0221 38.1 -0.05 -4.97 (-7.21, -2.67) 4.17E-05 0.0568 

 170.9852 55.8 -0.02 -1.89 (-2.79, -0.98) 6.72E-05 0.0689 

 188.0231 280.9 -0.05 -4.44 (-6.54, -2.29) 8.71E-05 0.0745 

 268.1082 81.9 -0.04 -3.80 (-5.70, -1.86) 1.81E-04 0.1321 

One-week 282.1185 119.1 -0.07 -6.46 (-9.27, -3.56) 2.69E-05 0.0432 

 285.0238 144.7 -0.08 -7.36 (-10.01, -4.63) 6.00E-07 0.0032 

 289.936 65.6 0.03 3.07 (1.47, 4.69) 1.88E-04 0.1321 

 342.1238 84.3 0.06 6.02 (3.02, 9.12) 9.25E-05 0.0745 

 431.6269 42.5 -0.04 -4.20 (-5.87, -2.49) 3.30E-06 0.0104 

 432.8308 81.3 -0.02 -2.25 (-3.34, -1.15) 9.14E-05 0.0745 
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 454.8629 53.6 -0.04 -3.77 (-5.43, -2.09) 2.13E-05 0.0399 

 727.9329 169.7 -0.04 -3.65 (-5.50, -1.76) 2.26E-04 0.1499 

 741.9338 59.7 -0.05 -4.55 (-6.66, -2.39) 6.42E-05 0.0689 

 969.3444 51.4 -0.06 -6.20 (-8.98, -3.33) 4.53E-05 0.0568 

One-month 391.2842 22 0.08 7.95 (4.51, 11.50) 6.20E-06 0.0693 

Abbreviations: HILIC, hydrophilic interaction liquid chromatography; mz, mass-to-charge ratio; 

RT, retention time; CI, confidence interval; FDRB-H, Benjamini-Hochberg adjusted p-values. 
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Table S2. Model statistics of metabolic features in the C18 column associated (FDRB-H < 0.2) 

with ambient PM2.5 exposures of different time windows among 329 pregnant people in the 

Atlanta African American Maternal-Child Cohort, 2014-2018. 

Exposure mz RT Coefficients a Percent change b (95% CI) p-values FDRB-H 

1st trimester 473.2826 215 -0.04 -4.23 (-6.02, -2.40) 1.22E-05 0.1166 

 529.3236 38.8 -0.15 -13.51 (-19.14, -7.49) 3.38E-05 0.1618 

One-week 145.0698 176.9 -0.05 -4.80 (-6.59, -2.99) 7.00E-07 0.0017 

 148.0516 284.1 -0.01 -1.29 (-1.70, -0.87) 4.75E-09 <0.0001 

 180.9729 25.6 -0.01 -1.38 (-1.78, -0.98) 1.76E-10 <0.0001 

 198.0707 28.6 -0.03 -3.23 (-4.95, -1.48) 3.98E-04 0.1963 

 288.7788 286.5 -0.05 -4.47 (-6.43, -2.46) 2.39E-05 0.0254 

 292.0165 18.7 -0.04 -4.28 (-6.54, -1.96) 4.11E-04 0.1963 

 309.1906 210.4 -0.07 -6.56 (-9.35, -3.67) 1.87E-05 0.0254 

 343.1673 27.2 -0.05 -4.48 (-5.91, -3.02) 1.21E-08 <0.0001 

 367.0712 23.1 -0.08 -7.87 (-11.67, -3.90) 1.80E-04 0.1145 

 396.3118 209 -0.04 -3.43 (-5.20, -1.63) 2.76E-04 0.1554 

 398.2733 215.1 -0.07 -6.52 (-9.34, -3.62) 2.28E-05 0.0254 

 449.2912 270.4 -0.05 -4.88 (-7.04, -2.67) 2.86E-05 0.0273 

 458.9445 26.2 -0.04 -3.71 (-5.55, -1.83) 1.69E-04 0.1145 

 564.7968 127.2 -0.05 -4.69 (-6.74, -2.60) 2.16E-05 0.0254 

 608.2962 234.2 -0.05 -4.80 (-7.29, -2.24) 3.42E-04 0.1818 

 639.5576 297.5 -0.04 -3.55 (-5.34, -1.72) 2.03E-04 0.1215 

 729.9286 38.8 -0.03 -3.12 (-4.68, -1.53) 1.72E-04 0.1145 

 830.5955 268.6 -0.03 -3.35 (-5.03, -1.65) 1.73E-04 0.1145 

 933.5317 236.5 -0.04 -3.93 (-5.71, -2.13) 3.61E-05 0.0314 

 1036.7953 274.7 -0.07 -6.88 (-9.56, -4.11) 3.20E-06 0.0062 

One-month 666.7863 158.4 0.05 5.12 (2.79, 7.50) 1.94E-05 0.1852 

Abbreviations: C18, hydrophobic reversed-phase chromatography; mz, mass-to-charge ratio; 

RT, retention time; CI, confidence interval; FDRB-H, Benjamini-Hochberg adjusted p-values.  
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Table S3. Number of overlapping metabolic features associated with PM2.5 exposures and preterm or early-term birth under different 

significance cutoff among 329 pregnant people in the Atlanta African American Maternal-Child Cohort, 2014-2018. 

Exposure Outcome 
HILIC column  C18 column 

FDRB-H < 0.2 Top 100 a Raw p < 0.05  FDRB-H < 0.2 Top 100 a Raw p < 0.05 

One-year Preterm 0 0 38  0 1 25 

 Early-term 0 1 99  0 3 53 

1st trimester Preterm 0 0 29  0 0 23 

 Early-term 0 2 66  0 0 34 

One-week Preterm 0 0 25  0 0 17 

 Early-term 0 0 18  0 1 13 

One-month Preterm 0 0 24  0 0 24 

 Early-term 0 3 41  0 0 26 

Abbreviations: PM2.5, fine particulate matter; HILIC, hydrophilic interaction liquid chromatography; C18, hydrophobic reversed-phase 

chromatography; FDRB-H, Benjamini-Hochberg adjusted p-values. 

a Top 100 metabolic features sorted by raw p-values.  
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Table S4. Chemical identity with level 1 confidence of the overlapping metabolic features detected at raw p-values < 0.05. 

mz RT Identity Adduct form Association KEGG Pathway a 

A. HILIC column    

189.1636 21.5 N6,N6,N6-Trimethyl-L-lysine M+H 1st trimester ~ PTB Lysine degradation 

244.0790 51.8 N-Acetyl-D-Galactosamine M+Na 1st trimester ~ PTB; 

One-week ~ PTB; 

One-month ~ PTB 

Galactose metabolism 

347.2215 24.5 Cortexolone M+H One-week ~ PTB; 

One-week ~ ETB 

Cortisol synthesis and secretion 

124.0412 119.9 Picolinic acid M+H One-year ~ ETB Tryptophan metabolism 

176.1030 73.0 Citrulline M+H One-year ~ ETB Arginine biosynthesis 

177.1063 72.8 Serotonin M+H One-year ~ ETB Tryptophan metabolism 

211.0964 26.7 3-Methoxy-L-Tyrosine M+H One-year ~ ETB - 

B. C18 column    

162.0196 26.6 N-Acetyl-L-Cysteine M-H One-year ~ PTB - 

157.1233 258.2 Nonanoate M-H 1st trimester ~ PTB; 

One-week ~ PTB; 

One-month ~ PTB 

- 

174.0885 20.9 Citrulline M-H One-year ~ ETB Arginine biosynthesis 

Abbreviations: mz, mass-to-charge ratio; RT, retention time; HILIC, hydrophilic interaction liquid chromatography; C18, hydrophobic 

reversed-phase chromatography. 

a The biological pathway to which the identified metabolite belongs in human body according to KEGG database. 

 

  



87 
 

Chapter 5 Integration of the Metabolome and Epigenome in 

Unravelling the Biological Mechanisms Underlying the Relationship 

between Ambient PM2.5 and Preterm and Early-term Birth 
 

Introduction 
 

Fine particulate matter (PM2.5) is a serious threat to public health and has been linked to 

adverse effects on people of all ages.132,133,190 Pregnant people and their fetuses are particularly 

vulnerable and susceptible to the risks caused by PM2.5 exposure.10 Previous research has 

shown that exposure to PM2.5 during pregnancy is associated with various unfavorable birth 

outcomes, such as preterm birth (PTB) and early-term birth (ETB).10 PTB (deliveries before 37 

weeks of pregnancy) and ETB (deliveries between 37-39 weeks of pregnancy),134 are major 

causes of neonatal illness and death,135 with adverse effects on mothers191 and lifelong risks to 

the children.136 It is estimated that 10% of PTB cases worldwide can be attributed to PM2.5 

exposure, with the highest impact in sub-Saharan Africa.192 In the United States, communities of 

color and those at low socioeconomic status, particularly African Americans (AA), have a higher 

risk of PTB and ETB.138,139 Despite a significant amount of research on the association between 

prenatal PM2.5 exposure and PTB/ETB, the findings are limited for the African American 

population.193 To reduce the incidence of PTB and ETB among vulnerable groups, it is crucial to 

understand how PM2.5 exposure leads to health disparities in utero and amplified postnatally, 

which will inform policies and interventions aimed at prevention. 

Omics techniques are a set of techniques used to analyze biological molecules at different 

molecular levels, including gene (genomics), DNA methylation (epigenomics), mRNA 

(transcriptomics), and metabolite (metabolomics), which enable a detailed investigation into the 

biological mechanisms underlying human phenotypes. 194 These techniques are increasingly 

being used in environmental health sciences to study the complex interplay between 
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environmental contaminants and health outcomes.195 For instance, the use of high-throughput 

metabolomics has been increasingly prevalent in environmental health research for identifying 

the biological perturbations that result from the long-term and short-term exposures to air 

pollution.17 Likewise, researchers have employed metabolomics to identify metabolites and 

pathways predictive of PTB,144 and part of the biomarkers were also reported to be altered upon 

exposure to air pollution among pregnant women, which have important roles in multiple 

biological pathways, including amino acid metabolism, lipid metabolism, and 

inflammation.27,141,145,146,196 The association of DNA methylation (DNAm) in cord blood and 

placental tissues with prenatal exposure to air pollution has been extensively studies,197-200 while 

relatively underexplored in whole blood. DNAm in various genes, including insulin-like growth 

factor 2 (IGF2),199,201 caspase-7 (CASP7),197 BH3 interacting-domain death agonist (BID),201 

serum paraoxonase 1 (PON1),198 paraoxonase 3 (PON3),198 cluster of differentiation 6 (CD6),198 

inactive dipeptidyl peptidase 10 (DPP10),202 and 11β-hydroxysteroid dehydrogenase 2 

(HSD11B2),203 was found to be associated with air pollutants during different time periods of 

pregnancy, and the detected genes were found to participate in fetal growth (IGF2),199,201 

apoptosis (CASP7 and BID),197,201 lipid metabolism (PON1 and PON3),198 inflammation (CD6 

and DPP10),198,202 and steroid hormone metabolism (HSD11B2).203 DNAm has also been 

investigated as a major epigenetic mechanism for PTB.204 The associations of cg03915055 

[promoter region of cytohesin 1 interacting protein (CYTIP)] and cg06804705 [promoter region 

of long intergenic non-protein coding RNA 114 (LINC00114)] with spontaneous PTB were 

reported among 150 pairs of African American mother-newborn pairs in Boston.205  

The rapid generation of omics data further motivates researchers to integrate multiple omics 

data to obtain a more comprehensive view of disease development.16 The integration of multi-

omics data can contribute to building evidence on causation by identifying the biomarkers 

indicative of changes at another molecular level and cross-validating the functional activity of 

identified biological pathways. For example, by integrating genome-wide DNAm and metabolomic 
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data, we can enhance our understanding of pollutant-associated differences in metabolic profiles 

through the annotation of related CpG sites. A few recent studies based on this integrative 

approach have highlighted the interplay between DNAm and metabolomic changes, which 

proposed key mechanistic pathways related to environmental contaminants.206 A joint 

metabolomic-epigenomic study was conducted to investigate the relationship between smoking-

related metabolites and DNAm.207 Three endogenous plasma metabolites - N-Acetylpyrrolidine, 

5-Hydroxycotinine, and 8-Oxoguanine - were found to be associated with 3-16 CpG sites. These 

sites were located in genes involved in cell proliferation and apoptosis evasion, which are known 

to play a role in the development of cancer.207 Short-term exposure to ambient ozone was found 

to be associated with an increased level of circulating angiotensin-converting enzyme (ACE) and 

endothelin-1 (ET-1) among a panel of healthy college students. In the meanwhile, a decreased 

level of DNAm of ACE and ET-1 genes was also found.208 ACE and ET-1 are important factors 

regulating blood pressure, and an association between ozone exposure and elevated blood 

pressure was observed in the study.208 

Given the aforementioned evidence on the potential interplay of metabolic profiles and 

DNAm, it is logically to hypothesize that the integration of metabolomic and genome-wide 

DNAm can reveal biological pathways mediating the adverse effect of PM2.5 on PTB and ETB. 

However, to the best of our knowledge, no study has been conducted to explore this hypothesis. 

To address this critical knowledge gap, we conducted the current study in the prospective 

Atlanta African American (ATL AA) Maternal-Child Cohort, which was established in 2014 to 

assess the impact of the prenatal environmental contaminants on adverse birth outcomes.147 

We aimed to employ multi-omics integration techniques to identify changes in metabolic profiles 

and DNAm and assess their interrelationship and how they mediate the association between 

short- and long-term exposures to ambient PM2.5 and the risk of PTB and ETB.  
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Methods 
 

Study population 

The study involved individuals who were recruited in the ATL AA Maternal-Child Cohort.147,148 

This prospective cohort has been enrolling pregnant people who self-report as U.S.-born African 

American, are between the ages of 18 and 40, have singleton pregnancies, and no chronic 

medical conditions, during their first prenatal care visits between 8 and 14 weeks of gestation, at 

Emory Midtown Hospital (privately funded) and Grady Hospital (publicly funded) since 2014. 

Data was collected using questionnaires, medical record abstraction, and blood samples taken 

during routine blood draws. The participants were tracked until delivery to obtain information on 

birth outcomes. The serum samples and peripheral blood mononuclear cells (PBMC) collected 

during their first prenatal care visit were stored at -80°C and were analyzed using untargeted 

metabolomics analysis and genome-wide DNAm analysis respectively, using established 

protocols.147 A total of 264 AA pregnant people with valid metabolomics and DNAm data 

available at their first visit were included in the study, all of whom were enrolled between May 

2014 and May 2018. The Emory University Internal Review Board approved this study, and all 

participants provided signed informed consent. 

 

Air pollution exposure assessment 

To estimate individual exposure, we used a well-established ensemble-based model with a 

spatial resolution of 1km to spatially join the geocoded residential addresses provided during the 

first visit from each participant and obtain daily PM2.5 concentrations. This model integrated 

multiple machine learning algorithms and predictor variables, and its specifics were previously 

published.149 To ensure that the exposure preceded the mediator (i.e., metabolomics and DNAm 

data), we selected four averaging periods: 1-year prior to conception, the first trimester, 1-month 
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prior to blood draw, and 1-week prior to blood draw, which helped distinguish between long-term 

and short-term exposures. 

 

Measure of birth outcomes 

To determine whether a participant had a preterm birth (PTB) or early term birth (ETB), we 

relied on the gestational age at delivery, which we calculated using the delivery date in relation 

to the estimated date of confinement, as per the guidelines of the American College of 

Obstetrics and Gynecology (ACOG),145 based on information abstracted from medical records. 

The estimated date of confinement was established for all participants at their first prenatal care 

visit using the last menstrual period and/or first trimester ultrasound.150 We categorized the 

participants into one of three groups: PTB (live birth occurring after 20 weeks but before 37 

weeks), ETB (live birth occurring at 37 weeks or later but before 39 weeks), and full-term birth 

(FTB, birth occurring at 39 weeks or later).134 In other words, two binary outcomes variables 

were created both with the FTB group as the reference. 

 

High-resolution metabolomics 

We used high-resolution liquid chromatography coupled with mass spectrometry (HR-LCMS, 

Thermo Scientific™ Q- Exactive™ HF) to analyze non-fasting samples in triplicate. The details 

of the established protocol can be found elsewhere147,151. Briefly, we employed two analytical 

columns, hydrophilic interaction liquid chromatography (HILIC) with positive electrospray 

ionization (ESI) and C18 hydrophobic reversed-phase chromatography with negative ESI, to 

detect metabolomic profiles. The metabolic features were extracted from the profiles by R 

packages apLCMS with xMSanalyzer with mass-to-charge ratio (mz), retention time (rt), and 

relative intensity.152,153 Then, the relative intensity for each sample was averaged across 

triplicates and transformed with the natural log for down-stream analysis. The relative standard 

deviation (RSD) was calculated for each feature across quality control (QC) samples, and 
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missingness was estimated for both study and QC samples. We excluded features with RSD > 

50% and QC missingness < 10%, or study sample missingness < 90%, resulting in 11,269 and 

9,565 metabolic features for the HILIC and C18 columns, respectively. To impute missing 

values, we used either quantile regression imputation of left-censored data (QRILC) or random 

forest (RF), depending on the missing pattern.154 We classified the missing pattern [missing not 

at random (MNAR) vs. missing at random (MAR)] using a second, correlated auxiliary feature 

with Pearson's correlation > 0.5, and assumed that insights into the pattern of missing values 

could be gained from corresponding non-missing observations of the auxiliary feature.155 We 

used QRILC to impute missing values of MNAR features and RF to impute missing values of 

MAR features.  

 

Genome-wide DNA methylation 

Methylation data for the participants were generated on the Illumina Infinium MethylationEPIC 

BeadChip. All DNAm data were preprocessed to remove low-quality samples and probes 

through the use of the R package minfi.87 Raw intensity files were converted to a data frame 

consisting beta values [Methylated signal/(Methylated signal + Unmethylated signal)] ranging on 

a continuous scale from 0 to 1 for each of the CpG sites. Samples with more than 1% probes 

having a detection p value over 1% were excluded. Probes with more than 1% of samples 

having a detection p value over 1% were excluded. Additionally, cross-reactive probes predicted 

were also excluded.209 Then, the Combat algorithm was used to normalize the distributions to 

reduce technical variation and correct for differences between type I and type II probe signals.85 

In total, after all preprocessing steps, 839,487 CpG sites remained for the down-stream 

analysis. We used the R package EpiDISH to obtain the cell-type proportions (CD4+ T cells, 

CD8+ T cells, natural killer cells, B cells, and monocytes) in the PBMC using the reference 

dataset published previously.210,211 
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Covariate assessment 

We drew the confounding structure from a literature review and our previous studies.145,151,212 

The resulting confounding structure was visualized through directed acyclic graphs (DAGs), 

which can be found in the Supplement (Figure S1). We collected individual-level demographic 

characteristics, including maternal age and maternal educational attainment (classified as less 

than high school, high school, or some college or more), via a standardized interview 

questionnaire. Information on infant sex (binary), parity (classified as nulliparity, primiparity, or 

multiparity), and tobacco and marijuana use in the month before pregnancy (binary), as well as 

alcohol use in the month prior to pregnancy (binary), were abstracted from medical records. 

Maternal body mass index (BMI, kg/m2) was calculated using measurements of weight and 

height taken at the first visit. To control for meteorological factors, we included the conception 

season (for long-term exposure) and averaged apparent temperature (for short-term exposure 

within the same time windows as air pollution estimates) as covariates. We obtained the daily 

apparent temperature at Hartsfield-Jackson International Airport using the R package riem.156 

The proportions of four cell types (CD8+ T cells, natural killer cells, B cells, and monocytes) in 

PBMC were included in the epigenome-wide association analysis to control for the confounding 

from the cell type composition. We included the same covariates for the metabolomic and 

epigenomic analyses, except for cell type composition which was only included in epigenomic 

analysis. 

 

Statistical analysis 

To identify the metabolic features and differentially methylated CpG sites associated with both 

PM2.5 exposures and birth outcomes, we first subset the high-dimensional metabolomic and 

genome-wide DNAm data based on the strength of their associations with PM2.5 exposure, as a 

means of dimensional reduction. Specifically, we conducted a metabolome-wide association 
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study (MWAS) and an epigenome-wide association study (EWAS) for PM2.5 exposures using 

the fowling equations: 

ln(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑗) = 𝛽0𝑗 + 𝛽1𝑗𝑃𝑀2.5 + 𝛽2𝑗𝐴𝑔𝑒 + 𝛽3𝑗𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽4𝑗𝑆𝑒𝑥 + 𝛽5𝑗𝐵𝑀𝐼 + 𝛽6𝑗𝑀𝐸𝑇 +

𝛽7𝑗𝑇𝑜𝑏𝑎_𝑚𝑎𝑟𝑖 + 𝛽8𝑗𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝜖𝑗 Eq. (1) 

𝐵𝑒𝑡𝑎𝑘 = 𝛽0𝑘 + 𝛽1𝑘𝑃𝑀2.5 + 𝛽2𝑘𝐴𝑔𝑒 + 𝛽3𝑘𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽4𝑘𝑆𝑒𝑥 + 𝛽5𝑘𝐵𝑀𝐼 + 𝛽6𝑘𝑀𝐸𝑇 +

𝛽7𝑘𝑇𝑜𝑏𝑎_𝑚𝑎𝑟𝑖 + 𝛽8𝑘𝐴𝑙𝑐𝑜ℎ𝑜𝑙 + 𝛽9−12𝑘𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 + 𝜖𝑗 Eq. (2) 

where ln⁡(𝐹𝑒𝑎𝑡𝑢𝑟𝑒) refers to the natural log of intensity of metabolic feature 𝑗; 𝑃𝑀2.5 is the 

averaged PM2.5 exposure for a specific window, and 𝑀𝐸𝑇 is the corresponding meteorological 

covariate;⁡𝐵𝑒𝑡𝑎𝑘 refers to the beta value of CpG site 𝑘; 𝑐𝑒𝑙𝑙𝑡𝑦𝑝𝑒 denotes four types of cells in 

PBMC, including CD8+ T cells, natural killer cells, B cells, and monocytes, while CD4+ T cells 

served as reference. The R package CpGassoc was used to perform EWAS based on Eq. 

(2).213 We used Benjamini-Hochberg (BH) approach (FDRB-H) and Bonferroni approach (Bon) to 

account for multiple testing for MWAS and EWAS, respectively.158,214 Results were presented 

using Manhattan plots and QQ plots (Figure S2 & S3 in the Supplement).  

A joint metabolome-epigenome approach with a focus on exposure-related metabolic 

features was considered in previous literature to reveal additional details in molecular responses 

to environmental contaminants.207 To understand the relationship between DNA methylation and 

the exposure-related metabolic features, we used the R package mixOmics to conduct a 

regularized canonical correlation analysis (RCCA).215 RCCA seeks to identify linear 

relationships between two sets of variables, which is an extension of canonical correlation 

analysis that allows for the inclusion of regularization penalties to handle high-dimensional 

data.216 Specifically, RCCA takes the inputs of metabolomic and epigenomic data and searches 

for linear combinations of the inputs in each dataset that maximize the correlation between the 

two datasets.216 In other words, RCCA can reveal global correlation patterns between metabolic 

features and CpG sites. In the current analysis, for each PM2.5 exposure window, we included 
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the significant metabolic features (FDRB-H < 0.2) and the 100 CpG sites that had the highest 

pairwise Pearson’s correlation with each feature as inputs based on all CpG sites. A relevance 

network was generated by mixOmics with nodes representing correlated features and CpG sites 

and edges representing correlations (a correlation score > 0.5).215 The strength of the 

correlations, for absolute score, was regarded as week for <0.4, moderate for 0.40-0.59, strong 

for 0.6-0.79, and very strong for >= 0.8. 

To further illustrate the potential mediating role of the interplay between metabolome and 

genome-wide DNA methylation for the association of PM2.5 exposure with PTB and ETB, we 

used the R package MOFA2 to perform an unsupervised multi-omics integration and conducted 

causal mediation analysis to identify mediating orthogonal factors derived from MOFA2.217,218 

MOFA2 refers to multi-omics factor analysis and as indicated by its name, is a dimension 

reduction technique that is able to identify latent factors representing the driving sources of 

variation across multiple sets of variables.217 The key idea behind MOFA2 is that the same 

latent factors can explain the variation in multiple omics datasets, allowing the integration of 

information across different modalities. In the current analysis, to fit MOFA2 into a mediation 

framework, we first filtered the metabolic features and CpG sites based on their association with 

PM2.5 exposure. For each exposure window, the most significant metabolic features and CpG 

sites from the MWAS and EWAS aforementioned were selected as inputs for MOFA2. To lower 

the type II error and include potential mediators exclusively, we explore two different thresholds 

of p (the number of input metabolic features or CpG sites: 500 and 1000). Then, MOFA2 

generated latent factors of an initial number (we specified the parameter as 30) and dropped 

factors that explain no variance. We extracted the latent factors from the resulting MOFA2 

model for the downstream causal mediation analysis. We used the R package mediation to 

conduct the single mediation analysis with the adjustment of preselected confounding,218 and 

the confounding structure for the exposure-mediator and mediator-outcome association was 

illustrated in the Supplement (Figure S1). In addition, we also employed mixOmics to identify 
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exposure-related metabolic features and CpG sites based on their prediction performance on 

the birth outcomes (i.e., PTB vs. ETB vs. FTB). Specifically, the same thresholds of p (the 

number of input) were used, and the sparse partial least squares-discriminant analysis was 

conducted to select influential metabolic features and CpG sites.215  

Separate analyses were conducted for each column (HILIC positive ESI and C18 negative 

ESI). Then, the metabolic features associated with PM2.5 exposure or enriched in the latent 

factors were identified and annotated for functional interpretation, and the differentially 

methylated CpG sites correlated to the significant metabolic features or enriched in the latent 

factors were annotated using an online annotation data `IlluminaHumanMethylationEPIC`.219 

Additional functional insight on metabolic features and CpG sites was obtained by search the 

corresponding analyte in publicly available databases, including KEGG and EWAS 

catalog.101,220  

All analyses were completed in R (version 4.2.0). 

 

Results 
 

Study population characteristics 

A total of 264 pregnant people was included in the current analysis, and their characteristics are 

described in Table 1. The average maternal age was 25.1 years (SD=4.69-4.92) for the PTB, 

ETB, and FTB groups. The PTB group had a slightly lower average BMI (28.0 kg/m2), highest 

proportion of multiparity (40.4%), highest male-to-female ratio (~3:2), highest proportion of 

tobacco or marijuana use (50.0%). Half of the participants in the FTB group completed a college 

degree or higher, which is higher than the other two groups but lower than the number (62.6%) 

in the U.S. female population of all races over 25 years old.221 The FTB group had the highest 

proportion of nulliparity. The medians of one-year, 1st trimester, one-week and one-month PM2.5 

exposures were 10.35 [interquartile range (IQR)=1.18], 10.00 (IQR=2.65), 9.91 (IQR=3.63), 
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9.68 (IQR=3.33) µg/m3, respectively (Table 2). The IQR was slightly higher for the short-term 

exposures, indicating a higher variation contributed by temporal variability. 

 

Metabolome-wide and epigenome-wide association analysis 

In MWAS, there were 3, 10, 37, and 3 metabolic features in the HILIC column associated 

(FDRB-H < 0.2) with PM2.5 exposure for 1 year prior to conception, the 1st trimester, 1 week, and 

1 month prior to blood draw, respectively (Table S2). Only 3 and 20 features were found to be 

associated (FDRB-H < 0.2) with the 1st trimester, 1 week exposures, respectively, in the C18 

column. The number of significant metabolic features associated PM2.5 exposures for each 

column at different thresholds of significance were summarized in the Supplement (Table S2). 

One feature (mz: 391.2842, rt: 22) associated with both 1st-trimester and one-month exposures 

was annotated as Di(2-ethylhexyl)phthalate (DEHP) which is a frequently used plasticizer and 

has a profound impact on human health.164 One features (mz: 282.1185, rt: 119.1) associated 

with one-week exposure was annotated as methyladenosine with level 1 confidence. 

Methyladenosine is a modified form of adenosine where a methyl group is added and is the 

most common modifications found in mRNA.163  

EWAS yield all lambda values (i.e. inflation factor) between 0.90 and 1.42 (Figure S3). We 

did not observe any differentially methylated CpG sites associated with one-year, 1st trimester or 

one-month PM2.5 exposures after multiple testing correction (FDRBon < 0.2), while there were 

243 differentially methylated CpG sites for one-week exposure (Table S2).  

 

Metabolome-epigenome network analysis 

Using mixOmics, we visualized the correlation patterns between PM2.5-associated metabolic 

features and CpG sites with correlation less than 0.5 excluded (Figure 1). Although we were not 

able to annotate the metabolic features that had a moderate correlation with at least one CpG 

site, the correlated CpG sites were matched to corresponding genes according to the online 
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reference database. One metabolic feature (mz: 152.0221, rt: 38.1) associated with one-week 

exposure prior to blood draw in the HILIC column was moderately correlated with cg17254259 

(intergenic); The other feature (mz: 657.7080, rt: 55.5) in the HILIC column was moderately 

correlated with 5 (cg00804091, EMC8; cg15894315, DHCR24; cg13334650, APBB1; 

cg07147709, MIR7-2; cg04439028, TRAP1) CpG sites; One features (mz: 569.5778, rt: 21.2) 

associated with 1st trimester exposure in the C18 column was strongly correlated with 

cg08189615 (PNKD); The other feature (mz: 529.3236, rt: 38.8) in the C18 column associated 

with 1st trimester was strongly correlated with cg11553068 (BRF1); One feature (mz: 564.7968, 

rt: 127.2) associated with one-week exposure in the C18 column was moderately correlated with 

5 (cg18739834, intergenic; cg21384857, intergenic; cg25307371, LEPROT; cg07109124, 

ARSB; cg09762612, FIZ1); The other feature (mz: 729.9286, rt: 38.8) in the C18 column 

associated with one-week exposure was moderately negatively correlated with  cg27385053 

(WDTC1). 

 

Multi-omics mediation analysis  

The latent factors were generated by MOFA2, and those with less than 1% variance explained 

were dropped. To explore the impact of the number of inputs on the resulting low-dimensional 

representation, we employed two levels of inputs (500 and 1000, and inputs referring to features 

and CpG sites) with the consideration of including all potential mediating metabolic features or 

CpG sites. The factors with indirect effects were summarized in the Supplement, and those with 

significant indirect effects were showed in Table 3. In total, seven latent factors were found to 

significantly mediate the associations of PM2.5 exposures with ETB, while none were found for 

PTB. Two of the seven factors significantly mediated the positive association of 1st-trimester 

exposure and one-month exposure prior to blood draw, respectively, with ETB. Four out of the 

seven significant factors were detected at the level of 500 inputs. The associations for one-year 

exposure prior to conception and one-week exposure to blood draw were consistently 
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significantly mediated by a latent factor across the two technical columns of metabolome. Of 

note, the variance explained by the seven factors was mostly contributed by metabolic features 

(as illustrated by the 6th and 7th columns in Table 3). To capture an interpretable view of the low-

dimensional representation, the top 10 metabolic features and CpG sites with highest weights 

for each the seven significant factors were illustrated in Figure 2. The consistencies were 

primarily observed at the level of 1000 inputs. One metabolic feature (mz: 852.0424, rt: 274.8) 

was consistently detected among the top 10 of the three significant factors at the level of 1000 

inputs. One CpG site (cg16401529, PABPC5) was consistently found in the significant factors 

for 1st-trimester and one-month exposures. Methyladenosine was among the top 10 metabolic 

features in the latent factor statistically mediating the association between one-week exposure 

and ETB. 

 

Discussion 
 

In the Atlanta African American Maternal Child cohort, we combined metabolomic and genome-

wide DNAm data to identify metabolic features and CpG sites that potentially mediated the 

association between prenatal PM2.5 exposure with PTB and ETB. Using a metabolome-

epigenome network analysis, we identified six PM2.5-related metabolic features that were 

moderately or strongly associated with 1-5 CpG sites, indicative of the interplay of metabolome 

and epigenome underlying the biological responses of pregnant people to PM2.5 exposure. By 

combining multi-omics factor analysis and causal mediation analysis, we identified seven latent 

factors that, respectively, significantly mediated the associations of PM2.5 exposure for different 

windows with ETB. Of note, one metabolic feature (mz: 282.1185, rt: 199.1), annotated as 

methyladenosine, was found among the top 10 features having highest weights for a latent 

factor that significantly mediated the association between one-week exposure prior to blood 
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draw and ETB, which was also found to be statistically associated with the same exposure 

window by MWAS after multiple comparison correction.  

Methyladenosine is the most abundant form of post-transcriptional modification found in 

mRNA, which is known to serve as a regulatory factor in several critical biological processes, 

such as RNA splicing, RNA stability, and translation.222 In the past few years, mounting 

evidence has emerged highlighting the critical role of methyladenosine in modulating the toxicity 

of environmental contaminants.223 A negative does-response relationship was reported between 

the global methyladenosine RNA methylation level and the concentration of particulate matter 

exposure in an in-vitro study where the human lung epithelial cells were exposed for a duration 

of 24-48 hours.224 In the meanwhile, the expression of methyladenosine `eraser`, enzymes 

removing the methyl group, was found to be upregulated among human subjects exposed to a 

higher level of PM2.5.224 Among a penal of 120 adults, long-term smoking status, quantified in 

pack-year, was observed to have a negative association with global methyladenosine RNA 

methylation in the peripheral blood.163 Using a mouse model, Li et al. (2019) found that the 

exposure to PM2.5 for 24 hours resulted in an increase in the global level of methyadenosine in 

lung tissues, which was restored to baseline levels following air purification for 120 hours,225 

implying an irreversible effect of PM2.5 exposure. In the current analysis, we also found two CpG 

sites with high weights for the same significant factor as methyladenosine, but they are in the 

intergenic region. More investigations are warranted to elucidate the function of RNA 

methylation in the PM2.5-induced ETB. 

The metabolome-epigenome network analysis identified six PM2.5-related metabolic features 

that were moderately or strongly associated with 1-5 CpG sites. To our best knowledge, none of 

these CpG sites have been reported in previous literature to be associated with air pollution 

exposure. One CpG site (cg15894315), in 24-Dehydrocholesterol reductase (DHCR24) gene, 

was moderately correlated with a metabolic feature associated with one-week PM2.5 exposure. 

DHCR24 encodes an enzyme participating in the biosynthesis of cholesterol, and its RNA 
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transcript was suggested in a previous study to serve as a potential transcriptional biomarker of 

air pollution effect.226 Another CpG site (cg04439028), in TNF receptor associated protein 

(TRAP1) gene, was associated with the same metabolic feature. TRAP1 is a mitochondrial 

protein involved in cell protection from oxidative stress, and the transcription of TRAP1 was 

reported to be modulated after an acute exposure to coarse particulate matter in the human 

monocyte-macrophage cells.227 Although the association of DNAm with prenatal exposure to air 

pollution has been extensively studies, the previous studies were mainly conducted based on 

cord blood and placental tissues.197-200 Moreover, the role of DNAm in the air-pollution-

associated perturbations in the metabolic profiles was furtherly unexplored as far as we know.    

We for the first time used the multi-omics integration approach to identify the metabolic 

features and CpG sites that potentially mediated the association between PM2.5 exposure and 

ETB. However, the application of multi-omics integration is still nascent and remains challenging 

for use in environmental epidemiology for a few reasons. One of the primary difficulties is the 

high dimensionality of omics data. Integrating omics data usually requires the use of dimension 

reduction and regularization methods, while there is no universally accepted workflow.228 In the 

current analysis, we employed a two-stage reduction based on our study objective: 1) metabolic 

features or CpG sites filtered by their associations with the exposure of interest; 2) the 

integration tools (i.e., mixOmics and MOFA2) with a built-in regularization algorithm. One caveat 

of our study is that while our findings suggest a potential interplay of metabolome and 

epigenome, further studies with larger sample sizes are needed to validate our findings 

Additionally, the multi-omics integration can present challenges in terms of data interpretation, 

as it requires advanced statistical and computational methods to extract meaningful insights 

from large, complex datasets. We addressed this challenge to some extent by focusing on the 

exposure-associated metabolic features and leveraging the weights of individual features or 

CpG sites on the low-dimensional representation.  
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Our analysis adds to a growing body of research investigating underlying mechanisms of 

air-pollution-related adverse birth outcome by characterizing maternal metabolomic profiles.27 

Previous studies that examined the associations of the maternal metabolomics perturbations 

with air pollution exposure found that the levels of serum serine, creatinine, histidine, myo-

inositol, heptadecanoic acid, and linoleic acid in mid pregnancy were associated with high 

traffic-related air pollution during the first trimester among women of multiple races;141 five 

steroids in mid- and late-pregnancy were associated with PM2.5 exposure during early 

pregnancy in an ethnically diverse population.171  

Our study has several notable strengths in addition to the novel strategy combining multi-

omics integration and mediation analysis. Gestational age was accurately determined during the 

early pregnancy visit. The analytical cohort we examined comprised exclusively of individuals of 

African ancestry, a population that has been considerably underrepresented in environmental 

epidemiological investigations. Lastly, the workflow of the untargeted metabolomics profiling 

was thoroughly established and has previously demonstrated its efficacy in analyzing numerous 

non-fasting samples.146,189 

There are several limitations in the current analysis and we also listed potential avenues for 

future research. First, our findings cannot provide inference on causal relationship. The 

perturbations observed in omics data may potentially arise due to the presence of co-exposure 

or unmeasured confounding, which should be further explored via multipollutant approach. 

Second, the serum samples were obtained during early and mid-pregnancy, and we were not 

able to examine other crucial exposure time frames. Third, the estimated ambient PM2.5 

exposure was estimated solely based on the residential address, which did not account for daily 

mobility patterns and exposures in other microenvironments. Fourth, as indicated by the lambda 

values of EWAS, the model results for PM2.5-DNAm associations were inflated/deflated, 

suggesting the uncontrolled confounding. Last, the sequential relationship between changes in 

metabolome and DNA methylome was not assessed in the current analysis. Advanced 
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statistical techniques and epidemiological designs combined with in-vivo models are warranted 

to disentangle the regulation process.  

 

Conclusions 
 

Using the multi-omics integration and mediation analysis, we identified latent factors, derived 

from metabolomic and epigenomic data, that significantly mediated the association between 

PM2.5 exposure and the risk of ETB in a marginalized and understudied population. Our findings 

provide important information about the interplay between metabolic features and DNAm that 

appears to play a critical role in PM2.5 toxicity. The integration of metabolome and DNA 

methylome provides great potential for capturing a more holistic picture of the biological 

mechanisms underlying PM2.5 toxicity on pregnancy outcomes and lend support to future 

development of biomarker.   
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Tables and figures 
 

Table 1. Selected population characteristics by birth outcomes among the subjects enrolled in 
Atlanta African American Maternal-Child Cohort study, 2014-2018 (N = 264). 

 Preterm 
(N=52) 

Early-term 
(N=46) 

Full-term 
(N=166) 

p-value 

Maternal age, mean (SD) 25.1 (4.69) 25.0 (4.79) 25.1 (4.92) 0.984 

Maternal educational attainment, No. (%)  

Less than high school 9 (17.3%) 12 (26.1%) 22 (13.3%) 0.081 

High school 24 (46.2%) 19 (41.3%) 61 (36.7%)  

Some college or more 19 (36.5%) 15 (32.6%) 83 (50.0%)  

Body mass index, mean (SD) 28.0 (7.09) 28.3 (8.28) 29.3 (7.68) 0.442 

Parity, No. (%)  

Nulliparity 19 (36.5%) 14 (30.4%) 80 (48.2%) 0.045 

Primiparity 12 (23.1%) 19 (41.3%) 43 (25.9%)  

Multiparity 21 (40.4%) 13 (28.3%) 43 (25.9%)  

Infant sex, No. (%)  

Male 32 (61.5%) 23 (50.0%) 74 (44.6%) 0.096 

Female 20 (38.5%) 23 (50.0%) 92 (55.4%)  

Maternal tobacco or marijuana use, No. (%)  

No 26 (50.0%) 28 (60.9%) 89 (53.6%) 0.554 

Yes 26 (50.0%) 18 (39.1%) 77 (46.4%)  

Maternal alcohol use, No. (%)  

No 48 (92.3%) 42 (91.3%) 150 (90.4%) 0.951 

Yes 4 (7.7%) 4 (8.7%) 16 (9.6%)  

Season of conception, No. (%)  

Spring 14 (26.9%) 10 (21.7%) 38 (22.9%) 0.979 

Summer 16 (30.8%) 14 (30.4%) 51 (30.7%)  

Fall 13 (25.0%) 12 (26.1%) 38 (22.9%)  

Winter 9 (17.3%) 10 (21.7%) 39 (23.5%)  

Proportions of cell type, mean (SD)    

CD4+ T cell 0.304 (0.068) 0.298 (0.057) 0.308 (0.067) 0.675 

CD8+ T cell 0.238 (0.060) 0.249 (0.048) 0.223 (0.062) 0.019 

Natural killer cell 0.089 (0.029) 0.092 (0.032) 0.096 (0.036) 0.326 

B cell 0.107 (0.041) 0.119 (0.039) 0.105 (0.035) 0.087 
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 Preterm 
(N=52) 

Early-term 
(N=46) 

Full-term 
(N=166) 

p-value 

Monocyte 0.231 (0.079) 0.213 (0.060) 0.233 (0.083) 0.320 

Abbreviations: SD, standard deviation.   



106 
 

Table 2. Statistics of fine particulate matter (PM2.5) exposure for the four exposure windows 

among 264 pregnant people in the Atlanta African American Maternal-Child Cohort, 2014-2018. 

PM2.5 exposure (µg/m3) Q1 Q3 IQR Median Mean 

One-year exposure prior to conception 9.72 10.90 1.18 10.35 10.30 

Exposure for the 1st trimester 9.06 11.71 2.65 10.00 10.50 

One-week exposure prior to blood draw 8.18 11.82 3.63 9.91 10.39 

One-month exposure prior to blood draw 8.46 11.79 3.33 9.88 10.50 

Abbreviations: Q1, 1st quartile; Q3, 3rd quartile; IQR, interquartile range. 
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Figure 1. Relevance network showing the correlations among PM2.5-associated metabolic features and CpG sites with a correlation 

threshold of 0.5. The PM2.5-associated metabolic features without correlated CpG sites (i.e., correlation score > 0.5) were not showed 

in the figures. Abbreviations: HILIC, hydrophilic interaction liquid chromatography; C18, hydrophobic reversed-phase 

chromatography; mz, mass-to-charge ratio; rt, retention time; PM2.5, fine particulate matter. 
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Table 3. Indirect effect estimated by causal mediation analysis via the R package mediation of latent factors generated by MOFA2 

for the associations between PM2.5 exposure and early-term birth a.   

Data 

type 
P b 

Total number of 

latent factors 
Exposure Factor index c 

Variance explained  

per omics data ACME d Total effect e 

Metabolome DNAm 

HILIC 

+ 

DNAm 

500 2 One-year 1 7.900 4.44×10-3 -0.04 (-0.09, -0.01) -0.04 (0.05, -0.13) 

 2 1st trimester - - - - - 

 6 One-week 3 2.616 5.04×10-5 -0.01 (-0.04, 0.00) -0.03 (0.02, -0.12) 

 4 One-month - - - - - 

1000 8 One-year 4 4.638 2.78×10-4 -0.04 (-0.09, -0.01) -0.04 (0.04, -0.13) 

 4 1st trimester 1 5.953 3.43×10-4 0.04 (0.01, 0.10) 0.00 (0.11, -0.11) 

 7 One-week - - - - - 

 8 One-month 1 3.548 6.44×10-5 0.03 (0.00, 0.10) 0.00 (0.08, -0.10) 

C18 

+ 

DNAm 

500 5 One-year 4 1.543 4.46×10-4 -0.02 (-0.04, 0.00) -0.04 (0.04, -0.13) 

 4 1st trimester - - - - - 

 4 One-week 4 1.932 3.04×10-3 -0.02 (-0.06, 0.00) -0.06 (0.02, -0.16) 

 3 One-month - - - - - 

1000 8 One-year - - - - - 

 7 1st trimester - - - - - 

 7 One-week - - - - - 

 7 One-month - - - - - 

Abbreviations: PM2.5, fine particulate matter; chr, chromosome; ACME, average causal mediated effect (i.e., indirect effect). 
a The factors with significant indirect effect were only observed for the associations with early-term birth. 
b The number of input metabolic features or CpG sites entered the multi-omics factor analysis to generate latent factors. 
c The factors were indexed in the order of the amount of variance explained.  
d The ACME was estimated regarding one-unit increase in the factor value. 
e The total effect was estimated regarding one-interquartile-range increase in PM2.5 exposures. 
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(C1orf141) 
RBM20 
(FDFT1) 
(CHST15) 
(OR7G2) 

mz: 744.8243 
rt: 83.0 

mz: 513.2368 
rt: 84.6 

mz: 634.2194 
rt: 253.9 

mz: 451.5495 
rt: 75.1 

mz: 486.1909 
rt: 62.4 

mz: 852.0424 
rt: 274.8 

mz: 454.1557 
rt: 253.3 

mz: 244.1102 
rt: 250.1 

mz: 1110.7941 
rt: 60.0 

mz: 624.3735 
rt: 95.3 

A. One-year exposure prior to conception with the mediating factor derived from 500 metabolic features of HILIC column and CpG sites 

B. One-week exposure prior to blood draw with the mediating factor derived from 500 metabolic features of HILIC column and CpG sites 

C. One-year exposure prior to conception with the mediating factor derived from 1000 metabolic features of HILIC column and CpG sites 
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Birth outcome 
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(Intergenic) 
(PABPC5) 
(ADRA1A) 
(KDM3b) 
(Intergenic) 
(BEND2) 
(PPP1R9A) 
(Intergenic) 
(MYO10) 
(FRMPD1) 

mz: 314.1036 
rt: 286.6 

mz: 852.0424 
rt: 274.8 

mz: 487.1889 
rt: 252.6 

mz: 851.7079 
rt: 275.2 

mz: 513.2368 
rt: 84.6 

mz: 479.8580 
rt: 254.5 

mz: 478.5174 
rt: 256.7 

mz: 451.5495 
rt: 75.1 

mz: 488.1957 
rt: 248.9 

mz: 653.4996 
rt: 286.6 
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(Intergenic) 
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(Intergenic) 
(Intergenic) 
(Intergenic) 
(DAB2IP) 
(TCF3) 
(PABPC5) 
(Intergenic) 

mz: 851.7079 
rt: 275.2 

mz: 314.1036 
rt: 286.6 

mz: 734.0797 
rt: 283.7 

mz: 852.0424 
rt: 274.8 

mz: 653.7000 
rt: 286.4 

mz: 478.5174 
rt: 256.7 

mz: 653.4996 
rt: 286.6 

mz: 845.4048 
rt: 272.4 

mz: 323.6712 
rt: 75.4 

mz: 979.7209 
rt: 277.2 

(afwe) (FAM149B1) 
(Intergenic) 
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(Intergenic) 
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mz: 553.1441 
rt: 200.6 

mz: 619.1164 
rt: 200.5 

mz: 445.1642 
rt: 209.6 

mz: 551.1287 
rt: 209.6 

mz: 366.1801 
rt: 201.3 

mz: 408.1908 
rt: 208.3 

mz: 127.0013 
rt: 39.2 

mz: 254.1061 
rt: 114.5 

mz: 351.2210 
rt: 216.7 

mz: 664.3238 
rt: 252.3 

D. First-trimester exposure with the mediating factor derived from 1000 metabolic features of HILIC column and CpG sites 

E. One-month exposure prior to blood draw with the mediating factor derived from 1000 metabolic features of HILIC column and CpG sites 

F. One-year exposure prior to conception with the mediating factor derived from 500 metabolic features of C18 column and CpG sites 
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Figure 2. Visualization of mediating factors for the associations of fine particulate matter (PM2.5) exposures with early-term birth and 

the corresponding weights of the top 10 metabolic features and CpG sites for each factor. The plot on the left column illustrates the 

factor value, and each dot represents a participant colored by the PM2.5 exposure and shaped by the outcome. The middle column 

and right column show the weights of the metabolic features and CpG sites for the factor with the plus and minus signs indicating the 

direction of weights.  
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(Intergenic) 
(Intergenic) 
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(Intergenic) 
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(GLIPR2) 
(CARD10) 
(SRM) 

mz: 450.3140 
rt: 24.2 

mz: 449.3108 
rt: 23.7 

mz: 506.2656 
rt: 22.5 

mz: 970.5977 
rt: 231.6 

mz: 539.1289 
rt: 199.2 

mz: 487.1152 
rt: 201.3 

mz: 537.1131 
rt: 201.3 

mz: 431.1486 
rt: 201.4 

mz: 405.1921 
rt: 53.4 

mz: 953.5610 
rt: 230.2 

G. One-week exposure prior to blood draw with the mediating factor derived from 500 metabolic features of C18 column and CpG sites 
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Appendix for Chapter 5 

 

Figure S1. Directed acyclic graph of the confounding structure. BMI, body mass index; Smoke, 

tobacco and marijuana use in the month prior to pregnancy; Meteorology, conception season or 

averaged apparent temperature. 

  

A. 

B. 

C. 
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Figure S2. Manhattan plots of metabolome-wide association analysis for PM2.5 exposures. A. Associations between PM2.5 exposures and changes 

in intensities of metabolic features in the HILIC column; B. Associations between PM2.5 exposures and changes in intensities of metabolic features 

in the C18 column. X-axis denotes the retention time (in seconds) of the metabolic features, and Y-axis denotes the negative log10 of p-values. Red 

dots indicated significant associations at FDRB-H < 0.2, and blue indicated associations at raw p-values < 0.05. Abbreviations: HILIC, hydrophilic 

interaction liquid chromatography; C18, hydrophobic reversed-phase chromatography; PM2.5, fine particulate matter; FDRB-H, Benjamini-Hochberg 

adjusted p-values.

A. HILIC column 

B. C18 column 

One-year exposure 1st trimester exposure One-week exposure One-month exposure 

One-year exposure 1st trimester exposure One-week exposure One-month exposure 
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Figure S3. Manhattan and QQ plots for the epigenome-wide association of PM2.5 exposures (A. One-year prior 

to conception / B. 1st trimester / C. One-week prior to blood draw / D. One-month prior to blood draw average 

exposures) and DNAm in peripheral blood mononuclear cells. Bonferroni threshold: 0.05/ 839,487.
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Table S1. Statistics of apparent temperature for the three short-term exposure windows among 

264 pregnant people in the Atlanta African American Maternal-Child Cohort, 2014-2018. 

Apparent temperature (Fahrenheit) Q1 Q3 IQR Median Mean 

1st trimester 54.24 77.71 23.48 68.65 65.90 

One-week prior to blood draw 54.88 78.50 23.62 66.60 65.08 

One-month prior to blood draw 53.41 78.54 25.13 67.67 65.51 

Abbreviations: Q1, 1st quartile; Q3, 3rd quartile; IQR, interquartile range. 
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Table S2. Number of metabolic features and differentially methylated CpG sites associated with PM2.5 exposures under different 

significance cutoff among 264 pregnant people in the Atlanta African American Maternal-Child Cohort, 2014-2018. 

Exposure Outcome 
Adjusted p-values a  Raw p-values 

< 0.05 < 0.1 < 0.2  < 0.001 < 0.01 < 0.05 

One-year MWAS - HILIC column 2 2 3  33 277 957 

 MWAS - C18 column 0 0 0  13 120 553 

 EWAS 0 0 0  580 9782 63974 

1st trimester MWAS - HILIC column 4 4 10  30 276 935 

 MWAS - C18 column 0 0 3  11 110 534 

 EWAS 0 0 0  1059 11490 60632 

One-week MWAS - HILIC column 12 14 37  43 140 472 

 MWAS - C18 column 11 13 20  28 98 378 

 EWAS 199 219 243  3034 14224 48329 

One-month MWAS - HILIC column 0 0 3  19 147 568 

 MWAS - C18 column 0 0 0  26 209 713 

 EWAS 0 0 0  816 8777 45764 

Abbreviations: PM2.5, fine particulate matter; MWAS, metabolome-wide analysis study; EWAS, epigenome-wide analysis study; 

HILIC, hydrophilic interaction liquid chromatography; C18, hydrophobic reversed-phase chromatography; FDRB-H, Benjamini-

Hochberg adjusted p-values. 

a For MWAS, raw p-values were adjusted by Benjamini-Hochberg approach; for EWAS, raw p-values were adjusted by Bonferroni 

approach.
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Chapter 6 Limitations, Implications and Future Direction 
 

In this dissertation research, we used cutting-edge omics techniques to characterize biological 

changes in human body to illustrate the relationship between PM2.5 exposures and health 

outcomes. Omics techniques, which include genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics, have revolutionized the way we understand and study air 

pollution. With the help of these techniques, researchers can identify key molecules and 

pathways involved in the response to air pollution, which can provide new insights into the 

underlying mechanisms of pollution-related diseases. 

 In Chapter 2, I developed an air quality model that simulated weekly averaged PM2.5 

concentrations with a spatial resolution of 200m in Metropolitan Atlanta from 2012-2019, which 

has become the cornerstone of subsequent analyses. In Chapter 3, multiple CpG sites located 

in prefrontal cortex tissues were identified as potential mediators of the association between 

PM2.5 exposure and neuropathology markers related to AD. Some of these CpG sites were 

situated in genes linked to neuroinflammation and neuroinflammation-mediated necroptosis in 

brain tissues, suggesting neuroinflammation as a potential underlying mechanism of PM2.5 

neurotoxicity. In Chapter 4, metabolomic signatures detected in early-pregnancy serum samples 

acted as potential mediators for the adverse effects of long- and short-term exposures to PM2.5 

on the risk of PTB and ETB. Specifically, biological pathways involved in folate metabolism and 

glycine and serine metabolism were found to play a pivotal role in the biological mechanism 

underlying PM2.5 toxicity on early birth. In Chapter 5, by utilizing multi-omics integration 

techniques, latent factors were derived from metabolomic and epigenomic data, which were 

found to significantly mediate the association between PM2.5 exposure and the risk of ETB. This 

provides valuable insights into the intricate interplay between metabolic features and DNA 

methylation, which appears to be critical in PM2.5 toxicity. 
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These findings suggest that the application of omics techniques can provide a 

comprehensive understanding of the biological changes in the human body in response to 

PM2.5 exposure and their role in disease development. By focusing on vulnerable populations 

such as older adults and pregnant women, this research sheds light on the molecular 

mechanisms of the pathogenesis of ETB and AD, which is crucial for risk assessment and the 

development of effective interventions for these populations. 

 The current findings are limited for a few reasons. First, the current project leveraged the 

spatial-temporal estimates of traffic-related and ambient PM2.5 concentrations to derive 

exposure estimates from residential locations, as a surrogate for personal exposures, which is 

typically used for large populations or retrospective studies.229 Due to the daily mobility and 

indoor PM2.5 sources, the resulting measurement error might lead to underestimation or 

overestimation of the effect estimates, and the direction of bias can be hard to predict. Future 

studies using more accurate air pollution models or personal monitoring equipment are 

warranted to verify our findings. Second, PM2.5 is composed of a complex mixture of chemical 

compounds, and the composition can affect its toxicity and potential health effects. The lack of 

information on the chemical composition limited our ability to evaluate the differences in the 

health impacts between traffic-related and ambient PM2.5. Third, both metabolomics and 

epigenomics are a dynamic system, but only a snapshot of metabolomic or epigenomic profiles 

was included in the Chapters 3-5. Failing to account for their dynamic nature might lead to 

incorrect or incomplete interpretation of results and inability to capture the full complexity of 

biological processes. Thus, it is important to consider the temporal aspect of biological 

processes, and integrating the same type of omics data at multiple time points should be an 

integral part of multi-omics integration as well. Forth, the multi-omics tools are often developed 

and optimized for specific types of omics data, outcomes or study designs. Although I optimized 

the workflow in Chapter 5 to fit MOFA2 and mixOmics in the current context, the findings of 

multi-omics integration must be evaluated with caution when generalizing them to different 
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contexts or populations. Further research is needed to develop more flexible and adaptable 

multi-omics tools.   

In the future, several areas warranted further investigation in air pollution research using 

omics techniques:1) Health effects of mixtures: Air pollution is not composed of a single 

pollutant, but rather of complex mixtures of pollutants. Omics techniques can be used to study 

the health effects of these mixtures, and to identify the key pollutants and pathways that are 

responsible for the observed effects. New statistical methods are needed to deal with the more 

complex relationships between mixtures and high-dimensional omics data. 2) Mediating role of 

omics data: to our best knowledge, although a few high-dimensional analysis tools have been 

published, they employed different frameworks which might lead to inconsistent results. 

Moreover, there is no such a widely-accepted workflow or method that works for all omics types. 

The development of high-dimensional analysis for specific omics data and study design is still 

necessary. 3) Multi-omics integration in environmental epidemiology. As most environmental 

epidemiological studies are observational, confounding is always a crucial consideration. A 

multi-omics integration workflow that fits environmental epidemiological studies must take into 

account the confounding factors. 

Overall, omics techniques will continue to play a critical role in air pollution research in the 

coming years, providing new insights into the health effects of air pollution and new approaches 

for preventing and treating pollution-related diseases. 
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