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Abstract

Measuring creativity in computer programming: A code distance approach
By Elijah Chou

We propose a novel approach to measure student creativity in computer programming.
We collected a set of Java programming problems and their solutions submitted by
multiple students. We parsed the students’ code into abstract syntax trees, and cal-
culated the distance among code submissions within problem groups using a tree edit
distance algorithm. We estimated each student’s creativity as the normalized aver-
age distance between their code and the other students’ codes. Pearson correlation
analysis revealed a negative correlation between students’ coding performance (i.e.,
the degree of correctness of their code) and students’ programming creativity in some
circumstances. Further analysis comparing state (features of the problem set) and
trait (features of the students) for this measure revealed a correlation with trait and
no correlation with state. This suggests that our proposed measure is likely measur-
ing specific traits that a student has, possibly originality, and not some coincidental
feature of our problem set. We also examined the validity of our proposed measure by
observing the frequency at which human graders agree with the measure in ranking
the originality of pairs of code. Our proposed creativity measure achieved moderate
agreement with the majority vote of human graders in ranking creativity. The Pear-
son correlation and state vs. trait analyses were repeated on student code written in
Python, and similar findings were observed in the Python dataset as well.
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Chapter 1

Introduction

Ever since the term “computational thinking” (hereby abbreviated as CT) was coined

by J. Wing in her short 2006 article published in the ACM, this concept of using

analytical and algorithmic thinking for problem solving became widely popular in

academia [45]. Well-known companies such as Google referred to ISTE’s CT Toolkit,

which has been used to curate curriculums to help students develop CT, for founda-

tional training in computer science [1, 42]. Even though the topic is popular, papers

discussing CT in modern research are still refining the definition of CT and its relation

to both the world at large and in the classroom [27]. There is also little quantitative

research done that shows how effective these educational materials are at achieving

any sort of outcome, whether it be increasing one’s CT or improving one’s academic

grade.

Creativity is another topic that researchers have tried multiple decades to quan-

titatively measure. It is a quality that has also been studied in research under the

context of problem solving and education [25, 13]. Creativity has also been shown to

have a strong positive correlation with CT [35], which may suggest that developing

one can help foster the other. However, there is no established metric of measuring

creativity in the context of computer programming. Even in a recent study that at-
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tempted to establish a metric through automatic parsing of Scratch code, the results

were limited by the lack of consensus among experts who were labeling the data from

their experiments [24].

This study aims to create a measure that not only can objectively and quantita-

tively determine the creativity of an individual through their code, but also evaluate

the measure and compare the relationship between the new creativity measure and

student outcomes. With a more consistent, objective measurement of creativity, we

could potentially use it to evaluate the effectiveness of CT curricula and improve CT

in people both in and out of the classroom.
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Chapter 2

Background

2.1 Computational Thinking

While Computational Thinking originated from the field of computer science, or more

broadly from the Science, Technology, Engineering, and Math (STEM) field, CT has

been gaining popularity among other fields such as the humanities and arts as seen in

some published studies from 2016 and 2020 [19, 43]. The first to discuss the concept of

CT was Seymour Papert in 1980, who predicted that computational problem solving

would help children solve problems in domains outside of STEM [32]. This prediction

accurately illuminates the importance of CT in K-12 education in modern day as

described in Barr’s 2011 study [6].

CT is an important skill that can help develop better proficiency with computer

science problems and also increase one’s potential for general problem-solving as

shown in Ruan et. al’s 2017 study [36]. It has also been shown to influence mathe-

matics, literacy, and computational problem-solving in a another study in 2011 [6].

Due to its displayed importance, various organizations such as the World Economic

Forum and the United Nations Educational, Scientific, and Cultural Organization

(UNESCO) considered CT to be a new, vital literacy that should be developed in
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every citizen in 2015 [14, 39]. As a result, many educational researchers have been

experimenting with new ways to bring CT into the classroom [15].

2.2 Creativity

Like computational thinking, creativity was stated in 2017 to be a vital skill for mod-

ern citizens [37] that people can train starting at a young age as shown by some studies

published in 2004 and 2010 [7, 44]. It was shown to promote academic achievement

and motivate students in engaging more with learning in the classroom as demon-

strated in 2009 and 2013 [3, 10]. Thanks to this, many researchers have studied

creativity extensively through different perspectives, such as in 2009 by Kaufman

and Beghetto [20]. Creativity was studied as a process by Guilford in 1950 [16] and

as a personal trait by Parsons in 1971 [33]. It has been assessed through the products

of creativity themselves by Martindale in 1989 [30]. While creativity is widely consid-

ered an important trait, there is still a lot of debate about the definition of creativity

and how it can be measured, as reviewed by Kilgour in 2006 [21].

Even so, the general consensus is that creativity is a multidimensional concept

that is composed of four key characteristics. The first is Fluency – the ability to

generate a large number of ideas and directions of thought for a particular problem.

The second is Flexibility – the ability to think about as many uses and classifications

as possible for a particular item or subject. The third is Originality – the ability to

think of ideas that are not self-evident or banal or statistically ordinary, but rather

those that are unusual and even refuted. The last is Elaboration – the ability to

expand an existing idea and to develop and improve it by integrating existing schemes

with new ideas [30].

Creativity is a wide-ranging topic that has been discussed and examined through

different perspectives. One question surrounding the creativity debate asks whether
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it is a fixed trait or a trainable and enhanceable skill as discussed by Amabile and

Pillemer in 2012 [2]. Plucker and Beghetto in 2004 asked if creativity is domain-

general or domain-specific [34], or in other words whether creativity can be employed

equally effectively from one context to another. There is still a lot of uncertainty

regarding this aspect of creativity, but some recent research by Baer in 2010 has

suggested that it is in fact both domain-general and domain-specific [4]. It is clear

that there is still a plethora of facets that can be discovered about creativity.

Overall, these questions help drive us to explore how creativity is expressed

through the learning process and attempt to create a measure that can accurately

capture one’s creativity. Particularly, we are trying to quantify students’ creativity

through the key characteristic of originality by analyzing their code (which can be

considered as products of their creativity) for ideas that are not statistically ordinary.

2.3 Creativity and Computational Thinking

Creativity in recent years was shown to have a significant correlation with compu-

tational thinking and was acknowledged to have a positive impact on all fields of

study as shown by Romeike in 2007 [35]. More specifically, researchers in 2015 and

2016 demonstrated that computational problem solving helped inspire creativity in

producing art [26, 40] and that creativity can help facilitate the process of solving

computational problems as shown in 2019 [22]. It was also demonstrated by Liu and

Lu in 2002 that standardized creativity tests were able to predict the creativity of

computer programming solutions [28]. The reason behind the strong correlation be-

tween creativity and CT was suggested to be that the two share a set of thinking

tools, such as observation, imagination, visualization, abstraction, and creation as

reasoned by Yadav and Cooper in 2017 [46].

Most of the studies examining CT and creativity did so through different per-
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spectives. Some studies such as the Seo and Kim 2016 study simply examine the

mutual impact of one over the other and studied creativity within the scope of CT

[40]. Doleck et al. had a similar approach and examined the association between

creativity in the context of CT and academic success [12]. Other studies assessed the

expression of creativity in CT tasks such as programming activities [8]. In addition,

some studies specifically explored the association between creativity and CT [17].

A key study that this work is inspired by is Hershkovitz et al.’s study, where they

found positive associations between computational creativity and the fluency and

flexibility dimensions of creative thinking [17]. They further build on their findings

with their 2021 study, where they found that CT had significant negative correlations

with the flexibility and originality dimensions of creativity thinking [18].

Considering the significant correlation found between CT and creativity, we rea-

soned that if we could accurately measure creativity, it would also serve as a good

way to assess the effectiveness of CT development curricula. With a reliable way to

assess CT and creativity, education can be further improved upon by identifying good

and bad practices in the classroom for CT and outlining a clearer future direction for

CT curricula as a whole.

2.4 Calculating Creativity in Programming

It has been a common approach to use machine learning and artificial intelligence

to predict creativity scores in programming [29, 24, 23]. One study that is highly

similar to the approach we are proposing is one conducted by Kovalkov et al. They

attempted to predict the creativity scores of Scratch programs by training a machine

learning model. However, like many of the other cited studies, their study did not

have conclusive results due to a discrepancy among human experts when grading the

same Scratch programs for creativity [24]. While we expect to have similar troubles
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when validating our creativity measure, it would be very interesting to see whether

our measure consistently agrees with human graders.

2.5 Tree Edit Distance

In order to create a more objective, computational approach to assessing student

creativity through students’ computer programs, we need a medium through which

we can calculate differences between two programs in the first place. Fortunately,

computer programs are written with specific, structured syntax, which enables them

to be represented in other forms such as abstract syntax trees. In fact, code is very

frequently converted into abstract syntax trees because code compilers do so in order

to translate the program from one language to another. We deemed it most effective

to exploit this characteristic of program code to computationally assess the differences

between different student programs without needing to build a code converter from

scratch.

Data that can be modeled as trees are commonly used in various applications, in-

cluding abstract syntax trees, the JSON data format, natural language syntax trees,

and even RNA secondary structures [38]. Due to the nature of these applications,

calculating tree similarity was a topic of high interest. The standard that was es-

tablished for calculating this was the tree edit distance. Tree edit distance is defined

as the minimum-cost sequence of node edit operations that transform one tree into

another. Edit operations were defined as node deletions, node insertion, and label

renaming [47]. The tree edit distance was shown to be useful for applications such as

computing text similarities [41].

Zhang and Shasha were the first to propose a recursive solution to calculating tree

edit distance in their 1989 study [47]. Their solution recursively decomposes trees into

smaller subforests. The new subforests are created by either deleting the leftmost or
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the rightmost root node of a given subforest. Algorithms that implement Zhang

and Shasha’s recursive approach are referred to as Zhang decompositions [38]. The

Zhang Shasha algorithm is outlined at algorithm 1. For more information regarding

the determination of “key roots” of trees and the specifics about computing the

“TreeDist” used in the Zhang Shasha algorithm, please refer to Zhang and Shasha’s

original paper [47].

Algorithm 1: Zhang Shasha Algorithm

Input : Trees T1 and T2

Output: TreeDist(i, j), where 1 ≤ i ≤ |T1| and 1 ≤ j ≤ |T2|
1 Preprocessing: Calculate l( ), LRkeyroots1 and LRkeyroots2 ;
2 for i′ := 1 to |LRkeyroots(T1)| do
3 for j′ := 1 to |LRkeyroots(T2)| do
4 i = LRkeyroots1[i′];
5 j = LRkeyroots2[j′];
6 Compute TreeDist(i, j);

7 end

8 end

In regards to the runtime, the original proposed Zhang and Shasha algorithm runs

in O(n4) time and O(n2) space for trees with n nodes. Demaine et al. was able to

reduce the complexity further to O(n3) time with the same amount of space [11].

However, recent results showed that a subcubic TED solution may be unlikely to

exist [9].
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Chapter 3

Approach

3.1 Proposed Method and Definitions

To develop a new, computational method of assessing student creativity through

their program code, we calculated and quantified the differences among student code

by converting them into abstract syntax trees and deriving the distances between

different programs. These tree distances were then averaged out so that the measure

can be used to compare the creativity in one student’s program with that in another

student’s program, both within the same coding problem. Normalizing the measure

allowed us to compare the creativity of student programs across different coding

problems, and it enabled us to generalize the proposed measure from the program

level to the student level so that we can assign students with a creativity score. With

the student creativity score, we could directly compare students in terms of their

creativity in programming.

There is no universal definition of what creativity is in computer programming,

yet. Even so, we still needed a definition of creativity in programming that would

help direct and focus our approach to creating a new measure. For the purpose

of this study, we defined creativity in programming as the difference of one
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student’s code from other students’ code for the same coding problem.

The more unique or distinct a student’s code is from his/her peers’ code, the more

creative it is. This definition was determined with consideration of the definition

of the originality dimension of creativity as discussed in Section 2.2. Our measure

for each student program should reflect this definition of creativity in programming

because it is an average of distance from the code to all other code from other students

for the same coding problem. By computing this value for each program, we would

be able to identify which programs are more unique or original and indirectly assess

creativity. While there may be some limitations regarding this approach to defining

and measuring programming creativity, we deemed this method as a good first step

towards objectively and computationally assessing creativity in programming.

Regarding the specific technologies utilized in this study, we used the JavaParser

library to automatically generate abstract syntax trees for student written Java pro-

grams from an introductory undergraduate computer science course, and then use

the Zhang Shasha algorithm to calculate the tree edit distance between each Java

program. In addition to a Java implementation, we developed a Python implemen-

tation using the built-in Python ast module to generate the abstract syntax trees

for student written programs from the Python dataset. We also implemented the

Zhang Shasha algorithm with the same logic in Python code to calculate the tree edit

distance between each student Python program.

We then defined our creativity measure as the z-score of the average of all

tree edit distances of a program compared to all other programs written

to address the same coding problem . We also defined student creativity as

the average of all z-scores assigned to the student’s submitted programs.

We determined the relationship of our proposed creativity measure and a student’s

programming performance by calculating the creativity measure for each program

and find the Pearson correlation coefficient between our proposed student creativity
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and the students’ quiz scores.

For the purposes of this study, we defined a “correct program” as one that re-

ceived full points after meeting all delineated requirements put forth by the instructor

of the course for each coding problem. On the other hand, we also defined an “in-

correct program” as one that lost any amount of points for failing to meet any or

all requirements put forth by the course instructor for the respective coding prob-

lem. For clarity, we defined “submitted programs” as the collection of computer

programs that contain both correct and incorrect programs from either a student or

all students, depending on the context used. To further understand the effect of in-

cluding creativity measures from incorrect problems on the relationship between the

creativity measure and student programming performance, we calculated the Pearson

correlation coefficient twice: once including the derived creativity measures from both

correct and incorrect programs and another including only creativity measures from

correct programs.

3.2 Creativity Measure Standardization

Since averages of tree edit distance can vary from one cohort of programs to another,

we calculated the z-scores of the average tree edit distances in order to later calcu-

late an overall creativity score representing a student’s creativity. Different coding

problems may require a longer or shorter total code length to fulfill all requirements

depending on the depth and complexity of each problem, and this difference in length

may cause the distribution of tree edit distances to vary more or less in magnitude

among problems. This issue invalidates any comparisons between two programs writ-

ten for different coding problems. By utilizing the z-score, we can make all calculated

distances and averages more uniform across different coding problems while still re-

taining the variance and distributions found within each coding problem cohort. This
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should also enable us to generalize the derived creativity measures from the program

level to the student level by calculating averages of the normalized tree edit distances

per student and setting that as the students’ creativity measure.

3.3 State or Trait Analysis

One way we assessed the validity of our creativity measure was by utilizing a state

or trait analysis. In a separate study that attempted to determine whether students

choosing to “game the system” could be better explained by state explanations or

trait explanations, Baker trained regression models that “attempt[ed] to predict each

student/lesson gaming frequency using a function on either the student, or the les-

son.” For context, state explanations are ones that “suggest that some aspect of the

student’s current state or situation guide a student to engage in that behavior.” On

the other hand, trait explanations are ones that “suggest that specific traits that a

student has – such as personality characteristics or preferred meta-cognitive strate-

gies – guide a student to engage in that behavior.” A regression model that predicted

gaming frequency with students as nominal variables was defined as a proxy for all

possible trait explanations, and one that predicted with lessons as nominal variables

was similarly defined as a proxy for all possible state explanations [5].

We conducted a similar analysis with our data: we used students as nominal

variables to develop a model representing the trait explanations, and coding problems

as nominal variables to train a regression model representing the state explanations.

We decided to conduct this analysis to determine whether our creativity measure is

better explained by state or trait explanations. If the trait explanations model fits the

data better than the state model, that would indicate that our measure assesses some

trait of the student and suggest that it would be worthwhile to continue exploring

our proposed measure to see if the trait it assesses is creativity. On the contrary, if
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the state explanations model fits the data better than the trait model, this would

indicate that our measure assesses some aspect of the coding problems being solved

and that our proposed method is far from measuring the programming creativity in

students. While this validation analysis does not prove that our measure assesses

creativity, it does show that our measure quantifies some trait of the students and

that it would be valuable to continue studying the creativity measure. It would also

help us eliminate the possibility that our measure is instead measuring some other

aspect such as the various coding problems found in our data.

In the Baker study, the regression models were compared to each other by their

R2 values and Bayesian Information Criterion (BiC) values. The regression model

with a higher R2 indicates that it explains the creativity measure better than the

other model. In addition, the model that returns a lower BiC value is typically

considered as the one that fits the data better. We considered these two measures

when comparing our models and decided whether our proposed creativity measure

can be better understood through state or trait explanations.

To account for the difference in the number of predictor variables between the

state and trait models, we also calculated an adjusted R2 for both of the models. The

equation to calculate this is defined as:

Adj.R2 = 1 − (1 −R2)
N − 1

N − k − 1

. By adjusting the R2 through penalization of models with a greater number of

predictors, we should be able to compare the two models in a fairer manner.

3.4 Creativity Measure Validation

In order to examine whether our new creativity measure is representative of each

program’s creativity, we validated the measure by curating a collection of pairs of
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submitted programs (with each pair having programs that belong to the same cod-

ing problem group) and had a professor, an experienced teaching assistant, and an

undergraduate student majoring in computer science decide which one of each pair is

more creative than another. We first observed how often the graders agreed with each

other by calculating the kappa coefficient of agreement to demonstrate the difficulty of

human graders agreeing on creativity in programming. We then determined whether

our tree edit distance based measure agreed with the human graders regarding which

one of each pair was more creative than the other. We conducted this system vs.

humans comparison by first creating one decision for every pair of programs by tak-

ing the majority vote among the human graders to represent the human judgement.

We then compared this aggregated human decision with the system’s judgement by

calculating the kappa coefficient once more to see how often the majority vote and

our proposed measure agreed with each other.

3.5 Creativity Measure Stability

Another issue to explore for our creativity measure is its stability across different cod-

ing languages. The collection of student-written code from the introductory computer

science course is composed only of Java programs. To explore whether the creativity

measure is consistent across different languages, we also used Python programs ob-

tained from a different university’s introductory computer science course to calculate

average tree edit distances and determined whether they have a similar correlation

to their respective quiz scores. Even though the coding questions in the Java dataset

may not be exactly the same as the ones in the Python dataset, the two sets should be

similar and comparable since they were both taken from introductory, undergraduate

level computer science courses that discussed similar topics.

To convert Python code into abstract syntax trees, we used Python’s built-in AST
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module to parse Python code. The Zhang Shasha algorithm was also implemented in

Python to calculate the tree edit distance between different programs.
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Chapter 4

Experiments

4.1 Dataset

4.1.1 Primary Dataset: Java

The primary data used in this study includes Java programs written by undergraduate

students who were enrolled and completed Dr. Davide Fossati’s “CS 170: Introduction

to Computer Science I” course taught at Emory University. The dataset includes data

from years 2016 to 2018, and it includes both Fall and Spring semesters. To ensure

student anonymity, each computer program has a corresponding Emory student ID

that was encrypted for de-identification. All metadata pertaining to each program was

stored in their file names. The metadata includes year, semester, course number, quiz

number, encrypted student ID, coding question, total points earned, and maximum

points possible. More descriptive statistics about the data can be found in Table 4.1.

There is a total of 19,284 unique student programs, each written by one of the 867

students in our dataset, after the preprocessing stage. Another table describing the

data after excluding the programs that did not earn maximum possible points before

calculating the z-scores can be found at Table 4.2. There is a total of 12,475 student

submitted programs after the omission of incorrect programs, or programs that did
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Measure Earned Score Maximum Possible Score Tree Edit Distance Z-score of Distance

Mean 7.98 10.00 78.13 0
SD 8.65 9.01 66.44 1
Min 0 5 0 -1.91
25% 5 5 43.20 -0.70
50% 6 10 63.69 -0.32
75% 10 10 90.77 0.39
Max 50 50 762.88 11.00

Table 4.1: Descriptive statistics of all student submitted programs (Java data)

Measure Tree Edit Distance Z-score of Distance

Mean 62.41 0
SD 48.06 1
Min 3.63 -1.35
25% 36.17 -0.66
50% 51.79 -0.34
75% 74.93 -0.29
Max 670.23 8.89

Table 4.2: Descriptive statistics of correct (full score) student submitted programs
(Java data)

not earn all possible points. These 12,475 programs were ones that the grading

professor or teaching assistant deemed to fulfill all program requirements for their

respective coding question. Since this data was taken from an introductory course,

the efficiency and time complexity of student code was not considered when grading.

The descriptive statistics on the data after aggregating by student is discussed later

in Section 4.4.

4.1.2 Java Sample Coding Question and Student Programs

An example of one of the problems that students needed to solve with Java code is

the following:

“Write a Java method upperCaseDiagonals(String s) that takes a string s and

returns a 2D array of strings, with each string containing a single character from s,

as shown in the examples below, where the elements on the diagonal are uppercase

and the elements not on the diagonal are lowercase.”
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Example:

upperCaseDiagonals("DAYS") returns

{ {"D", "a", "y", "S"},

{"d", "A", "Y", "s"},

{"d", "A", "Y", "s"},

{"D", "a", "y", "S"} }

Here is how one student solved the problem, earning 10 points out of 10 possible

points:

public class UpperCaseDiagonals {

// write your method here

public static void main(String[] args) {

//test your method here

printArray(upperCaseDiagonals("DAYS"));

printArray(upperCaseDiagonals("weeks"));

}

// prints a 2D array

public static void printArray(String[][] x) {

for (int i = 0; i < x.length; i++) {

for (int j = 0; j < x[i].length; j++) {

System.out.print(x[i][j] + " ");

}

System.out.println();

}

System.out.println();

}

public static String[][] upperCaseDiagonals(String s) {
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int n = s.length();

String[][] result = new String[n][n];

String sL = s.toLowerCase();

String sU = s.toUpperCase();

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

if (i + j == n - 1 || i == j) {

result[i][j] = sU.substring(j, j+1);

} else {

result[i][j] = sL.substring(j, j+1);

}

}

}

return result;

}

}

An example of how another student tackled the same problem and earned full

score is shown below:

public class UpperCaseDiagonals {

// write your method here

public static String [][] cased(String s) {

int n = s.length();

String [][] result = new String[n][n];

for(int row = 0; row < s.length(); row ++) {

for(int col = 0; col < s.length(); col++) {

if(row==col || (row+col) == n-1) {

result[row][col] = ("" + s.charAt(col)).toUpperCase();



20

}

else{

result[row][col] = ("" + s.charAt(col)).toLowerCase();

}

}

}

return result;

}

public static void main(String[] args) {

//test your method here

printArray(cased("DAYS"));

printArray(cased("weeks"));

}

// prints a 2D array

public static void printArray(String[][] x) {

for (int i = 0; i < x.length; i++) {

for (int j = 0; j < x[i].length; j++) {

System.out.print(x[i][j] + " ");

}

System.out.println();

}

System.out.println();

}

}

These examples highlighted how student solutions to the same coding problem can

differ from one another, but still earn full scores upon assessment. This also allowed

us to examine the creativity measure for only full score solutions when evaluating the
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Measure Earned Score Maximum Possible Score Tree Edit Distance Z-score of Distance

Mean 5.32 7.08 15.70 0
SD 2.96 2.22 14.11 1
Min 0 4 1.40 -1.43
25% 4 5 8.05 -0.58
50% 5 7 12.73 -0.28
75% 7 10 18.19 0.24
Max 13 13 158 7.42

Table 4.3: Descriptive statistics of all student submitted programs (Python data)

correlation between a student’s average creativity measure of full score solutions and

his/her programming performance.

4.1.3 Secondary Dataset: Python

To test our creativity measure’s stability across different coding languages, we used

Python programs written by undergraduate students who took Dr. Davide Fossati’s

introductory computer science course that he taught at Carnegie Mellon University’s

Qatar campus from 2013 to 2014. To ensure student anonymity, each computer

program has a corresponding student ID that was encrypted for de-identification. All

metadata pertaining to each program was stored in their file names. The meta data

includes year, semester, quiz/exam number, encrypted student ID, coding question,

total points earned, and maximum points possible. More descriptive statistics about

the data, which includes a total of 1,724 student programs after the preprocessing

stage, can be found in Table 4.3. Another table describing the data after excluding

the programs that did not earn maximum possible points can be found at Table 4.4.

There is a total of 931 student submitted programs after the omission of incorrect

programs. The descriptive statistics on the data after aggregating by student is

discussed later in Section 4.4.
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Measure Tree Edit Distance Z-score of Distance

Mean 11.86 0
SD 12.12 1
Min 0.12 -1.56
25% 4.71 -0.59
50% 9.42 -0.27
75% 15.36 0.29
Max 102.55 6.20

Table 4.4: Descriptive statistics of correct (full score) student submitted programs
(Python data)

4.1.4 Python Sample Coding Question and Student Programs

An example of one of the problems that students needed to solve with Python code

is the following:

“Write a Python function tinyTweet(t) that takes a string t. If the length of t is

longer than 10, the function returns the first 10 characters of t. If t is 7 characters

or shorter, the function concatenates a smiley string “:-)” to the end of t and returns

the result. Otherwise, the function returns t.”

Examples:

tinyTweet("good morning everyone") returns "good morni"

tinyTweet("hello") returns "hello:-)"

Here is how one student solved the problem, earning 10 points out of 10 possible

points:

def tinyTweet(t):

if 0<=len(t)<=7:

return t+":-)"

elif len(t)>10:

return t[:10]
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else:

return t

An example of how another student tackled the same problem and earned full

score is shown below:

def tinyTweet (t):

if len(t)>10:

result = t[:10]

elif len(t) <=7:

result = t + ":-)"

else:

result = t

return result

print tinyTweet ("good morning everyone")

print tinyTweet("hello")

4.2 Preprocessing

Student programs were first exported from their original source as text files that

included all student source codes. These were then converted into Java files in prepa-

ration for JavaParser processing into abstract syntax trees. Once converted, the Java

programs were sorted into separate folders according to which coding problem the

program was written to solve.

Within the collection of student code, some programs were written to correct, or

debug, “wrong” code. For these questions, students were given a common piece of

code that contained a few errors that students were asked to fix. Since all students

would ultimately submit code that may not differ from one another that much, we
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deemed it necessary to exclude these programs from our analysis.

Another subset of code that was excluded from the analysis were questions that

asked students to answer theoretical questions in addition to writing code. This

is because students may have earned full points on the theoretical component of the

question, but may have earned no points on the coding aspect. The creativity measure

calculated from these programs would most likely not have the same correlation with

the final assignment score compared to other code-only questions.

Due to the implementation of JavaParser, student code that had any issues with

compiling or other syntactical issues were also excluded from the final analysis. We

would not be able to use these programs especially if ASTs cannot be created for

them.

In regards to the Python code, we built a Python implementation with the same

logic and calculations used in the Java implementation of the creativity computation.

As such, we did not convert Python code into Java code. However, the same pre-

processing steps that were outlined above were done on the Python dataset as well,

including the exclusion of programs that students debugged, programs that included

theoretical components, and programs that could not be converted to abstract syntax

trees.

4.3 Tree Edit Distance Calculations

To compute the tree edit distance between two ASTs, a Java program written by a

former student assistant to Dr. Fossati was repurposed to automatically calculate

distances and averages within each coding problem folder based on the Zhang-Shasha

tree edit distance algorithm. For each computer program in every folder, a tree edit

distance was calculated between the AST of the program and the AST of one other

program in the folder. This was added to a total distance sum for each computer
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program, and once this was repeated for every other computer program in the folder,

a final average is calculated for each computer program. Once these averages were

computed, a comma-separated values (CSV) file was written for each problem folder,

with each row containing meta data about a computer program and its calculated

average distance. This process was completed for both Java and Python programs

with their respective implementations.

As discussed previously, we needed to normalize the average distances between

programs because different programming problems require varying lengths of code.

Longer code tends to have a greater distance than shorter code, so directly comparing

averages across different coding problems would not be accurate. The z-scores of

the average tree edit distances were calculated for each computer program within

their respective coding problem groups. The CSV files were imported into a Jupyter

notebook using Python and the pandas library, and the z-scores were calculated using

the statistical functions of the SciPy library. For the purpose of exploring the effect

of including or excluding non-perfect computer programs from the creativity measure

for a student, the above steps were repeated twice: once including all computer

programs available in the data, and the second including only solutions that earned

the maximum number of points possible.

4.4 Aggregate by Student

The z-scores were aggregated according to their corresponding student to find the

average z-score per student. The sum of all points earned by each student on every

computer program they submitted was also calculated, along with the sum of all

possible points each student could have earned for each submitted program. With

this information, a programming performance per student was derived by dividing the

student’s total earned points by the total maximum points the student could have
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Measure Avg. Distance Z-score Total Earned Score Total Possible Score Programming Performance

Mean 0.08 177.38 222.38 73.00%
SD 0.63 93.44 88.58 24.84%
Min -0.74 0 10 0%
25% -0.33 108.5 174 62.42%
50% -0.12 195 244 80.56%
75% 0.28 257 289 91.42%
Max 6.12 471 577 100%

Table 4.5: Descriptive statistics of all students (Java data)

Measure Avg. Distance Z-score Avg. Z-score of Full Score Programs Programming Performance

Mean 0.03 0.06 76.89%
SD 0.58 0.78 19.58%
Min -0.74 -0.95 7.97%
25% -0.35 -0.38 66.34%
50% -0.14 -0.17 82.24%
75% 0.20 0.16 91.97%
Max 6.12 7.43 100%

Table 4.6: Descriptive statistics of students with at least one full score submission
(Java data)

earned. We found that there was a total of 867 unique students in the dataset. Among

these students, there were 816 students who had at least one submitted program in

which they scored the maximum possible points. Descriptive statistics for the data

aggregated by student is outlined below in Table 4.5. Other descriptive statistics

regarding only students that had at least one submitted program that earned full

score can be found in Table 4.6. This subset of students was used for the second part

of the Pearson correlation analysis.

The same aggregation was done for the Python data, and similar descriptive statis-

tics regarding the included students can be found in Tables 4.7 and 4.7. We found

that there is a total of 160 unique students in the dataset. Among these students,

there are 150 students who had at least one submitted program in which they scored

the maximum possible points.
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Measure Avg. Distance Z-score Total Earned Score Total Possible Score Programming Performance

Mean 0.02 57.28 76.24 74.33%
SD 0.41 40.33 48.17 20.69%
Min -0.74 0 4 0%
25% -0.23 14 14 60.76%
50% -0.26 64 91 76.79%
75% 0.14 84.25 105 90.48%
Max 2.14 182 250 100%

Table 4.7: Descriptive statistics of all students (Python data)

Measure Avg. Distance Z-score Avg. Z-score of Full Score Programs Programming Performance

Mean 0 0.01 77.13%
SD 0.35 0.48 17.11%
Min -0.59 -0.98 33.33%
25% -0.24 -0.28 66.13%
50% -0.03 -0.02 77.76%
75% 0.11 0.20 90.68%
Max 1.25 2.73 100%

Table 4.8: Descriptive statistics of students with at least one full score submission
(Python data)

4.5 Examining Data Distributions

To ensure that the distributions of both submitted programs and only correct pro-

grams are similar, we graphed the distributions of the two sets of data in Figure 4.1a

and Figure 4.1b, respectively. In addition, we also graphed the distribution of the

proportion of correct programs over submitted programs by student in Figure 4.1c.

4.5.1 Measuring Clustering Tendency of Data

To further understand the distribution of the creativity measure in our data, we

calculated the Hopkins statistic to quantify the clustering tendency of the calculated

average z-scores. We calculated the Hopkins statistic twice: once with full dataset,

and the other with the subset containing only correct programs. The results of the

calculations can be found in Table 4.9. In both cases, the Hopkins statistic was found

to be extremely close to 1 (0.997 and 0.995, respectively). This indicates that the
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(a) Submitted programs

(b) Correct programs

(c) Proportion

Figure 4.1: Distributions of student submitted data after preprocessing
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Inclusion Criteria Hopkins Statistic
All Programs 0.997
Only Full Score Programs 0.995

Table 4.9: Hopkins statistics for measuring clustering tendency

data, with or without the inclusion of incorrect programs, is highly clustered.

4.6 Length vs. Uniqueness of Code

One concern regarding our proposed creativity measure is that it could simply assign

higher creativity measures to programs with either more lines of code or greater

overall length compared to other programs within the same coding problem group.

One way that we explored this possible issue was to examine some programs to see

whether programs with similar or the same total lines of code would earn noticeably

different creativity measures. When we examined some programs within a few coding

problems, we found that there were still programs with similar lengths that earned

very different creativity measures. Two programs that exemplify this observation are

included below. Note that both programs were similar in length (Program 1 has a

total of 17 lines of code while Program 2 has a total of 16 lines), but they earned

significantly different creativity measures. Program 1 had a creativity measure of

-0.852 while Program 2 had a creativity measure of 1.764. Note that these are z-

scores of distance averages, which indicate that these two programs were almost three

standard deviations away from each other. Other than these two programs, we still

found similar instances where programs with similar lengths of code had noticeably

different creativity measures. From these observations, we inferred that our measure

likely does not assign creativity measures solely based on length.

Program 1:
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public class PickAndCount {

// write your method here

public static int pickAndCount(String s, int k){

int result =0;

for (int i=0; i<s.length();i++){

if (s.charAt(k)==s.charAt(i)){

result++;

}

}

return result;

}

public static void main(String[] args) {

// test your method here

System.out.println(pickAndCount("fluffy",0));

System.out.println(pickAndCount("fluffy",2));

}

}

Program 2:

public class PickAndCount {

public static void main(String[] args) {

// test your method here

System.out.println(pickAndCount("fluffy",0));

System.out.println(pickAndCount("fluffy",2));

}

public static int pickAndCount(String s, int k) {
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int result = 0;

for (int i = 0; i<s.length(); i++) {

if(s.charAt(i) == s.charAt(k)) {

result += 1;

}

}

return result;

}

}

4.7 State or Trait Analysis

As explained in an earlier section, the state vs. trait analysis is used to determine

whether the creativity measure for each student can be better explained by state or

trait explanations. State explanations, which were represented by the coding problems

in this experiment, are ones that suggest that some aspect of the student’s current

situation guided a student to write the solution as he/she did. Trait explanations,

which were represented by the students as nominal variables in our experiment, are

ones that suggest that specific traits that a student has (which could be creativity)

guided a student to write the solution as he/she did. If our results here showed that

trait explanations are more likely to explain our creativity measure than state expla-

nations, this would be a good indication that our measure does indeed quantitatively

assess some trait of a student, and it may suggest that creativity or originality are

some of the few possible traits it could potentially measure.

To create a regression model to serve as a proxy for the trait explanations of our

creativity measure, we first consolidated all results of the tree edit distance calcu-

lations to one location. The total number of computer programs we had after the

preprocessing steps and distance calculations was 19,284. From here, we generated
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two new datasets: one that treated students as nominal variables and another that

treated coding problems as nominal variables. In both sets, the calculated creativity

scores assigned to each computer program were included.

In the student dataset, we created a column for every unique student ID. If a

program was associated with one student ID, the column corresponding to the student

ID would be given the value of 1, and all other student ID columns would be set to

0. Essentially, we one-hot encoded for the student ID variable. The coding problem

dataset was prepared in a similar fashion. This resulted with the student dataset

having a total of 867 predictor columns for the 867 unique students and the coding

problem dataset having a total of 101 predictor columns for the 101 unique coding

problems.

Once the datasets were ready, we trained two multiple regression models using

the linear regression model defined by the scikit-learn package in Python. The BiC

values were calculated using the statsmodels Python package. We also trained two

multiple regression models in R for a sanity check.

4.8 Validation of Student Creativity Measure

For this particular experiment, we wanted to demonstrate two particular notions. The

first is that it is difficult for human graders to consistently agree on assessing creativity.

This was shown in previous works when creativity experts had trouble agreeing with

each other on grading the creativity of several Scratch programs [24]. We expected

there to be discrepancy among the three human graders for this experiment as well.

The second observation we wanted to demonstrate through this experiment is whether

our proposed automatic computational method agreed with the human graders. If our

results did reflect consistent or frequent agreement with human graders, we believe

that this proposed creativity measure would be promising for further experimentation
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in the future.

To partially validate the student creativity measure, we decided to randomly select

30 separate pairs of programs, each pair from a different coding problem, and organize

them onto a survey for graders to read and decide which of each pair was more creative.

To isolate correctness of the program from biasing the human graders, only programs

that scored full points were considered for random selection.

30 coding problems were randomly selected from the 101 problems we had in our

data, and programs were separated into three equally sized bins based on their z-score

of the distance measure. From those bins, one program was randomly selected from

the lower group and another from the higher group to form the pair. Through random

selection from high and low clusters, we would more likely select programs with more

apparent differences to potentially aid and simplify the human graders’ decisions. If

a program with the maximum or minimum z-score of the coding problem group was

selected, we would randomly re-sample the appropriate cluster again to avoid using

an outlier in this experiment.

The chosen pairs of programs were copied onto a Google Forms survey to facilitate

the ranking process and data collection. Each pair was separated into a separate sec-

tion, and the coding question was listed prior to the two programs to brief the human

graders of each problem’s context so that they could make a better informed decision

of which student program solved the problem more creatively. The instructions at

the start of the survey informed the graders that the coding problems and programs

were taken from Dr. Davide Fossati’s CS 170 course from the years 2016-2018, and

that only programs that earned full points were displayed.
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4.9 Proposed Creativity Measure for Python Pro-

grams

Utilizing the built-in ast module in Python, we wrote code that could automatically

parse Python code into ASTs and calculate tree edit distances with the Zhang-Shasha

algorithm. This was done using the Java implementation as a basis, and therefore

the logic and calculations used in the Python implementation should be the same as

the ones found in the Java one. Student programs written in Python were processed

into ASTs and the same tree edit distance calculations were done for each program

as outlined above for the Java programs.

To determine if the creativity measure remains stable across coding languages, we

ran the same Pearson correlation analyses to see if we would still observe a negative

correlation between the creativity measure and the students’ programming perfor-

mance. We also replicated the state vs. trait analysis to see whether the results of

the Java code analysis would be similar, if not the same, as the Python code analysis.
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Chapter 5

Results

5.1 Student Creativity Measure vs. Programming

Performance

To explore the relationship between our proposed creativity measure and a student’s

academic performance, we calculated the Pearson correlation coefficient between the

student average z-score of tree edit distance and the average score earned by students

for the submitted problems. In this analysis, all data that was included after the

initial screening of excluding non-parseable and theoretical answers were used in the

correlation calculation. This included a total of 867 students in this analysis. The

final results are shown in Figure 5.1 and Table 5.1.

To better understand the effect of the inclusion of student submissions that did not

receive full score on the average z-score of tree edit distance per student, we repeated

the above analysis, but only using the average z-scores of computer programs that

earned the maximum number of points possible. In this analysis, a total of 50 students

were dropped due to them having no submissions that earned the maximum points

possible. The second Pearson correlation was calculated using the creativity measures

and programming performances of 817 students in total. The final results are shown
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Inclusion Criteria Pearson Coefficient P-value

All Programs -0.42 3.44 × 10−38

Only Full Score Programs -0.11 2.45 × 10−3

Table 5.1: Pearson correlation of student average distance vs. programming perfor-
mance (Java data)

in Figure 5.2 and Table 5.1.

From the figures and table, we observed that there was a statistically signifi-

cant negative correlation between the students’ average creativity measure and their

average scores of submissions. The negative correlation and statistical significance

persisted both with and without the inclusion of incorrect programs. This result

could be explained by the time-limited environment of quizzes, where students that

pursue more original approaches in one question could have less time overall to work

on other questions. With less time, students could perform worse on quizzes overall

compared to other students who submit more canonical solutions that may be simpler

and/or may take less time to write.

5.1.1 Evaluating Pearson Correlation by Quadrants

In addition, due to the wide range observed in the number of programs submitted

by each student after preprocessing the data, we deemed it necessary to recalculate

the Pearson correlation coefficient for student data separated by groups, which were

formed according to the number of submitted programs per student. We did this to try

to find a more specific explanation for why there was a negative correlation between

student programming performance and the student creativity measured through tree

edit distances. Upon generating the summary statistics of the number of submitted

programs by student, we found that the cutoff for the 25% group was 19 submitted

programs and that the cutoff for the 75% group was 27 submitted programs. Lists

of student IDs (one for students who had less than 19 submitted programs, one for
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Figure 5.1: Student average tree edit distance (including all eligible programs) vs.
programming performance (Java data)
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Figure 5.2: Student average tree edit distance (including only full score submissions)
vs. programming performance (Java data)
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Group Pearson Coefficient P-value

0-25% 0.001 0.99
25-75% -0.05 0.27
75-100% -0.11 0.06

Table 5.2: Pearson correlation of student average distance vs. programming perfor-
mance by groups ordered by total number of submitted programs

students who had more than 27 programs, and one for students who had between

19 to 27 programs) were created, and these lists were used to separate the data into

different groups for analysis.

We derived and plotted the correlations of the 0-25% group, the 25-75% group,

and the 75-100% group in Figures 5.3a, 5.3b, and 5.3c, respectively. The Pearson

coefficients and their calculated p-values are included in the Table 5.2. With these

results, we observed that the group of students who submitted more code overall had

a statistically significant negative correlation between students’ average creativity

measure and their programming performance. This finding may not have a clear

explanation, especially considering that this group of students includes students who

had almost all of their submitted programs pass the preprocessing stage and students

who took the course a second time and thereby having more submitted programs

overall than usual.

5.2 State vs. Trait Analysis

After training the multiple linear regression models, the R2, adjusted R2, and BiC

values were derived using the same datasets that were used to train the models. The

results of these calculations are summarized in Table 5.3.

After a negative R2 was observed, an additional sanity check was conducted on

this analysis by completing the same steps in R. These results, which include an

additional F-statistic and a corresponding p-value for each model, are organized in
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(a) 0-25% Group

(b) 25-75% Group

(c) 75-100% Group

Figure 5.3: Pearson correlation of student average tree edit distance vs. programming
performance by groups ordered by total number of submitted programs
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Model R2 Adj. R2 BiC

State (Coding Problem) −2.05 × 10−6 −5.27 × 10−3 56606.72
Trait (Student) 0.29 0.26 55722.19

Table 5.3: State vs. trait analysis with Python scikit-learn and statsmodels (Java
data)

Model R2 Adj. R2 F-statistic P-value BiC

State (Coding Problem) 1.32× 10−31 −5.27× 10−3 2.51× 10−29 1 55732.1
Trait (Student) 0.29 0.26 8.78 2.2× 10−16 56616.6

Table 5.4: State vs. trait analysis with R (Java data)

Table 5.4.

In this experiment, we observed that the state explanations model failed to fit

the data with an adjusted R2 value of −5.27 × 10−3 and had a p-value of 1. On the

other hand, we found that the trait explanations model fit the model better with an

adjusted R2 of 0.26 and a p-value of 2.2 × 10−16. This indicates that the trait ex-

planations explained our proposed creativity measure better than state explanations

and suggests that the measure assessed a trait (or multiple traits) of the students.

Since creativity or originality could be one of these traits, it would be interesting to

further evaluate this creativity measure to examine whether it does indeed measure

a student’s creativity or another student trait.

5.3 Validation of Creativity Measure through Rank-

ing

5.3.1 Ranking Agreement Among Human Graders

Once all three human graders (including a professor, an undergraduate teaching as-

sistant, and an undergraduate computer science student) submitted their creativity

rankings of each of the 30 pairs of programs given, we calculated the Fleiss’ kappa

inter-rater agreement coefficient to evaluate the agreement level among our human
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graders. We did this using the “irr” R package. Our findings of this analysis is

arranged in Table 5.5.

From this analysis, we demonstrated that even among humans, it is difficult to

determine which programs are more creative than others. This is similar to the issues

that were discussed in Kovalkov et al.’s works where conclusive evidence of predicting

creativity with machine learning models could not be obtained due to human expert

disagreement [24].

5.3.2 Ranking Agreement Between Humans and System

In addition, we wanted to evaluate how well our creativity measure agreed with our

human graders. Instead of simply adding the measure’s ranking of the same 30

program pairs to the previous analysis, we deemed it more interesting to evaluate the

agreement between our proposed measure and the majority vote of the three human

graders. Specifically, we defined the majority vote’s ranking of creativity between

two programs as the program code that two or more human graders ranked as the

one with higher creativity. Once we aggregated the rankings of all human graders

to one choice for every pair, we then calculated Cohen’s kappa inter-rater agreement

coefficient to evaluate the level of agreement between our creativity measure and the

human judgement as represented by the majority vote. The results of this analysis is

also summarized in Table 5.5.

As discussed in McHugh’s discussion of inter-rater reliability, we can interpret the

0.533 kappa statistic value as indicating moderate agreement between our proposed

creativity measure and the majority vote of human graders [31]. This is already

better than the inter-rater agreement found among the human graders themselves,

and this suggests that our measure, while imperfect, has the potential to be a good

representation of a group’s opinion when ranking programs in programming creativity.
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Experiment Kappa Statistic P-value

Human vs. Human vs. Human -0.0714 0.498
Human (Majority Vote) vs. Creativity Measure 0.533 0.00341

Table 5.5: Kappa coefficients of inter-rater agreement from ranking creativity by
human graders and creativity measure

5.4 Python Creativity Measure Analysis

5.4.1 Pearson Correlation in Python

Like the Java counterpart earlier, we calculated the Pearson correlation coefficient

between the student average z-score of tree edit distance and the student programming

performance for the Python data. In this analysis, all data that was included after

the initial screening of excluding non-parseable and theoretical answers were used in

the correlation calculation. This included a total of 160 students in this analysis. The

final results are shown in Figure 5.4 and Table 5.6.

We repeated the analysis but only used the average z-scores of computer programs

that earned the maximum number of points possible. In this analysis, a total of 10

students were dropped due to them having no submissions that earned the maximum

points possible. The second Pearson correlation was calculated using the creativity

measures and programming performances of 150 students in total. The final results

are shown in Figure 5.5 and Table 5.6.

From the figures and table, we observed that there is a statistically significant neg-

ative correlation between the students’ average creativity measure and their average

scores of submissions. However, the negative correlation was no longer statistically

significant after the exclusion of incorrect programs. This could be attributed to the

significantly lower sample size of the Python data or to a possibility that the measure

is not stable across coding languages.
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Inclusion Criteria Pearson Coefficient P-value

All Programs -0.43 1.28 × 10−8

Only Full Score Programs -0.04 0.66

Table 5.6: Pearson correlation of student average distance vs. programming perfor-
mance (Python data)

Figure 5.4: Student average tree edit distance (including all eligible programs) vs.
programming performance (Python data)
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Figure 5.5: Student average tree edit distance (including only full score submissions)
vs. programming performance (Python data)
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Model R2 Adj. R2 BiC

State (Coding Problem) −6.23 × 10−4 -0.02 5153.33
Trait (Student) 0.15 0.07 5799.72

Table 5.7: State vs. trait analysis with Python scikit-learn and statsmodels (Python
data)

Model R2 Adj. R2 F-statistic P-value BiC

State (Coding Problem) 5.30× 10−31 -0.02 2.56× 10−29 1 5160.79
Trait (Student) 0.15 0.07 1.76 8.92× 10−8 5807.17

Table 5.8: State vs. trait analysis with R (Python data)

5.4.2 State vs. Trait Analysis in Python

After training the multiple linear regression models on the Python data, the R2,

adjusted R2, and BiC values were derived using the same datasets that were used to

train the models. The results of these calculations are summarized in Table 5.3.

After a negative R2 was observed again in the Python analysis for the Python data,

an additional sanity check was conducted on this analysis by completing the same

steps in R. These results, which include an additional F-statistic and a corresponding

p-value for each model, are organized in Table 5.4.

In this experiment, we once again observed that the state explanations model

failed to fit the data with an adjusted R2 value of -0.02 and had a p-value of 1. On

the other hand, we also found again that the trait explanations model fit the model

better with an adjusted R2 of 0.07 and a p-value of 8.92 × 10−8. This indicated that

the trait explanations explained our proposed creativity measure better than state

explanations and suggested that the measure assessed a trait (or multiple traits) of

the students. This result suggested that the proposed creativity measure is stable

across coding languages and that the creativity measure is better explained by trait

explanations than state explanations, which further bolstered the earlier indication

that the proposed measure assessed a trait (or multiple traits), one of which could be

creativity.
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Chapter 6

Discussion

6.1 Negative Correlation between Average Tree

Edit Distance and Programming Performance

Considering the statistically significant negative correlation between students’ average

tree edit distance and students’ programming performance, this observation could be

explained by the fact that these student programs were written under a time-limited

environment through quizzes. With the extra time pressure, students who scored

lower overall on quizzes might have received a lower distance average because they

might have been less efficient in answering questions under those conditions. Students

who performed better on quizzes were likely to be familiar with the concepts discussed

and taught in class, and it is possible that they were able to implement correct

solutions with less lines of code within the short amount of time allocated to them

during the quizzes. The data could suggest that students who take a more creative

or original approach in programming may perform worse overall in a class under time

restrictions. However, we cannot confidently argue this with our results until further

validation of our proposed creativity measure is conducted.

Upon further inspection of the Pearson correlation coefficients within groups based
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on total number of submitted programs, we observed that the only correlation that

was near statistical significance was in the 75-100% groups. The students represented

in this group were ones who either had a majority (if not all) of their programs pass

the preprocessing stage, or took the CS 170 course twice after not performing well

after their first semester. This negative correlation can be explained either by the

explanation proposed in the previous paragraph or by the fact that students who

retake the course would likely have a lower programming performance due to their

worse first semester. Not enough analysis was done to determine which hypothesis

was the most likely case, but further data exploration could reveal some interesting

results.

6.2 Trait over State Explanations for Creativity

Measure

Comparing both the R2 and adjusted R2 values in both the Python and R anal-

yses, the model trained with the students as nominal variables was able to fit the

creativity measure data better than the other model, with the student/trait model

scoring an adjusted R2 of 0.26 and the coding question/state model scoring an ad-

justed R2 of −5.27 × 10−3 as determined by the R analysis. This suggests that the

calculated creativity measure may be better understood through trait explanations

rather than state explanations. This also may indicate that, in order to understand

why students’ programs get the creativity measure that is calculated for them, it

could be more fruitful for future work to investigate trait explanations rather than

state explanations.

In the Baker study, the other measure that was used to compare the two models

was the BiC value [5]. Note that even though the state model had a lower BiC value

of 55732.1 (versus the trait model’s 56616.6 BiC value) as shown by the R analysis,
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we did not consider this as an indicator that the state model better fits the data

because of it’s F-statistic’s p-value of 1. The extremely high p-value indicates that

the model was not significant and that only the trait model somewhat fits the data.

6.3 Moderate Agreement Between Humans and

Creativity Measure

When we calculated the kappa coefficients of inter-rater agreement for our creativity

ranking experiment, we observed that, among the human graders, there was poor

agreement when trying to rank one of two programs within a pair as more creative.

This was evident as the Fleiss’ kappa statistic for the three graders was a negative

value, which is interpreted as poor agreement. This supports earlier observations of

similar studies where human graders failed to reach unanimous decisions on grading

creativity in Scratch programs [24]. Since there is much debate about creativity

in general, there is also much difficulty for humans to agree on what is considered

creative. Even so, we still conducted this experiment in hopes of validating our

proposed creativity measure.

Instead of measuring inter-rater agreement of the creativity measure’s ranking

along with the other three human graders’ rankings, we deemed it more productive

and interesting to instead measure the agreement between the majority vote of the

human graders and the creativity measure. After calculating the kappa statistic

between these two, we found that there was a moderate agreement (indicated by

a 0.533 kappa value) with a p-value of 0.00341. Even though the human graders

could not agree among themselves on the creativity of programs, we observed here

that the majority vote of a group of graders had a moderate agreement with the

creativity measure’s ranking of creativity in programs. While this does not necessarily

indicate that our creativity measure does indeed assess programming creativity, this
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result demonstrated that our proposed measure has some promise in representing the

majority vote of ranking creativity in a panel of graders. With a larger sample size

and group of graders, we could potentially further validate our creativity measure.

6.4 Creativity Measure Stability

6.4.1 Negative Correlation in Python Data between Average

Tree Edit Distance and Programming Performance

After repeating the Pearson correlation analysis on the Python data, we found that

there was still a statistically significant negative correlation between students’ average

creativity measure and their programming performance. This finding provides some

support for the hypothesis that our proposed creativity measure is indeed stable across

different coding languages. This should be expected since the implementation of logic

and calculations in the Java-based system is the same as the ones implemented in the

Python-based system. While this does not provide any further insight regarding the

reason behind the negative correlation, this result is still important since it suggests

that this study could potentially be replicated in a different dataset that contains

program code in a different coding language.

One surprising result from this experiment was that, unlike the Pearson correla-

tion analysis conducted on the Java data, there was no statistical significance in the

negative correlation when incorrect programs were excluded from the analysis. While

this could indicate that our proposed creativity measure is not stable across coding

langauges, we believe that this was most likely due to the significantly smaller sample

size of full score submissions in the Python data vs. the Java data. The Python data

had a total of 931 full score programs, while the Java data had a total of 12,475 full

score programs.
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6.4.2 Trait over State Explanations for Creativity Measure

in Python

Comparing both the R2 and adjusted R2 values in both the Python and R analyses,

the model trained with the students as nominal variables was able to fit the creativity

measure data better than the other model, with the student/trait model scoring

an adjusted R2 of 0.07 and the coding question/state model scoring an adjusted

R2 of -0.02 as determined by the R analysis. This supports the inference made

earlier for the Java data and suggests that the calculated creativity measure may be

better understood through trait explanations rather than state explanations. This

also indicates that the trait explanations for the creativity measure is stable across

coding languages.

Since the state explanations model in the Python data analysis once again earned

a p-value of 1, we opted to not consider the BiC value to compare the two multiple

linear regression models. The state explanations model still does not fit the data,

and even though the adjusted R2 of 0.07 for the Python data is lower than the 0.25

adjusted R2 of the Java data, the trait explanations model still fitted the data better

than the state explanations model.



52

Chapter 7

Conclusion

Through the experiments conducted in this study, we demonstrated that our proposed

creativity measure had a statistically significant negative correlation with a university

student’s programming performance under time constraints. We reasoned that this

is reflective of the time-limited nature of quizzes because of how “non-canonical”

or “creative” programs could take more time to complete and thereby reducing a

student’s overall time to work on other questions on the same quiz. While we had

statistically significant results, we believe that further exploratory data analysis is

required before any conclusions or interpretations can be supported by these results.

We also observed that the creativity measure was better explained through trait

explanations rather than state explanations. In other words, our data showed that

the variation in the creativity measure is better understood through the differences in

students’ characteristics or traits rather than the differences among the quiz coding

problems that the students needed to solve. While this finding is derived from a

very high-level view of state or trait explanations, we believe that this demonstrates

that our proposed creativity measure could indeed measure student creativity since

creativity is considered as a trait and is potentially the one trait (or one of many

traits) that the creativity measure measured in a program.
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Our results reinforced the notion that creativity, even in programming, is an in-

tricate, complex concept that is not easily agreed upon between two or more humans.

We demonstrated that there was poor agreement among three different human graders

when they were tasked with ranking one program of two programs as more creative

for 30 different pairs of program code. However, when we transformed the rankings

of the three graders into one majority vote ranking and compared that to the creativ-

ity measure’s ranking, we found that there was a statistically significant, moderate

agreement between the two. Even though it is difficult for human graders to agree

among themselves, we demonstrated that the creativity measure has the potential to

represent the collective opinion of a group of graders through majority vote in ranking

creativity in programming.

When replicating a few of our experiments on the Python data, we found similar

results compared to the results from the Java data. We still observed a statistically

significant negative correlation between students’ average creativity measure and stu-

dents’ programming performance when considering all available data, and we still

found that the trait explanations better explained our creativity measure compared

to the state explanations. Even though there was a discrepancy of findings when

analyzing only full score programs in the Pearson correlation analysis for the Python

data, we believe that this is likely due to the low Python data sample size compared

to the larger Java dataset.

Overall, our results indicate that the creativity measure, which utilizes abstract

syntax trees and tree edit distances, is a good candidate for computationally assessing

a student’s creativity through their code. While further experimentation is needed

to bolster the measure’s validity of accurately assessing creativity, this study acts as

a starting point for computational creativity research to start conducting extensive

studies on the use of abstract syntax trees and tree edit distances as a standardized

method of assessing student creativity in the classroom. Our results also suggest that
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this study can be replicated on datasets of different coding languages as well. If future

work continues to show promise for our proposed measure, it could help instructors

to better adapt their computational courses to each of their student’s creativity level.

7.1 Limitations and Future Work

One of the caveats of our study was that our data was exclusively taken from a

university course’s quizzes. Not only should future works build upon this study’s

experiments, but replicating this study with data from either other courses of different

education levels or simply just from different contexts (such as course homework) will

be crucial in proving that this computational method is trustworthy and accurate

universally.

To follow up from this study, further exploratory data analysis should be con-

ducted to better understand the negative correlation between the proposed student

creativity measure and student programming performance. Since some of the anal-

ysis done in this study aggregated the data by student, and students who took the

course more than once were not excluded from the study, it was not clear why the stu-

dents who had more submitted programs overall contributed the most to the negative

correlation between the proposed creativity and programming performance.

Another limitation regarding our approach itself is whether our measure simply

assigns higher values to programs that are longer and less efficient than others. While

we did show that this was not always the case in Section 4.6, we did not completely

rule out the possibility that our measure may be heavily influenced by length of code.

While this study calculates creativity in programming only through code distance,

future studies can attempt to penalize longer code to reduce the effect of length on

the creativity measure.

Something that would have been interesting to explore is the clustering of the data
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based on the creativity measure and other variables such as quiz scores. By clustering

the data, we would be able to find groups of programs that might lead to some

interesting findings after examining them to find patterns of similarity among clusters

or even consistent differences between different clusters. It may be worthwhile to

cluster programs within coding problems and observe for any patterns, such as groups

of students consistently being clustered together across different coding problems.

One principal experiment that should be done following this study is further vali-

dation of the measure. There should be a larger pool of human graders than we had

for our study, and a more complex ranking of multiple programs should be conducted

with the graders instead of our simple ranking between two programs at a time. Even

though it has been a challenge to do so in the past due to disagreement among human

graders themselves [24, 23], it will still be necessary to complete these studies in order

for the proposed computational method to be more dependable as a measure.
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