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Abstract 

 

Determination of Repulsive Force Law of Jammed Emulsion Droplets through Minimization 

By Christopher Tre Presley 

 

The repulsive force due to surface tension, acting between jammed emulsion droplets, is equivalent 

to  𝑓𝑖𝑗 = 𝐹0 (
𝛿𝑟𝑖𝑗

𝑑𝑖𝑗
⁄ )

𝛽𝑓

where the overlap between particles i and j, 𝛿𝑟𝑖𝑗
, and the center to center 

distance between particles i and j, 𝑑𝑖𝑗, can be easily found using experimental data. However, the 

force scaling factor 𝐹0—a force scaling factor—and the power law 𝛽𝑓 are not well known. Using 

experimental data where emulsion droplets underwent a jamming transition and experienced both 

gravitational and repulsive forces, a created minimization program was used to determine that   

𝐹0 = 3.3 ± 0.1 µ𝑁 and 𝛽𝑓 = 1.20 ± 0.05  are the scaling factor and power law, respectively, that 

are most consistent with the experimental data. The power law is consistent with previous 

literature, but the scaling factor is not. This could be due to the use of a subset, rather than the full 

set, of experimental data points. 
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Determination of Repulsive Force Law of Jammed Emulsion Droplets 

through Minimization 

 
Christopher T. Presley and Eric R. Weeks 
 

Abstract: 

The repulsive force due to surface tension, acting between jammed emulsion droplets, is equivalent 

to 𝑓𝑖𝑗 = 𝐹0 (𝛿𝑟𝑖𝑗
/𝑑𝑖𝑗)

𝛽𝑓
 where the overlap between particles i and j, 𝛿𝑟𝑖𝑗

, and the center to center 

distance between particles i and j, 𝑑𝑖𝑗, can be easily found using experimental data. However, the 

force scaling factor 𝐹0—a force scaling factor—and the power law 𝛽𝑓 are not well known. Using 

experimental data where emulsion droplets underwent a jamming transition and experienced both 

gravitational and repulsive forces, a created minimization program was used to determine that  

𝐹0 = 3.3 ± 0.1 µ𝑁 and 𝛽𝑓 = 1.20 ± 0.05 are the scaling factor and power law, respectively, that 

are most consistent with the experimental data. The power law is consistent with previous 

literature, but the scaling factor is not. This could be due to the use of a subset, rather than the full 

set, of experimental data points. 

Introduction: 

The saying that two things mix “like oil and water” refers to the tendency of a mixture of oil and 

water to separate into two distinct layers. However, adding dish soap to such a mixture results in 

a mixture where the oil droplets do not coalesce and form what is known as an emulsion. An 

emulsion is a combination of two or more, though normally just two, immiscible liquids that 

creates a liquid-to-liquid phase separation (i.e. a fluid system in which liquid droplets are 

distributed within another liquid).
1
 Within an emulsion, one liquid is in the dispersed phase while 

the other is in the continuous phase; the boundary between the two phases is known as the 
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“interface”.
2
 The oil-in-water emulsion described above is probably the most well-known type of 

emulsion.  Milk, vinaigrettes, mayonnaise, and butter are also examples of emulsions. When 

dispersed in a continuous phase liquid, the oil molecules at the surface of the oil droplet do not 

have other dispersed phase oil molecules on all sides. These surface molecules, therefore, cohere 

strongly to other surface molecules, creating a surface tension. The surface tension results in the 

oil droplets (hereafter, referred to as “emulsion droplets”) having a spherical shape as it lowers the 

internal pressure of the droplet. Surface tension, 𝛾, can also be thought of as the surface energy, or 

the “energy cost” for the dispersed phase to have an interface with the continuous phase. 

Emulsifiers are used to lower the surface energy between the interfaces of the dispersed and 

continuous phases. In the oil-in-water example, the dish soap was used as an emulsifier, lowering 

the surface energy of the emulsion droplets so they do not coalesce.  
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The experimental data analyzed within this paper is from an experiment performed by 

Janna Lowensohn and Eric Weeks using an oil-in-water emulsion. This experimental set-up is a 

new model system for studying droplet physics as 

it allowed for forces inside the system to be 

measured and allowed.  In the experiment, 882 

emulsion droplets were produced using a standard 

co-flow micro-fluidic technique wherein the 

continuous phase was a mixture of water and 

“Fairy” dish soap. These droplets were placed into 

a 135 µm thick and roughly 2200 to 2300 µm wide 

chamber that was tilted 28˚ from horizontal. 

Figure 1 shows a schematic of both the side and 

top view of the oil droplets. As can be seen from 

the top view, the data can be viewed as quasi-two-

dimensional. Because the density of the oil droplets (0.83 
𝑔

𝑐𝑚3⁄ ) is less than the density of water 

(1.00 
𝑔

𝑐𝑚3⁄ ),  the oil droplets were buoyant, and, because the chamber was tilted, the droplets 

floated to the upper end of the chamber, pushing against one another. As the emulsion droplets 

pushed against each other, the packing fraction (i.e. the number of emulsion droplets within a given 

space) increased, causing a jamming transition.
3
 Jamming gives rise to a system of emulsion 

droplets that behave more like a solid than a liquid (e.g. the system can no longer undergo 

microscopic reconfiguration in the presence of an external force).
3, 4

 While in this jamming 

transition, the internal pressure of the droplets increased, so the emulsion droplets formed quasi-

 

 

Figure 1. This figure shows both a top and side view of the 

emulsion droplets from the experimental data where the black 

lines are the walls of chamber. The gray slides on the side view 

depict the glass sides on the top and bottom of the chamber. 
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two-dimensional circles in order to lower this internal pressure. But, to reduce the gravitational 

potential, the droplets deformed slightly, resulting in a repulsive force between the particles. 

Therefore, the droplets experienced both gravitational forces as well as forces from other droplets 

(hereafter, referred to as the “repulsive force”). When the net force experienced by each droplet 

was zero, the emulsion droplets reached an equilibrium point where the droplets were motionless. 

It was at this point that a low magnification microscope lens was used to take many pictures of the 

droplets which were stitched together to create an image of all the emulsion droplets within the 

chamber. This image was used to gather both x-position and y-position data for the centers of each 

droplet as well as the radius of each droplet. The gravitational force on each emulsion droplet can 

be easily determined; however, the repulsive force between the droplets due to jamming is not well 

known. Desmond et al. determined a repulsive force law that is dependent upon the contact length 

of the interface of the two droplets and the modified radius of curvature. 
4 However, it is much 

easier to think about a force law that is just dependent upon the distance between the particles, or 

a central force. Therefore, in order to determine an approximate force law for the quasi-two-

dimension system of emulsion droplets, Desmond et al. found the average force the emulsion 

droplets experienced and plotted it as a function of the separation of the droplets. This allowed for 

an approximate repulsive force law to be determined, and it was found to be 𝑓𝑖𝑗 = 𝐹0 (𝛿𝑟𝑖𝑗
/𝑑𝑖𝑗)

𝛽𝑓
 

where 𝐹0 is the force scaling factor, 𝛿𝑟𝑖𝑗
 is the overlap between particles i and j, 𝑑𝑖𝑗 is the sum of 

the radii of the particles i and j, and 𝛽𝑓 is the power law for the force between the particles. The 

overlap between particle i and particle j can be found using 𝛿𝑟𝑖𝑗 = 𝑟𝑖𝑗 − 𝑑𝑖𝑗 where 𝑟𝑖𝑗 is the center-

to-center distance of between particle i and particle j. Therefore, because the data contains position 

data and radii data for each particle, both 𝛿𝑟𝑖𝑗
 and 𝑑𝑖𝑗 can be easily calculated. However, the scaling 
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factor 𝐹0 and power law 𝛽𝑓 are not well known and have not been extensively studied. Desmond 

et al. have previously studied the approximate force law. However, they studied this by finding the 

average repulsive forces two emulsion droplets were feeling and plotted it against there separation. 

This allowed them to determine an approximate force law from the empirical force law. The object 

of this paper is to determine the values for both the scaling factor and the power law for the 

repulsive force law using minimization techniques in Python. 

 
Methods and Results: 

In order to determine the scaling factor and power law for the repulsive force expression, the 

motions of the emulsion droplets were simulated based on differing force laws (i.e. force laws with 

different scaling factors and power laws). If the droplets were allowed to move based on the forces 

present, they would move to a new equilibrium point based on the force law. The force law that 

resulted in the least movement, characterized by the lowest error value, is the force law that is most 

consistent with the repulsive force present within the experimental data since the data was taken 

when the emulsion droplets were motionless. Because the system was at equilibrium when the data 

was recorded, the potential energy was minimized. So, in order to find the most consistent force 

law, I knew I could minimize the potential energy of the emulsion data experiencing different force 

laws. Because the data is quasi-two-dimensional, I only needed to minimize the potential energy 

over just the x-position and y-position.  

In order to minimize the potential energy of the experimental data, I first needed a 

minimization routine that worked. I decided to use Python for my project, since the open-source 

Python library SciPy contains a minimization function, scipy.optimize.minimize, that allows the 

user to input a pre-defined function to minimize. This built-in minimization program is equipped 

with many different minimization techniques, including techniques based on the Simplex 
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algorithm and the nonlinear conjugate gradient algorithm. I arbitrarily decided to use the Nelder-

Mead technique, a technique based on the Simplex algorithm, as I was familiar with the Simplex 

algorithm. In using this built-in minimization program, I had no clue whether the function would 

be reliable in giving a minimum geometry for a system of particles. So, to determine whether or 

not scipy.optimize.minimize could be trusted to use for the minimization of the experimental data, 

I used this function to minimize a known force law, the Coulomb force law, as a test.  

I. Testing Built-in Minimization Function using the Coulomb Force 

The Coulomb force, also known as the electrostatic force, is the attractive or repulsive force 

on particles based on their electric charge. So, if two positively-charged particles are subjected to 

electrostatic forces and allowed to move, the charges will move as far away from each other as 

possible. This movement, in turn, minimizes the electrostatic potential energy of the two particles. 

The electrostatic potential energy between particles is equal to  𝑈𝐸 = 𝑘
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 , where 𝑘 is the 

Coulomb constant,  𝑞𝑖 and 𝑞𝑗 are the charges of particle i and particle j respectively, and 𝑟𝑖𝑗 is the 

distance between particles i and j. In order to simulate the electrostatic potential energy, boundary 

conditions were needed. However, there was a problem with the Coulomb force: it required 

boundary conditions. If boundary conditions 

were not present, the particles would have 

moved to infinity. I, also, thought about 

creating a “box” out of which the particles 

could not escape. However, the edges of the 

box would have been crowded by the 

particles when the potential energy was 

minimized, telling me nothing about whether 

 

 

Figure 2. This figure shows a schematic of the periodic boundary 

conditions. The square outlined in black is the unit cell, and the 

red particle leaving the top of the unit cell reappears at the bottom 

of the cell. 
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the built-in function was reliable. 

Therefore, periodic boundary conditions, 

illustrated in figure 2, were used. 

Periodic boundary conditions are used to 

approximate a large system by using a 

“unit cell”. When an object passes 

through one side of the unit cell, it re-

appears on the opposite side of the unit 

cell.  Using periodic boundary conditions 

allowed me to predict the minimum 

geometry of the system, based on 

geometry, before actually minimizing the system in order to visually understand the results. Using 

the electrostatic potential energy with periodic boundary conditions, the built-in 

scipy.optimize.minimize was used to simulate the motion of n-randomly placed particles on a l x 

l lattice. I began with a system of two positively, equally charged particles. Because of the periodic 

boundary conditions, the furthest the two particles could get from each other occured along a 

diagonal line with a distance of 
𝑙

√2
. This geometry is depicted in figure 3. The minimization routine 

resulted in just such a geometry. After minimizing this system approximately ten times and getting 

the predicted geometry, I decided to move to a system of three positively, equally charged particles. 

I predicted that, because of the periodic boundary conditions, the resulting minimum geometry 

should contain two particles on the diagonal a distance 
𝑙

√2
 apart with the remaining particle a 

distance 
𝑙

2
 from both of the diagonal particles. This geometry is shown in figure 4 and is the result 

I received after most minimizations. However, it was in doing this simulation that the built-in 

Figure 3. This figure shows the resulting geometry of a 

simulation of a system of two equally, positively charged 

particles using the built-in minimization routine, 

scipy.optimize.minimize.  The lattice is thirteen unit-lengths 

wide and thirteen unit-lengths long. The distance between the 

particles is 9.1924 unit-lengths. Because 
13

√2
= 9.1924, this is the 

expected geometry for a system of two equally, positively 

charged particles.. 
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minimization routine didn’t reliably give 

my predicted minimum geometry. 

Approximately 20% to 25% of the 

minimizations resulted in the geometry 

depicted in figure 5. The resulting potential 

energy of the geometry in figure 5 is greater 

than the potential energy of geometry in 

figure 4. The horizontal distance of the far-

right particle is 6.50 unit-lengths. Because 

the particles in the vertical line are a 

distance of 6.50 unit-lengths long, the 

distance between each of the particles in the 

horizontal line to the vertical line is 

√6.502 + 3.252 = 7.267. Because the 

particle in the far right minimized to a 

distance of 6.50 away from the other two 

particles, I believed the geometry in figure 5 

was a local minimum that was a sticking 

point for the built-in minimization program. 

Therefore, I reasoned that the minimization 

program was minimizing the system, either 

to a local minimum or a global minimum, 

and was confident that the minimization 

Figure 4. This figure shows the resulting geometry of a 

simulation of a system of three equally, positively charged 

particles using the built-in minimization routine, 

scipy.optimize.minimize.  The lattice is thirteen unit-lengths 

wide and thirteen unit-lengths long. The distance between the 

particles along the diagonal is 9.1924 unit-lengths while the 

distance of the upper-left particle to the other two particles is 

6.50 unit-lengths. Because 
13

√2
= 9.1924 and 

13

2
= 6.50, this is 

the expected geometry for a system of three equally, positively 

charged particles. 

Figure 5. This figure shows the resulting geometry of a 

simulation of a system of three equally, positively charged 

particles using the built-in minimization routine, 

scipy.optimize.minimize.  The lattice is thirteen unit-lengths 

wide and thirteen unit-lengths long. The distance between the 

particles along the straight line is 6.50 unit-lengths while the 

distance of the right most particle to the other two particles is 

approximately 7.267 unit lengths. 
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program was, in fact, doing what I expected it to. Therefore, I advanced to a system containing 10 

positively, equally charged particles. For this system, I expected the geometry to be hexagonally 

packed, (i.e. the particles should rearrange themselves in a geometry that resulted in a hexagon). 

Unfortunately, this was not the result. Every time I minimized the system, the minimization routine 

gave a different resulting geometry with a different potential energy. The built-in minimization 

function didn’t seem to be moving the particles to a geometry that resulted in one particular value 

for the potential energy. Three of many different final geometries of the ten particle system using 

the scipy.optimize.minimize function are shown in figure 6. These results are obviously not 

minima. Looking specifically at the geometry on the far right of figure 6, it is easy to see that the 

potential energy of the system could be lowered by spreading out the particles. Therefore, I decided 

I could not rely on the scipy.optimize.minimize function to minimize the experimental data.  

II. Creating a Minimization Program and Testing it using the Coulomb Force 

Because I couldn’t rely on the SciPy minimization function, I created my own 

minimization routine. The basic principle behind my minimization routine was to find the potential 

energy of the original geometry of the system, take a random particle in the system and move it in 

any direction around a circle of radius r (creating a new geometry), calculate the potential energy 

of the new geometry, and keep the geometry—either the original geometry or the new geometry—

 

Figure 6. This figure shows three different resulting geometry of a simulation of a system of ten equally, positively charged particles 

using the built-in minimization routine, scipy.optimize.minimize.  
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that resulted in the lower potential energy. Repeating 

these actions until a certain difference between the 

potential energy was reached would theoretically result 

in the minimum geometry being found. To determine if 

my created minimization program (CMP) was reliable, 

I decided to test it, again using periodic boundary 

conditions and the electrostatic potential energy with 

systems containing varying numbers of particles. 

Starting with a system of two particles, my CMP 

consistently gave the expected minimum geometry 

shown in figure 3. After running the simulations and 

receiving the same results approximately ten to fifteen 

times, I began simulations using a three-particle 

system.  Instead of resulting in two different 

geometries, my CMP resulted in the minimum geometry depicted in figure 4 every time. This 

allowed me to confidently advance to a system of ten particles. The minimization of the ten-particle 

system using my CMP resulted in either the geometry depicted in or in a geometry very similar to 

figure 7. The potential energies were also all very similar. After running simulations on this system 

over ten times and reliably obtaining the geometry in figure 7, I decided to try a system of fifty 

positively, equally charged particles. Every minimization of a system of fifty equally, positively 

charged particles using my CMP resulted in both a minimum geometry and a minimum potential 

energy similar to that depicted in figure 8. The last test for my CMP was on a system where one 

of the n positively charged particles had a charge that was much larger than the charges of the 

 

Figure 7. This figure shows the minimum geometry, 

along with the extended unit cell, of a simulation of a 

system of ten equally, positively charged particles 

using my created minimization program (CMP).  
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other 𝑛 − 1 equally, positively charged particles. I knew the 𝑛 − 1 particles would want to be as 

far away from the “large charge” as possible, so the “small charge” particles would be willing to 

sacrifice being closer to each other to be away from the large charge particle. After running 

simulations of ten-particle and twenty-particle systems for which the large charge particle had 𝑞 =

50 and the remaining particles had 𝑞 = 1, the minimum geometries matched my expectations, and 

the minimizations consistently resulted in minima that had similar potential energy values and 

geometries as those depicted in figure 9.  

III. Minimizing the Experimental Data  

 After testing against the Coulomb force and 

gaining confidence that my CMP was reliable, I 

decided to begin running minimizations on the 

experimental emulsion droplet data. But, I first needed 

an expression for the potential energy of the system of 

emulsion droplets before I could do this.  It is known 

that the potential energy is related to force by the expression 𝑈 = − ∫ �⃗�
𝑟

𝑟𝑒𝑓
∙ 𝑑𝑟. So, using this 

expression and integrating over the overlap variable 𝛿𝑟𝑖𝑗
, the potential energy based on the 

repulsive force was determined to be 𝑈𝑟 = ∑ ∑
𝐹0

𝛽𝑓+1
(

𝛿𝑟𝑖𝑗

𝛽𝑓+1

𝑑𝑖𝑗
𝛽𝑓

)𝑛
𝑗=1

𝑛
𝑖=1  with units µJ. This repulsive 

potential energy is summed only over particles i and j if those particles touch, as the repulsive 

force between particles that do not touch is zero. The emulsion droplets also experienced 

gravitational potential energy. The gravitational force on each emulsion droplet i is equal to 𝐹𝑔,𝑖 =

∆𝜌𝑉𝑖𝑔𝑠𝑖𝑛(28˚) where ∆𝜌 is the difference of the density of oil from the density of water, 𝑔 is the 

gravitational acceleration constant, and 𝑉𝑖 is the volume of emulsion droplet i. The 𝑠𝑖𝑛(28˚) term 

 

Figure 8. This figure shows the minimum geometry 

of a simulation of a system of fifty equally, positively 

charged particles using my created minimization 

program (CMP).  
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is to account for the tilt of the chamber. Shown in figure 

1, the emulsion droplets can be approximated as quasi-

cylinders for which 𝑉𝑖 = 𝜋𝑑𝑖
2ℎ where ℎ is the thickness 

of the chamber (135 µm) and 𝑑𝑖 is the radius of the 

emulsion droplets. Allowing the potential energy of 

original y-position for each particle to be zero, any 

deviation where the y-value decreases should cause a 

more negative potential energy (lowering the potential 

energy) and any deviation where the y-value increases 

should cause a more positive potential energy (increasing 

the potential energy). Therefore, the potential energy due 

to gravity is 𝑈𝑔 = ∑ ∆𝜌𝑔𝑉𝑖(𝑦𝑖 − 𝑦0,𝑖)𝑛
𝑖=1 𝑠𝑖𝑛(28˚) in 

units µJ, where 𝑦𝑖 is the y-position of emulsion droplet i 

when the potential energy is calculated and 𝑦0,𝑖 is the 

initial y-position of emulsion droplet i. Based on how I 

defined the gravitational potential energy, the total 

potential energy of the system of emulsion droplets is 

𝑈𝑇 = 𝑈𝑝 + 𝑈𝑔. I, also, need to set new boundary 

conditions as periodic boundary conditions were not 

present within the experimental data. So, I stopped using 

periodic boundary conditions and “froze” the particles 

surrounding the edge of the subset of particles. This 

 

 

 

Figure 9. This figure shows the minimum geometry, along 

with the extended unit cell, of a simulation of a system of 
ten particles and twenty particles using my created 

minimization program (CMP). In these systems, the blue 

particle has a charge 𝑞 = 50 and each of the red particles 

has charge 𝑞 = 1.  
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essentially created a square box on which the simulation was run that the particles could not escape. 

Now that the potential energy expression for the system is known and a new set of boundary 

conditions are set, the experimental emulsion droplet data can be minimized. Because of the long 

run time for the minimization of the full emulsion droplet data set, I decided to take a subset of the 

overall set of experimental data, containing 32 emulsion droplets with x-positions between 0 to 

1500 µm and y-positions between 10,000 µm to 11,500 µm. I chose this set of data as the bounds 

of the data are square which allowed me to more easily analyze the results of the minimization 

through plotting. A subset of the data can be minimized to find the repulsive force law because all 

emulsion droplets in the data set experience the same repulsive force law.  Desmond et al., with 

the same experimental design, found that values between 2.0 µN to 2.4 µN for the scaling factor 

𝐹0 and 1.15 to 1.30 for the power law 𝛽𝑓 were the most consistent for their data set. Therefore, I 

decided to set the scaling factor equal to 2 µN and vary the power law from 0.5 to 2 in increments 

of 0.5, allowing me to find the error for a larger 

range of power laws. With each resulting minimum 

geometry, I calculated the error in distance of the 

minimized data points from the original data points. 

To do so, I calculated the distance that each data 

point moved, added each of these distances, and 

divided by the number of power laws I used. 

Finding the error this way “punishes” the power laws that may result in one or a few particles 

moving a great distance rather than all of the particles moving by an average distance. The graph 

of the error versus power-law is depicted in figure 10. As can be seen, the error is quadratic with 

respect to the power law, and the minimum error seems to occur somewhere between the values 

 

Figure 10. This figure shows the error, in µm, versus 

the power law used for the minimization.  
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1.0 and 1.5. So, the original subset of data was minimized again with the scaling factor value again 

equal to 2.0 µN but with power-law values 

varying between 1.1 and 1.5 increasing by 0.1. 

The graph of the error versus power-law for this 

set of simulations is depicted in figure 11 and 

shows that the minimum value is somewhere 

between 1.1 and 1.3. So, I repeated the 

minimization on the original data subset with 

power law values between 1.1 and 1.3 increasing 

by 0.025. The results of multiple simulations are shown in figure 12. When running simulations 

with power laws this precise, noise becomes a factor. The quadratic behavior of the error as a 

function of the power law exponent is lost, and it is harder to determine which value is the true 

value of the power law. The minimum values for the graphs in figure 12 range between 1.15 and 

1.25 with 1.20 being the value that was resulted in the minimum error the majority of the 

simulations run.  A power law value 𝛽𝑓 = 1.20 ± 0.05 gives the lowest error value and is, 

therefore, the power-law most consistent with the experimental data.  

Using 𝛽𝑓 = 1.20 as the power law, the subset of experimental data was minimized varying 

the scaling factor. Again, Desmond et al. found scaling factors between 2.0 µN and 2.4 µN to be 

 

Figure 11. This figure shows the error, in µm, versus the 

power law graph of the minimum geometry from the 

original geometry of the subset of data versus the power law 

used for the simulation.  

 

Figure 12. This figure shows the error versus power law graph— where the error is the error in distance with units µm—after running the 

simulation on each of the varying power laws three times. The minimum values range between 1.15 and 1.25. Therefore, the minimum power 

law is 𝛽𝑓 = 1.20 ± 0.05. 
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most consistent with their data with the same 

experimental design. Therefore, minimizations 

were run with scaling factors between 1.0 µN and 

4.0 µN, increasing the value by 0.5 µN each 

minimization. The error versus scaling factor graph 

is shown in figure 13. As can be seen, the minimum 

error occurred with scaling factors between 3.0 µN 

and 4.0 µN. So, simulations were repeated with 

scaling factors between 3.0 µN and 4.0 µN, 

increasing the value by 0.1 µN each simulation.  This 

was repeated in excess of twenty times. Two of the 

resulting error versus scaling factor graphs are 

depicted in figure 14. Again, noise is present in the 

graph. In each of the times the minimization program 

was looped using different scaling factors between 

3.0 µN and 4.0 µN, the results were almost exactly 

as depicted in this figure. From figure 14, it can be 

inferred that a value of 𝐹0 = 3.3 ± 0.1 µN is the 

scaling factor most consistent with the experimental 

data since the scaling factor that results in the 

minimum error changes from 3.2 µN to 3.4 µN. 

Discussion and Conclusion: 

 

 

 
Figure 14. This figure shows the error versus scaling factor 

graph— where the error is the error in distance with units 

µm—after running the simulation on each of the varying 

scaling factor two times. The minimum values range between 

3.2 µN and 3.4 µN. Therefore, the minimum scaling factor is 

equal to 𝐹0 = 3.3 ± 0.1 µN.  

 

Figure 13. This figure shows the error in µm of the minimum 

geometry from the original geometry of the subset of data 

versus the scaling factor used for the simulation.  
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In summary, the experimental data from Janna Lowensohn and Eric Weeks was analyzed to 

determine the scaling factor and power law of the repulsive force expression for a quasi-two-

dimensional system of jammed emulsions. A built-in SciPy minimization function was tested using 

the Coulomb force to determine whether it could be reliably used on the experimental data set. 

When it was determined that it was not reliable, I created a minimization program, and it was 

determined, after testing my created minimization program, that it was reliable enough to use on 

the experimental data. A subset of 32 out of 882 emulsion droplet data sets were used in the 

minimization process.  

As reported above, 𝐹0 = 3.3 ± 0.1 and 𝛽𝑓 =

1.20 ± 0.05 are the scaling factor and power law 

found to be most consistent with the subset of 

experimental data. Figure 15 shows the original 

geometry and the minimized geometry of a simulation 

using 𝛽𝑓 = 1.20 and 𝐹0 = 3.3 µ𝑁. In Janna 

Lowensohn’s experiment, the droplets had a size ratio 

of 1.42. In determining the scaling factor and power 

law for a data set with the same size ratio, Desmond et 

al. found 𝐹0 = 2.4 ± 0.1 µ𝑁  and 𝛽𝑓 = 1.19 ± 0.02 to 

be the scaling factor and power law most consistent with their data set. Therefore, the power law 

found in my project is consistent with the power law found by Desmond et al. The scaling force 

factor determined in my project is roughly 40% larger than what was determined by Desmond et 

al. If the full data set were used in my analysis, I do think that the scaling factor would also be 

consistent with literature. However, it is also important to remember that the data set used in my 

 

Figure 15. This figure shows the original subset of 

data (red particles) and the minimized subset of 

data (blue particles) using 𝛽𝑓 = 1.20 and 𝐹0 =

3.3 µ𝑁. The error for the resulting geometry is 

28.583 µm.  
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analysis was not the data set from Desmond et. al. Therefore, the different data sets could have 

slightly different parameters, such as the ratio of dish soap to water, that could’ve affected the 

values for the approximate repulsive force law. Looking at the error graphs, the error is around 

28.0 µm to 30.0 µm. On average, the radii of each of the emulsion droplets are anywhere between 

around 90.0 µm to 125 µm. So, the average distance moved for each of the emulsion droplets is 

less than one-third to one-fourth of the average emulsion droplet radius. Therefore, I believe that 

my scaling factor and power law are good approximations for the overall scaling factor and power 

law of a quasi-two-dimensional system of jammed emulsion droplets. 
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