Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory
University, I hereby grant to Emory University and its agents the non-exclusive license to
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or
hereafter now, including display on the World Wide Web. I understand that I may select some
access restrictions as part of the online submission of this thesis. I retain all ownership rights to
the copyright of the thesis. I also retain the right to use in future works (such as articles or books)
all or part of this thesis.

Christopher Tre Presley April 1, 2021



Determination of Repulsive Force Law of Jammed Emulsion Droplets through Minimization

Christopher Tre Presley

Dr. Eric R. Weeks

Adviser

Department of Physics

Dr. Eric R. Weeks

Adviser

Dr. Stefan Boettcher

Committee Member

Dr. Jacobus De Roode

Committee Member

2021



Determination of Repulsive Force Law of Jammed Emulsion Droplets through Minimization

Christopher Tre Presley

Dr. Eric R. Weeks

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Department of Physics

2021



Abstract

Determination of Repulsive Force Law of Jammed Emulsion Droplets through Minimization
By Christopher Tre Presley

The repulsive force due to surface tension, acting between jammed emulsion droplets, is equivalent

Br
to fij = Fo < Tij dij) where the overlap between particles i and j, Sri]., and the center to center

distance between particles i and j, d;;, can be easily found using experimental data. However, the

ij>
force scaling factor Fy—a force scaling factor—and the power law B are not well known. Using
experimental data where emulsion droplets underwent a jamming transition and experienced both
gravitational and repulsive forces, a created minimization program was used to determine that
Fo =3.3 1+ 0.1 uN and By = 1.20 £ 0.05 are the scaling factor and power law, respectively, that
are most consistent with the experimental data. The power law is consistent with previous
literature, but the scaling factor is not. This could be due to the use of a subset, rather than the full

set, of experimental data points.
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Determination of Repulsive Force Law of Jammed Emulsion Droplets
through Minimization

Christopher T. Presley and Eric R. Weeks

Abstract:

The repulsive force due to surface tension, acting between jammed emulsion droplets, is equivalent

By .
to fij = Fo (Srij /d; j) where the overlap between particles i and j, 5n.j, and the center to center

distance between particles 7 and j, d;;, can be easily found using experimental data. However, the

ij>
force scaling factor F—a force scaling factor—and the power law f; are not well known. Using
experimental data where emulsion droplets underwent a jamming transition and experienced both
gravitational and repulsive forces, a created minimization program was used to determine that
Fo =3.3 1+ 0.1 uN and Br = 1.20 & 0.05 are the scaling factor and power law, respectively, that
are most consistent with the experimental data. The power law is consistent with previous
literature, but the scaling factor is not. This could be due to the use of a subset, rather than the full
set, of experimental data points.

Introduction:

The saying that two things mix “like oil and water” refers to the tendency of a mixture of oil and
water to separate into two distinct layers. However, adding dish soap to such a mixture results in
a mixture where the oil droplets do not coalesce and form what is known as an emulsion. An

emulsion is a combination of two or more, though normally just two, immiscible liquids that

creates a liquid-to-liquid phase separation (i.e. a fluid system in which liquid droplets are

distributed within another liquid).1 Within an emulsion, one liquid is in the dispersed phase while

the other is in the continuous phase; the boundary between the two phases is known as the



“interface”.> The oil-in-water emulsion described above is probably the most well-known type of

emulsion. Milk, vinaigrettes, mayonnaise, and butter are also examples of emulsions. When
dispersed in a continuous phase liquid, the oil molecules at the surface of the oil droplet do not
have other dispersed phase oil molecules on all sides. These surface molecules, therefore, cohere
strongly to other surface molecules, creating a surface tension. The surface tension results in the
oil droplets (hereafter, referred to as “emulsion droplets”) having a spherical shape as it lowers the
internal pressure of the droplet. Surface tension, y, can also be thought of as the surface energy, or
the “energy cost” for the dispersed phase to have an interface with the continuous phase.
Emulsifiers are used to lower the surface energy between the interfaces of the dispersed and
continuous phases. In the oil-in-water example, the dish soap was used as an emulsifier, lowering

the surface energy of the emulsion droplets so they do not coalesce.



The experimental data analyzed within this paper is from an experiment performed by

Janna Lowensohn and Eric Weeks using an oil-in-water emulsion. This experimental set-up is a

new model system for studying droplet physics as
it allowed for forces inside the system to be
measured and allowed. In the experiment, 882
emulsion droplets were produced using a standard
co-flow micro-fluidic technique wherein the
continuous phase was a mixture of water and
“Fairy” dish soap. These droplets were placed into
a 135 pm thick and roughly 2200 to 2300 pm wide
chamber that was tilted 28° from horizontal.
Figure 1 shows a schematic of both the side and

top view of the oil droplets. As can be seen from

the top view, the data can be viewed as quasi-two-

Top View

Side View

Figure 1. This figure shows both a top and side view of the
emulsion droplets from the experimental data where the black
lines are the walls of chamber. The gray slides on the side view
depict the alass sides on the top and bottom of the chamber.

dimensional. Because the density of the oil droplets (0.83 g / cm3) is less than the density of water

1.00 9 / 3}, the oil droplets were buoyant, and, because the chamber was tilted, the droplets
cm

floated to the upper end of the chamber, pushing against one another. As the emulsion droplets

pushed against each other, the packing fraction (i.e. the number of emulsion droplets within a given

space) increased, causing a jamming transition.> Jamming gives rise to a system of emulsion

droplets that behave more like a solid than a liquid (e.g. the system can no longer undergo

microscopic reconfiguration in the presence of an external force).3’ 4 While in this jamming

transition, the internal pressure of the droplets increased, so the emulsion droplets formed quasi-



two-dimensional circles in order to lower this internal pressure. But, to reduce the gravitational
potential, the droplets deformed slightly, resulting in a repulsive force between the particles.
Therefore, the droplets experienced both gravitational forces as well as forces from other droplets
(hereafter, referred to as the “repulsive force”). When the net force experienced by each droplet
was zero, the emulsion droplets reached an equilibrium point where the droplets were motionless.
It was at this point that a low magnification microscope lens was used to take many pictures of the
droplets which were stitched together to create an image of all the emulsion droplets within the
chamber. This image was used to gather both x-position and y-position data for the centers of each
droplet as well as the radius of each droplet. The gravitational force on each emulsion droplet can
be easily determined; however, the repulsive force between the droplets due to jamming is not well

known. Desmond et al. determined a repulsive force law that is dependent upon the contact length
of the interface of the two droplets and the modified radius of curvature. 4 However, it is much
easier to think about a force law that is just dependent upon the distance between the particles, or
a central force. Therefore, in order to determine an approximate force law for the quasi-two-

dimension system of emulsion droplets, Desmond et al. found the average force the emulsion

droplets experienced and plotted it as a function of the separation of the droplets. This allowed for
: . : . Br
an approximate repulsive force law to be determined, and it was found to be f;; = F (6Tij /d; j)

where F is the force scaling factor, 5rl-,- is the overlap between particles i and j, d;; is the sum of

the radii of the particles i and j, and B is the power law for the force between the particles. The
overlap between particle i and particle j can be found using 87;; = r;; — d;; where 7y is the center-

to-center distance of between particle i and particle j. Therefore, because the data contains position

data and radii data for each particle, both 5nj and d;; can be easily calculated. However, the scaling



factor Fy and power law S are not well known and have not been extensively studied. Desmond

et al. have previously studied the approximate force law. However, they studied this by finding the
average repulsive forces two emulsion droplets were feeling and plotted it against there separation.
This allowed them to determine an approximate force law from the empirical force law. The object
of this paper is to determine the values for both the scaling factor and the power law for the

repulsive force law using minimization techniques in Python.

Methods and Results:

In order to determine the scaling factor and power law for the repulsive force expression, the
motions of the emulsion droplets were simulated based on differing force laws (i.e. force laws with
different scaling factors and power laws). If the droplets were allowed to move based on the forces
present, they would move to a new equilibrium point based on the force law. The force law that
resulted in the least movement, characterized by the lowest error value, is the force law that is most
consistent with the repulsive force present within the experimental data since the data was taken
when the emulsion droplets were motionless. Because the system was at equilibrium when the data
was recorded, the potential energy was minimized. So, in order to find the most consistent force
law, I knew I could minimize the potential energy of the emulsion data experiencing different force
laws. Because the data is quasi-two-dimensional, I only needed to minimize the potential energy
over just the x-position and y-position.

In order to minimize the potential energy of the experimental data, I first needed a
minimization routine that worked. I decided to use Python for my project, since the open-source
Python library SciPy contains a minimization function, scipy.optimize.minimize, that allows the
user to input a pre-defined function to minimize. This built-in minimization program is equipped

with many different minimization techniques, including techniques based on the Simplex



algorithm and the nonlinear conjugate gradient algorithm. I arbitrarily decided to use the Nelder-
Mead technique, a technique based on the Simplex algorithm, as I was familiar with the Simplex
algorithm. In using this built-in minimization program, I had no clue whether the function would
be reliable in giving a minimum geometry for a system of particles. So, to determine whether or
not scipy.optimize.minimize could be trusted to use for the minimization of the experimental data,
I used this function to minimize a known force law, the Coulomb force law, as a test.
I.  Testing Built-in Minimization Function using the Coulomb Force

The Coulomb force, also known as the electrostatic force, is the attractive or repulsive force
on particles based on their electric charge. So, if two positively-charged particles are subjected to
electrostatic forces and allowed to move, the charges will move as far away from each other as

possible. This movement, in turn, minimizes the electrostatic potential energy of the two particles.

qiq;

Tij

The electrostatic potential energy between particles is equal to Uy = k , where k is the

Coulomb constant, q; and q; are the charges of particle / and particle j respectively, and 7;; is the
distance between particles i and j. In order to simulate the electrostatic potential energy, boundary
conditions were needed. However, there was a problem with the Coulomb force: it required

boundary conditions. If boundary conditions

o
® -

were not present, the particles would have

moved to infinity. I, also, thought about

oo o

creating a “box” out of which the particles

*—0—- 00—
-0 00—
.__’.7,

could not escape. However, the edges of the

o -

box would have been crowded by the ‘ &

particles when the potential energy was  Figure 2. This figure shows a schematic of the periodic boundary
conditions. The square outlined in black is the unit cell, and the
red particle leaving the top of the unit cell reappears at the bottom

minimized, telling me nothing about whether ¢ ino cen.



the built-in function was reliable.
Built-in Minimization of Two Positive Particle System

Therefore, periodic boundary conditions, 17
illustrated 1n figure 2, were used. 101 .
Periodic boundary conditions are used to “]
approximate a large system by using a N
4]
“unit cell”. When an object passes ] .
through one side of the unit cell, it re- 0

o 2 4 & 8 W 1
appears on the opposite side of the unit Figure 3. This figure shows the resulting geometry of a
simulation of a system of two equally, positively charged

. L o particles using the  built-in  minimization  routine,
cell. Using periodic boundary conditions scipy.optimize.minimize. The lattice is thirteen unit-lengths
wide and thirteen unit-lengths long. The distance between the

. . . o i ; 13 _ i
allowed me to predlct the minimum particles is 9.1924 unit-lengths. Because\/—i—9.1924, this is the

expected geometry for a system of two equally, positively

harged particles..
geometry of the system, based on charged particles

geometry, before actually minimizing the system in order to visually understand the results. Using
the electrostatic potential energy with periodic boundary conditions, the built-in
scipy.optimize.minimize was used to simulate the motion of n-randomly placed particles on a / x
[ lattice. I began with a system of two positively, equally charged particles. Because of the periodic

boundary conditions, the furthest the two particles could get from each other occured along a

diagonal line with a distance of \/LE This geometry is depicted in figure 3. The minimization routine

resulted in just such a geometry. After minimizing this system approximately ten times and getting
the predicted geometry, I decided to move to a system of three positively, equally charged particles.

I predicted that, because of the periodic boundary conditions, the resulting minimum geometry

should contain two particles on the diagonal a distance % apart with the remaining particle a

distance é from both of the diagonal particles. This geometry is shown in figure 4 and is the result

I received after most minimizations. However, it was in doing this simulation that the built-in



minimization routine didn’t reliably give

my predicted minimum  geometry.

Approximately 20% to 25% of the
minimizations resulted in the geometry
depicted in figure 5. The resulting potential
energy of the geometry in figure 5 is greater
than the potential energy of geometry in
figure 4. The horizontal distance of the far-
right particle is 6.50 unit-lengths. Because
the particles in the vertical line are a
distance of 6.50 unit-lengths long, the

distance between each of the particles in the

horizontal line to the wvertical line is

Vv6.502%2 4+ 3.252 = 7.267. Because the

particle in the far right minimized to a
distance of 6.50 away from the other two
particles, I believed the geometry in figure 5
was a local minimum that was a sticking
point for the built-in minimization program.
Therefore, I reasoned that the minimization
program was minimizing the system, either
to a local minimum or a global minimum,

and was confident that the minimization

Built-in Minimization of Three Positive Particle System
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Figure 4. This figure shows the resulting geometry of a
simulation of a system of three equally, positively charged
particles  using the built-in  minimization  routine,
scipy.optimize.minimize. The lattice is thirteen unit-lengths
wide and thirteen unit-lengths long. The distance between the
particles along the diagonal is 9.1924 unit-lengths while the
distance of the upper-left particle to the other two particles is
6.50 unit-lengths. Because % =9.1924 and g = 6.50, this is

the expected geometry for a system of three equally, positively
charged particles.

Built-in Minimization of Three Positive Particle System
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Figure 5. This figure shows the resulting geometry of a
simulation of a system of three equally, positively charged
particles  using the  built-in  minimization  routine,
scipy.optimize.minimize. The lattice is thirteen unit-lengths
wide and thirteen unit-lengths long. The distance between the
particles along the straight line is 6.50 unit-lengths while the
distance of the right most particle to the other two particles is
approximately 7.267 unit lengths.



program was, in fact, doing what I expected it to. Therefore, I advanced to a system containing 10
positively, equally charged particles. For this system, I expected the geometry to be hexagonally
packed, (i.e. the particles should rearrange themselves in a geometry that resulted in a hexagon).
Unfortunately, this was not the result. Every time I minimized the system, the minimization routine
gave a different resulting geometry with a different potential energy. The built-in minimization
function didn’t seem to be moving the particles to a geometry that resulted in one particular value
for the potential energy. Three of many different final geometries of the ten particle system using
the scipy.optimize.minimize function are shown in figure 6. These results are obviously not
minima. Looking specifically at the geometry on the far right of figure 6, it is easy to see that the
potential energy of the system could be lowered by spreading out the particles. Therefore, I decided
I could not rely on the scipy.optimize.minimize function to minimize the experimental data.
II.  Creating a Minimization Program and Testing it using the Coulomb Force

Because I couldn’t rely on the SciPy minimization function, I created my own
minimization routine. The basic principle behind my minimization routine was to find the potential
energy of the original geometry of the system, take a random particle in the system and move it in
any direction around a circle of radius » (creating a new geometry), calculate the potential energy

of the new geometry, and keep the geometry—either the original geometry or the new geometry—

Built-:ig Minimization of Two Positive Particle System BUilt'ziQ Minimization of Two Positive Particle System  pyilt-in Minimization of Two Positive Particle System
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Figure 6. This figure shows three different resulting geometry of a simulation of a system of ten equally, positively charged particles
using the built-in minimization routine, scipy.optimize.minimize.
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that resulted in the lower potential energy. Repeating
these actions until a certain difference between the
potential energy was reached would theoretically result
in the minimum geometry being found. To determine if
my created minimization program (CMP) was reliable,
I decided to test it, again using periodic boundary
conditions and the electrostatic potential energy with
systems containing varying numbers of particles.
Starting with a system of two particles, my CMP
consistently gave the expected minimum geometry
shown in figure 3. After running the simulations and
receiving the same results approximately ten to fifteen
times, I began simulations using a three-particle

system.  Instead of resulting in two different

10

Ssijmulation of 10 Particle System using CMP
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Figure 7. This figure shows the minimum geometry,
along with the extended unit cell, of a simulation of a
system of ten equally, positively charged particles
using my created minimization program (CMP).

geometries, my CMP resulted in the minimum geometry depicted in figure 4 every time. This

allowed me to confidently advance to a system of ten particles. The minimization of the ten-particle

system using my CMP resulted in either the geometry depicted in or in a geometry very similar to

figure 7. The potential energies were also all very similar. After running simulations on this system

over ten times and reliably obtaining the geometry in figure 7, I decided to try a system of fifty

positively, equally charged particles. Every minimization of a system of fifty equally, positively

charged particles using my CMP resulted in both a minimum geometry and a minimum potential

energy similar to that depicted in figure 8. The last test for my CMP was on a system where one

of the n positively charged particles had a charge that was much larger than the charges of the
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other n — 1 equally, positively charged particles. I knew the n — 1 particles would want to be as
far away from the “large charge” as possible, so the “small charge” particles would be willing to
sacrifice being closer to each other to be away from the large charge particle. After running
simulations of ten-particle and twenty-particle systems for which the large charge particle had g =
50 and the remaining particles had g = 1, the minimum geometries matched my expectations, and
the minimizations consistently resulted in minima that had similar potential energy values and

. . . Simulation of 50 Particle System using CMP
geometries as those depicted in figure 9. 180 ! J

III.  Minimizing the Experimental Data 0Dieg o © © o o
L] L] L] [ ] L] L]
After testing against the Coulomb force and e o o o o o
L] L] [ ] L] L]
gaining confidence that my CMP was reliable, I ° :
L] L] L ] L] L ] [ ]

20
decided to begin running minimizations on the

experimental emulsion droplet data. But, I first needed v wom
Figure 8. This figure shows the minimum geometry
of a simulation of a system of fifty equally, positively
charged particles using my created minimization

emulsion droplets before I could do this. It is known  Program (CMP).

an expression for the potential energy of the system of

that the potential energy is related to force by the expression U = — f:e y F-dr. So, using this

expression and integrating over the overlap variable 6rij, the potential energy based on the

Fo
Br+1

Brt+1
L |
repulsive force was determined to be U, = ¥ X714 ( i ) with units pJ. This repulsive

d;Pr

potential energy is summed only over particles i and j if those particles touch, as the repulsive
force between particles that do not touch is zero. The emulsion droplets also experienced
gravitational potential energy. The gravitational force on each emulsion droplet i is equal to F,; ; =
ApV;gsin(28%) where Ap is the difference of the density of oil from the density of water, g is the

gravitational acceleration constant, and V; is the volume of emulsion droplet i. The sin(28°) term



is to account for the tilt of the chamber. Shown in figure
1, the emulsion droplets can be approximated as quasi-
cylinders for which V; = ndizh where h is the thickness
of the chamber (135 pum) and d; is the radius of the
emulsion droplets. Allowing the potential energy of
original y-position for each particle to be zero, any
deviation where the y-value decreases should cause a
more negative potential energy (lowering the potential
energy) and any deviation where the y-value increases
should cause a more positive potential energy (increasing
the potential energy). Therefore, the potential energy due
to gravity is U, = Y ApgVi(y; — o) sin(28°) in
units pJ, where y; is the y-position of emulsion droplet i
when the potential energy is calculated and y,; is the
initial y-position of emulsion droplet i. Based on how I
defined the gravitational potential energy, the total

potential energy of the system of emulsion droplets is

Ur U, +U,. 1, also, need to set new boundary
conditions as periodic boundary conditions were not
present within the experimental data. So, I stopped using

periodic boundary conditions and “froze” the particles

surrounding the edge of the subset of particles. This
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Figure 9. This figure shows the minimum geometry, along
with the extended unit cell, of a simulation of a system of
ten particles and twenty particles using my created
minimization program (CMP). In these systems, the blue
particle has a charge g = 50 and each of the red particles
has charge q = 1.
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essentially created a square box on which the simulation was run that the particles could not escape.

Now that the potential energy expression for the system is known and a new set of boundary
conditions are set, the experimental emulsion droplet data can be minimized. Because of the long
run time for the minimization of the full emulsion droplet data set, I decided to take a subset of the
overall set of experimental data, containing 32 emulsion droplets with x-positions between 0 to
1500 um and y-positions between 10,000 um to 11,500 pm. I chose this set of data as the bounds
of the data are square which allowed me to more easily analyze the results of the minimization
through plotting. A subset of the data can be minimized to find the repulsive force law because all
emulsion droplets in the data set experience the same repulsive force law. Desmond et al., with
the same experimental design, found that values between 2.0 uN to 2.4 uN for the scaling factor
Fy and 1.15 to 1.30 for the power law B were the most consistent for their data set. Therefore, I
decided to set the scaling factor equal to 2 uN and vary the power law from 0.5 to 2 in increments

of 0.5, allowing me to find the error for a larger Error versus power law

-

range of power laws. With each resulting minimum

&

geometry, I calculated the error in distance of the

Error {pm)
#

=

minimized data points from the original data points.

=

To do so, I calculated the distance that each data e —
0.6 0.8 10 12 14 16 18 20
Power Law

oint moved, added each of these distances, and
p ’ ’ Figure 10. This figure shows the error, in um, versus

o the power law used for the minimization.
divided by the number of power laws I used.

Finding the error this way “punishes” the power laws that may result in one or a few particles
moving a great distance rather than all of the particles moving by an average distance. The graph
of the error versus power-law is depicted in figure 10. As can be seen, the error is quadratic with

respect to the power law, and the minimum error seems to occur somewhere between the values
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1.0 and 1.5. So, the original subset of data was minimized again with the scaling factor value again

equal to 2.0 uN but with power-law values Error versus power law
290

varying between 1.1 and 1.5 increasing by 0.1.

28.8

The graph of the error versus power-law for this

Error {um)
&
P

set of simulations is depicted in figure 11 and #4

. . . 282
shows that the minimum value is somewhere

1106 115 120 1235 130 135 140 145 150
Power Law

between 1.1 and 1.3. So, I repeated the

Figure 11. This figure shows the error, in um, versus the

minimization on the original data subset with ~ Power law graph of the minimum geometry from the
original geometry of the subset of data versus the power law

) . used for the simulation.
power law values between 1.1 and 1.3 increasing

by 0.025. The results of multiple simulations are shown in figure 12. When running simulations
with power laws this precise, noise becomes a factor. The quadratic behavior of the error as a
function of the power law exponent is lost, and it is harder to determine which value is the true
value of the power law. The minimum values for the graphs in figure 12 range between 1.15 and
1.25 with 1.20 being the value that was resulted in the minimum error the majority of the

simulations run. A power law value By = 1.20 + 0.05 gives the lowest error value and is,

therefore, the power-law most consistent with the experimental data.

Using B = 1.20 as the power law, the subset of experimental data was minimized varying

Error versus power law Error versus power law
Error versus power law
18 =9 x4
.’\
27 /
57 2.8 — |
26 f
g S=r Ems \ [
= 8.6 = 2 \ /
E ug.l E 284 ‘-\
26 o \
%5 23 \
25 22
84 21
2.4
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Powier Law Power Law Power Law

Figure 12. This figure shows the error versus power law graph— where the error is the error in distance with units um—after running the
simulation on each of the varying power laws three times. The minimum values range between 1.15 and 1.25. Therefore, the minimum power
law is fr = 1.20 £ 0.05.

the scaling factor. Again, Desmond et al. found scaling factors between 2.0 uN and 2.4 uN to be



most consistent with their data with the same
experimental design. Therefore, minimizations
were run with scaling factors between 1.0 uN and
4.0 pN, increasing the value by 0.5 pN each
minimization. The error versus scaling factor graph
is shown in figure 13. As can be seen, the minimum
error occurred with scaling factors between 3.0 uN
and 4.0 uN. So, simulations were repeated with
scaling factors between 3.0 uN and 4.0 uN,
increasing the value by 0.1 uN each simulation. This
was repeated in excess of twenty times. Two of the
resulting error versus scaling factor graphs are
depicted in figure 14. Again, noise is present in the
graph. In each of the times the minimization program
was looped using different scaling factors between
3.0 uN and 4.0 pN, the results were almost exactly
as depicted in this figure. From figure 14, it can be
inferred that a value of Fy, = 3.3+ 0.1 uN is the
scaling factor most consistent with the experimental
data since the scaling factor that results in the
minimum error changes from 3.2 uN to 3.4 uN.

Discussion and Conclusion:

Erraor versus Scale
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Figure 13. This figure shows the error in um of the minimum

geometry from the original geometry of the subset of data
versus the scaling factor used for the simulation.
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Figure 14. This figure shows the error versus scaling factor
graph— where the error is the error in distance with units
pm—after running the simulation on each of the varying
scaling factor two times. The minimum values range between
3.2 uN and 3.4 uN. Therefore, the minimum scaling factor is
equal to Fy = 3.3 + 0.1 uN.
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In summary, the experimental data from Janna Lowensohn and Eric Weeks was analyzed to
determine the scaling factor and power law of the repulsive force expression for a quasi-two-
dimensional system of jammed emulsions. A built-in SciPy minimization function was tested using
the Coulomb force to determine whether it could be reliably used on the experimental data set.
When it was determined that it was not reliable, I created a minimization program, and it was
determined, after testing my created minimization program, that it was reliable enough to use on
the experimental data. A subset of 32 out of 882 emulsion droplet data sets were used in the
minimization process.

As reported above, Fp = 3.3 £0.1 and B =

Original and Minimized Geometry

1.20 + 0.05 are the scaling factor and power law  1j4g0 | #° o2 & o & o°
ot
4
found to be most consistent with the subset of . | &8 L & o~
11000 &l & ﬁﬂ ;
experimental data. Figure 15 shows the original 10800 | #5 # s
. ) ) 10600 $ 9 # K3
geometry and the minimized geometry of a simulation !
10400 jp i F - &
usin =120 and F,=33pN. In Janna 10200
= : ’ 10000 d F s S

Lowensohn’s experiment, the droplets had a size ratio 0 250 500 750 1000 1250 1500

Figure 15. This figure shows the original subset of
data (red particles) and the minimized subset of
data (blue particles) using By = 1.20 and Fy =
law for a data set with the same size ratio, Desmond et 3.3 uN. The error for the resulting geometry is
28.583 um.

of 1.42. In determining the scaling factor and power

al. found Fy = 2.4 + 0.1 uN and B = 1.19 £ 0.02 to

be the scaling factor and power law most consistent with their data set. Therefore, the power law
found in my project is consistent with the power law found by Desmond et al. The scaling force
factor determined in my project is roughly 40% larger than what was determined by Desmond et
al. If the full data set were used in my analysis, I do think that the scaling factor would also be

consistent with literature. However, it is also important to remember that the data set used in my
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analysis was not the data set from Desmond et. al. Therefore, the different data sets could have
slightly different parameters, such as the ratio of dish soap to water, that could’ve affected the
values for the approximate repulsive force law. Looking at the error graphs, the error is around
28.0 um to 30.0 um. On average, the radii of each of the emulsion droplets are anywhere between
around 90.0 um to 125 um. So, the average distance moved for each of the emulsion droplets is
less than one-third to one-fourth of the average emulsion droplet radius. Therefore, I believe that
my scaling factor and power law are good approximations for the overall scaling factor and power

law of a quasi-two-dimensional system of jammed emulsion droplets.
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