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Abstract 

Stability of Inference Derived from Machine Learning-based Doubly Robust 

Estimators of Treatment Effects 

By Weishan Song 

Doubly robust targeted minimum loss-based estimator (DRTMLE) is a causal inference 

technique used to estimate the covariate-adjusted treatment effects. These estimators 

often involve the use of super learning, a flexible regression technique that involves 

cross-validation. Accordingly, estimates and inference obtained using this methodology 

may change when different seeds are set to control the random splitting process. This 

may decrease the trustworthiness of such analyses. In this paper, we evaluate two 

solutions to this problem. Simulation studies are presented that assess the performance of 

both tactics in different scenarios, and a real data analysis is presented. We conclude that 

by averaging estimates over repeated runs with different seeds set, more stable 

performance is achieved without deleterious effect on estimator performance.  
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1. Introduction 

Observational studies are one of the most commonly used study designs in medical 

research. When utilizing observational data to evaluate the average effect of a treatment 

or intervention, we are often faced with selection bias due to the existence of 

confounding factors related to whether a participant receives treatment and to the 

participant’s outcome. To appropriately adjust for confounding factors, several causal 

inference techniques are commonly employed, including G-computation (GCOMP) 

(Robins 1986) and inverse probability of treatment weighted (IPTW) estimators (Horvitz 

and Thompson 1952). The former relies on consistent estimation of the conditional mean 

of the outcome given treatment and confounders (the so-called outcome regression, OR); 

the latter relies on consistent estimation of the conditional probability of treatment given 

confounders (the so-called propensity score, PS). 

Recently, data sets have increased in size and complexity, which has led to increased 

interest in using machine learning techniques to adjust for possibly high-dimensional 

confounders. When utilizing such methods, classic methods for causal inference like 

GCOMP and IPTW may suffer from non-standard statistical behavior, which makes 

statistical inference (e.g., confidence interval construction) challenging. On the other 

hand, more recent methods such as Augmented inverse probability of treatment weight 

estimator (AIPTW) (Robins, Rotnitzky, and Zhao 1994) and targeted minimum loss-

based estimator (TMLE) (van der Laan and Rubin 2006) may overcome these difficulties. 

These approaches rely on estimation of both the OR and the PS; however, consistent 

estimation of the effect of interest only relies on consistent estimation of one of these two 

quantities. Accordingly, these estimators are referred to as doubly robust. Beyond this 
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additional robustness, if both the OR and PS are consistently estimated, then AIPTW and 

TMLE estimators maintain desirable statistical behavior (e.g., asymptotic normal 

sampling distribution) even when flexible regression estimators, such as those based on 

machine learning, are used. Recently, this double robustness was further extended to 

inference: a doubly robust targeted minimum loss-based estimator (DRTMLE) is 

available (van der Laan, 2014, Benkeser et al. 2017) that enjoys an asymptotic normal 

sampling distribution whose variance can be consistently estimated so long as at least one 

of the OR or PS is consistently estimated.  

While double robustness is generally viewed as a desirable property, there is yet benefit 

in ensuring that both the OR and PS are consistently estimated. In this case, these doubly 

robust estimators attain the semiparametric efficiency bound and thus deliver the greatest 

power for detecting treatment effects. To maximize the chance of estimating both 

regressions consistently, an ensemble machine learning technique called super learning is 

often employed (van der Laan, Polley, and Hubbard 2007). Super learning entails 

specifying a library of candidate regression estimators and uses cross-validation to 

evaluate the fit of each. In the end, it creates an ensemble (i.e., weighted average) of the 

candidate regressions that minimizes a cross-validated risk criterion. Oracle inequalities 

have established that the super learner provides essentially as good a fit to the underlying 

regression as the unknown best-fitting regression amongst the candidate regressions (van 

der Laan, duDoit 2003 UC Berkeley Working Paper Series). In this sense, super learner 

provides an optimal way to perform model selection in the face of estimator uncertainty.  

An interesting, and potentially unsettling, feature of estimators of treatment effects that 

are based on super learning (or potentially any other machine learning algorithm) is that 
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the inference derived from such estimators may depend on the seed that is set prior to 

running the procedure. This is due to the fact that machine learning algorithms often 

involve some random behavior (e.g., through sample splitting) that may change under 

different seeds. This fact may decrease the trustworthiness of such analyses, as it may 

invite dishonest research practices, such as p-hacking. In this work, we evaluate whether 

and to what extent inferences depend on the seed set prior to the analysis. We also 

evaluate stabilizing procedures to remove this dependence by averaging over multiple 

runs with different seeds. Finally, a verification is conducted on a clinical study of 

tuberculosis drug-resistance. 

 

2. Methods 

2.1 Causal Inference with Doubly Robust Methods 

We consider the case where the observed data consist of 𝑊, a vector of putative 

confounders, 𝐴, a binary treatment or intervention, and 𝑌, a real-valued clinical outcome 

of interest. Causal inference often considers the existence of counterfactual random 

variables 𝑌(1) and 𝑌(0) that describe, respectively, the outcome that would have been 

seen if a patient were given treatment 𝐴 =  1 and treatment 𝐴 =  0. A common estimand 

for assessing the efficacy of treatment is the average treatment effect 𝐸[𝑌(1) –  𝑌(0)], 

which describes the difference in population-level average outcomes if everyone in the 

population receives 𝐴 =  1 versus 𝐴 =  0. Hence, we use 𝜓(1) and 𝜓(0) to denote the 

treatment-specific means 𝐸[𝑌(1)] and 𝐸[𝑌(0)]. 
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Under an assumption of no unmeasured confounding and sufficient experimentation 

(Valente et al. 2017), the average treatment effect is identified as a function of the 

distribution of the observed data. In particular, under these assumptions 𝜓(1) − 𝜓(0) = 

𝐸[𝐸[𝑌 | 𝐴 =  1, 𝑊] –  𝐸[𝑌 | 𝐴 = 0, 𝑊]]. Many methods have been proposed for 

estimation of the average treatment effect. Here, we focus on a class of these estimators 

called doubly robust estimators.  

One such estimator is the augmented inverse probability of treatment estimator 

(AIPTW)[3]  

 𝜓𝑛,𝐴𝐼𝑃𝑇𝑊(𝑎) =
1

𝑛
∑ �̅�𝑛(𝑎, 𝑊𝑖)

𝑛

𝑖=1

+
1

𝑛
∑

𝐼(𝐴𝑖 = 𝑎)

𝑔𝑛( 𝑎 ∣∣ 𝑊𝑖 )

𝑛

𝑖=1

{𝑌𝑖 − �̅�𝑛(𝑎, 𝑊𝑖)} (1) 

Here we use �̅�𝑛 to denote the estimated OR and 𝑔𝑛 to denote an estimate of the PS. 

TMLE is another method for generating doubly robust estimators. A TMLE estimate of 

𝜓(a) is of the form 

 𝜓𝑛,𝑇𝑀𝐿𝐸(𝑎) =
1

𝑛
∑ �̅�𝑛

∗ (𝑎, 𝑊𝑖)

𝑛

𝑖=1

 (2) 

where �̅�𝑛
∗  is a specially designed OR estimator that is constructed to satisfy the 

equation 

 1

𝑛
∑

𝐼(𝐴𝑖 = 𝑎)

𝑔𝑛( 𝑎 ∣∣ 𝑊𝑖 )

𝑛

𝑖=1

{𝑌𝑖 − �̅�𝑛
∗ (𝑎, 𝑊𝑖)} = 0 (3) 

One potential shortcoming of AIPTW and TMLE is that their double robustness property 

does not extend to normal limiting distribution if machine learning-based estimators of 
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the OR and PS are used to construct the estimator. To further improve the previous 

estimator, van der Laan (2014) derived an estimator that is doubly-robust with respect to 

both consistency and asymptotic normality.  

 𝜓𝑛,𝐷𝑅𝑇𝑀𝐿𝐸(𝑎) =
1

𝑛
∑ �̅�𝑛

∗ (𝑎, 𝑊𝑖)

𝑛

𝑖=1

 (4) 

The DRTMLE estimator holds the same form as TMLE while the key to the theory 

underlying this estimator is that regression estimates are designed to satisfy is the 

satisfaction of two additional equations. We define the reduced outcome regression (R-

OR) and the reduced propensity score (R-PS) as follows: 

 �̅�𝑟,0𝑛(𝑎, 𝑤): = 𝐸0{𝑌 − �̅�𝑛(𝑊) | 𝐴 = 𝑎, 𝑔𝑛(𝑊) = 𝑔𝑛(𝑤)}, 𝑎𝑛𝑑  (5) 

 𝑔𝑟,0𝑛(𝑎 | 𝑤): = 𝑃𝑟0{𝐴 = 𝑎 ∣ �̅�𝑛(𝑊) = �̅�𝑛(𝑤), 𝑔𝑛(𝑊) = 𝑔𝑛(𝑤)} (6) 

The DRTMLE relies on an iterative algorithm to generate estimates of the OR �̅�𝑛
∗ , PS 𝑔𝑛

∗ , 

and R-OR �̅�𝑟,𝑛, and R-PS 𝑔𝑟,𝑛 that satisfy the following three equations:  

 1

𝑛
∑

𝐼(𝐴𝑖 = 𝑎)

𝑔𝑛
∗ ( 𝑎 ∣∣ 𝑊𝑖 )

𝑛

𝑖=1

{𝑌𝑖 − �̅�𝑛
∗ (𝑎, 𝑊𝑖)} = 0, (7) 

 1

𝑛
∑
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𝑔𝑛
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∗ (𝑎, 𝑊𝑖)} = 0, (8) 

and 
1

𝑛
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} {𝑌𝑖 − �̅�𝑛
∗ (𝑎, 𝑊𝑖)} = 0 (9) 

 

2.2 Super Learner  
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While any regression technique could be combined with the estimation strategies 

described above, a common approach, particularly in the context of TMLE is to use super 

learner to fit the OR and PS. Super learning is a general loss-based learning method for 

estimation function-valued quantities, such as conditional means or conditional densities. 

Super learner uses cross-validation to estimate the performance of multiple candidate 

estimators and creates an ensembled algorithm that often has better predictive 

performance than that could be obtained from any of the constituent learning algorithms 

(Polley and Van Der Laan 2010).  

To implement a super learner for a regression problem, each candidate regression 

estimator is first fit on the entire data set. Then, V-fold cross-validation is used to obtain 

V training sample-specific fits of each candidate estimator, which are then evaluated on 

observations in the corresponding validation samples. A family of weighted combinations 

of the candidate estimators is then built based on the validation data, with the weights 

selected to minimize a cross-validated risk criteria (such as mean squared error). The 

final estimate is obtained by combining these weights with the regression estimators fit 

using the full data.  

The super learner framework allows a researcher to utilize a large variety of prediction 

algorithms, ranging from simple generalized linear regression to more complex machine 

learning algorithms such as Random Forest, Multivariate Adaptive Regression Splines, or 

Neural Networks. For a given problem, researchers could potentially try many different 

algorithms, possibly informed by contextual knowledge, with cross-validation ensuring 

that the super learner will have essentially the same or better performance than the single, 

best-performing algorithm (Polley and Van Der Laan 2010). 
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2.3 Dependence of Results on Random Number Generation 

During the super learning process, random behaviors are involved, such as randomness in 

the splitting the data for cross-validation or randomness in the training process for 

candidate regression estimators that involve machine learning. Therefore, when 

implementing the super learner, users must specify a seed to control the random number 

generation. While simply setting this seed results in reproducible behavior, the results 

may be dependent on the particular seed that is set. This may decrease the trustworthiness 

of inferences obtained from these procedures if the estimates or inferences can change 

across different seeds.  

We exhibit this phenomenon based using DRTMLE on two simulated data sets 𝑂1 and 

𝑂2 . Both data sets have a sample size of 200 observations, including identical 4-

dimensional vector of confounders 𝑊, a binary treatment variable 𝐴,  and an outcome 

variable 𝑌, which are generated with and without treatment effects respectively: 

𝑊𝑖𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1, 0.5),   𝑖 = 1,2, … , 200, 𝑗 = 1,2,3,4 

 𝐴𝑖 | 𝑊~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝1(𝑊)),   

𝑌𝑖
(1)

 | 𝐴, 𝑊 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2(𝐴, 𝑊)),  

𝑌𝑖
(2)

| 𝐴, 𝑊 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝3(𝑊)) 

Where  𝑝1(𝑊) =  ∅(𝑊𝑖1 + 𝑊𝑖2 × 𝑊𝑖3 − 2𝑊𝑖4),    𝑝2(𝐴, 𝑊) =  ∅(𝑊𝑖1 + 𝑊𝑖2 × 𝑊𝑖3 −

𝑊𝑖4 × 𝐴𝑖 − 3),     𝑝3 =  ∅(𝑊𝑖1 + 𝑊𝑖2 × 𝑊𝑖3 − 3). And  ∅ denotes the cumulative 

distribution function of the standard logistic distribution. Note that in the first data set, 

there is an effect of treatment, while in the second, there is not.  
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For each data set, DRTMLE estimates were obtained under 1000 different seeds. Super 

learners for estimating ORs are based on pre-specified candidate algorithms, including 

generalized linear regression, random forest, and multivariate adaptive regression splines. 

While overall mean, random forest, and multivariate adaptive regression splines are 

chosen to construct the super learner for PSs. We use the default of 10-fold CV to 

estimate risk. 

We tested the null hypothesis that the average treatment effect equals zero using a level 

0.05 Wald test. To examine the sensitivity of conclusions to the particular seed that is set, 

we examined density plots of p-values for this hypothesis test (Figure 1). For the first 

data set, we find that most of the 1000 hypothesis tests would reject the null hypothesis at 

0.05 level, but that a non-negligible portion would not, with some p-values as large as 

0.20. The situation is more extreme for data set two, where we find an even wider range 

of inference obtained across different seeds. This example illustrates that potentially 

troubling aspect of this analytic approach that two different researchers who differ in 

their analysis only in the seed that is set may conclude that there is strong evidence of an 

effect (p-value < 0.01) or little to no evidence of an effect (p-value ~ 1). 

 

Figure 1: Distribution of P-values  

8



2.4 Proposed Solutions 

In order to stabilize the DRTMLE estimator, we consider repeating the super learner 

algorithms a number of times and averaging results. We propose two approaches: 

1) Averaging on super learners:  calculate the average predicted value from the ORs 

and PSs estimates over a number of repeated super learner fits, and build one 

DRTMLE estimate based on the averaged result to get the final estimate of treatment 

effect.  

2) Averaging on the DRTMLE: calculate the average DRTMLE estimate over a 

repeated number of single super learner fits. 

In other words option (1) averages on the scale of �̅�𝑛
∗  and 𝑔𝑛 in equation (4), while option 

(2) averages on the scale of 𝜓𝑛,𝐷𝑅𝑇𝑀𝐿𝐸 in equation (4).  

We are interested in assessing the performance of these two estimators relative to 

estimators based on a single super learner in terms of their usual operating characteristics 

(e.g., bias, confidence interval coverage), but also in terms of their stabilization properties 

(e.g., how often does inference change when estimators are run over repeated seeds).  

 

3. Simulation 

3.1 Study Design 

We randomly generated 200 data sets for each sample size 𝑁 = 100, 500, and 1000. Each 

data set includes a 4-dimensional vector of confounders 𝑊, a binary treatment variable 𝐴, 

and a binary outcome variable 𝑌. For   𝑖 = 1, 2, … , 𝑁, 
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𝑊𝑖1 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2), 

𝑊𝑖2, 𝑊𝑖3, 𝑊𝑖4 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 

𝐴𝑖  | 𝑊~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝1(𝑊)),  

𝑌𝑖 | 𝐴, 𝑊~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2(𝐴, 𝑊)). 

Where 𝑝1(𝑊) =  ∅(𝑊𝑖1 + 𝑊𝑖2 × 𝑊𝑖3 − 2𝑊𝑖4),  𝑝2(𝐴, 𝑊) =  ∅(𝑊𝑖1 + 𝑊𝑖2 × 𝑊𝑖3 −

𝑊𝑖4 × 𝐴𝑖 − 3). And ∅ denotes the cumulative distribution function of the standard 

logistic distribution. Under this distribution, the true value of the parameters of interest 

are 𝜓(1) ≈  0.254, 𝜓(0) ≈ 0.170, and thus 𝜓(1) − 𝜓(0) ≈ 0.0836.  

For each generated data set, 150 different seeds were assigned, and the super learner 

algorithms were repeated 80 times after setting each seed to get estimations of ORs and 

PSs. Generalized linear regression, random forest, and multivariate adaptive regression 

splines are chosen as the candidate algorithms for estimating ORs, while overall mean, 

random forest, and multivariate adaptive regression splines are chosen for PSs. We use 

the default of 10-fold CV to estimate the risk. 

To develop a “rule of thumb” for how many replicates may be required, we considered 

the two averaging strategies based on 5, 10, 20, 40, 60, and 80 super learners. For each 

estimator, we built a level 0.05 Wald test to test the null hypothesis of no average 

treatment effect 𝐻0: 𝜓(1) − 𝜓(0) = 0 versus 𝐻0: 𝜓(1) − 𝜓(0) ≠ 0. We computed the 

proportion of times over the 150 seeds that each test rejected the null hypothesis. Ideally, 

if the estimators appropriately stabilize the procedure, this proportion should be close to 0 

or 1 for a given data set, which would indicate that the inference derived is robust to the 
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seed that is set. We also compare estimators of 𝜓(1) − 𝜓(0) in terms of bias, variance, 

mean squared error, and coverage probability of nominal 95% confidence intervals.  

Analysis was carried out using R[16] 3.6.0 version with packages drtmle[7][7] and 

SuperLearner[8]. The simulation process was done on High Performance Computing 

(HPC) cluster with the assistance of parallel computation to enhance the computation 

efficiency. 

 

3.2 Results 

At the smallest sample size, we found that DRTMLE using only a single super learner 

resulted in highly unstable inference, with inference heavily dependent on the seed that 

was set (Figure 2). Increasing the number of repeated super learner fits led to greater 

stability, with inference based on average DRTMLE fits achieving stability more quickly 

than averaging on the super learner scale. With over 60 repeated super learners and 

averaging on DRTMLE estimators, less than 5% of data sets yielded inference that 

depended on the seed at n = 100. As the sample size increased, inference for all 

procedures became more stable. However, we still find that inference stabilized more 

quickly when averaging on the scale of DRTMLE, as opposed to super learner. In the 

largest sample size, even inference based on a single super learner only depended on the 

random seed in a few data sets. 
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Figure 2: Scatterplot of Rejection Probability over repeated analyses of the same data set with different 

seeds 

 

To further assess the stability at different averaging levels, we further check the 

percentage of data sets that have an unstable result among all seeds, i.e., 𝑝 ≠ 0, 1. As the 

averaging level and sample size increase, there are fewer data sets with unstable results 

under both methods, while averaging on DRTMLE shows a significant superior stability 

and higher sensitivity to the increase of averaging level (Figure 3).   
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As for our “rule of thumb”, when averaging on DRTMLE with sample size of 100, as the 

averaging level reaches 40 or greater, no major difference is shown in the number of 

unstable data sets,  which indicates 40 times super leaner iterations being an optimal cut-

point in terms of stabilizing the hypothesis test. Similarly, the cut-point for averaging on 

super learner could be chosen as 60. For larger sample sizes of 500, the cutoff point could 

be chosen as 40 times for both averaging tactics. For a sample size of 1000, 5 times could 

be chosen as the cut-point for averaging on DRTMLE, while averaging on super learner 

shows surprisingly weaker stability and requires 40 times of averaging. 

 

Figure 3: Numbers of Data sets with Unstable Test Results 
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In terms of point estimation, all estimators had similar performance in terms of bias, 

Monte Carlo standard deviation, mean squared error, and confidence interval coverage. 

Though some differences can be seen in Table 1, they are all within the bounds of Monte 

Carlo error.  

Table 1: Bias, Standard Deviation, Mean Squared Error and 95% CI Coverage with seed = 1 

Averaging Levels and Methods Bias SD MSE 
CI Coverage 

Rate 

Sample Size = 100  

1  0.01197 0.09552 0.00922 0.8 

5 
Average on DRTMLE 0.01547 0.09296 0.00884 0.82 

Average on Super learner 0.00194 0.09098 0.00824 0.855 

10 
Average on DRTMLE 0.01532 0.09268 0.00878 0.82 

Average on Super learner 0.00227 0.09014 0.00809 0.87 

20 
Average on DRTMLE 0.01550 0.09194 0.00865 0.825 

Average on Super learner 0.00243 0.09081 0.00821 0.85 

40 
Average on DRTMLE 0.01510 0.09235 0.00871 0.815 

Average on Super learner 0.00297 0.09027 0.00812 0.865 

60 
Average on DRTMLE 0.01504 0.09204 0.00866 0.825 

Average on Super learner 0.00357 0.09198 0.00843 0.86 

80 
Average on DRTMLE 0.01510 0.09180 0.00861 0.82 

Average on Super learner 0.00462 0.09224 0.00849 0.865 

 

Sample Size = 500  

1  0.00286    0.04622    0.00214  0.927 

5 
Average on DRTMLE 0.00290    0.04596    0.00212  0.933 

Average on Super learner -0.00081    0.04549    0.00207  0.896 

10 
Average on DRTMLE 0.00287    0.04587    0.00211  0.933 

Average on Super learner -0.00074    0.04584    0.00210  0.896 

20 
Average on DRTMLE 0.00295    0.04585    0.00211  0.933 

Average on Super learner -0.00114    0.04598    0.00212  0.902 

40 
Average on DRTMLE 0.00298    0.04590    0.00212  0.933 

Average on Super learner -0.00098    0.04569    0.00209  0.896 

60 
Average on DRTMLE 0.00301    0.04590    0.00212  0.933 

Average on Super learner -0.00090    0.04578    0.00210  0.902 

80 
Average on DRTMLE 0.00299    0.04589    0.00212  0.933 

Average on Super learner -0.00107    0.04589    0.00211  0.891 

 

Sample Size = 1000  

1  -0.00185  0.03328  0.00111  0.9 

5 
Average on DRTMLE -0.00191  0.03319  0.00111  0.895 

Average on Super learner -0.00345  0.03195  0.00103  0.92 

10 
Average on DRTMLE -0.00204  0.03320  0.00111  0.895 

Average on Super learner -0.00359  0.03146  0.00100  0.92 

20 
Average on DRTMLE -0.00204  0.03318  0.00111  0.895 

Average on Super learner -0.00360  0.03191  0.00103  0.905 

40 Average on DRTMLE -0.00206  0.03317  0.00110  0.895 
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Average on Super learner -0.00352  0.03169  0.00102  0.91 

60 
Average on DRTMLE -0.00206  0.03316  0.00110  0.895 

Average on Super learner -0.00347  0.03168  0.00102  0.91 

80 
Average on DRTMLE -0.00206  0.03316  0.00110  0.895 

Average on Super learner -0.00336  0.03183  0.00102  0.915 

 

Similarly, when repeating the same process to examine the performance of TMLE and 

AIPTW estimators, the results yield generally the same conclusions, with mild 

differences in the choice of the minimum averaging level to stabilize the estimates 

(Supplemental Figures 1-4, Supplemental Tables 1, 2). 

 

4. Implementation on Clinical Study of Tuberculosis Drug-Resistance 

We applied our approach to a prospective observational study of patients with Multidrug-

resistant (MDRX) Tuberculosis (TB) in the country of Georgia who received a course of 

TB treatment that included either Bedaquiline or Delamanid, two recently approved drugs 

for treating MDRX-TB. The outcome of the study includes binary six-month sputum 

culture conversion (SCC) and a binary final clinical treatment outcome (Kempker et al. 

2019). 

We used DRTMLE to estimate a covariate-adjusted proportion of outcomes for each 

treatment group. The baseline covariates included were age, height, weight, body mass 

index (BMI), gender, history of imprisonment, tobacco use, alcohol use, diabetes 

mellitus, hepatitis C, prior TB diagnosis, case definition, TB location (pulmonary, 

pulmonary and extrapulmonary), acid-fast bacilli (AFB) smear, chest radiology results, 

number of effective drugs, and number of effective class A or B drugs received. The 

prespecified algorithms in the Super learner include logistic regression models with 
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interaction terms, random forest, Lasso and ridge regression, Bayesian additive 

regression trees, multivariate adaptive regression splines, and gradient boosted decision 

trees[17]. Eighty different seeds are assigned for each super learner algorithm to obtain 

estimated ORs and PSs. We applied our two averaging strategies over 5, 10, 20, 40, 60, 

and 80 seeds. A level 0.05 Wald test is applied to test the null hypothesis of no average 

treatment effect.  

We found the inference was relatively stable in this example, with the p-value changing 

little due to averaging. Averaging on DRTMLE enjoys a slightly better stability, which is 

identical to our previous results (Figure 4, 5). 

 

Figure 4: P-values of Testing Treatment Effects on Final Outcome under Two Averaging Strategies 
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Figure 5: P-values of Testing Treatment Effects on SCC under Two Averaging Strategies 

 

Averaging also had little impact on the point estimates and confidence intervals (Table 

2). This can be explained because few covariates were predictive of the outcome and so 

the results of the super learner were relatively stable across different seeds.  

Table 2: Point and Interval Estimation of Treatment Effects 

Averaging Levels and Methods 
Treatment 

Effect 

95% 

Confidence Interval  

Final Outcome   

1   0.2859   0.1405   0.4314  

5 
Average on DRTMLE  0.2824   0.1380   0.4267  

Average on Super learner  0.2709   0.1145   0.4273  

10 
Average on DRTMLE  0.2850   0.1424   0.4277  

Average on Super learner  0.2724   0.1190   0.4259  

20 
Average on DRTMLE  0.2834   0.1403   0.4266  

Average on Super learner  0.2721   0.1172   0.4270  

40 
Average on DRTMLE  0.2827   0.1401   0.4253  

Average on Super learner  0.2731   0.1195   0.4268  

60 
Average on DRTMLE  0.2828   0.1403   0.4253  

Average on Super learner  0.2741   0.1211   0.4271  

80 
Average on DRTMLE  0.2810   0.1383   0.4237  

Average on Super learner  0.2735   0.1201   0.4269  
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SCC   

1      0.1794      0.0319      0.3269  

5 
Average on DRTMLE     0.1822      0.0356      0.3289  

Average on Super learner     0.1938      0.0423      0.3452  

10 
Average on DRTMLE     0.1833      0.0373      0.3292  

Average on Super learner     0.1961      0.0457      0.3465  

20 
Average on DRTMLE     0.1831      0.0367      0.3294  

Average on Super learner     0.1953      0.0440      0.3465  

40 
Average on DRTMLE     0.1825      0.0365      0.3285  

Average on Super learner     0.1955      0.0448      0.3461  

60 
Average on DRTMLE     0.1835      0.0376      0.3295  

Average on Super learner     0.1966      0.0460      0.3472  

80 
Average on DRTMLE     0.1834      0.0374      0.3293  

Average on Super learner     0.1961      0.0452      0.3470  

 

5. Discussion 

Our simulation demonstrates that in small samples, inference derived from machine 

learning-based estimators of treatment effects can be heavily influenced by random 

aspects of the analysis. However, our data analysis shows that this phenomenon may not 

always manifest in practice, even in small samples. Further simulation studies are 

warranted to develop comprehensive rules of thumb for how these methods can be 

appropriately applied in practice.  
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Appendix: Tables and Figures 

 

 

Supplemental Figure 1: Scatterplot of Rejection Probability for TMLE Estimate over repeated analyses of 

the same data set with different seeds 
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Supplemental Figure 2: Scatterplot of Rejection Probability for AIPTW Estimate over repeated analyses of 

the same data set with different seeds 
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Supplemental Figure 3: Numbers of Data sets with Unstable Test Results for TMLE Estimate 
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Supplemental Figure 4: Numbers of Data sets with Unstable Test Results for AIPTW Estimate 
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Supplemental Table 1: Bias, Standard Deviation, Mean Squared Error and 95% CI Coverage for TMLE 

Estimate with seed = 1 

Averaging Levels and Methods Bias SD MSE 
CI Coverage 

Rate 

Sample Size = 100  

1  0.00939 0.08845 0.00787 0.83 

5 
Average on DRTMLE 0.01069 0.08875 0.00795 0.815 

Average on Super learner 0.00360 0.07591 0.00575 0.99 

10 
Average on DRTMLE 0.01062 0.08885 0.00797 0.82 

Average on Super learner 0.00361 0.07559 0.00570 0.99 

20 
Average on DRTMLE 0.01059 0.08866 0.00793 0.81 

Average on Super learner 0.00335 0.07490 0.00559 0.99 

40 
Average on DRTMLE 0.01062 0.08896 0.00799 0.81 

Average on Super learner 0.00336 0.07538 0.00567 0.99 

60 
Average on DRTMLE 0.01066 0.08901 0.00800 0.81 

Average on Super learner 0.00339 0.07551 0.00568 0.99 

80 
Average on DRTMLE 0.01067 0.08903 0.00800 0.81 

Average on Super learner 0.00343 0.07552 0.00569 0.99 

 

Sample Size = 500  

1  0.00301  0.04508  0.00204  0.917 

5 
Average on DRTMLE 0.00306  0.04499  0.00203  0.927 

Average on Super learner 0.00338  0.04465  0.00201  1.000 

10 
Average on DRTMLE 0.00310  0.04494  0.00203  0.922 

Average on Super learner 0.00344  0.04471  0.00201  1.000 

20 
Average on DRTMLE 0.00312  0.04494  0.00203  0.922 

Average on Super learner 0.00341  0.04467  0.00201  1.000 

40 
Average on DRTMLE 0.00308  0.04498  0.00203  0.922 

Average on Super learner 0.00328  0.04459  0.00200  1.000 

60 
Average on DRTMLE 0.00309  0.04497  0.00203  0.922 

Average on Super learner 0.00337  0.04456  0.00200  1.000 

80 
Average on DRTMLE 0.00309  0.04498  0.00203  0.922 

Average on Super learner 0.00341  0.04454  0.00200  1.000 

 

Sample Size = 1000  

1  -0.00153  0.03267  0.00107  0.895 

5 
Average on DRTMLE -0.00155  0.03260  0.00107  0.895 

Average on Super learner 0.00049  0.03075  0.00095  1 

10 
Average on DRTMLE -0.00156  0.03263  0.00107  0.895 

Average on Super learner 0.00055  0.03070  0.00094  1 

20 
Average on DRTMLE -0.00155  0.03263  0.00107  0.895 

Average on Super learner 0.00064  0.03067  0.00094  1 

40 
Average on DRTMLE -0.00155  0.03263  0.00107  0.895 

Average on Super learner 0.00063  0.03068  0.00094  1 

60 
Average on DRTMLE -0.00155  0.03264  0.00107  0.895 

Average on Super learner 0.00062  0.03066  0.00094  1 

80 
Average on DRTMLE -0.00154  0.03265  0.00107  0.895 

Average on Super learner 0.00062  0.03067  0.00094  1 
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Supplemental Table 2: Bias, Standard Deviation, Mean Squared Error and 95% CI Coverage for AIPTW 

Estimate with seed = 1 

Averaging Levels and Methods Bias SD MSE 
CI Coverage 

Rate 

Sample Size = 100  

1  0.00366 0.08182 0.00667 0.865 

5 
Average on DRTMLE 0.00495 0.08231 0.00677 0.85 

Average on Super learner 0.01758 0.09229 0.00878 0.98 

10 
Average on DRTMLE 0.00500 0.08240 0.00678 0.85 

Average on Super learner 0.01703 0.09190 0.00869 0.98 

20 
Average on DRTMLE 0.00486 0.08222 0.00675 0.85 

Average on Super learner 0.01615 0.08942 0.00822 0.98 

40 
Average on DRTMLE 0.00492 0.08244 0.00679 0.85 

Average on Super learner 0.01574 0.08981 0.00827 0.98 

60 
Average on DRTMLE 0.00494 0.08248 0.00679 0.85 

Average on Super learner 0.01593 0.09043 0.00839 0.98 

80 
Average on DRTMLE 0.00496 0.08242 0.00678 0.85 

Average on Super learner 0.01598 0.09051 0.00841 0.98 

 

Sample Size = 500  

1  0.00282 0.04474 0.00201 0.917 

5 
Average on DRTMLE 0.00291 0.04462 0.00200 0.922 

Average on Super learner 0.00810 0.05222 0.00279 1 

10 
Average on DRTMLE 0.00295 0.04462 0.00200 0.927 

Average on Super learner 0.00833 0.05246 0.00282 1 

20 
Average on DRTMLE 0.00295 0.04460 0.00200 0.927 

Average on Super learner 0.00838 0.05217 0.00279 1 

40 
Average on DRTMLE 0.00291 0.04461 0.00200 0.927 

Average on Super learner 0.00825 0.05217 0.00279 1 

60 
Average on DRTMLE 0.00292 0.04460 0.00200 0.927 

Average on Super learner 0.00845 0.05207 0.00278 1 

80 
Average on DRTMLE 0.00292 0.04462 0.00200 0.927 

Average on Super learner 0.00849 0.05211 0.00279 1 

 

Sample Size = 1000  

1  -0.00144 0.03231 0.00105 0.9 

5 
Average on DRTMLE -0.00145 0.03228 0.00104 0.9 

Average on Super learner 0.00426 0.03827 0.00148 1 

10 
Average on DRTMLE -0.00146 0.03232 0.00105 0.895 

Average on Super learner 0.00430 0.03816 0.00148 1 

20 
Average on DRTMLE -0.00144 0.03231 0.00105 0.895 

Average on Super learner 0.00446 0.03815 0.00148 1 

40 
Average on DRTMLE -0.00145 0.03231 0.00105 0.895 

Average on Super learner 0.00453 0.03825 0.00148 1 

60 
Average on DRTMLE -0.00145 0.03232 0.00105 0.895 

Average on Super learner 0.00451 0.03820 0.00148 1 

80 
Average on DRTMLE -0.00144 0.03233 0.00105 0.895 

Average on Super learner 0.00446 0.03823 0.00148 1 
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