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Abstract

The main subject of this work is the magnetization dynamics excited in magnetic nanostructures

by spin polarized electrical or pure spin current. This research is important for the development of

spintronic devices – devices that in addition to the electron charge exploit the spin degree of freedom

for information storage, transmission, processing, and/or for sensing. The research presented in

this thesis addresses three relevant problems: 1) Enhancing the efficiency of spin current-driven

spintronic devices by optimizing their geometry; 2) Enhancing the dynamical characteristics of

spin current-driven devices via their interaction with external signals; 3) The role of quantum

magnetization fluctuations in the interaction between the magnetization and the spin-polarized

current.

An emerging promising type of spintronic devices for microwave applications is the Spin Hall

nanooscillator (SHNO). In SHNO, microwave-frequency magnetization dynamics is excited in an

“active” nanomagnet by pure spin current generated by the spin Hall effect. In this work, it is

shown that spectral, thermal and electrical properties of SHNO can be enhanced by optimizing

the geometry of the nanodevice. In particular, increased current concentration in a small region,

achieved by nanopatterning the spin-Hall material (the source of spin current), reduces the current

required for the device operation. Moreover, the reduced area of interface between the spin Hall

material and the active nanomagnet improves the spectral properties of the device. In addition to

modifying geometry of spin Hall layer to modify properties of spin Hall nanooscillator. In addition,

a new type of SHNO is experimentally demonstrated in this work. It is based on a bilayer of spin

Hall material and active layer nanopatterned into a bow-tie nanoconstriction. Theoretical analysis

and micromagnetic simulations performed in this work demonstrate the importance of nonlinear

dynamical mechanisms, dipolar magnetic fields, and the Oersted field of the current for the spatial

and spectral characteristics of the studied structures.

The presented work also addresses the dynamical stability and coherence of SHNO, by studying

their interaction with external microwave signals. It is shown that strong dynamical nonlinearity of

SHNO is responsible both for their limited coherence and their ability to efficiently synchronize with
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external microwave signals. The synchronization is shown to dramatically improve the spectral

characteristics of SHNO, and is possible in a wide range of temperature and frequencies. The

demonstrated synchronization of SHNO opens a way for the development of arrays of mutually

synchronized oscillators with improved microwave generation characteristics.

The last part of this work addresses the fundamental mechanisms of interaction between the

magnetization and the spin polarized currents. The present understanding of the underlying mech-

anism, called the spin transfer effect, is based on the classical approximation for the magnetization.

In this work, the theory of spin transfer is extended to include the quantum-mechanical descrip-

tion of magnetization. The central result of the presented work is the prediction of spin transfer

due to quantum magnetization fluctuation, and its experimental demonstration in a nanomagnetic

system. Both the analysis and the presented measurements demonstrate that quantum fluctua-

tions provide the dominant contribution to spin transfer at cryogenic temperatures, and their role

remains significant even at room temperatures. Multiple consequences for the magnetoelectronic

phenomena in ferromagnetic and antiferromagnetic systems are predicted based on these results.
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Chapter 1

Introduction

1.0.1 Motivation

The rapid growth of information technologies increases demand on information storage and pro-

cessing, setting challenging goals for science and technology. Modern silicon-based electronics is

reaching its fundamental limits dictated by the laws of thermodynamics, statistical, and quantum

mechanics [10, 11], which become important when electronic components contain only a few hun-

dred atoms and cannot be treated as classical continuous media. Moreover, the complexity of the

manufacturing process and its cost are increasing with the decreasing size of electronics compo-

nents. To overcome these issues faced by modern electronics, research and development of new

approaches, systems, and materials are required. For instance, plasmonics, one of several rapidly

growing fields aimed at addressing these issues, allows one to optically encode and transmit infor-

mation by coupling light with charge dynamics [12,13]. Another example is spin-based electronics

— spintronics [14, 15], which is the subject of this work. It is well known that electron besides

charge has additional degree of freedom - the spin. By utilizing electron spin, it may be possible

to develop new logic devices with low power consumption and short response time, as well as a

new types of nonvolatile memory [16–20]. Operation of many types of spintronic devices relies on

electrical current flowing through magnetic materials, which in this context can be thought of as

14
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ordered electron spin systems. The interplay between individual electron spins and the collective

spin-dynamical states in magnetic systems, called the spin waves, can provide a useful approach

for the control of spin degree of freedom. The spin wave quantum, the magnon, has been proposed

as a carrier of information for the novel type of devices, called the magnonic devices [21, 22]. The

potential applications of spintronics motivate a significant interest in the scientific and engineering

communities. However, not all the fundamental or practical aspects of spin physics in materials

are well understood.

In this work, I address the fundamental aspects of interaction between spin current and magnetic

materials, and develop approaches for enhancing the efficiency of spin current-driven spintronic

devices. In the introductory Chapter 1 I briefly explain the basic concepts of electron spin and spin

current, magnetic ordering, and magnetization dynamics. I also describe measurement techniques

used in my experimental research. This introduction should enable the reader to follow the results

presented in the subsequent Chapters. In Chapter 2, I present the research into ways to improve

the characteristics of spin Hall nano-oscillators (SHNO) - magnetic nanodevices in which coherent

magnetization oscillation is excited by pure spin current generated by the spin Hall effect. I

show that spectral, thermal and electrical properties of SHNO can be enhanced by optimizing

the geometry of the nanodevices. Chapter 3 is focused on the interaction of SHNO with external

signals. In particular, I show that the coherence of oscillation of SHNO can be enhanced by

synchronizing them to external microwave signals. The synchronization of SHNO opens a way for

the development of arrays of mutually synchronized spintronics devices for improved generation of

coherent microwave radiation.

Further improvement of spintronic devices requires a better fundamental understanding of

interaction between spin currents and magnetic systems. The present understanding of spin transfer

is based on the classical approximation for the magnetization, even though the spin-polarized

electrons mediating spin transfer are treated quantum-mechanically. In Chapter 4, I develop a

quantum-mechanical extension of spin transfer theory, by analyzing the interaction between the

magnetization and the electron spin, both of which are treated quantum-mechanically. Chapter 5
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describes experimental confirmation of the quantum theory of spin transfer described in Chapter

4. These measurements showed that quantum magnetization fluctuations provide the dominant

contribution to spin transfer at cryogenic temperatures, and their role remains significant even at

room temperature. Multiple consequences for the magnetoelectronic phenomena in ferromagnetic

and antiferromagnetic systems are predicted based on these results.

1.1 Magnetization dynamics and spin waves

1.2 Electron spin and spin current

In addition to charge, the electron has another fundamental property – the spin, or equivalently the

intrinsic angular momentum, and the associated magnetic moment. The electron’s spin s = 1/2

can have two possible values of projection on a given axis, sz = ± 1
2 . The corresponding projections

of angular momentum are ~/2 or −~/2. The intrinsic magnetic moment of electron, associated

with its spin, is illustrated as a classical vector in Fig. 1.1. The magnetic moment of electron

m = µB – the Bohr magnetron – is proportional to the spin, m = γS, where γ for electron is

the gyromagnetic ratio. The gyromagnetic ratio defines the ratio between the magnetic and the

angular momentum of electron γ = g q
2m , where g ≈ 2 dimensionless g-factor, q is the charge and

m is the mass. The spin of electron was experimentally observed in 1922 by Stern and Gerlach in

their experiment with silver atoms traveling through a strongly inhomogeneous magnetic field.

Electrical current is defined as the rate of flow of charge. Similarly to the electrical current

spin current can be defined as the flow rate of spin. The main difference between the electrical and

the spin current is that charge is a scalar quantity, and that it is conserved. On the other hand

spin is a vector quantity, and in general it is not conserved. For example, spin-orbit interaction

results in the conversion between spin and orbital angular momentum. Electrical current in which

the numbers of spin-up and spin-down electrons are not equal, is called spin-polarized current. It

carries an associated spin current. However, it is possible to produce a spin current without an

associated electrical current. In this case, it is called a pure spin current. Imagine that spin-up
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Figure 1.1: Illustration of electron spin as a classical magnet with north pole pointing down (a)
for sz = +1/2 or up (b) for sz = −1/2.

electrons move in one direction, while spin-down electron move in the opposite direction, as shown

is Fig. 1.2. The numbers of electrons with spin-up and spin-down are equal, so the total electrical

current is zero, but the spin current is not.

Since the spin is not conserved, there is no corresponding spin continuity equation, so the

definitions of spin current vary [19,23–25]. For example, Zhou et al. [26], starting with continuity

equation δρ
δt + ∇j = 0 and multiplying it by the spin s( δρδt + ∇j) = 0, defines the spin current

density as: Js := js, which ”is a measurable 2-rank real pseudotensor”. Shi et al. [23] derive the

continuity equation in systems with spin-orbit coupling: JS = σE − DS∇S, where σ is the spin

Hall conductivity.

1.2.1 Magnetic order and magnetization dynamics

Types of magnetic materials

All materials can be separated into two classes according their magnetic properties: i) materials

without permanent microscopic magnetic moments (called diamagnetics or paramagnetics), and

ii) materials with permanent magnetic moment. The second class of materials can be separated

into several sub-classes according to their magnetic ordering. The most common types or magnetic

ordering are ferromagnetic, ferrimagnetic and antiferromagnetic. The ordering appears below a

certain critical temperature, due to exchange interaction between neighboring spins. On the other
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Figure 1.2: Electron with opposite spins moving in opposite direction, creating zero net charge
transfer.

hand, in paramagnets, non-zero magnetization can be induced by external magnetic field [Fig. 1.3].

Below I will focus on ferromagnetic materials, and for simplicity will call them just magnetic

materials. One of the characteristic of magnetic material is magnetization. Magnetization ~M is a

vector, which describes the density of magnetic moments in the material: ~M =
∑

~mi

V , where ~mi

is an elementary magnetic moment and V is volume. As the magnetization is not always uniform

across the body and can vary among different regions, it is useful to express it as a ratio of the

elementary magnetic moment dm over the elementary physical volume dV : ~M = d~m
dV .

1.2.2 Magnetization dynamics

Magnetic material can be considered as a collection of microscopic magnetic moments (or spins). To

understand the dynamics of magnetization, I start by analyzing the dynamics of a single magnetic

moment (spin) in external magnetic field, and then extend the analysis to the ordered spin systems.

Larmor precession

As it was discussed above electron posses magnetic dipole moment m = µB due to its intrinsic

angular momentum s or spin. When magnetic dipole is placed into external magnetic ~B which is

not collinear with the direction of magnetic dipole moment, magnetic field attempts align magnetic
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Figure 1.3: Different types of magnetic ordering: ferromagnetic (a), antiferromagnetic (b), para-
magnetic in the absence (c) and in the presence (d) of magnetic field.

dipole along its direction exerting torque τ = −µB × ~B = −γ~S × ~B [Fig. 1.4]. Exerted torque

changes angular momentum causing precession of magnetic moment around direction of external

magnetic field. This precession is called Larmor precession. The frequency of Larmor precession

is proportional to external magnetic field ωLP = −γ ~B.

Because spin of electron is a quantum characteristic it is required quantum description. Dy-

namics of electron spin is described by spinor χ, which is a solution of Schroedinger equation with

Hamiltonian H = −γS ·B:

ih
δχ

δt
= Hχ (1.2.1)

The general solution for time independent Hamiltonian can be expressed in terms of stationary

states [27]:

χ(t) = cos(Θ/2)χ+e
−iE+t

~ + sin(Θ/2)χ−e
−iE−t

~ =

cos(Θ/2)e
−iE+t

~

sin(Θ/2)e
−iE−t

~

 (1.2.2)

where Θ angle of precession (tilt angle between direction of field and spin).

To describe spin dynamics it is necessary to calculate the expectation values of three components
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Figure 1.4: Precession of magnetic moment around magnetic field.

of spin B:

〈Sx〉 = 〈χ|Sx|χ〉 =
~
2

sin Θ cos(γBt) (1.2.3)

〈Sy〉 = 〈χ|Sy|χ〉 = −~
2

sin Θ sin(γBt) (1.2.4)

〈Sz〉 = 〈χ|Sz|χ〉 =
~
2

cos Θ (1.2.5)

The physical meaning of these expectation values is that spin precesses around z axis with

angular speed ω = γB.

Ferromagnetic resonance

Torque exerted by external magnetic field on magnetic moment is equal to change of angular

momentum L of magnetic dipole with time: τ = dL
dt . As it was mentioned above gyromagnetic

ratio γ defines direct proportionality between magnetic moment to angular momentum, and torque

is given by cross product of magnetic field and magnetic moment:
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dm

dt
= γm×H (1.2.6)

This equation describes precession of magnetization around external magnetic field in station-

ary state without losses. In real systems magnetic moment usually interacts with other parts of

a system such as spins, electrons and lattice. These interactions cause energy loss and magnetic

moment relaxes to the direction of external magnetic field. The relaxation of magnetization is

described by damping term, which should be added to Eq. (1.2.6) [Fig. 1.4]. Landau and Lifshitz

introduced dissipative term as additional effective torque, which tries to align magnetic moment

with external field: − λ
MS

m × (m ×H), where λ is phenomenological constant characteristic of a

material and MS is magnetization saturation. On the other hand Gilbert [28] proposed to treat

dissipation as a ”viscous force”, which is proportional to time derivative of magnetization similar as

viscous force proportional to velocity: α
MS

m× ∂m
∂t , where α > 0 is Gilbert damping constant [29],

which depends on material properties. Therefore, the precessional equation, which describes mag-

netization dynamics with dissipation, is called Landau-Lifshitz-Gilbert (LLG) equation:

dm

dt
= −γm×H +

α

MS
m× ∂m

∂t
(1.2.7)

Magnetization of material can be considered as collection of interacting magnetic moments.

The lowest frequency mode, when all magnetic moments precess in phase, is called ferromagnetic

resonance (FMR) mode or uniform mode. The frequency of FMR mode for film magnetized in-

plane can be calculated by Kittel [30] formula:

f =
γ

2π

√
B(B + µ0M) (1.2.8)

Beside uniform precession of magnetization nonuniform modes are possible too. These nonuniform

modes are called spin waves, and their equivalent quasi-particles are magnons. There are two main

interaction mechanics between spins: long range dipole-dipole interaction and short range exchange

interaction. The exchange interaction has purely quantum nature and arises from Pauli’s exclusion
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Figure 1.5: (a) Spin wave in one dimensional spin chain. (b) Spin wave dispersion for one dimen-
sional chain.

principle. According Pauli’s exclusion principle no two fermions can occupy same quantum state

simultaneously.

To illustrate dynamics of spin wave it is necessary consider one-dimensional ferromagnetic chain,

which is shown in Fig. 1.5(a). The exchange interaction between neighboring spins S1 and S2 is

described by Heisenberg Hamiltonian: H = −2Jex~2 S1 · S2, where Jex is an exchange constant. For

the chain of N spins with nearest neighbors interaction Hamiltonian is: H = −2Jex~2

∑
Sn · Sn+1.

The solution of Schroedinger equation with Hamiltonian for a spin chain provides the following

expression for the expected energy is ε = 2Jex(1− cos ka) + ε0, where a in distance between spins

and k is a wave vector. The dispersion relation for spin waves for one dimensional chain is shown

in Fig. 1.5(b). Spin wave can be interpreted as excitation, when precession phase of each spin

varies linearly along the chain [Fig. 1.5(a)].
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Figure 1.6: Experimental observation of spin density distribution in GaAs due to SHE. Reproduced
for Ref. [1].

1.2.3 Spin Hall effect

One of the source of pure spin current is spin Hall effect (SHE). SHE was theoretically predicted

by Dyakonov and Perel [31,32] and experimentally observed in GaAs by Kato et al. [1]. This effect

consists of appearance of spin current transverse to electron flow and accumulation of opposite

spin on opposite boundaries [Fig. 1.6]. In contrast to ordinary Hall effect, SHE does not require

external magnetic field. The origin of SHE is spin-orbit (SO) interaction — coupling of electron

spin with its orbital motion.

SHE is observed in materials with strong SO scattering of conduction electrons and does not

require magnetic fields. Instead, the role of the effective magnetic field is played by the SO

interaction, resulting in an effective spin-dependent Lorentz force. Since the direction of this force

is opposite for electrons with opposite spins, the net electric current is parallel to the electric field,
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Figure 1.7: Schematic of spin Hall effect.

but there is a net spin current flowing perpendicular to it [Fig. 1.7]. Spin current sufficient for

the operation of spintronic devices can be generated at moderate charge currents in efficient SHE

materials such as platinum or tantalum [33–35].

1.3 Spin transfer torque

Electron moving through magnetic material can exchange its spin with magnetization in such way

that total angular momentum is conserved. Slonszewski [36] had demonstrated that electrons can

transfer its angular momentum to magnetization. This effect is called spin transfer torque (STT).

STT can excite magnetization dynamics or even reverse magnetization. Slonczewski considered

the scattering of spin-polarized electrons at the interface between ferromagnet (FM) and a non-

magnetic material. In idealized case when FM is a perfect spin polarizer, it transmits only the

majority electrons whose magnetic moment is parallel to the magnetization ~M of FM. The mi-

nority electrons whose magnetic moment is anti parallel to the magnetization ~M are reflected by

FM. However, when the spin-polarization of the incident electron is non-collinear with ~M , the

component of the electron spin normal to ~M becomes transferred to it upon scattering, because

both the transmitted and the reflected components of the electron’s wavefunction are polarized

collinear to ~M . The absorbed angular momentum associated with transverse polarization results

in a torque exerted on ~M .

The spin transfer (ST) can be separated into two terms: field-like torque and damping-like
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torque. The field-like torque is τF = ~JSm × s, where JS is the dimensionless spin current

flowing across the magnetic interface, s is a unit vector along its polarization, and m is a unit

vector in the direction of magnetization. This torque typically results in a minor correction to

the frequency of magnetization dynamics, and will be ignored here. The damping-like torque

is τD = −~JSm × [m × s], which has the same form as the Landau damping torque τGL =

−αGLµm× [m×H]. Here, αGL is the Gilbert damping constant. For magnetic field H parallel to

spin current polarization s, damping-like torque opposes Landau damping, resulting in reduction

of the effective damping. At a critical value JSC = 1
~αGLµH, damping becomes compensated by

ST, which can produce self-sustained magnetic dynamics or magnetization reversal [37–39].

1.4 Anisotropic magnetoresistance

Magnetoresistance is a property of materials to change its electrical resistance in external magnetic

field. Anisotropic magnetoresistance (AMR) is a dependence electrical resistance on angle between

the direction of electrical current and the direction of material magnetization. This effect arises

from SO interaction and magnetization. For 3d ferromagnets like permalloy (Py) AMR is maximal

when magnetization is parallel to electrical current, and minimal when it is perpendicular. In

many material AMR depends only on angle between current and magnetization and follows the

equation:

ρ(α) = ρ⊥ + ∆ρ cos2 α (1.4.1)

where ∆ρ is the difference between maximal and minimal values of AMR. Figure 1.8 shows typical

dependence of resistance on angle between current and magnetization of Py.
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Figure 1.8: Dependence of resistance on angle between current and magnetic field in Py.

1.5 Giant magnetoresistance

The other type of magnetoresistance is a giant magnetoresistance (GMR). GMR effect is observed

in multilayer structures, where two FM layers are separated by thin nonmagnetic material. GMR

effect first was discovered in Fe/Cr/Fe structure with antiferrromagnetic coupling between two

FM layer by Grunberg and Fert independently [40, 41]. Electrical resistance of GMR structure

depends of relative orientation of magnetization of FM layers [42]. For example, when two layer are

antiferromagnetically coupled and oriented anti parallel, the GMR structure has high resistance.

If external field strong enough to align magnetization of both layer in parallel configuration is

applied, GMR structure has low resistance [Fig. 1.9].

The difference of resistance between parallel and anti parallel configuration can be 10’s % of the

total resistance of structure. This change of resistance is ”giant” compared to AMR, where change

of resistance is only around 1% [43]. The first experiment of GMR measurement was performed

in a current in plane (CIP) structure. However, structures with current perpendicular to plane

(CPP) geometry have larger GMR compared to CIP [44]. The geometry of CPP and larger GMR

make CPP GMR structures more attractive for technological and research application. The total

resistance of GMR structure is:

R(Θ) = R0 + ∆R sin2 Θ

2
, (1.5.1)
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Figure 1.9: Dependence of resistance on magnetic field for Py/Cu/Py spin valve.

where R0 is the resistance of GMR structure in parallel configuration, ∆R is the difference be-

tween maximal and minimal resistance, and Θ is the angle between magnetization direction of two

magnetic layers.

The effect of GMR arises from spin dependent scattering in ferromagnetic materials. In parallel

configuration of both magnetic layers [Fig. 1.10(a)] electron with spin antiparallel to magnetization

has higher probability of scattering in both magnetic layers. In contrast, electron with spin parallel

to magnetization experiences less scattering in both layers. When magnetization of both layers

is antiparallel to each other [Fig. 1.10(b)] electrons with both spin orientations experience equal

amount of scattering.

To explain resistance dependence on magnetization orientation the resistor model of GMR spin

valve is usually used [Fig. 1.11]. The resistivity of GMR structures is described by using two

conductivity channels: i) when spin magnetic moment is parallel to magnetization, channel has

low resistance R↑↑, ii) when spin magnetic moment is antiparallel to magnetization, channel has

high resistance R↓↑. In CPP GMR geometry [Fig. 1.11(a)] channel for electrons with particular

orientation is represented as two resistors in series, and two channels for electrons with spins up and
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Figure 1.10: Schematic of spin-dependent scattering in CPP and CIP geometries when (a) magne-
tization of both layers parallel and (b) anti parallel.
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Figure 1.11: (a) Schematic of electron scattering and (b) equivalent resistor circuit of GMR spin
valve for hight and low resistive states.

down are presented as resistors in parallel [Fig. 1.11(b)]. The total resistance of GMR structure

for parallel configuration is RP =
2R↑↑R↓↑
R↑↑+R↓↑

and for antiparallel configuration is RAP =
R↑↑+R↓↑

2 .
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1.6 Experimental techniques

1.6.1 Measurements

Lock-in measurements

Lock-in is phase-sensitive low-noise measurement of AC signals, which allows to measure both

amplitude and phase of a signal. An external reference signal with frequency ωref excites a voltage

response in the sample. Lock-in detects the response signal of the system to the reference signal,

which has a phase-shift Θsig relative to the reference signal [Fig. 1.12]. Lock-in also generates an

internal signal with frequency ωL and phase Θref . It multiplies input signal from the sample and

the internal signal by multiplier. The product of two signals is just product of two sinusoids:

V = VsigVL = (Vsig0) sin(ωrt+ Θsig)(VL0
) sin(ωLt+ Θref ) =

=
1

2
Vsig0VL0

(cos((ωr − ωL)t− (Θsig −Θref ))

− cos((ωr + ωL)t+ (Θsig + Θref )))

(1.6.1)

The resultant AC signal is converted to a DC signal by time-averaging of the lock-in. After

time-averaging, the final signal is not zero only if ωr = ωL and its amplitude is given by:

Vdc =
1

2
Vsig0VL0

cos(Θsig −Θref ) (1.6.2)

The reference phase Θref of lock-in is tunable, and it is convenient to make it zero. In this case,

the final signal is a product of the detected and lock-in signals amplitudes multiplied by cosine of

the signal phase.

Most of the modern lock-in amplifiers can measure not only amplitude of the detected signal

but also phase of the signal Θsig. For this purpose lock-in has a second multiplier. It multiplies

the detected signal by shifted by π/2 lock-in signal. After averaging:

Vdc =
1

2
Vsig0VL0 sin(Θsig) (1.6.3)
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Figure 1.12: Schematic representation of the signal phase [2]

Lock-in amplifier has two output signals, one of them is proportional to cos(Θsig) ( ’in-phase’

component or just X), and the second is proportional sin(Θsig) (’quadrature’ component or just

Y ) [2]. If the two components of the signal are known, it is easy to find the phase of detected

signal:

Θsig = arctan
Y

X
(1.6.4)

Micro focused Brillouin light spectroscopy

Brillouin light spectroscopy (BLS) is a powerful technique for probing low energy vibrational and

magnetic excitations. Brillouin Light Scattering is an inelastic scattering of light on acoustic

phonons, which was predicted by Brillouin in 1922 [45] and named in his honor. BLS is usually

used to study phonons [46, 47], magnons [48, 49] and other low energy (frequency) propagating

excitations. In condensed matter physic the excitations of the media can be associated with order

parameters such as density (for phonons) or magnetization (for magnons) fluctuations, which can

scatter incident light inelastically. As excitations propagate in the media, the frequency shift can

be described as a Doppler shift of the frequency of incident light on running waves. However, in

many cases, it is more convenient to use a quantum description to obtain the relation between

frequencies of scattered light and frequencies of excitation. In quantum language particles of light,

photons, interact with particles of the media, phonons or magnons. In the process of inelastic
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scattering an incident photon with frequency ω transfers part of its energy to the phonon/magnon.

As a result the frequency of the scattered photon becomes smaller, with ωS < ω, where ωS is the

Stokes component. In the case when the scattered photon gains energy from the phonon/magnon,

the frequency of photon increases, ωAS > ω, where ωAS is the anti-Stokes component.

Collectively, the spectrum of scattered light also contains several new frequencies corresponding

to the Stokes component ωS and anti-Stokes component ωAS , beside the incident photon frequency

ω.

Knowing the frequencies of incident and scattered photons, the frequency of phonon/magnon

∆ωB , called the Brillouin frequency, can be determined:

∆ωB = |ω − ωS,AS |. (1.6.5)

Figure 1.13 shows energy and momentum diagrams of the BLS process.

ΔωB

ω ωS
ωASω

(a) (b)

KS

K

KB

θ

Figure 1.13: Energy (a) and momentum (b) diagrams in BLS process. ω, ωS,AS and ωB frequencies
of incident, scattered photons and frequency of phonon/magnon. Θ — an angle between incident
and scattered photons.

The regular frequency shift in BLS is in a range of ∼ 0.5-50 GHz [50]. Since the shift can be

small, monochromatic incident beam with narrow spectral line and optics with high resolution are

therefore required.

The angle between scattered and incident photons depends on the momentum of the phonon/magnon

[Fig. 1.13 (b)]. Consequently, BLS also allows us to obtain the dispersion relation between the

frequency of excitation and its wave vector ~k for phonons/magnons of different materials [51].

BLS is a powerful tool for probing the excitations such as phonons and magnons in materials
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and nanostructures. An example of the BLS spectrum of magnons in a thin film of cobalt is shown

in Fig. 1.14. BLS allows to resolve different modes of magnons like surface magnons (DE peaks

Figure 1.14: BLS example spectrum of magnons in cobalt film. Reproduced from Ref. [3].

in Fig. 1.14) and surface standing magnons (peaks 1 and 2 in Fig. 1.14) The peaks with positive

frequency shift correspond to transferring energy from excitation to light, while those with negative

shifts corresponds to absorption of photon energy by excitations.

The intensity of the peaks indicates scattering efficiency of excitations with particular frequency,

where the scattering (peak) intensity is proportional to the density of excitation at that frequency.

The spatial resolution of BLS is on the order of tens of micrometers, which is defined by the

diameter of the laser beam spot. Invention of BLS microscopy [52] with a laser beam focused to

diffraction limit has increased resolution down to hundreds nanometers. In this method, a lens with

high numerical aperture (NA) is used to focus laser beam on a sample [Fig. 1.15(a)]. Scattered light

passes through the same lens. In this situation, the micro-BLS method automatically integrates

over all wave vector up to some maximal value, which is defined by the numerical aperture of the

lens. Due to integration over all wave vector micro-BLS loses its ability to resolve k-space.

The micro-BLS method is effectively used for mapping the surface magnon intensity distribution
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1μm

Figure 1.15: (a) Schematic micro-BLS setup. (b) Distribution of magnons with different modes
(n=0-3) in CoFe film, obtained with micro-BLS method. Figure reproduced from Ref. [4].

in microscale samples [Fig. 1.15 (b)].



Chapter 2

Electronic and spectral properties

of SHNO

Spin Hall nano oscillators (SHNO) are a novel type of spintronic devices, where magnetization

dynamics is excited by pure spin current from spin Hall effect. Demidov et al. [5] demonstrated

that by increasing concentration of electrical current in a small region it is possible to achieve high

spin current generation from spin Hall effect [Fig. 2.1(a)]. This pure spin current can be strong

enough to excite coherent auto-oscillation of the magnetization of the magnetic layer [Fig. 2.1(b)].

These oscillations were detected by micro-BLS technique at room temperature. After that it

was demonstrated that such devices can generate microwave signal at cryogenic temperatures [53].

The oscillation frequency is lower than FMR in Permalloy (Py), indicating that oscillation mode is a

localized non-propagating soliton (bullet mode [54]). Also it was shown the line-width exponentially

grows with increasing temperature. The power of microwave signal decreases as temperature

increases as well, and become lower than thermal noise around T = 240 K.

35
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(a) (b)

Figure 2.1: (a) Picture of SHNO device obtained with scanning electron microscopy. (b) Spacial
map of oscillation distribution in active region of SHNO obtained with BLS technique. Figures
reproduced from Ref. [5].

2.1 Geometry and operation of SHNO

Figure 2.1(a) shows SEM image of a typical SHNO device, based on planar point contact. The

device is comprised of Py(5nm)/Pt(4nm) bilayer several micrometers in diameter. Two 100 nm

thick top electrodes made from high conductive material (gold or copper) are placed on the top

of bilayer disk. The small gap between sharp tips of the top electrodes is less then 100 nm. Such

geometry of top electrodes allows to achieve high current density in the gap.

The general principle of operation of SHNO is shown in Fig. 2.2. The external magnetic field

H set in-plane magnetization direction of Py layer. Electrical current flows predominantly through

high conductivity top electrodes everywhere except small gap between them. In the gap current

is injected into Py/Pt bilayer. Current flowing in plane in Pt layer produces transverse pure spin

current, which is injected into Py layer. The pure spin current exerts torque on magnetization due

to STT effect and magnetization starts precessing around external H field. Because of the high

current density in the gap between two electrodes generated pure spin current is strong enough to
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Figure 2.2: Schematic of current flow and spin current generation in SHNO. Figure reproduced
from Ref. [6]

.

excite coherent oscillations of magnetization.

Those oscillations can be detected optically with micro-BLS or electronically. Electronic mea-

surements rely on AMR in FM layer. Oscillating magnetization causes oscillation of the angle

between magnetization and current. As the angle oscillates AMR signal also oscillates with the

same frequency. Maximal amplitude of AMR oscillation is achieved when angle is 45◦. On the

other hand ST from SHE is the most significant when magnetization is orthogonal to the current.

Therefore optimal angle for electronic measurements is 60◦.

2.1.1 SHNO with patterned spin injector

Coherent magnetization oscillations excited by pure spin current in SHNO was observed at room

temperature by BLS and at cryogenic temperatures by electronic microwave measurements. The

intensity of microwave oscillations decreases with increasing temperature, and spectrum broadens

quickly that microwave signal becomes completely suppressed above 240 K. Moreover, the electrical

current required to excite oscillations is significantly larger than in traditional spin torque oscillators

[55]. In this research I have demonstrated that issues mentioned above can be resolved by modifying

geometry of spin injector of SHNO devices. The planar geometry of SHNO devices gives advantage

of easy modification of the spin injector layer without alternating properties of the magnetic layer.
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(a) (b) (c)

Figure 2.3: Current distribution in SHNO devices with different geometries calculated with COM-
SOL Multiphysics. (a) Current distribution in the device with patterned 400 nm in diameter Pt
disk. (b) The same as in (a), but for extended 5 µm Pt layer. Both of calculated distribution
normalized to the maximal current density jmax in the center of 400 nm Pt disk. (c) Calculated
distribution through central cross section (dashed line in (b)) for the sample with extended Pt
layer (dashed line) and patterned 400 nm Pt layer (solid line). Reproduced from [7], with the
permission of AIP Publishing.

Device with patterned Pt spin injector layer has better spectral characteristics, including narrower

line-width and higher amplitude of oscillations, and operated at lower current. Moreover, such

device is able to generate microwave signal in a wide range ot temperatures from 6 K to room

temperature.

The devices was fabricated on annealed sapphire substrate by combination of e-beam lithog-

raphy, high vacuum magnetron sputtering and thermal evaporation techniques. Active magnetic

layer was made from Py (Ni80Fe20) in a shape of disk with 5 nm thickness and 5 µm diameter.

On top of magnetic layer concentric Pt disk of 4 nm thickness was deposited. Several devices with

varying diameter of Pt from 300 nm to 5 µm were fabricated to investigate how size of spin injector

affect properties of device. Top electrodes were made from 150 nm Cu thick, had triangular shape

with vertices separated by 100 nm gap place in the center of Pt/Py disk [Fig. 2.3]. Additional

sample with thin Pt space under electrodes was fabricated to demonstrate effect of Pt interface on

magnetization dynamics. Figures 2.3(a) and 2.3(b) show current distribution in the gap between

top electrodes for samples with expended 5 µm Pt layer and patter 400 nm Pt layer respectively.

Current is predominantly concentrated in the gap between top electrodes, which produces strong

pure spin current to excite coherent oscillations. Profiles of current distribution in both types of
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structures are identical [Fig. 2.3(c)], however in the sample with 400 nm Pt disk current is twice

higher than in extended Pt layer. Moreover in device with the extended Pt layer spin current

injected in wider area, but in device parented Pt layer spin injection is localized and constrained

by size of 400 nm Pt disk. There higher concentration and localization of current in device with

patterned Pt spin injector leads lower required current to excite magnetization oscillations. In ad-

dition this reduces size of the interface between Pt and Py. Previous study showed that interface

of Pt with FM can increase damping and significantly affect properties of FM [56,57].

Spectral properties of the devices were measured by electronic microwave spectroscopy which

utilizes AMR to detect magnetization oscillations excited by current. External magnetic field

H = 500 Oe was applied in plane of the device to control magnetization direction of active magnetic

layer. The angle between magnetization and current was 60◦, which allows to maximize effect of

spin torque on magnetization and simultaneously microwave signals generation. To show effect of

spin injector size on spectral characteristics measurements of devices with spin injectors from 300

nm to 5µm in diameter were performed. Figure 2.4 shows comparison of spectral and electrical

characteristics of devices with two different sizes of Pt spin injector. For SHNO with the extended

Pt layer d = 5µm oscillation peak appears around I = 25 mA [Fig. 2.4(a)]. The amplitude of the

peak increases with increasing electrical current and reach its maximum value of 16 pW/MHz and

minimal line width of 6.5 MHz at I = 27.5 mA. In contrast for SHNO with the extended d = 5 µm

Pt disk, device with patterned d = 400 nm Pt disk has significantly larger oscillation amplitude of

56 pW/MHz, which is achieved at I = 11.75 mA almost twice lower for device with the extended Pt

layer. The line-width of spectrum with maximal amplitude for SHNO with patterned Pt injector

is 5.1 MHz [Fig 2.4(b)], which is not only 20% smaller compared to device with extended Pt layer.

Figure 2.4(e) shows dependence of spectral properties (full width on half maximum (FWHM)

and central frequency) for device with extended 5 µm Pt disk on current. Central peak frequency

gradually red shifts with increasing current before the amplitude of oscillations achieves its maximal

value at Imax. The shape of spectral line for current I < Imax is described by Lorentzian shape,

which corresponds to a thermally broaden single oscillation mode. After Imax frequency experience
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Figure 2.4: Comparison of spectral and electrical characteristics of SHNO with d = 5µm and
d = 400 nm at T = 6 K. (a) Spectrum of SHNO with d = 5µm Pt disk acquired at I = 27.5 mA
(symbols) and fitted with Lorentzian shape (solid line). (b) Spectrum of SHNO with d = 400 nm
Pt disk acquired at I = 11.75 mA (symbols) and fitted with Lorentzian shape (solid line). (c)
Dependence of spectrum on current for SHNO with d = 5µm Pt disk and (d) d = 400 nm Pt
disk. (e) Dependence of full width in half maximum (solid symbols) and central frequency (open
symbols) for SHNO with d = 5µ m Pt disk and (f) d = 400 nm Pt disk. Reproduced from [7], with
the permission of AIP Publishing.
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Figure 2.5: Dependence of current Imax corresponding to maximal amplitude of oscillations on
diameter d of Pt disk. Symbols: Data obtained from experimental measurements. Solid line:
Calculated current density in the center of Pt disk normalized to total current. Reproduced
from [7], with the permission of AIP Publishing.

sudden larger red shift, line width broadens and amplitude decreases. At large currents shape of

the spectral peak deviates from Lorentzian form, which is an evidence of excitation of multi-modal

dynamics.

The main difference of the SHNO device with d = 400 nm Pt disk is significant decrease of

oscillations currents [Fig. 2.4(d)], which is twice lower compared to the device with extended Pt

layer. Figure 2.4(f) shows that frequency of oscillation peak gradually decreases in all range of

current, which is an evidence that only single dynamical has largest contribution to oscillation

and effect of other modes is reduces. The reasons for higher frequency modes have small effect on

oscillations is that they are excited by higher current, have larger oscillation area. Localized spin

current injection restricted by size of Pt disk reduces effect of extended propagating length which

reduces coherency of oscillations [58].

Figure 2.5 illustrates how characteristic currents required to excite oscillation depend on size of

Pt injector measured at T = 6 K. The current of maximal amplitude of oscillations Imax increase

from 9.75 mA for 300 nm disk to 27.5 mA for 5 µm disk. These results are in good agreement

with inverse of current density calculated with COMSOL in the center of Pt disk (solid line in Fig.

2.5).

As it was mentioned above amplitude of oscillations decreases and line width exponentially
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increases with increasing temperature for the device with extended 5 µm Pt layer and oscillations

are completely suppressed for T > 250 K. This results are consistent with the results published

before [53]. One of the main advantage of the SHNO device with reduced size of Pt spin injector

is that line broadens not so fast with temperature and room temperature oscillations was observes

in devices with d < 800 µm Pt spin injector. Figure 2.6(a) shows spectral properties for the device

with d = 400 nm Pt spin injector at room temperature. Maximal amplitude of oscillations [Fig.

2.6(b)] is achieved at current Imax = 9 mA, which is lower than Imax at cryogenic temperature. The

current of maximal amplitude of oscillations Imax decreases as temperature increases [Fig. 2.6(c)].

The decrease in current at elevated temperatures is possibly caused by temperature dependence

of spin current generation in Pt. Also the strong temperature dependence of proximity magnetism

in Pt due to exchange coupling may affect spectral properties of magnetic layer [59].
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Figure 2.6: Dependence of spectral properties for the device with d = 400 nm on temperature. (a)
Room-temperature spectra for different currents. (b) Spectrum with maximal amplitude obtained
at I = 9 mA (Symbols) and fitted with Lorentzian form (Solid line). (c) Dependence of Imax
(green triangles) and FWHM (red squares) on temperature. Solid line is the exponential fit of
data. Reproduced from [7], with the permission of AIP Publishing.

The efficient generation of microwave signal in the devices with nanopatterned Pt layer indicates

that not only geometrical localization of current increases spin injection, but also the Pt/FM

interface modifies dymanical properties of FM. In devices with nanopatterned Pt spin injector area

of Pt/FM interface is small and comparable with the size of localized dynamical mode. Therefore

localized spin injector excite localized mode more efficiently than extended proparating mode. To
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test effect of Pt/Py interface on dymanical properties an additional sample with patterned spin

injector and thin 1 nm layer of Pt under top electrodes was fabricated. Because conductivity of the

top electrodes is much higher than conductivity of thin Pt spacer under them, negligible amount

of current flows through Pt spacer producing spin injection not strong enough to have any effect

on dynamics in Py. The spin injection is entirely confined in the region of 400 nm Pt in the gap

of electrodes.
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Figure 2.7: Spectra for device with d = 400 nm Pt disk and 1 nm Pt under top contacts at room
temperature. Reproduced from [7], with the permission of AIP Publishing.

This device demonstrates microwave generation from 6 K to room temperature similar to

device with Pt space. However, the spectrum has two distinct peaks at the onset of oscillation at

I = 11.25 mA [Fig. 2.7]. As the current increases additional high frequency peak appears. This

results indicates that Pt/Py interface changes dynamical properties of active FM layer.

It is known that Pt/Py interface increases dynamical damping in FM due to enhanced SO

interaction at the interface [56]. However, increased dynamical damping leads only to faster decay

of propagating spin wave, and not directly responsibly for multi modal dynamics. Other possible

explanation of observed effects inhomogeneous magnetic anisotropy induces by Pt. Spin wave

reflection from these inhomogeneities reduces radiative efficiency of high frequency spin wave away

from active area of the device cause low coherence of oscillation and microwave generation [58].
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2.1.2 Nanoconstriction based SHNO

One of the most important characteristics of microwave oscillators is its ability to generate coher-

ent oscillations. SHNO devices can generated large single mode signal at cryogenic temperatures

and/or relatively low electrical current. However, at elevated temperature and/or high current

additional dynamical modes are excited. Multi modal dynamics decreases coherency of auto os-

cillations, reducing efficiency of microwave generation by SHNO. De-coherence can be avoided by

selective enhancement of one mode by controlling geometry of auto oscillation region. Coherent

microwave generation in a wide range of temperatures can be achieved by utilizing dipolar field to

create potential well confinement for the localized auto-oscillation mode.

(a) (b)

Figure 2.8: (a) Schematic of experimental dives with bow-shape nanoconstriction region with
calculated current density map. (b) Calculated current density along Y-axis in the central part of
the device for current I = 1 mA. Reproduced from [7], with the permission of AIP Publishing.

The schematic of experimental device is shown in Fig. 2.8(a). The device consists of Py(5)Pt(8)

bilayer strip of 4 µm wide deposited in high vacuum by magnetron sputtering. In the central area

of the strip bow-shape nanoconstriction with an opening angle of 22◦ was created by Ar ion milling

all way through the entire thickness of Py/Pt bilayer. The width of nanoconstriction was 150 nm

with 50 nm apex radius. Electrical current flowing through the device has maximal density in

nanoconstriction. Figure 2.8(b) shows current density distribution along the device axis Y in Pt
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layer, calculated independently measured parameters: material resistivity ρPt = 11.2±0.06 µΩ· cm,

ρPy = 32.6 ± 0.06µΩ· cm and current I = 1 mA. Due to lower resistivity of Pt layer over than

80% of current flows in Pt. Moreover in nanoconstriction current has a peak of 300 nm width of

increased density. Because device operation relies on SHE, high current density in nanoconstriction

in Pt leads to strong spin current generation. The region of high current density also defines active

area of the device, where injected spin current excite oscillation of magnetization.

To enable efficient electronic microwave generation based on AMR effect external magnetic field

H0 was applied in-plane at the angle α = 60circ to the direction of current. Electronic spectral
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Figure 2.9: Spectral characteristic of nanoconstriction based SHNO at RT obtain with electronic
microwave measurements. (a) Map of PSD of microwave signal generated by SHNO in current-
frequency coordinates (Logarithmic scale). (b) Spectral peak obtain at I = 3.75 mA (symbols) and
fitted with Lorentzian shape (solid line). (c) Linewidth and integral power of auto- oscillations vs
current. Dashed line shows current at above which system transitions to multi-modal dynamics.
Reproduced from [8], with the permission of AIP Publishing.

properties of the SHNO with nanoconstriction is shown in Fig. 2.9. Spin current generated in

Pt decreases effective damping in Py due to STT. The damping is completely compensated by

STT near critical current Ic, resulting in onset of auto-oscillation. For current device microwave

oscillation peak appears around Ic ≈ 3.3 mA and gradually increasing with increasing current

[Fig. 2.9(a)]. Initially spectral line-width decreases with increasing current [Fig. 2.9(c)] and reaches

its minimum of 6.2 MHz and maximal amplitude at 3.74 mA [Fig. 2.9(b)]. Integral intensity of

microwave signal reaches its maximum of 7 pW at 3.95 mA [Fig. 2.9(c)]. Further increase of
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current leads to spectral broadening of the spectral peak and the it spits in two peaks, indicating

transition to multi modal dynamics. Despite relatively low critical current compared with other

types of SHNO devices [5,7,53] current density in nanoconstriction comparable to other spin torque

devices [15].
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Figure 2.10: Spectral characteristic of nanoconstriction based SHNO at RT obtain with µ-BLS at
H0 = 400 Oe. (a) Spectra of magnetization oscillation for different applied current as labeled. (b)
Dependence of central oscillation frequency (opened symbols) and peak intensity (solid symbols)
on current. (c) Spacial map of intensity of magnetization oscillation obtained at I = 2 mA. (d)
Same as (c) but at at I = 3.8 mA. Reproduced from [8], with the permission of AIP Publishing.

To determine spacial distribution of oscillation the current induced dynamics were detected with

µ-BLS technique. The power of probing laser was 0.1 pW, which is low enough to not perturb

electronic spectra. Figure 2.10(a) shows spectra of oscillation at different currents. Sensitivity

of BLS technique allows to detect thermal fluctuations, spectra of which corresponds to I = 0.

For currents I > 0 the fluctuations are enhanced and additional peak appears at low frequency

shoulder of thermal fluctuations. At the onset of auto-osculations for I > Ic peak rapidly increase

in intensity. In contrast to self-localized ”bullet” mode onset of auto-oscillations of which abruptly

appear at Ic [54], in SHNO with nanoconstriction gradually emerges even at I < Ic [Fig. 2.10(b)].

Spacial resolved measurements were performed to elucidate nature of oscillation mode. The

active area 1 µm by 1 µm around nanoconstriction was scanned by probing laser focused to its

diffraction with a step size of 50 nm at current below [Fig. 2.10(c)] and above [Fig. 2.10(d)] critical.

There is no significant difference between oscillation volume for currents below and above critical.
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The oscillation area is elongated in the direction perpendicular to external field H0. The size of

oscillation area is approximately 250 by 400 nm, which is larger than typical oscillation area 70 nm

of bullet mode [5,54,60]. Large area of oscillations leads to narrow line width of a spectrum, which

is confirmed by electronics measurement above.

The micromagnetic simulation (OOMMF package [61]) was used to clarify the nature of auto-

oscillation mode as well as effect of dipolar and Oersted field. Figure 2.11(a) shows calculated

distribution of demagnetizing field in the area of nanoconstriction. The edges of nanoconstriction

produce strong demagnetizing field, which is opposite to static magnetic field reducing internal

field in nanoconstriction area.
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Figure 2.11: (a) Calculated distribution of magnetic field in the area of nanoconstriction in Py. (b)
Profile of static magnetic field distribution along the device axis for I = 0 (solid line) and I = 4
mA (dashed line). (c) Schematic of shallow potential well with one state. (d) Schematic of deep
potential well with two states. Reproduced from [8], with the permission of AIP Publishing.

When no current flowing through nanoconstriction demagnetizing field reduces static magnetic

field by 80 Oe as shown in Fig. 2.11 (b) solid line. Electrical current generated additional Oersted

field which reduces internal effective field even more Fig. 2.11 (b) dashed line. Effective magnetic

field creates potential well, which localize single oscillation mode. Oersted field generated by
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current flowing in positive direction increases depth of potential well. When potential well is deep

enough, is has two energy level corresponds to two different frequencies of oscillation. This can

explain, that spectral peak spits into two at higher current [Fig. 2.10(a)].



Chapter 3

Synchronization of SHNO

3.1 Synchronization of SHNO to external signals 1

With the experimental demonstration of the generation of pure spin currents — directional flows

of angular momentum not tied to the flow of electrical charge — the development of spin-based

electronic (spintronic) devices has entered a new phase [62, 63]. It has now become possible to

exploit a range of both electrically conducting and insulating magnetic materials that would be in-

compatible with conventional magnetic multilayer structures using spin-polarized charge currents.

Moreover, planar device geometries operating via spin currents generated by the SHE are generally

scalable, enabling us to envision the operation of devices with dimensions ranging from nanometers

to millimeters [34,35,53,58,64–66].

Following the pioneering work demonstrating the possibility of reducing effective magnetic

damping using spin currents generated by SHE [64], complete compensation of damping has re-

cently been realized in magnetic nanostructures [5, 35, 53]. The resulting spontaneous microwave-

frequency oscillations can be utilized for the generation of signals for next-generation integrated

electronics.

1Published article: V.E. Demidov, H. Ulrichs, S.V. Gurevich, S.O. Demokritov, V.S. Tiberkevich, A.N. Slavin,
A. Zholud S. Urazhdin, ”Synchronization of spin Hall nano-oscillators to external microwave signals”. Nat. Comm.
5, 3179 (2014).

49
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Spin-torque nano-oscillators (STNOs) driven by SHE – spin Hall nano-oscillators (SHNOs) –

have several advantages over conventional STNOs. In particular, pure spin currents are less likely

to cause damage by electromigration or by Ohmic heating in the ferromagnets. Additionally, their

geometry facilitates direct optical access to the active device area enabling unprecedented mea-

surements by advanced magneto-optical techniques and thus elucidating the dynamic phenomena

induced by spin currents [5, 58].

One of the distinguishing characteristics of STNOs is a strong nonlinearity which enables their

efficient synchronization to external periodic signals over a wide frequency range [67–70]. This syn-

chronization may allow the development of microwave sources with improved generation coherence

using mutually synchronized STNO arrays. The implementation of such arrays with SHNOs is

significantly more straightforward than with conventional STNOs due to their more simple, planar

geometry. However, synchronization of SHNOs to microwave signals has yet to be demonstrated.

Here, it was reported an experimental study of the response of SHNOs to external microwave

signals. It was demonstrated that SHNOs exhibit efficient parametric synchronization when the

external driving frequency is close to twice their oscillation frequency, with a relatively wide syn-

chronization frequency interval controlled by the magnitude of the microwave signal and by the dc

current flowing through the device. In contrast with the synchronization of conventional STNOs

based on giant magnetoresistive structures [69,70], the synchronization of SHNOs occurs only above

a certain threshold external microwave signal power. The analysis shows that synchronization is

suppressed below the threshold through the influence of spin wave modes enhanced by the spin

current.

3.2 Results

The test devices are formed from a bilayer comprising a 8 nm thick film of Pt and a 5 nm thick film

of Permalloy (Py) patterned into a disk with the diameter of4µ m [Fig. 3.1(a)]. Two 150 nm thick

Au electrodes placed on top of the bilayer form an in-plane point contact. The endpoints of the

Au electrodes have a 50 nm radius and are separated by a 100 nm wide gap. To induce oscillations
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Figure 3.1: Experimental configuration. (a) Schematic of the test device. (b) Normalized calculated
distribution on the driving current density in the device plane. Adopted from Ref. [9].

of the Py magnetization, a dc current I is applied between the Au electrodes. Calculations of the

current distribution based on a three-dimensional model of the device show that, because of the

large difference between the sheet resistances of the electrodes and the Py/Pt bilayer, the current is

concentrated predominantly in the gap between the electrodes within an area with a characteristic

size of about 250 nm [Fig. 3.1(b)].

The electric current flowing in the Pt layer produces, via the spin Hall effect, a pure spin current

directed perpendicular to the bilayer plane [32,71]. This spin current exerts a spin-transfer torque

on the magnetization of the Py which results in a modification of its dynamic magnetic damping

[64], and an enhancement (or suppression) of thermal magnetization fluctuations [58] depending

on the direction of the electric current relative to the magnetic field H. In the studied geometry,

positive current as defined in Fig. 3.1(a) results in reduction of the effective damping. The

magnetization of Py starts to auto-oscillate when the dynamic damping is completely compensated.

The magnetization dynamics in the Py layer was detected by micro-focus BLS [52]. The BLS

intensity at a given frequency is proportional to the intensity of magnetization oscillations at this

frequency at the position of the probing laser spot, which in our experiment was centered in the

gap between the electrodes.

Figure 3.2 illustrates the evolution of the BLS spectra under the influence of current I, at

H = 800 Oe. A broad peak observed at I < 16 mA is caused by thermal magnetization

fluctuations enhanced by the spin current, as illustrated for I = 10 mA and I = 15 mA in Figs.

3.2(a) and (b), respectively. A narrow peak with a center frequency of about 7 GHz appears below
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Figure 3.2: Evolution of the spectra under the influence of current. (a) - (c) Magnetization
oscillation spectra recorded at the labelled values. (d) Maximum BLS (open symbols) and the
corresponding frequencies (solid symbols) versus current, at H = 800 Oe. Lines are guides for the
eye. The data were obtained by BLS. Adopted from Ref. [9].

the thermal fluctuation peak in the range 15.75 < I < 16 mA (metastable auto-oscillation regime)

and quickly increases in amplitude starting to dominate over the broad fluctuation peak already at

I = 16 mA [Fig. 3.2(c)]. We identify this current value with the critical current IC , at which the

dynamical damping is completely compensated by the spin transfer torque exerted by the pure spin

current, resulting in the onset of auto-oscillation. The maximum detected BLS intensity gradually

increases with increasing I < IC , abruptly jumps at I = IC , and then saturates at I > 16.5 mA

[Fig. 3.2(d), note the logarithmic scale on the vertical axis]. The frequency fmax corresponding to

the maximum of the BLS intensity gradually decreases with increasing I < IC due to the nonlinear

frequency shift associated with the enhancement of thermal magnetization fluctuations, and then

drops abruptly at I = IC [Fig. 3.2(d)]. This abrupt decrease clearly marks the onset of auto-

oscillations via the formation of a nonlinear self-localized spin-wave “bullet” mode at frequency

below the linear spectrum of propagating spin waves. The transition to the auto-oscillation regime

is observed only at I > 0, while at I < 0 thermal magnetization fluctuations are increasingly

suppressed and no auto-oscillation is observed. Rotation of the static field by 180◦ results in the

inversion of these effects with respect to the direction of I, in agreement with the symmetry of the

spin Hall effect.
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Figure 3.3: Effects of the microwave signal below the onset of autooscillation. (a) BLS spectra
recorded at I = 15 mA, with the frequency fMW of the microwave varying from 12 to 16 GHz
in 0.1 GHz increments. The power of the signal is P = 0.5 mA. (b) Maximum intensity of the
BLS spectrum (open symbols) and the corresponding frequency fi (solid symbols) versus driving
microwave signal P . Solid lines are guides for the eye. Dashed line shows the maximum intensity
in the absence of the microwave signal. Adopted from Ref. [9].

3.3 Effect of the external microwave signals

To study the effects of external signals on the oscillation characteristics of the SHNOs, a bias tee

was used to apply a microwave current at frequency fMW simultaneously with the dc current I. The

microwave current induces in the Py film an additional dynamic magnetic field h collinear with the

static field H [Fig. 3.2(a)]. The maximum power of the applied microwave signal was P = 2 mW,

which corresponds to a dynamic field h ≈ 57 Oe, while the spatial distribution of h was found to be

very close to that of the current density [Fig. 3.2(b)]. In the h||H geometry, the dynamic magnetic

field couples to the dynamic magnetization through a parametric process that becomes efficient

when the driving frequency is close to twice the auto-oscillation frequency [72, 73]. Therefore, the

response of the SHNOs to microwave signals having frequencies close to 14 GHz was measured

below. Note that by rotating the direction of field H away from the direction perpendicular to the

current flow, one can, in principle, also achieve direct linear coupling of magnetization to external

microwaves at the fundamental frequency. However, due to the symmetry of the spin-Hall effect,

such rotation results in a dramatic increase of the critical current IC , which makes the operation

of SHNO inefficient.
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Figure 3.4: Effect of microwave signal above the onset of autooscillation. (a) BLS spectra recorded
at I = 16.5 mA, with the frequency fMW of the microwave signal varying from 12 to 16 GHz
with increments 0.1 GHz. The power of the signal P = 0.5 mW. (b) Maximum intensity of the
BLS spectrum (open symbols) and the corresponding autooscillation frequency fA (solid symbols)
versus driving microwave frequency. Shaded area marks the synchronization interval. Dashed line
shows the dependence fA = fMW /2. (c) Same as (b), for I = 18 mA. Adopted from Ref. [9].

First, the effects of the microwave signal at dc currents below the onset of auto-oscillation

was analyzed, as illustrated in Fig. 3.3(a) for I = 15 mA and fMW varying from 12 to 16

GHz. The effect is significant only over a narrow frequency interval, when fMW /2 is close to the

ferromagnetic resonance (FMR) frequency of the Py film. A strong increase of the BLS intensity

within this interval is caused by parametric spin-wave instability induced by the microwave signal.

To quantify the parametric instability, the frequency fI at which the peak BLS intensity reaches

a maximum was determined, at a given excitation power P . Figure 3.3(b) shows that fI mono-

tonically decreases with increasing P , due to nonlinear frequency shift, while the corresponding

maximum peak intensity exhibits a monotonic increase, gradually saturating at large P . The max-

imum intensity exceeds the thermal level, shown with a horizontal dashed line, only at driving

powers above the threshold value PPth ≈ 0.07 mW, in agreement with the theory of the parametric

instability.

Next, the effects of the external microwave signal in the auto-oscillation regime of the SHNOs

was studied, at I > IC . Figure 3.4(a) shows the data obtained for I = 16.5 mA, where the

amplitude of the auto-oscillations saturates [Fig. 3.2(d)] marking the stable auto-oscillation regime

of SHNO. In contrast with the subcritical regime, the BLS spectra exhibit a narrow intense auto-
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Figure 3.5: . Electronic characterization of the auto-oscillation linewidth. Spectra of SHNO
auto-oscillations obtained for the free-running oscillation without external microwave signal (open
symbols) and oscillation synchronized with the external microwave signal (solid symbols). Inset
shows the synchronized spectrum on a finer frequency scale. δf denotes detuning from fMW /2.
Curves show the result of the fitting of the experimental data by the Lorentzian function for the
free-running spectrum, and Gaussian for the synchronized spectrum. Adopted from Ref. [9].

oscillation peak, regardless of the external microwave frequency [Fig. 3.4(a)]. When fMW /2 ap-

proaches the auto-oscillation frequency, the latter starts to exactly follow fMW /2 [solid symbols

in Fig. 3.4(b)], as expected for parametrically synchronized oscillation, and as previously observed

for conventional STNOs. However, unlike in conventional STNOs, where a large increase of in-

tensity is observed in the synchronized regime, the intensity of oscillation of the SHNOs varies

only slightly throughout the external frequency range, with the largest intensity near the middle

of the synchronization interval, and two minima near the synchronization limits (open symbols in

Fig. 3.4(b)). With the increase of the driving current [Fig. 3.4(c)] the above behaviors are generally

preserved, although the width of the synchronization interval noticeably reduces.

Although the BLS measurements clearly demonstrate the frequency locking of the studied

SHNOs to the external microwave signal, observation of the behavior of the auto-oscillation

linewidth is highly desirable to obtain unambiguous evidence of the synchronization. Since the

limited frequency resolution of the BLS technique does not allow to obtain this information, ad-

ditional electronic measurements were performed. These measurements demonstrate that in the

range of frequencies, where the frequency locking is observed, the linewidth of the auto-oscillation

reduces by more than four orders of magnitude [Fig. 3.5], as one expects for the synchronized
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Figure 3.6: Dependence of the synchronization interval on the dynamic field. (a) Measured syn-
chronization interval versus P 1/2, at the labelled values of dc current I. Solid line is a linear
fit of the I = 18 mA data. (b) Symbols: measured synchronization interval versus P 1/2, at
I = 18 mA.Solid curve: calculated synchronization interval in the presence of noise.Dashed curve
is the same dependence calculated in the absence of noise. The experimental data were obtained
by BLS. Adopted from Ref. [9].

regime.

To gain further insight into the synchronization process, it is necessary to measure the de-

pendence of the synchronization interval ∆fS on the dynamic microwave magnetic field h, which

is proportional to the square root of the driving microwave power P . The dependencies of ∆fS

on P 1/2 obtained at different values of dc current are shown by the symbols in Fig. 3.6(a). No

synchronization was observed at microwave powers below PSth ≈ 0.03 mW, regardless of the dc

current value. At a current I = 18 mA significantly above the oscillation onset, ∆fS exhibits an

approximately linear dependence on P 1/2 above the threshold [circles and solid straight line in Fig.

3.6 (a)], while at smaller currents close to the oscillation onset, a rapid increase of ∆fS at small

microwave power is followed by saturation [squares and diamonds in Fig. 3.6(a)]. The observed

behaviors are not described by the theory of synchronization of nonlinear single-mode oscillators,

which predicts a universally linear dependence of ∆fS on P 1/2. The predicted dependence also

starts at the origin, since the synchronization is known to be a non-threshold phenomenon.
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3.4 Discussion

Now it is necessary to show that the synchronization threshold observed can be explained by

the effects of thermal noise enhanced by the spin current on the self-localized “bullet” oscillation

mode. The analysis is based on the theory of auto-oscillator synchronization developed in Ref. [74],

applying it to the “bullet” oscillation mode of the SHNOs, and taking into account analytically

the effect of thermal noise that was introduced numerically in Ref. [68]. The spin-wave “bullet”

can be described by a perturbed nonlinear two-dimensional Schrödinger equation [54]:

∂a

∂t
+ i(2πf0 −D∆2 +N |a|2)a = F (a, t) (3.4.1)

where a = |a|exp[iΨ(t)]is the complex amplitude of the “bullet” mode, f0 is the ferromagnetic

resonance frequency, D is the spin-wave dispersion coefficient, and N is the nonlinear frequency

shift coefficient. The term F (a, t) = Fd(a, t)+Sn(t) on the right-hand side of Eq. (3.4.3) comprises

a deterministic term Fd(a, t) and a stochastic term Sn(t). The former accounts for the Gilbert

damping, the negative damping produced by the spin current via the spin torque mechanism,

and for the Zeeman torque exerted by the external microwave signal. The stochastic term Sn(t)

describes the effect of thermal noise. For a well-developed spin-wave “bullet” (dc current sufficiently

above IC) the effects of perturbations can be analyzed in the framework of modulation theory

[75]. To describe the synchronization process in the framework of this theory it is convenient

to renormalize oscillation phase ∆Φ = 2Ψ(t) + 2πfMW t + ∆Φ , where ∆Φ is a nonlinear phase

shift that accounts for the dependence fg(a) of the generation frequency fg on the auto-oscillation

amplitude a. Then, the evolution equation for the renormalized phase is

dΦ

dt
= 4π∆fMW − 2π∆f0 sin Φ +

√
µsn(t) (3.4.2)

where ∆fMW = fg−fMW /2, and ∆f0 is the synchronization interval in the absence of noise, which

is proportional to the amplitude h of the microwave signal, sn(t) is the normalized thermal white

noise characterized by auto-correlation < sn(t)s∗n(t′) >= δ(t− t′), and µ = (1+ν2)Γ(kBT/E)is the
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amplitude of thermal noise measured in units of angular frequency and numerically equal to the

generation linewidth of the free-running auto-oscillator. Here ν is the nonlinearity coefficient, Γ is

the Gilbert damping rate, kB is the Boltzmann constant, T is temperature, and E is the energy

of the “bullet” mode that can be found using Eq. (77) in Ref. [74] and Eqs. (6), (7) and (10) in

Ref. [54].

Using the standard Fokker-Planck formalism [76], the stochastic Eq. (3.4.2) can be transformed

into a deterministic Fokker-Planck-type equation for the probability distribution of the normalized

phase. The solution of this equation gives an explicit expression for the frequency of the perturbed

“bullet” in the presence of noise

fA = fMW /2− µ
(∫ 2π

0

eu(Φ)
(
C +

∫ Φ

0

e−u(Φ)dΦ′
)
dΦ
)−1

(3.4.3)

where C = −(1−e−8π2∆fMW /µ)−1
∫ 2π

0
e−u(Φ′)dΦ′ and u(Φ) = (4π∆fMW +2π∆f0 cos Φ)/µ. Equa-

tion (3.4.3) is the analytical solution of the synchronization problem in the presence of noise,

which allows one to directly calculate the dependence of the synchronization interval ∆FS on the

microwave power P . It is reduced to Eq. (55) in Ref. [74] in the limit of negligible noise µ→ 0.

The solid curve in Fig. 3.6(b) shows the result of the calculation for I = 18 mA using µ/2π =

46 MHz and ∆f0 = BP 1/2 with B = 350 MHz/(mW)1/2 as the only fitting parameters. The

inclusion of the effects of noise in the model results in a decrease of the synchronization interval

∆fS and a non-zero apparent power threshold of the synchronization process. By contrast, the

same calculation neglecting the effects of noise [dashed curve in Fig. 3.6(b)] yields no threshold

for synchronization, in qualitative disagreement with the data.

The effective noise amplitude µ at room temperature can be calculated from Eq. (3.4.3) with a

value ν ≈ 2 typical for the in-plane magnetized film, giving µ/2π ≈ 0.4 MHz, which is significantly

smaller than the value µ/2π = 46 MHz obtained by fitting the experimental data. The discrepancy

between these values can be attributed to the effect of the spin current on the magnetic noise in the

SHNOs: the dynamic magnetic modes are pumped to well above their thermal levels by the spin

current and accordingly the effective temperature of the magnetic system corresponding to the low-
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energy fluctuations significantly exceeds that of the lattice, resulting in a large apparent threshold

for synchronization [Fig. 3.6]. To verify this hypothesis it is necessary to perform additional

measurements at low temperature of the lattice that the reduction of the lattice temperature does

not result in the reduction of the synchronization threshold.

Note that the suggested theory is incapable of quantitatively describing the dependence of

∆fS on P 1/2 obtained at dc currents close to IC [see I = 16 mA and I = 17 mA data in Fig.

3.6(a)]. Two mechanisms responsible for this disagreement can be identified. Firstly, the mode

rigidity assumption underlying the analysis does not hold for small oscillation amplitudes, since

external perturbations can make a significant contribution to the energy balance of the “bullet”

mode. Secondly, the approximation of uncorrelated white noise is not valid in this regime as the

non-equilibrium populations of magnetic modes deviate significantly from the thermal distribution

in the vicinity of the damping compensation point. On the other hand, at larger currents one can

expect that stronger nonlinear effects result in more efficient thermalization of spin waves.



Chapter 4

Prediction of quantum spin

transfer

4.1 Limitation of semi-classical spin transfer model

Spin transfer [36,77] – the transfer of angular momentum from spin-polarized electrical current to

magnetic materials – has been extensively researched as an efficient mechanism for the electronic

manipulation of the static and dynamic states in nanomagnetic systems, advancing the understand-

ing of nanomagnetism and electronic transport, and enabling the development of energy-efficient

magnetic nanodevices [15,37–39,78–85]. The present understanding of spin transfer is based on the

classical approximation for the magnetization, even though the spin-polarized electrons mediating

spin transfer are treated quantum-mechanically [42].

The original theoretical models and the interpretations of the experimentally observed effects

of ST on magnetization were often based on the simplified approximations that neglected all the

dynamical states of FM except for the uniform precession, or equivalently FMR mode, or some

other dynamical mode that was singled out based on the geometry of the ST structure [36,38,39,77].

However, subsequent theoretical analysis [54], micromagnetic simulations [80,86], and experimental

60
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observations [87–90], demonstrated the complexity of the dynamical states induced by ST [58]. In

particular, it was shown that the whole spectrum of the dynamical magnetic modes — the spin

waves (or their quanta, magnons) — are involved in ST-induced magnetization dynamics. In this

context, it is useful to outline the important general properties of magnons. At typical fields H in

the kOe range, the magnon spectrum extends from the frequencies of a few GHz (10 ≈ V energy

scale) to THz (100 meV scale). The dispersion is approximately parabolic E ≈ Dk2, where E is

the magnon energy, D is the exchange stiffness, and k is the wavevector. The resulting spectral

density is proportional to
√
E, i.e. high-frequency magnons dominate the spin-wave spectrum.

ST and damping can be represented in terms of magnons generation and recombination. One

can assume that the total spin S of FM precesses at an angle Θ relative to its equilibrium orientation

opposite to H. Since each magnon contributes spin 1 to the projection of S on H, the number of

magnons is

n = S(1− cos Θ) ≈ SΘ2

2
. (4.1.1)

The damping torque is τGL = −αGLµm×[m×H] ≈ αµHΘ. Similarly, for spin current polarization

along the field, τF = ~JSΘ. Thus, ~S dΘ
dt = τF − τD = (~JS − αH)Θ. Using Eq.(4.1.1), this can

be re-written as:

dn

dt
= Bn− n

τ
(4.1.2)

where ω is the magnetization precession frequency, τ = ~ S
2αµH = 1

2αω , and B = 2JS/S. Thus, at

small Θ the Landau damping is equivalent to the relaxation-time approximation for the magnon

population, and ST can be interpreted as the stimulated emission of magnons driven by the spin

current injection [91]. The form Eq. (4.1.2) is easily extended to finite temperature T , by replacing

the last term with n−n0

τ . Here, n0 = 1
Exp(~ω/kT )−1 is the average number of magnons in this mode

in thermal equilibrium. In the stationary state, dn
dt = 0:

n(JS) =
n0

1− JS
JS,C

(4.1.3)

where JS,C = S/2τ is the critical spin current, at which n → ∞. The validity of Eq. (4.1.3) was



CHAPTER 4. PREDICTION OF QUANTUM SPIN TRANSFER 62

confirmed by direct magneto-optical measurements of magnon population vs JS [5, 58].

The angular momentum conservation argument underlying the existing ST theories has been

successful in predicting and explaining a multitude of experimental observations. However, this

argument may not uniquely define the outcome of spin flow across magnetic interfaces, and therefore

additional, in some cases significant or even dominant contributions to ST may exist. Two outcomes

are possible for the scattering of the conduction electron with the opposite spin orientation: spin-

up or spin-down. Both are consistent with the angular momentum conservation, and their relative

probabilities are determined by the interaction between the electrons.

In particular, if the effect of exchange interaction between the electrons is sufficiently large

(tEex > h, where t is the interaction time, h is the Planck’s constant, and Eex is the exchange

energy), the probabilities of these outcomes are equal, i.e. the conduction electron spin-flips with

a 50% probability. The described effect represents a type of ST, i.e. it involves angular momen-

tum transfer between the transport electrons and the nanomagnetic system formed by a single

electron spin. However, this ST mechanism does not involve any angular momentum component

noncollinear with the “magnetization”, and therefore it is not captured by the Slonczewski’s theory.

Analysis presented below shows that ST due to quantum fluctuations (quantum ST) becomes

dominant when quantum fluctuations of magnetization become comparable to thermal fluctuations,

i.e. ~ω ∼ kT . Since the average magnon energy is ε > 1 meV in typical FM, and the entire magnon

spectrum is involved in ST, one can expect that quantum ST becomes dominant at T below a few

dozen Kelvins. Since magnons with large energies are involved in ST, one can expect additional

effects to come into play. First, energy conservation may impose limitations on the dynamical states

induced by the spin current. This was first suggested by Tsoi et al. [78] based on the abrupt onset of

current-induced magnetization dynamics. However, it was later shown that the onset is determined

by the compensation of the effective dynamical damping described by Slonczewski’s theory [36].

The energy of magnons is neglected in the Slonczewski’s model, since M is assumed stationary over

the duration of the conduction electron’s interaction with FM (adiabatic approximation). Since

the frequency of the electron’s spin precession in FM is similar to that of meV-range magnons
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involved in ST, one can expect that the interplay between the two dynamics, or equivalently the

energy conservation, can result in selective excitation of only certain magnon modes by ST. This

effect may be particularly useful for applications of ST in current-driven magnetization reversal (in

magnetic memory) and precession (in microwave generation), since it may be possible to tailor the

magnetic and geometric properties of nanodevices to enhance or suppress these resonant effects.

4.2 Quantum model of spin transfer

Proposed model for the effects of spin transfer incorporating the quantum magnetization fluctu-

ations builds on the ideas of Berger [77], who was first to describe spin transfer in terms of the

spontaneous emission and stimulated emission and absorption of magnons. The spontaneous emis-

sion introduced, but ultimately neglected in Berger’s analysis of the low-frequency long-wavelength

modes can be equivalently described as the spin transfer due to quantum magnetization fluctua-

tions.

The model proposed here is base on a formulation of the problem of current-induced phenomena

in the magnetic nanopillars as that of a single scattering event between a spin-polarized electron

by a single magnetic layer. This approach allows to avoid the complications associated with the

spin-diffusion in the magnetic multilayer, non-essential for the understanding of the demonstrated

quantum effects. Next step is to analyze the effects of scattering on the ferromagnetic resonance

(FMR) dynamical mode of the magnetization. First it is necessary to determine the outcome of

scattering for a single electron, and then extend the analysis to the stationary-state population of

the FMR mode. Finally, the analysis is extended to the entire dynamical spectrum of the magnetic

nanopillar. Dipolar effects are neglected throughout the analysis. These effects are important for

the characteristics of the low-frequency (dipolar) dynamical modes, but have little effect on the

high-frequency (exchange) modes which dominate the described phenomena due to their large

phase volume.

The proposed model is based on the model of Urazhdin [92] in the limit of low current.

This model for the magnetic nanopillars allows to describe spin-dependent electron transport in



CHAPTER 4. PREDICTION OF QUANTUM SPIN TRANSFER 64

E

n

1

0

1

0

1

0

1

0
E

n

Δμ

E

n

E

n

μ0

μ0 μ0

μ0

Before scattering 

Back scattering 
with flip 

Scattering 
without flip 

Scattering 
with flip 

Figure 4.1: Schematic of electron scattering in the magnetic nanopillar. Solid line shows electron’s
state before scattering. Dashed lines are possible outcomes of scattering.

these structures in terms of scattering of spin-polarized electrons by a single nanomagnet. This

Landauer-type model, which is similar in spirit to the spin-circuit theory of Brataas et al. [93] is

schematically illustrated in Fig. 4.1. The nanopillar forms a nanoconstriction between two large

electrodes. One of the electrodes contains the spin-polarizing ferromagnetic layer. A bias applied

between the electrodes modifies the relative position of the chemical potentials in the electrodes,

as shown schematically in Fig. 4.1 for both electrodes, for T = 0. Electron spin-filtering in the

polarizer results in the spin-dependence of the chemical potential in the left electrode containing

the polarizer. At I < 0 corresponding to the electron flow from the polarizer to the free layer,

the majority-electron chemical potential in the left electrode is higher than the minority chemical

potential, and both are higher than the potential in the right electrode. The difference between

the chemical potentials for spin-up and spin-down electrons is related to the spin accumulation in

the theory of diffusive spin transport in magnetic multilayers [94].

Figure 4.1 also schematically shows the scattering of an electron which initially moves in the

left electrode towards the nanoconstriction. Its initial magnetic moment is up (majority electron),

and its energy is larger than the chemical potential in the right electrode. The electron is scattered

by the nanomagnet, and is reflected as a minority electron, or transmitted as a spin-up or spin-
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down electron. The reflection is possible if the energy of the electron is sufficiently high such

that there are available states in the left electrode. Assuming that the electron is scattered in the

nanopillar only once, and is then absorbed by the large electrodes where the spin-dependent electron

distribution is in quasi-equilibrium and is not significantly affected by the scattered electron. In

this approximation, the spin-dependent potentials in the electrodes entirely determine the rate of

spin-dependent scattering of electrons by the free layer. In this analysis, these rates are described

by the parameters I and p, such that I(1+p)/2e is the rate of scattering of the majority electrons,

and I(1− p)/2e is the rate of scattering of the minority electrons.

It is necessary to note that I is related to the charge current through the nanopillar but is not

identical to it. For example, at finite temperature T , the electron distribution in the electrodes is

described by the Fermi-Dirac function, such that the scattering schematically shown in Fig. 4.1 can

occur even in the absence of bias current. In the current approach, this can be accounted for by a

convolution of the current-dependent scattering derived in the T = 0 limit, with a distribution of

currents with the width kT , consistent with the experimental observations described in the main

text. Similarly, the polarization p describes the spin-filtering properties of the polarizer, related to

but not identical to the spin polarization of the current, because the latter is also affected by the

spin-dependent transport properties of the free layer.

Electron scattering modifies state of nanomagnet. Initially for simplicity, it is necessary to

consider scattering of a single spin-polarized electron described by a spinor |s〉 = (a, b) = a| ↑

〉+ b| ↓〉, by the magnetization of the nanopillar described by a quantum macrospin |L,Lz〉, where

L is the total angular momentum, and Lz is its projection onto the quantization axis aligned

opposite to the magnetic field B [92,95]. The interaction between the two spins is described by the

standard exchange Hamiltonian Ĥex = Jex~s · ~L/L, where Jex is the Heisenberg exchange constant.

The electron’s spin is scattered by the magnetic material, described by turning on Ĥex, resulting in

the precession of both ~s and ~L around the total angular momentum ~J = ~s+ ~L. The spatial degrees

of freedom are not explicitly included in the model: in the macrospin approximation, they affect

only the interaction time between the electron and the magnetic layer, resulting in the variations
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of the precession phases acquired by ~s and ~L. The details of these variations are not important in

the random-phase approximation discussed below.

To analyze the spin evolution due to the exchange interaction, the state |L,Lz〉 ⊗ |s〉 need to

be expressed in the expanded basis |J, Jz〉 of the eigenstates of the total angular momentum and

its projection on the z-axis. The initial state is

ψi = a|L,Lz〉 ⊗ | ↑〉+ b|L,Lz〉 ⊗ | ↓〉 (4.2.1)

In the expanded basis, the first term in Eq. (4.2.1) is:

a : |L,Lz〉 ⊗ | ↑〉 = A↑|L+
1

2
, Lz +

1

2
〉+B↑|L−

1

2
, Lz +

1

2
〉 (4.2.2)

and the second term:

b : |L,Lz〉 ⊗ | ↓〉 = A↓|L+
1

2
, Lz −

1

2
〉+B↓|L−

1

2
, Lz −

1

2
〉 (4.2.3)

Here A↑,↓ and B↑,↓ are the Clebsch-Gordon coefficients. To find these unknown coefficients it

is necessary to start by taking inner product of Eq. (4.2.1) with each basis element. In general

form it can written the following way (J = L+ S, L = J − S):

〈J, JZ |L+|L,Lz〉 ⊗ | ↑〉 = 〈J, JZ |J∗− − S+|L,Lz〉 ⊗ | ↑〉 (4.2.4)

After taking into account that J+ = J∗− and applying are raising operators to corresponding

states (operator L+ acts in macrospin subspace, operator S+ acts in single spin subspace) and the

following expression is obtained:

√
(L− Lz)(L+ Lz + 1)〈J, JZ |L,Lz + 1〉 ⊗ | ↑〉 =√

(J + JZ)(J − JZ + 1)〈J, JZ − 1|L,Lz〉 ⊗ | ↑〉
(4.2.5)
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Substituting J = L+ 1/2, JZ − 1 = Lz + 1/2 in the Eq. (4.2.5) one obtains:

〈L+
1

2
, Lz +

3

2
|L,Lz + 1〉 ⊗ | ↑〉 =

√
(L+ Lz + 2)√
(L+ Lz + 1)

〈L+
1

2
, Lz +

1

2
|L,Lz〉 ⊗ | ↑〉 (4.2.6)

Scalar products in this equation are numbers A↑Lz
and A↑Lz+1, so the first recursion retaliation

for A↑Lz is:

A↑Lz+1 =

√
(L+ Lz + 2)√
(L+ Lz + 1)

A↑Lz
(4.2.7)

To get recursion for B↑ it is necessary to plug in the following values J = L−1/2 and JZ −1 =

Lz + 1/2 into Eq. (4.2.5):

B↑Lz+1 =

√
L− Lz − 1√
L− Lz

B↑Lz
(4.2.8)

To obtain relation between ↑ and ↓ coefficients it is necessary to apply lowering operator to

Eq. (4.2.1) :

〈J, JZ |L−|L,Lz〉 ⊗ | ↓〉 = 〈J, JZ |J∗+ − S−|L,Lz〉 ⊗ | ↓〉 (4.2.9)

√
(L+ Lz)(L− Lz + 1)〈J, JZ |L,Lz − 1〉 ⊗ | ↓〉 =√

(J − JZ)(J + JZ + 1)〈J, JZ + 1|L,Lz〉 ⊗ | ↓〉
(4.2.10)

For J = L+ 1/2, JZ + 1 = Lz − 1/2 Eq. (4.2.10) gives:

A↓Lz =

√
(L− Lz + 1)√

(L− Lz)
A↓Lz+1 (4.2.11)

To get relation between A↑ and A↓ the lowering operator should be applied to the state

|L,Lz〉
⊗
| ↑〉:



CHAPTER 4. PREDICTION OF QUANTUM SPIN TRANSFER 68

〈J, JZ |L−|L,Lz〉 ⊗ | ↑〉 =

〈J, JZ |J∗+ − S−|L,Lz〉 ⊗ | ↑〉
(4.2.12)

〈J, JZ |L,Lz − 1, ↑〉 =√
(J − JZ)(J + JZ + 1)√
(L+ Lz)(L− Lz + 1)

〈J, JZ + 1|L,Lz, ↑〉−

1√
(L+ Lz)(L− Lz + 1)

〈J, JZ |L,Lz, ↓〉

(4.2.13)

For J = L+ 1/2 and JZ = Lz − 1/2:

〈L+
1

2
, Lz −

1

2
|L,Lz − 1, ↑〉 =

√
L+ Lz + 1√
L+ Lz

〈L+
1

2
, Lz +

1

2
|L,Lz, ↑〉−

1√
(L+ Lz)(L+ Lz + 1)

〈L+
1

2
, Lz −

1

2
|L,Lz, ↓〉

(4.2.14)

A↑Lz−1 =

√
L+ Lz + 1√
L+ Lz

A↑Lz
− 1√

(L+ Lz)(L+ Lz + 1)
ALz↓ (4.2.15)

Using Eq. 4.2.11 Eq. (4.2.15) transforms into:

A↓Lz√
(L− Lz + 1)

=
A↑Lz√

(L+ Lz + 1)
(4.2.16)

To get relation between B↑Lz
and B↓Lz

one should substitute J = L− 1/2 and JZ = M − 1/2

in Eq. (4.2.13):

B↑Lz√
(L− Lz)

= − B↓Lz√
(L+ Lz)

(4.2.17)

Normalization of Eqs. (4.2.2) and (4.2.3) gives:
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A2
↑Lz

+B2
↑Lz

= 1 (4.2.18)

A2
↓Lz

+B2
↓Lz

= 1 (4.2.19)

Using relations between B↑Lz
and B↓M , A↑Lz

and A↓Lz
Eq. (4.2.19) can be rewritten in the

flowing form:

A2
↑Lz

L− Lz + 1

L+ Lz + 1
+B2

↑M
L+ Lz
L− Lz

= 1 (4.2.20)

Solving system of equation with two unknown:

A2
↑Lz

+B2
↑Lz

= 1 (4.2.21)

A2
↑Lz

L− Lz + 1

L+ Lz + 1
+B2

↑Lz

L+ Lz
L− Lz

= 1 (4.2.22)

gives the flowing expressions for coefficients A and B:

A↑Lz
=

√
L+ Lz + 1√

2L+ 1
(4.2.23)

B↑Lz
=

√
L− Lz√
2L+ 1

(4.2.24)

The wave function of the initial state of spin system in the extended basis of spin and macrospin,

before the electron is scattered by the magnetization:
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Ψi =
1√

2L+ 1

(
a
√
L+ Lz + 1|L+

1

2
, Lz +

1

2
〉

+a
√
L− Lz|L−

1

2
, Lz +

1

2
〉

+b
√
L− Lz + 1|L+

1

2
, Lz −

1

2
〉

−b
√
L+ Lz|L−

1

2
, Lz −

1

2
〉
)

(4.2.25)

4.3 Time evolution

The spin wavefunction evolves due to the exchange interaction between the magnetization and the

electron spin according to:

Ψf = U(t)Ψi = ei
Ĥext

~ Ψi (4.3.1)

The Zeeman contribution due to magnetic field is negligible compared to the exchange, and

can be neglected in the analysis of the scattering. The components of the expanded spin basis are

the eigenstates of the exchange Hamiltonian, Ĥex|L ± 1
2 , Jz〉 = ±Eex/2. As a result of the time

evolution, the component |L+ 1
2 , Lz ±

1
2 〉 of the wavefunction accumulates a phase φ = Eextf/2~

over the scattering time tf , while the component |L − 1
2 , Lz ±

1
2 〉 accumulates a phase −φ. The

final state of the spin wavefunction after scattering is:

Ψf =
1√

2L+ 1

(
aeiφ

√
L+ Lz + 1|L+

1

2
, Lz +

1

2
〉

+ae−iφ
√
L− Lz|L−

1

2
, Lz +

1

2
〉

+beiφ
√
L− Lz + 1|L+

1

2
, Lz −

1

2
〉

−be−iφ
√
L+ Lz|L−

1

2
, Lz −

1

2
〉
)
.

(4.3.2)

The Clebsch–Gordan coefficients are used to express this state in terms of the direct product
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of the macrospin and electron spin states,

Ψf =
1

2L+ 1

(
eiφ
(
a
(
(L+ Lz + 1)|L,Lz〉| ↑〉+ (

√
L+ Lz + 1

√
L− Lz)|L,Lz + 1〉| ↓〉

)
+b
(
(L− Lz + 1)|L,Lz〉| ↓〉+ (

√
L− Lz + 1

√
L+ Lz)|L,Lz − 1〉| ↑〉

))
+e−iφ

(
a
(
(L− Lz)|L,Lz〉| ↑〉 − (

√
L+ Lz + 1

√
L− Lz)|L,Lz + 1〉| ↓〉

)
+b
(
(L+ Lz)|L,Lz〉| ↓〉 − (

√
L− Lz + 1

√
L+ Lz)|L,Lz − 1〉| ↑〉

)))
.

. (4.3.3)

The difference between expectation value of the final and the initial states gives change of spin

due to scattering:

∆sz = 〈sz〉f − 〈sz〉i =
a2((2Lz + 1)2 − (2L+ 1)2)

2(2L+ 1)2
+
b2((2L+ 1)2 − (−2Lz + 1)2)

2(2L+ 1)2
. (4.3.4)

This difference is equivalent to the expected change of magnon population < ∆N >. For small

magnon populations, when N = L− Lx � L Eq. (4.3.4) can be simplified:

< ∆N >= −a
2

L
N +

b2

L
N +

b2

L
. (4.3.5)

The first −a
2

L N term in the Eq. (4.3.5) describes the probability of magnon annihilation in

macrospin S caused by scattering of single spin s. The second term b2

LN , which depends on N

gives a probability of stimulated magnon generation, while the third term b2

L does not depends

on N gives probability of spontaneous magnon generation. These probabilities are equivalent to

Eisensteins’ coefficients, which describes the probabilities of boson generation and annihilation.

Electron current flowing through magnet can change magnon population in it. For particle

current Ip = I/e of electrons with polarization p = |a|2 − |b|2 scattered by the macrospin L ,

Eq. (4.3.5) gives the rate of variation of magnon population due to spin transfer:

dN

dt

∣∣∣∣∣
ST

= Ip

(
− a2

L
N +

b2

L
N +

b2

L

)
= Ip

−2pN + 1− p
2L

(4.3.6)
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This contribution is counteracted by the relaxation, which can be described by the Landau-Gilbert

damping, or equivalently by the relaxation-time approximation of the Bloch-Bloembergen the-

ory [73, 96], dN
dt |R = − (N−N0)

τ , where N0 = 1
exp(~ω/kBT )−1 is the magnon population in thermal

equilibrium, and τ = 1
2ωαG

is the relaxation time constant for the FMR mode. In these expres-

sions, kB is the Boltzmann constant, T is the temperature, ω is the FMR frequency, and αG is the

Gilbert damping constant. The magnon population in the stationary state is determined by the

balance between these two contributions,

N =
N0 + Ip(1/p− 1)/(2Ip,c)

1 + Ip/Ip,c
, (4.3.7)

where Ip,c = L/(pτ) is the critical particle current for the onset of the onset of auto-oscillation. In

the limiting cases of total spin polarization (p = ±1) discussed in the text, Eq. (4.3.7) gives

N =
N0

1 + I/Ic
(4.3.8)

for scattering of spin-up electrons (p = 1), and

N =
N0 + I/Ic
1− I/Ic

(4.3.9)

for scattering of spin-down electrons.

To describe the effects of electrical current in FM/NM/FM magnetic nanopillars, it is necessary

to i) recast the electron scattering model into the language of electrical currents applied to the

nanostructure, and ii) extend the analysis of the FMR mode to the entire spectrum of the dynamical

modes of the magnetic system.

The effects of reversing the current direction in FM/NM/F nanopillars must be separately

analyzed in the context of the proposed scattering model, since the latter does not explicitly

incorporate the spatial coordinates of the scattered electrons. Negative current is defined as I < 0

to represent the electron flow from the polarizer to the active magnetic layer. The magnetizations

of both layers are aligned with the saturating magnetic field. Electrons become spin-polarized
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(with p > 0) in the polarizing layer, and then scattered by the active layer. The Eq. (4.3.7) need

to be modified to reflect this sign convention,

N(I < 0) =
N0 − I(1/p− 1)/2Ic

1− I/Ic
. (4.3.10)

On the other hand, I > 0 describes the situation when electrons first flow through the active

layer and then through the polarizer, or equivalently holes are initially polarized spin-down in the

polarizer, and then scattered by the free layer. From the perspective of spin dynamics, scattering

of spin-down holes is equivalent to scattering of spin-down electrons, since spin-down electron /

spin-down hole pair with negligible excitation energy is equivalent to the non-perturbed state of

the electronic system. A modification of Eq. (4.3.7) reflecting this situation is

N(I > 0) =
N0 + I(1/p− 1)/Ic

1− I/Ic
, (4.3.11)

where p > 0 is the same as in Eq. (4.3.10). The general form applicable to any sign of current is

thus

N(I) =
N0 + |I|(1/p− 1)/Ic

1− I/Ic
. (4.3.12)

To analyze the effects of spin-polarized current on the finite-wavelength dynamical modes of

the nanopillar, it is necessary to show by simple scaling argument showing that Eq. (4.3.7), with

appropriate values of N0 and Ip,c, remains approximately valid for other dynamical modes. The

ferromagnet was divided into n sub-volumes with characteristic dimensions d < λ, where λ is the

wavelength of the dynamical mode. The magnetization within each sub-volume is approximately

uniform, and therefore can be approximated by a macrospin. Thus, for finite-wavelength modes,

the problem can be reduced to that of scattering of an electron by n microspins. In contrast to the

FMR case discussed above, these macrospins interact not only with the electron, but also among

themselves, via dipolar and exchange interactions. These interactions cannot significantly affect

the outcome of scattering, as long as the associated energy is smaller than the energy Jex ∼ 0.1 eV

of the exchange interaction between the electron spin and the magnetization [97]. This condition
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is not satisfied only for the highest-frequency dynamical modes.

By approximating the magnetic system by n weakly interacting macrospins, the analysis of

spatially non-uniform dynamical modes is reduced to that for an FMR mode discussed above. In

particular, the probability of electron spin-flipping due to the interaction with i-th sub-volume is

inversely proportional to its total spin L/n. However, if one neglects multiple electron scattering,

the probability that an electron scatters on a particular sub-volume scales inversely with 1/n.

Thus, the dependence on n cancels out from the calculation of the total number of magnons

generated/annihilated per scattered electron, so that Eq. (4.3.5) and the subsequent analysis of

the stationary magnon population in the FMR mode applies also to other modes, with the values

of N0 and Ip,c determined from the frequencies of these modes.

The dynamical mode frequencies are evaluated based on the quadratic approximation quadratic

magnon dispersion ω = γB + Dk2/~. Here, k is the wave-vector and D = 4 × 10−40 Jm2 is the

exchange stiffness of Permalloy [98]. This approximation neglects the discrete lattice effects that

are important for the short-wavelength modes, generally overestimating their frequencies. Also

dipolar effects are neglected that are not essential for the phenomena involving the entire magnon

spectrum. The allowed values of the wavevector ~k are calculated using the Born-von Karman

boundary conditions for the magnetization [73]. To simplify the enumeration of the dynamical

modes, the shape of the nanomagnet is approximated by a rectangle with the same height and

total volume as the cylindrical nanopillar, ~kijl = (πid ,
πj
d ,

πl
h ), where d =

√
πR is the effective lateral

size (R = 35 nm is the radius of the nanopillar), h = 5 nm is the thickness of the nanomagnet,

i, j = 1...d/a, and l = 1..h/a. Here, a = 0.2 nm is the interatomic distance for Permalloy. The

total number of modes in this approximation ≈ 2.4 × 106 for the studied nanopillar, is close to

its total spin L = MV/µB = 1.7 × 106, where M = 0.8 J/T is the magnetization of Py, V is the

volume of the nanopillar, and µB is the Bohr magneton.

The current dependence of the total magnon population is found by adding the contributions

described by Eq. (4.3.7) for each mode,
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Figure 4.2: Relationship between resistance and magnon population.(a), The resistance of GMR
spin valve depends on the angle between the two magnetic layers as: R(Θ) = R0 + ∆R sin2(Θ

2 ).
(b), Each magnon generated decreases the effective magnetization, Mz by µB/V , increasing the
angle Θ between M and Mz.

N(I) =

d/a∑
i=1

d/a∑
j=1

h/a∑
l=1

N0(ωijl) + |I|(1/p− 1)/Ic(ωijl)

1− I/Ic(ωijl)
(4.3.13)

with ~ωijl = π2D[ i
2+j2

d2 + l2

h ], N0(ωijl) = 1
exp[~ωijl]/kT−1 , and Ic(ωijl) = 2αωijleL/(pτ). To

account for thermal broadening at finite temperatures, the dependence Eq. (4.3.13) was convolved

with a Gaussian of width kT/R0, where R0 is the resistance of the nanopillar, since the thermal

motion of electrons also contribute to scattering.

4.3.1 Relation between magnon population and magnetoresistance of

GMR spin-valve nanopillar

Resistance of GMR spin valve depends on relative orientation of magnetization of its FM layers

[Fig. 4.2(a)] and in general can be written in the following way:

R(Θ) = R0 + ∆R sin2(
Θ

2
) (4.3.14)
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where R0 is ohmic resistance of the GMR structure ∆R – magnetoresistance and Θ – angle between

magnetization orientation on FM layers.

Magnon generation increases the precession angle Θ of magnetization M around its equilibrium

orientation [Fig. 4.2 (b)]. Each generated magnon reduces effective magnetization Mz, by µBV ,

where µB is the Bohr magneton, and V is the volume of the free layer. The relation between

magnon population and precession angle can be written as the following:

MV cos Θ = MV −NµB (4.3.15)

N =
MV (1− cos Θ)

µB
=
MV sin2 Θ

2

µB
(4.3.16)

By combining Eq. (4.3.14) and Eq. (4.3.16) the relationship between the magnon population

and the resistance of the nanopillar can be rewritten in the following form:

N =
MV (R(Θ)−R0)

2µB∆R
(4.3.17)

Here, one consider that magnon population is affected by spin current only “active” magnetic

free layer FM1. Fluctuations in the other magnetic layer, the “polarizer” FM2, are assumed to be

determined entirely by temperature T , and are accounted for by the value of ∆R in Eq. (4.3.14).

One can note that the dipolar effects determined by the geometry of the ferromagnet result in

variations of R on the timescale of magnetization dynamics. These effects result in a scaling

correction to Eq. (4.3.17) by a factor of order 1, with the value of R representing an average over

this timescale. The linear relation between N and R must hold not only for FMR, but also for

other magnon modes, because their local description in terms of precession angle is the same, and

GMR results from the electron scattering by the local magnetization configuration. To reinforce

this argument, it is necessary consider an arbitrary spin wave mode with the largest possible mode

population, describing a reversed magnetization state. In this case, Eq. (4.3.14) is clearly applicable

regardless of the spatial characteristics of the mode. For smaller magnon populations, electron spin
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diffusion across magnetically inhomogeneous state should result in corrections to Eq. (4.3.14) of

the order one. The argument presented above for a single mode also holds for the time-averaged

value of R in excited states involving multiple dynamical modes, and therefore Eq. (4.3.14) applies

to the total magnon population. Thus, GMR results in a linear relationship between resistance

and the total magnon population in the nanomagnet are not limited to quasi-uniform modes.

4.4 Numerical calculation and results

The magnon spectrum was calculated in the approximation ω = γB + Dk2/~, using the lattice

constant a = 0.2 nm and the exchange stiffness constant D = 4 × 10−40Jm2 for Py [98, 99]. The

allowed values of wavevector k were determined using the Born-von Karman boundary, and, to

simplify mode enumeration, rectangular nanopillar shape with dimensions 63 × 63 × 5 nm giving

the same volume as the studied circular nanopillar with the diameter of 70 nm. The total current-

dependent magnon population was calculated by adding the contributions of all the magnon modes.

For each mode, the steady-state population was determined by balancing the generation rate due

to ST dN/dt|ST = I[pN + signI(p+ 1)/2]/e, and the relaxation dN/dt|r = −(N −N0)/τ [77,92].

Figure 4.3 shows total magnon pollution calculated with Eq. (4.3.13) for different polarizations

of current in the limit of T = 0, when thermal magnons are frozen out. When current is 100%

spin polarized total number of magnons increases with increasing positive current. However, when

direction of current is reversed magnon population remains constant, because there is no thermal

magnons in the system and quantum fluctuation cannot be suppressed. For unpolarized current

magnon are generated in both direction of current, because only electron with magnetic moment

antiparallel to magnetization can generated magnon. Thereby, in a system with low population of

thermal fluctuation, magnons can be generated even by unpolarized current.
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Figure 4.3: Calculated magnon population vs current for different spin polarization of current.



Chapter 5

Experimental demonstration of

quantum spin transfer

5.1 Dependence of resistance of spin valve nanopillar on

current at low temperatures

The effect of STT can be understood based on the argument of spin angular momentum con-

servation for spin-polarized electrons, scattered by a ferromagnet whose magnetization ~M is not

aligned with the direction of polarization. The component of the electron spin transverse to ~M

becomes absorbed, exerting a torque on the magnetization termed the spin transfer torque (STT).

In nanomagnetic devices such as spin valve nanopillars [Fig. 5.2(a)], STT can enhance thermal

fluctuations of magnetization, resulting in its reversal [37, 100] or auto-oscillation [38], which can

be utilized in memory, microwave generation, and spin-wave logic [101, 102]. The approximation

for the magnetization as a thermally fluctuating classical vector ~M provides an excellent descrip-

tion for the quasi-uniform magnetization dynamics [73]. However, the short-wavelength dynamical

modes of the magnetization whose frequency extends into the THz range [73, 97] become frozen

79
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Figure 5.1: Effect of STT on thermal fluctuations. (a) Spin transfer due to scattering of the
majority electrons by the magnetization results in a decrease of the thermal fluctuations. (b) Spin
transfer due to scattering of the minority electrons by the magnetization results in a increase of
the thermal fluctuations.

out at low temperatures.

Figure 5.1 demonstrates interaction of spin with thermal fluctuation of magnetization. Scat-

tering of spin with anti parallel orientation to magnetic field absorbs transverse component of

magnetization, exerts torque on magnetization which results in suppression of thermal fluctuations

[Fig. 5.1(a)]. In contract, when spin in parallel to magnetic field B, scattering enhances thermal

fluctuations [Fig. 5.1(b)]. However, in case of zero temperature, when thermal fluctuations are

frozen, spin is collinear with magnetization, therefore scattering does not exert any torque.

5.2 GMR nanopillar fabrication details

Nanoscale magnetic spin-valve structure [Fig. 5.2(a)] were utilized to demonstrate that quantum

zero-point fluctuations of magnetization, neglected in the existing theories of spin transfer, provide

the dominant contribution to this effect at cryogenic temperatures. The demonstrated quantum

spin transfer is distinguished by a non-smooth piecewise-linear dependence of the fluctuation in-

tensity on current. The contribution of quantum spin transfer remains non-negligible even near

room temperature. This effect can enhance current-induced phenomena, overcoming the efficiency

limitations that are presently perceived as fundamental to the spin transfer mechanism.
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Figure 5.2: (a) Schematic of the tested spin valve. (b) Magnetoelectronic hysteresis loop.

The schematic of experimental nanodevice is show in Fig. 5.2(a). Multilayers with structure

Ta(3)Cu(40)Py(10)Cu(10)Py(5)Au(5), where thicknesses are in nanometers, were deposited on

Si substrates with electrodes pre-patterned by photolithography, by high-vacuum sputtering in

ultrapure Argon at a base pressure of 1×10−8 Torr. The multilayer was removed by Ar ion milling

down to the middle of Py(10) layer, everywhere except for a circular 70-nm area protected by an

Al mask defined by e-beam lithography and evaporation, followed by deposition of an insulating

SiO2(15) layer without breaking vacuum. A Cu(80) top electrode was deposited, after the Al mask

and the SiO2 covering it were removed by a combination of Ar ion milling and chemical etching.

Note that since the ”polarizer” FM2=Py(10) was only partially patterned, magnons generated

in this layer due to spin transfer can efficiently escape from the active area. Thus, spin transfer

affected only the fluctuations of the free layer, while the role of was limited to polarizing the

electron current flowing through the nanostructure.

5.3 Magnetoeletronic measurements

Magnetoelectronic measurements were performed in a pseudo-four probe geometry by the lock-in

detection technique with an AC current of 50 µA RMS at a frequency of 1.3 kHz superimposed

on the DC bias current. The magnetic field was applied in the sample plane. Its specific in-plane
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Figure 5.3: (a) Differential resistance vs current, at the label field (T=3.4 K). (b) Critical current
IC for the onset of autooscillation vs field obtained from experimental data (symbols) and the
calculations (curve) obtain from Kittel formula.

direction did not affect the results. The dependence of the resistance on magnetic filed, which is

shown in Fig. 5.2(b) is typical on for the GMR in magnetic magnetic nanopillars [41]. This structure

shows large GMR, which is an evidence of high quality of the sample. The current dependence

of differential resistance [Fig. 5.3(a)] shows a peak at positive current. This peak corresponds to

onset of the dynamical instability at critical current IC [37, 38, 67]. The value of critical current

IC increases with increasing magnetic field B [Fig. 5.3(b)] and agrees with calculation based on

Kittel formula for the frequency of auto-oscillations [30].

Figure 5.4(a) shows measured differential resistance of spin valve nanopillar as a function of

small applied electrical current. At subcritical currents, the resistance of the studied nanopillar

exhibits an unusual piecewise-linear dependence, with a weak singularity at I = 0, and a slope at

I > 0 larger than at I < 0. The curves are shifted by the field, which can be explained by the

magnon freeze-out, as illustrated in Fig. 5.4(b) that shows the field dependence of resistance at

I = 0, together with the calculated field-dependent thermal magnon population. The observed

dependence is less abrupt, likely because the exchange approximation for magnon dispersion used

in the calculation underestimates the populations of short-wavelength modes. Since the field

does not noticeably affect the slopes of the curves in Fig. 5.4(a), the observed piecewise-linear

dependence cannot be associated with thermal fluctuations whose intensity is controlled by the
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field [Fig. 5.4(b)]. It cannot be explained by Joule heating, because the dissipated power, and thus

the resulting resistance increase, is quadratic in current [Fig. 5.5]. Electronic shot noise exhibits

a similar linear increase of power with bias [103]. However, shot noise (fluctuating current) can

contribute to the differential resistance only by inducing magnetization fluctuations, which in the

absence of thermal fluctuations is forbidden by the angular momentum conservation argument of

spin torque theory.

The previously unrecognized contribution to spin transfer, not described as enhancement of

0 1 2 3
4 . 0

4 . 1

4 . 2

T (
K)

I  ( m A )

Figure 5.5: Dependence of temperature in the free layer on the electrical current applied to the
nanopillar calculated with COMSOL simulation software. Inset: Temperature distribution in the
nanopillar calculated at I = 3 mA.
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Figure 5.6: (a) Scattering of majority electron by magnetization experiencing only quantum fluc-
tuations. (b) Scattering of minority electron by magnetization enhance quantum fluctuations.

thermal magnetization fluctuations, results in a linear in current increase of magnon population.

When thermal fluctuations are negligible at low temperature, the spin polarization of the scat-

tered electrons cannot be perfectly aligned with the magnetization because of the quantum fluc-

tuations of the latter, leading to electron spin precession that can drive spin transfer. Quantum

fluctuation by their nature cannot be suppressed by majority electrons, in contrast to thermal

fluctuations [Fig. 5.6(a), top]. However, they can be enhanced by scattering of the minority elec-

trons [Fig. 5.6(c), bottom]. To satisfy angular momentum conservation, the transverse to the field

components of the magnetization must remain zero.

At higher temperatures, the zero-current singularity becomes rapidly broadened [Fig. 5.7(b)].

This cannot be attributed to the increasing role of thermal magnetization fluctuations, since the

piecewise-linear dependence is still apparent at larger currents even at 20 K. To analyze this

effect, the data were fitted with a piecewise-linear dependence convolved with a Gaussian. The

extracted broadening closely follows a linear dependence ∆I = (1.9 ± 0.1)kT/eR0, in Fig. 5.7(a).

Calculation based on the summation of Eq. (4.3.13) convolved with a Gaussian of width 1.9kT/eR0

[curves Fig. 5.7(b)] somewhat overestimates the classical contribution, as apparent from results for

T = 20 K. A reasonable overall agreement with the observed temperature dependence supports

the validity of the model of quantum spin transfer.

The observed thermal broadening is consistent with the proposed quantum mechanism. Bias

current shifts the electron distribution in the magnetic nanopillar, driving the spin transfer [Fig. 5.7(c)].

At finite temperature, the electron distribution becomes thermally broadened, resulting in scat-

tering of thermally excited electrons and holes [Fig. 5.7(d)] equivalent to a distribution of width
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Symbols: Differential resistance vs current at label values of temperature and magnetic field B = 1
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.

(c) At T = 0, the Fermi distribution of scattered electrons is step-like. Bias current shifts the
distribution, driving the spin transfer. (d) At finite temperature T > 0, scattering of thermal
electrons and holes occurs even at zero bias, equivalent to bias distribution of width kBT

e .
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∆V = kT/e of the bias voltage applied to FM1, facilitating spin transfer even in the absence

of directional current flow. The relation ∆I = (1.9 ± 0.1)kT/eR0 obtained by fitting the data

[Fig. 5.7(a)] is consistent with the approximately equal contributions of layers FM1 and FM2 to

the total resistance R0, such that ∆V ≈ IR0/2.

Thermal broadening washes out the singular piecewise-linear dependence. However, the analy-

sis of the dependence of magnon population around zero current at elevated temperatures demon-

strates that the contribution of quantum fluctuations to spin transfer is still significant. Since the

slopes of the piecewise-linear dependence are different for positive and negative currents, the value

of dN/dI at I = 0 remains finite even in the presence of thermal broadening. By convolving the

dependence N(I) [Eq. (4.3.13)] for classical contribution due to thermal fluctuations with a Gaus-

sian and differentiating with respect to I, the slope dN/dI = N0/I
(i)
c can be obtained [solid curve

in Fig. 5.8(a)]. The quantum contribution, which is described by the second term in Eq. (4.3.13),

has no derivative due to singularity at zero current, but by convolving it with Gaussian a smooth

dependence at zero current is obtained. Differentiating the convoluted expression with respect to I

gives dN/dI = 1/2I
(i)
c at I = 0 [dashed curve in Fig. 5.8(a)], which is independent of temperature

and is equivalent to the difference between the slopes at I = +0 and I = −0. The calculated

classical contribution increases almost linearly with temperature (solid curve), indicating that it

is dominated by the degenerately populated low-frequency modes described by the Rayleigh-Jeans

law. At field B = 1 T, the calculated crossover from predominantly quantum to the classical

spin transfer regime occurs at temperature Tx = 38 K. The slope dR/dI(I = 0) determined from

the measurements increases linearly with temperature [Fig. 5.8(b)], in agreement with the model.

The T = 0 intercept represents the quantum contribution, and the slope reflects the classical one.

Crossover temperature Tx was obtained by extrapolation of data, when value of slope dR/dI, which

describes classical contribution is equal twice of intercept at T = 0, which describes quantum con-

tributions. The value Tx = 160 K from experimental data is larger than calculated, likely because

the exchange approximation for the magnon dispersion used in our calculations underestimates

the quantum contribution. Based on the data in Fig. 5.8(b), estimated characteristic frequency of
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magnons involved in spin transfer is f0 = 2kBTx/h ≈ 7 THz, evidencing the fact that high energy

modes have a significant contribution to ST.



Chapter 6

Summary

In this work, magnetization dynamics excited by spin current was studied in spintronic devices

with different geometries. It has been shown that spectral, thermal and electrical properties of

these devices can be modified and enhanced by optimizing the device geometry, which can become

important for the future development of spintronic devices. In addition, this work demonstrated,

both theoretically and experimentally, that quantum fluctuation of magnetization can provide a

significant contribution to current-induced magnetization dynamics both at cryogenic and at room

temperatures.

Spin Hall nanooscillators (SHNO) can generate microwave signals at cryogenic temperature.

However, their operation at room temperature is poor. In my thesis research, it was demonstrated

that SHNO with a nanopatterned spin injector exhibit improved efficiency and spectral characteris-

tics. Calculations showed that the reduced size of spin injector increases the current concentration

in the active area of the device, thereby reducing the total current required for the device op-

eration. In addition, these devices exhibit narrower generation spectral lines, higher oscillation

amplitudes, and can generate microwave signals in a larger range of temperatures, extending to

room temperature.

It was also shown that the spectral characteristics of SHNO devices can be improved by using
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non-uniform fields arising due to the demagnetizing effects in nanopatterned ferromagnets. SHNO

devices based on a bow-tie-shaped nanocostriction, formed both in the spin Hall layer and in

the active ferromagnetic layer, are characterized by efficient current concentration, enabling the

generation of coherent oscillation at smaller driving currents. The combined effects of the demag-

netizing and Oersted fields result in spin waves localization in active area, increased amplitude

of oscillation, and higher generated microwave power. The demonstrated nanoconstriction SHNO

device is characterized by a relatively large oscillation volume, resulting in improved coherence of

auto-oscillations.

In addition to improved characteristics of SHNO devices, it was demonstrated that spin-Hall

nano-oscillators can be efficiently synchronized to external microwave signals, providing a route for

the optimization of high-frequency spintronic devices for future-generation microelectronic circuits.

Since the geometry of SHNO facilitates direct optical access to the active device area, they also

present an unprecedented opportunity for the fundamental studies of nonlinear dynamic phenom-

ena in nanoscale systems. Additionally, the results elucidate the general effects of thermal noise on

the synchronization characteristics of STNOs, which may explain some of the recent observations

in structures based on magnetic tunnel junctions.

The demonstrated quantum contributions to current induced phenomena can be particularly

important for the future development of efficient spintronic devices. Quantum fluctuations can

contribute to current-induced phenomena whenever highly nonuniform dynamical states are in-

volved, for example in reversal via domain wall motion in technologically important nanomagnets

with perpendicular magnetic anisotropy [82]. More generally, the demonstrated magnon genera-

tion mechanism can decrease the effective magnetization, lowering the reversal barriers. The effects

of quantum fluctuations on spin transfer in antiferromagnets [104] are likely larger than in ferro-

magnets, due to much higher magnon frequencies. Quantum fluctuations may contribute to other

phenomena involving interaction between magnetization and conduction electrons, including spin

pumping [105], spin-orbit effects [64, 106, 107], optically-driven effects [108–110], and spin-caloric

effects [111–115].
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Based on the demonstrated quantum effects, one can also infer a significant inelastic contri-

bution to spin-dependent electron transport in ferromagnets due to quantum electron-magnon

scattering. Specifically, it is presently believed that currents flowing through ferromagnets be-

come spin-polarized mainly due to spin-anisotropy of electron scattering. Meanwhile, according to

Eq. (4.3.13), an unpolarized conduction electron scattered by the ferromagnet generates a magnon

in a given dynamical mode with probability 1/2S, where S is the total spin of the ferromagnet; it

becomes majority spin-polarized in this process. The number of modes is of order S [73], and there-

fore the total probability for an initially unpolarized electron to become majority-polarized due to

quantum magnon generation is of order 1. This result shows that inelastic scattering of electrons

by quantum magnetization fluctuations provides a non-negligible contribution to spin-polarizing

properties of ferromagnets.
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