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Abstract

Transfer and Integration of Knowledge for Irregular Spatiotemporal Data
By Shrey Gupta

This dissertation aims to improve the predictive performance of transfer learning
models on irregular spatiotemporal data. Modeling irregular spatiotemporal data
collected via ground-sensors is complex due to spatial and temporal irregularities such
as sparse observations and missing temporal points. Transfer learning on such data
is much harder as it requires capturing the existing spatial/temporal irregularities,
translating their dependencies across domains, as well as managing the distribution
shifts during the transfer process. Therefore, this dissertation has three objectives:
improve the generalizability of transfer learning models for regression (continuous-
valued data), improve transfer across irregular spatiotemporal data sharing similar
feature space, and improve transfer across irregular spatiotemporal data with dissimilar
feature space.

We believe achieving these objectives will lead to solutions tailored to handle
transfer for spatiotemporal data containing high-dimensionality, heterogeneity between
domains, and spatial/temporal irregularities. An application that motivates the theme
of this dissertation is pollution prediction for regions with few and sparsely distributed
sensors as observed in many developing countries. Designing accurate prediction
models for these regions is difficult due to existence of topographical, meteorological,
geographical, and temporal dependencies. These dependencies have to be accounted for
in the current state-of-the-art transfer models. Hence, the algorithmic improvements
achieved in this dissertation would serve as a roadmap to apply and improve transfer
learning for such domains.
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Chapter 1

Introduction

1.1 Motivation

Transfer Learning

The concept of transfer learning stems from reusing knowledge across domains, such

that concepts/knowledge of one task can be applied (reused) on another task [48]. For

example, learning to ride a bike develops skills like balance, spatial awareness, and core

strength, that can be transferred to other physical activities. Similarly, when learning

a new musical instrument like the guitar, transferable skills such as hand coordination,

rhythm, and music theory gained from playing another instrument like the piano

can be utilized. In coding theory/programming, foundational knowledge grained by

learning one programming language can be transferred to learning a new programming

language. This intuition of knowledge transfer is particularly useful in the field of

machine learning when there are less data samples i.e. limited data [222, 216, 165]. The

core principle of transfer learning governs that many tasks share underlying structures,

and predictors, and therefore, can be exploited to improve learning (model training) in

a new, limited-data domain (target domain). Hence, by utilizing a model pre-trained

on data-rich domains (also source domain: datasets with large samples) and having

1
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Figure 1.1: Irregularity in spatiotemporal data. (a) Shows irregularity is space – sparse
data points (red) compared to grided data points (green). (b) Shows irregularity in
time – three different time-series (TS) sampled over 360 time-points where TS1 is
complete vs TS2 and TS3 have missing samples.

some similarity to the target domain, transfer learning allows for the reuse of knowledge.

This reduces data collection needs (cost effective), time complexity (training time) and

improves model prediction and generalization [13, 45, 222, 216, 165, 156, 257, 183].

Therefore, transfer learning can be defined as a machine learning technique

where a model trained on one task can be utilized to train a model on a

new task with a smaller sample size and shared characteristics.

Spatiotemporal Data and Irregularities

Spatiotemporal data consists of both space and time components, and hence, they

capture how phenomena evolve over time and across certain locations. Such data

is essential for analyzing domain trends such as tracking the spread of diseases over

time to predict hotspots and formulate policies as part of epidemiological studies [115].

Similarly, traffic monitoring systems analyze congestion across road networks during

the day to manage vehicle flow and reduce delays [130]. Even in the field of urban

infrastructure development, the deployed smart sensors use IoT devices to monitor

daily utility consumption and use the data to optimize utilization [180].
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Irregularities in Spatiotemporal Data often occur in sensor dependent data

collection use-cases such as environmental monitoring, traffic management systems and

more [146, 2, 184]. While the spatiotemporal data is usually sampled synchronously

(at fixed number of time intervals); irregular spatiotemporal data consists of asyn-

chronous measurements collected at varying time points and spatial locations as shown

in Figure 1.1. Although having irregular spatial locations is a common occurrence, but

the varying time points (due to missing data) increase the difficulty of the machine

learning prediction task. These irregularities limit the ability of the data processing

methods to exploit the implicit temporal and spatial dependencies. Additionally,

special framework is required in the learning model to address the complexities arising

from these irregularities.

Environmental spatiotemporal data is characterized by the presence of spatial,

temporal and spatiotemporal correlations (also dependencies) [181] and often suffer

from similar spatiotemporal irregularities as mentioned previously. These datasets

are a reflectance of topographical and meteorological variables interacting over space

and time, influencing processes such as weather forecasting, wildfire behavior, air

pollution levels, and other environmental phenomena. Capturing these interactions

(or dependencies) is important, and hence, machine learning models offer a promising

solution whereby they leverage convolutional and recurrent neural layers as one of

multiple solutions for modeling spatial patterns and temporal sequences [194]. While

the adeptness of machine learning models largely influences the prediction accuracy,

however, the type of data collected is equally important — whether it is satellite

observations [182], climate model outputs [108] or ground sensor measurements [7].

The satellite or remote-sensing data has coarser temporal resolutions with inaccura-

cies, and therefore are unable to capture local environmental variations. Additionally,

their accuracy is often compromised due to atmospheric interference such as cloud

cover or high surface reflectance) [181]. Whereas, ground sensors collect high-frequency
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data at finer spatial resolutions, making them more accurate and suitable for cap-

turing local environmental variations [7]. The collected data can be represented as

grids, where measurements are taken at fixed location (generated by transforming

the satellite or climate model outputs) [181], global/local images (satellite data) or

spatiotemporal data obtained using ground sensor [7]. The satellite data has broad

spatial coverage but lacks precision, whereas the ground sensor data captures localized

variations but is often sparse and unevenly distributed.

Machine learning models for spatiotemporal data can be trained either

on data from images or ground-sensor data. While the former provides spatially

structured information, however, it captures limited complex and local variations [141].

Whereas, the latter creates data sparsity issues while training the ML models but

consist of highly accurate, high-frequency data at finer spatial resolutions [246]. Hence,

the spatiotemporal learning models address these challenges, by capturing existing

dependencies within. For eg., graph-based neural networks or Gaussian processes

are proficient in managing such sparse data distributions [227] as they consist of

well-defined framework to capture such dependencies. Hence, the machine learning

task is complex as the models requires balancing both the advantages (high accuracy)

and limitations (irregular and sparse) of ground-sensor measurements, ensuring that

the predictions are accurate.

The case for air pollution prediction also falls under the category of machine

learning for spatiotemporal data. Air pollution contains pollutants such as PM2.5,

PM10 (Particulate Matter i.e. particles with diameters up to 10 micrometers), ground-

level ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide

(CO) [36]. They are caused due to vehicles, industries, and wildfires, and pose

significant environmental and health risks. Among these pollutants, PM2.5 with a

diameter less than 2.5 micrometers, poses significantly higher risk as it is small enough

to penetrate into the lungs or enter bloodstreams [131]. It is composed of a mixture
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of harmful particles such as dust, soot, organic/inorganic chemicals, and heavy metals

caused due to vehicle emissions, wildfires, and industrial processes [224] Hence, PM2.5

can cause serious health risks such as respiratory diseases, cardiovascular issues, and

premature death [191]. A similar case for utilizing ground sensors as opposed to

satellite measurements can be made for collecting PM2.5 data – capturing more local

variations allows for better model estimation and nuanced policy design.

The PM2.5 ground-sensor problem

The PM2.5 sensor problem is due to the scarcity of ground sensors as their installation

is affected by cost limitations or resource deficiency. These ground sensors commonly

have a region of cover of only a few kilometers [15, 99] and need to be densely installed.

Hence, limitations such as complex topography of a region can cause difficultly

deploying the sensors. Moreover, the cost of these sensors can range upto a few hundred

dollars which might not be feasible for underfunded regions/countries [14, 99, 171].

The sensor problem can have multifold solutions such as (1) utilizing satellite

observational data (if available) instead of installing ground sensors [204], (2) designing

cost effective sensors useful for underfunded regions [253], (3) administrative inter-

vention which involves government acquiring funds for new sensors [36], (4) designing

prediction models independent or very less dependent on the data collection in the

region [141]. Solution (1) which involves using satellite data has its advantages as it is

widely available and has large range of land cover compared to the ground monitoring

stations. However, it has lower accuracy as well as suffers from data collection issues

due to optical variability such as cloudy weather or high surface reflectance [14]. Solu-

tion (2) has an advantage that they improve the monitoring coverage for developing

regions/countries which have no regulatory monitoring framework as well as they can

also be used to improve the fine-scale variability for PM2.5 by filling in the spatiotem-

poral gaps [15]. However, even these low-cost sensors cost around 2500 which is still
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very high for many developing/underdeveloped countries. Moreover, the majority

of low-cost sensors suffer uncertainty compared to reference grade sensors as they

utilize the light scattering principle for measurement which is affected by variation in

particle size, composition and shape [153]. Solution (3) which involves the government

acquiring funds is a big ask/reach and may work for some regions/countries but

might not work at all for other regions. Solution (4) is equipment independent where

sophisticated machine learning models would be utilized to counter the dearth of data.

We believe that transfer learning techniques fall in the category of Solution (4) and can

be utilized to create prediction models for the PM2.5 domain as well as the broader

use-cases involving irregular spatiotemporal fields [68]. Hence, understanding the

transfer learning techniques catered towards irregular spatiotemporal data, analyzing

their limitations and improving their performance is my goal and the underlying

dissertation statement can be summarized as:

1.2 Dissertation Statement

This dissertation aims to design transfer learning models for irregular spatiotemporal

data, which involves implementing algorithmic improvements for the current approaches

and novel solutions to achieve a robust prediction performance.

1.3 Dissertation Objectives

Given the dissertation statement, I aim to answer the three research questions as

shown in Figure 1.2 as well as listed below:

RQ1 Robust and Generalizable Regression Transfer Learning

What transfer approaches are suitable for regression problems since they closely

relate to estimations for spatiotemporal (continuous) data. Are these approaches
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Figure 1.2: Dissertation Objectives

generalizable over multiple datasets with varying complexity?

We aim to evaluate the performance of various transfer learning methodologies for

regression problems i.e. for continuous-valued data. Unlike classification tasks,

regression requires precise estimation, making it important to utilize transfer

learning models that can adapt to subtle variations present in the objective

(target) domains. Our aim is to improve generalization for these transfer learning

models by evaluating their performance across datasets of different complexities

i.e. varying feature space, noise and sample size.

Additionally, while this objective aims to address limitations affecting the gener-

alizability of regression transfer models, it also allows for deeper understanding

into implementing reliable approaches for transfer for spatiotemporal data.

RQ2 Transfer for irregular spatiotemporal data w/ shared feature space

What patterns can be utilized to improve the prediction accuracy for the transfer

across regions with similar feature space but spatiotemporal irregularities?

Transfer learning across regions consist of scenarios where the ground-sensors for
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both the source and the target domains are irregularly and sparsely distributed

with the source domain sensors being much larger than the target domain sensors.

This uneven data availability affects estimation and poses a public health concern

in developing countries with less available sensors. Additionally, both the source

and the target domains share similar feature space and seasonality (consistent

seasons around the year) such that there is no requirement for standardizing

features across domains.

To mitigate the spatiotemporal irregularities, we identify transferable patterns

that enhance the accuracy of transfer learning approaches. Our solution leverages

spatial and semantic dependencies existing between the data-rich and data-poor

regions to improve estimation in the latter using Instance transfer learning (ITL)

models. Since, conventional ITL techniques struggle with complex dependencies

such as topographical dependencies, meteorological dependencies, spatial and

semantic autocorrelations present within and across domains, we identify such

relationships and allow the transfer model to learn them for improved predictions.

RQ3 Transfer for irregular spatiotemporal data w/ dissimilar feature space

What patterns can be utilized to improve the prediction accuracy for transfer

across spatiotemporal fields with dissimilar feature space, seasonality, temporal

distinctness and sociocultural diversity (two geographically distant countries?

Transfer learning across regions with heterogeneous feature space is a complex

tasks as it requires standardizing features between the domains. Our problem

has an addtional difficulty since the source and target domains have differing

seasonal cycle, sociocultural diversity and varying data distributions. This

is usually the case with transfer learning between two geographically distant

countries on opposite hemispheres. The spatiotemporal variability in addition

to meteorological and environmental differences, creates difficulty to translate
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the source domain knowledge.

The solution to this objective picks up from the previous one with improvements

including data standardization, seasonality-agnostic experimentation across do-

main with annually-distinct data. Unlike traditional ITL techniques, our solution

achieves improved transfer across regions by utilizing standardized feature set.

Additionally, we also address the issues of cross-domain transfer challenges

arising out of diverging meteorological, topographical, spatial/temporal patterns

and feature spaces.

We believe that the suite of methodologies developed in this dissertation will

be significant for spatiotemporal prediction modeling when the collected data is

limited for a region. A central motivation behind this work has been to devise an

executable solution for sensor-based data collection domains, such as air pollution

prediction, where accurate and timely forecasting is crucial. Most regions, especially

in developing countries, are bound by a small number of monitoring stations or

limited environmental data. The framework of transfer learning proposed in this

dissertation attempts to bridge this gap by knowledge transfer from data-rich to

data-poor regions such that better predictions could be generated for under served

areas. Additionally, these methodologies will help mitigate the challenges brought

about by spatiotemporal data-irregularities, heterogeneity, and missing data-and

hence are pertinent to domains for which the conventional ways of collecting data and

making predictions do not work. This research provides a new perspective on how one

might improve the accuracy of regional predictions based on variable data availability

as well as embedding techniques that take into consideration spatial and temporal

dependencies of environmental variables. These techniques will also be useful in the

monitoring of public health and informing policy decisions for more responses to air

pollution and other environmental hazards.
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Chapter 2

Background and Related Works

Transfer learning involves transferring knowledge learned from one domain to predict

labels for another domain. The knowledge is learned from an external domain called

the source domain to train the prediction model and subsequently fine-tune it on

the target domain [95]. While such a transfer learning is called supervised transfer

as there exist a few target domain samples for fine-tuning, however, there also exist

semi-supervised and unsupervised transfer whereby some unlabeled target domain

samples or no target domain samples are utilized for model training and prediction.

Transfer learning has multiple aliases and hence we can categorize them into two

sub-classes: the first type of transfer models focus on sample size of the target domain,

and hence, such a learning is known as few-shot learning (for limited target-domain

sample: ∼ 1 − 100 samples) [216, 197], one-shot learning (for 1 sample) [62], and

zero-shot learning (for 0 samples) [228].

The second type of transfer models focus on the frequency of the source domain

tasks, and hence, such a learning is known as meta-learning (i.e. learning to learn) or

multi-task transfer learning [208, 248, 66]. Meta-learning involves the model learning

from several diverse tasks which thereby allows it to learn new tasks more quickly

and accurately through initialization of a generalized model and its weights [236]. It

11
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Figure 2.1: Categorization of Transfer Learning

has gained much popularity in the recent years as it allows for efficient sampling and

generalization across the tasks. Multi-task transfer learning is rooted in multi-task

learning where the goal is to learn multiple related tasks simultaneously, and generate

shared representations that can be used for training the model. This can be extended to

transfer learning where the multiple tasks are the diverse source datasets and the model

can differentiate between the source and target learned representations [27]. Both

meta-learning and multi-task learning are extensively used for modeling in domain such

as computer vision, natural language processing, and robotics independently [241, 135].

Additionally, transfer learning can also be categorized into 3 categories based on

source and target domain similarity and presence of labels [165, 222] as shown below.

1. Inductive Transfer Learning

When the source and target domain are same whereas their tasks are different.

For eg., both domains can be animal image classification, however, the source

task is classifying animal whereas the target task is classifying the breed of an

animal. It is represented as,

DS = DT , TS ̸= TT (2.1)

2. Transductive Transfer Learning
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When the source and target domain are different but their tasks are same. For

eg., for the sentiment analysis task, the source domain is sentiment analysis for

English language movie reviews and the target domain is sentiment analysis for

Spanish language product review. It is represented as,

DS ̸= DT , TS = TT (2.2)

3. Unsupervised Transfer Learning

When both the source and target datasets are unlabeled and is represented as,

YS = YT = ∅ (2.3)

These categories can be further classified into 4 sub-categories, based on how the

knowledge transfer process takes place, as instance, feature, parameter, and relational

transfer. Hence, we first formulate the given conditions and subsequently discuss the

4 categories of transfer learning.

Formulation: Let DS and DT represent the source and target datasets, with

inputs xi, xj and corresponding labels yi, yj . The prediction model f with parameters

θ minimizes the error of the loss function L. wi represent weights for source samples

based on their similarity to the target. Additional functions include ϕ for learning

shared feature representations, and fmap to transfer relational structures RS and RT

between domains. ∆θ, refine source parameters θS for use in the target domain, θT .

1. Instance Transfer Learning, involves using selective source domain samples.

The selection is based on the similarity to the target-domain samples. It then

combines the source and the ’few’ target domain samples via domain adaptation

and subsequently train a predictive model [26, 42, 232]. Hence, it can be

represented by minimizing the combined loss over target domain and weighted
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source domain samples.

min
θ

(
∑

xi∈DS

wiL(f(xi; θ), yi) +
∑

xj∈DT

L(f(xj; θ), yj)) (2.4)

2. Feature Transfer Learning, involves standardizing the feature space or learn-

ing low-dimensional representations of the features which are shared between

the source and target domain [5]. These learned representations are then used

to train a transfer model. Hence, it can be represented by minimizing the loss

over model f that learns low-dimensional or standardized representations of the

source and target domains.

min
θ,ϕ

∑
xi∈DS∪DT

L(f(ϕ(xi); θ), yi) (2.5)

3. Parameter Transfer Learning, is also known as model transfer learning and

contains learning based on sharing model parameters. Hence, a model is trained

on the source domain samples and translated to the target domain by tuning

the parameters/weights. [121, 18]. It can be represented as,

θT = θS + ∆θ (2.6)

where ∆θ is the adjustment learned on DT to adapt θS for target tasks.

4. Relational Transfer Learning, focuses on data consisting of multiple de-

pendencies/relations such as networked data (eg. social network data). The

relationship between the data is transferred between the domains [151]. Hence,

it can represented as,

RT = fmap(RS) (2.7)
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where fmap is a mapping function that transfers relational structures.

Since our focus is transfer learning for irregular spatiotemporal data, we primarily

employ instance transfer learning (ITL) models as they are suited for continuous-valued

(regression) domains. We also utilize parameter transfer models (i.e. neural models) as

baselines for validation. While alternative approaches can be explored, the irregularity

present in the spatiotemporal datasets make ITL models an optimal choice, as we

observe in the later sections.

2.1 Instance Transfer Learning

Instance transfer learning (ITL) models are suited for domains with shared feature

space as they combine the source and target domain information to achieve a successful

transfer [45, 222, 165, 220, 143, 151, 199, 77, 161, 51, 257, 203]. The information is

combined by adapting the source samples into common structural representations [100,

195, 38, 71, 195] that are subsequently combined with target samples to achieve

transfer learning. ITL approaches are unaffected by missing data points as well as data

sparsity, often present in spatiotemporal data making them ideal for such complex

domains [37, 109, 30, 174, 148, 138]. Moreover, ITL methodologies are statistically

interpretable [34] and accurate [220, 17], which increases their usability for domain

experts [215] who avoid complex, black-box methodologies [11, 87, 106, 25, 178].

The current ITL methodologies can be vaguely divided into two categories based

on how they apply the weighing strategy to the source domain instances. The first one

involves re-weighing all the source instances at once using techniques such as kernel

mean matching (KMM) [100, 38], weighted-kernel ridge regression [71], Kullback-Leibler

importance estimation [195], translating samples to an invariant Hilbert-space [91],

or learning sample weights based on the conditional distribution difference [29]. The

second type of ITL category is the ensemble learning models that primarily include
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the boosting methodologies [40, 169, 212]. They are useful in iteratively adjusting the

weights as well as penalizing the instances that negatively affect the target learner. For

the RQ1 (chapter 3), we build an ensemble approach based on the boosting algorithm

for transfer learning. Whereas, for the RQ2, we present a generalized improvement

that can be utilized by both categories of ITL approaches.

Additionally, we formalize the problem of instance transfer learning (ITL) where

DS = {(xS
i , y

S
i )}nS

i=1 represent the labeled source domain and DT = {(xT
j , y

T
j )}nT

j=1

represent the labeled target domain such that xi is the feature space and yi are the

corresponding labels. ITL models involve reweighing the source domain samples where

wi are the weights assigned to each source sample, such that highly similar (to target

samples) source samples are assigned a greater weight. These weights are then utilized

into a modified loss function that adapts the source samples similar to the target

samples as shown below.

LITL =

nS∑
i=1

wi · ℓ(h(xS
i ), ySi ) +

nT∑
j=1

ℓ(h(xT
j ), yTj ) (2.8)

where ℓ(·) is a loss function (e.g., squared error for regression problems), h(·) is

the hypothesis/predictive model, and wi are weights for source samples based on their

similarity to the target samples.

Instance Transfer Learning for Regression

The instance transfer learning for regression problems involve minimizing the discrep-

ancy between the source and target distributions. For eg., in Kernel Mean Matching

(KMM) ITL model [100], the weights wi are optimized to reduce the difference in

feature means between the two domains such that,

min
w

∥∥∥∥∥ 1

nS

nS∑
i=1

wiϕ(xS
i )− 1

nT

nT∑
j=1

ϕ(xT
j )

∥∥∥∥∥
2

(2.9)
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subject to 0 ≤ wi ≤ B for some bound B and
∑nS

i=1wi = nS, where ϕ(·) is a

feature mapping function. Since these weights are adjustable, the model is able to

learn from weighted source samples closer in distribution to the target samples. These

learned weights wi are then utilized in a regression model, where the total loss across

the combined (weighted source and target) data is minimized as,

Lregression =

nS∑
i=1

wi · (h(xS
i )− ySi )2 +

nT∑
j=1

(h(xT
j )− yTj )2 (2.10)

Hence, the KMM-ITL model allows to prioritize source samples most similar to

the target samples, and thereby improves the generalizability of the model.

2.2 Machine Learning for Spatiotemporal Data

2.2.1 Spatiotemporal Data

Spatiotemporal data consists of measurements referenced in both space and time. It

merges the spatial components with the temporal dimension creating a corpus for

phenomena varying over time and across multiple locations [64, 259]. Similarly environ-

mental spatiotemporal data consists of complex spatial, temporal, and spatiotemporal

correlations that need to be efficiently captured for accurate modeling and forecast-

ing [2]. These dependencies are especially prevalent in dynamical environmental

domains such as air pollution, precipitation, wildfires and more [181].

Spatiotemporal data can be broadly categorized into two types based on how they

are collected i.e. data collected from moving objects and data collected from stationary

object [155]. Moving object spatiotemporal data captures dynamic trajectories of

entities such as vehicles, animals, or people to track their space-time trajectories [70,

254, 263, 3]. Domains such as traffic analysis, wildlife tracking, and urban planning,

that capture trajectories of moving objects consists of finding patterns or forecasting
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entity locations [152, 4, 117]. For eg., vehicle trajectory data would record its varying

location across a city, and would contain both spatial and temporal dimensions. This

can be utilized in real-time traffic management or navigation systems [134].

Conversely, stationary object spatiotemporal data is collected via fixed sensors often

used to record environmental or atmospheric variables over time in a location [2]. Such

stationary ground-sensors record continuous measurements that are highly accurate

but also variable as they are affected by surrounding parameters such as temperature,

pressure, and more. Hence, modeling sensor data has its own unique challenges as the

data is irregularly spread both spatially and temporally. The spatial irregularities can

be caused due to imbalance in the frequency of installed sensors such that some areas

witness high sensor density compared to others due to factors such as population,

regulations, funding and more [192]. Similarly, temporal irregularities stem from

inconsistent sensors monitoring where certain intervals are missed entirely due to

diurnal sensor activity [193].

Satellite data, while now intrinsically spatiotemporal, can be transformed into

spatiotemporal data by processing consecutive images over time [74, 61, 258]. Similarly,

the temporal changes observed in the image data at avrying spatial scales can also

be transformed into spatiotemporal data [124]. For eg., temporal scenarios such as

monitoring air quality or the rate of deforestation [89] via satellite images can be

converted into spatiotemporal measurements by converting these images into a series

of raster grids. Yet satellite data have their own range of drawbacks, such as missing

data points due to cloud cover [120], thereby reducing precision. Hence, satellite data

is often useful for modeling high-level regional and global trends for a phenomena [181].

2.2.2 Prediction Models for Spatiotemporal Data

Deep learning and state-of-the-art machine learning models hold promise to address

the challenges from spatiotemporal data, given their ability to extract patterns from
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high-dimensional and complex datasets [129]. For image data, Convolutional Neural

Networks (CNNs) are effective in learning localized patterns [122]. Whereas sequential

models like Recurrent Neural Networks (RNNs) and their variants such as LSTM,

transformers, and more, are effective in capturing concurrent dependencies [206].

Environmental Deep learning and machine learning models [181, 168, 226]

are widely utilized for tasks like precipitation modeling, extreme weather prediction,

and wind forecasting, as they are adept in capturing short-term (hours to weeks) [76,

107, 176, 177] and long-term dependencies [101, 8, 85]. For eg., spatiotemporal RNNs

are effective in forecasting PM2.5 values using historical data with the locations spread

regularly across space. However, such vision-based deep learning models have to be

adapted to handle the complex environmental data collected using ground sensor

and consisting irregularities. Unlike satellite data, which is often represented as

spatiotemporal grids, sensor data often require sophisticated techniques to capture

interactions across space and time.

2.2.3 Machine Learning for Pollution Prediction

Air pollution consists of harmful aerosols like Particulate Matter (PM), gases like CO2,

and volatile organic compounds; water through industrial discharges, agricultural

runoff, waste, and pesticides,as well as heavy metals, and industrial wastes [123]. Hence,

estimating air pollution is significant for safer public health and preserving ecosys-

tems [24]. These pollutants can cause severe respiratory problems, can contaminate

drinking water, degrade soil quality, and contributes to climate change [119]. While ma-

chine learning based spatiotemporal modeling has garnered high interest due to rise in

deep learning, it also useful due to its success in designing models that can estimate pol-

lutants such PM2.5, PM10, NO2, O3, and SO2 [111, 101, 14, 15, 28, 230, 181, 162, 231].

These models are able to capture complex nonlinear dependencies existing between

features (meteorological, topographical, and geographical) that also affects air quality.
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In the case of machine learning models, Random Forest (RF), Support Vector Machines

(SVM), and Gradient Boosting Trees (GBT) have been widely employed as they can

successfully handle high-dimensional data and capture intricate patterns [244, 75, 217].

In the case of deep learning models, techniques such as Convolutional Neural Networks

(CNN) and Long Short-Term Memory (LSTM) models are highly adept at extracting

both spatial and temporal dependencies existing in the data [126, 57, 59, 213]. For

example, Qi et al. developed a CNN-LSTM hybrid model for multi-pollutant predic-

tion that learns spatiotemporal information from big data for a generalized training,

and thereby successfully outperforms baseline prediction models [174]. There have

also been hybrid models that fuse physical laws and equations with machine learning

models to capture pollution dynamics [10].

Recent studies employ hybrid spatiotemporal machine learning models whereby

they employ both deep learning and machine learning solutions for a comprehensive

estimation. For example, Betancourt et al. [9] employ gradient-boosted tree (GBT)

and multi-layer perceptron (MLP) algorithms to model near-surface nitrogen dioxide

(NO2) and ozone (O3) concentrations at a high spatial and temporal resolutions,

integrating satellite data with ground-level environmental and meteorological data.

Additionally, Wang et al. [31] devise an innovative graph neural network (GNN)

approach to capture spatial dependencies among monitoring stations as edges and

nodes to forecast multiple pollutants and improve performance. These advanced

modeling techniques, coupled with the integration of diverse data sources such as

satellite observations, and ground-level data have a three-fold effect of improving the

accuracy of pollution prediction [229, 98], understanding of pollution dynamics [184]

and supporting public health interventions [190].
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2.2.4 Machine Learning for PM2.5 Prediction

PM2.5 particles are extremely harmful due to their small size, allowing them to

penetrate deep into the lungs and even enter the bloodstream, causing respiratory

and cardiovascular issues[172]. Accurate estimation of PM2.5 exposure is crucial for

epidemiological studies and public health interventions, as it enables researchers to

assess health risks and develop targeted pollution reduction strategies[21]. Machine

learning (ML) and deep learning models have emerged as powerful tools for PM2.5

estimation and forecasting, addressing the limitations of traditional monitoring meth-

ods. Regression-based approaches, such as Random Forest (RF), Support Vector

Regression (SVR), and Gradient Boosting Machines (GBM), have shown promising

results in estimating PM2.5 concentrations from satellite data and other environmen-

tal variables [150, 221]. These models can capture complex non-linear relationships

and handle high-dimensional feature spaces effectively. More advanced techniques

like Geographically Weighted Regression (GWR) and Bayesian hierarchical mod-

els have been employed to account for spatial heterogeneity in PM2.5 distributions

[132, 127, 16, 72]. Ensemble methods, combining multiple ML algorithms, have also

demonstrated improved performance in PM2.5 estimation [150, 221].

Deep learning models have further pushed the boundaries of PM2.5 estimation

and forecasting. Convolutional Neural Networks (CNNs) have been successfully

applied to extract spatial features from satellite imagery and meteorological data for

PM2.5 prediction [132, 127]. Recurrent Neural Networks (RNNs), particularly Long

Short-Term Memory (LSTM) networks, have shown excellent capabilities in capturing

temporal dependencies in PM2.5 time series data [150, 221]. Hybrid models, such as

CNN-LSTM architectures, have been developed to leverage both spatial and temporal

information for more accurate PM2.5 forecasting [132]. Advanced techniques like

Graph Neural Networks (GNNs) and Transformer models have also been explored

to model complex spatio-temporal relationships in PM2.5 data [127, 150]. Transfer
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learning approaches have been successfully employed to adapt models trained on

data-rich regions to areas with limited monitoring data, addressing the challenge of

data scarcity in many parts of the world [221].

The measurement of ambient PM2.5 exposure mainly relies on ground monitoring

stations [83]. However, even in well-endowed countries/regions such as the United

States, more than 70% of the counties do not consist of standardized PM2.5 monitoring

stations [243]. Moreover, this scarcity of ground monitoring stations is more prevalent

in underdeveloped/developing countries [219, 147]. Hence, the last decade has seen

the utilization of satellite-based remote sensing methodology [14, 99] and low-cost

sensors [15] to extend the coverage for detecting the PM2.5 levels. But, the satellite-

based data has lower accuracy and suffers from data collection issues due to optical

variabilities such as cloudy weather or high surface reflectance [14]. Transfer learning,

which leverages models/data from another domain does not have limitations possessed

by the above-mentioned approaches such as accessibility constraints for proprietary

sensors or data engineering bottlenecks for satellite data, thus, making it optimal to

generate prediction models using data collected from very few monitoring stations.

2.3 Transfer Learning for Spatiotemporal Data

Transfer learning models for spatiotemporal domain address the data collection chal-

lenges such as limited labeled data, out-of-distribution test data, and unsupervised

learning i.e. unlabeled data [239, 251]. Convolutional Long Short-Term Memory

(ConvLSTM) networks have shown promise in capturing both spatial and temporal

dependencies such that the data can be translated into a series of grids and the atten-

tion mechanism of the model focuses on relevant features [32]. Adversarial training

techniques have been used to align source and target domain distributions by generat-

ing learned representation that allows model to differentiate between the two domains,
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thereby improving transferability [93]. Moreover, some meta-learning methods have

been developed for quick adaptation to new tasks with limited data, an important

aspect in spatiotemporal transfer learning [197]. Ma et al. [139] apply bi-directional

LSTM where transfer learning is used to transfer the knowledge learned from smaller

temporal resolutions to larger temporal resolutions (local temporal transfer learning)

whereas Yao et al. [237] propose a differentiable framework called transferable memory

that distills knowledge from RNN units and applies it to the target data using a novel

structure called Transferable Memory Unit (TMU).

Transfer learning has also been successfully used in application for spatiotemporal

data domain such as climate modeling, urban computing, and video analysis [85, 218].

Graph neural networks have been used to model the complex relationships existing

whereby the generated graph is homogeneous or heterogeneous based on the task [225].

In the field of computer vision, self-supervised pretraining on large-scale video datasets

has shown to be particularly effective for downstream spatiotemporal tasks [88, 256].

Recent work has also explored the use of contrastive learning techniques to learn

transferable representations for an unsupervised learning i.e. unlabeled data [35, 175].

As this field evolves, there is a focus on more robust and general transfer learning

models that can deal with the unique challenges related to spatiotemporal data;

examples include temporal resolution variations or spatial heterogeneity [179, 251].

However, these solutions consider image/video/grid data for their experiments and

cannot be utilized for continuous-valued datasets.

2.3.1 Spatial/Temporal Transfer Learning

Spatial transfer learning involves transferring a model learned over a particular space

to a new space. Ferris et al. [65] utilized the Gaussian Process Latent Variable model to

create a mapping function between the two domains. However, this model was complex

as it required a pre-requisite motion-dynamics model. Pan et al. [164] introduced a
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manifold regularization model. The challenge with such a model was to learn the

labels of locations of a small part of the building when the model had been trained

for a much larger area. Pan et al. [166] apply spatial transfer learning for the Wi-Fi

localization data. However, the two spaces were within a building and thus cannot

be considered highly divergent domains. In our objective (RQ2), we apply spatial

transfer learning for two highly distant regions spread over a country.

Popular domain adaptation/transfer learning techniques for time series domain

focus on leveraging domain-invariant and domain-specific representations of the

data [173, 223, 73, 19]. However, these methodologies, designed without consid-

ering the sequential nature of time series data, are not readily applicable to forecasting

tasks. Cai et al. [128] address the domain shift challenges by devising an approach

that involves minimizing the disparity in the associative structure of the time series

for the target and source datasets. However, such an approach is not suitable for

multi-horizon forecasting tasks as its labels are associated with inputs rather than

being pre-defined. Similarly, Hu et al. [97] introduced DATSING, that employs adver-

sarial training to fine-tune pre-trained forecasting models. This fine-tuning process

is achieved by augmenting the target dataset with selected source data based on

predefined metrics. Although DATSING is an effective approach, its complexity due

to having two distinct stages makes it cumbersome to use. Moreover, its solution does

not incorporate domain-specific features for forecasting and thereby cannot be utilized

for specific applications such as air pollution estimation. Jine et al. [105] utilizes a

novel attention-sharing mechanism to generate domain invariant representations for

the time series. However, these representations are generated for an unsupervised

learning task as compared to our supervised learning task with few labeled target

sample. Our proposed solution in RQ3 hopes to improve upon this methodology and

has been explained in detail in Chapter 5.
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2.3.2 PM2.5 Estimation via Transfer Learning

There has been some work in the space of PM2.5 prediction which involves the usage

of deep neural networks apt for time-series prediction. This involves the presence

of consistent temporal points in the dataset and while a few studies impute data

prior to the training, such an approach is ineffective for our case due to a large

number of missing temporal points (∼ 365k− 250k). Ma et al. [140] present a stacked

bidirectional LSTM transfer network that required consistent temporal samples and

utilized methodologies such as rolling window [22] to impute data. Similarly, Fong

et al. [67] also utilize data imputation methodologies to generate missing data and

consequently create a transfer learning methodology combining LSTM and RNN for

a spatiotemporal prediction. Fang et al. [60] proposed a hybrid strategy based on

LSTM and domain adversarial neural networks (DANN), and similarly Ni et al. [159]

presented a hybrid transfer model that utilizes Maximum Mean Discrepancy (MMD)

for importance sampling of the source-domain samples and a two-phase model for

feature transfer learning.

In addition to the problem of missing temporal points for the air pollution domain

dataset, the prediction of PM2.5 takes place over a large number of unknown testing

sites by training on very few training sites (unlike the above studies where the train-test

ratio was 70:30). Moreover, the testing sites are sparsely located over a large area

(multiple states) making it highly challenging to apply the above transfer learning

solutions. Hence, in RQ2 and RQ3 we present solutions that tackle the spatial and

temporal transfer learning problem one at a time. The final goal involves combining

these solutions for a ”go-to” single methodology.
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Chapter 3

Robust & Generalizable Regression

Transfer Learning

This objective consists of experimental evaluation of the instance transfer learning

(ITL) techniques suited for the regression domain where the source and target domains

share the same feature space. During our experimental evaluation, we noticed that

many ITL techniques performed sporadically i.e. imbalanced accuracies such that the

models were highly accurate for certain datasets and inaccurate for other datasets.

These models were tested upon a diverse set of datasets with varying complexities

(also measuring the complexity of the dataset).

Hence, this objective focuses on presenting algorithmic improvements for

a boosting based instance transfer learning methodology, TrAdABoost.R2 [169]

to introduce a new generalizable and robust methodology, STrAdaBoost.R2

that performs consistently well over all experimental datasets.

This research objective (RQ1) was published in the journal – International Journal

of Data Science and Analytics [79].

27
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3.1 Rationale:

While semi-supervised and unsupervised learning methodologies work well for partially

labeled or unlabelled datasets [163, 13], they fall short for instances where the sample

size is small [216, 222, 165, 220, 66]. Instance-transfer learning (ITL) [222, 165, 220,

45, 77, 161, 51], a sub-class of transfer learning approaches [257], is designed for

domains with limited and labeled samples, shared feature-space, and independent

and identically distributed (i.i.d) data-distributions [167, 203], making it ideal for

real-world datasets [37, 109, 30, 148, 138]. It stands apart from its counterparts,

such as feature-transfer learning and parameter-transfer learning, as it allows data

adjustment and transformation of domain instances, making it ideal for dissimilarly

distributed source and target domains. Moreover, ITL methodologies are as statistically

interpretable [34] as they are powerful [220, 17], which increases their usability for

domain experts [215] who avoid complex, black-box methodologies [11, 87, 106].

Therefore, these methodologies have the advantage of being less complex but equally

reliable when compared to deep learning based transfer methodologies. Another

reason for leaning towards ITL methodologies is because it is easier to transfer the

source domain by applying adaptation methodologies [100, 195] as well as using

techniques involving reduction of distribution difference between the source and the

target domain [38, 71, 195]. The accuracy of prediction does not just depend on

the transfer learning methodology but also involves the nature of the distribution.

Real-world datasets suffer from collecting data that is complete, high-resolution, and

evenly sampled. This is due to the dependence on the cost of equipment which can

result in hardware limitations. This leads to the resulting dataset varying in resolution

as well as the quality [138]. Hence, a robust transfer learning methodology should

perform consistently well for data distributions with varying complexities.

Among the ITL methodologies, we employ ensemble methodology, especially

the boosting methodology [34] as it aggregates the results from multiple learners.
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Similarly, the transfer boosting methodology TrAdaBoost.R2 [169] is regularized and

uses domain adaptation for iteratively re-weighing the source instances with respect

to the target dataset for knowledge transfer [201]. The underlying architecture is

AdaBoost [188], which focuses on misclassified training instances, leading to contextual

learning. However, boosting methodologies suffer from negative transfer [183] when

the source dataset size is large compared to the target dataset, leading to a skewed final

model. To address the problem of negative transfer, we introduce S-TrAdaBoost.R2,

a successor to two-stage TrAdaBoost.R2 (TTR2) that uses importance sampling [165,

110, 250] to improve the alignment of source instances with the target values, and

applies a balanced weight update strategy to mitigate the skewness generated due to

the large sample size of source datasets. We test S-TrAdaBoost.R2 across a range of

standard regression datasets with limited target instances and varying complexities,

and find that it outperforms other ITL methodologies 63% of the times and the

baseline TTR2 more than 75% of the times. Notably, it has consistent performance

(RMSE and R-squared score) for both the regular comparative study and the Ablation

study (Fig. 3.2 and Table 3.2), as opposed to fluctuating results as observed for other

instance transfer methodologies. The primary contributions of this objective are:

1. We introduce S-TrAdaBoost.R2, complexity-tolerant, domain-agnostic boosting-

based transfer learning algorithm that uses importance sampling and a balanced

weight update strategy to outperform its predecessor TTR2 and other competi-

tive ITL methodologies.

2. We discuss the complexity measures, i.e. metrics to quantify the complexity of

distribution. They categorize the distribution based on correlation, linearity,

and smoothness, to provide a numerical estimate of its simplicity.

3. We demonstrate that S-TrAdaBoost.R2 outperforms competitive ITL method-

ologies when measured in terms of accuracy and loss, for high-complexity datasets.
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We also provide the ablation analysis for Importance Sampling, which demon-

strates the modularity and commutability of the technique.

Hence, with the goal of designing, a robust transfer learning method-

ology that performs consistently well for data distributions with varying

complexities, our model, STrAdaBoost.R2, is a complexity-tolerant, and

domain-agnostic transfer algorithm that uses importance sampling and

a balanced weight update strategy to outperform its predecessor, TrAd-

aBoost.R2 and other competitive ITL methodologies.

3.2 Background

Previous work on transfer learning [45, 222] provides methodologies for measuring

the shared information content between multiple domains in transfer learning [143,

151, 199]. These models attempt to find common structural representations of source

instances to gauge the quantity as well as the quality of the transfer. However, for

highly dissimilar source and target domain instances, a reduction of prediction accuracy

for transfer learning algorithms when compared to non-transfer learning algorithms i.e.

negative transfer is commonplace [183]. Figure 3.1 shows negative transfer when TTR2

and AdaBoost.R2 are fitted over the concrete dataset from UCI machine learning

repository [6]. We observe a decline in TTR2’s performance as the target sample size

increases. This shows a trade-off in the performance of transfer learning algorithms to

the sample size of the target distribution. Hence, transfer learning algorithms perform

better when the sample size of a target dataset is small.

The concept of translating knowledge and model across domains has been much

researched upon and hence, transfer learning, similar to machine learning, is observed

for both classical transfer learning [26, 38, 71, 169] and deep transfer learning method-

ologies [11, 87, 106, 139, 200, 235, 245, 264]. While deep networks can often improve
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transfer accuracy, they sacrifice model interpretability, generalizability, adaptability,

and flexibility for more diverse tasks [25, 178]. Whereas, ITL algorithms, unlike

deep transfer models, do not suffer from obscurity in showing intermediary steps and

learned concepts in order to have greater transparency. Even for unrelated source

and target domains, the source instances adapt to the target instances by either

re-weighting [26, 71] or transforming to the target space [38], indicative of the adapt-

ability of ITL methodologies. The current ITL methodologies can be vaguely divided

into two types based on how they apply the weighing strategy to the source domain

instances. The first one involves re-weighing all the source instances at once using

techniques such as Kernel Mean Matching (KMM) [100, 38], Weighted-Kernel Ridge

Regression [71], Kullback-Leibler Importance Estimation [195], translating training

instances to an Invariant Hilbert Space [91], or learning source domain instance weights

based on the conditional distribution difference from the target domain [29]. The

second type of methodology is the ensemble learning methodology, primarily including

boosting techniques.

3.2.1 Boosting

Boosting [188] is an ensemble technique that builds a classifier by using a set of

weak learners, whereby the weights of the training samples are updated over a chosen

number of iterations, and finally these weak learners are combined to generate a

strong learner. Popular boosting methodologies such as AdaBoost.R2 [50] typically

assume that the test and training datasets have a similar distribution and hence do

not require domain adaptation. They do not suffer from overfitting [198] and have a

robust prediction over diverse datasets.
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Figure 3.1: Negative transfer in TTR2 is induced as a result of increasing the target
sample size from 35% to 63% of the total training data. The baseline algorithm
is AdaBoost.R2. For a larger target sample size, the baseline performs better
than TTR2

Boosting for Regression

When boosting is used for regression, it faces the problem of reweighing incorrectly

predicted instances. AdaBoost.R2 [50] introduces the concept of adjusted error to

reduce the effect of an arbitrarily large number for the predicted error; defined as,

e′i =
ei

maxn
i=1|ei|

(3.1)

where, ei = |y(xi)− h(xi)| (3.2)

where ei denotes the predicted error on the hypothesis ht and i are the number
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of training instances. The inflation in the error is normalized by maximizing the

error over the instances in the previous iteration. The weights of the instances in

AdaBoost.R2 are updated as,

wt+1
i =

wt
iβ

1−e′
it

t

Zt

(3.3)

where, βt = ηt/1− ηt and ηt =
n∑

k=1

wt
ie

t
i (3.4)

where Zt is normalizing constant, t is current iteration.

Boosting for Transfer Learning

TrAdaBoost [40] is a classification boosting framework that applies transfer learning

to compensate for a lack of training instances for the target dataset. The source and

target data instances are merged to form the training data for the TrAdaBoost, and

in each iteration, the weights of the instances are adjusted such that the misclassified

target instances have their weights increased, whereas the misclassified source instances

have their weights reduced, in order to reduce their impact towards the model learning.

However, this may lead to model over-fitting, and reduction in the variance of the

training model, therefore negatively affecting the model generalizability [212].

Boosting for Regression Transfer

TrAdaBoost.R2 [169] (as shown in algorithm 1) builds upon TrAdaBoost [50]

for regression problems, using adjusted error over residuals and reweighing of the

instances. The improved version, called two-stage TrAdaBoost.R2 (TTR2), is divided

into two stages. The first stage involves gradually reducing the weights of the source

instances until a certain cross-validation threshold is achieved. In the second stage,

weights of the source instances are frozen while the weights of the target instances are
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updated as in AdaBoost.R2. The bi-update methodology for TTR2 helps reduce the

skewness produced due to source instances. This mostly happens in the cases when

source sample size is very large compared to the target sample size, which consequently

makes the model learning biased towards the source domain.

3.2.2 Variants of Regression Transfer

Algorithm 1: Two-Stage TrAdaBoost.R2 (Pardoe and Stone)

Input: Training set T with source instances 1 . . . n and target instances
1 . . .m, number of estimators N , base learner learner, iterations S

Output: Final hypothesis hf

1 for t← 1 to S do
2 Call AdaBoost.R2’ with T , wt, N , learner to obtain modelt, where

AdaBoost.R2’ is similar to AdaBoost.R2 except weights of source
instances 1 . . . n in T are never modified.

3 Get a hypothesis ht for T and distribution wt, and calculate the adjusted
error eti for each instance as in AdaBoost.R2.

4 Update the weights as:

wt+1
i =

wt
iβ

eti
t

Zt
, if 1 ≤ i ≤ n

wt
i

Zt
, if n < i ≤ (n + m)

where Zt is the normalizing constant and βt is chosen such that the
resulting weight of target instances is

m

(n + m)
+

t

(S − 1)

(
1− m

(n + m)

)
.

5 end
6 return hf where f = arg mini errori

Pardoe et al. [169] introduced two categories of transfer learning algorithms. The

first category contains algorithms that choose the best hypothesis from a set of

experts, each representing the models for the corresponding source dataset. This

category includes algorithms such as ExpBoost.R2 and Transfer Stacking. Algorithms

in the second category, which include TrAdaBoost.R2 and TTR2, use the grouped
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source and target datasets to perform boosting. Since boosting methodologies involve

instance reweighing, they fall under the category of transfer learning algorithms

that use domain adaptation. This is especially useful and applicable for real-world

datasets with dissimilar domain distributions. Hence, such domain adaptation transfer

methodologies help in reducing the burden of maintaining expert systems [183]. Apart

from the boosting methodologies, the varying domain adaptation approaches include

using a kernel-employing Gaussian process [26] for source instance modification or

kernel ridge regression, and discrepancy minimization for domain adaptation [38].

Similar to importance sampling [165], several studies [157, 71] have used importance

weighting of source instances to improve inference for transferring knowledge. Transfer

methodologies using approaches similar to active learning, such as [44] (employing

modeling structure with second-order Markov chains), as well as a variety of deep

learning approaches [13, 43], are indicative of the usefulness of active learning in

the form of importance sampling as a viable technique to be picked up by ITL

methodologies.

The ITL models – KMM.TL(Kernel Mean Matching) [100], KLIEP.TL(Kullback–Leibler

Importance Estimation Procedure) [195] used in this chapter have been also employed

in RQ2. We elaborate on theri mathematical formulation in detail in that chapter.

Importance Weighted Kernel Ridge Regression

The IW-KRR.TL (Importance Weighted Kernel Ridge Regression) [71] method ex-

pands upon the Importance Weighted Least Squares (IWLS) whereby it incorporates

kernel ridge regression (KRR), which allows it to capture existing non-linear rela-

tionships/dependencies in the dataset [71]. In IW-KRR.TL, each source sample is

re-weighted to to resemble the target samples, for an improved prediction accuracy. It

solves the following ridge regression objective:
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min
w

m∑
i=1

p̂(xT
i )/q̂(xS

i ) ·
(
ySi − f(xS

i )
)2

+ λ∥f∥2K ,

where xS
i and ySi represent source domain features and target respectively, and

p̂(xT
i )/q̂(xS

i ) represents the importance weight for each source sample, also the density

estimation ratio calculated using the target p̂(xT
i ) and source q̂(xS

i ) distributions.

λ∥f∥2K is a regularization term, where ∥f∥K is the norm in the Reproducing Kernel

Hilbert Space (RKHS) defined by a kernel function K, which allows to manage the

model complexity. The key components of the methodology are:

• Dataset Shift Handling: Where the IW-KRR.TL approach directly addresses

dataset shift between the source and target distributions by reweighing source

samples to aligning them with the target sample.

• Density Estimation: The importance weights are calculated using density

ratio estimation, p̂(xT )
q̂(xS)

, with techniques such as Kernel Density Estimation (KDE)

or alternative ratio approximation methods.

• Kernel Methods: The kernel ridge regression framework allows handling

complex, non-linear relationships/dependencies present in the data such that it

defines a function, f in a high-dimensional feature space induced by the kernel

function, K(x, x′).

3.2.3 Importance Sampling

Importance sampling is a methodology based on the concept that certain instances of

the source dataset are more similarly distributed to the instances in the target dataset

and thus should be sampled for learning optimal transfer models [110, 165, 232]. Zhao

et al. [250] introduce stochastic optimization for importance sampling of non-transfer

learning problems, to reduce variance and improve convergence. Elvira et al. [55, 56]
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utilize gradient-based learning whereas Bullago et al. [23] and Schuster et al. [189]

apply Monte Carlo methods to apply adaptive importance sampling. Salaken et

al. [185] present a seeded sampling technique for transfer learning that we extend to

form the variance sampling component used by our algorithm, STrAdaBoost.R2. Their

work introduces an algorithm to cluster the source domain instances which are then

translated to limited target domain instances for knowledge/domain adaptation. In

the following section, we describe how we utilize the concept used by seeded sampling

for cherry-picking instances from the source domain for the purpose of introducing

variance in the target dataset.

3.2.4 Complexity of Distribution

Table 3.1: Dataset Statistics [Tr: Training, Tt: Test, PM
C : predictor] and Complexity

Concrete Housing Auto Ailerons Elevators Abalone Kinematics C.Activity

Shape (1030, 9) (506, 14) (392, 8)
Tr: (7154, 41)
Tt: (6596, 41)

Tr: (8572, 19)
Tt: (7847, 19)

(4177, 9) (8192, 9) (8192, 22)

Target Strength medv mpg goal Goal Rings y usr
PM
C Cement nox h.power None None weight theta7 pgin

CFE 0.66 0.39 0.51 0.47 0.59 0.69 0.70 0.36
DL 0.20 0.29 0.24 0.26 0.32 0.27 0.19 0.36
DI 0.71 0.90 0.58 0.68 0.59 0.51 1.08 0.58

Domain-agnostic characterizations of dataset complexity are surprisingly uncom-

mon. Fernandez et al. [63] present a characterization based on Shannon entropy, but

this does not extend to the continuous, often real-valued domains of many real-world

datasets [20]. Other intuitive measures such as sorting datasets by the number of

features or self-similarity do not reliably capture types of datasets that we observed

as being especially prone to negative transfer. The heterogeneity and complexity

of datasets usually determine the model performance. While the heterogeneity of

real-world datasets can be outlined as a factor of their multi-source and spatiotemporal

character, this might not be true for their complexity. Ho et al. [92] proposed metrics

to measure complexity for classification datasets. Maciel et al. [142] extended that
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work for regression datasets which stemmed from the work done by Lorena et al. [137]

that utilizes meta-features as a measure of complexity. In the following sections, we

discuss and apply the measures provided by Maciel et al. [142] to characterize the

complexity of regression datasets.

Collective Feature Efficiency (CFE): Correlation Measure

The correlation measure determines the highly correlated predictor to the target

variable and fits a linear regressor to find its residuals. All the instances having

residual less than a certain threshold (ϵ ≤ 0.1) are discarded and the remaining

instances are used to determine the next highly correlated predictor. The process is

repeated until the complete feature space has been visited. Maciel et al. [142] describes

the measure as the Collective Feature Efficiency (CFE) which is expressed as,

CFE = 1−
∑
k

Nk

N

where Nk is the number of instances that are removed (using the set threshold), N

is the total number of instances and k is the feature. Higher values for CFE indicate

more complex problems.

Distance from Linear Function (DL): Linearity Measure

The linearity measure sums the absolute values of residuals when a multiple linear

regressor is used as the learner [142]. It is expressed as a distance measure (DL) and

is quantified as,

DL = 1−
N∑
i=1

Ri

N

where Ri are the residues and N is the sample size. Lower values indicate a simpler

distribution.
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Input Distribution (DI): Smoothness Measure

The smoothness measure determines the smoothness of the distribution by ordering

the predictor values in ascending order with regard to the output variable. It then

finds the distance (L2 Norm) between each pair of instances [142]. Lower values mean

a simpler distribution, indicating that the instances in input space are closer to each

other, leading to a smooth distribution. It is expressed as,

DI =
1

N

N∑
i=2

∥xi − xi−1∥

where N is the sample size and ∥.∥ is the Euclidean distance.

We break down the transfer learning process by understanding the mathematics

behind the transfer of knowledge in the context of machine learning. We then look

into instance transfer learning methodologies which are utilized when the source and

the target domains have the same feature space. During our preliminary experiments,

we noticed how transfer learning methodologies are over-fitted for each dataset, and

their performance varied with the complexity of the dataset distribution. We improved

an existing ITL methodology – TrAdaBoost.R2 to make it more generalizable as well

as define metrics to measure the complexity of dataset distribution.

3.3 Methodology

3.3.1 Problem Definition:

Given source and target datasets, such that their instances are denoted by xT and

xS respectively. Hence, the target dataset is denoted as XT = {xT
1 , x

T
2 , ..., x

T
m} for

m instances and source dataset is denoted as XS = {xS
1 , x

S
2 , ..., x

S
n} for n instances.

Similarly, the target output dataset is denoted as Y T = {yT1 , yT2 , ..., yTm} and the source

output dataset is denoted as Y S = {yS1 , yS2 , ..., ySn}. The target domain suffers from
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significant data deficiency and dissimilarity of distribution compared to the source

domain. Our goal is to find a transfer learning approach that can use the source

domain instances as leverage for building the prediction model as well as avoiding

negative transfer. The transfer learning algorithm should perform consistently well on

varying domain distributions with differing complexities.

3.3.2 Approach:

Algorithm 2: S-TrAdaBoost.R2

Input: Labeled data sets XS (size n) and XT (size m), number of estimators
N , cross-validation folds F , iterations S, base learner learner,
learning rate α

Output: Final hypothesis hf

1 Importance Sampling: Get updated source dataset XES with p instances
from XS most similar to XT .

2 Variance Sampling: Get updated target dataset XV T with q instances using
k-Center Sampling on XT .

3 Initialize: Set initial weight w1 = 1/(p + q).
4 for t← 1 to S do
5 Call AdaBoost.R2 with N estimators and learner to get hypothesis ht.
6 foreach i in 1, . . . , p + q do
7 ei = |y(xi)− h(xi)|/J , where J = maxp+q

i=1 |ei|
8 end

9 Set β̄t = ηt/(1− ηt), where ηt =
∑p+q

i=1 w
t
ie

t
i and βt = q

p+q
+ t

S−1

(
1− q

p+q

)
10 foreach i in 1, . . . , p + q do
11

wt+1
i =


wt

i β̄t
etiα

Zt
if 1 ≤ i ≤ p

wt
iβ

1−eti
t α

Zt
if p < i ≤ p + q

12 end
13 where Zt is the sum of sample weights.

14 end
15 return hf where f = arg mini errori

STrAdaBoost.R2 is a transfer regression boosting algorithm which builds a model,

hf : X → Y , such that hf is the final learned hypothesis of the ensemble of hypotheses

over the learning iterations, using the training data which is a combination of source
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and target datasets that share a similar feature space but have dissimilar distributions.

Hence by this definition, the combined training dataset (source + target) can be

denoted as {(x, y)∥x ∈ XT ∪XS, y ∈ Y T ∪ Y S and XT , XS, Y T , Y S ∈ Rd} where d

represents the feature space of the source and target domain.

3.3.3 STrAdaBoost.R2

To improve the performance of TTR2, we present STrAdaBoost.R2 as shown in al-

gorithm 2. There are two main areas where STrAdaBoost.R2 diverges from its

predecessor, TTR2; the first is applying importance sampling, and the second is the

weight update strategy for STrAdaBoost.R2, which differs from the TTR2. In the

following subsections, we elaborate upon these differences as well as determine the

time complexity of STrAdaBoost.R2.

Sampling

In order to improve the prediction accuracy, S-TrAdaBoost.R2 initially samples

the source dataset, XS, to obtain optimal representative instances, i.e. similar

instances to the target dataset, XT . Hence, before merging the source-domain and

target-domain samples, we apply importance sampling to carefully select favorable

source-domain instances. We utilize a greedy approach for calculating the distance

between the source and the target instances. Such an importance sampling can be

achieved by utilizing distance measures (Euclidean, Manhattan, and more) as well

as alternative methodologies utilizing gradient-based and similarity-based sample

selection [55, 56, 23, 189]. For our experiments, we use the Euclidean distance (L2

norm). Hence, we find the set XES ⊂ XS such that,

XES = ∥xS
i − x̄T∥ ∀xi ∈ XS
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where x̄T is the mean of target instances, ∥.∥ is the Euclidean distance, and

|XES| = |XS|, i.e. they share the same cardinality. We select the top p instances

from XES for the source dataset, which reduces the source dataset size to XK =

{xK
1 , x

K
2 , ..., x

K
p } such that p << n and discard the remaining (n− p) instances since

they failed the similarity testing threshold.

Furthermore, to improve the generalizability of the prediction model, we also

induce variance in the target dataset whereby source instances most similar to the

target instances are added using the k-center sampling, an approach presented in

algorithm 3. Including the most similarly distributed source samples in the target

dataset improves the fit for the regressor since S-TrAdaBoost.R2 focuses more on

target instances than the source instances. These similarly distributed source samples

act as noise for the target distribution and thereby improve the generalization error.

Even though TTR2 tries to mitigate this using its two-stage source instance penalizing

process, we found that reducing the source sample size using importance sampling, as

well as performing variance sampling, allows S-TrAdaBoost.R2 to perform better

compared to its predecessor.

Algorithm 3: k-Center Sampling

Input: XT , Y T , XS, Y S

Output: Labeled dataset XV T (size k).
1 Find XC ⊂ XS such that XC = {xC

1 , x
C
2 , ..., x

C
k } has k samples, obtained using

k-means clustering on XS.
2 Initialize XE = ϕ (Empty-set)
3 for xC ∈ XC do
4 Find xT such that ∀xT ∈ XT min(∥XC − xT∥)
5 XE ∪ {xT}
6 end
7 Repeat steps 3 to 5 and obtain set XV T ⊂ XS closest to instances in set XE.
8 return XV T

k-center sampling k-center sampling is an unsupervised approach that returns

k centroids, where k is equal to the number of source instances in the set, XS
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(algorithm 3). We employ k-center sampling in our methodology to introduce noise in

the target dataset, in order to increase its variability. After the selection of centroids,

the target instances closest to these centroids are selected as the representative target

set, XC . The source instances most similar to the representative target set are chosen

as the final subset, XV T , for inclusion into the target dataset. The k-center sampling

methodology is presented in algorithm 3. The final size of the target dataset is,

q = n+k. For the k-center sampling, the time complexity is O(N2) as a result of using

the k-means clustering for calculating the closeness. Hence, the sampling pipeline

produces a new source dataset (due to Importance Sampling) and a new target dataset

(due to Variance Sampling) as XES and XV T respectively.

Weight Update Strategy

We present S-TrAdaBoost.R2 in algorithm 2, where we hypothesize that by updating

the target weights more aggressively, the prediction model is able to mitigate the source

distribution bias. This is especially useful for dissimilar source and target domain

distributions, as well as when |XS| >> |XT |. We also note that S-TrAdaBoost.R2

does not employ AdaBoost.R2’ [169], a modified version of AdaBoost.R2 where the

weights of source instances are frozen and the weights of target instances are updated

based on the reweighing approach used by AdaBoost.R2. However, applying highly

focused domain adaptation by freezing weights of source instances can greatly reduce

the generalizability of the model, as performed in the previous technique, TTR2. For

this reason, our approach penalizes both the source domain and target domain instances

allowing for a balanced weighing. Hence, in S-TrAdaBoost.R2, the hypothesis is

obtained by using the AdaBoost.R2 methodology initially. The weights for the

instances are then updated iteratively using the following weight equation,
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wt+1
i =


wt

i β̄t
etiα

Zt
, 1 ≤ i ≤ p

wt
iβ

1−eti
t α

Zt
, p ≤ i ≤ (p + q)

In the above equation, β̄t = ηt/1 − ηt such that ηt =
∑(p+q)

k=1 wt
ie

t
i, and Zt =∑(p+q)

k=1 wiβt indicates the sum of sample weights. For the above weighing strategy, the

source domain instances are penalized more aggressively with both β and ei depending

on instance residual compared to the target domain instances with constant β. This

allows for a balanced weighing where both domain instances are penalized with the

target instance weighing being slower compared to the source instance weighing to

balance the skewness caused by a large number of source instances. Hence, although

the source instances are penalized more than target instances, the instance weighing

is still not as aggressive as in the predecessor methodology, TTR2 which can lead to

overfitting on the dataset.

Time Complexity for S-TrAdaBoost.R2

The time complexity of the S-TrAdaBoost.R2 can be divided into four parts:

1. Time complexity of importance sampling (O1)

2. Time complexity of the weak hypothesis (O2)

3. Time complexity of computing the error rate in S-TrAdaBoost.R2 (O3)

4. Time complexity of the second stage of S-TrAdaBoost.R2 (O4)

For S iterations, time complexity can be defined as O(S ∗ (O2 + O3 + O4)). For

our experiments, we chose a decision tree as the base learner. The time complexity

for creating a decision tree is O(d ∗N2 ∗ logN) (O2), where d is the dimension of the

dataset, N is the number of samples, and each decision is taken in O(logN) time.

The time complexity of computing adjusted error combined with the weight update
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process (O3), does not increase more than O(N2). Finally, the time complexity of

computing the second stage of the S-TrAdaBoost.R2 is similar to producing a weak

hypothesis (O4). Hence, the time complexity over S iterations is,

O(S ∗ (d ∗N2 ∗ logN + N + d ∗N2 ∗ logN)) =

O(2 ∗ S ∗ d ∗N2 ∗ logN + S ∗N))

= O(S ∗ d ∗N2 ∗ logN))

For the k-center sampling, the time complexity is O(N2) for calculating closeness

using the k-means clustering, as well as using Manhattan distance for finding the most

similar source instances. Hence, the total time complexity for S-TrAdaBoost.R2 can

be calculated as,

O(S ∗ d ∗N2 ∗ logN + N2) = O(S ∗ d ∗N2 ∗ logN)

3.4 Evaluation

For our experiments, we evaluate S-TrAdaBoost.R2 against other competitive

transfer learning methodologies such as TTR2 (Two-stage TrAdaBoost.R2) [169],

KMM.TL(Kernel Mean Matching) [100], KLIEP.TL(Kullback–Leibler Importance

Estimation Procedure) [195] and IW-KRR.TL (Importance Weighted Kernel Ridge

Regression) [71] known to perform well for regression-based instance transfer learning

problems. Since TTR2 is the predecessor for S-TrAdaBoost.R2, we define it as the

baseline algorithm for comparison. The decision tree regressor was chosen as the base

learner for these methodologies. For TTR2 and S-TrAdaBoost.R2, the following

values were considered: S (no. of steps) = 30, F (CV-folds) = 10, learning rate = 0.1

and a squared loss. Similar values were used by Pardoe et al. [169] for their study on

regression boosting. For the remaining algorithms, we used the default values for the
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parameters. The values were chosen to maintain generalizability of the predictions

across the algorithm. They were derived using multiple experiments and iterations

involving parameter tuning, and were judged to not be biased towards a single model

to the best of our knowledge. The results along with the ablation study are presented

in the following sections.

3.4.1 Datasets

We chose 8 standard regression datasets from the UCI machine learning repository [6]

as shown in Table 3.1. UCI datasets were divided into source, target, and test sets

using the splitting methodology used by Pardoe et al. [169]. The splits were made by

identifying the feature moderately correlated with the target variable, which allowed

for concepts to be significantly different from each other. The first split was considered

as the target dataset and the remaining splits as the source dataset. This was done so

that the source sample size would be higher than the target sample size. The target

dataset was further split into training and testing datasets using a k-fold split over

20 iterations. Our initial study showed that the root mean squared loss (RMSE) on

concrete, housing, and automobile datasets were moderately varied for such a division

which allowed for robust predictions since it incorporated both generalizability for the

models, as well as lesser noise. Hence, we further extended the splitting methodology

to other datasets – abalone, kinematics, and computer activity. For ailerons and

elevators datasets, the UCI repository already consisted of a testing dataset. We took

very few target instances so that the remaining larger dataset could be used as the

source dataset, which in turn imitates a real-world transfer learning problem. Table 3.1

shows the dataset statistics including their size, target variable, and predictor used for

correlation splitting. Although Concrete, Housing, and Automobile are small sample

datasets, they were used to imitate the study by Pardoe et al. [169]. We compensated

for this imbalance using other large sample datasets with varying heterogeneity. The
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complexity evaluation in Table 3.1 shows the complexity of dataset distributions based

on variance (CFE), smoothness (DI), and linearity (DL). For each measure, a higher

value indicates a more complex distribution. We observe that Kinematics has the

highest complexity (2 out of 3 times) when compared to the other datasets.

3.4.2 Ablation Study

We perform an ablation study where the importance sampling technique is applied

individually to each transfer learning methodology. The goal of this study is to induce

fairness in comparison, given the modular nature of importance sampling. Sampling

is a two-phase methodology that includes variance sampling and importance sampling.

The variance Sampling includes sprinkling the target dataset with source instances in

order to introduce noise and increase the variance of the distribution. For the concrete,

housing, and automobile datasets, variance sampling was not applied due to the low

sample size. The importance sampling on the other hand uses similarity measuring

to find the source instances most similar (important) to the target instances. The

ablation study exploits importance sampling for all the methodologies and variance

sampling for larger datasets.

3.4.3 Results

We implemented the experiments on an HPC cluster with 16 processors and 128

GB RAM. Any required short supplemental processing was performed on personal

laptops with half the number of processors and RAM. The number of cross-validation

folds was 20 for the datasets. The distribution of prediction values is shown in the

box-plot Figure 3.2. We observe that S-TrAdaBoost.R2consistently performs well,

with low RMSE as well as a high R-squared score. However, this is not true for other

methodologies, especially IW-KRR.TL and TTR2 which, although they sometimes

outperform S-TrAdaBoost.R2, also fluctuate highly in their performance. Example
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Figure 3.2: Comparison of transfer learning algorithms– TRADA: TTR2, STRADA: S-
TrAdaBoost.R2, KMM: KMM.TL, and KLIEP: KLIEP.TL, IWKRR: IW-KRR.TL,
where the RMS error and R-squared score is calculated over 20 iterations. The
Interquartile Range (IQR), mean value (marker: yellow ”X”), and median value
(marker: red line) for each algorithm over the iterations have been highlighted. The
datasets for which S-TrAdaBoost.R2 performs particularly well are marked as well
(marker: purple).
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IW-KRR.TL is the most optimal model for automobile, abalone, and kinematics

datasets as observed through its mean RMSE and R-squared values. But it is not

consistent in its performance as observed for computer activity, ailerons, and elevators

datasets, where it fluctuates highly in its mean and variance over the iterations.

However, S-TrAdaBoost.R2 performs consistently well for all of the datasets and

comes a close second in the kinematics dataset, where IW-KRR.TL outperforms

the competing methodologies by a high margin. Similarly, for TTR2, we observe

that it performs well (RMSE score) on concrete and abalone datasets compared to

S-TrAdaBoost.R2, but its performance is not consistent as observed for ailerons

and elevators datasets. We consider TTR2 to be our baseline algorithm for this

study primarily because it is the predecessor of S-TrAdaBoost.R2, and observe that

S-TrAdaBoost.R2 outperforms TTR2 75% of the times in the case of loss measure,

and 100% when measured for correlation accuracy.

Table 3.2: Ablation Study

Ailerons Elevators Abalone Kinematics C.Activity

RMSE R2 RMS R2 RMS R2 RMS R2 RMS R2

TRADA 0.00023 0.65 0.0042 0.38 2.14 0.40 0.18 0.47 2.98 0.92
STRADA 0.00018 0.79 0.0030 0.81 2.02 0.43 0.18 0.51 2.48 0.94
KMM 0.00029 0.46 0.0049 0.31 2.73 0.06 0.27 0.08 11.30 0.17
KLIEP 0.00026 0.58 0.0043 0.42 2.76 0.10 0.26 0.10 11.09 0.22
IWKRR 0.00025 0.63 0.0021 0.81 1.99 0.41 0.10 0.84 8.77 0.66

Considering that the importance sampling is a pre-domain adaptation methodology

and should not be limited to just S-TrAdaBoost.R2, we conduct an Ablation study

as shown in Table 3.2. We observe minimal improvement in the performance of

TTR2 and IW-KRR.TL and find that S-TrAdaBoost.R2 performs consistently well

(4 out of 5 times). Table 3.2 shows that IW-KRR.TL has competitive scores with

regard to S-TrAdaBoost.R2, however, it has the same inconsistent performance as

observed in the comparative study presented in Figure 3.2. Also, TTR2 does not

show any improvement except for a similar RMSE score to S-TrAdaBoost.R2 for the

kinematics dataset. However, IW-KRR.TL easily outperforms all other methodologies
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for the kinematics dataset. It should also be noted that in both studies, the remaining

algorithms KMM.TL and KLIEP.TL performed quite poorly compared to the other

methodologies and showed no apparent sign of improvement in either case. Hence,

we can say that S-TrAdaBoost.R2 has shown itself to be consistent among all the

measures, adapting more robustly to more complex and varying distribution datasets.

3.5 Discussion

Since S-TrAdaBoost.R2 is a successor to TTR2, we use TTR2 as the baseline method-

ology and observe that S-TrAdaBoost.R2 outperforms it 7 out of 8 times during the

comparative study. We also note that TTR2 shows no significant improvement during

the ablation study. This justifies the steady performance of S-TrAdaBoost.R2, where

it consistently has optimal RMSE and R-squared scores during the comparative and

ablation studies. The ablation study is used to justify how importance sampling is

useful when combined with the learning methodology for S-TrAdaBoost.R2. This is

due to the balanced weighing complimenting the source domain sampling methodology.

We find that for relatively complex datasets such as concrete, elevators, kinematics,

and c.activity, S-TrAdaBoost.R2 performs well on most of them (3 out of 4 times),

falling short only in the case of the kinematics dataset when compared to IW-KRR.TL

methodology.

It should be noted that both the training error and the generalization error of a

similar problem space have been analyzed thoroughly in Schapire et al. [188], and

this analysis is further known to apply to TrAdaBoost.R2 [169], a predecessor to

S-TrAdaBoost.R2. The objective function for transfer learning involves minimizing

the loss, minh{L(h) + λη}, where η is the regularization function, and λ is the

regularization constant for the loss function L. We hypothesize a function h ∈ H that

maps training instances, predictor x ∈ X to target y ∈ Y in the target domain TT .
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Hence, the instance transfer methodology tries to minimize the weighted loss of target

and source domain [212] (L(h) = LT (h) + LS(h)). Since S-TrAdaBoost.R2 relies on

using AdaBoost.R2 unlike TTR2 [169], it has increased generalizability as it avoids

overfitting while assigning balanced source and target weights.

While S-TrAdaBoost.R2 has improved generalizability by utilizing balanced

reweighing and sampling methodologies, it can, however, be limited by the computa-

tional overhead and poorly strategized implementation of the sampling methodologies.

The importance sampling methodology can reduce the performance of transfer learning

if the threshold for sampling is high i.e. very few source-domain instances are selected.

Furthermore, for large source-domain datasets (> 105), sampling methodologies (im-

portance sampling and variance sampling) cause additional computational overhead.

Hence, while these methodologies are simpler to implement, the initial and sampled

instances affect the performance of our approach.

3.6 Summary

In this objective, we introduced S-TrAdaBoost.R2, which uses importance sam-

pling combined with an unrestricted weight update strategy to improve performance

for instance transfer learning by an average of 12% across all datasets, and 13% in

sufficiently complex datasets when compared to its predecessor, TTR2. To better char-

acterize the datasets that S-TrAdaBoost.R2 performs well on, we utilize complexity

measures [142], CFE, DL and DI that employ feature correlation and fitting a linear

regressor to compute the complexity for the datasets. Hence, we can conclude that

S-TrAdaBoost.R2 would be well suited for complex real-world datasets that vary in

distribution, as well as the uniformity of features. Hence, the functional improvements

we propose to TTR2 are modest enough that we expect S-TrAdaBoost.R2 as a

replacement for TTR2 and other instance transfer methodologies in scientific data
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analysis pipelines.

In the following objectives, we focus on spatiotemporal datasets, which include

consequential domains such as pollution prediction, weather, and forest fires forecasting,

and more. These domains are dependent on ground stations for successfully collecting

and forecasting data. Therefore, the transfer learning problem for these domains

suffers from multiple challenges such as transfer across space, transfer over time,

and spatiotemporal transfer learning which we explain in the following sections. As

mentioned previously, the pollution prediction domain is particularly significant for us

and a constant motivation for this dissertation.
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Chapter 4

Transfer across regions w/ similar

feature space

This objective focuses on transfer learning for spatiotemporal data for the pollution pre-

diction use-case. Our problem focus is estimating PM2.5 for countries/regions with less

ground-sensors. We employ instance transfer learning models for knowledge transfer

from countries/regions with large number of ground-sensors. Additionally, the source

and target datasets belong to two spatially seperated regions (cities/states/countries)

with varying distributions as well as meterological and topographical diversity. Since,

the source and target domains share the same feature space, we don’t employ feature

standardization in this objective. The two regions are also geographically within the

same hemisphere (i.e. within a country), reducing the complexity of transfer.

The following objective (RQ3) picks up on this objective and applies transfer

learning for datasets with dissimilar feature space and geographically distant regions.

The two objectives, (RQ2) and (RQ3) were combined and published as a single

paper in the conference – European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024) [81].

54
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4.1 Rationale

Air pollution, especially atmospheric aerosols smaller than 2.5 micrometers i.e. PM2.5

poses a significant concern to public health [191]. Emissions from vehicles [113],

wildfires [46], and industrial processes [54] are major contributors to high PM2.5 levels.

Current approaches for measuring PM2.5 involves using either remote sensing method-

ologies [14] or ground sensors [7]. While satellite-based remote sensing methodologies

are a low-cost way to measure PM2.5, however, their data collection is affected by

factors like cloudy weather and high surface reflectance, thereby significantly reducing

the accuracy of measured PM2.5 levels [14]. Alternatively, installing PM2.5 ground

sensors yields highly accurate data as these sensors employ gravimetric data collection

methodologies [7]. However, due to their high installation and maintenance costs [118],

it is challenging to scale them in developing countries [47], creating an imbalance

of data-rich (developed) and data-poor (developing) regions with PM2.5 data for air

pollution estimation.

Transfer learning (TL) can ameliorate this situation by utilizing data-rich (source

data) regions to learn a prediction model on data-poor (target data) regions [165]. Prior

research on estimating PM2.5 through TL is geared towards time-series forecasting

where the model learns historical data of an observed location (sensors) and forecasts

the horizon (i.e. future values) for the observed locations [67, 140, 233, 234]. Therefore,

these models cannot estimate the PM2.5 levels for locations where historical data

is unavailable [205]. Alternatively, one can employ Instance transfer learning (ITL)

models that avoid the limitations of time-series forecasting models by not relying on

continuous temporal data [71, 79]. ITL models reweigh source domain samples based

on the target domain and subsequently combine the two domains.

Unfortunately, ITL models are limited in estimating PM2.5 as they overlook

the spatial and semantic correlations in the datasets. PM2.5 estimation data is

uniquely heterogeneous and complex, containing topographical, meteorological, and



56

geographical features. These features exhibit spatial autocorrelations (dependencies),

i.e. nearby locations tend to have similar PM2.5 levels, as well as semantic correlations

(dependencies), e.g. locations with similar meteorological and topographical conditions

exhibit similar PM2.5 levels with high likelihood [125]. Spatial dependencies are

prevalent within a domain, whereas semantic dependencies will likely arise when

combining two domains (case for ITL). We call this transfer problem as spatial transfer

learning.

In this objective, we solve spatial transfer learning to improve PM2.5 estimation

by allowing source and target data points to learn from each other in the combined

domain space. We achieve this by introducing a new feature called Latent Dependency

Factor (LDF) in both the source and target datasets to bridge the gap between the

two domains. To generate LDF, we first learn a cluster of similar (spatially and

semantically similar) data points for each sample, which are fed to our novel two-

stage autoencoder model. The first stage, encoder-decoder, aims to learn a latent

representation from the combined feature space of the cluster, while the second stage,

encoder-estimator, learns from the target label (PM2.5 value). The LDF is highly

correlated to the target (dependent) variable and contains learned dependencies from

both domains. To illustrate the benefits of LDF, we utilize real-world PM2.5 data for

the United States and Lima city in Peru. Our experiments include a comparative

analysis of ML and TL models within the US boundaries, where we observe a 19.34%

improvement in prediction accuracy over baseline models. We also present a qualitative

analysis showcasing how our model captures larger estimation patterns better than

the competetive baselines. In summary, we make the following contributions:

1. We present Latent Dependency Factor (LDF), a new feature to learn the spatial

and semantic dependencies within the combined source and target domains and

close the gap between the two domains.

2. We introduce a novel two-stage autoencoder model to generate LDF. It learns
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dependencies from the combined feature space of the clustered input data and

the dependent variable.

3. We explore the settings for spatial transfer learning for PM2.5 estimation in

data-poor regions with similar feature space as the data-rich regions. This is a

challenging problem consisting of untrained test locations and sparse target and

source locations that causes minimal spatial autocorrelation.

4.2 Background

Previous studies have improved model predictions by imputing features from another

dataset [118, 133] or generating synthetic samples to augment data [104, 209, 207].

The former leverages datasets with low marginal distribution, while the latter focuses

on augmenting samples rather than features. In the domain of transfer learning,

Daume et al. [41] and Duan et al. [53] introduce domain adaptation models — Feature

Augmentation Method (FAM) and Heterogeneous Feature Augmentation (HFM),

respectively — to create a common feature space using source and target features.

These models are useful when the source and target domains have a dissimilar feature

space, as noted by Pan et al. [166], whereas our approach incorporates spatial and

semantic dependencies during ITL for domains with similar feature spaces, high

marginal distribution, and low spatial autocorrelation.

4.3 Problem Formulation

Our problem comprises the source region with higher PM2.5 sensors and the target

region with fewer sensors. The data is heterogeneous due to diverse features and

complex due to spatial and semantic dependencies between its samples.

Let XS
f be the feature set for the source domain with m samples, and let XT

f be
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the feature set for the target domain with n samples, such that m >> n, and contains

f features. Let Y S and Y T be the source and target domain labels (PM2.5 levels).

Hence, DS = (xS
i , y

S
i )

m

i=1 is the source domain dataset, where xS
i ∈ XS

f is the feature

vector for the i-th PM2.5 monitor, and ySi ∈ YS is the corresponding PM2.5 value at

the sensor. Similarly, DT = (xT
i , y

T
i )

n

i=1 is the target domain dataset with xT
i and yTi

representing i-th monitor and its PM2.5 value, respectively.

Instance Transfer Learning (ITL) methodologies are employed when the two

domains have varying marginal distributions. They find a reweighing function w(x)

that adjusts the importance of each sample in the source domain based on its relevance

to the target domain. The importance weights w(xS
i ) are calculated for each sample

xS
i in the source domain DS, where w(xS

i ) represents the degree of relevance of xS
i to

the target domain DT . This degree of relevance is often calculated using probability

densities, expressed as w(xS
i ) =

P
DT (xS

i )

P
DS (xS

i )
, where PDT (xS

i ) and PDS(xS
i ) is the probability

density of xS
i in the target domain and source domain respectively. The importance

weights are applied to the source domain samples to obtain D̄S = (x̄S
i , y

S
i )

m

i=1 where

x̄S
i = w(xS

i ) · xS
i . The reweighed source domain samples are used in the target domain

for training; the combined domain is represented as DS̄T = (xS̄T
i , yS̄Ti )

m+n

i=1 .

Our goal is to improve the estimation of PM2.5, such that the combined

domain DS̄T after reweighing source domain data DS successfully captures

the spatial and semantic dependencies.

4.4 Methodology

We introduce Latent Dependency Factor (LDF), a new feature imputed in the dataset

to achieve spatial transfer learning for PM2.5 estimation. The LDF has the following

attributes: (1) It is highly correlated to the observed variable (PM2.5 value), (2) It

captures the spatial dependencies (spatial autocorrelation between nearby locations),
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Figure 4.1: Framework for spatial transfer learning via Latent Dependency Factor

(3) It captures the semantic dependencies (semantic correlation in the combined data).

Imputing a new feature allows to learn a new loss function. Hence, if a function

f : X S̄T
f → YT can predict the missing PM2.5 values in the target domain DT . Then,

f is learned by minimizing the empirical risk as,

min
f

[
1

m + n

m+n∑
i=1

ℓ(yS̄Ti , f(xS̄T
i )) + λ · Ω(f)] (4.1)

where ℓ(y, ŷ) is the loss calculated between true PM2.5 value (y) and predicted

value (ŷ) (here f(xS̄T
i )), Ω(f) is a regularization term, and λ controls the trade-off

between the empirical risk and model complexity. When a new feature is imputed,

the empirical risk in (5.3) is transformed as,

min
f

[
1

m + n

m+n∑
i=1

ℓ̃(yS̄Ti , f̃(xS̄T
i )) + λ · Ω(f̃)] (4.2)

with the new trained regressor, f̃ and loss function ℓ̃. Hence, the new loss function

allows obtaining a lower minimum. The framework for spatial transfer learning via

LDF contains 3 stages, as shown in Fig 4.1, which we elaborate further.

4.4.1 Neighborhood Cloud Generation

The first stage (Fig 4.1(a)) generates a neighborhood cloud of k similar data points

for each sensor in the source and target regions. This cloud is training data for the

two-stage autoencoder model, allowing each sensor to learn the spatial dependencies

of its neighbors and semantic dependencies between the two domains. The similarity
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between data points (sensors) is calculated by minimizing the ||L||2 distance across

geographical, topographical, and meteorological features (see supplementary).

4.4.2 Generating Latent Dependency Factor (LDF)

After generating the neighborhood cloud, the subsequent steps involve generating the

LDF, imputed as a new feature into the original dataset. This feature is derived using

a two-stage autoencoder model (Fig. 4.2(a)), where the input dataset (neighborhood

cloud) utilizes features – topographical, meteorological, geographical, and PM2.5 levels.

We believe these predictors influence the PM2.5 levels at the objective location (centroid

of the cluster). E.g., given a sensor location, li, in the target region, the predictors

such as the wind-direction, elevation, population, and more, for the surrounding sensors

can influence the PM2.5 levels at li (spatial autocorrelation). Additionally, the sensor

location, li, can be semantically correlated to another location, lj , in the source region,

influencing the PM2.5 levels at li in the combined dataset. In Fig. 4.2(a), each sensor

has (p + 1) features with p features and a label. We first calculate the weight for

each feature. This is achieved by finding the similarity (inverse distance) between the

feature of the objective location and neighboring sensors. This allows sensors with

influential features to be given more importance. Following the weighing, the features

from m sensors are stacked together with the objective location to generate the input

data of size (m+ 1) · (p+ 1). The PM2.5 for the objective location is voided by setting

it to 0. This high-dimensional data is summarized into the LDF, using the two-stage

autoencoder model shown in Fig. 4.2(b).

Encoder-decoder Stage The encoder-decoder stage of the two-stage autoencoder

model is similar to the standard autoencoder model, where the encoder first summarizes

the input data to generate a latent value. The decoder employs backpropagation to

train the autoencoder. The encoder and the decoder have three 1D-CNN layers with
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Figure 4.2: Two-stage autoencoder model for generating LDF.

varying filter sizes, as shown in Fig. 4.2(b). For the encoder, the kernel size of the

first 2 CNN layers is chosen as 1 to achieve individual attention for each sensor and

amplify the effectiveness of information summarization [112]. The third CNN layer

has a kernel size 3 to retain the condensed pattern from multiple stations. Finally,

the information is summed up using an FNN layer, which outputs the latent value,

i.e., the LDF value.

Encoder-estimator Stage Since the input data consists of multiple features, we

increase the attention on PM2.5 labels using the encoder-estimator stage. The estimator

layer takes the encoded LDF value as input. It has a single FNN layer with a single

weight and bias set. It utilizes back-propagation and PM2.5 value of the objective

location to train the encoder-decoder model and consequently optimize the LDF

generation process. The autoencoder stages alternate training over the epochs. We

also explore extending LDF to include Aerosol Optical Depth (AOD) [187] feature,

which we call LDF-A and which measures the aerial density of aerosols such as smoke,

dust, and PM particles, in the encoder-esitmator stage.
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4.4.3 Transfer Learning and Multivariate Regression

In Fig.4.1(c), we employ Instance Transfer Learning (ITL) to mitigate discrepancies

between source and target domain samples[71]. This involves reweighing the source

domain samples to align them closer to the target domain. The reweighed source data

is combined with the target data, creating a unified dataset reflecting both domains’

characteristics.

This combined dataset is subsequently used to train a multivariate regressor for

predicting PM2.5 values. The choice of regressor can range as polynomial-function

based, decision-tree based, or ensemble model. We employ an ensemble regressor for

our framework, given their high prediction accuracy [49].

4.5 Evaluation

4.5.1 Datasets

We employ existing PM2.5 dataset to perform transfer between varying climatic regions

in the US [171]. In comparison to other datasets [33], this corpora draw from diverse

sources (EPA, NLDAS-2, and NED for the US) and encompass a wide array of

heterogeneous features such as wind patterns, atmospheric pressure, humidity levels,

potential energy and more.

United States dataset.

As the US region has abundant PM2.5 sensors, we select this dataset to simulate a

transfer learning scenario within its geographical boundaries. The US dataset has

daily averaged PM2.5 levels for 2011 using 1081 sensors, as shown in Fig. 5.2, with

over 249k samples and 77 features. Although the sample size should be 1081×365,

some sensors were inactive on certain days (daily average active sensors: ∼ 682). This

contributes to missing temporal points in the dataset, which limits the application
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Figure 4.3: US PM2.5 ground sensors. The points in the pink target region represent
sample training (green) and testing (red) sensors. The green and yellow regions
represent the eastern and north-eastern source regions, respectively.

of time-series forecasting methodologies. We follow the prior work [171] and use

Layerwise Relevance Propagation [103] to extract 27 meteorological, topographical,

and geographical features. As illustrated in Fig 5.2(a), we select two source regions,

the eastern US (highlighted green; marker: x) and north-eastern US (highlighted

yellow; marker: ) and a target region, California-Nevada (highlighted pink). Prior

works [15] show that the California-Nevada region has a diverse landscape compared

to the remaining US, thereby simulating a TL scenario with distribution shift and low

spatial correlation among the two domains.

We sample the 128 target region sensors into sets of 5, 7, 9, and 11 sensors to

have fewer samples. The remaining sensors are used for testing. For cross-validation

(CV), we use 20 random samples per sensor. We extrapolate the active sensors per

day and generate a neighborhood cloud for each sensor that includes both source
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and target sensors. Next, the clustered data is used to generate the LDF which is

fed to the transfer models. Our reported R2 and RMSE values represent averages

across the 20 CVs. The features are normalized before model training. For qualitative

analysis (Section 4.5.5), we use ∼ 19.5 million unlabeled satellite data samples from

the California-Nevada region.

4.5.2 Prediction Models

Machine Learning (ML) Models.

We select two popular ML models, Random Forest Regressor (RF) [99] and

Gradient Boosting Regressor, trained on only the target region data and tested

on the remaining test data. The RF and GBR have parameters varied as n-estimators:

{100, 400, 1000}, max-depth: {4, 8, inf} with max-leaf-node: {4, 8, inf} for RF and

learning-rate: {0.1, 0.5, 1.0} for GBR, to get the best fit.

The Random Forest Regressor (RF) is a popular supervised ensemble technique

that builds multiple decision trees by bootstrapping samples and training a decision

tree for each subset. Each decision tree, Tj within the forest, is grown by recursively

partitioning the feature space to minimize the mean squared error (MSE) given by:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 ,

where N is the number of samples, yi is the original target label, and ŷi is the

predicted target label. The final prediction ŷ for an input sample is obtained by

averaging the predictions of all individual trees:

ŷ =
1

J

J∑
j=1

Tj(x),

where J is the total number of trees and Tj(x) represents the prediction of the j-th

tree for input x.
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Similarly, the Gradient Boosting Regressor (GBR), is a supervised learner

that utilizes iterative boosting to build an ensemble of weak learners, usaully decision

trees. It achieves this by iteratively minimizing the residual error at each step. Given

a target y and an initial prediction ŷ(0), each subsequent model T (t)(x) is trained on

the residuals r(t−1) = y − ŷ(t−1), where t represents the iteration step. The updated

prediction at step t is given by:

ŷ(t) = ŷ(t−1) + η · T (t)(x),

where η is the learning rate that represents the contribution of each tree to the

final model. The goal of GBR is to reduce the loss (usually mse) over the iterations,

by adjusting each learner’s output.

Transfer Learning (TL) Models

We select competitive ITL models [136, 195, 100] for the regression task and train

them on target and source region data. Below we elaborate on these models.

1. Nearest Neighbor Weighing (NNW): The Nearest Neighbor Weighing

(NNW) method [136] aims to reweight source samples based on their spatial

similarity to target samples. In the NNW approach, each source sample serves

as the center of a Voronoi cell. Mathematically, for a given source sample xS
i in

the source dataset DS = {(xS
i , y

S
i )}mi=1, a Voronoi tessellation is created around

it, forming a region that includes all points in the feature space closer to xS
i

than to any other source sample. Formally, the Voronoi cell V (xS
i ) associated

with xS
i is defined as:

V (xS
i ) = {x ∈ Rf : ∥x− xS

i ∥ ≤ ∥x− xS
j ∥ ∀j ̸= i},

where ∥ · ∥ denotes the Euclidean distance. By constructing Voronoi cells around
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each source sample, we can quantify how well the source sample represents target

samples in its vicinity.

Once the Voronoi cells are constructed, NNW assigns weights to each source

sample based on the number of target samples falling within its cell. Let ni

represent the number of target samples xT
j ∈ XT

f that fall inside the Voronoi cell

V (xS
i ) of the source sample xS

i . The weight wi for the source sample xS
i is then

proportional to ni, allowing samples with more target neighbors to contribute

more heavily to the model’s training process. This reweighing is achieved by

setting:

wi =
ni∑m
k=1 nk

,

where wi is normalized across all source samples. The goal is to balance the

representation of source samples that closely resemble target samples, thus

improving model adaptability to the target domain.

The NNW method’s effectiveness depends on the parameters used to define the

neighborhood and the underlying regressor’s capacity. In this study, we vary the

number of neighbors in {6, 8, 10} and employ a Decision Tree Regressor as the

base model with maximum tree depth set to {6, 8, inf} for optimal performance.

These settings allow the model to adapt based on the structure of the data and

the source-target alignment.

2. Kullback–Leibler Importance Estimation Procedure (KLIEP): The

Kullback–Leibler Importance Estimation Procedure (KLIEP) [195] is a method

that reweights source samples by directly minimizing the Kullback-Leibler (KL)

divergence between the source and target distributions. The KL divergence

DKL(PT∥PS) quantifies the dissimilarity between the target distribution PT and

the source distribution PS, with the goal of reweighting PS such that it closely
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approximates PT . KLIEP accomplishes this by learning a set of importance

weights w(x) that minimize the KL divergence, formulated as:

DKL(PT∥PS) =

∫
PT (x) log

PT (x)

PS(x)w(x)
dx.

Since PT (x) is generally unknown, KLIEP circumvents this by optimizing the

weights w(x) directly through a likelihood maximization approach, under the

assumption that w(x) makes PS(x)w(x) ≈ PT (x). This results in weights that

enhance the representational similarity of the reweighted source distribution to

the target distribution without estimating PT (x) explicitly.

To implement KLIEP, a kernel function K(x, x′) is used to map the feature

space into a reproducing kernel Hilbert space, enabling flexible weighting based

on the similarity between samples. We explore two types of kernels: radial

basis function (RBF) and polynomial (poly) kernels, with parameters tuned to

optimize performance. Specifically, the model parameters are varied as follows:

the kernel type is chosen from {rbf, poly}, the γ parameter for the RBF kernel

is varied across {0.1, 0.5, 1.0}, and we employ a Decision Tree Regressor as the

base model with depth settings {6, 8, inf}.

In practice, the learned weights w(x) are applied to each source sample xS
i

to reweight the training data, emphasizing samples from the source domain

that align more closely with the target domain. This adaptive weighting helps

to bridge the distributional gap between the domains, enhancing the model’s

performance on target data by leveraging the structural properties of KLIEP.

3. Kernel Mean Matching (KMM): Kernel Mean Matching (KMM) [100] is

a method that reweights source samples to align the mean of the source and

target distributions in a Reproducing Kernel Hilbert Space (RKHS). The goal of

KMM is to find a set of importance weights w(x) that minimize the difference in
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means between the reweighted source distribution PS and the target distribution

PT in RKHS, represented as:

∥∥∥∥∥ 1

m

m∑
i=1

w(xS
i )ϕ(xS

i )− 1

n

n∑
j=1

ϕ(xT
j )

∥∥∥∥∥ ,
where ϕ(x) denotes the feature mapping in RKHS, xS

i and xT
j are samples from

the source and target domains, respectively, and w(xS
i ) represents the importance

weight for each source sample.

The objective is to minimize this difference in means while ensuring that the

weights w(xS
i ) do not deviate too far from 1 to prevent overemphasis on certain

samples. To enforce this, KMM introduces constraints 0 ≤ w(xS
i ) ≤ B and∑m

i=1 w(xS
i ) = m, where B is a regularization parameter controlling the extent

of weighting adjustments. This optimization problem is solved using quadratic

programming, leading to a set of weights that correct the distributional mismatch

between PS and PT .

In practice, KMM employs a kernel function K(x, x′) to compute similarity in

RKHS, which can be an RBF (radial basis function) or polynomial (poly) kernel.

We vary the model parameters for optimal performance, selecting kernel types

from {rbf, poly}, setting the γ parameter for RBF across {0.1, 0.5, 1.0}, and

using a Decision Tree Regressor with depth options {6, 8, inf} as the base model.

This adaptive reweighting of source samples improves the model’s transferability

to target data by reducing the mean discrepancy in RKHS.

4. Fully-connected Neural Network (FNN): The FNN transfer model, al-

though not an ITL model, is utilized to validate the performance of non-ITL

models on the PM2.5 data. It uses 3 fully connected layers: nodes : 128, activation-

function: Relu, and 1 final layer with a single node and a linear activation func-

tion. It was trained on LDF-imputed source data and transferred by fine-tuning
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over LDF-imputed target data.

The TL models are trained on data sans LDF, LDF, and LDF-A-imputed data.

We use the GBR model as the multivariate regressor to predict PM2.5, with parameters

varied as: estimators: {100, 400, 1000}, max-depth: {4, 8, inf}, max-leaf-node: {4, 8,

inf}, and learning-rate: {0.1, 0.5, 1.0} to get the best fit. The source code, datasets,

and final hyperparameter values are available at:

https: // github. com/ YongbeeIngkle/ spatial-transfer-learning. git .

4.5.3 Optimal k for Neighborhood Cloud

In Fig. 4.5(a), we use the eastern US as source data and vary the size of the neighbor-

hood cloud (k) for the NNW [LDF] model as {4, 8, 12, 16}. Our choice of k mimicked

optimizing parameters, ceasing at 16 due to high computational costs. We observe

that k = 4 has the worst performance, while for the remaining values, there is no

observable difference for sensors ≥ 9. For sensors ≤ 9, k = 12 has the most optimal

performance. Hence, we chose k = 12 to optimize the computation and generalizability

of the model.

4.5.4 Results and Analysis

In Table 4.1 and Table 4.2, we compare the performance of various models with the

eastern US and the north-eastern US as source datasets, respectively.

Eastern US as Source Data. First, we compare the ML and TL sans LDF

models. In Table 4.1, we observe that NNW, KLIEP, and KMM have a positive

transfer (improved accuracy), with NNW having the best performance. We observe

an unpredictable performance for the FNN transfer model, validating that non-ITL

models are less suited for such transfer problems. Next, we illustrate the impact of

the Latent Dependency Factor (LDF) on TL models. We observe an improvement in

https://github.com/YongbeeIngkle/spatial-transfer-learning.git
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Table 4.1: Source: Eastern US (best highlighted; second-best underlined)
Sensors

5 7 9 11
Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE

RF -0.082 8.855 0.002 8.565 0.066 8.387 0.071 8.311
GBR -0.061 8.684 0.064 8.210 0.177 7.857 0.157 7.891
NNW 0.236 7.563 0.263 7.447 0.280 7.406 0.296 7.288
KLIEP 0.155 7.960 0.192 7.801 0.200 7.811 0.222 7.666
KMM 0.197 7.757 0.226 7.634 0.242 7.601 0.258 7.479
FNN -0.064 8.818 -0.350 9.715 0.009 8.629 -0.039 8.765

NNW [LDF] 0.247 7.494 0.336 7.061 0.378 6.874 0.378 6.838
NNW [LDF-A] 0.225 7.596 0.298 7.230 0.359 6.973 0.359 6.924
KLIEP [LDF] 0.202 7.724 0.278 7.370 0.325 7.173 0.336 7.073

KLIEP [LDF-A] 0.232 7.584 0.267 7.427 0.319 7.201 0.330 7.100
KMM [LDF] 0.210 7.671 0.302 7.236 0.353 7.013 0.352 6.971

KMM [LDF-A] 0.196 7.723 0.295 7.277 0.330 7.134 0.333 7.067
FNN [LDF] -0.255 9.532 -0.141 9.082 0.072 8.374 0.087 8.236

FNN [LDF-A] -0.150 9.146 -0.105 8.990 0.091 8.275 0.078 8.287

estimation accuracy for NNW, KLIEP, and KMM (for both LDF and LDF-A), where

NNW [LDF] is the best-performing model. For the FNN model, LDF has no notable

effect as it caters to only ITL models. The high performance of NNW is due to the

Voronoi tesselation neighborhood it uses for reweighing source samples. This allows it

to capture similar samples in its neighbor, a spatially preferred reweighing technique.

North-eastern US as Source Data. In Table 4.2, we observe a positive transfer

for NNW and KLIEP models, with NNW having the best performance. KMM shows a

negative transfer [183] due to the high marginal distribution present between the target

and source datasets [102]; unable to be minimized in reproducing kernel Hilbert space

(RKHS) [100]. Like earlier, the FNN transfer model has an unpredictable performance.

When the LDF is introduced, we observe an improvement in estimation accuracy for

NNW and KLIEP models. NNW [LDF] and NNW [LDF-A] are the best-performing

models. KMM [LDF-A] shows improvement for more sensors (≥11). As expected, the

FNN models using LDF and LDF-A show no improvement.
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Table 4.2: Source: North Eastern US (best highlighted; second-best: underlined)
Sensors

5 7 9 11
Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE

RF -0.082 8.855 0.002 8.565 0.066 8.387 0.071 8.311
GBR -0.061 8.684 0.064 8.210 0.177 7.857 0.157 7.891
NNW 0.199 7.732 0.294 7.286 0.301 7.297 0.298 7.257
KLIEP 0.098 8.180 0.219 7.650 0.263 7.494 0.270 7.408
KMM -0.142 9.053 -0.070 8.809 0.232 7.640 0.246 7.526
FNN 0.022 8.448 -0.006 8.598 0.091 8.266 0.078 8.307

NNW [LDF] 0.225 7.592 0.317 7.157 0.376 6.886 0.392 6.751
NNW [LDF-A] 0.201 7.702 0.320 7.122 0.378 6.873 0.374 6.847
KLIEP [LDF] 0.164 7.889 0.275 7.363 0.353 7.011 0.360 6.924

KLIEP [LDF-A] 0.170 7.860 0.270 7.396 0.342 7.068 0.348 6.991
KMM [LDF] -0.265 9.409 0.009 8.468 0.188 7.749 0.257 7.389

KMM [LDF-A] -0.152 9.042 -0.029 8.566 0.172 7.845 0.288 7.260
FNN [LDF] 0.036 8.429 -0.052 8.761 0.131 8.061 0.237 7.566

FNN [LDF-A] -0.060 8.774 0.045 8.390 0.159 7.983 0.207 7.708

4.5.5 Qualitative Analysis

While improving prediction accuracy is crucial, visualizing PM2.5 patterns on geo-maps

is also valuable. We visualize PM2.5 estimations for the California-Nevada region and

the Lima, Peru region in Fig. 4.4(a) and Fig. 4.4(b), respectively. For this analysis, we

need a ground truth against which all the models can be compared. We use the GBR

model, trained on all 128 monitors (249k+ samples) and estimated on the unlabeled

satellite data (∼ 19.5 M samples), and use its predicted geo-map as the assumed

ground truth for verification. We use 9 sensors and the eastern US as source data for

transfer models (NNW, NNW[LDF], NNW[LDF-A]).

Due to the scarcity of target domain data, this qualitative analysis aims to observe

if transfer models successfully capture glaring PM2.5 estimation patterns.

California-Nevada Region.

In Fig. 4.4(a), we observe that the NNW [LDF] model has the most accurate PM2.5

estimation in the hotspots (solid boxes in the GBR map). It accurately captures
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Figure 4.4: (a) Annual mean PM2.5 prediction for California-Nevada, trained using
GBR and NNW with and without LDF features (9 sensors). (b) Annual mean PM2.5

prediction for Lima region trained using NNW models.

Figure 4.5: (a) Comparing performance of NNW [LDF] model when neighborhood
cloud uses k = {4, 8, 12, 16} neighbors. (b) Ablation study comparing the performance
of GBR, GBR [LDF], GBR [LDF-A], NNW, and NNW [LDF] models.

patterns in the Central Valley and the Los Angeles Basin but overestimates in the

Imperial Valley. NNW [LDF-A] has the second-best performance but has a patchy

estimation in the Central Valley. For NNW, we observe obscure patterns that are

patchy and underestimated in the Central Valley and highly overestimated in the

Imperial Valley.

4.5.6 Ablation Study

For the ablation study, we use GBR instead of ITL models to validate the performance

of non-transfer models using LDF-imputed data. Fig.4.5(b) shows the comparison

between GBR [LDF], GBR [LDF-A], GBR (target only), NNW, and NNW [LDF].
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Table 4.3: Most correlated features (5) to PM2.5 variable.
Method LDF Pressfc Dswrfsfc Elev Ugrd10m

Corr Coeff 0.754 0.208 0.181 0.179 0.156

For both the eastern US and the north-eastern US as source data, GBR [LDF] is

the second-best performing model. Though it doesn’t outperform NNW [LDF], the

improved predictions highlight LDF’s effectiveness.

The performance of FNN [LDF] and FNN [LDF-A] in Table 4.1 and Table 4.2

further tests LDF with non-ITL models, confirming that LDF is effective with ITL

and multivariate regression models but not other transfer models.

4.6 Discussion

While the evaluation results show the improvement using the LDF, we further an-

alyze the correlation between LDF and PM2.5, as shown in Table 4.3, where LDF

demonstrates the highest correlation with the dependent variable, indicating strong

predictive power and feature importance [84]. This experiment uses an LDF-imputed

dataset of 10 target sensors and eastern US source data.

4.6.1 Limitations and Future Work

While our methodology improves PM2.5 estimation, further exploration, and alternate

improvements are still needed, which we outline below.

Experiments with alternate datasets

Previous experiments with the US and Lima data are comprehensive but do not include

datasets lacking spatial and semantic dependencies [33]. This was done primarily to

ensure accurate and comprehensive data for modeling and estimation. Future plans

include expanding our study to incorporate such datasets.
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Capturing temporal trends

The LDF feature captures spatial and semantic dependencies but lacks focus on

temporal trends in the data due to missing temporal points. In the future, we

aim to extend this technique to time-series data, aiming for prediction rather than

forecasting [252].

Extending to alternate domains

While our focus lies in PM2.5 estimation, testing the LDF on alternate domains like

wildfire estimation and weather forecasting is useful due to the presence of similar

spatial patterns. Future studies should explore these applications and develop new

LDF features accordingly.

4.7 Conclusion

This objective addresses the problem of spatial transfer learning for estimating PM2.5

levels, emphasizing transfer between regions with low autocorrelation and predicting

at unseen test locations. We aim to improve instance transfer learning (ITL) models,

which often overlook spatial and semantic dependencies in the data. We introduce

the Latent Dependency Factor (LDF) to capture these dependencies, integrating

it as a new feature in both source and target datasets. Our experiments on US

and Peru datasets demonstrate LDF’s effectiveness in improving PM2.5 estimation.

Furthermore, qualitative analysis of these datasets confirms that the LDF captures

larger PM2.5 patterns missed by regular transfer models. While more future work

remains in this space, we believe our approach of achieving spatial transfer learning

using Latent Dependency Factor is a promising and novel solution for this highly

complex domain.
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Chapter 5

Transfer across regions w/

dissimilar feature space

This objective picks up from RQ2 and focuses on transfer learning for spatiotemporal

data especially for the pollution prediction use-case when the two domains do not

share a feature space. The conditions are similar as the previous objective with

irregularly spaced ground-sensors and missing temporal data (i.e. spatial and temporal

irregularity). The overarching motivation of the problem also remains the same which

involves estimating PM2.5 for countries/regions with less ground-sensors. Additional

conditions include, the source and target datasets belong to two spatially separated

regions (i.e. countries) with varying data distributions as well as diverse meteorology

and topography. Moreover, the regions are on opposite hemispherical ends and have

different seasonality. This complicates the transfer process as seasonal similarity holds

importance during the transfer process of air pollution estimation.

As previously mentioned – the two objectives, (RQ2) and (RQ3) were combined

for a single paper published in the conference ECML-PKDD 2024 [81]. We have

extended Lima experiments and also plan to include transfer experiments on other

countries to be compiled as a journal extension of our paper.

76
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5.1 Rationale

As discussed in the previous chapter, the installation of PM2.5 ground sensors yield

highly accurate data as these sensors employ intricate measurements techniques like

gravimetric analysis [7] and more. However, scaling, installation and maintenance

costs [118] is high for such ground sensors [47], that creates an imbalance of data-rich

(developed) and data-poor (developing) regions based on access to such resources for

PM2.5 data collection and estimation.

Hence, often the data-poor regions with sparse PM2.5 ground-sensor networks,

rely on alternate data collection techniques like satellite-based measurements for

air pollution estimation. However, the satellite data lacks accuracy and granularity

compared to the ground-sensors. Moreover, their performance highly varies across

geographic locations i.e. the variations caused due to changes in topographical and

meteorological conditions also affect the data curation process. For example, the PM2.5

dataset has PM2.5 measurements using ground sensors as well as factors affecting these

measurements such as temperature, pressure, wind directions, and more. It might

be the case that the curation process is not consistent across the globe with certain

features like forest cover, highway roads, and more missing in the PM2.5 datasets for

certain regions. This creates data non-uniformity or feature variations between two

geographically different regions.

Moreover, the spatiotemporal dynamics of PM2.5 that is affected by seasonal

variations complicate the transfer learning process if the two regions do not have the

same seasonality. For example, the data-rich region A might witness summers during

the traditional June to August compared to data-poor region B that can witness

summers during December to February. While PM2.5 occurrence is not seasonal [238],

a varying seasonality between regions add more complexity during the training process

as the model associates meteorological trends with certain periodicity. Hence, the

seasonal patterns found in data-rich regions in one hemisphere may not apply directly
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to data-poor regions in another as an effect of these variations. Hence, in this objective,

we focus on transfer across regions with dissimilar feature space with the inclusion

seasonality focused experiments.

Utilizing the RQ2 transfer model framework that uses Latent Dependency Factor

as an additional feature, this objective incorporates solution to some previous and

some newer problems as defined below:

1. We employ the Latent Dependency Factor (LDF) feature that learns spatial

and semantic dependencies within the combined source and target domains and

consequently helps close the gap between the two domains. To generate the LDF

feature, we utilize the two-stage autoencoder model introduced previously that

learns dependencies from the combined feature space of the source and target

domain data.

2. We explore the settings for spatial transfer learning for PM2.5 estimation in

data-poor regions with the target and source domains having a dissimilar feature

space. This is a challenging problem as it requires feature standardization, and

seasonality focused experiments. We elaborate these seasonality experiments

using two scenarios employing seasonality-agnosticism and seasonality-matching

for accurate model prediction.

3. We deploy our technique in Lima, Peru, and validate the results by domain

experts due to the scarcity of true labels. This offers insights into the real-world

application of our technique and its effectiveness.

5.2 Problem Formulation

Our problem comprises a source region with a higher density of PM2.5 sensors and

a target region with a lower density of sensors. The data is heterogeneous due to
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distinct feature space for the two domains and complex due to spatial and semantic

dependencies between its samples. As introduced in the previous chapter, XS
f1 with

m samples and f1 features, represents the source domain and XT
f2 with n samples

and f2 features, represent the target domain. Initially, the feature spaces in the

source and target domains differ; however, a standardization process is applied to

handpick f similar features from each domain to create a partially aligned feature

space. This results in standardized feature sets X̃S
f ⊂ XS

f1 and X̃T
f ⊂ XT

f2, where

f features are shared between domains. Hence, if Y S and Y T be the PM2.5 levels

(labels) for the source and target domains, then source domain dataset is defined as

DS = {(xS
i , y

S
i )}mi=1, and the target domain dataset is defined as DT = {(xT

i , y
T
i )}ni=1

(also explained in the previous chapter).

Instance Transfer Learning (ITL) methodology is useful when the source and target

domain data has differing marginal distributions. The weight of source samples is

represented as PDS(xS
i ), where PDT (xS

i ) and PDS(xS
i ) denote the density of xS

i in the

target and source domains, respectively. Consequently these weights are applied to

the source domain to yield D̄S = {(x̄S
i , y

S
i )}mi=1, where x̄S

i = w(xS
i ) ·xS

i . The reweighed

source samples are then combined with target data to form the combined domain as,

DS̄T = {(xS̄T
i , yS̄Ti )}m+n

i=1 .

Our objective is to improve PM2.5 estimation such that the LDF fea-

ture captures spatial and semantic dependencies as well as overcomes the

complexity due to reduced feature space and seasonal differences.

5.3 Methodology

The Latent Dependency Factor (LDF), imputed in the dataset, improves estimation

by capturing spatial dependencies (spatial autocorrelation between nearby locations)

and semantic dependencies (semantic correlation in the combined data) present in
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the two datasets. In the previous chapter, we proved that imputing a new feature

allows to learn a new loss function, thereby, minimizing the empirical risk that can be

represented as. minf [ 1
m+n

∑m+n
i=1 ℓ(yS̄Ti , f(xS̄T

i )) + λ · Ω(f)] before LDF is introduced

and as, minf [ 1
m+n

∑m+n
i=1 ℓ̃(yS̄Ti , f̃(xS̄T

i )) + λ · Ω(f̃)] after LDF is introduced. The

framework for spatial transfer learning via LDF contains 3 stages as elaborated next.

5.3.1 Neighborhood Cloud Generation (Input Dataset)

The first stage generates the neighborhood cloud of k similar data points for each

sensor in the source and target regions where the similarity is calculated by minimizing

the ||L||2 distance across the features. This cloud is utilized as the training data for the

two-stage autoencoder model, allowing each sensor to learn the spatial dependencies

of its neighbors and semantic dependencies existing between the two domains.

5.3.2 Generating LDF via Two-stage Autoencoder Model

The second stage generates the LDF and integrates it as a new feature into the

original dataset. The LDF is computed using a two-stage autoencoder model shown

in Fig. 5.1. Each sensor has p + 1 features, which include p predictors and a label.

Feature weights are assigned to all features with respect to their similarity, measured

by inverse distance between the objective location and neighboring sensors, favoring

the selection of influential features. Data from m neighboring sensors and the objective

location are stacked into a matrix of size (m + 1) · (p + 1), with the PM2.5 value for

the target location initialized as 0. This high-dimensional matrix is reduced to the

LDF through the two-stage autoencoder shown in Fig. 5.1(b).

Stage 1: Encoder-decoder: The encoder-decoder stage of two-stage autoencoder

works similarly as the standard autoencoder in which encoder compresses input into

latent representation, while the decoder performs training by backpropagation. Each
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Figure 5.1: Two-stage autoencoder model for generating LDF.

of the Encoder/Decoder architectures consists of three 1D-CNN layers with the first

layers having a kernel of size 1, and the third layer having a kernel size of 3. An FNN

layer aggregates all the processed information and generates the LDF.

Stage 2: Encoder-estimator: To increase attention on the PM2.5 labels, the

encoder-estimator stage includes only 2 FNN-based estimator layer, which takes the

encoded LDF as input. It utilizes backpropagation and the PM2.5 value of the target

location to further fine-tune the generation of LDF. Additionally, the extension of LDF

with the Aerosol Optical Depth(AOD) [187] is referred to as LDF-A and is integrated

into the encoder-estimator stage.

5.3.3 Regression Transfer Learning

In the last stage, the ITL methodology is used to mitigate the gap between the source

and target domain samples by reweighing source samples [71]. Subsequently, the

reweighed source data is combined with the target data into a single dataset and used

to train a multivariate regressor that predicts the PM2.5 values. In this framework,

an ensemble regressor is used because it outperforms other methods in predictive

performance [49].
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Figure 5.2: Lima and United States PM2.5 ground sensors. For the Lima region –the
red points represent ground sensors and the gray region indicates (unlabeled) satellite
measurements. For the US region – the green points represent the ground sensors.

5.4 Evaluation

5.4.1 Datasets

We employ PM2.5 data from the Lima city in Peru [210]. This dataset is created from

sources such as SENAMHI and JHU and similar to the US PM2.5 dataset, it also

consists of heterogeneous features such as wind patterns, atmospheric pressure, and

more. We utilize the US PM2.5 dataset [171] as the source domain dataset, derived

from sources – EPA, NLDAS-2, and NED (more details in the previous objective).

Lima dataset

Given the dearth of sensors in the Lima data, it is a use case of real-world transfer

learning where the source data is the complete US dataset (249k+ samples, 27 features).

Lima region has 10 PM2.5 sensors, as shown in Fig 5.2(b), with 2419 samples and 21

features for the year 2016. Lima and the US datasets have only 14 common features.

For the qualitative analysis, the Lima satellite data contains 5959 samples covering

the entire Lima region as shown in Fig 5.2(b). We use all 10 sensors and the US
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dataset to construct the neighborhood cloud data. By aligning each day of the year

(doy) between the two datasets (e.g., day 17 in Lima matched with day 17 in the US),

we extrapolate sensors for the day and generate the clusters. The doy matching is

deliberately not for the same year or season to have a real-world transfer condition

with minimal alignment.

United States dataset

Given the abundance of PM2.5 sensors in the US, it serves as the source dataset. The

dataset consists of daily PM2.5 averages from 2011, recorded by 1,081 sensors, amount-

ing to more than 249,000 samples with 77 features. Following previous works [171],

LRP [103] is applied to extract 27 most informative meteorological, topographical,

and geographical features.

5.4.2 Prediction Models

Although only NNW results are shown, we revisit the transfer learning and machine

learning models used in our experimentation which are detailed in RQ2. For machine

learning models, we choose Random Forest Regressor (RF) and Gradient Boosting

Regressor (GBR). RF and GBR were trained using target region data and tested

with the remaining sensor data. The hyperparameters were varied as follows: n-

estimators (100, 400, 1000), max-depth (4, 8, inf), max-leaf-node (4, 8, inf) for RF,

and learning-rate (0.1, 0.5, 1.0) for GBR to achieve the best fit.

For transfer learning models, NNW reweighs source samples with Voronoi tessella-

tion, with parameters varied as: neighbors ({6, 8, 10}), and a Decision Tree Regressor

with depth ({6, 8, inf}). The remaining transfer models and their hyperparameters

can be referred in the previous chapter. We provide some insights into how they work.

The goal of KLIEP is to reweigh the samples such that the KL divergence between

source and target domains is minimized. KMM aligns source and target domain data
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means in a reproducing kernel Hilbert space for similar parameters. FNN consists of

three fully connected layers consisting of 128 nodes, using the Relu activation function,

followed by one node and linear activation, trained on LDF-imputed source data, and

fine-tuning on target data.

Three transfer learning models - without LDF, with LDF, and LDF-A, were trained.

GBR was used as the multivariate regressor for PM2.5 prediction, while the parameters

estimators (100, 400, 1000), max-depth (4, 8, inf), max-leaf-node (4, 8, inf), and

learning-rate (0.1, 0.5, 1.0). Source code, datasets, and final hyperparameter values

are provided in the previous objective.

5.4.3 Optimal k for Neighborhood Cloud

In the previous objective we expanded upon the choice of ’k’ for the neighborhood

cloud in Fig. 4.5(a) where we use the eastern US as source data and vary the size of

the neighborhood cloud (k) for the NNW [LDF] model as {4, 8, 12, 16}. We observe

that sensors ≤ 9, k = 12 has the most optimal performance. Therefore, we chose

k = 12 to optimize the computation and generalizability of the model.

5.4.4 Feature Standardization

We match the features of the Lima and United States dataset based on commonalities

between the two (as shown in Table 5.1). We utilize the domain knowledge and excise

features that do not match as well as are not measured on the same scale. This allows

us to match 14 features from a total of 27 and 21 features for the United States and

Lima respectively. The meteorological feature set consists of co-variates representing

temperature, pressure, humidity, surface radiation, and wind direction. Whereas the

topographical feature set consists of co-variates representing elevation, and population

density. It should be noted that having less features affects the prediction performance

which the LDF model is able to overcome as shown in the results section below.
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Lima Description United States
doy Day of year day

month Month month
Lon Longitude Lon
Lat Latitude Lat

temp 2m Temperature at 2m nldas tmp2m
rhum Relative Humidity nldas rh2m

surf pres Surface Pressure nldas pressfc
conv prec Precipitation nldas pcpsfc

short radi surf Short wave surface radiation nldas dswrfsfc
DEM Elevation elev

Population Population per Km pd
zonal wind 10m U-wind nldas ugrd10m
merid wind 10m V-wind nldas vgrd10m

AOD550 Modis AOD 550 gc-aod

Table 5.1: Matching the features of Lima and United States dataset

5.4.5 Results and Analysis

To analyze Lima results, we perform qualitative analysis, primarily due to the dearth

of labels for the satellite measurements. We visualize the PM2.5 patterns on geo-maps.

We utilize PM2.5 dataset for the US as the source region data whereas the Lima, Peru

dataset with 10 stations is used as the target region data. Since the true labels for

Lima were unavailable, we consulted the domain experts (environmental scientists) for

the analysis. Due to the scarcity of target domain data, this qualitative analysis aims

to observe if transfer models successfully capture glaring PM2.5 estimation patterns

for standardized feature space and differing seasonality between the two domains.

In the previous objective, we identified the ITL model, Nearest Neighbor Weighing

(NNW) to have the most optimal performance, therefore, we localize our qualitative

experiments using just the NNW model. The insights from domain experts measure

the ’goodness’ or accuracy of the NNW models namely – without LDF, with LDF and

LDF-A. Additionally, we tried two of experiments to validate seasonal performance

of our methodology. The first experiment didn’t perform seasonal matching between

the source (US) and target (Lima) datasets and estimated daily average seasonal
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Figure 5.3: (a) Annual mean PM2.5 prediction for Lima, trained on the whole year
data without seasonal matching. (b) Seasonal mean PM2.5 prediction for Lima region
trained using summer season matching. (c) Seasonal mean PM2.5 prediction for Lima,
trained on the whole year data without seasonal matching.

and annual PM2.5 values (as shown in Figure 5.3(a) and Figure 5.3 (c)). The second

experiment performed seasonal matching by extrapolating summer seasons (June to

August for US) (December to Feburary for Lima) for both the domains and then

matching each day to generate the neighborhood cloud dataset.

Seasonality Focused Experiments for the Lima Region

Scenario 1: In Figure 5.3, we plot qualitative results with and without seasonal

matching between the source and target domains. For Figure 5.3(a), we utilize the
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entire year data from source (US) and target (Lima) domain and match each day to

generate the neighborhood cloud for each sensor. We observe that all models exhibit

lower PM2.5 levels near the coast and higher levels moving inland, a pattern validated

by domain experts. However, NNW [LDF] has a clearer concentration gradient of

inland PM2.5 compared to the other models. Near the Andes mountain ranges, the

PM2.5 is the lowest, which the NNW[LDF] model accurately captures but slightly and

highly overestimated by the NNW [LDF-A] and NNW models, respectively. These

observations confirm the improvement of prediction by LDF-based TL models.

Scenario 2: For Figure 5.3(b), we utilize the summer season data from source (US)

(from June to August) and target (Lima) (from December to Feburary) domains and

match each day of the 90 days window to generate the neighborhood cloud for each

sensor. We observe similar trends as Figure 5.3(a) with lower PM2.5 near coast and

higher values moving inland. Additionally, the concentration gradient for NNW with

LDF features is better compared to the NNW model. Among the NNW[LDF] and

NNW[LDF-A], the high inland PM2.5 is accurately captured by NNW[LDF] whereas

the PM2.5 near the Andes mountain ranges is slightly lower for NNW[LDF-A]. Hence,

the NNW models with LDF imputed features capture the PM2.5 much accurately

compared to NNW where NNW[LDF] has the most optimal performance.

Scenario 3: For Figure 5.3(c), we utilize the whole year data from source (US) and

target (Lima) domains and generate the neighborhood cloud for each sensor to predict

the summer season PM2.5 values. This helps validate the estimation of Figure 5.3(b).

We observe a shift in PM2.5 estimation with all models predicting higher concentration

gradient during the summer. While NNW model still doesn’t capture the correct

concentration gradient, the NNW[LDF-A] fills the entire map with high PM2.5 values.

In hindsight, both models highly overestimate PM2.5 values in all three regions –

coast, inland and Andes mountain ranges. Additionally, the concentration gradient
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for NNW[LDF] and NNW[LDF-A] models is better compared to the NNW model.

Among the LDF imputed models, NNW[LDF] manages to capture high inland PM2.5

with lower values in the remaining regions. The NNW[LDF] values are the closest

to the real-world PM2.5 estimates during summer in Lima. It should also be noted

that these estimations are still not completely accurate and this qualitative analysis

attempts to shed a light on how these models capture the large glaring patterns.

Additional Experiments: We performed a 60:40 train-test split on the Lima

sensors and trained NNW and NNW [LDF] TL models using 3-fold cross-validation,

with the complete US as the source data; trained and estimated on the entire year.

The results for [R2, RMSE] for NNW and NNW[LDF], respectively, were [0.476, 9.852]

and [0.558, 9.091]. Hence, NNW [LDF] outperforms NNW, thereby validating the

qualitative analysis results.

5.5 Discussion, Limitations and Future Work

Despite the lack of ground labels for deploying the LDF-based NNW model in Lima, it

is important to address the pressing issue: Lima is the second most polluted city in the

Americas [202] and suffers from a scarcity of sensors [210] (since Peru is a developing

country). Our model provides a groundbreaking outcome in PM2.5 estimation for

Lima and serves as a vital first step toward implementing similar models in other

data-poor regions. We believe our methodology has room for improvement in terms of

expanding experiments, baselines and ablations. We outline these below:

Experiments with alternate (data-poor region) datasets

While our experiments with the US and Lima data provides qualitative analysis

for the LDF model estimation, however, we need to extensively quantify transfer

between countries with dissimilar features. Our future experiments involve utilizing
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altenrate datasets belonging to countries – India, Taiwan, and more for a more robust

performance measure.

While this future work has previously been covered, but we plan to also include

transfer across countries with dissimilar feature space for open-source datasets. Since,

these datasets often contains very few meteorological and topographical features affect-

ing the PM2.5 values, it would be highly interesting to see the prediction performance

of LDF framework for them.

Extending to alternate irregular spatiotemporal domains

As mentioned in the previous chapter, we would like to test the LDF model on alternate

domains like wildfire estimation and weather forecasting, especially the domain that

utilize sensor measurements and contains irregularities. Hence, the future studies

should explore these applications and develop new LDF features accordingly.

5.6 Conclusion

This objective addresses the problem of transfer learning for irregular spatiotemporal

data with dissimilar feature space. We utilize the LDF framework to estimate PM2.5

levels where the transfer takes place between regions with low autocorrelation and

predicting at unseen test locations. We aim to improve instance transfer learning

(ITL) models, which often overlook spatial and semantic dependencies in the data.

We first standardize the feature space between the two datasets – US and Lima.

We then perform two types of seasonality focused modeling – with and without

seasonal matching between the source and target regions. Our results show that

seasonal matching is important for prediction over a shorter time range whereas

for a longer duration (annual estimation), no seasonal matching is required. The

results also validate the consistent performance of the LDF model with or without
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seasonal matching. In conclusion, the model performs well for long-range prediction

without seasonal matching but for shorter range, it requires such an explicit matching.

Moreover, our qualitative experiments on US and Peru datasets demonstrate LDF’s

effectiveness in improving PM2.5 estimation and capturing larger PM2.5 patterns

missed by regular transfer models. While more future work remains in this space, we

believe our approach of achieving spatial transfer learning using Latent Dependency

Factor is a promising and novel solution for this highly complex domain and should

be explored further.
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Chapter 6

Future Work

Previous suite of transfer models that I designed focus on instance transfer learning

techniques that involves reweighing source domain samples. This reweighing is also

known as domain adaptation. Since only one source dataset was utilized, such

reweighing can also be called single source domain adaptation (SSDA). A logical next

step to SSDA is to effectively apply domain adaption with multiple source domain

dataset i.e. multi-source domain adaptation (MSDA). Moreover, while classical and

neural regression models are useful for continuous datasets, they are also parametric

i.e. with fixed weights and parameters. This begs the question about non-parametric

approaches that can adapt their parameters based on data complexity given the non-iid

nature of the spatiotemporal data. In the following sections we explore these concepts

more and provide a direction for future research.

Multi-Source Domain Adaptation (MSDA)

6.1 Introduction

Multi-source domain adaptation (MSDA) paradigm involves knowledge transfer from

multiple labeled source domains to an unlabeled or sparsely labeled target domain [145,

92
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52, 69]. In contrast to single-source domain adaptation (SSDA), MSDA learns from

diverse source domains with distinct data distributions, and consequently generalizes

on the target domain. The key challenge in this scenario is due to the heterogeneity

of various source domain distributions and their dissimilarity to the target domain

distribution. Traditional machine learning models fail in scenarios where the train and

test data distribution are dissimilar. This also falls within the i.i.d (independent and

identically distributed) assumption which presumes the features across both domain

have similar independent distributions. However, the non-i.i.d characteristics in the

data causes the dissimilarity between the train and test domains. This can be extended

to the case of transfer learning where target data has dissimilar distribution to the

source data. Therefore, an optimal MSDA considers both marginal and conditional

probability differences i.e. differences between the feature spaces as well as the

differences between label given features [196].

For the use-case of irregular spatiotemporal data, source domains can be data

from multiple regions (with differing PM2.5 values for each region). Training on

multiple domains allows for an improved learning of invariant representation from

each domain. Hence, an MSDA model trained on multiple sources can be utilized to

make predictions (eg., PM2.5 levels) in a new region (target). This approach can be

counterintuitive (leads to negative transfer) if naive aggregation over multiple source

datasets is involved. An independent learning over each source domain distribution

leads to a suboptimal performance as no single source fully captures the variability

of the target distribution. Therefore, we discuss an optimal solution for multi-source

domain adaptation below as also presented by Mansour et al. [145].
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6.2 MSDA via Weighted Combination

Mansour et al. [145] propose a MSDA solution where the target distribution, DT (x) is

considered as a mixture of (k) source distributions, Di(x), and hence modeled as:

DT (x) =
k∑

i=1

λiDi(x),

with λi represents the weight (contribution) of each source Di to the target. The

weights are constrained to the simplex ∆ = {λ : λi ≥ 0,
∑k

i=1 λi = 1}. Hence, the

goal is to combine hypotheses hi(x), trained on the source distributions, into a single

hypothesis h(x) for the target domain. There are two hypotheses combination rules

for the MSDA scenarios:

1. Linear Rule:

h(x) =
k∑

i=1

λihi(x).

The linear rule provides equal weights to each source data distribution. Given

its simplicity, it fails when the distributions are varying.

2. Distribution-weighted Rule:

h(x) =

∑k
i=1 λiDi(x)hi(x)∑k

j=1 λjDj(x)
.

The distribution-weighted rule weighs each source hypothesis hi based on the

local density Di(x) of the corresponding source distribution for input x. The

rule ensures that hypotheses from source distributions with higher local densities

contribute more to the target distribution. The combined prediction is normalized

as,
∑k

j=1 λjDj(x), such that weights of all sources equals 1.
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6.2.1 Learning Optimal Weights for Distributed Weighing

To determine the source distribution weights λi, the problem is formulated as an

optimization task minimizing the loss L, which is defined as, L(DT , h, f) over the

target distribution. Hence, we minimize L as,

min
λ∈∆

k∑
i=1

λiL(Di, hi, f),

where f is the true target function, and L is a loss function (e.g., mse). This

convex optimization ensures that the combined hypothesis h(x) minimizes the target

distribution while also considering source contributions. In practice, Maximum Mean

Discrepancy (MMD) is used to measure the similarity between the weighted source

distributions and the target, facilitating iterative updates of λ. Additionally, the

distribution-weighted rule can handle non-linearity for source-target alignment using

the density Di(x). A regularization term, ∥λ∥2, is added for noisy or sparse data.

6.3 MSDA: Two-Stage Domain Adaptation

Sun et al. [196] present a two-stage domain adaptation approach that reduces the gap

between source and target domains by sequentially reducing the discrepancies in the

marginal and conditional probabilities. In context of domain adaptation, the marginal

probability P (x) represents feature distribution for the domains, while the conditional

probability P (y|x) represents the relationship between features and labels. Classical

domain adaptation models reduce the difference in marginal probabilities, P (x) as they

can vary due to differences in underlying domain distributions. However, the domain

conditional probabilities, P (y|x) can also observe shift based on how features map to

labels. Hence, a two-stage framework allows to mitigates these domain distribution

challenges . We elaborate on the two stages below:



96

6.3.1 Stage 1: Marginal Probability Alignment

The first stage of the two-stage domain adaptation approach aligns the marginal proba-

bilities P (x) between the source and target domain distribution. This alignment is due

to the variance between the feature distributions P (xs) and P (xt) of the two domains.

The source samples are reweighed to be similar to the target samples. Techniques

such as Maximum Mean Discrepancy (MMD), Kullback-Leibler (KL) divergence,

Importance Sampling, and more can be utilized for source sample reweighing.

Let Ds = {(xs
i , y

s
i )}ns

i=1 represent the labeled source domain data, Dt
u = {xt

i}nt
i=1

the unlabeled target domain data, Ps(x) and Pt(x) the marginal distributions of

the source and target domains, and Ps(y|x) and Pt(y|x) their respective conditional

distributions. To align the marginal probabilities, source data weights αs(x
s
i ) are

adjusted to minimize the discrepancy:

min
αs

DM(Ps(x), Pt(x)),

where DM represents a divergence measure (e.g., Maximum Mean Discrepancy (MMD)

or Kullback-Leibler (KL) divergence). The re-weighted source data becomes:

{(αs(x
s
i )x

s
i , y

s
i )}ns

i=1.

This reweighing allows the source samples to align closely to the target samples,

thereby laying the foundation for the next stage of adaptation.

6.3.2 Stage 2: Conditional Probability Alignment

The second stage of the domain adaptation approach focuses on dissimilar condi-

tional probabilities, P (y|x) of the source and target domain distributions. Following

the alignment of marginal probability alignment, we train multiple hypotheses, hs
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(equivalent to the number of source domains) on the reweighed source data. These

hypotheses then estimate the target labels and the estimations are combined as a

matrix, HS. Hence, HS represents the matrix for estimated target labels, where each

column corresponds to a source hypothesis. Then HS can be represented as,

HS =



h1(x
t
1) h2(x

t
1) . . . hk(xt

1)

h1(x
t
2) h2(x

t
2) . . . hk(xt

2)

...
...

. . .
...

h1(x
t
nt

) h2(x
t
nt

) . . . hk(xt
nt

)


.

The weights for source domain hypotheses hs are estimated using the smoothness

assumption which posits that if two points in the feature space are similar (or close),

their corresponding labels should also be similar. Hence, the weight for the various

source domains is found by minimizing the difference in predicted labels between

similar target samples.

6.4 MSDA: Adversarial Learning

The goal of multi-source domain adaptation using adversarial learning [249] is to

generate domain-invariant representations to bridge the distribution difference be-

tween (multiple) source and target domain. Hence, these representation have two

characteristics:

1. They are domain-invariant, i.e. their origin domain (source/target) cannot be

identified. To achieve this invariance, the neural model minimizes the domain

distance in the hypothesis space as, dH(DS, DT ), where dH is the H-divergence.

2. The learned invariant representation should contain enough meaningful informa-

tion to predict source and (few) target labels accurately. This minimizes the
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empirical error ϵ̂Si
(h) for each source domain Si, where ϵ̂Si

(h) is the empirical

risk of hypothesis h on the i-th source domain.

Hence, Zhao et al. [249] design a neural model for adversarially learning represen-

tation to achieve MSDA. It has three components:

• Shared feature extractor Gf : This module maps input samples x to a latent

feature space. The feature extractor is shared across all domains and learns a

domain-invariant representation.

• Domain learner Gd: This module categorizes each sample according to its

domain of origin i.e. source/target domain. It is trained using cross-entropy

loss Ld and trained adversarially to ensure that the domain learner cannot

distinguish between source and target domains.

• Label predictor Gy: This module predicts labels for the source domains. It is

trained to minimize the label prediction loss Ly.

The combined training objective is formulated as, minGy ,Gf
maxGd

Ly−λLd, where

λ balances the trade-off between label prediction and domain invariance.

6.5 MSDA w/ Sparse Variational GP

6.5.1 Sparse Variational Gaussian Processes (SVGPs)

Sparse Variational Gaussian Processes (SVGPs) are a scalable extension of traditional

Gaussian Processes (GPs) that address their computational inefficiencies [1, 86, 90].

Traditional GPs suffer from cubic time complexity, making them impractical for

large (high dimensional and samples) datasets. SVGPs overcome this by introducing

inducing points, to summarize the data, thereby, reducing the computational overhead.

Inducing points are sampled representation of the feature space that summarize the
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dataset such that SVGPs can efficiently approximate the complete covariance matrix.

Hence, the underlying principle for SVGPs is to approximate the true posterior

distribution over functions with a simpler variational distribution and thereby, balance

the trade-off between computational efficiency and model accuracy.

Gaussian Processes (GP) are intrinsically suitable for spatiotemporal data as

they can handle nonlinear relationships in the data. GPs achieve this by utilizing

covariance functions, i.e. kernels, that can be utilized to model both spatial and

temporal dependencies as they are able to define how data points are related in the

feature space [158]. Hence, GPs can account for smoothness in space, periodicity in

time, or non-stationarity, thereby providing a robust framework for modeling a wide

range of spatiotemporal processes. This makes GPs useful for applications such as

pollution estimation, weather and traffic forecasting, and more. GPs primarily have

two characterisitcs making them useful for spatiotemporal modeling:

1. Uncertainty Modeling: Gaussian processes can quantify uncertainty in pre-

dictions. Since spatiotemporal data is often sparse and unbalanced, GPs provide

both point predictions and confidence intervals for those predictions i.e. pre-

dictive variances. For tasks such as forecasting and interpolation, it allows to

understand the uncertainty present in estimations.

2. Non-Parametric Nature: Gaussian processes are non-parametric model, i.e.

they do not assume a specific functional form for the underlying data. Instead,

GPs adapt to the latent structure of the data. This adaption allows GPs to

model a range of complex non-linear relationships and avoid being limited by

pre-defined assumptions as is the case for classical parametric models.

The combined strength of GPs with computational scalability is rendered by SVGPs,

primarily employed for spatiotemporal data. Hence, SVGPs can model long-range

dependencies and complex patterns in space and time by utilizing inducing points
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that capture the latent dependecnies. Capturing such dependencies with reduced

computational cost is useful for large spatiotemporal data.

6.5.2 MSDA w/ SVGP

Hence, this dissertation can have multiple extensions where the primary focus includes

utilizing multiple source datasets for irregular spatiotemporal modeling. While we

utilized single-source domain adaptation methodologies for source sample reweighing

followed by multi-variate regression; we emphasize the extended domains that utilize

multi-source domain adaptation and Gaussian processes, in this chapter. We plan to

work on this framework where multiple source domain datasets can generate domain

invariant representation using the above MSDA models. These representations will

contain spatiotemporal characteristics, that can be successfully modeled using SVGPs

for a robust prediction.

6.6 MSDA and Heterogeneous Data

6.6.1 Heterogeneous Data

Heterogeneous data consist of variance such that there can exits similarities between

samples of two feature as well as dissimilarity within a feature [78]. These dissimi-

larities can occur due to data collections methods causing varying distribution, or

characteristics of features in the dataset. Within a dataset, heterogeneity is present

due to difference in the ranges of numerical values, varying categorical variables, or

irregularities in data due to missing values [247, 146]. Across datasets, heterogeneity

can occur due to diverse sampling techniques, demographic and environmental dis-

parities, or variations caused by differences in data collection methods [149]. Hence,

understanding heterogeneity present within the data allows to improve accuracy of

machine learning models as heterogeneous data can cause biased training, unstable
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model convergence, and poor generalization of accuracy. For eg., in a distributed

learning environment such as federated learning, where models from diverse clients is

aggregated into a single model, heterogeneous data causes varying model convergence

for the client and the server models [160].

Heterogeneity in data can be computed by various statistical and computational

methods. For heterogeneity within a dataset, statistical measures such as standard

deviation, variance, or entropy can be used to quantify variance in numerical and

categorical attributes (features) [214]. Visualization techniques such as boxplots,

scatterplots, and histograms can be used to provide visual descriptions of the variance

in the data [211]. For heterogeneity between the datasets, statistical tests like ANOVA

for numerical data and chi-square tests for categorical data can be utilizes [214].

Additionally, data mining techniques such as clustering techniques [214], sum-product

networks [186], or mixture models [80] can be utilized to extract the underlying

patterns in heterogeneous data. While heterogeneous data is challenging to process

and analyze, it’s variability can be utilized in scenarios that require dataset division

based on distribution. We explore such a scenario in the following section.

6.6.2 MSDA w/ Heterogeneous Data

Multi-source domain adaptation (MSDA) techniques can be utilized to take advantage

of the variability present in the dataset by generating multiple distinct source domain

datasets [255]. This can be achieved by partitioning the data into clusters based on

its structural or statistical differences, such as variations in feature distribution, demo-

graphic profiles, environmental factors, or sampling methods. Each cluster becomes a

source domain containing some subset of the data samples with certain representa-

tive variability. This allows localized machine learning models to learn patterns and

relations within the cluster and generate improved estimations. Consequently, their

learning can then be generalized across clusters by employing MSDA techniques.
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The distinct clusters created during MSDA act as source domain datasets and

thereby allow easier alignment with the target domain dataset. Hence for applications

such as PM2.5 prediction, the data from different geographical or climatic regions could

be clustered into a set of distinct source datasets where each cluster represents localized

variations in such factors as varied pollution sources or weather conditions. This

could be effective when adapting to a target domain belonging to a new geographic or

climatic region with limited data as the MSDA model can utilize the diversity within

the source datasets to bridge the gap between the source and target domains. MSDA

techniques such as distribution alignment, or domain-specific feature extraction [69, 52]

allows to integrate the knowledge from multiple sources into the target domain and

hence can be translated to the task of MSDA with heterogeneous data.

Scalable solutions via Spatial Indexing

6.7 Spatial Indexing

Spatial data (also geospatial data), represents the location and characteristics of objects

or phenomena on Earth [39]. It is defined by coordinates such as latitude and longitude,

stating the position of an object in two or more dimensions. Additionally, it may also

involve additional attributes describing the properties of the objects. Spatial indexing

is a methodology that allows to manage, query, and retrieve spatial data efficiently from

geographic information systems and spatial databases [58, 144, 154, 260]. It achieves

this by organizing the spatial objects, such as points, lines, and polygons, within the

multidimensional space, to reduce the computational overhead [242]. Hence the space

is partitioned into smaller regions or hierarchical structures, allowing techniques to

optimize search space traversal for tasks like determining intersections, or nearest

neighbors. Spatial indexing can be achieved in multiple ways by using grid indexes [170],
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quadtree indexes [114], and R-tree indexes based on the task/domain [82, 12]. For

eg., grid indexes split space into uniform grids for simpler datasets, whereas R-tree

indexes are suitable for dynamic datasets as they create a hierarchical bounding-box

structure for splitting. Recent developments in spatial indexing introduce distributed

spatial indexing that is based on big data frameworks such as Hadoop and Spark,

that allows large-scale analysis of huge corpora or datasets for applications in urban

planning, disaster management, and environmental monitoring [240, 96].

6.7.1 Spatial Indexing for Spatial Transfer Learning

For spatial transfer learning introduced in the previous chapters, spatial indexes

can be utilized to find similar geographic locations on a map, thereby allowing to

efficiently compare them based on proximity, elevation, land use, and other geospatial

attributes [261, 262]. It can also be employed for alternative tasks (non transfer

learning) such as sensor placement optimization [116], or data interpolation. For eg.,

using R-tree indexes, we can instantly locate neighboring PM2.5 sensors or identify

regions with similar environmental conditions, such as similar forest cover or urban

density. These indexes also allow clustering of geographic points into regions with

homogeneous characteristics, generating multiple domains (regions) for a multi-source

domain adaptation framework [94]. The meteorological and topographical features can

also be incorporated with spatial indexing to calculate similarity between locations.

Hence, the ability of spatial indexing to efficiently query and compare geographic

locations allows for accurate and efficient model training.
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Chapter 7

Conclusion

In this dissertation, I introduce a suite of methodologies to solve the complex task of

transfer learning for irregular spatiotemporal data. The irregularity in spatiotemporal

data is represented by missing temporal points and sparse spatial locations. Given the

machine learning modeling for such datasets is already complicated due to existing

dependencies (spatial and semantic) as well as the non-i.i.d nature of the data distri-

bution; the existence of irregularities and the translation of the problem to a transfer

learning task, pushes the envelope even further.

Hence, my dissertation goal is to design transfer learning models for such complex

and irregular spatiotemporal data. I pose and answer three research questions spanning

innovation in generalizability, and cross-region transfer with varying feature space.

For the first research objective, I design a boosting based transfer learning model

that utilizes importance sampling and a balanced weighing approach to consistently

outperform baselines. This methodology is called S-TrAdaBoost.R2 and is a successor

of a boosting based regression transfer model, TrAdaBoost.R2. This objective

provides insight into transfer learning models suitable for regression problems, thereby,

laying the groundwork for understanding single source domain adaptation models for

regression that intersects with the spatiotemporal estimation task.
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For the second research objective, I focus on the use-case of air pollution (especially

PM2.5) modeling using transfer learning for regions that have a shortage of ground-

sensors. This problem is also called as spatial transfer learning as the task involves

transferring knowledge across regions. In this objective I focus only on regions within

a country that share the same feature space. In addition to the feature space, they also

share seasonality and hemisphere that impacts the meteorological and topographical

variations present in the PM2.5 data. I design a novel solution called the Latent

Dependency Factor (LDF), that is a new feature imputed in both source and target

feature space. This feature successfully captures the spatial and semantic dependencies

present in the dataset. It is generated using a two-stage autoencoder model. The

results show that imputing the LDF feature improves the transfer accuracy by 19.34%.

For the third research objective, I focus on transfer learning across regions with

dissimilar feature space. The goal is to apply transfer between two countries with large

spatial distance. Often the seasonality between the two countries are also varying as

is our case where source region is United States and the target region is Lima, Peru.

These countries are highly geographically distant causing complex meteorological and

topographical variations. I first perform feature standardization across the datasets

and consequently apply the LDF approach with two variations of it – the first consists

of seasonal agnosticism and the second consists of seasonal matching. The results show

that seasonal matching is effective for short-range (eg., one season) estimation whereas

the long-range (eg., complete year) estimation did not require seasonal matching.

The results from these models lay a prospective foundation for transfer learning

for irregular spatiotemporal data. I also provide future directions this research can

be extended to that involves using multi-source domain adaptation models, gaussian

processes, incorporating heterogeneity of the data and scaling via spatial indexing.
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