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Abstract	

Modeling	the	Susceptibility	of	Treated	Individuals	to	Further	Tuberculosis	Episodes	
By	Erik	Herslebs	

	 The	risk	of	relapse	and	reinfection	among	individuals	treated	for	tuberculosis	(TB)	is	an	
important	area	of	study.	It	has	been	found	that	treated	individuals	are	four	times	more	likely	to	
become	infected	with	another	episode	of	tuberculosis	than	those	with	no	previous	infection.	In	
order	to	explore	possible	causes	for	this,	six	different	mathematical	models	are	created	to	
describe	different	hypotheses	of	the	post-treatment	behavior	of	individuals	in	a	hyperendemic	
community.	These	hypotheses	include	heterogeneity	in	susceptibility	among	hosts	and	initially	
high,	but	waning	susceptibility	to	subsequent	TB.	It	was	found	by	fitting	the	models	to	relapse	
and	reinfection	incidence	data	that	host	heterogeneity	and	waning	susceptibility	can	both	
adequately	explain	trends	in	the	data,	while	other,	simpler	models	cannot.		
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1. Introduction 

 Tuberculosis (TB) is a disease caused by the Mycobacterium tuberculosis complex (MTBC), a 

group of related Mycobacterium species (Pai et al. 2016). Currently, tuberculosis is one of the top 10 

causes of death throughout the world, with 1.7 million people succumbing to the disease in 2016 alone. 

Additionally, 10.4 million people developed symptomatic TB in 2016, of which 1 million were children 

(“Fact Sheet on Tuberculosis” 2018). This makes TB a high-priority issue for world health. 

 TB primarily infects the lungs, although infections can occur elsewhere in the body (Pai et al. 

2016), and it spreads when those with symptomatic pulmonary TB release the bacteria into the air through 

coughing, speaking, or sneezing ("Global tuberculosis report 2017"). TB infections are also characterized 

by their long duration due to latency. During latency, the bacteria have infected an individual, but 

symptoms have not arisen and a risk is present of progressing to symptomatic TB (Esmail et al. 2014). 

The latency of TB is complex and can be best understood as a spectrum of possible outcomes to infection, 

ranging from elimination of the bacteria to maintenance of the infection to subclinical symptomatic 

disease (Barry et al. 2009, Pai et al. (2016)). 

 Currently, the most widely used test for active, symptomatic TB in middle and low-income 

countries is sputum smear microscopy (Pai et al. 2016, Kik et al. (2014)). This test involves the direct 

observation of respiratory sputum samples (from coughing) to identify the presence of bacteria. However, 

sputum smear microscopy can only identify 50-60% of active TB cases (Siddiqi, Lambert, and Walley 

2003), and extrapulmonary TB could also occur, which sputum smears would not identify. This method is 

even more problematic when it comes to identifying tuberculosis in children because they are less able to 

produce sputum (Pai et al. 2016, Swaminathan and Ramachandran (2015)). Culture samples can also be 

used to identify TB (Pai et al. 2016), which can be better for lower bacterial loads in sputum or for testing 

samples of suspected extrapulmonary TB. 
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 Treatment and vaccination are two strategies that are currently employed to counter TB ("Global 

tuberculosis report 2017", Pai et al. (2016)). Those that are infected with the disease are treated for about 

6 months with four antibiotics: isoniazid, rifampicin, ethambutol, and pyrazinamide ("Global tuberculosis 

report 2017"). For prevention, the current widely used vaccine is the bacille Calmette-Guérin (BCG) 

vaccine (Fine 1995), which can induce protection against severe TB ("Global tuberculosis report 2017"). 

However, several problems have complicated the elimination of TB. One problem is the spread of 

multidrug-resistant TB (MDR-TB) from the use of antibiotics. In the Russian Federation, for example, the 

overall TB incidence and TB-related death is decreasing, but the MDR-TB incidence is increasing 

("Global tuberculosis report 2017"). Additionally, the HIV epidemic has become an enormous problem 

for the elimination of TB, since those that are infected with HIV are 20-30 times more likely to develop 

symptomatic TB (“Fact Sheet on Tuberculosis” 2018). Unfortunately, the BCG vaccine is, at best, of 

limited efficacy as well ("Global tuberculosis report 2017", Fine (1995)). Estimations of the efficacy of 

the vaccine vary considerably (Fine 1995, Colditz et al. (1994)), with an average TB risk reduction of 

50% (Colditz et al. 1994). In 2017, 12 new vaccines were in trials ("Global tuberculosis report 2017"). 

However, the complexity of tuberculosis means that the likelihood of failure is high (Graham, 

Ledgerwood, and Nabel 2009, Fletcher and Schrager (2016)), and during the phase 2b clinical trial of one 

vaccine, MVA85A, there was only a 17.3% protection against incident tuberculosis, and a -3.8% 

protection against TB infection (Tameris et al. 2013). 

 In order to meet the goal of the WHO to reduce TB incidence by 90% and TB-related death by 

95% before 2035 (“The End Tb Strategy: A Global Rally” 2014), new strategies would be beneficial 

(Esmail et al. 2014). A greater understanding of the epidemiology of the disease may be advantageous in 

improving these prevention methods. For example, the nature of latency is poorly understood. Since it is 

difficult to know the exact time of infection, we do not know with great certainty how long the latent 

period typically is. Thus, the current TB incidence could be explained by a small population of infected 

individuals that rapidly progress to disease or a large population that progress slowly. Also, not much is 
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known about the activity of the disease after treatment. While most infections induce an immune response 

after recovery that protects from reinfection, the opposite has been seen in tuberculosis. Those that are 

successfully treated are actually four times more likely to be infected than those with no previous 

infection (Verver et al. 2005). This phenomenon will be referred to as “supersusceptibility” of treated 

individuals, and it severely complicates our ability to control tuberculosis in areas of high prevalence. 

Additionally, on the individual level, supersusceptibility limits our ability to properly treat patients, since 

they have an unusually high rate of returning to active TB. 

 The exact nature of supersusceptibility is not known, which makes prevention difficult. It could 

be that all individuals who are treated show elevated rates of subsequent disease, or it may be more 

complex. It has been seen that tuberculosis causes suppression of the immune system (Sahiratmadja et al. 

2007, Hirsch et al. (1999)), so if the antibiotic treatment regimen or bacteria activity cause 

immunosuppression, one would expect a higher risk of reinfection after treatment that would decrease 

over time as the immune system recovers. This will be referred to as a “waning susceptibility” event. 

Additionally, genetic factors have been shown to play a role in tuberculosis susceptibility (Abel et al. 

2018, Puffer (1944), Kallmann and Reisner (1943), Cobat et al. (2012)). If some people are more 

susceptible because of these genetic factors or because they live with others who have TB in an area of 

high prevalence, then these individuals would compose a large fraction of the active cases we see, and 

thus supersusceptibility would be the result of treated individuals being mainly a higher-risk group to 

begin with. In this case, what we will define as “host heterogeneity” is the underlying cause. 

 The behavior of this increased susceptibility after recovery could have great effects on the 

strategies needed to eradicate the disease, and has the potential to change the current understanding of the 

activity of tuberculosis in hyperendemic communities. To this end, population dynamic models can be 

instructive (D. W. Dowdy, Dye, and Cohen 2013). Predictive mathematical models are especially useful 

for TB, as the disease’s long latent periods and slow recovery times makes acquiring accurate, long-term 

data difficult (Ozcaglar et al. 2012). As a result, these models can be used to test hypotheses that, as of 
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now, data cannot. Current models serve as good representations of the global dynamics of the disease. 

However, these models do not account for supersusceptibility, and this reduces the accuracy of 

predictions regarding post-treatment behavior using these models. The objective of this study is to 

improve these models while simultaneously gaining an understanding of the cause of supersusceptibility. 

 In accomplish this, nine differential equation models were constructed to describe distinct 

biologically plausible scenarios regarding the post-treatment behavior of TB patients to subsequent 

disease (i.e. reinfection, infection with a new strain of tuberculosis, or relapse, the reactivation of bacteria 

that remained in the body after the index case). These models were then used to determine the likelihood 

of each scenario being true when faced with data. These models included three of the most simplistic 

representations of this biology, which began with treated individuals simply experiencing disease due to 

relapse and reinfection at two separate rates. This was followed by the addition of “treatment variation” to 

this model. For this study, this was defined as two possible outcomes of the index case treatment. Either 

the initial infection was completely eliminated, leaving no risk of relapse, or the infection remained to 

some degree, allowing a risk for relapse. Finally, an disease exposure condition was added for reinfected 

individuals in order to incorporate latency of the disease. 

 The fourth model included two latent classes of individuals, depending on the time since 

infection, and each progressed to active disease at different rates. The next two models adjusted the 

previous model to include waning susceptibility of treated individuals to subsequent disease or 

heterogeneity of susceptibility among treated individuals. Finally, the last three models studied were 

modified versions of the previous three to include treatment variation. 

 The last six models contained identical biological parameters that were assumed to be constant 

across the entire population: the rate of progressing to active disease soon after infection, the rate of 

progressing to disease long after infection, and the rate determining the line between “soon” and “long” 

after infection. These parameters were estimated using data on the percentage of infected individuals that 
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had progressed to active disease each year after infection (extrapolated from Diel et al. (2008) and 

Borgdorff et al. (2011)). The portion of the models containing these parameters were fit to this data and 

held constant through the study, but these parameter assumptions were also relaxed to determine their 

impact on the final results. 

 Finally, each of the nine models was then fit to data on the cumulative relapse and reinfection 

incidence for every year after treatment among those in a hyperendemic community (Marx et al. 2014). 

The ability for these models to produce cumulative relapse and reinfection incidences that matched the 

data, as calculated using the programming language R, was used to deduce the validity of each of the nine 

hypotheses. These results were quantified using the Akaike information criterion (AIC) equation. 

2. Materials and Methods 

2.1 Experimental Data 

 We use data from three studies. The first study by Borgdorff et al. (2011) presents the Kaplan-

Meier probabilities of developing symptomatic TB within 15 years of infection for those individuals who 

do progress in this time period. The authors took Netherlands patient data from 1993 to 2007 to determine 

case connections. If two patients had genetically identical TB fingerprints, as determined by standard 

restriction fragment length polymorphism (RFLP) typing and, if necessary, sub-typing on patient cultures, 

then they were interviewed for a possible contact. If a contact was found, then transmission was said to 

have occurred between the two patients. The time of infection for the secondary case was then 

approximated as the halfway point between the onset of symptoms in the source case and either the onset 

of symptoms or diagnosis of the secondary case. Data from the Kaplan-Meier probability curve was 

extracted for this study using Engauge Digitizer (digitizer.sourceforge.net). 

 The second study by Diel et al. (2008) provided data on the proportion of individuals who 

progress to symptomatic TB within two years of infection. In this study from May 2005 until April 2006, 
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those in close contact with smear-positive and culture-confirmed TB cases were tested for latent infection 

within 8 weeks of identification of the index case. These individuals were tested using both the 

QuantiFERON-TB Gold In-Tube assay (QFT) and the tuberculin skin test (TST), and were observed until 

September 2007 for the development of TB. 601 close contacts were found, 243 of which were TST 

positive (at 5 mm) and 66 were QFT positive. 6 of these 601 individuals progressed to disease after 

declining treatment. All 6 were identified by QFT but only 5 were identified with TST, leading to 

progression rates of 14.6% and 2.3%, respectively, within the 2-year follow-up. For our study, the 

estimate provided by the QFT test was used because, while both tests have limitations, the TST test has 

been known to produce false positives in those vaccinated with BCG or infected with non-tuberculosis 

causing strains of mycobacteria. The QFT test, on the other hand, is more specific to MTB and does not 

produce these false positives or increase the likelihood of false positives in subsequent tests (Centers for 

Disease Control and Prevention 2010, Diel et al. (2008)). 

 For use in this study, the data extracted from Borgdorff et al. (2011) was adjusted using the 

progression rate from Diel et al. (2008). The initial probability curve included only individuals who 

eventually progressed, but an estimation including all infected individuals regardless of outcome could be 

created by scaling the Borgdorff et al. (2011) data to match a 14.6% risk of progression after 2 years. This 

results in about 25% of infected individuals progressing to symptomatic TB after 15 years (Figure 9). 

This is slightly above the current estimates of 5-15% lifetime risk of progressing to active TB (“Fact 

Sheet on Tuberculosis” 2018). However, those at higher risk of TB, including those with HIV, those with 

previously cured TB episodes, those who suffer from malnutrition or diabetes, or those who use tobacco 

products, can have lifetime risks of over 20% (“Fact Sheet on Tuberculosis” 2018, Horsburgh (2004)). 

 Finally, the third study by Marx et al. (2014) provided the incidences of relapse and reinfection 

each year following index case treatment. The study included individuals in Cape Town, South Africa 

who were treated for TB between 1996 and 2008. Sputum smear-positive index and subsequent cases 

were considered, and sputum samples were used for fingerprinting. Individuals were classified as relapsed 
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if the DNA fingerprint of the new TB case was identical to the initial case or differed by up to 2 bands. 

Otherwise, the patient was classified as reinfected. The reinfection and relapse incidences were reported 

as the number of cases per 100,000 treated index cases, but for our study, the cumulative incidences of 

reinfection and relapse were used. Additionally, since the incidences for every year after the fourth were 

combined, this data could only be used for the maximum time point possible. It is for this reason that the 

final data point is at year 13, which is the longest period of time until secondary disease that would be 

documented in this study, if the initial treatment was completed in 1996 and secondary disease occurred 

in 2008. Thus, this is an underestimation of the cumulative number of secondary cases at year 13, but this 

estimate will still be useful in describing the general trend of secondary disease risk over time. 

2.2 Mathematical Models 

Instantaneous Transition 

 The first model to describe the behavior of individuals after treatment for tuberculosis is the 

simplest possible representation. Every individual after treatment has the potential to either relapse or 

become reinfected. This model assumes that no treatment for TB successfully eliminates the bacteria 

within the host, leaving all individuals capable of relapsing with the same disease. Additionally, the 

model assumes no latency of the disease. This is known to be biologically inaccurate and this accuracy is 

sacrificed for simplicity. Finally, it is assumed for this model and all subsequent models that the 

background prevalence is constant for the time period simulated. The rate of infection for diseases is 

dependent on both the number of infections and the number of susceptible people to become infected. For 

the sake of this study, it is assumed that the number of infected individuals in the environment remains 

constant, and thus the force of infection is a constant rate. The resulting compartmental model can be 

visualized as follows: 
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Figure 1:  Illustration of the flow rates for a model with instantaneous reinfection. This is the simplest 

representation of recurrent disease. The treated and recovered population can move into the active TB 

population due to relapse and reinfection at two separate rates. 

 The equations for this model, where 𝑟! is the relapse rate and 𝑟! is the reinfection rate, are: 

𝑑𝑅
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅 
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Table 1:  Parameters used in the instantaneous model as well as the origin of the parameters. For this 

model, all parameters were fit to yearly reinfection and relapse risk data. These parameters describe the 

flow rates in terms of the fraction of the population. 

Parameter Symbol Value Source 

Reinfection Rate 𝑟!  0.01 per year Fit in this Study 

Relapse Rate 𝑟! 0.01 per year Fit in this Study 

 

Simple Treatment Variation 

 The second model incorporates individuals both with and without elimination of the initial 

infection (𝑅! and 𝑅! classes, respectively). In both classes, reinfection may occur, causing active disease. 

However, in only the latter treated class may relapse occur. This is based on the assumption that, while 

exogenous reinfection may occur in any recovered individual, relapse due to the same infection cannot 

occur unless the infection remains after treatment. 
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Figure 2:  This illustration describes the flow rates of the instantaneous transition model with the addition 

of two treated classes, with and without the possibility of relapse. They may still become reinfected at the 

same rate, however. 

 

 This model can be represented by: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅! 

𝑑𝑅!
𝑑𝑡

= −𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑟!(𝑅! + 𝑅!) 
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Table 2:  Parameter values used in the simple treatment variation model. All values were fit in this study 

to yearly relapse and reinfection incidence data. 

Exposed Class 

 The third model modifies the second by applying latently reinfected individuals in the form of a 

single exposed class (E), which may progress at a rate p back to active disease. This model increases the 

biological accuracy of the model. However, it is known that those with recent TB infection have a higher 

risk of progression to disease than those with a more remote TB infection (Horsburgh et al. 2010). 

 

Figure 3:  Illustration of the flow between populations in a model implementing latent infection. This 

latent infection is added through a single exposed class through which reinfected individuals must pass 

before experiencing active disease. Treatment variation remains in this model as well. 

Parameter Symbol Value Source 

Fraction in 𝑅! 𝑅!
𝑅! + 𝑅!

 
0.05 Fit in this Study 

Reinfection Rate 𝑟!  0.01 per year Fit in this Study 

Relapse Rate 𝑟! 0.63 per year Fit in this Study 
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 This model’s equations are: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅! 

𝑑𝑅!
𝑑𝑡

= −𝑟!𝑅! 

𝑑𝐸
𝑑𝑡

= 𝑟!(𝑅! + 𝑅!) − 𝑝𝐸 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐸 

Table 3:  Parameters used in the model with a latent, or exposed, class. All parameters were fit in this 

paper to yearly reinfection and relapse risk data. Flow rates show movement in terms of population 

fractions. 

Parameter Symbol Value Source 

Fraction in 𝑅! 𝑅!
𝑅! + 𝑅!

 
1 Fit in this Study 

Reinfection Rate 𝑟!  1.71 per year Fit in this Study 

Relapse Rate 𝑟! 0.08 per year Fit in this Study 

Progression Rate p 0.006 per year Fit in this Study 
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Immune Stabilization 

 Next, the fourth model represents the behavior described by Dowdy, Dye, and Cohen (D. W. 

Dowdy, Dye, and Cohen 2013), in which a treated individual enters a recovered class after treatment that 

can allow for relapse back to active disease (𝐴! class) or reinfection back to latency. Latently infected 

individuals may rapidly progress to active disease (in the recently infected, or 𝐿! class) or stabilize and 

have a lower chance of becoming actively infected (in the remotely infected, or 𝐿! class). 

 

Figure 4:  Flow diagram of the exposed model with immune stabilization. This diagram adds a second 

latent class, a remotely infected class that infected individuals can move into after a certain amount of 

time. This class has a lower rate of progressing into active disease, referred to as reactivation. 

Additionally, either one or two treatment classes may be used with this model, as indicated by the dotted 

lines. 

 The equations for this model are as follows, where s is the rate of latent stabilization, and p and q 

are the rates of progression to active disease for the recently and remotely latent classes, respectively: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅! 
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𝑑𝐿!
𝑑𝑡

= 𝑟!𝑅! − (𝑠 + 𝑝)𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 

Table 4:  Parameters used in the model with immune stabilization. The reinfection and relapse rates are fit 

to yearly reinfection and relapse risk data. The remaining parameters are extrapolated using data from 

both Borgdorff et al. (2011) and Dye et al. (2008) 

Parameter Symbol Value Source 

Reinfection Rate 𝑟!  0.05 per year Fit in this Study 

Relapse Rate 𝑟! 0.08 per year Fit in this Study 

Rapid Progression 

Rate 

p 0.16 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Immune Stabilization 

Rate 

s 0.78 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Reactivation Rate q 0.008 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 
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 Treatment variation can also be inserted into this model to produce the following equations, with 

the 𝑅! and 𝑅! classes representing those with and without elimination of the initial infection, respectively: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅! 

𝑑𝑅!
𝑑𝑡

= −𝑟!𝑅! 

𝑑𝐿!
𝑑𝑡

= 𝑟!(𝑅! + 𝑅!) − (𝑠 + 𝑝)𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 

Table 5:  Parameters used in the immune stabilization model with treatment variation. This model differs 

from the immune stabilization model by the addition of a single parameter for the fraction of treated 

individuals without elimination of the initial infection. This parameter was fit using the yearly reinfection 

and relapse risk data. 

Parameter Symbol Value Source 

Fraction in 𝑅! 𝑅!
𝑅! + 𝑅!

 
0.05 Fit in this Study 

Reinfection Rate 𝑟!  0.03 per year Fit in this Study 

Relapse Rate 𝑟! 0.68 per year Fit in this Study 
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Rapid Progression 

Rate 

p 0.16 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Immune Stabilization 

Rate 

s 0.78 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Reactivation Rate q 0.008 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

 

Waning Susceptibility 

 Individuals after treatment may have high susceptibility to recurrent disease, which decreases 

over time, due to immunosuppression from disease or treatment. We call this phenomenon waning 

susceptibility. 

 In the model, we modify the immune stabilization model to include waning susceptibility. All 

treated individuals begin in the high susceptibility class (𝑅!) and this population is transferred to the low 

susceptibility class (𝑅!) at a waning susceptibility rate w. In this case, it is assumed that the low 

susceptibility class has no susceptibility to relapse and a background risk of reinfection. This background 

risk was determined as the average risk of infection in areas of high endemicity. Cobelens et al. (2000) 

provides this information in the form of the monthly infection incidence in areas of high TB prevalence. 

In this study by Cobelens et al., individuals from the Netherlands who travelled to areas of high TB 

prevalence for 3-12 months were investigated. A TST was performed on the individuals before and after 

the trip to verify that the infection occurred during this time. It was found that 12 out of the 656 tested 

individuals contracted TB, 2 of which had active TB. The resulting monthly incidence that was calculated 
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in the study was 2.8 per 1,000 individuals. This was expanded to a yearly incidence of 33.6 per 1,000 for 

the current study, and was implemented in this model. 

 

Figure 5:  Flow diagram for the adjusted immune stabilization model with waning susceptibility of treated 

individuals to both reinfection and relapse. A compartment representing the population of treated 

individuals who cannot relapse may be added as well, as indicated by the dotted lines. 

 The resulting equations for this model are: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟! + 𝑤)𝑅! 

𝑑𝑅!
𝑑𝑡

= 𝑤𝑅! − 𝑟!𝑅! 

𝑑𝐿!
𝑑𝑡

= 𝑟!𝑅! + 𝑟!𝑅! − 𝑠𝐿! − 𝑝𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 
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𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 

Table 6:  Parameters used in the waning susceptibility model. The flow rates refer to the fraction of the 

population that is transitioning. The rates of reinfection, relapse, and waning susceptibility are determined 

in this study by fitting the models to yearly reinfection and relapse risk data, while the remaining 

parameters are extrapolated from Borgdorff et al. (2011) and Diel et al. (2008). 

Parameter Symbol Value Source 

Reinfection Rate 𝑟!  0.1 per year Fit in this Study 

Relapse Rate 𝑟! 0.05 per year Fit in this Study 

Rapid Progression 

Rate 

p 0.16 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Immune Stabilization 

Rate 

s 0.78 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Reactivation Rate q 0.008 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Waning Susceptibility 

Rate 

w 0.85 per year Fit in this Study 
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 Next, treatment variation can be inserted into this model as well. With the 𝑅! (initial infection not 

eliminated, high susceptibility) and 𝑅! (initial infection eliminated, high susceptibility) classes added, the 

equations are as follows: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟! + 𝑤)𝑅! 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑤)𝑅! 

𝑑𝑅!
𝑑𝑡

= 𝑤(𝑅! + 𝑅!) − 𝑟!𝑅! 

𝑑𝐿!
𝑑𝑡

= 𝑟!(𝑅! + 𝑅!) + 𝑟!𝑅! − 𝑠𝐿! − 𝑝𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 

Table 7:  Parameters used in the waning susceptibility model with treatment variation. This means that the 

fraction of treated individuals who have not eliminated the initial infection must also be fit using yearly 

reinfection and relapse risk data. 

Parameter Symbol Value Source 

Fraction in 𝑅! 𝑅!
𝑅! + 𝑅!

 
1 Fit in this Study 
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Reinfection Rate 𝑟!  0.1 per year Fit in this Study 

Relapse Rate 𝑟! 0.05 per year Fit in this Study 

Rapid Progression 

Rate 

p 0.16 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Immune Stabilization 

Rate 

s 0.78 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Reactivation Rate q 0.008 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Waning Susceptibility 

Rate 

w 0.85 per year Fit in this Study 

 

Host Heterogeneity 

 The last hypothesis tested is that of host heterogeneity. This assumes that supersusceptibility is 

the result of differences among individuals, either genetically or socioeconomically, which leads to higher 

susceptibility to disease in one population than another. Treated individuals would have higher 

susceptibility to subsequent disease because they are most likely the population that is more predisposed 

to the disease to begin with. This is accomplished in a model by separating the population into high (𝑅!) 

and low (𝑅!) susceptibility groups. In this case, the high susceptibility group will have high rates of 

recurrent disease while the low susceptibility group will only have the background risk of reinfection, 

33.6 per 1,000 treated individuals. 
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Figure 6:  Flow diagram of an adjusted immune stabilization model representing the addition of host 

heterogeneity. Two types of hosts are added, one with high susceptibility to both relapse and reinfection, 

and one with no susceptibility to relapse and a background susceptibility to reinfection. The entire 

population of treated individuals is divided between these two groups initially and there is no movement 

between them. A compartment representing the population without any risk of relapse can be inserted as 

indicated by the dotted lines. In this case, the treated population is first divided betweeen the two high 

susceptibility groups and the low susceptibility group, then subsequently divided between the two high 

susceptibility groups. 

 The resulting equations are: 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅! 

𝑑𝑅!
𝑑𝑡

= −𝑟!𝑅! 
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𝑑𝐿!
𝑑𝑡

= 𝑟!𝑅! + 𝑟!𝑅! − 𝑠𝐿! − 𝑝𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 

Table 8:  Parameters used in the host heterogeneity model. The total treated population is divided between 

the highly susceptible group and the low susceptibility group, and the fraction in each was fit, along with 

the reinfection and relapse rates, to yearly reinfection and relapse risk data. The remaining parameters are 

extrapolated from Borgdorff et al. (2011) and Diel et al. (2008) The rates that are shown refer to the 

fraction of the population that is being transitioned in the model. 

Parameter Symbol Value Source 

Reinfection Rate 𝑟!  0.6 per year Fit in this Study 

Relapse Rate 𝑟! 0.39 per year Fit in this Study 

Rapid Progression 

Rate 

p 0.16 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Immune Stabilization 

Rate 

s 0.78 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Reactivation Rate q 0.008 per year (Diel et al. 2008, 
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Borgdorff et al. 2011) 

Fraction in High 

Susceptibility Group 

𝑅!
𝑅! + 𝑅!

 
0.12 Fit in this Study 

 

 Finally, we can incorporate treatment variation once again to produce the following equations. 𝑅! 

is the highly susceptible class of individuals in which elimination of the initial infection did not occur, 

while 𝑅! is the highly susceptible class of individuals in which elimination did occur. 

𝑑𝑅!
𝑑𝑡

= −(𝑟! + 𝑟!)𝑅! 

𝑑𝑅!
𝑑𝑡

= −𝑟!𝑅! 

𝑑𝑅!
𝑑𝑡

= −𝑟!𝑅! 

𝑑𝐿!
𝑑𝑡

= 𝑟!(𝑅! + 𝑅!) + 𝑟!𝑅! − 𝑠𝐿! − 𝑝𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 

𝑑𝐴!
𝑑𝑡

= 𝑟!𝑅! 

𝑑𝐴!
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 
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Table 9: Parameters used in the host heterogeneity model with treatment variation. The fraction of the 

population that is in the 𝑅! class is fit to the yearly reinfection and relapse risk data along with the 

reinfection and relapse rates and the fraction in the highly susceptible group. 

Parameter Symbol Value Source 

Fraction in 𝑅! 𝑅!
𝑅! + 𝑅!

 
1 Fit in this Study 

Reinfection Rate 𝑟!  0.6 per year Fit in this Study 

Relapse Rate 𝑟! 0.39 per year Fit in this Study 

Rapid Progression 

Rate 

p 0.16 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Immune Stabilization 

Rate 

s 0.78 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Reactivation Rate q 0.008 per year (Diel et al. 2008, 

Borgdorff et al. 2011) 

Fraction in High 

Susceptibility Group 

𝑅! + 𝑅!
𝑅! + 𝑅! + 𝑅!

 
0.12 Fit in this Study 

 

 



	
	 25	
2.3 Fitting Procedure 

 Two fitting procedures are utilized in this study. The first uses the adjusted Borgdorff et al. 

(2011) data to determine three parameter values that are used in the immune stabilization model, the host 

heterogeneity model, and the waning susceptibility model. These are the within-host biological rates of 

rapid progression (p), immune stabilization (s), and reactivation (q). Although it is possible that these 

rates vary between hosts like the rates of reinfection and relapse, it is assumed for this paper that they are 

constant. It would likely improve the fits if they were allowed to be variable as well but it is assumed that 

they would do so consistently across the models and thus fitting the rates of relapse and reinfection will 

be sufficient to discriminate between the hypotheses. This was later verified using the rapid progression 

rate, the parameter most associated with variation in the model output of these three (D. W. Dowdy, Dye, 

and Cohen 2013). 

 The flow diagram for the section of these models being fit, along with the corresponding 

equations are as follows: 

 

Figure 7:  Flow diagram of the portion of the immune stabilization model that shows the progression of 

hosts to active disease after infection. This is assumed to be a biological constant regardless of the 

individual, so values determined for each transition rate will be used in all models containing this immune 

stabilization. 
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𝑑𝐿!
𝑑𝑡

= −𝑠𝐿! − 𝑝𝐿! 

𝑑𝐿!
𝑑𝑡

= 𝑠𝐿! − 𝑞𝐿! 

𝑑𝐴!"#
𝑑𝑡

= 𝑝𝐿! + 𝑞𝐿! 

 In the second fitting procedure, the remaining parameters for each model are fit to the Marx et al. 

(2014) data. The relative success of each fit is used to discriminate between the models. In this procedure, 

the reinfection rates for both classes of treated individuals (i.e. those with and without elimination of the 

initial infection) are treated as the same, despite the potential for heterogeneity. This is based on the 

assumption that the only difference among these individuals is the elimination of the previous disease that 

could have led to relapse. Otherwise they behave the same way in the model. 

 Using the programming language R, all models were fit with the function nloptr. The method of 

least squares was used in this fitting procedure by minimizing the equation (𝑦! − 𝑦!!)!!
!!!  where 𝑦! is 

the value of the data and 𝑦!! is the corresponding output of the model. The negative log-likelihood of 

each case was calculated and used to find the Akaike information criterion (AIC) with a correction for 

small sample sizes. These equations are as follows, where N is the number of data points used for fitting, 

RSS is the residual sum of squares determined from the optimization function, and k is the number of 

parameters in the model, including the standard deviation of the likelihood function. 

AIC = (2 ∗ −logL) + (2 ∗ 𝑘) +
2 ∗ 𝑘 ∗ (𝑘 + 1)
𝑁 − 𝑘 − 1

 

−logL =
𝑁
2
[1 + 𝑙𝑜𝑔(2𝜋) + 𝑙𝑜𝑔(

𝑅𝑆𝑆
𝑁
)] 
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3. Results 

3.1 Results from Literature 

 A similar study by Uys et al. (2015) has sought to determine the underlying cause of 

supersusceptibility. In this paper, a mathematical approach was used to determine the time-dependent 

rates of reinfection and progression to disease. However, using these rates to predict the annual risk of 

active disease due to reinfection produces an overestimate compared to the data used in the study (Uys et 

al. 2015). This could be attributable to the mathematical factor of assuming constant rates during the 

formulae derivation but fitting time-dependent rates, or it could be due to the assumption of a constant 

proportion of reinfection to relapse cases over time. The data from Marx et al. (2014) show that this 

proportion actually changes a great deal every year following treatment. Regardless, the goal of the 

present study is to utilize an alternative method to extend and improve this work. 

 

Figure 8:  Cumulative percentage of reinfection cases in the population over time after treatment for the 

initial episode. Here we show the data values used in Uys et al. (2015) and the polynomial fit to these 

values. Additionally, we show the resulting curve if the progression and reinfection rates determined from 

the paper were used to model reinfection cases over time. 
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3.2 Determining Within-Host Parameters 

 

Figure 9:  The percentage of infections that have progressed to active disease each year following initial 

infection. The data is extrapolated from Borgdorff et al. (2011) and Diel et al. (2008). The model 

representing the transition of individuals to active disease after reinfection (Figure 7) is fit to this data, 

and the resulting parameters are used for this study. This assumes that the parameters included in this 

model are constant between initial infection and reinfection. The resulting fit is used to plot the 

percentage of active cases of reinfection that should occur each year after reinfection. Additionally, 

parameters taken from the literature (Dowdy et al., 2013) are used to plot the results and the difference is 

shown. 

 The results after fitting the three within-host parameters to the adjusted Borgdorff et al. (2011) 

data (Figure 9) are very different from those given by the current literature (which are as follows: immune 

stabilization rate = 0.2 per year, rapid progression rate = 0.03 per year, reactivation rate = 0.0005 per 
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year) (D. W. Dowdy, Dye, and Cohen 2013). The immune stabilization rate is almost four times as high, 

correlating to an individual stabilizing after about 1.29 years rather than 5 years. The rapid progression 

rate is over 5 times as high, and the reactivation rate is 16 times as high. This could be attributable to the 

higher lifetime risk given by this data compared to the conventional estimates of 5-15%, which matches 

the lifetime risk attributable to the parameters from the literature. The high fit rapid progression rate may 

not be unreasonably high, however. Cobelens, et al. (2000) found that within 1 year of becoming infected 

with TB, approximately 17% of these individuals progressed to disease. Compared to the 15.6% risk of 

annual progression to disease for recently infected individuals (within 1.289 years) as determined with the 

fit, these parameters do not appear unreasonable. 

 When these parameter assumptions are relaxed and the rapid progression rate is allowed to be fit, 

there does not appear to be any substantial improvement of the fits, except in the case of the immune 

stabilization model (Figure 12, Table 11). In this case, there is an improvement in the fit of relapse cases 

but not that of reinfection cases. This may be due to the high reinfection rate in the entire population but 

low rapid progression rate, which would effectively reduce the pool of treated individuals so that relapse 

cases would plateau quickly (due to exhaustion of the source population). This would not impact 

reinfection cases significantly because the low progression rates would lead to a large latent population, 

and no new behavior in active cases would be seen. 

 The fact that fitting the rapid progression rate does not change the resulting fits lends credence to 

the parameterization used, which means that despite the high sensitivity of the models to changes in rapid 

progression rates (infection rate and rapid progression rates are by far the most sensitive parameters) (D. 

W. Dowdy, Dye, and Cohen 2013), the results in this study are not greatly dependent on this. Thus, the 

estimates used are not detrimental to this study. In fact, the fitted rapid progression rates calculated for the 

waning susceptibility model and host heterogeneity model without treatment variation are identical, 0.19 

per year, which is also close to the estimated parameter from the Borgdorff et al. (2011) data, 0.16 per 
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year. Both of these are much larger than the 0.03 per year rate from the current literature (D. W. Dowdy, 

Dye, and Cohen 2013), which also leads credence to the ususually high rates that were estimated. 

3.3 Model Discrimination 

 When comparing each model’s ability to match the shape of the data, it appears as if the eventual 

plateau is the most difficult to aspect to match (Figure 10). No model adequately represents the reduction 

in new cases of both relapse and reinfection, but several models do match the shape of the relapse curve. 

Interestingly, this is not a matter of complexity, since the immune stabilization model does not show a 

plateau while the simple treatment variation model does. This is accomplished in the latter by allowing 

only a small number of individuals to relapse, with a fraction of 0.05 in the 𝑅! class (Table 2). In this 

way, the population is exhausted and no further relapses may occur. This is evidenced by the lack of any 

reduction in the corresponding reinfection incidence over time. 

 Both the waning susceptibility and host heterogeneity models fit equally well to the data (Table 

10). The likelihoods associated with both of these hypotheses are much lower than the other models, as 

are the AICs despite the increase in parameters. However, these values are identical, so distinguishing 

between the validity of the two hypotheses is impossible given the current results. Both models also 

demonstrate the same shape when fit to the data (Figure 10). This may be indicative of the two models 

being treated similarly in the fitting process, meaning that despite the different modes of action behind the 

hypotheses, the compartmental models used to describe them act the same. The parameter values fit in 

both models do not demonstrate any identical behavior (Tables 6 and 8) however. The reinfection rate in 

the host heterogeneity model is even 3.5 times that of the waning susceptibility model, and the relapse 

rate is 3.25 times as high. This is balanced by the lower proportion of individuals that are in the high 

susceptibility group in the host heterogeneity model (0.29), while all treated individuals are in the high 

susceptibility group for about 2 years in the waning susceptibility model. 
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 The same behavior is seen when allowing treatment variation (Figure 11). In fact, in the fits for 

these two hypotheses, the fraction of the population in the 𝑅! class was 1 (Tables 6 and 8), so the entire 

population was in this class. Despite any biological meaning behind this assumption, this did not 

correspond with any increased accuracy of the models. This is likely due to the nature of the 

compartmental model, which contains simplified representations of groups within the population. In this 

case, a single treated group could explain the entire population just as well as two treated groups since the 

relapse rate can be scaled according to the population, and a lower rate in the overall population is just as 

accurate as a higher rate for a smaller population. Interestingly, this indicates that more freedom between 

the reinfection and relapse rates (by separating the population depending on the likelihood of each) does 

not improve the fits. This means that drawing from the same treated population does not complicate the 

dynamics, which may be because of the size compared the number of people who actually experience 

secondary disease. If this proportion were larger, then the competition between the two would be more 

extreme, especially as time goes on and the population is exhausted. However, in this case the pool is 

sufficiently large to negate competition as much as two separate populations. The only case in which 

treatment variation improved the fit was with the immune stabilization model. However, the improvement 

was not present in reinfections (Figure 11). In the relapse cases, this addition actually allowed for the 

plateau. This is because, similarly to the case of the simple treatment variation model, a very small 

fraction of the population was in the 𝑅! class (Table 5), so this group could be exhausted quickly with 

relapse and cause a quick decrease in the apparent rate. The biological validity of this cannot be discussed 

without information on treatment outcomes, a likely invasive investigation. 

 In the case of the immune stabilization model, either fitting rapid progression or adding this new 

𝑅! group are sufficient to allow the relapse cases to be fit fairly well (Figures 14 and 15). When either 

addition is used, both the AIC and likelihood is improved (Tables 10 and 11). However, there is only a 

marginal improvement in the reinfection cases fit when both additions are used, as shown by the 

difference in likelihood, but the addition of another parameter required for this actually worsens the AIC 
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(Figure 13, Tables 10 and 11). This also produces the most unusual parameter set, with an extremely high 

relapse and rapid progression rate as well as a very low reinfection rate (Table 5). The lack of significant 

improvement in the fit associated with this enormous change in parameter estimations indicates that these 

parameters are unlikely to be biologically valid. 

 Interestingly, as was the case without fitting the rapid progression rate, there does not appear to 

be significant improvement by implementing treatment variation in any models with the rapid progression 

rate fit (Figure 13, Table 11). However, this is the only case in which the host heterogeneity model and 

waning susceptibility model did not match in both shape and likelihood. The host heterogeneity model 

fits slightly worse in the relapse cases, reaching its plateau within the first year and not changing at all 

afterward. This indicates a small fraction in the 𝑅! class that is immediately exhausted, which is 

especially likely given the high rates of reinfection and relapse previously seen in the host heterogeneity 

model. Indeed, the fraction in the 𝑅! class is 0.458317. The difference is minor in the likelihood output 

when compared to the waning susceptibility model (Table 11), but this may indicate that, if given more 

freedom, these two models may differ more in their abilities to match the data. 

 The biggest improvement to the fit and the likelihood values of the waning susceptibility and host 

heterogeneity models occurs when the background reinfection rate is allowed to be fit (Figure 14, Table 

12). By allowing this, both the reinfection and relapse plots follow the shape of the data. This is because 

the reinfection rate is set to zero for the low-susceptibility groups of these models, which means that there 

can be a limit on the long-term trend. In the previous cases, this was not possible because there was 

always at least a background risk of reinfection. This would mean that those in the low-susceptibility 

groups become immune to further tuberculosis, which seems biologically unlikely but interesting 

nonetheless. 
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Figure 10:  These two plots show the results of the fits for each proposed model. The cumulative number 

of relapses (right) and reinfections (left) for every year in a population of 100,000 treated individuals are 

shown based on the best fits of these models. 
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Table 10:  The results of the fitting procedure for each model. The likelihood that the difference between 

the fitted results and the data is due to random chance is shown, as well as the AIC values, which takes 

the number of parameters used to reach such a likelihood into account. The bolded models show the best 

fits in terms of AIC. 

Model Likelihood AIC Parameters 

Instantaneous 93.9 197.79 2 

Treatment Variation 

Simple 

89.98 195.96 3 

Exposed Class 83.9 192.8 4 

Immune Stabilization 90.1 190.21 2 

Immune Stabilization 

Treatment Variation 

84.35 184.7 3 

Waning 

Susceptibility 

82.7 181.4 3 

Waning Susceptibility 

Treatment Variation 

82.7 190.4 4 

Host Heterogeneity 82.7 181.4 3 

Host Heterogeneity 

Treatment Variation 

82.7 190.4 4 
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Figure 11:  The benefit that adding treatment variation provides to each model in terms of ability to fit the 

data is shown. Each model is fit to the cumulative number of relapses (right) and reinfections (left) each 

year following treatment, in a population of 100,000 treated individuals. 

 

Figure 12:  The assumptions made to the rapid progression rate were relaxed to determine whether or not 

the parameterization assumptions were valid. The ability for each model shown, with and without the 
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rapid progression rate fit, to match the observed data for the cumulative number of relapses (right) and 

reinfections (left) each year following treatment in a population of 100,000 people is shown. 

 

 

Figure 13:  With rapid progression rate no longer fixed, these models are fit to the data on cumulative 

number of relapses (right) and reinfection (left) each year following treatment in a population of 100,000 

treated individuals. The waning susceptibility, host heterogeneity, and immune stabilization models are 

compared to their counterparts with treatment variation to determine the effect. 
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Figure 14:  Allowing the background reinfection rate to be fit and its effect on the previous plots of host 

heterogeneity (below) and waning susceptibility (above). 
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Table 11:  The results of the fitting procedure for each model with the rapid progression rate no longer 

fixed. The likelihood that the difference between the fitted results and the data is due to random chance is 

shown, as well as the corresponding AIC values. The bolded models show the best fits in terms of AIC, 

demonstrating the best balance of model complexity and accuracy. 

Model (With 

Progression Fit) 

Likelihood AIC Parameters 

Immune Stabilization 86.04 188.07 2 

Immune Stabilization 

Treatment Variation 

82.5 190.01 3 

Waning 

Susceptibility 

79.54 184.07 3 

Waning Susceptibility 

Treatment Variation 

79.54 199.07 4 

Host Heterogeneity 79.54 184.07 3 

Host Heterogeneity 

Treatment Variation 

80.99 201.98 4 
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Table 12:  The results of the fitting procedure while allowing the background reinfection rate to be fit. 

The effect this has on the host heterogeneity and waning susceptibility models with and without treatment 

variation and the rapid progression rate fit is shown. These effects are quantified by the likelihood that the 

difference between the fitted results and the data is due to random chance and the AIC values that 

correspond this. The bolded models show the best fits in terms of AIC, demonstrating the best balance of 

model complexity and accuracy. 

Model (With Background 

Reinfection Rate Fit) 

Likelihood AIC Parameters Background 

Reinfection 

Rate 

Waning Susceptibility 65.77 156.54 4 0 per year 

Waning Susceptibility- 

Treatment Variation 

65.77 171.54 5 0 per year 

Waning Susceptibility- 

Progression Fit 

65.34 170.67 5 0 per year 

Waning Susceptibility- 

Treatment Variation and 

Progression Fit 

64.64 199.28 6 0 per year 

Host Heterogeneity 65.77 156.54 4 0 per year 

Host Heterogeneity- Treatment 

Variation 

77.61 195.22 5 0 per year 
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Host Heterogeneity- 

Progression Fit 

65.34 170.67 5 0 per year 

Host Heterogeneity- Treatment 

Variation and Progression Fit 

64.92 199.83 6 0 per year 

 

4. Discussion 

 By comparing the ability for these models to fit the observed data of relapse and reinfection after 

treatment for TB, it is clear that both waning susceptibility and host heterogeneity can explain the 

temporal behavior of secondary disease equally well. While the simplifications made to the first few 

models could explain the inability for them to match the curve in cumulative recurrent disease cases, even 

the more complex and biologically accurate immune stabilization model cannot fit the data appropriately. 

This indicates that there is some unique behavior present in TB infections subsequent to the index case. 

At the global level, the absence of these behaviors in models is likely not impactful, but given the large 

spatial heterogeneity of tuberculosis cases, this can be incredibly impactful in some predictions made 

from models. With 64% of TB-related deaths coming from only 7 countries (“Fact Sheet on 

Tuberculosis” 2018), hyperendemic communities are vital to consider in modeling tuberculosis, and it is 

in these areas that recurrent disease is most likely, due to the high prevalence. Thus, current models are 

less useful in the areas where they most need to be used. Improved models must incorporate some unique 

behavior in post-treatment recurrent disease, and determining what this behavior is is a vital first step. In 

this case, both hyotheses tested are equally likely and distinguishing between each was impossible. 

 It is worth noting that all studies used in this investigation used sputum smears or cultures for 

determination of active tuberculosis. This means that the data used is likely an underestimate, since these 
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tests are not completely accurate (Pai et al. 2016, Siddiqi, Lambert, and Walley (2003)). Smear tests, for 

example, are about 50-60% accurate (Siddiqi, Lambert, and Walley 2003). The studies including culture 

tests do not have the same limitations, but still are not accurate for children who cannot produce sputum 

or for extrapulmonary TB if not specifically tested for it. 

 Additionally, this study is limited by the variety of different papers that must be used in order to 

attain data. This is a limitation created from necessity, as the tuberculosis data is difficult to find for these 

specific parameters and questions asked. In order to account for this, freedom in the parameter values was 

allowed whenever possible. 

 It is possible that both host heterogeneity and waning susceptibility impact population dynamics 

for tuberculosis. Many studies have indicated that genetic factors play a role in tuberculosis susceptibility 

(Abel et al. 2018, Puffer (1944), Kallmann and Reisner (1943), Cobat et al. (2012)). One study has shown 

that about 65% of TST variability can be explained with a codominant gene (Cobat et al. 2012). 

Additionally, familial studies (Puffer 1944) and twin studies (Kallmann and Reisner 1943) have shown 

evidence for host genetic factors playing a role in progression to active TB. Additionally, it has been 

found that the immunosuppression does occur in TB-infected individuals (Sahiratmadja et al. 2007, 

Hirsch et al. (1999)). One study showed that IFN-𝛾 production is reduced in patients with active TB and 

this reduction is proportional to the severity of the disease, but this effect is reversed with cure 

(Sahiratmadja et al. 2007). Another study showed that this IFN-𝛾 depression remained for at least 12 

months (Hirsch et al. 1999). Both of these studies could support a form of waning susceptibility in the 

form of a reversible immunosuppression after active TB. 

 This current study was not comprehensive. There are many other possibilities for the behavior 

seen in recurrent disease and investigations into these may help with future efforts to improve 

tuberculosis modeling. Additionally, in the future, a model incorporating both host heterogeneity and 

waning susceptibility may help to determine the impact of both. Furthermore, more comprehensive 
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studies on the characteristics of those who experience recurrent TB episodes may indicate which factors 

(e.g. location, genes, immunosuppression, infection of a family member, etc.) put people at the most risk. 

Spatial heterogeneity is important in tuberculosis prevalence (“Fact Sheet on Tuberculosis” 2018), so 

efforts to alleviate the prevalence in areas with high recurrence may make the most impact. If this is 

accomplished, the elimination of TB may become much more likely, by focusing efforts where it matters 

most. 
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