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Abstract 

 

Analysis of COVID-19 and Chikungunya Co-circulation between 2019 and 2020 in the 

community-based cohort of Pau da Lima, Salvador, Brazil 

 

By Ian Fowler 

 

 

An outbreak of chikungunya in the Brazilian state of Bahia leading from 2019 into 2020 created a co-

circulation event in which the populace was subjected to both the arbovirus as well as the emerging SARS-

CoV-2 global pandemic. A cohort study was being conducted in the Pau da Lima neighborhood to measure 

arbovirus infection rates which was then adapted to capture data regarding SARS-CoV-2 within the 

population. The spatial distributions of the SARS-CoV-2 status, chikungunya infection status, and other 

relevant covariates were mapped, and the simultaneous outbreaks were described. An infection rate of 

approximately 50% for chikungunya virus and 45% for SARS-CoV-2 was identified between 2019 and 

2020, which represents significantly high transmission rates for both infections. Moreover, 42.2% of those 

with incident chikungunya virus infection in 2020 had positive results for SARS-CoV-2 IgG ELISA 

compared to 47.3% among those with prevalent chikungunya virus infection in 2019 and 46.8% of those 

with no chikungunya virus infection. No statistically significant association was identified between 

chikungunya status and SARS-CoV-2 incidence and there was no evidence of a spatially dependent process 

affecting the relationship. Together this suggests that the high rates of infections resulting from both viruses 

were independently co-circulating infections that did not interact, spatially or otherwise. Further research 

would be required to determine if this pattern is consistent across other populations that experienced 

simultaneous SARS-CoV-2 and arbovirus outbreaks. 
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1. Introduction 

 

1.1 Chikungunya 

Chikungunya virus was first discovered in the 1950s in Africa from which it spread to Asia in the 1960s 

and the Americas in the 1980s. However, there is evidence of infections dating back to the 1600s or earlier. 

[1] Initial cases of chikungunya in the Americas were solely imported cases with no local transmission and 

autochthonous transmission was not identified until 2013 in San Martin. [2] Since then, the range of the Ae. 

aegypti and Ae. albopictus mosquitos have continued to expand, and with them, the number of chikungunya 

epidemics, as well as endemic regions, have increased. Brazil has experienced chikungunya outbreaks 

consistently for most of the past decade. In 2014, the first two autochthonous outbreaks occurred in states 

of Amapá and Bahia from which the virus spread primarily within the north and northeastern regions before 

outbreaks began to be identified throughout the rest of the country. [3] Now Brazil has the highest rate of 

cases in the world with over 100 per 100,000 persons and with a total of 265,289 confirmed cases in 2022. 

[4] 

 

1.2 SARS-CoV-2 

Severe Acute Respiratory Syndrome Coronavirus 2, or SARS-CoV-2, is a novel human infection first 

identified in China at the end of 2019. The virus spread internationally throughout 2020 and was declared 

by the World Health Organization (WHO) as a global pandemic on the 11th of March. As of January 2023, 

there have been 674,914,950 cases worldwide, leading to over 6 million deaths. [5] Until the end of 2020, 

there were no available pharmaceutical preventions for SARS-CoV-2 infections and the primary strategies 

recommended by the WHO or the Center for Disease Control and Prevention (CDC) included face 

coverings, social distancing, self-isolation, and other non-pharmaceutical interventions (NPIs). [6, 7] These 

strategies proved mostly successful, especially where rigorously practiced or enforced, however, many 

situations which served to increase transmission rates also limited the effectiveness of NPIs. 
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The first case of SARS-CoV-2 was confirmed in Brazil on the 26th of February 2020, having been imported 

from Europe by upper class Brazilians. [8] By the end of 2020, approximately 7.7 million cases had been 

identified in Brazil leading to over 190,000 deaths. [9] The SARS-CoV-2 pandemic in Brazil continued to 

spread, creating a “hotspot” of transmission that placed it just behind the United States and India on the 

global scale. [9, 10] The rate of infections within the country is compounded by the proportion of the 

population living in “urban slums or informal settlements,” approximately 15%, that are affected by an 

increased SARS-CoV-2 infection risks and increased risk of negative outcomes; health, social, and 

economic; associated with the pandemic. [11] 

 

1.3 Co-circulation 

While chikungunya and SARS-CoV-2 represent two distinct viral infections with differing causes, patterns, 

and transmissions, there are notable similarities through which co-circulation events may be produced. 

 

Low socioeconomic neighborhoods within Brazilian cities have become “hotspots” for chikungunya virus 

infections, as they provide ideal conditions for the mosquito vectors combined with limited access to health 

care and other necessary resources. [12] With the lack of regular access to drinking water and insufficient 

sanitation in informal settlements, water must be collected or stored in informal containers providing the 

mosquitos with ample breeding sites. [13] Furthermore, as the Ae. aegypti mosquitos thrive in densely 

populated areas, and the overcrowding of many low-income neighborhoods in Brazilian metropolitan areas, 

creates additional opportunities for infectious spread.  

 

SARS-CoV-2 infection also disproportionally affects certain groups within vulnerable populations. 

Individuals between the ages of 20 and 59 years old are generally the most infected and current literature 

is divided regarding the role of biological sex in both SARS-CoV-2 infections and outcomes. [14, 15] 

Conversely, there has been strong evidence that SARS-CoV-2 infections are more prevalent in ethnic and 

racial minorities, which are inherently linked to socioeconomic class standings. [16] Moreover, certain 
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essential occupations, specifically those in public-facing or crowded settings, increased the risk of SARS-

CoV-2 infection. [17] There is additional evidence of socio-economic factors and the associated increase 

in infection risk. [18] Factors such as economic status, crowded living conditions, poor sanitation, and poor 

access to health services exacerbated the spread of the pandemic. [17, 18] 

 

The symptomology of both chikungunya and COVID-19 are remarkably similar, creating difficulty for 

clinical diagnosis. There is evidence suggesting that these similarities have led to the misdiagnosis of 

COVID-19 as chikungunya, especially early in the pandemic, suggesting that, during concomitant epidemic 

events, greater attention must be taken when clinically diagnosing diseases and that laboratory confirmation 

of diagnosis is of increased necessity. [19] 

 

There is little available data estimating the association between chikungunya virus infection and its effect 

on subsequent SARS-CoV-2 infection. A study conducted in Espírito Santo, Brazil investigating SARS-

CoV-2 incidence rates in populations with varying levels of endemic arbovirus infections found that, in 

areas with higher rates of chikungunya infections, COVID-19 reached incidence levels varying between 

1.79 to 3.40% as compared to approximately 2.28% at the state level. [20] A second study conducted in 

Espírito Santo found that only 2.85% of participants with evidence of dengue or chikungunya infections 

were positive of SARS-CoV-2 according to chemiluminescent microparticle immunoassay. [19] In another 

study from Guerrero, Mexico, 10.23% of participants who tested positive for SARS-CoV-2 had evidence 

of concurrent or recent chikungunya infection. [21] Studies were also identified describing the relationships 

between SARS-CoV-2 infection and other vector-borne infections. A co-infection rate for dengue was 

found to be 10.3%, 14.3% for malaria, and 11.4% for overall vector-borne co-infection in a study conducted 

in Luanda, Angola. [22] A study of Amazonians living in Brazil found that those with prior dengue virus 

infections were at increased risk for clinically apparent SARS-CoV-2 infection. [23] This finding is 

corroborated by the research of the WHO while contradicting studies conducted by Nicolelis et al. and 
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Silvestre et al. which suggest prior dengue infection may have a protective relationship with later SARS-

CoV-2 infection. [24 – 26] 

 

1.4 Motivation 

The present study seeks to investigate the relationships between chikungunya virus immunological status 

(no infection, incident infection, or prevalent infection); and incident SARS-CoV-2 infection in a 

prospective cohort in Brazil. Co-infections between the SARS-CoV-2 and other concurrent endemic or 

epidemic diseases have been rarely studied, with especially little work dedicated to the interactions between 

pathogens from entirely different classes. Furthermore, no identified study has attempted to explore these 

connections while engaging in a spatially dependent analysis.  

 

To this end, data from a cohort study conducted in a selected neighborhood within Pau da Lima, Salvador, 

Brazil, was analyzed. The study began in 2019 to investigate chikungunya virus and other arboviruses 

infection rates in the closed population, but as the SARS-CoV-2 pandemic grew in prevalence within Brazil, 

the focus was shifted to also include the new viral infection, which may mimic many of the symptoms of 

arbovirus infection. Additionally, since the study period was completed before the advent of the SARS-

CoV-2 vaccines, the SARS-CoV-2 infections identified through IgG antibody development represent true 

incident infections rather than an immune response to the vaccine. 

 

2. Methods  

 

2.1. Community Based Cohort Study 

Conducted between 2019 and 2021, the prospective cohort included residents of 252 surveyed households 

located within the Pau da Lima neighborhood of Salvador, Brazil. The recruitment and initial survey 

occurred between September and November of 2019 with a follow-up period from October to December 

of 2020. The primary intention of the study was to estimate the prevalence and incidence of arbovirus 
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infections; specifically, chikungunya, dengue, and zika; within the vulnerable populations of Salvador, 

however as the SARS-CoV-2 pandemic emerged in the region at the beginning of 2020, the focus was 

shifted to also gather data on the novel infection.  

 

2.1.1 Study Setting 

Bahia is a Brazilian state located in the northeast region along the coast. It is the fourth largest state and, at 

the time of the 2022 national census, has a population of 14,659,023 people. The capital of Bahia is the city 

of Salvador which houses 2,610,987 people, including the approximate 24,000 residents of Pau de Lima. 

[27] The study was conducted within a selected area of the Pau da Lima neighborhood in Salvador, Bahia, 

Brazil, and the area was defined by its proximity to the Sāo Marcos Health Unit, as well as its inclusion in 

previous studies. [28, 29] It included 606 active study participants distributed across 252 households. The 

Pau da Lima neighborhood is an urban slum according to the definition established by UN-HABITAT; 

thus, the majority of the participants are at increased risk for infectious diseases as they lack equal access 

to health care, sanitation, housing, and social or economic resources.  

 

2.1.2 Sample Selection 

Participants for the cohort were recruited through random selection of households; volunteers within the 

community interested in participating were also included. After an initial census of the households in the 

study area, 200 households were randomly selected and the members of those households, who slept in the 

residence for at least three nights a week, were invited to participate in the study. Community volunteers 

who did not live in the selected households were also able to participate in the study. Participants were 

limited to those over the age of six months old and those who were under 18 years old signed informed 

assent forms, with parental consent, before participation, while those 18 or older signed informed consent 

forms. A second round of consent documents was produced and signed upon modification of study 

procedures to address the SARS-CoV-2 pandemic. 
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2.1.3 Data Collection 

Initial data collection involved both the administration of a standardized questionnaire for all participants 

as well as the collection of blood for the conduction of enzyme-linked immunoassay (ELISA) analysis to 

detection of arboviruses and SARS-CoV-2 antibodies in the sera. EUROIMMUN ELISA was used for the 

SARS-CoV-2 IgG and chikungunya virus IgG analyses while the chikungunya virus IgM ELSIA was 

provided by InBios International Inc. Samples from every participant were tested at enrollment and during 

the predetermined follow-up periods for antibodies using ELISA analysis to identify past or present 

infections. 

 

The questionnaire collected relevant participant demographic information including, but not limited to, 

questions regarding sex, age, skin color, education level, occupation status, household monthly income, and 

socio-economic status. The questionnaire also included questions regarding the prior symptoms compatible 

with chikungunya virus, and later SARS-CoV-2, infection as well as the history of past medical suspicion 

of chikungunya and potential exposure events. 

 

2.1.4 Case Criteria 

A SARS-CoV-2 infection was defined upon the detection of IgG SARS-CoV-2 antibodies in sera obtained 

between 2019 and the follow-up in 2020. Furthermore, cases were restricted to those with positive results 

between February 2020, when the first case of SARS-CoV-2 was recorded in Brazil, and the end of 

December of that same year, before the release of the COVID-19 vaccines. With this temporal window, the 

likelihood of capturing true cases among those testing positive for SARS-CoV-2 antibodies was greatly 

increased. 

 

The immunological status in relation to chikungunya virus infection allowed for the classification of the 

study participants into three categories: prevalent infection, incident infection, and no infection. All three 

categories were defined from the ELISA IgG and IgM antibody tests for chikungunya. Prevalent infections 
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or historic infections were defined as those with positive ELISA results at the time of study enrollment, 

suggesting chikungunya virus infection predating the study period. Incident infections were defined as 

positive ELISA results occurring during the follow-up period, between October and December of 2020, 

among those who were chikungunya negative at enrollment. Finally, those who never returned a positive 

result for chikungunya antibodies were defined as no infection. 

 

2.2. Covariate Distributions 

The covariates included in the analyses were selected based upon a review of the literature surrounding 

SARS-CoV-2 and chikungunya virus infections and due to a priori criteria. The distribution of each 

covariate included in the regression models was mapped using kernel density estimation. These surfaces 

illustrated the distribution of various factors within the study population and how, visually, they relate to 

the distribution of chikungunya and SARS-CoV-2 infections. 

 

Demographic characteristics included sex, age, skin color, education history, marital status, employment, 

family size, family income, and others. Sex (male or female), age (continuous), and skin color (white, black, 

mixed, Asiatic, or indigenous) were self-reported, and it should be noted that the collection of skin color 

data is used as a proxy for racial and ethnic groups within the community and specifically acts as a surrogate 

for socioeconomic status and disparities. Employment was also self-reported as a binary yes or no.  

 

Socio-economic status was defined as the social class according to the Critério Brazil as outlined by the 

Brazilian Association of Research Companies (ABEP). The population was divided into six class 

categories: A, B1, B2, C1, C2, and D-E. These classes represent an aggregation of monthly household 

income combined with other economic resources with Class A representing the highest socioeconomic class 

and Class E representing the lowest.  
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2.3. Regression Models 

To model the effects of chikungunya virus immunological infection status (incident infection, prevalent 

infection, or no infection); and the selected covariates on the likelihood of SARS-CoV-2 infection within 

the study population, two classes of regression models were employed: a linear probability model and a 

logistic regression. These two classes of models are then further divided between aspatial and spatial 

models. All the models shared the same potential confounders.  

 

The linear probability and logistic regression models are primarily used to estimate the association between 

chikungunya infection status and incident SARS-CoV-2 infection. The spatial econometric models, based 

upon the linear model, and the geographically weighted regression, based upon the logistic regression, are 

used to investigate potential spatial effects upon the association and spatial heterogeneity throughout the 

population, respectively. After these regressions are run, additional point estimates are generated, 

accounting for the spatial processes, which can be compared to the associations determined by the aspatial 

models. These comparisons are intended to help characterize the relationships between the co-circulating 

viruses.   

 

2.3.1 Linear Probability Model [30] 

Spatial econometric models, which help to describe the relationships between “spatial spillovers” of the 

exposure, outcome, or both, cannot be run using a logistic regression formula. Thus, to satisfy this 

requirement, the binary SARS-CoV-2 incidence outcome data was represented using a linear probability 

model. This model will act as a direct point of comparison for the three econometric models as they share 

similar mathematical processes.  

 

The linear probability model may violate the assumption that the data is normally distributed due to the 

binary results of the outcome, however, this violation has a minimal effect on the β estimates for the 

relationships between the covariates and the outcome. This represents an application of the ordinary least 
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squares formula to the binary outcome data of SARS-CoV-2 incidence. The estimation represents the 

covariate conditions associated with a one unit change in the outcome status, in this instance, that represents 

SARS-CoV-2 infection. The primary discrepancy in the linear probability model as compared to the logistic 

regression is applied to the standard error resulting from the linear model. While the standard errors from 

the linear probability model violate the normalcy assumption, the normalcy of the outcome may remain 

intact as it is conditioned on the value of the covariates. Thus the linear probability model can effectively 

represent binary outcome data. 

 

An aspatial linear probability model was constructed using the lm( ) package, which will share its formula 

with the spatial econometric models, being run in comparison. 

 

2.3.2 Logistic Regression Model 

Unlike the spatial econometric models, the geographically weighted regression can run using a logistic 

regression formula. In order to fit the parameters and create an aspatial comparison model, a logistic 

regression was also included in the analysis. This regression used the glm( ) package in R Studio. For the 

comparisons between modeling approaches, the logistic model was designed to be roughly equivalent to 

the linear probability model, described above.  

 

2.4. Spatial Econometric Models [31] 

The spatial economic models, described further below, represent, within a regression formula, the spatial 

spillover of the exposure, outcome, or both and how it affects the relationships between participants in the 

study. As opposed to the aspatial models, linear or logistic, the econometric models consider the effect the 

exposures and outcomes of individuals within the analysis have on one another, whereas the aspatial models 

only consider the exposure status of the individual. This process involves the direct inclusion of spatial 

dependence in a regression that estimates the effect of chikungunya status on SARS-CoV-2 incidence while 

addressing multiple covariates. This is achieved by including a representation of the processes by which 
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the variables interact through the spill over. These models are especially effective in infectious disease 

analyses, as is the case with this report, due to its simulation of infectious processes in which the exposure 

or outcome status of one individual is dependent on the status of those around them.  

 

Spatial econometric models are modifications to linear regressions in which the distribution of the data is 

assumed to be normal and independent. As linear models generally use rate or risk outcome data and the 

outcome data in this study is represented as a binary, linear probability models, as discussed above, were 

employed to allow for the use of the econometric models within these circumstances. The resulting 

coefficients from these models can be compared to the aspatial model to estimate the effect of the spatial 

processes on the association of interest. 

 

2.4.1 Spatial Error Model 

The spatial error model, using the errorsarlm( ) function and the inverse distance neighbor weights matrix, 

represents unmeasured autocorrelation as a result of unknown covariates. This model reflects a spatial 

dependence among variables not accounted for by including a correlation coefficient for the model’s 

inherent statistical error (λ) which ranges from -1 to 1 with values approaching either extreme representing 

greater statistical correlation. The weights matrix allows the distance between neighbors to contribute to 

the likelihood and the intensity of the spatial dependent events. 

 

2.4.2 Spatial Lag Model 

Conversely the spatial lag model represents SARS-CoV-2 spatial dispersion events resulting in 

autocorrelation in the regression model. The model includes a representation of the “spatially lagged value 

of the neighbor’s outcome” and its effect on an individual’s outcome as ρ which, like λ, also ranges from -

1 to 1. Put simply, the SARS-CoV-2 status of one individual affects the status of their neighbors, just like 

an infection would spread, and this is considered along with the other variables included in the model. The 

lagsarlm( ) function is employed and, as with the other econometric models, the neighbor matrix allows for 
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the weighting of the spatial dependence of the points as a function of their distance from one another. This 

represents a spatial contagion parameter and is an effective model of the spread of SARS-CoV-2. 

 

2.4.3 Spatial Durbin Model 

Both exposure and outcome spillover events are considered in the spatial durbin model which is an 

extension of the spatial lag model and also uses the lagsarlm( ) but sets the durbin option to “TRUE.” This 

allows for same process considering spatial spillover of SARS-CoV-2 outcome in the previous model to 

also apply to the chikungunya status of each participant. Both the measures of the exposure for the given 

individual and the measures of the exposure and outcome for the individual’s neighbors, as defined by the 

inverse distance matrix, are factored into the association with the outcome. Again, as both SARS-CoV-2 

and chikungunya are spread through infectious processes, although with different pathways, this 

econometric model allows for an effective representation of the physical systems while accounting for 

spatial autocorrelation. 

 

2.4.4 Model Comparisons 

To understand the processes by which the relationship between chikungunya status and SARS-CoV-2 are 

connected, the abilities of the three econometric models must be compared to determine which has the best 

“fit” and most effectively explains the autocorrelation seen in the aspatial models. The models are compared 

using the Akaike Information Criteria, or AIC, which combines the number of independent variables in 

each model with the maximum likelihood estimates in order to quantify the amount of variation in the data 

that each model leaves unexplained. Thus, the model with the lowest AIC, among those compared, is the 

best fit for the data.  

 

2.5. Geographically Weighted Regression Model [32] 

To explore variations in parameter values across the study area and to determine the role of spatial non-

stationarity in the exposure-outcome relationship, a geographically weighted regression model was 
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designed for the analysis. The model shares its formula with the aspatial logistic regression and generates 

an estimate of the association for each point, or in this case each participant, using an iterative process 

repeating the model with a pre-determined bandwidth. These two models can then be compared to estimate 

how the odds ratio changes throughout the study area and where it differs from the aspatial model. 

 

The analysis involves the comparison between a global model, in which stationarity is assumed and one 

value for each parameter is applied to the entire study area, versus a local model, which allows for the 

testing of non-stationarity by allowing the parameters to vary throughout space. This process describes the 

distribution of β estimates as normal disease mapping would describe prevalence. Thus, the geographically 

weighted regression helps to illustrate patterns in the data generating processes underlying the relationship 

between SARS-CoV-2 and chikungunya status. The model was run using the GWmodel( ) package. 

 

2.5.1 Optimizing Kernel Bandwidth 

In order to set the area in which each run of the geographically weighted regression will include, the kernel 

bandwidth must be optimized, similar to the process completed during the kernel density estimations. As 

before, the bandwidth is set to adaptive to best address density variations throughout the study area. This 

was completed using the bw.gwr( ) function which accounts for variations associated with all of the included 

covariates.  

 

3. Results  

 

3.1. Description of Data 

3.1.1 Population Characteristics 

A sample of 606 individuals across 149 households in Pau da Lima community participated in the study. 

374 (61.7%) individuals across 211 unique households were included in this analysis with 232 participants 
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excluded due to missing data in fields relevant to the regression models and required for some of the 

complex analytical methods.  

 

168 (44.9%) of the participants tested positive for SARS-CoV-2 by ELISA analysis during the study period 

and 161 (43%) had incident chikungunya infection in 2020 while 55 (14.7%) had prevalent infection from 

2019. Of those involved in the study, 138 (36.9%) were male and the mean age was 38 years old (SD = 

16.6). The majority of the study population was self-described as black (57.2%), was of socioeconomic 

class C2 (42.2%), and was unemployed (55.9%). These values were relatively consistent across SARS-

CoV-2 result strata and more detailed descriptions are included in Table 1. 
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3.1.2 SARS-CoV-2 and Chikungunya Prevalence 

 

Table 2 shows the incidence and prevalence values of SARS-CoV-2 and chikungunya for the 374 

participants included in the analysis as determined by the serosurveys conducted during the study period. 

Chikungunya antibody prevalence increased from 14.7% in 2019 to 58.0% in 2020 describing a situation 

in which over half of the participating population tested positive for the arbovirus. Similarly, a significant 

increase in SARS-CoV-2 infections of 44.9 was also recorded from 2019 to 2020. One individual was found 

to be positive for SARS-CoV-2 infection in 2019, although this likely represents a false positive in the 

ELISA analysis as the first case recorded by the Brazilian government did not occur until February of 2020. 

Of the 161 with incident chikungunya virus infection between 2019 and 2020, 68 (42.2%) tested positive 

for SARS-CoV-2 and 93 (57.8%) tested negative, whereas 26 (47.3%) tested positive and 29 (52.7%) test 

negative among the 55 with prior chikungunya virus infection. Among the 158 with no history of infection, 

74 (46.8%) tested positive for SARS-CoV-2 and 84 (53.2%) tested negative (Table 3). Therefore, no 

subtantial difference was observed in the risk of SARS-CoV-2 infection in respect to the immunological 

status of CHIKV infection. 
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3.2. Distribution Maps 

The population distribution within the boundaries of the study site, as represented by the kernel density 

estimation with an adaptive bandwidth in Figure 1, shows that there are two major sites in which the study 

population is concentrated: one in the southern half, just to the left of center, and one in the lower portion 
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of the northern half, just to the right of center. The site within the lower half expands, to a lesser degree, to 

the right of center whereas the other site is much more localized.  

 

3.2.1 SARS-CoV-2 Positive and Relative Risk Surfaces 

Figure 1 also shows that the distribution of positive SARS-CoV-2 cases follows a similar trend as the 

population density within the study area although there are larger ‘hot spots’ for the infection within the 

sites of higher population values. This suggests, as expected, that the distribution of SARS-CoV-2 cases 

follows a traditional infectious process which is connected to the density of the population. 

 

The relative risk surface generated by comparing the distribution of SARS-CoV-2 positive cases to the 

population density surface generated a map showing an even distribution of high risk for SARS-CoV-2 

infection throughout the study area. This suggests that all study participants are at a relatively equal risk for 

SARS-CoV-2. 

 

3.2.2 Chikungunya Exposure Surface 

Similarly, in Figure 4, the chikungunya cases are centralized around the areas of population density 

however show a more diffuse pattern, highlighting the mobility of the vector and its distribution throughout 

the study area. Chikungunya infection rates have also been found to be directly correlated to population 

density and other conditions present in low-income settings which would be pervasive throughout Pau da 

Lima.  
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3.2.3 Covariate Distributions 

The distribution of females (63.1%) within the study area show similarities to the population distribution 

surface as they are localized within similar sites of higher density. The male population however is primarily 

focalized within the west half of the central area with significantly less diffusion as compared to the females. 

This is described visually in Appendix Figure B1.  

 

Figure B2 shows that white participants, representing 4% of the total population, were primarily located 

within the southern half of the study area, black participants (57.2%) within the left southern quadrant; in 

a similar location as the male distribution, mixed race individuals (36.4%) were relatively evenly distributed 

throughout the study area, and people of Asian descent (1.9%) were congregated toward the right side of 

the northern half of the area. The indigenous population only represented 0.5% of the overall population 

included in the study. 

 

The socioeconomic classes fell into similar distributions as the population density surface and, notably, 

class C2; which represented the majority of the study population (42,2%); almost exactly matched the 

population distribution while classes D-E (36.6%) were almost entirely located within the southern half of 

the study area. Classes A and B1 were not mapped as none of the study participants met the qualifications 

for either classification (Figure B3).  

 

The employed portion of the population is localized within the same area as the male study population 

whereas the unemployed population is more evenly distributed, although concentrated to the southern half 

of the study area in Figure B4. With a slight minority of the population employed (44.1%) in addition to 

the location of their distribution, the idea that the male population (36.9%) represent the majority of 

employed individuals is corroborated.  

 

As a continuous variable, age was not able to be represented using a kernel density estimation surface. 
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3.3. Aspatial Models 

 

3.3.1 Linear Probability Model 

Two linear probability models were implemented: one using the unadjusted formula and the other using the 

adjusted formula, both of which are described in Table B1 within the Appendix.  

 

The unadjusted linear probability model, which only considered the relationship between chikungunya 

status; incident infection, prevalent infection, or no infection; and SARS-CoV-2 status, which estimated a 

change in chikungunya infection status as resulting in no change in the risk of SARS-CoV-2 infection  

(β = -0.04 [95% CI: -0.15, 0.07] and β = -0.01 [CI 95%: -0.16, 0.15]). The adjusted model: which controlled 

for sex, age, skin color, socioeconomic status, and employment status; estimated very similar point values 

with similar 95% confidence intervals. However, socioeconomic status was found to be significantly 

associated with the SARS-CoV-2 status with a p-value of 0.004. 

 

3.3.2 Logistic Regression Model 

The aspatial logistic regression employed the same formulas as the linear probability model. In the 

unadjusted model, participants with incident chikungunya virus infection had similar odds of developing 

SARS-COV-2 infection (OR = 0.83 [95% CI: 0.53 to 1.29]) as compared to those with evidence of prevalent 

infections (OR = 1.02 [95% CI: 0.55 and 1.88]) and those negative for chikungunya virus antibodies. Once 

again, the odds ratios resulting from the adjusted model were effectively the same as those of the unadjusted 

model. Similarly to the linear model, socioeconomic status was significantly associated in the adjusted 

regression analysis (p-value = 0.004). 
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3.3.3 Aspatial Model Comparisons 

The Akaike Information Criteria (AIC) value for the adjusted linear probability model was estimated as 

563.37 which when compared to the value for the adjusted logistic regression, at 521.94, suggests that the 

logistic model is a better fit for the data set used in the analysis.  

 

3.4. Spatial Econometric Models 

The spatial error model estimates were found to be statistically insignificant and effectively zero. The value 

of λ, which is the correlation coefficient for the model’s statistical error, was found to be 5.25e-5 and the 

AIC of the model was 519.85. The λ value approaching zero and the absence of statistically significant 

associations within the model suggests that there is no evidence of spatial dependence among variables that 

are not included in the model. 

 

The lag model estimated a β value for incident chikungunya virus infection compared to no infection of -

0.03 (p-value of 0.57), a ρ value of 4.36e-5; which represents the spatial dependence, and an AIC of 525.89. 

With no statistically significant association between variables in the model and a ρ value of 4.36e-5, the 
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model showed no evidence of “spatial spillover” between the outcome values of neighbors within the study 

area. 

 
Similarly, the spatial durbin model estimated the same β value as the lag model with the same p-value, 

however the ρ value and AIC were slightly higher at 5.16e-5 and 536.02 respectively. There was still no 

evidence of spatial processes affecting the relationship between the exposure and the outcome.  

 

3.4.4 Econometric Model Comparisons 

The AIC value of the aspatial model was found to be 563.37 which can be compared to the 519.85 of the 

error model, the 525.89 of the lag model, and the 536.02 of the durbin model. While this suggests that the 

spatial econometric models are a better fit for the data, as opposed to the aspatial model, the lack of 

significant associations generated by either class of model likely invalidates any conclusions drawn from 

these comparisons. 

 

4. Discussion  

 

4.1. Principal Findings 

4.1.1 Infection Prevalence 

During the observation period, over half of the studied population developed chikungunya virus infection 

(50.4%), according to ELISA analysis, and just under half were infected by SARS-CoV-2 (44.9%). 

Approximately one quarter of the population were infected by both chikungunya and SARS-CoV-2 

(25.4%). These values represent a significantly higher incidence rate as compared to the national value for 

Brazil at approximately 3.5% for SARS-CoV-2 and <0.1% for chikungunya. [9, 33] Due to the small size 

of the population, the accuracy of extrapolations to that level must be considered. Nonetheless, this 

corroborates the idea that co-circulation events between SARS-CoV-2 and other viruses; such as 
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chikungunya, dengue, zika, and malaria; did occur and that the shift in public health efforts to focus on the 

SARS-CoV-2 pandemic may have masked these events.  

 

4.1.2 No Evidence of Interaction 

The results of the regression analyses suggest that, within this study population, the odds of SARS-CoV-2 

infection among those with incident or prevalent chikungunya infection are no different from those with no 

history of chikungunya infection. This indicates that the two infections spread independently throughout 

the population and the status of one infection did not affect the status of the other. Similar results were 

generated with both linear and logistic analyses. Additionally, there was very little variation in SARS-CoV-

2 infection across strata divided by sex, skin color, or employment. Where the literature is mostly divided 

regarding the association between arbovirus infection status and subsequent SARS-CoV-2 infection, with 

about half finding a protective effect and half finding a harmful effect, this study found evidence suggesting 

that both viruses did in fact circulate simultaneously within the cohort but did not affect one another. It 

should be noted that the similarity in the values resulting from the linear probability model and logistic 

regression model suggest that the linear regression adequately represented the binary outcome data with 

minimal distortion to the point estimates.  

 

4.1.3 Spatial Effects 

The spatial econometric models estimated similar, nonsignificant values for the exposure status and the 

covariate associations as the linear probability model. This suggests that “spatial spillover” involving 

exposure or outcome status did not affect the results of the regressions and that there is spatial independence 

between the values of individuals included in the analysis. This further supports the findings that the two 

co-circulating outbreaks were not connected and that the spatial distributions of SARS-CoV-2 infection 

was not impacted by that of chikungunya infection. Additionally, the geographically weighted regression 

was unable to run, using either optimized or self-generated bandwidth values, and thus no results were 

included in the analysis. This indicates that there is not a significant amount of spatial heterogeneity within 
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the study population regarding these regression coefficients. The relative risk surface generated through 

kernel density estimation further supports this conclusion as the risk of SARS-CoV-2 infection is evenly 

distributed throughout the study bounds. 

 

4.2. Limitations 

The study was primarily limited by the size of the analyzed population. Only 606 participants were included 

in the initial study and of those only 374 were able to be included in the analysis. The relatively small 

sample size likely influenced the ability to detect associations between chikungunya status and SARS-CoV-

2 incidence. Furthermore, regarding the spatial analyses, the size of the study population and study bounds 

may have similarly affected attempts to identify spatial dependence and heterogeneity. This is possibly an 

example of the modifiable areal unit problem, which may be avoided by varying the level of scale at which 

the data is analyzed. Additional research would need to be conducted to determine the effect the population 

size had on the values or significance of these results. 

 

Moreover, the nature of the participant sampling may have introduced selection bias. While participant 

residences were randomly selected from those within the bounds of the study area, participation was based 

upon voluntary involvement in the study, both from the selected households and from the larger community. 

This may have introduced bias into the data collection as there may have been differences in response rates 

and in loss to follow-up between those with recent or current infections and those with no history of 

infection affecting exposure and outcome distributions. Additional bias may have been introduced during 

the data collection stage. 

 

The limited amount of previous data regarding the association between previous or concurrent chikungunya 

infection and its effect on incident SARS-CoV-2 infection posed a challenge in finding comparisons for the 

current research and so it is difficult to draw wider conclusions based on this data. This limitation will be 

discussed in more detail below.  
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4.3. Comparisons 

When compared to other studies examining SARS-CoV-2 and arbovirus co-infection, the prevalence values 

found during the current analysis were substantially higher with more individuals testing positive for both 

chikungunya and SARS-CoV-2 IgG during the study period. The calculated prevalence value for 

chikungunya and SARS-CoV-2 co-infection of 25.4% is approximately 10 times that found by Vicente et 

al. at  2.28% or Stringari et al. at 2.85%. [19, 20] Nunez-Avellaneda et al. found an approximate co-infection 

prevalence of 10.23% within their study population, still less than half of the value determined during the 

present study. [21] It should be noted that in the three comparison studies, the population size was greater 

than 1,000 participants, as opposed to the 374 included in this analysis. Moreover, the present study was 

conducted in a region of significantly higher rates of both chikungunya and SARS-CoV-2 infections, 

potentially reflecting some of the differences in the chikungunya prevalence and SARS-CoV-2 incidence 

values.  

 

No studies were identified which estimated a measure of association between chikungunya infection and 

SARS-CoV-2 infection, however, examples were found discussing the harmful or protective benefits of 

prior dengue infection on COVID-19 incidence. The studies were even distributed between those who found 

an increased risk of infection among those with evidence of dengue antibodies and those which found a 

decreased risk. [22 – 26] The present study suggests no association between chikungunya status and SARS-

CoV-2 infection.  

 

4.4. Implications 

This study was intended as a descriptive, exploratory analysis investigating the relationships between 

chikungunya status (incident infection, prevalent infection, or no infection) and SARS-CoV-2 incidence 

within a closed population. The analysis found little to no differences across age, sex, racial/ethnic, or 

infection status strata in terms of the odds of incident SARS-CoV-2 infection. To this end, it was determined 
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that there was no statistically significant relationship between chikungunya infection and SARS-CoV-2 

infection, including when spatially dependent processes were considered, and that there was little crossover 

regarding the factors that influence chikungunya virus infection and those that influence SARS-CoV-2 

infection. Socioeconomic status was found to be a risk factor for SARS-CoV-2 infection, but the risk of 

SARS-CoV-2 infection was evenly distributed across the other factors considered in the analysis, which 

contrasts previous research on the factors associated with infection risks for these viruses. 

 

Due to the disparate finding within the literature regarding the associations between vector-borne diseases 

and subsequent SARS-CoV-2 infection, the results of this analysis should not be seen as conclusive. The 

relatively small size of the population, despite the ideal timing of the cohort study, may have reduced the 

magnitude and the precision of any estimated measures of association, although the significant number of 

SARS-CoV-2 infection events suggests precision. Further research including different, larger study 

populations would be needed to better investigate the relationship. Additionally, differing study populations 

may better elucidate any potential spatial relationships concerning chikungunya and SARS-CoV-2 co-

circulation events.  
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6. Appendices 

 

6.A. Additional Methods 

6.A.1 Data Preparation 

The data collected from the study was imported in R Studio [34] as Excel files. Variables were translated 

from Portuguese into English and observation values were converted into the proper formats, such as dates 

or binary variables being converted from character variables to date or integer variables, respectively. 

Additionally, nominal and categorical variables were created from the available data where applicable for 

future analyses. Summation and aggregate variables were also created before duplicated or unnecessary 

observations were removed from the working data set. A dictionary for the data set used in the analysis is 

included in the appendices. 

 

6.A.2 Study Bounds 

The boundary of the neighborhood in which the study occurred was imported into R Studio as a shape file 

with the ESPG 32724 coordinate system. The 32724 ESPG is a projection of the World Geodetic System 

1984 (WGS 84) coordinate reference system that creates equal area projections for the eastern coast of 

Brazil between 36° and 42°W which includes all of Salvador, Bahia. 

 

6.A.3 Establishing Spatial Geometry 

The coordinates for the residence of each of the participants in the study were included in   the data and 

the data set was converted into a spatial data frame using the sf package. To match the coordinate system 

of the study bounds, the Coordinate Reference System (CRS) of the spatial data was also set to ESPG 

32724. As multiple participants were recruited from the same household, and therefore shared latitude and 

longitude points, the coordinates for every participant were randomly “jittered” by 0.05km to create 

completely unique values for development of the neighbor matrix. 
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6.A.4 Spatial Neighbors Matrix [35] 

To represent the infectious network between individuals within the study, and how that has affected 

incidence rates, the spatial relationships of the participants must be quantified. This is achieved through the 

development of a spatial neighbor matrix in which the relationships between individuals are weighted in 

accordance with a spatial parameter. Participants in this study were assigned “neighbors” using the inverse 

distance continuity in which the furthest distance between two closest points was used to assign neighbor 

relationships. This defined the spatial relationships as a function of the “nearness” to each participant in so 

far as the closer two points are the greater the effect they have on one another.   

 

The nearest neighbor for each point was found using the knn2nb function and the maximum value from that 

dataset was set as the critical threshold. A neighbor distance bandwidth was then set between zero and the 

value defined as the critical threshold. Distances and inverse distances between each point were calculated 

using the bandwidth, which allowed for the creation of the neighbor weights matrix using nb2listw and 

nb2mat functions.  

 

The previously complete spatial “jittering” was necessary for the execution of the inverse distance neighbor 

weights matrix as identical points would have a neighbor distance of zero creating an undefinable inverse 

distance. The resulting matrix included 94.19% non-zero linkages with a minimum number of 1 neighbor, 

a maximum of 504 neighbors, and an average value of 479. 

 

6.A.5 Kernel Density Estimations [36] 

Kernel density estimations with adaptive bandwidths were used to describe the distributions of participants 

across various factors and characteristics. The kernel density estimation acts as a non-parametric smoothing 

of the local intensity of point values into a summary surface describing the entire area. The adaptive 

bandwidth allowed for smoothing of the point values to better represent the actual distribution by 

continuously modifying the size of the measured kernel in relation to the density of the points. 
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To create the estimation surfaces, the outcome of interest and the coordinates of the participant residences 

were isolated in temporary data sets that were then converted into spatial point files, which includes the 

number of points and the spatial intensity, using the ppp( ) function. The spatial point conversion process 

includes the limitation of the data to the study boundary using the previously defined study bounds object. 

Similarly, the reference bandwidth was generated using an optimization function on the spatial point file as 

part of the OS( ) function. The resulting surface was then mapped using the plot( ) function. 

 

6.A.6 Relative Risk Surfaces 

Relative risk surfaces, representing the risk of chikungunya virus and SARS-CoV-2 infection across the 

study area, were generated using the distributions of positive cases as compared to the population 

distribution. The spatial point files for positive cases and for the total population were converted into a risk 

surface using the risk( ) function, while maintaining the adaptive bandwidth, which could then be mapped 

with the plot( ) function. 

 

6.B. Additional Tables & Figures 
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6.C. Additional Results 

6.C.1 Inverse Distance Neighbor Matrix 

The inverse distance neighbor weights matrix generated 130954 linkages between the 374 individuals 

included in the study representing spatial relationships within the bandwidth and each assigned a weight 

based upon the distance between points in the links. The average number of links for each point was 350 

with only one point having one link and 31 points having a maximum of 369 links each. More information 

regarding the construction of the matrix can be found in section 6.A.4 and the output is further described in 

Table B2 in the Appendix. The matrix was then employed for all of the following spatial analyses.  

 

6.C.2. Geographically Weighted Regression 

The geographically weighted regression was set up using an adaptive bandwidth established by the 

bw.gwr() function which would shift the bandwidth according to the number of points included within each 

search window, however the gwr.basic() function, and in turn the regression, was unable to run due to the 

large size of the bandwidth generated which included the majority of the study population. Additional fixed 

and adaptive bandwidths were attempted using generated and hand-picked values with no change to the 

execution of the geographically weighted regression. 
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