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Abstract

Network-Based Machine Learning Methods for Omics Data

By

Yunchuan Kong

In the field of bioinformatics, large-scale biological networks play an essential role
for studying transcriptomic data. As networks can bring useful relational information
in solving problems, tasks involving biological networks range from system biology,
statistical modeling, to machine learning. In this dissertation, focusing on different
roles of biological networks, we explore both the construction of networks and their
integration with statistical methods. On the one hand, we have found hypergraphs,
an extension of traditional networks, to be an excellent tool to represent higher-order
interactive relationships among biological units and analyze complex systems; on the
other hand, we have discovered that incorporating known biological networks and con-
structing biological feature networks can be helpful in improving certain supervised
machine learning algorithms.

The first topic of this dissertation is about the highly dynamic biological regula-
tory system. It is shown that correlations between certain functionally related genes
change over different biological conditions, which are often unobserved in the data.
At the gene level, the dynamic correlations result in three-way gene interactions in-
volving a pair of genes that change correlation, and a third gene that reflects the
underlying cellular conditions. This type of ternary relation can be quantified by the
Liquid Association statistic. Studying these three-way interactions at the gene triplet
level have revealed important regulatory mechanisms in the biological system. Cur-
rently, due to the extremely large amount of possible combinations of triplets within
a high-throughput gene expression dataset, no method is available to examine the
ternary relationship at the biological system level. Hence, in Chapter 2, we propose a
new method, Hypergraph for Dynamic Correlation (HDC), to construct module-level
three-way interaction networks. The method is able to present integrative uniform
hypergraphs to reflect the global dynamic correlation pattern in the biological sys-
tem, providing guidance to downstream gene triplet-level analyses. To validate the
method’s ability, we conducted two real data experiments using a melanoma RNA-seq
dataset from The Cancer Genome Atlas (TCGA) and a yeast cell cycle dataset. The
resulting hypergraphs are clearly biologically plausible, and suggest novel relations
relevant to the biological conditions in the data. We believe the new approach pro-
vides a valuable alternative method to analyze omics data that can extract higher
order structures.

In the second topic of this dissertation, we aim at solving a unique challenge in
predictive modeling for gene expression data, which usually bear small samples (n)
compared to the huge amount of features (p). This “n� p” property has hampered
application of deep learning techniques for disease outcome classification. Recently,



literature shows that sparse learning by incorporating external gene network infor-
mation could be a potential solution to this issue. To build a robust classification
model, we propose the Graph-Embedded Deep Feedforward Networks (GEDFN) in
Chapter 3, to integrate external relational information of features into the deep neu-
ral network architecture. The method is able to achieve sparse connection between
network layers to prevent overfitting. To validate the method’s capability, we con-
ducted both simulation experiments and real data analysis using a Breast Invasive
Carcinoma (BRCA) RNA-seq dataset and a Kidney Renal Clear Cell Carcinoma
(KIRC) RNA-seq dataset from The Cancer Genome Atlas (TCGA). The resulting
high classification accuracy and easily interpretable feature selection results suggest
the method is a useful addition to the current graph-guided classification models and
feature selection procedures.

The third topic of this dissertation is an extension of the second topic. Faced
with the “n � p” challenge in predictive modeling, the GEDFN model with sparse
learning by incorporating known functional relations between the biological units, has
been proved a solution to this issue in Chapter 3. However, such methods require
an existing feature graph, and potential mis-specification of the feature graph can be
harmful on classification and feature selection. To address this limitation and develop
a robust classification model without relying on external knowledge, we propose a
forest graph-embedded deep feedforward network (forgeNet) model in Chapter 4, to
integrate the GEDFN architecture with a forest feature graph extractor, so that the
feature graph can be learned in a supervised manner and specifically constructed for a
given prediction task. Similar as in Chapter 3, to validate the method’s capability, we
experimented the forgeNet model again with both synthetic and real datasets. The
resulting high classification accuracy suggests that the method is a valuable addition
to sparse deep learning models for omics data.

In the future work, possible directions are to continue exploring the integration
of biological networks and statistical modeling. Certain research area has already
been established such as the Graph Convolution Network (GCN). Also, following our
construction of hypergraphs in the first topic, it is also tempting to study further
applications beyond the scientific findings themselves.
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Chapter 1

Introduction



2

1.1 Overview

In the study of transcriptomics, metabolomics, and proteomics data, biological net-

works, including gene regulation networks, metabolomics pathways and protein-protein

interaction networks, play an essential role. In this dissertation, we are interested in

exploring insights brought by biological networks in a broad sense, ranging from

the usefulness of bio-networks in machine learning to the construction for high-

dimensional network representation.

Typically, a network, or equivalently a graph G = (V,E) consists of two sets of

elements. V represents the collection of all nodes (or vertices) in the network, and E

denotes the collection of all edges connecting nodes. In biological networks, biological

units can be represented by network vertices, the connections or interactions are

then the edges. For example, a gene network represents a biological system with

interested biological units genes, hence vertices denote different genes and edges can

be regulatory relationships among genes.

In Chapter 2, We first investigate the power of biological networks in understand-

ing dynamic biological systems, by proposing a hypergraph construction method for

dynamic correlation. The newly constructed module level hyper-networks along with

the corresponding visualizations can reveal helpful information at the transcriptomic

scale. Given the evidence of the effectiveness of biological networks, we next try

to extend the application of biological networks in classification for omics data. In

Chapter 3 and Chapter 4, we develop two deep learning-based classification methods

utilizing biological feature networks.

1.2 Biological networks for dynamic correlation

In the quantitative analysis of high-throughput omics experiments, the gene transcript-

, protein- or metabolite-levels of abundance are profiled simultaneously. Examples
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include high-throughput sequencing of mRNA (RNA-seq) and high throughput mass

spectrometry for quantitative analysis of specific cellular proteome or metabolites.

The abundance levels of the biological units are the outcome of complex biological

regulatory networks, in which the links between the units may be turned on and off in

response to certain biological conditions (Barzel and Barabási, 2013; Ideker and Kro-

gan, 2012; Luscombe et al., 2004; Ocone et al., 2013). As a result, many correlations

are dynamic, shifting between positive, negative and no-correlation states, triggered

by certain biological conditions. Such conditions may not be phenotype changes, e.g.

disease/non-disease in case-control studies, but they may be more subtle and often

unobservable (Li, 2002; Li, Liu, Sun, Yuan and Yu, 2004).

Given the profiling data are essentially snapshots of the system, it is challeng-

ing to extract higher order relations from the data, such as conditional correlations

and changes in variability. To explore patterns in high-throughput expression data,

methods that include clustering, dimension reduction, sparse factorization have been

proposed. These methods are mostly based on static pairwise relations between the

biological units, and do not capture dynamic relations (Xu and Wunsch, 2010; Ma

and Dai, 2011).

According to Li (2002); Boscolo et al. (2008); Chen et al. (2011), the expression

levels of certain genes can be treated as indicators of cellular states, and correlation

changes conditioned on such genes are computed to measure dynamic correlations.

The involvement of such genes as dynamic correlation condition results in three-way

gene interactions, and quantitative measures for the three-way interaction have been

developed to quantify the ternary relationship, such as the Liquid Association (LA)

statistic proposed by Li (2002), the Modified Liquid Association (MLA) developed

by Ho et al. (2011), and the z-statistic in Zhang et al. (2007). These ideas have

been demonstrated successful in practice showing interpretable biological findings at

the gene level. Biologically, it is plausible that a single gene may not be a good
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proxy measure of the underlying condition for the dynamic correlation. However

measures involving more than one gene as the conditioning variable is difficult to

design, and costly in computation. To address this issue, a method treating the LA

relation as latent factor model has been developed, where in stead of using genes

as proxy measures, the conditioning variable is estimated from the data (Yu, 2018).

However such an approach can only find dominating signals that control the dynamcic

correlations of large numbers of gene pairs. Some critical dynamic correlation may

happen among a small group of genes, yet play important biological roles. Hence an

unbiased examination of all gene triplets is valuable.

Currently, the existing methods suffer from computational scalability when exam-

ining the entire biological system since it is difficult to examine gene-level three-way

interactions triplet-by-triplet as the amount of possible combinations is extremely

large. Efforts have been made to focus on a smaller number of subsets, by consider-

ing consistent LA relations across multiple datasets (Wang et al., 2017), or focusing

on subnetwork-level LA relations (Yan et al., 2017).

Meanwhile, it is desirable to view the complex interactions of individual triplets

jointly as a whole, since otherwise it is hard to grasp the dynamic correlation behaviors

at the system level. Therefore, an aggregated representation is in need for ternary

gene relationships, analogous to the gene co-expression network for the pairwise static

correlation relationship. The gap resulted from this problem motivated the work in

Chapter 2, where we develop a hypergraph-based approach constructing module-level

three-way interaction networks for ternary gene relationship study.



5

1.3 Supervised learning with known biological fea-

ture graphs

In recent years, more and more studies attempt to link clinical outcomes, such as

cancer and other diseases, with gene expression or other types of profiling data. It is

of great interest to develop new computational methods to predict disease outcomes

based on profiling datasets that contain tens of thousands of variables. The major

challenges in these data lie in the heterogeneity of the samples, and the sample size

being much smaller than the number of predictors (genes), i.e. the n� p issue, as well

as the complex correlation structure between the predictors. Thus the prediction task

has been formulated as a classification problem combined with selection of predictors,

solved by modern machine learning algorithms such as regression based methods

(Liang et al., 2013; Algamal and Lee, 2015), support vector machines (Vanitha et al.,

2015), random forests (Kursa, 2014; Cai et al., 2015) and neural networks (Chen

et al., 2014). While these methods are aimed at achieving accurate classification

performance, major efforts have also been put on selecting significant genes that

effectively contribute to the prediction (Kursa, 2014; Cai et al., 2015). However,

feature selection is based on fitted predictive models and is conducted after parameter

estimation, which causes the selection to rely on the classification methods rather than

the structure of the feature space itself. Beside building robust predictive models,

the feature selection also serves another important purpose-the functionality of the

selected features (genes) can help unravel the underlying biological mechanisms of

the disease outcome.

Given the nature of the data, i.e. functionally associated genes tend to be statis-

tically dependent and contribute to the biological outcome in a synergistic manner,

a branch of gene expression classification research has been focused on integrating

the relations between genes with classification methods, which helps in terms of both
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classification performance as well as learning the structure of feature space. A critical

data source to achieve this goal has been gene networks. A gene network is a graph-

structured dataset with genes as the graph vertices and their functional relations

as graph edges. The functional relations are largely curated from existing biologi-

cal knowledge (Chowdhury and Sarkar, 2015; Szklarczyk and Jensen, 2015). Each

vertex in the network corresponds to a predictor in the classification model. Thus,

it is expected that the gene network can provide useful information for a learning

process where genes serve as predictors. Motivated by this fact, certain procedures

have been developed where gene networks are employed to conduct feature selection

prior to classification (Chuang et al., 2007; Wei and Pan, 2007; Wang et al., 2007; Li

and Li, 2008). Moreover, methods that integrate gene network information directly

into classifiers have also been developed. For example, Dutkowski and Ideker (2011)

proposes the random forest-based method, where the feature sub-sampling is guided

by graph search on gene networks when constructing decision trees. Zhu et al. (2009);

Lavi et al. (2012) modify the objective function of the support vector machine with

penalty terms defined according to pairwise distances between genes in the network.

Similarly, Kim et al. (2013) develops logistic regression based classifier using regular-

ization, where again a relational penalty term is introduced in the loss function. The

authors of these methods have demonstrated that embedding expression data into

gene network results in both better classification performance and more interpretable

selected feature sets.

1.4 Supervised learning with constructed biologi-

cal feature graphs

In Chapter 3, the Graph-Embedded Deep Feedforward Network (GEDFN) is pro-

posed with a known biological network embedded as a hidden layer in deep neural
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networks, in order to achieve an informative sparse structure. In GEDFN, the graph-

embedded layer helps achieve two effects. One is model sparsity, and the other is the

informative flow of information for prediction and feature evaluation. These two ef-

fects allow GEDFN to outperform other methods in profiling data classification given

an appropriately specified feature graph. However, methods utilizing known biolog-

ical network information, such as GEDFN, bear a common limitation, which is the

potential mis-specification of the required biological network. In practice, profiling

data are used for various clinical outcomes, and the mechanistic relations between

biological units and different clinical outcomes can be quite different. Hence, there

does not exist a single known network that uniformly fits all classification problems.

Thus, biological networks used in graph-embedded methods can only be “useful” but

not “true”. Consequently, how to decide if a known biological network is useful in

predicting a certain clinical outcome with a certain gene expression dataset remains

an unsolved problem, causing difficulties in applying graph-embedded methods in

practice. In Chapter 3, we discuss the feature graph mis-specification issue of the

GEDFN model and show that the method is robust with mis-specified biological net-

works. Nevertheless, it is unrealistic to guarantee that the robustness applies in a

broad sense, as feature graph structures can be extremely diverse such that simulation

would not be able to cover all scenarios.

To address these issues, in Chapter 4, we aim at developing a method that doesn’t

rely on a given feature network, yet can still benefit from the idea of building a model

with sparse and informative flow of information. Instead of using known feature

graphs, we try to construct a feature graph within the feature space.
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Chapter 2

HDC: Hypergraph for Dynamic

Correlation
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2.1 Introduction

The main difficulty to analyze three-way interaction for an entire system is the ex-

tremely large amount of possible triplets at the gene level. For example, for a gene-

expression dataset with 20,000 genes, the number of possible combinations would be

around 1.33 × 1012. Thus, one can do little when trying to describe the entire sys-

tem while focusing on gene-level interactions. To resolve the dilemma, we consider

a bottom-up approach to bring the ternary relationship to the module level, while

preserving partial information of gene-level three-way interactions. This idea allows

us to shrink the scale of the system and thus facilitate the aggregated representation.

For this purpose, it is natural to use a hypergraph to present the ternary relations.

Similar to traditional graphs, a hypergraph G = (V,E) with V the set of vertices

and E the set of edges, is a generalization of a graph in the sense that an edge

can connect any number of vertices rather than just two (Berge and Minieka, 1973).

A special case when all the edges in E connect a certain number of vertices k, the

hypergraph is called k-uniform hypergraph. Therefore, a traditional graph or network

is just a two-uniform hypergraph, and it is obvious that in our case the triplets

compose a three-uniform hypergraph.

We utilize Liquid Association (LA) (Li, 2002), which is the most computationally

tractable among the methods for ternary relations, for the initial gene-level ternary

relationship quantification. Screening procedures using mixture models are conducted

to ensure the LA accurately detects significant ternary correlation, according to Ho

et al. (2011). Two approaches of grouping genes are then introduced, one of which

involves a new clustering procedure based on ternary relations. Using these ap-

proaches, three-way interaction hypergraphs are constructed. The workflow of our

analysis is demonstrated in Fig. 2.1. We applied our methods to two real datasets,

the TCGA human cutaneous melanoma dataset (Weinstein et al., 2013) and the the

yeast cell cycle dataset (Spellman et al., 1998). For both datasets, module-level three-
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way interaction networks were obtained, exhibiting relations that conform to existing

knowledge, as well as point to new and plausible dynamic correlations.

Figure 2.1: The flow chart of the analysis.

2.2 Methodology

2.2.1 Quantifying the ternary relationship

The input of our analysis is an ordinary n × m gene expression data matrix, with

rows representing genes and columns representing specific samples. The ternary rela-

tionship is quantified by the statistic Liquid Association (LA) proposed in Li (2002).

The LA statistic measures the extent to which the correlation of a pair of variables

(X,Y ) depends on the value of a third variable Z. Thus, the pairwise correlation is

dynamic in the sense that it is affected dynamically according to the third variable.

Based on this property, the LA statistic is therefore a suitable tool to quantify the

ternary relationship for triplets of variables.
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Specifically, according to Li (2002), suppose we are interested in measuring the

ternary correlation among X, Y and Z. Without loss of generality, we can regard the

ternary correlation as the dynamic pairwise correlation between X and Y given the

third variable Z. The LA statistic is three-way symmetric regardless which variable is

treated as the conditioning variable, or “scouting gene”. Now let g(Z) be the condi-

tional expectation of the correlation between X and Y , namely, g(Z) = EX,Y (XY |Z).

Then, the LA statistic is defined as the expected changes of the correlation between

X and Y : LA(X, Y |Z) = EZ(g′(Z)). When the variables are normalized with mean

zeros, it is proved in Li (2002) that LA(X, Y |Z) = E(XY Z), which means the LA

statistic of X and Y given Z is just the expectation of the product XY Z. There-

fore, the LA statistic can be estimated simply by calculating the sample mean of the

product XY Z:

E(XY Z) =
1

m
Σm
i=1XiYiZi, (2.1)

where m is the dimension of the variables. Note that following this definition, LA is

invariant of which variable (X, Y , or Z) we treat as the dynamic correlation condition,

hence gives a measure of the ternary correlation.

Straightforward as the LA is, Ho et al. (2011) points out that for the quantity

E(XY Z) to reflect the true dynamic correlation of X and Y given Z, certain con-

ditions must be met. They therefore developed the Modified Liquid Association

(MLA) statistic to detect the dynamic correlation more accurately, which incurs a

much higher computing cost. Also, in Ho et al. (2011), the authors proved that the

MLA of X and Y given Z (denoted as MLA(X, Y |Z)) is equivalent to E(XY Z)

as well when certain conditions are satisfied (Theorem 1, (Ho et al., 2011)). These

conditions include the normality of the “third variable” Z and the distributions of

X|Z and Y |Z have constant mean and variance.

In our analysis, the n×m gene expression data matrix is normalized using normal

score transformation for every row following Li (2002), and we are interested in the
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ternary correlation among three variables. In the initial phase of selecting related

gene triplets, which specific variable serves as the dynamic condition is less important.

Also, Li’s original approach is computationally better suited for transcriptome-scale

scans. Thus, the invariant property regarding the dynamic condition variable of

E(XY Z) is desirable. To preserve this property, we restrict the mutual pairwise

correlations within a triplet to be small, creating a sufficient condition for Theorem

1 in Ho et al. (2011). To see how this is achieved, if X, Y and Z are marginally

normally distributed, and all the three pairwise correlations, corr(X, Y ), corr(X,Z)

and corr(Z, Y ) ≈ 0, then X, Y and Z are three independent normal variables. Hence,

if the sequence U1, U2, U3 is any permutation of X, Y, Z, then E(U1|U3) = E(U1) = 0,

V ar(U1|U3) = V ar(U1) = 1, E(U2|U3) = E(U2) = 0, V ar(U2|U3) = V ar(U2) = 1,

and U3 ∼ N (0, 1) are satisfied. Hence, the ternary correlation of a triplet (X,Y ,Z)

satisfies the condition in Ho et al. (2011), and can be quantified by Equation 2.1.

Notice this requirement of low pairwise correlations also satisfy Li’s original setup of

Liquid Association (Li, 2002).

2.2.2 Selecting significant triplets using permutation and mix-

ture models

The ternary correlation is calculated gene by gene, namely for each gene Z, the sample

product mean of Z and all possible gene pairs (X,Y ) are calculated, for all the triplets

satisfying the condition discussed in Section 2.2.1. We expect only a small portion of

the triplets to have true ternary relationship. The ternary correlation of triplets with

insignificant relationship approximately follow a normal distribution (Ho et al., 2011).

We employ a permutation procedure to estimate the parameters of the distribution.

To simplify our illustration, we define λ
(Z)
(i,j), (i, j) ∈ {all possible pairs for Z} as

the ternary correlation associated with the given gene Z with the other two genes

X and Y varying , and λ̂ the sample product mean. The permutation selection is
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conducted as following: after calculating the ternary correlation λ̂(Z) of all possible

triplets for a gene Z, an empirical distribution of λ(Z) is obtained. We then ran-

domly permute the sample labels of Z and calculate all ternary correlations with all

the {X, Y } pairs again, obtaining another empirical distribution of λ(Z∗), which is

considered as the null distribution where X, Y and Z have no ternary relationship.

We estimate the two densities of the distributions using the kernel density estimation

technique (Duong, 2007). Then, the ratio between the estimated permutation empir-

ical density and the estimated actual empirical density, at a given value of ternary

correlation λ, serves as the false discovery rate, i.e. the posterior probability that a

λ at this value belongs to the null distribution:

fdr(Z)(λ) = f̂0

(Z∗)
(λ)/f̂ (Z)(λ). (2.2)

Setting a small number of false discovery rate, say 0.1, we are able to obtain the cor-

responding threshold on the value of λ. Triplets with a false discovery rate lower than

the threshold are selected. The calculation and selection procedure is repeated for

every gene in the dataset. Finally we obtain the entire list of triplets with significant

ternary correlation. We note that the fdr estimate doesn’t inflate in theory due to

the large number of Z’s being considered, because the null density doesn’t change

shape with more null λ values being calculated.

2.2.3 Selecting gene modules using supervised and unsuper-

vised approaches

As mentioned in Section 4.1, given the large amount of gene-level triplets, it is im-

practical to present the three-way interactions of the system as a whole. Therefore,

it is necessary to “build up” the system structure to a gene module level by dividing

genes in a dataset into different modules. To achieve this, two options are available.
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The first choice, which we refer to as supervised grouping, is to borrow external bio-

logical information such as gene functional modules from gene ontology (GO) terms

(Consortium et al., 2015). We follow a procedure of selecting a subset of informative

GO terms (Yu et al., 2005). While some genes in the dataset may not be included

in the functional modules, other genes may appear in more than one modules. In

the first case, the genes are ignored since they do not contribute to module-level in-

formation according to the external information. In contrast, in the latter case, the

duplication of a certain set of genes across multiple modules is preserved as the set

of genes contribute to multiple module level information.

The alternative way of grouping genes is clustering based on the gene level hy-

pergraph structure, which is correspondingly an unsupervised grouping approach. In

this study we base our clustering on the marginal relations between pairs of genes.

To utilize the information of ternary relationship provided by the triplets selected

in Section 2.2.2, we first construct an n × n matrix A recording the number of in-

volvement of pairs in triplets, where n is the total number of genes in the dataset.

Specifically, for example, if a triplet of genes (i,j,k) is selected after the procedure

described in Sections 2.2.1 and 2.2.2, then according to the existence of this ternary

correlation, the elements Ai,j, Aj,i, Ai,k, Ak,i, Aj,k, Ak,j are all added by one to receive

a “count”. This counting procedure is repeated for the entire triplet list. Finally, the

A matrix contains the amount of connections between any pair of genes when they

jointly appear in a triplet. The diagonal elements of A are all set to zero since it is

meaningless to consider self-connection here, and it is easy to see A is symmetric.

Given the matrix A, one can calculate the correlation matrix C for A, as it mea-

sures the similarity of the involvement in triplets among genes. Thus, using either

the similarity matrix C or the corresponding distance matrix 1n×n − C, where 1n×n

is an n × n matrix with all elements equal to one, traditional distance-based clus-

tering methods such as hierarchical clustering can be applied to cluster genes in the
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dataset. Essentially, the unsupervised grouping approach clusters genes according to

their similarities of involvement in triplets.

2.2.4 Constructing the module-level hypergraph

Using either supervised or unsupervised approach, the module memberships of genes

are obtained. The next step is to replace each gene in the triplet list by its module

label. In the case that some genes may have multiple module labels due to multi

functionality in supervised grouping, the involved triplets are duplicated in order to

preserve the multi-functional information as discussed in Section 2.2.3.

At this stage, the module-level triplet list forms an edge list for a 3-uniform

hypergraph, in which modules are vertices and triplets are hyperedges. The three-

uniform hypergraph is undirected but weighted, as there can be many gene triplets

establishing the connections between three modules. Consequently, three types of

edges - those connecting three different modules, two different modules or only one

module, exist in the hypergraph. These correspond to cases that the original three

genes in a triplet are divided into three modules, two modules or a single module.

Therefore, the 3-uniform hypergraph allows self-loops. Summing up all identical

module-level triplets, the counts for each unique module-level triplet can serve as

the weight of the corresponding hyperedge. Given the size difference of the modules,

we transform the edge weights from simple counts to fold changes over the expected

number of links if all edges are placed randomly. We then threshold the fold change

to get a sparsely connected network.
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2.3 Results

2.3.1 Human cutaneous melanoma dataset

We applied our methods, which require an n × m matrix as input, to the Cuta-

neous Melanoma RNA-seq dataset from The Cancer Genome Atlas (TCGA) (We-

instein et al., 2013). The original dataset contains 20,530 genes and 474 samples

(m=474). After excluding genes with more than ten percent zero values, 15,274

genes (n=15,274) were retained for testing our method.

Each gene was first normalized using the normal score transformation as recom-

mended in Li (2002). Before calculating LA using Equation 2.1 in Section 2.2, to

satisfy the sufficient condition described in Section 2.2.1, we calculated the variance

covariance matrix of all genes, obtaining a bell-shaped unimodal empirical distribu-

tion of pairwise correlations with mean µ ≈ 0 and standard deviation σ. Then, only

pairs with a correlation contained in the interval (µ− cσ, µ+ cσ) were considered in

LA calculation, where c is a small constant. In other words, no triplet would contain

a pair having a correlation coefficient more than µ+ cσ or less than µ− cσ. For this

dataset, we have (µ− 0.5σ, µ+ 0.5σ) = (−0.079, 0.112).

Applying Equation 2.1 along with the permutation selection using Equation 2.2 in

Section 2.2, a total of 203,330,269 triplets were selected for this dataset at fdr=0.01.

Given the information of the selected triplets, both supervised grouping and unsu-

pervised grouping were conducted. We employed the GO term functional modules

(Yoshinaga et al., 2005) as the external information for supervised grouping. A sub-

set of informative GO terms with minimal overlap were selected using the procedure

described in Yu and Li (2005). The count matrix A and its correlation matrix C,

described in Section 2.2.3, were calculated, and the clusters were chosen using the

technique proposed by Langfelder et al. (2008), with the minimum cluster size of 100.

The final numbers of modules for the two approaches were 423 and 77, respectively.
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Figure 2.2: Visualization of the hypergraph for the TCGA melanoma dataset with
supervised grouping. (a) The plot of the entire network, where hyperedges were re-
duced to binary edges for visualization; (b) Detailed plot of the top 15 most connected
vertices; (c) Sub-hypergraph centered at the module “DNA damage response, signal
transduction by p53 class mediator”; (d) Sub-hypergraph centered at the module
“DNA dependent DNA replication”. Vertex colors reflect the degree of connections,
with more connected more red and less connected more yellow. Vertex sizes reflect
the module sizes. The width of each edge is the rescaled edge weight. Three types of
hypergraph edges are presented: type 1 edge connects only one vertex; type 2 edge
connects two different vertices; and type 3 edge connects three different vertices.
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Figure 2.4: Visualization of the gene-level hypergraph of the triplet “visual percep-
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Figure 2.5: Visualization of the hypergraph for the TCGA melanoma dataset with
unsupervised grouping. (a) The plot of the entire network. (b) Detailed plot of the
top 15 most connected vertices. Vertex colors reflect the degree of connections, with
more connected more red and less connected more yellow. Vertex sizes reflect the
module sizes. The width of each edge is the rescaled edge weight. Three types of
hypergraph edges are presented: type 1 edge connects only one vertex; type 2 edge
connects two different vertices; and type 3 edge connects three different vertices.
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Two three-uniform hypergraphs were constructed corresponding to the two group-

ing results. For the hypergraph with supervised grouping, edges were filtered with

a minimum fold change of 2. The median number of connections for all the nodes

involved in the graph is 4 (Fig.2.2a). Fig. 2.2(b) is a more detailed sub-hypergraph

with the top 15 most connected vertices. The vertex color represent the number of

connections of a vertex, with the most connected in red and least connected in yellow.

The sizes of the vertices represent the number of genes in each module. Three types

of edges were annotated corresponding to the three cases discussed in Section 2.2.4.

The width of edges are proportional to their weights.

Among the top 15 most connected nodes, 5 were related to the cell cycle and DNA

metabolism, indicating the tight regulation in cellular reproduction in cancer cells.

Three were related to lipid metabolism, the regulation of which has been shown to

play critical roles in cancer progression and metastasis (Beloribi-Djefaflia et al., 2016;

Luo et al., 2017), however traditional correlation-based methods haven’t shown their

prominent role in expression dynamics.

To facilitate detailed examination, we examined sub-hypergraphs centered around

a given vertex, together with all vertices directly connected with this vertex. As an

example, Fig. 2.2 (c) shows the sub-hypergraph centered at the functional module

“DNA damage response, signal transduction by p53 class mediator”. Its connections

involve both cell cycle modules and lipid metabolism modules. The role p53 pathway

plays in lipid metabolism was only recently established (Goldstein et al., 2012). To-

gether with the fact that three lipid metabolism modules were among the most highly

connected vertices, the results suggested a prominent role of lipid metabolism path-

ways, including sphingolipid, glycolipid, and membrane lipid metabolism, in human

cutaneous melanoma development. Interestingly, there were three type 2 hyperedges

in the subgraph, two of which each had two connections to the p53 module, meaning

an excess of gene triplets having two genes falling into this module.
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As another example, (Fig. 2.2 (d)) shows the sub-hypergraph centered at the

functional module “DNA dependent DNA replication”, which is a key process in can-

cer cell division. Besides other cell cycle related modules, those connected with “DNA

dependent DNA replication” included several modules of organization of cellular or-

ganelles, as well as several modules of transport, indicating the tight control of the cell

cycle process involves much of conditional correlations between genes. Interestingly,

the function “visual perception” was at a central position in this subgraph, sharing

10 hyperedges with “DNA dependent DNA replication”. In the following analyses,

we further explored the gene level relations of some of the hyperedges.

Fig. 2.3 shows the gene-level details of a triplet formed by the two modules

“DNA damage response, signal transduction by p53 class mediator” and “sphin-

golipid metabolic process” in Fig. 2.2 (c). For each triplet, two of the three genes

are from “DNA damage response, signal transduction by p53 class mediator” and

the other one belongs to “sphingolipid metabolic process”, thus all gene-level hyper-

edges in Fig. 2.3 are type 2 edges. Among the genes belonging to the p53 pathway,

several were prominent in terms of the number of hyperedge connections. For exam-

ple, GADD45A (Growth Arrest And DNA Damage Inducible Alpha) is induced by

stressful growth arrest or DNA-damaging agent treatment. The gene mediates stress

response by activating the p38/JNK pathway. Down-regulation of the gene increases

the chemosensitivity of melanoma (Liu et al., 2018). SPRED2 (Sprouty Related

EVH1 Domain Containing 2) is a member of the Sprouty/SPRED family of proteins

that regulate growth factor-induced activation of the MAPK cascade, an apoptosis

enhancer in melanoma (Haydn et al., 2014). E2F7 (E2F Transcription Factor 7) is

among the transcription factors that regulate cell cycle progression, DNA damage

repair and genomic stability. It plays a role in multiple types of cancers (Mitxelena

et al., 2018).

Among the highly connected genes that belong to the sphingolipid metabolism
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pathway, three were sialyltransferases - ST3GAL4 (ST3GAL4 ST3 beta-galactoside

alpha-2,3-sialyltransferase 4), ST3GAL5, and ST3GAL6. Increased level of ST3GAL4

mRNA in renal cell carcinoma (RCC) has been shown to be associated with favorable

prognosis (Saito et al., 2002). In hepatocellular carcinoma (HCC), the microRNA

miR-26a can reduce tumor growth by suppressing the Akt/mTOR pathway through

targeting ST3GAL6 (Sun et al., 2017). The role of the sialyltransferases in melanoma

is yet to be elucidated.

Beside the sialyltransferases, other highly connected sphingolipid metabolism genes

include ALDH5A1 (aldehyde dehydrogenase 5 family member A1), the reduced ex-

pression of which in high-grade serous ovarian cancer (HGSOC) causes the accumula-

tion of hydroxybutyric acid (HBA) (Hilvo et al., 2016), and HEXA (hexosaminidase

subunit alpha), the protein level of which was found to be increased among metastatic

uveal melanoma (Linge et al., 2012).

We further examined the gene-level hypergraph of the triplet “visual perception”,

“DNA-dependent DNA replication”, and “vacuole organization” (Fig. 2.4). Here we

focus on the discussion on genes from the first GO term “visual perception”, as the

other two play obvious roles to melanoma development. The most highly connected

gene, BBS5(Bardet-Biedl syndrome 5) has not been fully characterized, and its role

in cancers not been well studied. Among other highly connected genes belonging to

“visual perception”, GLRB (Glycine Receptor Beta) is among the ion channel genes

that is associated with the clinical outcome in breast cancer (Ko et al., 2013). GPR143

(G protein-coupled receptor 143, or OA1), codes a protein for pigmentation. SNPs

in this gene have been found to be associated with the level of skin pigmentation and

sun tolerance (Hernando et al., 2016). The gene is highly expressed in retinal pigment

epithelium, as well as in melanoma (Bassi et al., 1995). It is involved in melanoma cell

migration through the RAS/RAF/MEK/ERK signaling pathway (Bai et al., 2014).

PPT1 (palmitoyl-protein thioesterase 1), is involved in the lipid-modified protein
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catabolism in lysosomal degradation. Targeting PPT1 blocks mTOR signaling, which

reduces tumor growth of melanoma in mouse models (Rebecca et al., 2017).

For the hypergraph with unsupervised grouping, edges were filtered with a mini-

mum fold change of 10, which yielded a hypergraph with a median of 22 connections

per node. Fig. 2.5(a) is the plot of the entire hypergraph, and Fig. 2.5(b) is a more

detailed sub-hypergraph with the top 15 most connected vertices. Figure settings are

identical to those in the supervised case except for the vertex names. Similar to the

supervised approach, the graph is also of scale-free structure, i.e. relatively few nodes

were highly connected, while most nodes were connected to few other nodes.

With the unsupervised approach, functions of each cluster of genes were unknown.

Thus, only the cluster IDs are shown in the plots. To further assess the meaning of

each cluster, GO enrichment analysis was conducted to determine the relevant bio-

logical functions for the clusters using GOstats (Falcon and Gentleman, 2007). The

corresponding gene set enrichment results for the top 15 most connected clusters are

shown in Table 2.1. The gene set enrichment analysis was limited to GO biological

processes with 5 to 500 genes. For each cluster, two significant gene set that included

the most number of genes in the cluster, after manual removal of obvious overlap-

ping biological processes, are shown in Table 2.1. The results largely agreed with

the supervised grouping approach to some extent. Some of the terms were related

to the cell cycle and lipid metabolism themes represented by the top 15 terms in

the supervised approach, e.g. “double-strand break repair”, “actin filament bundle

assembly”, “regulation of cytoskeleton organization”, “translational elongation”, and

“steroid metabolic process”. At the same time, more terms in Table 2.1 point to some

other general themes including stress response (e.g. “endoplasmic reticulum unfolded

protein response” and “proteasome-mediated ubiquitin-dependent protein catabolic

process”), small molecule metabolism (e.g. “cellular amino acid catabolic process”

and “water-soluble vitamin metabolic process”), structure developments (e.g. “blood
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circulation” and “cell-cell adhesion via plasma-membrane adhesion molecules”), and

signal transduction (e.g. “adenylate cyclase-activating G-protein coupled receptor

signaling pathway” and “signal transduction by p53 class mediator”).

In the unsupervised approach, genes are grouped based on their LA relation pat-

terns with other genes. Thus genes annotated to different biological processes can be

grouped together. At the same time, genes in the same biological pathway could have

diverse expression activities, and be separated into different groups. Thus unsuper-

vised approach can complement the supervised approach, painting a more complete

picture of the global dynamic correlation activities.

2.3.2 Yeast cell cycle dataset

We also applied our methods to the yeast cell cycle microarray dataset (Spellman

et al., 1998). The yeast dataset contains 6178 genes (n=6178), and 73 samples in

four short time series and 4 control samples (m=77). For the yeast cell cycle dataset,

we have restricted the pairwise correlation interval (µ− σ, µ + σ) = (−0.180, 0.210),

and a total of 3,782,460 triplets were selected for this dataset at fdr=0.2. Again

both supervised grouping and unsupervised grouping were conducted. Given the

smaller number of genes, for the dynamic tree cut method we used a minimum cluster

size of 20. The final numbers of modules for the two approaches were 251 and 53,

respectively.

For the hypergraph with supervised grouping, edges were filtered with a minimum

fold change of 8. The median number of connections for all the nodes involved in

the graph is 4 (Fig.2.6a). Fig. 2.6(b) is a more detailed sub-hypergraph with the top

15 most connected vertices. Beside some cell-cycle related modules, the majority of

the top 15 connected modules were related to small molecule metabolism and mem-

brane organization (2.6b). Although the dataset was generated from synchronized

cell cycles, the results suggested that much of the conditional correlations happened
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in metabolism, which was consistent with findings of the original LA paper (Li, 2002).
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Figure 2.6: Hypergraph of the yeast cell cycle dataset with supervised grouping.
(a) The plot of the entire network; (b) Detailed plot of the top 15 most connected
vertices; (c) Sub-hypergraph centered at the module Single organism membrane bud-
ding; (d) Gene level hypergraph for the module triplet “single-organism membrane
budding”, “G2M transition of mitotic cell cycle”, and “pyruvate metabolism”. For
the module-level hypergraph, vertex sizes reflect the degree of connections, with more
connected more red and less connected more yellow. Vertex sizes reflect the module
sizes. The width of each edge is the rescaled edge weight. Three types of hypergraph
edges are presented: type 1 edge connects only one vertex; type 2 edge connects two
different vertices; and type 3 edge connects three different vertices. For the gene-level
hypergraph, vertex sizes reflect the degree, with more connected nodes larger.

Fig. 2.6 (c) shows an example sub-hypergraph centered at the functional module

“Single organism membrane budding”. Besides membrane and cell wall organization

terms, most of the terms were related to small molecule metabolism terms. Fig. 2.6

(d) shows the gene-level details of the dynamic correlations of the triplet “Single

organism membrane budding”, “G2M transition of mitotic cell cycle”, and “pyruvate

metabolism”. It is interesting that PIN4 (YBL051C) played a central role in the
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graph. PIN4 functions in G2/M phase transition and DNA damage response. Its

expression level didn’t simply track the progression of cell cycle. In fact it was not

one of the periodic genes found in the original study of Li (2002). Hence its central

role in the gene-level graph was not caused by it being a proxy indicator of the cell

cycle. Rather, PIN4 expression tend to be lower at the start of three of the four time

series, except in the cdc15 time series. The cell cycle synchronization was conducted

by blocking the cells at a certain phase of the cell cycle, which understandably put

the cells in a stress state and cause irregularities in metabolism. The expression of

PIN4 likely represents part of the recovery mechanism to normal growth state.

Conditioned on the level of PIN4, the correlation pattern changed between genes

involved in budding and pyruvate metabolism. Three of the budding genes were

prominent, SNF7 (YLR025W, vacuolar-sorting protein), VPS4 (YPR173C, vacuolar

protein sorting-associated protein) and COX12 (YFL038C, cytochrome c oxidase sub-

unit). Both SNF7 and VPS4 are involved in protein sorting (Babst et al., 1998), and

both VPS4 and COX12 are involved in energy production (Taanman and Capaldi,

1992). Pyruvate is at a key intersection in metabolic network. It can be converted

into carbohydrates, fatty acids, amino acid, or ethanol (Pronk et al., 1996). A num-

ber of the genes involved in pyruvate metabolism show dynamic correlations, either

between themselves, or with the budding genes, indicating a change of production and

utilization of pyruvate that is dependent on the cells’ recovery from the unnatural

blockage state as indicated by PIN4 levels. An example gene pair PFK1 (YGR240C,

Alpha subunit of heterooctameric phosphofructokinase) and VPS4 are shown in Fig.

2.7. We can observe a strong inverse correlation between the low-PIN4 and high-PIN4

states.
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Figure 2.7: An example triplet of yeast genes. The 2-D scatter plot of expression
values from PFK1 and VRS4 is given, where PIN4 serves as the “scouting gene” z.
The points are divided into three groups according to the expression level of z, with
low level the first 1/3 percentile, medium level the middle 1/3 percentile, and high
level the last 1/3 percentile. Three lines (red solid, green dotted, and blue dashed)
denote the corresponding linear regression lines of PFK1 over VRS4, given the three
levels of PIN4.
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Figure 2.8: Visualization of the hypergraph for the yeast dataset with unsupervised
grouping. (a) The plot of the entire network; (b) Detailed plot of the top 15 most
connected vertices. Vertex sizes reflect the degree of connections, with more connected
more red and less connected more yellow. Vertex sizes reflect the module sizes. The
width of each edge is the rescaled edge weight. Three types of hypergraph edges are
presented: type 1 edge connects only one vertex; type 2 edge connects two different
vertices; and type 3 edge connects three different vertices.
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For the hypergraph with unsupervised grouping, edges were filtered with a min-

imum fold change of 4, which yielded a median of 20 connections per node involved

in the graph (Fig. 2.8a). Fig. 2.8(b) is a more detailed sub-hypergraph with the

top 15 most connected vertices. The enrichment results for the top 15 most con-

nected clusters are shown in Table 2.2. Four of the top 15 clusters were dominated

by cell cycle processes (e.g. “mitotic cell cycle” and “regulation of cytokinesis”).

In addition, three of the terms were dominated by protein synthesis (e.g. “transla-

tion” and “ribosome biogenesis”). The other clusters were mostly dominated by small

molecule metabolism/transport (e.g. “oxidation-reduction process” and “organic acid

catabolism”), especially in relation to carbohydrate and energy (e.g. “regulation of

glycogen biosynthetic process” and “monosaccharide metabolic process”). These re-

sults largely agreed with those from the supervised approach.

2.4 Discussion

The method involves several hyper-parameters. To calculate the LA score of a triplet,

we tried to create a sufficient condition according to Theorem 1 of Ho et al. (2011),

to discover “real” dynamic correlation. It requires that any pair of genes should

not be linearly associated in a triplet. Thus, the threshold c is a hyper-parameter

controlling how strict the user wants to obey the sufficient condition. If c is too small,

one can hardly find triplets as few pairs would have strictly zero correlation from the

sample correlation perspective. However, if c is too large, the sufficient condition

for real LA would be violated too much, leading to false discovery for the entire

downstream analysis. Therefore, the constant c can be set partially heuristically to

decide the trade-off. On the other hand, the sample size of the data determines the

sampling variation of the Pearson’s correlation between pairs of genes that are truly

uncorrelated. The TCGA melanoma data contains 474 samples. Based on Fisher’s
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transformation of the Pearson’s correlation, if two genes are truly uncorrelated, by

random sampling variation, the standard deviation of their correlation value is 0.046.

Thus if two genes are uncorrelated, the 95% confidence interval (CI) of their sample

correlation is (-0.09, 0.09) without adjusting for multiple testing. For this dataset,

as the actual average of correlation values was not exactly zero, we used c = 0.5 and

the corresponding interval of (-0.079, 0.112), which roughly matched that of the 95%

CI. Similarly, the yeast cell cycle data contains 77 samples, which means if two genes

are truly uncorrelated, by random sampling variation, the standard deviation of their

correlation value is 0.114. Hence the 95% CI of the sample correlation coefficient if

two genes are uncorrelated is (-0.22, 0.22). We used c = 1 that yielded an interval of

(-0.18, 0.21), which again roughly matched the 95% CI while allowing the mean to

be non-zero.

Another important parameter is the selection of fold change threshold to generate

the module-level graph. As the fold change threshold increases, more connection

information would be lost, though the hypergraph would be less dense and easier to

investigate. Hence, similar to the correlation threshold c, the fold change threshold is

also a user-specified parameter to balance the trade-off between information cleanness

and completeness. In practice, we selected fold change thresholds such that the

median of the degrees of the modules was 4 in the supervised case, where hundreds

of modules were involved. For the unsupervised results, as roughly 50 modules were

involved, we selected fold change thresholds such that the median degree was around

20. These choices made it easy to visually inspect the resulting graphs.

In this manuscript, we proposed two routes of data analysis, the supervised ap-

proach and the unsupervised approach. The supervised approach relies on existing

annotations of the genes to determine the modules, while the unsupervised approach

uses the gene-level connection patterns to group genes into modules. As we have seen

in the results, the two approaches generated results that largely agree, while each
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provided insights that complement the other approach. The supervised approach was

generally easier to interpret. It allowed us to focus on important biological processes,

such as the p53 pathway in the melanoma data. For a poorly annotated species, the

unsupervised approach will help group genes that share similar LA relations. If genes

are poorly annotated, this grouping can potentially shed light on their functional re-

lations, and may help their functional annotation based on other genes in the same

module that are well annotated.

2.5 Conclusion

We presented a method to examine dynamic correlations in an unbiased manner at the

transcriptomic scale. It uses an inference framework to defend against false positives,

and reduces the large amounts of triplets into a manageable hypergraph that can

be visually examined relatively easily. Complimenting existing correlation-based and

partial correlation-based network construction methods, the new method provides a

useful tool for users to study dynamic relations in gene expression profiling datasets.
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Chapter 3

GEDFN: Graph-Embedded Deep

Feedforward Network
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3.1 Introduction

With the clear evidence mentioned in Section 1.3 that gene networks can lead to novel

variants of traditional classifiers, we are motivated to incorporate gene networks with

deep feedforward networks (DFN), which is closely related to the state-of-the-art tech-

nique deep learning (LeCun et al., 2015). Although nowadays deep learning has been

constantly shown to be one of the most powerful tools in classification, its application

in bioinformatics is limited (Min et al., 2016). This is due to many reasons includ-

ing the n � p issue, the large heterogeneity in cell populations and clinical subject

populations, as well as inconsistent data characteristics across different laboratories,

resulting in difficulties merging datasets. Consequently, the relatively small number

of samples compared to the large number of features in a gene expression dataset

obstructs the use of deep learning techniques, where the training process usually re-

quires a large amount of samples such as in image classification (Russakovsky et al.,

2015). Therefore, there is a need to modify deep learning models for disease outcome

classification using gene expression data, which naturally leads us to the development

a variant of deep learning models specifically fitting the practical situation with the

help of gene networks.

Incorporating gene networks as relational information in the feature space into

DFN classifiers is a natural option to achieve sparse learning with less parameters

compared to the usual DFN. However, to the best of our knowledge, few existing

work has been done on this track. Bruna et al. (2013); Henaff et al. (2015) started

the direction of sparse deep neural networks for graph-structured data. The authors

developed hierarchical locally connected network architectures with newly defined

convolution operations on graph-structured data. The methods have novel mathe-

matical formulation, however, the applications are yet to be generalized. In both of

the two papers, by using the two benchmark datasets MINST (LeCun and Cortes,

2010) and ImageNet (Russakovsky et al., 2015) respectively, the authors have treated
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2-D grid images as a special form of graph-structured data in their experiments. This

is based on the fact that an image can be regarded as a graph in which each pixel

is a vertex connected with four neighbors in the four directions. However, graph-

structured data can be much more complex in general, as the degree of each vertex

can vary widely, and the edges do not have orientations as in image data. For a gene

network, the degree of vertices is power-law distributed as the network is scale-free

(Kolaczyk, 2009). In this case, convolution operations are not easy to define. In ad-

dition, with tens of thousands of vertices in the graph, applying multiple convolution

operations results in huge number of parameters, which easily leads to over-fitting

given the small number of training samples. By taking an alternative approach of

modifying a usual DFN, our newly proposed graph-embedded DFN can serve as a

convenient tool to fill the gap. It avoids over-fitting in the n� p scenario, as well as

achieves good feature selection results using the structure of the feature space.

3.2 Methodology

3.2.1 Deep feedforward networks

A deep feedforward network (DFN, or deep neural network (DNN), multilayer per-

ceptron (MLP)) with l hidden layers has a standard architecture

Pr(y|X, θ) = f(ZoutWout + bout)

Zout = σ(ZlWl + bl)

. . .

Zk+1 = σ(ZkWk + bk)

. . .

Z1 = σ(XWin + bin),



37

where X ∈ Rn×p is the input data matrix with n samples and p features, y ∈ Rn

is the outcome vector containing classification labels, θ denotes all the parameters

in the model, Zout and Zk, k = 1, . . . , l − 1 are hidden neurons with corresponding

weight matrices Wout, Wk and bias vectors bout, bk. The dimensions of Z and W

depend on the number of hidden neurons hin and hk, k = 1, . . . , l, as well as the input

dimension p and the number of classes hout for classification problems. In this paper,

we mainly focus on binary classification problems hence the elements of y simply

take binary values and hout ≡ 2. σ(·) is the activation function such as sigmoid,

hyperbolic tangent (tanh) or rectifiers. f(·) is the softmax function converting values

of the output layer into probability prediction i.e.

pi = f(µi1) =
eµi1

eµi0 + eµi1

where

pi : = Pr(yi = 1|xi)

µi0 : = [z
(out)
i ]Tw

(out)
0 + b

(out)
0

µi1 : = [z
(out)
i ]Tw

(out)
1 + b

(out)
1 ,

for binary classification where i = 1, . . . , n.

The parameters to be estimated in this model are all the weights and biases. For

a training dataset given true labels, the model is trained using a stochastic gradient

decent (SGD) based algorithm (Goodfellow et al., 2016) by minimizing the cross-

entropy loss function

L(θ) = − 1

n

n∑
i=1

{yilog(p̂i) + (1− yi)log(1− p̂i)},

where again θ denotes all the model parameters, and p̂i is the fitted value of pi. More
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details about DFN can be found in Goodfellow et al. (2016).

3.2.2 Graph-embedded deep feedforward networks

Our newly proposed DNN model is based on two main assumptions. The first as-

sumption is that neighboring features on a known scale-free feature network or feature

graph1 tend to be statistically dependent. The second assumption is that only a small

number of features are true predictors for the outcome, and the true predictors tend

to form cliques in the feature graph. These assumptions have been commonly used

and justified in previous works reviewed in Section 1.3.

To incorporate the known feature graph information to DNN, we propose the

graph-embedded deep feedforward network (GEDFN) model. The key idea is that,

instead of letting the input layer and the first hidden layer to be fully connected, we

embed the feature graph in the first hidden layer so that a fixed informative sparse

connection can be achieved.

Let G = (V,E) be a known graph of p features, with V the collection of p vertices

and E the collection of all edges connecting vertices. A common representation of a

graph is the corresponding adjacency matrix A. Given a graph G with p vertices, the

adjacency A is a p× p matrix with

Aij =


1, if Vi and Vj are connected, ∀i, j = 1, . . . , p

0, otherwise.

In our case A is symmetric since the graph is undirected. Also, we require Aii = 1

meaning each vertex is regarded to connecting itself.

Now to mathematically formulate our idea, we construct the DNN such that the

1Since in this chapter we interchangeably discuss feature networks and neural networks, to avoid
confusion, the equivalent term “graph” is used to refer to the feature network from now on, while
“networks” naturally refer to neural networks.
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dimension of the first hidden layer (hin) is the same as the original input i.e. hin = p,

hence Win has a dimension of p× p. Between the input layer X and the first hidden

layer Z1, instead of fully connecting the two layers with Z1 = σ(XWin + bin), we

have

Z1 = σ(X(Win � A) + bin) (3.1)

where the operation � is the Hadamard (element-wise) product. Thus, the connec-

tions between the first two layers of the feedforward network are “filtered” by the

feature graph adjacency matrix. Through the one-to-one R : p → p transforma-

tion, all features have their corresponding hidden neurons in the first hidden layer.

A feature can only feed information to hidden neurons that correspond to features

connecting to it in the feature graph.

Specifically, let xi = (xi1, . . . , xip)
T , i = 1, . . . , n be any instance (one row) of the

input matrix X, in the usual DFN, the first hidden layer of this instance is calculated

as

z
(1)
i = σ([

p∑
j=1

xijw
(in)
1j + b

(in)
1 , . . . ,

p∑
j=1

xijw
(in)
hinj

+ b
(in)
hin

]T ),

where z
(1)
i is the i-th row of Z1, and w

(in)
kj , b

(in)
k , k = 1, . . . , hin are the weight and bias

for this layer. Now in our model, hin = p and each w
(in)
kj is multiplied by an indicator

function i.e.

z
(1)
i = σ([

p∑
j=1

xijw
(in)
1j I(A1j = 1) + b

(in)
1 , . . . ,

p∑
j=1

xijw
(in)
pj I(Apj = 1) + b(in)

p ]T ).

Therefore, the feature graph helps achieve sparsity for the connection between the

input layer and the first hidden layer.
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3.2.3 Evaluation of feature importance

Beside improving classification, it is also of great interest to find features that sig-

nificantly contribute to the classification, as they can reveal the underlying biologi-

cal mechanisms. Therefore, for GEDFN, we also develop a feature ranking method

according to a relative importance score. The idea is analogous to the Connection

Weights (CW) method introduced by Olden and Jackson (2002). Extended from CW,

we propose the Graph Connection Weights (GCW) method, which emphasizes the

significance of the feature graph in our newly proposed neural network architecture.

The main idea of GCW is that, the contribution of a specific variable is directly

reflected by the magnitude of all the weights that directly associated with the corre-

sponding hidden neuron in the graph-embedded layer (the first hidden layer). Sum-

ming over the absolute values of the directly associated weights gives the relative

importance of the specific feature, i.e.

sj =γj

p∑
k=1

|w(in)
kj I(Akj = 1)|+

h1∑
m=1

|w(1)
jm|, (3.2)

γj =min(c/

p∑
k=1

I(Akj = 1), 1), j = 1, . . . , p, (3.3)

where sj is the importance score for feature j, w(in) denotes weights between the

input and first hidden layers, and w(1) denotes weights between the first hidden layer

and the second hidden layer. A constant c is imposed to penalize feature vertices

with too many connections, so that they will not be overly influential. In subsequent

experiments, we take c = 50.

Note that the importance score consists of two parts according to Equation 3.2.

The left term summarizes the importance of a feature according to the connection on

the feature graph, coherent with the property of the graph-embedded layer. The right

term then summarizes the contribution of the feature according to the connection to
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the hidden neurons in the next fully-connected layer. Input data are required to

be Z-score transformed (the original value minus the mean across all samples and

then divided by the standard deviation) before entered into the model, and this will

guarantee all variables are of the same scale so that the magnitude of weights are

comparable. After training GEDFN, the importance scores for all the variables can

be calculated using trained weights, which leads to a ranked feature list.

3.2.4 Detailed model settings

For the choice of activation functions in GEDFN, the rectified linear unit (ReLU)

(Nair and Hinton, 2010) with the form (in scalar case)

σReLU(x) = max(x, 0)

is employed. This activation has an advantage over sigmoid and tanh as it can

avoid the vanishing gradient problem (Hochreiter et al., 2001) during training using

SGD. To train the model, we choose the Adam optimizer (Kingma and Ba, 2014),

which is the most widely used variant of traditional gradient descent algorithms in

deep learning. Also, we use the mini-batch training strategy by which the optimizer

randomly trains a small proportion of the samples in each iteration. Details about the

Adam optimizer and mini-batch training can be found in Goodfellow et al. (2016);

Kingma and Ba (2014).

The classification performance of a DNN model is associated with many hyper-

parameters, including architecture-related parameters such as the number of layers

and the number of hidden neurons in each layer, regularization-related parameters

such as the dropout proportion, and model training-related parameters such as the

learning rate and the batch size. These hyper-parameters can be fine-tuned using ad-

vanced hyper-parameter training algorithm such as Bayesian Optimization (Mockus,
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2012), however, as the hyper-parameters are not of primary interest in our work, in

later sections, we simply tune them using grid search in a feasible hyper-parameter

space. A visualization of our tuned GEDFN model for simulation and real data ex-

periments is shown in Fig. 3.1. More details of hyper-parameter tuning can be found

in A.

Figure 3.1: Network architecture of the GEDFN model for experiments in Section 3.3
and Section 3.4.

3.3 Simulations

We conducted extensive simulation experiments to mimic disease outcome classifica-

tion using gene expression and network data, and explored the performance of our

new method in comparison with the usual DFN and other proven methods. Ro-

bustness was also tested by simulating datasets that did not fully satisfy the main

assumptions. The method was applied to examine whether it could still achieve a

reasonable performance.
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3.3.1 Synthetic data generation

For a given number of features p, we employed the preferential attachment algorithm

proposed by Barabási and Albert (1999) to generate a scale-free feature graph. The

p × p distance matrix D recording pairwise distances among all vertices was then

calculated. Next, we derived the covariance matrix Σ by transforming the distances

between verticies by letting

Σij = 0.7Dij , i, j = 1, . . . , p.

Here by convention the diagonal elements of D are all zeros meaning the distance

between a vertex to itself is zero.

After simulating the feature graph and obtaining the covariance matrix of features,

we generate n multivariate Gaussian samples as the input matrix X = (x1, . . . ,xn)T

i.e.

xi ∼ N (0,Σ), i = 1, . . . n,

where n � p for imitating gene expression data. Using this setup, vertices that

are several steps away could naturally become negatively correlated when we sample

the expression values from multivariate normal distribution using Σ as the variance-

covariance matrix. Figure A.1 in A shows sample plots of the pairwise feature corre-

lation distributions for the simulated data.

To generate outcome variables, we first select a subset of features to be the “true”

predictors. Following our assumptions mentioned in Section 3.2.2, we intend to select

cliques in the feature graph. Among vertices with relatively high degrees, part of

them are randomly selected as “cores”, and part of the neighboring vertices of cores

are also selected. Denoting the number of true predictors as p0, we sample a set of

parameters β = (β1, . . . , βp0)
T and an intercept β0 within a certain range. In our

experiments, we first uniformly sample β’s from (0.1, 0.2), and randomly turn some
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of the parameters into negative, so that we accommodate both positive and negative

coefficients. Finally, the outcome variable y is generated through a generalized linear

model framework

Pr(yi = 1|xi) = η−1(xi
Tβ + β0)

yi = I(Pr(yi = 1|xi) > t), i = 1, . . . n,

where t is a threshold and η(·) is the link function. We consider two cases of η−1(·)in

our experiments, one is the sigmoid function, which is equivalent to the binary softmax

and monotone

η−1(x) =
1

1 + ex

and the other is a weighted tanh plus quadratic function, which is non-monotone

η−1(x) = 0.7φ(tanh(x)) + 0.3φ(x2),

where φ(·) is the min max function scaling the input to [0, 1].

Following the above procedure, corresponding to the two cases of inverse link func-

tions, we simulate two sets of synthetic datasets with 5,000 features and 400 samples.

We compare our method with the usual DFN, the feature graph-embedded classifica-

tion method network-guided forest (NGF) (Dutkowski and Ideker, 2011) mentioned

in Section 1.3, as well as the traditional logistic regression with lasso (LRL) (Tibshi-

rani, 1996). In gene expression data, the number of true predictors account for only

a small proportion of the features. Taking this aspect into consideration, we examine

different numbers, i.e. 40, 80, 120, 160 and 200, of true predictors, corresponding

to 2, 4, 6, 8, and 10 cores among all the high-degree vertices in the feature graph.

However, in reality, the true predictors may not be perfectly distributed in the feature

graph as cliques. Instead, some of the true predictors, which we call “singletons”, can
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be quite scattered. To create this possible circumstance, we simulate three series of

datasets with singleton proportions 0%, 50% and 100% among all the true predictors.

Therefore, we investigate three situations where all true predictors are in cliques, half

of the true predictors are singletons, and all of the true predictors are scattered in

the graph, respectively.

3.3.2 Simulation results and discussion

In our simulation studies, as shown in Fig. 3.1, the GEDFN had three hidden layers,

where the first hidden layer was the graph adjacency embedded layer. Thus the

dimension of its output is the same as the input, namely 5,000. The second and third

hidden layers had 64 and 16 hidden neurons respectively, which are the same for the

usual DFN. The number of the first layer hidden neurons in the usual DFN, 1024

neurons, was selected using grid search.

For each of the data generation settings, ten independent datasets were generated,

and the GEDFN, DFN, NGF and LRL methods were applied. For each simulated

dataset, we randomly split the dataset into training and testing sets at a 4:1 ratio.

The models were trained using the training dataset, and used to predict the class

probabilities of the testing dataset. To evaluate the classification results, receiver

operating characteristic (ROC) curve was generated using the predicted class proba-

bilities and the true class membership of the testing dataset, and the area under the

curve (AUC) was calculated. The final testing results were then averaged across the

ten datasets.

Fig. 4.2 shows the results of the case with the sigmoid inverse link function. The

error bars denote intervals of estimated mean AUC values plus/minus their standard

errors. Corresponding to the case that singleton proportion is 0%, Fig. 4.2(a) shows

GEDFN and LRL outperformed the other two methods. As the number of true

predictors increased, all of the methods performed better as there were more signals
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in the feature set. As the singleton proportion increased to 0.5 (Fig. 4.2(b)), GEDFN

was the best among the four though the difference between GEDFN and LRL was

not big. In Fig. 4.2(c), when the singleton proportion was increased to 1, all of

the methods performed worse, but GEDFN performed better than the others overall.

The close results of GEDFN and LRL were expected, as in the sigmoid case LRL was

in fact the true model.

As for feature selection, GEDFN uses Equation 3.2 to rank features. The feature

ranking method for the usual DFN was similar to the one for GEDFN, except that

for DFN each variable’s importance was given only by the second term in Equation

3.2, that was to consider only the weights connecting the input layer and the first

hidden layer. For NGF, the variable importance calculation based on cumulative re-

duction of Gini impurity in random forests (Breiman, 2001) could be directly applied.

Therefore, knowing the true predictors for simulated data, we were able to compare

feature selection results for different methods by computing and comparing the AUC

of the precision-recall curves, which were constructed using the feature ranking of the

models and the 0/1 vector indicating the true predictor status of each feature. Fig.

4.2(d)(e)(f) show the average precision-recall AUC (error bars: the intervals of mean

AUC plus/minus one standard error) for each simulation setting of the sigmoid case.

We found that DFN was not able to effectively rank features, resulting in precision-

recall AUC less than 0.05 for all the datasets, and thus they were not included in the

plots. From Fig. 4.2(d)(e)(f), one can conclude that GEDFN ranked features more

effectively than NGF.

LRL did not rank features but directly gave the selected feature subset based on

cross-validation. To compare feature selection between GEDFN and LRL, for each

dataset, we fixed the precision of GEDFN to be the same as LRL, and then compared

their recall values. The recall plots (error bars: the intervals of mean recall plus/minus

one standard error) for different simulation settings are shown in Fig. 4.2(g)(h)(i).
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Figure 3.2: Plots of the classification and feature selection comparison for the case
with the sigmoid inverse link function. Singleton proportions: left column 0%, middle
column 50%, right column 100%. First row: AUC of ROC for classification; second
row: AUC of precision-recall for feature selection; third row: recall plots given fixed
precision from LRL. Error bars represent the estimated mean quantity plus/minus
the standard error.
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Again, it is evident that GEDFN achieved better feature selection results.

Simulation results for the case with the weighted tanh plus quadratic inverse link

function are shown in Fig. 3.3. From the first row of Fig. 3.3, all the methods’ AUC

decreased compared to their counterparts in the case of sigmoid inverse link, as the

non-monotone function brought more difficulty to classification. However, GEDFN

again outperformed the other methods in general, and the difference between GEDFN

and LRL was enlarged compared to the sigmoid function case since the non-monotone

inverse link was more challenging, and LRL was no longer the true model in this case.

The second row and third row of Fig. 3.3 indicate GEDFN’s better feature selection

than NGF and LRL across all simulation settings in this case. DFN was again proved

not to have good feature selection capability through the experiment, with precision-

recall AUC no more than 0.04.

The above simulation experiment results showed nice performance of GEDFN in

both classification accuracy and feature selection in both the sigmoid case and the

tanh plus quadratic case. The method was robust across different number of true

predictors and different proportions of singletons in feature graphs. To further test

the robustness of GEDFN, we considered cases that the known feature graph was

completely misspecified, i.e. the graph structure bears misleading information with

regard to feature correlation and true predictor location. This extreme situation is

unlikely in applications. We employed the synthetic datasets used above with single-

ton proportion 50%, destroyed the true feature graphs, and re-constructed random

feature graphs using the preferential attachment algorithm. The comparison of clas-

sification and feature selection between the GEDFN with correct feature graph and

the GEDFN with misspecified graphs is shown in Figure A.2 in A. From the results,

misspecified feature graphs negatively affected GEDFN regarding both classification

and feature selection. For classification, GEDFN was robust enough to obtain ac-

ceptable accuracies. In contrast, feature selection was more influenced, which was
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Figure 3.3: Plots of the classification and feature selection comparison for the case
with the weighted tanh plus quadratic inverse link function. Singleton proportions:
left column 0%, middle column 50%, right column 100%. First row: AUC of ROC
for classification; second row: AUC of precision-recall for feature selection; third row:
recall plots given fixed precision from LRL. Error bars represent the estimated mean
quantity plus/minus the standard error.



50

expected as the feature ranking mechanism of GEDFN relied on the feature graph

connections.

Another concern about the robustness of GEDFN is the reproducibility of feature

selection. For a fixed dataset, we were interested in whether a relatively stable set of

important features would be selected across different times of model fitting. To ex-

plore this, we randomly chose a synthetic dataset with 40 true predictors, 50% single-

ton and sigmoid inverse link, and experimented GEDFN feature selection repeatedly

for 10 times. Ten ranked feature lists were obtained, and the top 40 ranked variables

were selected for each experiment. Among the ten sets of 40 selected features, 19

features were repeatedly selected as top 40 over seven times, and they covered 40%

of the 40 true predictors. Also, 70% of the union of the ten sets of top 40 features

turned out to be relevant for prediction. Here “relevant” means a feature was either

a true predictor, or a neighbor of a true predictor in the feature graph, since in our

simulation settings, neighbors of true predictors can be useful in classification even

if they were not chosen as true predictors themselves. This small specific experiment

indicated the relative stable performance of GEDFN feature selection.

3.4 Data Analysis

3.4.1 Breast invasive carcinoma data

We applied our GEDFN method to the Cancer Genome Atlas (TCGA) breast cancer

(BRCA) RNA-seq dataset (Koboldt et al., 2012). The dataset consisted of a gene

expression matrix with 20,532 genes of 707 cancer patients, as well as the clinical

data containing various disease status measurements. The gene network came from

the HINT database (Das and Yu, 2012). We were interested in the relation between

gene expression and a molecular subtype of breast cancer - the tumor’s Estrogen

Receptor (ER) status. ER is expressed in more than 2/3 of breast tumors, and plays
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Table 3.1: Classification results for BRCA data
Methods GEDFN DFN NGF LRL

Mean AUC 0.945 0.938 0.922 0.940
Standard deviation 0.005 0.013 0.012 0.008

a critical role in tumor growth (Sorlie et al., 2003). Elucidating the relation between

gene expression pattern and ER status can shed light on the subtypes of breast cancer

and their specific regulations. After screening genes that were not involved in the gene

network, a total of 9,211 genes were used as the final feature set in our classification.

For each gene, the expression value was Z-score transformed.

Using the HINT network architecture, we tested the four methods GEDFN, DFN,

NGF and LRL on the BRCA data with ten repeated experiments respectively. The

computation time of GEDFN was around 3 min each time on a workstation with

dual Xeon E5-2660 processors, 256Gb RAM, and a single GTX Titan Xp GPU.

The summary of test-set classification accuracies is seen in Table 3.1. From the

classification results, all the methods achieved excellent AUC scores, and we concluded

that the dataset contained strong signals for ER status. Thus, for this dataset, the

improvement of incorporating feature graph regarding classification was limited, as

traditional methods already pushed the performance to the upper bound.

However, GEDFN exhibited advantages over other methods in terms of feature

selection. To analyze the feature selection results for this dataset, we first averaged

the importance scores across the ten repeated model trainings from GEDFN and

NGF. DFN was proved not able to achieve good feature selection results in Section

4.3.3 and thus was excluded from this analysis. For LRL, the features selected over

the ten times were quite stable with only one or two different variables, hence we

took the union of the 10 selected feature sets as the feature selection result for LRL.

In the end, selected features from LRL and the top 1% ranked features from GEDFN

and NGF were compared. They contained 89, 92 and 92 features respectively.

We invested the functional consistency of the selected features, as reflected by
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Table 3.2: Selected feature sub-graph analysis for BRCA data
Methods GEDFN NGF LRL

# connected components 3 4 80
Within-component average distance 3.181 3.169 1.700

Average distance 2.263 2.393 3.822

how close the selected features were in the original feature graph. On the feature

graph, which was based on protein-protein interaction (Das and Yu, 2012), func-

tionally related genes tend to be closer in distance. For each method, we extracted

the sub-graph of the selected features from the entire feature graph, and examined

the connection of the sub-graph. A better feature selection method was expected to

choose features that fall into cliques of the overall graph, resulting in fewer connected

components in the selected sub-graph. Table 3.2 shows the results of sub-graph anal-

ysis. The first row is the number of connected components for each sub-graph. The

second row is the within-component average distances in the sub-graph. The third

row is the average distances in the entire feature graph. From Table 3.2, one can see

that features selected by GEDFN formed more closely connected sub-graphs (seen in

Fig. 3.4), while NGF resulted in more scattered sub-graphs with 4 connected com-

ponents. Features selected by LRL had no graph structure at all, with 89 features

forming 80 connected components, meaning most of which were unconnected. The

average distance in the entire feature graph for GEDFN was smaller than that for

NGF, indicating the closer relationship among genes selected by GEDFN. Although

the within-component average distance for LRL is the smallest, the large amount of

connected components made this statistic meaningless for LRL.

Functional analysis of the genes selected by GEDFN were conducted by testing for

enrichment of the Gene Ongoloty (GO) biological processes using GOstats (Falcon and

Gentleman, 2007). The results can be found in Table 3.3. Fifteen of the 92 selected

genes belong to the autophagy process, which was the most significant GO term.

In addition, ”regulation of apoptotic signaling pathway” and ”ubiquitin-dependent
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Figure 3.4: Feature sub-graph selected by GEDFN for BRCA data.

protein catabolic process” were also among the top terms. Breast cancer cells that

express ERα have a higher autophagic activity than cells that express ER-β and ER-

cells (Felzen et al., 2015). It has been documented that the unfolded protein response

and autophagy play a role in the development of anti-estrogen therapy resistance in

ER+ breast cancer (Cook and Clarke, 2014).

The second most significant term was ”negative regulation of cell cycle”. ERα

regulates the cell cycle by regulating the S and G2/M phases in a ligand-dependent

fashion (JavanMoghadam et al., 2016). Several of the top terms were signal transduc-

tion process. It has been long established that there are cross-talks between BMP and

estrogen signaling, as well as between growth factor receptor pathways and estrogen

signaling (Osborne et al., 2005). BMPs are repressed by estrogen through estrogen

receptor signaling (Yamamoto et al., 2002). NF-κB is a crucial player in cancer initi-

ation and progression. Direct binding to NF-κB is documented for p53 and estrogen

receptor (Hoesel and Schmid, 2013). It exhibits differential function in ER- and ER+

hormone-independent breast cancer cells (Gionet et al., 2009).

The remaining top GO terms were related to stress response. Breast cancer cells
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Table 3.3: Top GO biological processes for the sub-graph selected by GEDFN (BRCA
data). Manual pruning of partially overlapping GO terms was conducted.

GOBPID Pvalue Term

GO:0006914 5.02E-07 autophagy

GO:0045786 1.16E-05 negative regulation of cell cycle

GO:0030509 1.27E-05 BMP signaling pathway

GO:2001233 1.74E-05 regulation of apoptotic signaling pathway

GO:0006511 1.78E-05 ubiquitin-dependent protein catabolic process

GO:0071363 3.01E-05 cellular response to growth factor stimulus

GO:0038061 5.56E-05 NIK/NF-kappaB signaling

GO:0097576 5.97E-05 vacuole fusion

GO:0071456 6.68E-05 cellular response to hypoxia

GO:2001020 1.69E-04 regulation of response to DNA damage stimulus

Table 3.4: GO enrichment analysis for features selected by GEDFN only (BRCA
data). Manual pruning of partially overlapping GO terms was conducted.

GOBPID Pvalue Term

GO:2001233 4.81E-06 regulation of apoptotic signaling pathway

GO:0006511 1.12E-05 ubiquitin-dependent protein catabolic process

GO:0030509 2.39E-05 BMP signaling pathway

GO:0071363 1.24E-04 cellular response to growth factor stimulus

GO:0045786 1.89E-04 negative regulation of cell cycle

adapt to reduced oxygen concentrations by increasing levels of hypoxia-inducible fac-

tors. The increase of such factors cause higher risk of metastasis (Gilkes and Semenza,

2013). Hypoxia inducible factors can influence the expression of estrogen receptor in

breast cancer cells (Wolff et al., 2017). Estrogen changes the DNA damage response

by regulating proteins including ATM, ATR, CHK1, BRCA1, and p53 (Caldon, 2014).

Thus it is expected that DNA damage response is closely related to ER status.

Finally, we analyzed the 69 genes that were only selected by GEDFN but not the

other methods. The top five GO terms of this feature set are listed in Table 3.4.

Clearly these functions agree very well with the biological processes based on all the

selected genes listed in Table 3.3.
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Table 3.5: Classification results for KIRC data
Methods GEDFN DFN NGF LRL

Mean AUC 0.743 0.643 0.521 0.698
Standard deviation 0.047 0.038 0.012 0.003

3.4.2 Kidney renal clear cell carcinoma data

We also tested GEDFN on the kidney renal clear cell carcinoma (KIRC) RNA-seq

dataset from TCGA (Network et al., 2013). The dataset contained the gene expression

matrix with 20,502 genes from 537 subjects, as well as the clinical data including

survival information. The gene network again came from the HINT database. For

KIRC, We tried to study the relation between gene expression and the five-year

survival outcome, which was a much more difficult task compared to cancer subtypes.

After screening genes that were not involved in the gene network, a total of 8,630 genes

were used as the final feature set in our classification. For each gene, the expression

value was again Z-score transformed.

As in Section 4.4.1, we again tested the four methods GEDFN, DFN, NGF and

LRL on the KIRC data with ten repeated experiments respectively. The computation

time of GEDFN was around 2.5 min each time on the same workstation as for BRCA

data. Classification results are summarized in Table 3.5. Given the 5-year survival

outcome variable was much more challenging to predict, the AUC scores were much

lower for all the methods. NGF was not able to classify instances at all with AUC

of ROC near 0.5. At the same time, GEDFN performed substantially better than

the other three methods. Therefore, the KIRC data demonstrated that incorporating

feature graph would improve classification accuracy for DNN models.

Due to the poor classification of NGF, it was unnecessary to examine its feature

selection for KIRC. Similar to the BRCA results in Section 4.4.1, LRL selected scat-

tered variables on the feature graph with few connections between them. For GEDFN,

we obtained 86 top 1% important features that fall into 3 connected components, with
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an average within-component distance of 3.111, and an average distance in the entire

feature graph of 2.257. Thirty of the 86 genes overlap with the top genes in the

breast cancer study, which was not a surprise given both datasets are based on tumor

tissues.

The sub-graph of top 1% of genes selected by GEDFN is shown in Fig. 3.5. GO

enrichment analysis was conducted for the 86 genes, and the top 10 GO terms are

shown in Table 3.6. The top GO terms were predominantly regulatory and signal

transduction processes, several of which were well-known for their association with

tumor development. However their role in survival were previously not clear. A

key regulator in the oncogenesis of renal cell carcinoma inhibits apoptosis through

apoptosis signaling pathway, which was the top GO term (Banumathy and Cairns,

2010). The second GO term, regulation of binding is a relatively broad term. The

selected genes associated with this term fell mostly into protein and DNA binding pro-

cesses. The 17 selected genes that were in this process include known oncogenes JUN

(Jones et al., 2016) and TFIP11 (Tang et al., 2015), tumor suppressors CRMP1 (Cai

et al., 2017) and LDOC1 (Ambrosio et al., 2017), target of tumorcide Manumycin-A

PPP1CA (Carey et al., 2015), three SMAD family proteins SMAD2/SMAD3/SMAD4

that are involved in multiple cancers (Samanta and Datta, 2012), as well as several

genes involved in various other cancers, e.g. PIN1 (Cheng et al., 2016), MDF1 (Li

et al., 2017), AES (Sarma and Yaseen, 2011), MAPK8 (Recio-Boiles et al., 2016),

CTNNB1 (Na et al., 2017), KDM1A (Ambrosio et al., 2017), and SUMO1 (Jin et al.,

2017).

The term “cellular response to growth factor stimulus” includes the epidermal

growth factor receptor (EGFR) pathway, and BMP signaling pathway. Both are

related to the development of renal cell cancer (Edeline et al., 2010; Zhang et al.,

2016). Increased EGFR expression occurs in some renal cell carcinoma patients with

an unfavorable histologic phenotype (Minner et al., 2012). Many genes in the “heart



57

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

PPP1CA

ATN1

TRIM27

SGTA

SIAH1

SHC1

ANXA7

AR

UBE2W

TRIP13
TRIM54

UBE2K

CRMP1

PRMT6

GSK3B

AGTRAP

PNMA1

PIN1

CACNA1A

SMAD1

COPS5

UBE2D1

ABI2

REL

ERBB3

PHC2

LNX1

WNK1

PLSCR1

DISC1

LDOC1

NCK1

ZNF417

NCK2

RBPMS

PTN
AKT1

PIAS4

COPS6

UPF2

NEDD4L

MDFI

KRT15
LZTS2

SMAD3

UBE2E3

TFIP11

CTNNB1

UBQLN1

NEDD4

EEF1A1

MAPK14

KAT5

SUMO1

SMAD2

AES

TRAF1

CCDC85B

CREB3

HNRNPK

MAPK8

HNRNPD

ERBB2

PSMA1

MID2

TERF1

UBE2D3

IKZF3

NECAB2

ACVR1

CSNK2B

SMAD4

KDM1A

LMO2

STAT3

PLCG1

COIL

NIF3L1

A2M

JUN

BMPR1B

SPRY2

STX11

HGS

RAC1

UBE2D4

Figure 3.5: Feature sub-graph selected by GEDFN for KIRC data.

development” and “developmental growth” processes are also part of the response to

growth factor stimulus, causing those terms to be significant.

The serine/threonine kinase signaling pathway includes SMAD and mTOR sig-

nal transduction, both of which are involved in renal cell cancer development (Ede-

line et al., 2010). Both cell proliferation regulation and ubiquitin-dependent protein

catabolism are commonly affected pathways in multiple cancers. Specifically, the

ubiquitin-dependent protein catabolic process is impacted by a key genetic defect

of clear cell kidney cancer in the VHL tumor suppressor gene, which is part of a

multiprotein E3 ubiquitin ligase (Corn, 2007).

Overall, with the KIRC data, GEDFN was able to achieve better prediction, and

select genes that were easily interpretable. The results pointed to several important

pathways, the behavior of which may predispose patients to certain survival outcomes.



58

Table 3.6: Top GO biological processes for the sub-graph selected by GEDFN (KIRC
data). Manual pruning of partially overlapping GO terms was conducted.

GOBPID Pvalue Term

GO:2001233 7.10E-10 regulation of apoptotic signaling pathway

GO:0051098 1.14E-09 regulation of binding

GO:0071363 1.27E-09 cellular response to growth factor stimulus

GO:0007178 1.48E-07 transmembrane receptor protein
serine/threonine kinase signaling pathway

GO:1903827 2.27E-07 regulation of cellular protein localization

GO:0042176 5.72E-07 regulation of protein catabolic process

GO:0007507 1.66E-06 heart development

GO:0008285 1.72E-06 negative regulation of cell proliferation

GO:0048589 3.07E-06 developmental growth

GO:0007183 3.52E-06 SMAD protein complex assembly

3.5 Conclusion

We presented a new deep feedforward network classifier embedding feature graph in-

formation. It achieves sparse connected neural networks by constraining connections

between the input layer and the first hidden layer according to the feature graph.

Simulation experiments have shown its relatively higher classification accuracy and

better feature selection ability compared to existing methods, and the real data ap-

plications demonstrated the utility of the new model in both classification and the

selection of biologically relevant features.
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Chapter 4

forgeNet: Forest Graph-Embedded

Deep Feedforward Network
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4.1 Introduction

We propose a supervised feature graph construction framework using tree-based en-

semble models, as literature shows that tree-based ensemble methods such as the

Random Forest (RF) (Breiman, 2001) and the Gradient Boosting Machine (GBM)

(Friedman, 2002) are excellent tools for feature selection (Tang and Foong, 2014;

Vens and Costa, 2011). These tree-based methods also provide relational informa-

tion between features in terms compensating each other in the classification task.

We develop the forest graph-embedded deep feedforward network (forgeNet) model,

with a built-in tree-based ensemble classifier as a feature graph extractor on top of a

modified GEDFN model. The feature extractor selects features that span a reduced

feature space, and constructs a graph between the selected features based on their

directional relations in the decision tree ensemble.

The application of tree-based ensemble methods as feature graph extractor is

mainly based on two considerations: 1) the extractor selects effective features in a

supervised manner. Thus the target outcome directly participates the feature graph

construction. Compared to unsupervised feature construction such as using marginal

or conditional correlation graphs, the resulting graph from trees is more informative

and relevant to the specific classification task; 2) the feature extraction procedure

helps reduce the dimension of the original feature space, alleviating the n� p prob-

lem for the downstream neural network model. Similar feature representation learning

scheme has been shown successful in Kong and Yu (2018), where RF is employed as

a supervised feature detector. However, in that study, only the output of RF, i.e. the

predicted score for each sample is used as the feature representation, and the rela-

tion between features are not considered. In contrast, our forgeNet model examines

more detailed information provided by the forest and re-trains neural networks at

the feature level instead of using feature representations. This way, we expect the

downstream neural network part utilizing the feature information more thoroughly.
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4.2 Methodology

4.2.1 The forgeNet model

We refer to Chapter 3 for the GEDFN model as our new method utilizes a similar

neural network architecture. Mathematical notations remain consistent with those

in Chapter 3. The newly proposed forest graph-embedded deep feedforward network

(forgeNet) model consists of two components - the extractor component and the neural

network component. The extractor component uses a forest model to select useful

features from raw inputs with the supervision of training labels, as well as constructs a

directed feature graph according to the splitting order in the individual decision trees.

The neural network component feeds the generated feature graph and the raw inputs

to GEDFN, and serves as the learner to predict outcomes. In forgeNet, a forest

is defined as any ensemble of decision trees but not limited to random forests. In

fact, any tree-based ensemble approach is applicable within the forgeNet framework.

Besides RF and GBM mentioned in Section 4.1, their variants with similar outputs

are also possible options, or the forest can be simply built through bagging trees

(Breiman, 1996). However, since RF and GBM models are the most commonly used

tree ensembles, in this paper, we only employ these two methods for a proof-of-concept

purpose.

In forgeNet, a forest F is denoted as a collection of decision trees

F(Θ) = {Tm(Θm)}, m = 1, . . . ,M,

where M is the total number of trees in the forest, Θ = {Θ1, . . . ,ΘM} represents the

parameters, which include splitting variables and splitting values. In the feature graph

extraction stage, F is fitted by training data Xtrain and training label ytrain, where

Xtrain ∈ Rntrain×p and ytrain ∈ Rntrain . After fitting the forest, we obtain M decision
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trees, each of which contains a subset of features and their directed connections

according to the tree splitting. At the same time, a binary tree can be viewed as a

special case of a graph with directed edges. Hence, we can construct a set of graphs

G = {Gm(Vm, Em)}, m = 1, . . . ,M,

where Vm and Em are collections of vertices and edges in Gm respectively. Next, by

merging all graphs in G, the aggregated feature graph

G(V,E) =
M⋃
m=1

Gm(Vm, Em)

is obtained, where V =
⋃M
m=1 Vm and E =

⋃M
m=1 Em.

In the form of its adjacency matrix, G is the feature graph to be embedded into

the second stage of the forgeNet. Note that regardless which tree-based ensemble

methods we use, it is likely that not all predictors in the original feature space can

enter the forest model. A feature is included in G if and only if it is used at least

once by the forest to split samples. As a result, the original feature space is reduced

after the feature extraction. Denoting the number of vertices of G as |V |, we have

|V | < p, and the input data matrix for the second stage is thus X̃train ∈ Rn×|V |. The

columns in X̃train corresponds to selected features in the original data Xtrain ∈ Rn×p,

and the order of columns does not matter.

The resulting feature graph G of feature extraction is a directed network, which

differs from the one used in the original GEDFN. In Chapter 3, the adjacency matrix

A in Eq. 3.1 represents an undirected feature graph. In the case of forgeNet, the

adjacency matrix is naturally generalized to the directed version, and replacing A in

Eq. 3.1 with an asymmetric adjacency does not affect the model construction and

training. A visualization of the entire forgeNet architecture is seen in Fig. 4.1.

After fitting forgeNet with the training data, only the reduced input X̃test and the
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Figure 4.1: Illustration of the forgeNet model. Notations are consistent with those in
the text.

testing label ytest are required for testing the prediction results, as X̃test can be directly

fed into the downstream neural nets together with the feature graph constructed from

the forest.

4.2.2 Evaluation of feature importance

The selection of predictors that significantly contribute to the prediction is another

major aspect of the analysis of profiling data, as they can reveal underlying biological

mechanisms. Thus in forgeNet, we introduce a feature importance evaluation mech-

anism, which is closely related to the Graph Connection Weights (GCW) method

proposed in Section 3.2.3 for the original GEDFN model. However, since the fea-

ture graph used in forgeNet has a different property from that in GEDFN where the

feature graph is given, certain modifications of GCW are needed.

The main idea of GCW is that, the contribution of a specific predictor is directly

reflected by the magnitude of all the weights that are directly associated with the

corresponding hidden neuron in the graph-embedded layer (the first hidden layer).

In forgeNet, since the connection between the input layer and the first hidden layer

is no longer symmetric due to the directed feature graph structure, to evaluate the
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importance of a given feature, we examine both hidden neurons in the first hidden

layer and the nodes in the input layer. The importance score is thereby calculated

as the summation of absolute values of the weights that are directly associated with

the feature node itself and its corresponding hidden neuron in the graph-embedded

layer:

sj =

p∑
u=1

|w(in)
ju I(Aju = 1)|+

p∑
v=1

|w(in)
vj I(Avj = 1)|

+

h1∑
m=1

|w(1)
jm|, j = 1, . . . , p,

where sj is the importance score for feature j, w(in) denotes weights between the input

and first hidden layers, and w(1) denotes weights between the first hidden layer and the

second hidden layer. The score consists of three parts: the first two terms summarize

the importance of a feature according to the directed edge connection in the feature

graph G; the third term summarizes the contribution of the feature according to the

connection with the second hidden layer Z2. Note that the input data X are required

to be Z-score transformed (the original value minus the mean across all samples and

then divided by the standard deviation), ensuring all variables are of the same scale

so that the magnitude of weights are comparable. Once the forgeNet is trained, the

importance scores for all the variables can be calculated using trained weights.

4.2.3 Implementation

We employ the Scikit-learn (Pedregosa et al., 2011) package for the implementation

of RF, the Xgboost package (Chen and Guestrin, 2016) for GBM, and the Tensorflow

library (Abadi et al., 2016) for deep neural networks. For the choice of activation

functions of neural nets, the rectified linear unit (ReLU) (Nair and Hinton, 2010) is

employed. This non-linear activation has an advantage over the sigmoid function and
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the hyperbolic tangent function as it avoids the vanishing gradient problem (Hochre-

iter et al., 2001) during model training. The entire neural net part of forgeNets is

trained using the Adam optimizer (Kingma and Ba, 2014), which is the state-of-

the-art version of the popular stochastic gradient descent algorithm. Also, we use

the mini-batch training strategy by which the optimizer loops over randomly divided

small proportions of the training samples in each iteration. Details about the Adam

optimizer and the mini-batch strategy applications in deep learning can be found in

(Goodfellow et al., 2016; Kingma and Ba, 2014).

The performance of a deep neural network model is associated with many hyper-

parameters, including the number of hidden layers, the number of hidden neurons in

each layer, the dropout proportion of training, the learning rate and the batch size.

As the hyper-parameters are not of primary interest in our research, in the simulation

and real data experiments, we simply tune hyper-parameters using grid search in a

feasible parameter space. An example of hyper-parameter tuning can be found in

Appendix B. Also, since our experiments contains a number of datasets, it is not

plausible to fine tune models for each dataset. Instead, we tune hyper-parameters

using some preliminary synthetic datasets, and apply the set of parameters to all

experimental data. For simulation experiments, the number of trees of our forgeNets

is 1000 and the number of hidden layers of the neural net is three with p (graph-

embedded layer), 64 and 16 hidden neurons respectively. For real data analyses, the

number of trees in the forest part is adjusted according to the size of the corresponding

feature space, and the neural net structure is the same as it is in simulation.

4.3 Simulations

The goal of the simulation experiments is to mimic disease outcome classification us-

ing profiling data with n� p. Effective features are sparse and potentially correlated
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through an underlying unknown structure. Several benchmark methods are exper-

imented in addition to the new forgeNet model for comparison purpose. Through

simulation, we intend to investigate whether the forgeNet model is able to outper-

form other classifiers without knowing the underlying structure of features.

4.3.1 Synthetic data generation

We follow a similar procedure described in Section 3.3.1. While the pipeline of data

generation remains unchanged, we modified certain quantities for the purpose of im-

proving classification difficulty. For a given number of features p, the preferential

attachment algorithm (BA model) (Barabási and Albert, 1999) is employed to gen-

erate a scale-free network as the underlying true feature graph. Defining the distance

between two features in the network as the shortest path between them, we calculate

the p× p matrix D recording pairwise distances among features. Next, the distance

matrix is transformed into a covariance matrix Σ by letting

Σij = 0.6Dij , i, j = 1, . . . , p.

After obtaining the covariance matrix between features, we generate nmultivariate

Normal samples as the data matrix X = (x1, . . . ,xn)T i.e.

xi ∼ N (0,Σ), i = 1, . . . n,

where n� p for imitating gene expression data. In order to add negative correlations

as well, we randomly flipped the signs of 1% of the X columns (genes). Figure

B.1 in Appendix B shows empirical pairwise feature correlation distributions for the

simulated data. The plots confirm that there are significant proportions of negative

correlations. To generate outcome variables, we first select a subset of features to

be “true” predictors. Among vertices with relatively high degrees (“hub nodes”) in
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the feature graph, part of them are randomly selected as “cores”, and a proportion

of the neighboring vertices of cores are also selected. Denoting the number of true

predictors as p0, we uniformly sample a set of parameters β = (β1, . . . , βp0)
T and an

intercept β0 from a small range, say (−0.15, 0.15). Finally, the outcome variable y is

generated through a procedure similar to the generalized linear model framework

yi = I{g(β0 + (xi
(true))Tβ) > t}, i = 1, . . . n,

where xi
(true) ∈ Rp0 is the sub-vector of xi and t is a threshold. For the transforma-

tion function g(·), we consider a weighted sum of hyperbolic tangent and quadratic

function

g(x) = 0.7φ(tanh(x)) + 0.3φ(x2).

The reason of using this g(·) function is that the transformation is non-monotone,

which brings in more challenges for classification. The function φ(·) is the min-max

transformation scaling the input to [0, 1], i.e., the original value minus the sample

minimum and then divided by the difference between the sample maximum and the

sample minimum.

Following the above data generation scheme, we simulate a set of synthetic datasets

with p = 5, 000 features and n = 400 samples. Since in profiling data, the true signals

for a certain prediction task are sparse (p0 � p), We choose p0 = 15, 30, 45, 60 and

75 as the numbers of true predictors, corresponding to 1 to 5 cores selected among

all hub nodes in the feature graph.

4.3.2 Evaluation of simulation experiments

We compare our method with several benchmark models. First, since the true feature

graphs are known for simulation data, we are able to test the original GEDFN model

with correctly specified feature graphs. At the same time, we also experiment GEDFN



68

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

0.60

0.65

0.70

0.75

15 30 45 60 75
Number_of_true_predictors

Te
st

_R
O

C
_A

U
C Methods

●

●

●

●

●

●

●

RF
forgeNet(RF)
GBM
forgeNet(GBM)
GEDFN
GEDFN_mis
LRL

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

224.2 425.9 581.6 731.1 851.6
Number_of_relevant_predictors

P
R

_A
U

C

Methods
●

●

●

●

●

●

RF
forgeNet(RF)
GBM
forgeNet(GBM)
GEDFN
GEDFN_mis

(b)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

224.2 425.9 581.6 731.1 851.6
Number_of_relevant_predictors

R
ec

al
l

Methods
●

●

●

●

●

RF
forgeNet(RF)
GBM
forgeNet(GBM)
LRL

(c)

Figure 4.2: Comparison of classification and feature selection for the simulation study.
(a) AUC of ROC for classification; (b) AUC of precision-recall for feature selection;
(c) recall plots given fixed precision from LRL. Error bars represent the estimated
mean quantities plus/minus the estimated standard errors.

with mis-specified feature graphs by randomly generating Erdo-Renyi random graphs

(Erdös and Rényi, 1959), which have a different graph topology structure from the

true scale-free networks. Also, since forgeNet inherently fits a tree-based ensemble

classifier, it is natural to compare the performance of a forgeNet with its forest part

alone. We choose two representative tree methods RF and GBM for the experiments,

and correspondingly test two versions of forgeNets - forgeNet-RF and forgeNet-GBM.

Finally, the logistic regression classifier with lasso (LRL) (Tibshirani, 1996) is also

added as a representative of linear machines.

For each of the data generation settings, fifty independent datasets are generated.

For each dataset, we randomly split samples into training and testing sets at a ratio

of 4:1. All models are fitted using the training dataset and then used to predict the

testing dataset. To evaluate classification results, areas under Receiver Operating

Characteristic curves (ROC-AUC) are calculated using the predicted class probabili-

ties and the labels of the testing set. The final testing result for a simulation case is

then given by the average testing ROC-AUC across the 50 datasets.

As for feature selection, all the methods except LRL provide relative feature im-

portance scores; LRL does not rank features but directly gave the selected feature
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subset. Knowing the true predictors for simulated data, we could use the binary true

predictor labels to evaluate the accuracy of feature selection. However, in prelim-

inary numerical experiments, it is observed that though we fix the number of true

features in each case, neighboring features of true predictors in the feature graph are

also informative for classification even if they are not in the true feature set. This

is because these neighboring features have a relatively high correlation with selected

true predictors (0.6 according to Section 4.3.1). Therefore, when evaluating the re-

sults of feature selection, it is more appropriate to investigate a set of “relevant”

features including those neighboring features, rather than the “true” feature set only.

The average numbers of relevant features are 208.8, 460.4, 615.4, 717.8, and 864.7

respectively, corresponding to the five cases of true features p0 = 15, 30, 45, 60 and

75.

Since the relevant feature sets are still small compared to the entire feature space

(p = 5000), the AUC of the precision-recall curve is a more appropriate metric here.

We thus compare feature selection results using binary labels of relevant features

for all methods providing feature scores. As for LRL, for each dataset, we compare

recall values of our methods and LRL given the precision value of LRL. That is, the

precision of LRL helps locate points on the precision-recall curves of forgeNets, and

corresponding recall values are used for comparison.

4.3.3 Simulation results

Fig. 4.2(a) shows the results of classification accuracy comparison. With the in-

creasing number of true predictors, all of the methods performed better as there

were more signals in the entire feature space. From the figure, the two versions of

forgeNets, forgeNet-RF and forgeNet-GBM, significantly improved the classification

performance of their forest counterparts, i.e., RF and GBM. Also, the forgeNet-RF

was the only method that achieved similar classification accuracy as GEDFN which
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benefited from the use of true feature graphs. When GEDFN was given mis-specified

feature graphs (GEDFN mis), its classification ability was weakened with AUC val-

ues even worse than LRL. In summary, in terms of prediction, forgeNets beat all

classic machine learning methods compared here (RF, GBM, LRL), achieved very

similar accuracy compared to GEDFN using true feature graphs, and significantly

outperformed GEDFN once its feature graphs were mis-specified.

Feature selection results can be seen in Fig. 4.2(b) and (c). Comparing the

precision-recall AUCs from Fig. 4.2(b), it can be observed that GEDFN using true

feature graph was the best method for feature importance ranking, yet again the

outstanding performance was ruined by mis-specified feature graphs. The results of

forgeNets were significantly better than GEDFN mis, and were consistent with their

forest counterparts. As the training of neural networks in forgeNets largely relied on

feature graphs given by forests, it is not surprising to see that forgeNets could achieve

similar feature selection results as their forest counterparts. In Fig. 4.2(c), both

forgeNet-RF and forgeNet-GBM were able to achieve higher recall values than LRL.

In summary, in terms of feature selection, forgeNets outperformed the traditional lasso

method and had consistent performance with their forest counterparts. Although not

as good as GEDFN with true feature graphs, forgeNets produced significantly better

feature selection than GEDFN using mis-specified feature graphs. Finally, we observe

that the choice of the forest in forgeNets mattered, and among the two versions in

our experiments, forgeNet-RF was a more powerful model.

The simulation study proved the forgeNet a powerful classifier, with reasonably

good feature selection ability. Through the experiment results, one can easily con-

clude the novelty of forgeNets is that, by borrowing the neural net architecture of the

original GEDFN, forgeNets utilize feature information more effectively in classifica-

tion tasks compared to regular tree-based ensemble methods.

ForgeNets involve stochastic model fitting. There can be concerns about for-
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geNet’s stability and scalability. The former refers to the sensitivity regarding differ-

ent initial values in training the deep neural network. To test the reproducibility of

the forgeNet model, we examined the classification accuracy of 10 repeated forgeNet

runs for fixed synthetic datasets. The results for both forgeNet-RF and forgeNet-

GBM are shown in Table B.1. Despite a little variability in cases where the numbers

of true features are small, forgeNets exhibited robustness with respect to initial val-

ues in general. The second aspect is forgeNet’s capability of tackling large-scale

datasets (i.e., larger samples and/or extremely large feature spaces) without inducing

impractical cost in time and memory, compared to traditional classification methods.

To answer this question, we designed additional experiments for forgeNet-RF and

forgeNet-GBM to analyze their computational cost and compared the cost with their

tree-ensemble counterparts respectively. The analysis is reported in Tables B.3, B.4,

B.5, B.6, where we concluded that the extra computation time and memory usage

induced by forgeNets stayed in a limited scale, indicating the usability of the method

for large-scale data.

4.3.4 Analysis of estimated feature graphs

ForgeNets use feature graphs constructed by tree ensemble methods. It is of interest

to investigate the feature graphs constructed by the tree-based feature extractors.

The comparison between the estimated feature graphs and the true simulated feature

graphs were based on two aspects, vertices and edges. For each synthetic dataset, we

selected the sub-network, denoted as H, containing all relevant features defined in

Section 4.3.2 and their neighbors (i.e., second neighbors of true features) in the true

feature graph. To compare vertices, we calculated the proportion of features in the

estimated feature graph that fell in H. Table 4.1 (row “RF (vertex)” and row “GBM

(vertex)”) shows the averaged vertex proportions for different simulation cases. As for

edges, it is noted that the feature graph construction by tree-based methods is not for
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Table 4.1: Analysis of feature graphs constructed by RF and GBM. Proportions are
averaged across the 50 datasets in each simulation case.

#true features 15 30 45 60 75
RF (vertex) 0.429 0.585 0.663 0.723 0.768
RF (edge) 0.284 0.447 0.546 0.625 0.692
GBM (vertex) 0.437 0.582 0.660 0.718 0.764
GBM (edge) 0.226 0.376 0.467 0.548 0.609

recovering the original correlation feature graph. Instead, two adjacent features in a

tree are more likely to be complementary to each other regarding a given classification

task. Consequently, the estimated feature graphs were expected to be more similar to

the complement graph of H, denoted as Hc, rather than H itself. In graph theory, the

complement graph Hc of H is a graph with the same vertices such that two vertices

of Hc are connected if and only if they are not connected in H (Bondy et al., 1976).

The averaged proportions of the estimated feature graph edges that fell in the edge

set of Hc can be also found in Table 4.1 (row “RF (edge)” and row “GBM (edge)”).

The analysis of estimated feature graphs indicates that forgeNet selects relevant

features but views the feature interactions from a different perspective. On one hand,

forgeNet’s tree-based feature extractor identifies relevant features for classification

that are consistent with those in the original correlation feature graph. on the other

hand, the feature extractor constructs feature graphs based on a complementary

relationship among features instead of direct correlation. This again aligns with the

concept of the supervised feature extractor, as the estimated feature graph is not

necessarily recovering the correlation graph, as long as it contains useful information

of feature interactions in predicting a certain classification outcome.
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Table 4.2: Classification results for BRCA data
Methods forgeNet-RF RF forgeNet-GBM GBM LRL
Avg. ROC-AUC 0.742 0.672 0.716 0.691 0.689
s.d. 0.066 0.048 0.100 0.022 0.084

4.4 Data Analysis

4.4.1 Breast invasive carcinoma RNAseq data

We applied forgeNets to the Cancer Genome Atlas (TCGA) breast cancer (BRCA)

RNA-seq dataset (Koboldt et al., 2012). The dataset consists of a gene expression

matrix with 20155 genes and 1097 cancer patients, as well as the clinical data including

survival information. The classification task is to predict the three-year survival

outcome. We excluded patients with missing or censored survival time for which the

three-year survival outcome could not be decided. Also, genes with more than 10%

of zero values were screened out. As a result, the final dataset contains a total of

p = 16027 genes and n = 506 patients, with 86% positive cases. For each gene, its

expression value was Z-score transformed.

Using the BRCA data, we again tested two versions of forgeNets together with

RF, GBM, and LRL. The classification was conducted using a 5-fold stratified cross

validation process, and the final prediction AUC for each method is computed by

averaging the five validation results.

Table 4.2 summarizes the classification results. From the table, forgeNets again

outperformed their forest counterpart models and LRL. Therefore, this real data

application also led to a similar conclusion as in Section 4.3 that forgeNets brought

in significant improvement for classification.

Feature selection was also conducted for BRCA data. We obtained ranked gene

importance lists by averaging importance scores across the five cross validation results

from all methods except LRL. For LRL, the intersection (456 genes) of the five selected

feature sets is used as the final selected features. We chose top 500 ranked genes for
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Table 4.3: Top 3 GO biological processes for each method, after manual removal of
redundant GO terms.

ID Term P-value Count Size

forgeNet-RF
GO:0031647 Regulation of protein stability 0.00123 17 229
GO:0090502 RNA phosphodiester bond 0.00369 7 62

hydrolysis, endonucleolytic
GO:1901998 Toxin transport 0.00499 5 35
RF
GO:2000679 Positive regulation of transcription 0.00255 4 19

regulatory region DNA binding
GO:0010172 Embryonic body morphogenesis 0.00313 3 10
GO:0090042 Tubulin deacetylation 0.0042 3 11
forgeNet-GBM
GO:0001676 Long-chain fatty acid metabolic process 0.00138 9 84
GO:0032890 Regulation of organic acid transport 0.00155 6 40
GO:0046470 Phosphatidylcholine metabolic process 0.00449 7 65
GBM
GO:0006633 Fatty acid biosynthetic process 0.000454 12 121
GO:0030520 Intracellular estrogen receptor 0.000643 7 47

signaling pathway
GO:0010763 Positive regulation of fibroblast migration 0.00322 3 10
LRL
GO:0051047 Positive regulation of secretion 0.000609 20 317
GO:0006090 Pyruvate metabolic process 0.000911 9 90
GO:0019359 Nicotinamide nucleotide biosynthetic 0.00204 8 82

process

each ranked list so that the numbers are of a similar magnitude as the genes selected by

LRL. Functional analysis of all final gene lists was conducted by the Gene Ontology

(GO) enrichment test using GOstats package (Falcon and Gentleman, 2007). We

limited the analysis to GO biological processes containing 10-500 genes, and a p-

value cutoff of 0.005. After manual removal of highly overlapping GO terms, the top

3 GO terms that contained the most number of selected genes are found in Table 4.3.

The top GO term selected by forgeNet-RF was regulation of protein stability.

It has been found that estrogen receptor (ER) alpha has increased abundance and

activity in breast cancer. One of the mechanisms facilitating this change is the protec-

tion of ER from degradation by the ubiquitin-proteasome system (Tecalco-Cruz and

Ramirez-Jarquin, 2017). Another critical protein, HER2 (human epidermal growth

factor receptor 2), has also been found to have increased stability and activity in some

breast cancer tissues through the formation of Her2-Heat-shock protein 27 (HSP27)

complex (Kang et al., 2008). The protein stability mechanism has not been previ-

ously linked to the survival outcome of breast cancer. The second GO term found by
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forgeNet-RF, RNA phosphodiester bond hydrolysis, endonucleolytic, is part of rNRA

and tRNA processing. It plays a critical role in the protein synthesis of the cancer

cells. The third term, toxin transport, is specific to breast cancer. It is suggested that

increased toxin presence in the mammary tissue is a pre-disposing factor to breast

cancer (McManaman and Neville, 2003; Quezada and Vafai, 2014).

The forgeNet-GBM and GBM results both point to fatty acid metabolism, which

is known to be dysregulated in breast cancer (Monaco, 2017). The GBM selected the

estrogen receptor signaling pathway, which is critically important in breast cancer

development. The LRL selected GO terms include positive regulation of secretion,

which includes lactation, in addtion to a number of metabolic processes.

In this real data analysis, we were also interested in examining the feature graphs

constructed by the two tree-based ensemble methods. We compared the estimated

feature graphs with the real gene network employed in Section 3.4 from the HINT

database (Das and Yu, 2012). Among the 16027 genes, 7816 of them were involved in

the HINT network, and there was no connectivity (edge) information for the remain-

ing 8211 genes. The estimated feature graphs by forgeNet-RF had an average1 of

8997.8 vertices, and 44.2% of them overlapped with the HINT gene network. The es-

timated feature graphs by forgeNet-GBM had an average of 428 vertices, and 52.6%

of them fell in the HINT network. The difference of vertex numbers of the two

tree-based methods were caused by their own tree construction mechanisms, and the

percentages were roughly proportional to the genes covered by the HINT network.

Unlike the analysis in Section 4.3.4, comparison between the estimated feature

graphs and the HINT network regarding edges was not feasible, as the underlying

true predictive feature sub-graph structure was unknown. We observed few overlap-

ping edges between the estimated feature graphs and the HINT network, for both

forgeNet-RF and forgeNet-GBM. This is expected. As seen in the simulation study,

1The average was taken over the graphs constructed from different folds of samples.
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the estimated edges by RF and GBM tend to be the complimentary edges in the sub-

network involving true predictors. In addition, the true biological network is much

more complex than a simple correlation network.

It can be noted that, in the case of real data applications, both GEDFN and

forgeNet can be regarded as a way of feature pre-screening. GEDFN utilizes external

knowledge (e.g., the HINT network data), which cannot utilize features not presenting

in the known feature graph. In contrast, forgeNet examines initial input with a larger

feature space and screens features in a supervised manner, following the philosophy

that the forest feature extractor should be able to decide the usefulness of a feature.

Depending on the real dataset and the classification outcome of interest, the two ways

of pre-screening can agree or differ with each other, and there is no way to guarantee

which mechanism dominates the other.

4.4.2 Breast invasive carcinoma microRNA data

We further applied forgeNets to the BRCA microRNA dataset (Koboldt et al., 2012).

There was no readily available feature graph for the microRNA data. The dataset

consists of 2588 microRNAs and 848 BRCA patients. Again, we examined the classi-

fication task for predicting the three-year survival outcome. Similar to Section 4.4.1,

we excluded patients with missing or censored survival time for which the three-year

survival outcome could not be determined. MicroRNAs with more than 50% of miss-

ing values were also screened out. As a result, the final dataset contained a total of

p = 310 microRNAs and n = 424 patients, with 85% positive cases. Although this was

not strictly an “n� p” dataset, the number of features were on the same scale as the

sample size. Therefore, it was still a problem that challenges traditional classification

methods. We applied the K-Nearest Neighbor (KNN) imputation (Troyanskaya et al.,

2001) for the remaining missing values, and each microRNA was Z-score transformed.

Following the same 5-fold stratified cross validation procedure as in Section 4.4.1,
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Table 4.4: Classification results for BRCA microRNA data
Methods forgeNet-RF RF forgeNet-GBM GBM LRL
Avg. ROC-AUC 0.637 0.528 0.617 0.560 0.571
s.d. 0.066 0.123 0.052 0.042 0.061

we obtained the classification results of the microRNA data, shown in Table 4.4. The

microRNA data were more challenging than the gene expression data, as the ROC-

AUCs for all methods were lower. Nevertheless, the forgeNets were again able to

outperform their tree-based counterparts, as well as the logistic regression with lasso.

We analyzed the functions of the selected microRNAs using DIANA mirPath

V.3 using a microT score threshold of 0.95 (Vlachos et al., 2012). The top 5 KEGG

pathways for each method are shown in Table 4.5. As the logistic regression with lasso

selected 29 microRNAs, we used the top 30 microRNAs for each of the other methods.

All five methods selected ”Hippo signaling pathway” among the top pathways. The

dysregulation of the pathway is associated with the metastasis and resistance to

chemotherapy in breast cancer (Wei et al., 2018; Wu et al., 2020).

Among the top 5 pathways selected by forgeNet-RF, three were signalling path-

ways, which was the most among all methods. The Rap1 singalling pathway is

well-known for regulating breast cancer cell migration through modulating matrix

metalloproteinases (MMPs) (McSherry et al., 2011). AMP-activated protein kinase

(AMPK) signaling responds to a number of endocrine signals, and regulates energy,

growth and motility of cells (Zhao et al., 2017). Its role in breast cancer progression

and therapy has been well documented (Zou et al., 2017; Cao et al., 2019). The

AMPK pathway was selected by both forgeNet-RF and forgeNet-GBM as the top 5.

Besides signaling pathways, forgeNet-RF also selected the glycosaminoglycan -

keratan sulfate pathway and the glycosphingolipid pathway. Keratan sulfate (KS)

is the newest glycosaminoglycan, and its roles in cancer hasn’t been clearly eluci-

dated (Caterson and Melrose, 2018). Recently it’s been found that increased KS

epitope is associated with worse survival in pancrease cancer (Leiphrakpam et al.,
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Table 4.5: Top 5 pathways selected by each method using mirPath V.3.
Method # significant Top 5 pathways P-value

pathways
(p¡0.01)

forgeNet-RF 12 Hippo signaling pathway 6.63E-06
Glycosaminoglycan biosynthesis 0.000752
- keratan sulfate
Rap1 signaling pathway 0.000882
AMPK signaling pathway 0.000928
Glycosphingolipid biosynthesis 0.00119
- lacto and neolacto series

RF 3 Prion diseases 2.67E-20
Hippo signaling pathway 4.69E-10
Thyroid hormone synthesis 0.00651
Adrenergic signaling in cardiomyocytes 0.0165
Long-term potentiation 0.0165

forgeNet-GBM 6 Pathways in cancer 0.000248
Transcriptional misregulation in cancer 0.000248
Hippo signaling pathway 0.000417
AMPK signaling pathway 0.000950
Maturity onset diabetes of the young 0.00127

GBM 15 Prion diseases 3.75E-20
Hippo signaling pathway 3.87E-16
Signaling pathways regulating 5.31E-06
pluripotency of stem cells
Proteoglycans in cancer 0.000532
Colorectal cancer 0.000794

LRL 8 GABAergic synapse 2.19E-05
ECM-receptor interaction 2.19E-05
Hippo signaling pathway 2.19E-05
Morphine addiction 8.90E-05
Proteoglycans in cancer 0.000251
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Table 4.6: Classification results for healthy human metabolomics data
Methods forgeNet-RF RF forgeNet-GBM GBM LRL
Avg. ROC-AUC 0.686 0.649 0.682 0.666 0.649
s.d. 0.066 0.042 0.044 0.039 0.077

2019). Glycolipids are essential in maintaining plasma membrane stability. Aberrant

glycosphingolipid metabolism play critical roles in cancer progression and metastasis

(Zhuo et al., 2018).

Comparatively, among the top five pathways selected by LRL, two were neurolog-

ical pathways that bear no clear relation to breast cancer - GABAergic synapse, and

morphine addiction. The extracellular matrix (ECM)-receptor interaction pathway

is important in cancer progression (Walker et al., 2018), and proteoglycans are im-

portant for cell surface adhesion and cancer invasion (Nikitovic et al., 2018). Overall,

forgeNet-RF achieved better performance in classification, as well as selected more

interpretable features.

4.4.3 Healthy human metabolomics dataset

Another real dataset we experimented was the untargeted metabolomics dataset mea-

sured by high-resolution liquid chromatography - mass spectrometry (LC/MS) from

the Emory/Georgia Tech Center for Health Discovery and Well Being (CHDWB).

The cohort was made up of healthy adults. The data was processed using apLCMS

with hybrid mode (Yu et al., 2009, 2013). We limited the analysis to the baseline

measurements of the subjects with available clinical data. The metabolic feature ma-

trix contained 8807 features and 382 subjects, as well as clinical and demographic

information. The classification task was to predict obesity as indicated by the BMI

index. Metabolites with more than 10% of zero values were screened out. Other

general confounders including age, gender (male/female) and ethnicity (3 races) were

included as predictors. As a result, the final dataset contained a total of p = 4997
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Table 4.7: Top 5 pathways selected by each method using Mummichog.
Method # significant Top 5 pathways P-value

pathways
(p¡0.05)

forgeNet-RF 17 Tryptophan metabolism 0.00126
Histidine metabolism 0.00681
Lipoate metabolism 0.00832
Glycosphingolipid metabolism 0.00865
Glutathione Metabolism 0.00924

RF 26 Alanine and Aspartate Metabolism 0.00008
Urea cycle/amino group metabolism 0.00134
Nitrogen metabolism 0.00185
Aspartate and asparagine metabolism 0.00294
Tryptophan metabolism 0.00378

forgeNet-GBM 5 Histidine metabolism 0.00059
Vitamin B12 (cyanocobalamin) metabolism 0.00681
Squalene and cholesterol biosynthesis 0.01949
Androgen and estrogen biosynthesis and 0.0268
metabolism
Ubiquinone Biosynthesis 0.03655

GBM 14 Glycosphingolipid metabolism 0.00823
Blood Group Biosynthesis 0.01361
Glycosylphosphatidylinositol(GPI)-anchor 0.01361
biosynthesis
Glycosphingolipid biosynthesis - lactoseries 0.01361
Glycosphingolipid biosynthesis - 0.01361
neolactoseries

LRL 14 Glycerophospholipid metabolism 0.00151
Lysine metabolism 0.00176
Prostaglandin formation from dihomo 0.00193
gama-linoleic acid
Arachidonic acid metabolism 0.00378
Saturated fatty acids beta-oxidation 0.01294
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predictors, including 4993 metabolic features and 4 confounding variables. The obe-

sity outcome was defined as BMI > 30, and 25.6% of the subjects were positive cases.

For each continuous predictor, its value was Z-score transformed.

The 5-fold stratified cross validation classification results of the metabolomics data

are shown in Table 4.6. Although the data were again challenging and no method

performed very well, the forgeNets were better classifiers compared to other bench-

marks. Using the top 10% of the metabolic features selected by each method, we

conducted pathway analysis using Mummichog (Li et al., 2013). As shown in Table

4.7, RF selected the largest number of significant metabolic pathways, followed by

forgeNet-RF. This is consistent with the simulation results. The top pathways se-

lected by RF were all focused on amino acids metabolism. The top pathways selected

by forgeNet-RF included amino acids metabolism, membrane lipid metabolism, and

reduction-oxidation pathways, most of which were also in the list of the RF results.

LRL selected a slightly smaller number of pathways than forgeNet-RF. Its top path-

ways were diverse with some pathways with no apparent relation to BMI, such as

the prostaglandin and arachidonic metabolism pathways. The pathways selected by

GBM were more focused on glycolipid metabolism, and those selected by forgeNet-

GBM were diverse, some of which don’t have a clear link to BMI. Overall, RF and

forgeNet-RF showed the most interpretable pathway analysis results. Combined with

its better predictive power, forgeNet-RF was again the preferred method among all

those being compared.

4.5 Conclusion

We presented forgeNet that uses tree-based ensemble methods to extract feature con-

nectivity information, and uses GEDFN for graph-based predictive model building.

The new method was able to achieve sparse connection for neural nets without seek-
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ing external information, i.e., known feature graphs. It works well in the “n � p”

situation. Simulation experiments showed forgeNets’ relatively higher classification

accuracy compared to existing methods; the TCGA BRCA RNA-seq dataset, the

TCGA BRCA microRNA dataset and a metabolomics dataset demonstrated the util-

ity of forgeNets in both classification and the selection of biologically interpretable

predictors.
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Appendix A

Appendix for Chapter 3

A.1 Hyper-parameter tuning of GEDFN

A.1.1 Overview

As illustrated in the main article, the GEDFN model is associated with several types

of hyper-parameters. Although we generated and used a large amount of datasets

in our simulation study, the number of samples and number of features were fixed

as 400 and 5000 respectively. Hence, instead of tuning GEDFN dataset by dataset

which was infeasible, we could simply tune a “uniformly applicable” GEDFN model

for our experiments. This was also because the different simulation settings (#true

predictors, singleton proportions, inverse link functions etc.) should not be regarded

as known when training the classifier. We generated additional synthetic datasets

apart from the ones we used in simulation experiments, with training and validating

samples. The hyper-parameter tuning process was then guided by the validation AUC

of ROC, namely we would choose the best candidate hyper-parameter with the best

validation AUC score.



84

A.1.2 Architecture

The skeleton of a DNN model is its architecture, so our first step was to tune the

number of hidden layers and the number of hidden neurons in each layer. Layers

could not be too many, since we were dealing with such small samples. Meanwhile, a

too shallow neural network would not fit well for our complex classification problem.

Keeping this trade-off in mind, we decided to try from 2 to 5 hidden layers. For the

numbers of hidden neurons, we followed the convention in the deep learning field that

set the numbers to be powers of two, with decreasing magnitude from the input layer

to the output layer. With other hyper-parameters temporarily chosen by convention,

this step led us to build the skeleton of our GEDFN as three hidden layers with

neurons 5000 (graph-embedded layer), 64, and 16.

A.1.3 Regularization

In GEDFN, we employed the dropout technique to avoid over-fitting. Dropout were

only applied to the second and third hidden layers but not the first, otherwise the

connection of the first hidden layer based on the feature graph would be destroyed.

We tuned the dropout proportion according to a 1-d grid with candidates 0.5, 0.6,

0.7, 0.8 and 0.9, with 0.9 selected as the final value.

A.1.4 Training

Hyper-parameters associated with the optimization process would not affect the clas-

sification performance in general. However, they could result in different convergence

rate and thus were also tuned. A relatively large learning rate would accelerate the

convergence, but it also bore the risk of “skipping” the optimum. We tuned the

learning rate and the batch size using a 2-D grid with candidate sets 0.05, 0.01,

0.005, 0.001, 0.005, 0.0001 and 1, 8, 16, 32, 64 along each axis respectively. Finally,
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the combination with learning rate 0.0001 and batch size 8 turned out to be the best

choice.

A.1.5 Note

For the two real datasets (BRCA and KIRC) we experimented, the feature spaces

were larger than the synthetic datasets. Nevertheless, the sample sizes were still

limited which obstructed the use of larger GEDFN models. Therefore, we stuck to

the GEDFN model tuned in simulation experiments. Larger models with more hidden

layers was tried, but only to obtain the same or even worse results.
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A.2 Correlation distributions of synthetic data

To ensure that features in our synthetic datasets were both positively and negatively

correlated, we randomly selected nine generated datasets for investigating. For each

dataset, we compute the empirical correlation matrix and plot the pairwise feature

correlation histogram, shown in Figure A.1.
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Figure A.1: Histograms of the pairwise feature correlation distributions for randomly
selected simulation datasets.
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A.3 Mis-specification of feature graphs

The comparison of classification and feature selection between GEDFN using infor-

mative graphs and GEDFN with misspecified graphs is shown in Figure A.2. Datasets

are of 50% singletons.
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Figure A.2: Comparison of classification and feature selection between GEDFN using
informative graphs and GEDFN with misspecified graphs. Left column: sigmoid
inverse link; right column: tanh plus quadratic inverse link. First row: AUC of ROC
for classification; second row: AUC of precision-recall for feature selection. Error bars
represent the estimated mean quantity plus/minus the standard error.
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Appendix B

Appendix for Chapter 4

B.1 Correlation distributions of synthetic data

We intended to simulate the synthetic datasets with both positive and negative feature

correlation. To confirm, we randomly selected nine simulated datasets for investigat-

ing. For each dataset, we computed the empirical correlation matrix and plotted the

pairwise feature correlation histogram, shown in Figure A.1.

B.2 Sensitivity analysis

B.2.1 Initial values

The initial values of the neural network part in forgeNet are generated by the deep

learning library (i.e. Tensorflow). To test the reproducibility of forgeNet, we used

one dataset for each simulation case and ran 10 repeated experiments. The testing

results of forgeNet-RF and forgeNet-GBM are shown in Table B.1.
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Figure B.1: Histograms of the pairwise feature correlation distributions for randomly
selected simulation datasets.
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forgeNet-RF #true predictors

15 30 45 60 75

1 0.638 0.822 0.709 0.786 0.772

2 0.609 0.817 0.663 0.798 0.792

3 0.556 0.809 0.721 0.79 0.778

4 0.65 0.817 0.701 0.776 0.791

5 0.624 0.839 0.673 0.778 0.774

6 0.596 0.834 0.725 0.792 0.763

7 0.627 0.816 0.7 0.788 0.791

8 0.567 0.812 0.7 0.784 0.787

9 0.637 0.838 0.722 0.79 0.783

10 0.645 0.824 0.732 0.8 0.755

Avg. 0.615 0.823 0.705 0.788 0.778

S.d. 0.033 0.011 0.023 0.008 0.013

forgeNet-GBM #true predictors

15 30 45 60 75

1 0.602 0.798 0.687 0.791 0.771

2 0.606 0.8 0.733 0.775 0.773

3 0.567 0.809 0.713 0.79 0.723

4 0.552 0.789 0.652 0.77 0.737

5 0.587 0.786 0.651 0.773 0.755

6 0.631 0.791 0.667 0.784 0.741

7 0.645 0.791 0.648 0.79 0.73

8 0.618 0.803 0.662 0.759 0.777

9 0.657 0.827 0.671 0.768 0.748

10 0.635 0.805 0.701 0.778 0.743

Avg. 0.61 0.8 0.679 0.778 0.75

S.d. 0.034 0.012 0.029 0.011 0.019

Table B.1: Testing ROC-AUC of repeated experiments for fixed datasets. Left:

forgeNet-RF. Right: forgeNet-GBM.

B.2.2 Hyper-parameters

In this subsection, we demonstrate an example of how we choose the hyper-parameters

using grid search. We divided the hyper-parameters into two sets: network architecture-

related parameters, and training-related parameters. The former include the number

of hidden layers and the number of hidden neurons in each layer, and the latter include

the dropout proportion, the learning rate and the batch size.

In forgeNet, the first hidden layer (graph-embedded layer) always has the same

amount of hidden neurons as the number of features p, hence we only need to tune

subsequent hidden layers. We set a feasible space with 2, 3 and 4 hidden layers (in-

cluding the first hidden layer), as the neural network could not be too deep in our

small sample scenarios. For the number of hidden neurons, we used the conventional

choices such as 128, 64, 32 and 16. Again, to avoid overfitting, hidden neurons over

128 were not considered. For training related parameters, we designed several repre-

sentative options and tested their combinations. A hyper-parameter tuning example

is shown in Table B.2. In this particular example, the best neural network struc-

ture was with three hidden layers, and the two fully connected layers had 64 and

16 neurons respectively. Also, the best dropout proportion/learning rate/batch size
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combination was 0.5/0.0001/32.

Dropout/Learning rate/Batch size #hidden layers & #hidden neurons

p+64 p+128 p+64+16 p+128+32 p+128+32+16 p+128+64+16

0.2/0.0001/8 0.79 0.802 0.8 0.767 0.817 0.795

0.2/0.0001/16 0.821 0.772 0.798 0.762 0.814 0.81

0.2/0.0001/32 0.804 0.806 0.781 0.781 0.815 0.795

0.2/0.001/8 0.735 0.766 0.719 0.746 0.739 0.747

0.2/0.001/16 0.772 0.718 0.7 0.756 0.728 0.738

0.2/0.001/32 0.739 0.764 0.737 0.721 0.768 0.768

0.2/0.01/8 0.734 0.735 0.756 0.729 0.722 0.725

0.2/0.01/16 0.758 0.679 0.702 0.724 0.712 0.71

0.2/0.01/32 0.782 0.696 0.711 0.747 0.729 0.717

0.5/0.0001/8 0.799 0.799 0.807 0.794 0.804 0.787

0.5/0.0001/16 0.797 0.811 0.809 0.787 0.805 0.779

0.5/0.0001/32 0.803 0.824 0.837 0.799 0.801 0.797

0.5/0.001/8 0.739 0.739 0.76 0.735 0.734 0.736

0.5/0.001/16 0.761 0.772 0.777 0.761 0.754 0.737

0.5/0.001/32 0.775 0.779 0.781 0.787 0.799 0.78

0.5/0.01/8 0.708 0.697 0.692 0.716 0.675 0.749

0.5/0.01/16 0.657 0.746 0.735 0.747 0.725 0.724

0.5/0.01/32 0.735 0.735 0.718 0.72 0.774 0.706

0.8/0.0001/8 0.804 0.794 0.789 0.799 0.816 0.783

0.8/0.0001/16 0.804 0.801 0.826 0.812 0.81 0.774

0.8/0.0001/32 0.787 0.782 0.794 0.797 0.816 0.816

0.8/0.001/8 0.762 0.739 0.818 0.812 0.783 0.807

0.8/0.001/16 0.781 0.764 0.802 0.783 0.806 0.793

0.8/0.001/32 0.808 0.777 0.819 0.799 0.786 0.79

0.8/0.01/8 0.727 0.699 0.781 0.782 0.51 0.52

0.8/0.01/16 0.731 0.711 0.781 0.764 0.79 0.525

0.8/0.01/32 0.736 0.733 0.783 0.743 0.797 0.65

Table B.2: An example of hyper-parameter tuning for forgeNet (RF). The column

names denote hidden layers and their corresponding numbers of hidden neurons. For

example, “p+64+16” stands for a neural network architecture with a p-dimensional

input layer, a p-dimensional graph-embedded layer, a 64-dimensional fully connected

hidden layer, a 16-dimensional fully connected hidden layer and a two-dimensional

output layer.

B.3 Computational cost

In this section, we examine the scalability of the forgeNet model by using synthetic

datasets with large sample sizes and extremely large feature spaces. We set candidate

sample sizes as 400, 800, 2000 and 5000 and candidate number of features 5000,
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10000, 20000 and 50000. The numbers should cover the upper size limit of a typical

trancriptomic dataset well. We compared both the time cost and the memory cost

of forgeNets with their tree-ensemble counterparts. The experiments were run on a

workstation with dual Xeon Gold 6136 processors, 256 GB RAM, and a single Nvidia

Quadro P6000 GPU.

The results for forgeNet-RF are shown in Table B.3 and B.4, and the results for

forgeNet-GBM are shown in Table B.5 and B.4. Detailed reading instruction can be

found in corresponding table captions. From the tables, it was not surprising to see

that forgeNets took more time and used more space than their tree feature extractors

alone, since forgeNets bore additional deep neural network computation. However, the

extra time and memory (GPU) induced by forgeNets were well acceptable, indicating

the plausibility of the method for large-scale data.

Time (sec) #features

#samples 5000 10000 20000 50000

400 4.5/14.3 4.9/15.5 5.3/18.7 5.6/24.0

800 5.3/19.7 5.4/24.0 5.7/26.3 6.3/31.9

2000 5.9/34.4 6.4/39.7 7.1/45.6 9.3/56.2

5000 7.5/68.8 9/81.4 11.6/88.3 15.6/108.6

Table B.3: Computational time for forgeNet-RF and the corresponding RF model

alone. The time used by RF and by forgeNet-RF are separated by “/”. For example,

“4.5/14.3” means the time of running RF is 4.5 seconds while running the entire

forgeNet takes 14.3 seconds.

B.4 Simulation experiments for datasets with no

signal

It is also of interest to conduct additional simulation experiments using “null” datasets,

which contain no real signals for the given classification outcome. This is a way of

examining false positive effect of classifiers. The analysis was conducted using feature
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Memory (MB) #features

#samples 5000 10000 20000 50000

400 141.2 (73.1) 171.8 (98.6) 233.2 (145.6) 417.2 (234.6)

800 171.7 (91.4) 232.9 (173.1) 355.3 (203.2) 722.4 (292.0)

2000 263.3 (135.6) 416.0 (181.9) 721.5 (271.2) 1637.9 (352.2)

5000 492.2 (137.9) 873.8 (221.6) 1637.1 (266.9) 3926.8 (381.3)

Table B.4: Memory usage for forgeNet-RF and the corresponding RF model alone.

Since we used the GPU version of the Tensorflow deep learning library, forgeNet

merely induced additional space cost in terms of GPU memory only, and the RAM

usage remained the same as the corresponding tree-ensemble method. The extra

(GPU) memory usage of forgeNet-RF is shown in a bracket. For example, “141.2

(73.1)” means the RF extractor used 141.2 MB RAM memory, and to train the entire

forgeNet, 73.1 MB extra GPU memory were also used.

Time (sec) #features

#samples 5000 10000 20000 50000

400 5.5/11.0 8.4/14.4 11.8/17.9 26/32.7

800 8.3/17.9 13.3/23.5 23.7/33.6 49.9/59.9

2000 20.4/41.7 38.4/59.3 68.3/89.8 143/159.3

5000 57.1/104.9 114.5/177.1 190.7/237.4 539/604.9

Table B.5: Computational time for forgeNet-GBM and the corresponding GBM model

alone. The time used by GBM and by forgeNet-GBM are separated by “/”. For

example, “5.5/11.0” means the time of running GBM is 5.5 seconds while running

the entire forgeNet takes 11.0 seconds.

Memory (MB) #features

#samples 5000 10000 20000 50000

400 138.4 (2.4) 169.4 (4.5) 231.3 (2.2) 417 (2.8)

800 168.9 (6.5) 230.4 (8.7) 353.4 (10.1) 722.2 (10.9)

2000 260.5 (25.2) 413.5 (44.4) 719.6 (38.6) 1637.7 (21.9)

5000 489.5 (70.5) 871.4 (145.7) 1635.2 (72.9) 3926.6 (166.6)

Table B.6: Memory usage for forgeNet-GBM and the corresponding GBM model

alone. Since we used the GPU version of the Tensorflow deep learning library, forgeNet

merely induced additional space cost in terms of GPU memory only, and the RAM

usage remained the same as the corresponding tree-ensemble method. The extra

(GPU) memory usage of forgeNet-GBM is shown in a bracket. For example, “138.4

(2.4)” means the GBM extractor used 138.4 MB RAM memory, and to train the

entire forgeNet, 2.4 MB extra GPU memory were also used.
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matrices from the 50 synthetic datasets generated in Section 4.3.1 for the case of 15

true features. The classification outcomes were randomly sampled from a Bernoulli

distribution with probability 0.5. In this setting, the feature matrices contained no

information regarding the outcomes.

The classification results are shown in Table B.7. It turned out that, with “null”

datasets, all methods had an average of testing ROC-AUC around 0.5. Thus, we

conclude that the false positive effect was not observed.

Methods forgeNet-RF RF forgeNet-GBM GBM LRL GEDFN GEDFN mis
Avg. ROC-AUC 0.511 0.525 0.535 0.511 0.493 0.479 0.513
s.d. 0.063 0.055 0.066 0.076 0.066 0.072 0.059

Table B.7: Classification results for “null” datasets
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