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Abstract

Gene-lifestyle Interactions in Coronary Artery Diseases

By Yunfeng Huang

Coronary artery disease (CAD) is the pre-eminent cause of death. Both genetic and lifestyle
factors such as cigarette smoking and physical activity (PA) contribute to development of
CAD. Over 160 loci have been linked with risk of CAD in genome-wide association studies.
However, the interaction between genetic predisposition and individual lifestyle factors in
CAD remains unclear. This dissertation presents research focused on exploring gene-lifestyle
interactions for CAD among populations of European ancestry using data from two of the
largest biobank cohorts. Multiple cardio-metabolic traits mediate the genetic effects of CAD,
so this dissertation also aims to characterize the gene-lifestyle interaction driven by different
mediating traits. In addition, gene-lifestyle interactions can be an important part of CAD
heritability and accounting for gene-lifestyle interactions can potentially increase the power
when detecting CAD-associated loci. Results of this dissertation have shown that the absolute
risk elevation in CAD due to smoking is stronger among those with higher genetic
susceptibility and the interaction can be driven by different mediating cardio-metabolic traits
when different domains of smoking behavior is considered. Also, no evidence of interaction
was identified between genetic predisposition and physical activity for CAD. Two GWASs of
CAD accounting for gene-smoking interaction and gene-physical activity interaction found
no novel loci, and results have shown no gain of power when a joint two degree of freedom
approach was implemented. Future studies should consider exploring gene-lifestyle
interactions for complex diseases such as CAD on both additive and multiplicative scale
considering potential different mediating pathways. Novel methods should be developed to

better incorporate gene-lifestyle interactions in genetic associations of complex diseases.
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Chapter 1

Introduction to gene-lifestyle interactions in coronary artery diseases

Coronary artery disease (CAD) is the most common type of cardiovascular disease, it
involves narrowing or blockage of the coronary arteries (arteries that supply blood to the
heart). (Parmet, Glass et al. 2004) CAD is usually caused by atherosclerosis, which is a
process of buildup of plaque (deposits made up of cholesterol, other fats, and calcium) on the
inner walls of the arteries. When a plaque ruptures, a blood clot will quickly form that can
block blood flow in the artery and may lead to myocardial infarction which causes permanent
damage to the heart muscle. Based on data from 2006 to 2016, the annual death rate
attributable to CAD declined 31.8%. (Benjamin, Muntner et al. 2019) However, CAD
remains the number one cause of death in the U.S. among both men and women. (CDC and
NCHS) Both environmental and genetic factors contribute to the development of CAD, and
lifestyle modification has played a major role in prevention of CAD in the past decades.

(Lloyd-Jones, Hong et al. 2010)

CAD is a heritable condition with an estimated heritability of 50% to 60%. (Dai,
Wiernek et al. 2016) A family history of cardiovascular disease has been shown as a strong
predictor of incident disease. (Lloyd-Jones, Nam et al. 2004) Enormous effort as well as
substantial progress has been made to understand the genetics behind CAD in the past
decades and gene discovery studies in CAD have made a transition from recognition of
familial patterns to discovery of the discrete genetic drivers. Similar to many other complex
and common diseases, CAD has a polygenic architecture and has been treated as a good

candidate for genome-wide association study (GWAS). GWAS relies on the usage of



genotype arrays to capture the majority of common inter-individual genetic variation. The
very first GWASs of CAD published in 2007 reported common variants at the 9p21 locus
associated with a ~30% increased risk of CAD per copy of the risk allele. (Helgadottir,
Thorleifsson et al. 2007, McPherson, Pertsemlidis et al. 2007) The most recent GWAS of
CAD combining data from the UK Biobank and the Coronary Artery Disease Genome-wide
Replication and Meta-analysis plus the Coronary Artery Disease Genetics
(CARDIoGRAMplusC4D) consortium has reported 64 novel CAD-associated loci, which
accumulated the total number of CAD-associated loci to 161. (van der Harst and Verweij
2018) However, most loci have small effect size and fail to appreciably account for CAD
heritability, which triggered interests in discovery of other genetic components such as rare
variants and gene-environment interaction. Genetic research on CAD has also expanded
progressively from pure disease gene localization to biological functions, mechanistic

insights and clinical utilization.

Gene-environment (GxE) interaction is an important component of the genetic
architecture of complex diseases. GXE interaction can be broadly defined as the interplay
between genetic and environmental factors, and such interaction effect can be viewed as how
genetic susceptibility for subpopulations modify certain environmental effects or how
exposure to environmental factors modify certain genetic effects. (Gauderman, Mukherjee et
al. 2017) Studying GXE interactions in complex diseases can improve understanding of
disease etiology and identify susceptible or resistant sub-populations in response to
environmental risk factors. (Ritz, Chatterjee et al. 2017) Several modifiable lifestyle-related
factors such as smoking and physical activity are associated with cardio-metabolic
conditions, (Benjamin, Muntner et al. 2019) but their interaction with genetic predisposition

in the development of CAD hasn’t been fully understood. Detection of gene-lifestyle



interaction in CAD is usually hampered by availability of accurate measurements of lifestyle
factors in most populations and individual studies are generally inadequately powered for
exploration of gene-lifestyle interactions. Recently, consortia-based studies with large-scaled
meta-analysis have been utilized to characterize gene-lifestyle interactions for complex
diseases (Ahmad, Rukh et al. 2013, Nickels, Truong et al. 2013, Langenberg, Sharp et al.
2014, Usset, Raghavan et al. 2016) including CAD related traits. (Rao, Sung et al. 2017)
Nevertheless, one major challenge of these consortia-based studies is the complexity of data

sources that are derived from studies with heterogeneous designs and populations.

Large biobank cohorts have recently been established to achieve homogeneous
measures of genetic and environmental factors while maintaining sufficient power to conduct
both high-quality genomic and clinical research in complex diseases. One leading example is
the UK Biobank, a large UK-based national cohort with over 500,000 participants that aims
to improve prevention, diagnosis and treatment of a wide range of serious and life-
threatening illnesses. It has whole-genome genomic data as well as a wide spectrum of health
information including numerous environmental measurements. (Sudlow, Gallacher et al.
2015) Another example is the Million Veteran Program (MVP) which aims to build one of
the world's largest medical databases by safely collecting blood samples and health
information from one million veteran volunteers. (Gaziano, Concato et al. 2016) With data
from survey instruments, the electronic health record, and biospecimens, the MVP is
designed to facilitate scientific understanding of the potential links between genetic
heterogeneity and disease. Recent genomic studies on cardio-metabolic phenotypes have
benefited from the power of the UK Biobank and the MVP, (Warren, Evangelou et al. 2017,

Evangelou, Warren et al. 2018, Klarin, Damrauer et al. 2018) which have also provided an



unparalleled opportunity for conduct of large-scale gene-lifestyle interaction studies for

complex diseases such as CAD.

Due to the polygenic nature of complex diseases, GXE interaction studies are
investigated using different analytical approaches. (Gauderman, Mukherjee et al. 2017)
Candidate gene methods with a panel of SNPs have been widely used in genetic studies of
CAD, including the development of a disease-specific genetic risk score (GRS). The GRS
can be defined by summing the number of risk alleles for each of the disease associated SNPs
weighted by their estimated effect sizes. (Ripatti, Tikkanen et al. 2010) The joint genetic
effects represented by CAD-GRS have been shown to predict incident CAD. (Mega, Stitziel
et al. 2015) In addition, gene-lifestyle interactions in CAD have been examined based on
GRS and composite lifestyle assessments; (Khera, Emdin et al. 2016, Pazoki, Dehghan et al.
2018) however, whether effects of individual lifestyle factors on CAD risk can be modified

by overall genetic susceptibility for CAD remains unclear.

Characterizing gene-lifestyle interactions for CAD can facilitate the mechanistic
understanding of disease and help identify sub-populations more susceptible or resistant to
CAD risk factors. For example, smoking is one of the most important modifiable CAD risk
factors, but whether the smoking-related risk of CAD is modified by genomic status remains
uncertain. Being physically active is protective against CAD; (Winzer, Woitek et al. 2018)
however, it is not well understood whether the benefit of increased physical activity is
uniform among all individuals, or whether it is modified by genomic background. Hindy et
al. recently reported that the genetic predisposition to coronary heart disease (CHD) can
modify the elevated CHD risk due to cigarette smoking, (Hindy, Wiberg et al. 2018) and

Tikkanen et al. identified consistent effects of physical activity on CHD across low,



intermediate and high genetic risk groups in the UK Biobank. (Tikkanen, Gustafsson et al.
2018) However, current gene-lifestyle interaction studies for CAD have only focused on the
multiplicative scale, ignoring potential effect modification on the additive scale. In fact,
interaction on the additive scale has larger public health impact and under certain
assumptions can be aligned with mechanistic interaction effects with a sufficient component
cause framework. (VanderWeele 2009) Therefore, assessment of gene-lifestyle interaction
effects on both scale should be performed and reported to better understand the causal

mechanism and interplay between these two facets of CAD. (VanderWeele and Knol 2014)

Genetic mechanisms of CAD can be mediated through different traits including
cholesterol and other lipid levels, obesity, and blood pressure (BP) level. (Webb, Erdmann et
al. 2017) Previous studies predominantly focused on developing a comprehensive CAD-
GRS, (Khera, Emdin et al. 2016, Hindy, Wiberg et al. 2018, Pazoki, Dehghan et al. 2018,
Tikkanen, Gustafsson et al. 2018) however, whether a comprehensive CAD-GRS is specific
enough to identify interaction effects with individual lifestyle factors such as smoking and
physical activity remains debatable, since such interaction effects might act through different
mediating traits including lipids, blood pressure or BMI. Therefore, it is important to capture
the genetic predisposition to CAD mediated through different mechanisms and assess the
gene-lifestyle interaction effects in parallel to provide finer evidence on how different

pathways might interact with individual lifestyle factors.

In genetic studies of complex diseases, accounting for environmental exposures and
GxE interactions may affect overall trait variance when investigating genetic contributions
and can potentially identify novel loci, highlighting new biological processes and pathways.

(Justice, Winkler et al. 2017) A two-degree-of-freedom procedure can be used to test the



combination of marginal genetic effects as well as GXE interactions. This method is proposed
to be more powerful for detecting disease susceptibility loci where the true gene-environment
interaction model is unknown. (Kraft, Yen et al. 2007) Lifestyle factors such as smoking and
being physically inactive are important risk factors for CAD, but genetic variants that exert
effects on CAD through interactions with smoking or physical activity remain undiscovered
in previous CAD-GWAS due to heterogeneous main effects and stringent significance

thresholds.

Focus of this dissertation

The work presented here is aimed towards the assessment of gene-lifestyle
interactions for CAD with a focus on two established lifestyle-related CAD risk factors:
smoking and physical activity. Specifically, genetic risk of CAD is captured by developing
multiple genetic risk scores covering the overall genetic predisposition as well as genetic
effects mediated through multiple clinical traits including blood pressure, lipids and BMI.
Interaction effects are examined and reported on both additive and multiplicative scale in two
large populations of European ancestry. In addition, CAD-GWAS accounting for gene-
lifestyle interaction effects are performed for both smoking and physical activity to identify

potential novel loci that haven’t been discovered.

Chapter 2 presents work assessing gene-smoking interaction for incident CAD on
both additive and multiplicative scale using data from the UK Biobank and the Million
Veteran Program. Chapter 3 presents work assessing gene-physical activity interaction for
incident CAD on both additive and multiplicative scale using data from the UK Biobank and

the Million Veteran Program. Chapter 4 presents work conducting two GWASs of CAD



using a joint two degree of freedom approach accounting for gene-smoking interaction and

gene-physical activity interaction with data from the UK Biobank.



Chapter 2

Assessment of gene-smoking interaction in coronary artery diseases

Introduction

CAD remains the number one of cause of death in the U. S. after the past decade
when the mortality rate of CAD has been decreasing. (Ford and Capewell 2011) Lifestyle
modification has played a major role in CAD prevention. Smoking is one of the most
established CAD risk factor and extensive effort has been made to characterize the linkage
between smoking and cardiovascular health. A meta-analysis comparing cardiovascular
disease risks in 503,905 cohort participants >= 60 years of age reported an HR for
cardiovascular mortality of 2.07 (95% CI, 1.82-2.36) compared with never-smokers and 1.37
(95% CI, 1.25-1.49) compared with former smokers. (Mons, Muezzinler et al. 2015) It has
also been reported that female smokers have a 25% increase in risk for CAD than male
smokers (RR: 1.25, 95% CI: 1.12 — 1.39). (Huxley and Woodward 2011) Despite the
decreasing trend in smoking-related morbidity, it remains as the top preventable cause of
death. (Leischow 2019) A recent study has shown that smoking cessation for former heavy
smokers significantly reduced their risk for cardiovascular disease comparing to current
smokers. (Duncan, Freiberg et al. 2019) The mechanism of smoking in CAD has been widely
studied in both clinical and animal studies. Studies have shown that key processes in
smoking-induced atherogenesis initiation are endothelial dysfunction and damage, increase in
and oxidation of proatherogenic lipids, as well as decrease of high-density lipoprotein,
induction of inflammation, and the shift toward a procoagulant state in the circulation.

(Messner and Bernhard 2014) However, there is still a lack of knowledge on how smoking



behavior or cigarette smoke as a complex environmental exposure interacts with individual’s

genetic background to affect the development of cardiovascular disease outcomes.

CAD is a heritable condition with estimated heritability of 50% to 60%. (Dai,
Wiernek et al. 2016) Substantial progress has been made to understand the genetic
architecture of CAD in the past decades. Genetic studies of CAD have made a transition from
recognition of familial patterns to discovery of individual genetic drivers. Recent genome-
wide association studies (GWAS) of CAD have identified genetic susceptibility loci of CAD
across the genome and demonstrated a polygenic architecture of CAD. Combining data from
the UK Biobank and the Coronary Artery Disease Genome-wide Replication and Meta-
analysis plus the Coronary Artery Disease Genetics (CARDIoGRAMplusC4D) consortium,
the most recent GWAS of CAD has reported 64 novel CAD-associated loci, which
accumulated the total number of CAD-associated loci to 161. (van der Harst and Verweij
2018) However, most loci have small effect size and fail to appreciably account for a large
proportion of CAD heritability, which motivated the discovery of other genetic components
such as gene-environment interactions. (Manolio, Collins et al. 2009) Gene-environment
interaction can be broadly defined as the interplay between genetic and environmental
factors, and such interaction effect can be viewed as how genetic susceptibility for
subpopulations modify certain environmental effects or how exposure to environmental
factors modify certain genetic effects. (Gauderman, Mukherjee et al. 2017) Understanding
gene-environment interaction for CAD can expand our knowledge of potential biological

mechanisms and clinical utilizations of CAD genetics. (Ritz, Chatterjee et al. 2017)

Gene-environment interaction is an important component of the genetic architecture

of complex diseases such as CAD. Cigarette smoking is a complex environmental exposure
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and lifestyle-related risk factor for CAD. Understanding the interaction between smoking and
genetic predisposition in the development of CAD can potentially lead to better risk
stratification and disease prevention. (Willett 2002, Ordovas and Tai 2008) However, very
limited evidence was reported previously for gene-smoking interaction in CAD. One study
has shown that smoking attenuated the increased risk for CAD associated with 9p21 risk
alleles. (Hamrefors, Hedblad et al. 2014) A recent gene-smoking interaction study in CAD
reported a higher magnitude of increased CAD risk by smoking among those with lower
genetic risk of CAD captured by a CAD-GRS based on 50 SNPs. (Hindy, Wiberg et al. 2018)
However, previous studies of gene-smoking interaction in CAD have focused and reported on
multiplicative scale which by ignoring the additive scale only partially covers the potential
interaction effect between genetic predisposition and smoking on CAD. In fact, interaction on
the additive scale has larger public health impact and under certain assumptions can be
aligned with mechanistic interaction effects with a sufficient component cause framework.
(VanderWeele 2009) Therefore, assessment of gene-smoking interaction effects on both scale
should be performed and reported to better understand the causal mechanism and interplay
between these two risk factors. (VanderWeele and Knol 2014) In addition, genetic
mechanisms of CAD can be mediated through different molecular pathways and mechanisms
including cholesterol levels, obesity, and blood pressure (BP) levels, (Webb, Erdmann et al.
2017) but no study has been conducted to assess how the genetic predisposition of CAD
driven by these intermediate traits can modify the increased risk due to smoking. Previous
evidence of gene-smoking interaction in CAD is also limited by an incomplete list of CAD
loci as well as insufficient sample size. Therefore, the purpose of this study is to assess gene-
smoking interaction for CAD on both additive and multiplicative scale in populations of

European ancestry using data from two of the largest biobank cohorts.
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Methods

Study populations

The primary study population consists of participants with European ancestry from

the UK Biobank (https://www.ukbiobank.ac.uk/) cohort. The UK Biobank is a major national

and international health resource, and a registered charity in its own right, with the aim of
improving the prevention, diagnosis and treatment of a wide range of serious and life-
threatening illnesses. It is following the health and well-being of 500,000 volunteer
participants and provides health information, which does not identify them, to approved
researchers in the UK and overseas, from academia and industry. Both genetic and
phenotypic data for all participants in the UK Biobank were obtained for this study. The UK
Biobank genetic data contains genome-wide genotypes for 488,377 participants. (Bycroft,
Freeman et al. 2018) These were assayed using two very similar genotyping arrays. A subset
0f 49,950 participants involved in the UK Biobank Lung Exome Variant Evaluation (UK
BiLEVE) study were genotyped at 807,411 markers using the Applied Biosystems UK
BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific), and 438,427
participants were genotyped using the closely related Applied Biosystems UK Biobank
Axiom Array (825,927 markers) that shares 95% of marker content with the UK BiLEVE
Axiom Array. A quality control pipeline was developed and applied specifically to
accommodate the large-scale dataset of ethnically diverse participants, genotyped in many
batches, using two slightly different arrays, and which will be used by many researchers to
tackle a wide variety of research questions. Markers that passed the quality control check
were imputed using the Haplotype Reference Consortium (HRC) reference panel as well as

the merged UK10K and 1000 Genomes phase 3 reference panels. Information was then
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combined using the HRC data as the primary resource. For phenotype data, participants
provided electronic signed consent, answered questions on socio-demographic, lifestyle and
health-related factors, and completed a range of physical measures at baseline recruitment.
All participants also provided consent for follow-up through linkage to their health-related

records including in-patient hospital episode statistics and national death registry data.

The replication population of this study includes participants of European ancestry
from the Million Veteran Program (MVP). The MVP is a national, voluntary research
program funded entirely by the Department of Veterans Affairs (VA) Office of Research &
Development. It is envisioned as a VA-based mega-biobank and launched to establish a
national, representative, and longitudinal study of veterans for genomic and non-genomic
research that combines data from survey instruments, the electronic health record and
biospecimens. (Gaziano, Concato et al. 2016) The source population is defined as active
users of the Veterans Health Administration (VHA), with the ability to provide informed
consent as the only inclusion criterion. Recruitment is currently occurring in person at
selected sites in the VHA health care system. Every Veteran is assigned a study ID number,
which is used to track them throughout the entire process of recruitment, enrollment, sample
collection and use. During recruitment veteran participants were informed about the MVP
study via an invitation letter, explaining that participation in the study involves completing
questionnaires, providing a blood sample for future research, allowing ongoing access to
medical records and other health administrative data by authorized MVP staff, and agreeing
to future contact by MVP staff for follow-up studies. The latest data release in 2018 contains
genotype and phenotype data of over 500,000 participants among whom ~370,000 self-
identified as non-Hispanic White. Genome-wide genotype data was measured using a

customized Affymetrix Axiom biobank array, the MVP 1.0 Genotyping Array. With 723,305
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total DNA sequence variants, the array is enriched for both common and rare variants of
clinical importance in different ethnic backgrounds. Genotyped variants that were poorly
called (genotype missingness > 5%) or that deviated from their expected allele frequency
based on reference data from the 1000 Genomes Project were excluded. The remaining
variants were used to conduct genotype imputation based on the 1000 Genomes Project phase
3, v.5 reference panel, which generated a total number of > 30 million variants. For
phenotype data, participants were asked to complete two surveys: the MVP Baseline Survey
and the MVP Lifestyle Survey. Conceptually, the MVP Baseline Survey was designed to
collect information regarding demographics, family pedigree, health status, lifestyle habits,
military experience, medical history, family history of specific illnesses, and physical
features. The MVP Lifestyle Survey contains questions from validated instruments in
domains selected to provide information on sleep and exercise habits, environmental
exposures, dietary habits, and sense of wellbeing. Other health-related information or disease

diagnosis data is collected through linkage to participants’ VA electronic health record.

Outcome measurements

The disease outcome for this study is defined as primary events of incident CAD. In the
UK Biobank, participants’ survey data is linked to in-patient hospital episode statistics (HES)
as well as national death registry data. CAD definition in the UK Biobank for this study is
referenced from the most recent GWAS of CAD using the UK Biobank data. (van der Harst
and Verweij 2018) A participant is defined as a CAD case if he/she has at least one
occurrence of the following International Classification of Diseases, 10% edition (ICD-10)
codes: 121-125 covering ischemic heart diseases; or at least one occurrence of the following

Office of Population Censuses and Surveys Classification of Interventions and Procedures,
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version 4 (OPCS-4) codes: K40-K46, K49, K50 and K75 which includes replacement,
transluminal balloon angioplasty, and other therapeutic transluminal operations on coronary
artery and percutaneous transluminal balloon angioplasty and insertion of stent into coronary
artery. Death because of CAD was defined as an occurrence of any ICD-10 codes stated
above in the primary cause of death. To identify incident CAD cases, participants with CAD
diagnosis before enrollment in the UK Biobank were excluded. Participants will be censored
on the earliest date of CAD event/CAD death after enrollment, or the end of HES-based

follow-up, or time of competing death, whichever occurs first.

In the MVP cohort, CAD definition was developed by a group of expert researchers
from the MVP Cardiovascular Working Group. Disease diagnosis data was queried on two
different index dates: date of enrollment and July 1%, 2017. The CAD definition has been
chosen to accommodate both the number of cases for statistical power as well as accuracy in
CAD diagnosis to control false positive rate. Participants were defined as a CAD case if there
is occurrence of any CAD codes on two or more distinct dates on or prior to the index date,
or occurrence of a revascularization procedure code on or prior to the index date. CAD codes
include: International Classification of Diseases, 9" edition (ICD-9) codes 410, 411.0, 411.1,
411.81,411.89,412,414.00,414.01-414.05, 414.2-414.4, 414.8, 414.9, V45.81, V45.82; and
ICD-10 codes 120.0, 121-124, 125.1, 125.2, 125.5, 125.6, 125.70, 125.71, 125.72, 125.73, 125.79,
125.810, 125.82, 125.83, 125.84, 125.89, 125.9, Z95.1, Z98.61. Revascularization procedure
codes include: International Classification of Diseases, 9" edition (ICD-9) codes 00.66, 36.0,
36.01-36.07, 36.09, 36.1, 36.11-36.17, 36.19, 36.2, 99.10; and ICD-10 codes 0210-0213,
0270-0273, 02C0, 02C1, 02C3, 02C4; and Current Procedural Terminology (CPT) codes:
33510-33514, 33516-33519, 33521-33523, 33530, 33533-33536, 33572, 92928, 92929,

92933, 92934, 92937, 92938, 92941, 92943, 92944, 92973-92975, 92977, 92980-92982,
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92984, 92995, 92996, G0290, G0291, C9600-C9608. To identify incident CAD cases,
participants who had CAD diagnosis on or prior to enrollment date were excluded. New CAD

cases were defined as diagnosis between enrollment date and July 1%, 2017.

Smoking and covariate measurements

In the UK Biobank, smoking was self-reported in the touchscreen questionnaire on
lifestyle and personal exposures. Smoking status is categorized into “current”, “previous”,
“never” and “prefer not to answer”. Age started smoking is measured among current and
previous smokers, and age stopped smoking is measured among previous smokers. Number
of cigarettes currently smoked daily or previously smoked daily was measured among current
smokers or previous smokers, respectively. Therefore, a pack-year variable is also derived
and included in the secondary analysis. In the MVP cohort, smoking was self-reported in
both the MVP Baseline Survey and the MVP Lifestyle Survey. Smoking status is categorized
into “current”, “previous” and “never”. Information on potential confounders was also
collected from baseline questionnaire data of the UK Biobank and the MVP cohort including

age, sex, alcohol consumption, education, history of hypertension and diabetes, usage of

cholesterol medication, BMI and social economic status.

Genetic data processing and principle component analysis

Genome-wide genotyped SNP data of the UK Biobank is first examined by quality
control procedures. Individuals with genetically defined non-European ancestry are excluded.
Markers or individuals with a call rate less than 95 percent are also excluded. SNPs with

Hardy-Weinberg Equilibrium p-value less than 106 or minor allele frequency less than
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0.0001 are excluded. To remove up to the 3™ degree relatedness among the UK Biobank
participants, a pairwise kinship coefficient matrix is used with kinship larger than or equal to
0.0442 as a cutoff to filter the related individual pairs. SNPs that passed the quality control
procedure are then undergone a linkage disequilibrium (LD) pruning procedure with a
window size of 50 kb, a step size of 5 variants, and an r? threshold of 0.05. LD pruned SNPs
are then used in the principle component analysis. Top ten principle components are
calculated and will be included in the main analysis as covariates to control for population
stratification. In the MVP cohort, duplicate samples, samples with more heterozygosity than
expected, an excess (>2.5%) of missing genotype calls, or discordance between genetically
inferred sex and phenotypic gender are excluded. In addition, one individual from each pair
of related individuals is excluded. An ethnicity-specific principle component analysis was
then performed among non-Hispanic White participants who are defined as: (self-identified

2 <6

“non-Hispanic”, “white”, and > 80% genetic European ancestry).

Genetic risk score (GRS) construction

A comprehensive CAD-GRS based on 161 loci that have been reported in the most
recent GWAS of CAD (van der Harst and Verweij 2018) was developed. A weighted GRS
approach was implemented using the formula below:

GRS = B1 x SNP; + B2 x SNP2 + ... + Ba X SNP;,
Bi are effect sizes from GWAS or GWAS-meta-analysis; SNP; is coded as number of risk
alleles. In this study, the effect sizes for CAD-GRS construction were referenced from CAD-
GWAS summary statistics of the CARDIoGRAMplusC4D consortium (Nikpay, Goel et al.
2015) to avoid sample overlap with the UK Biobank or the MVP cohort. In addition, three

mediating trait-based CAD-sub-GRSs were developed based on loci that are associated with
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lipids level (GRScap-iipids), blood pressure (GRScap-gr), or BMI (GRScap-mi). Lipids-
associated loci and blood pressure-associated loci were extracted from recent GWAS
publications, (Evangelou, Warren et al. 2018, Klarin, Damrauer et al. 2018) and BMI-
associated loci were obtained from unpublished BMI GWAS of up to 1 million individuals of
European ancestry. Loci that are associated with both CAD and only one of the three target
mediating traits (Bonferroni corrected p<0.05) were included in the mediating trait-specific
CAD-sub-GRS calculation using the same weighted approach. All GRS constructions were

performed using PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/) with “--score”

function, and missing genotypes were imputed to the mean dosage.

Statistical analysis

Cox proportional hazards models were used to assess the association of CAD-GRSs and
sub-GRSs with incident CAD as well as the interaction between GRSs and smoking in the
UK Biobank. All genetic risk scores were 1) standardized and modeled as continuous
variables and 2) categorized into quintiles and divided into low (lowest quintile), intermediate
(quintiles 2 to 4) and high (highest quintile) genetic risk group. Smoking status was

9% ¢

categorized as “never”, “past” and “current” smokers and pack-year was divided into terciles
as “low”, “medium” and “high”. Age, sex, alcohol consumption, education, (Davies, Dickson
et al. 2018) history of hypertension, history of diabetes, cholesterol lowering medication use,
BMI, Townsend deprivation index and ten principle components were included as covariates.
In the CAD-sub-GRS analysis, the corresponding mediating trait was not included as a
covariate to avoid over-adjustment. Therefore, history of hypertension was not adjusted for in

the GRScap-sp analysis, cholesterol lowering medication was not adjusted for in the GRScap-

lipids analysis, and BMI was not adjusted for in the GRScap-sm1 analysis. Proportional hazards
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assumption was assessed using Schoenfeld’s test. When the assumption is violated,
categorical variables were stratified on while interaction terms with time were added for
continuous variables. Multiplicative interaction between CAD-GRSs and smoking status was
assessed by including interaction terms in the model and conducting likelihood ratio tests,
and additive interaction was assessed by calculating relative excess risk due to interaction
(RERI) based on the hazard ratio estimates. (Li and Chambless 2007) A bootstrap resampling
method was used to construct 95% confidence intervals for RERI estimates. For the
replication analysis in the MVP, logistic regression models were used controlling for a
similar set of covariates to assess GRS-smoking interaction on both multiplicative and
additive scale. Odds ratio estimates were used to calculate RERI in the MVP replication

analysis and same bootstrap procedures were done to construct confidence intervals.

Results

307,147 participants of European ancestry who were free of CAD at baseline from the
UK Biobank were included in the final analysis. A detailed inclusion/exclusion and QC
process was presented in Figure 1. Basic characteristics of the study population were shown
in Table I. 9,847 primary incident CAD events were identified from the UK Biobank. In our
study sample, the mean age at baseline is 56.7 years and slightly more females (55%) than
males were included. 9.5 percent of the participants were identified as current smokers and
34.9 percent as past smokers based on self-reported questionnaire data at baseline. In the
replication analysis using data from the MVP, 102,283 participants with no CAD at
enrollment were included. A similar inclusion/exclusion process was presented in Figure 1.
Using the indexing-date method, we have identified 8,016 incident CAD cases between

enrollment and July 1%, 2017. Baseline characteristics of the MVP participants were
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summarized in Table I. The mean age is 63.9 years old and the majority of them are male
(91.7%). 17.8 percent and 48.6 percent of participants self-reported as current smokers and

past smokers, respectively.

In the main analysis, a comprehensive CAD-GRS in the UK Biobank was constructed
based on 161 CAD-loci that were reported in the most recent CAD-GWAS. (van der Harst
and Verweij 2018) One lead SNP (rs582384) was multiallelic in the UK Biobank so a proxy
SNP (15616381, r>=0.86 for European ancestry) was used. A detailed list of all SNPs used for
score construction is presented in Table II. In the sub-score analysis, 26 SNPs were included
in the GRScap-sp construction, 17 SNPs were included in the GRScap-iipiass and 16 SNPs were
included in the GRScap-smi. (Table IIT) Associations between all four CAD-GRSs with
primary incident CAD in the UK Biobank were presented in Table IV-A. One standard
deviation (SD) increase in the comprehensive CAD-GRS is independently associated with
33.6 percent increase in the risk of primary CAD events (HR: 1.336, 95% CI: 1.310, 1.363).
Comparing to those with low genetic risk of CAD, those at intermediate genetic risk have a
43.6 percent increase in the risk or primary CAD events (HR: 1.436, 95% CI: 1.352, 1.526),
and those at high genetic risk have an over two-fold increase in the risk of primary CAD
events (HR: 2.196, 95% CI: 2.056, 2.345). Among the three CAD mediating trait-based sub-
GRSs, the GRScap-1ipias has the strongest association with incident primary CAD events.
Participants with a high genetic risk captured by the GRScap-iipigs have a 56.7 percent
increase in CAD risk comparing to those with low genetic risk (HR: 1.567, 95% CI: 1.472,
1.668), and this genetic effect attenuated when focusing on only BP-associated CAD loci
(HR: 1.422, 95% CI: 1.335, 1.514) or only BMI-associated CAD loci (HR: 1.245, 95% CI:

1.169, 1.326).
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To further understand how the genetic predisposition of CAD interacts with smoking
status, we assessed GRS-smoking interaction on both multiplicative and additive scale in the
UK Biobank. Combined associations of CAD-GRS and smoking status with incident CAD
were presented in Table V-A. Comparing to never smokers with low genetic risk, those who
never smoke but possess a high genetic risk had over two-fold increase in CAD risk (HR:
2.264, 95% CI: 2.045,2.506), and those with high genetic risk who currently smoke had a
four times higher risk in primary CAD events (HR: 4.077, 95% CI: 3.586,4.636). Similar
patterns were also observed for each of the three CAD mediating trait-based sub-GRSs.
Comparing to never smokers with low genetic risk in GRScap-iipigs, current smokers with high
genetic risk have a much higher risk elevation (HR: 2.861, 95% CI: 2.512, 3.259) than never
smokers with high genetic risk (HR: 1.658, 95% CI: 1.505, 1.827). The strongest combined
effect of genetic predisposition and smoking status on CAD is observed in lipids-associated
loci, and BMI-associated loci seem to have weaker effects than lipids or BP-associated CAD
loci. Overall, no multiplicative interaction between CAD-GRS or CAD-sub-GRSs and
smoking status was observed. In the MVP replication analysis, a similar pattern of
associations between CAD-GRS and incident CAD was observed. (Table IV-B and Table V-
B) The comprehensive CAD-GRS as well as all sub-GRSs were found to be associated with
incident CAD except for intermediate risk category of GRScap-smi. GRScap-iipiss had the
strongest effect on CAD among all three intermediate traits. When combined with smoking

status, no multiplicative interaction was observed between CAD-GRS and smoking status.

We then assessed the additive interaction between CAD-GRSs and smoking status by
calculating RERI for each GRS. (Figure II) For the comprehensive CAD-GRS, synergistic
additive interaction was observed among current smokers in both intermediate (RERI: 0.394,

95% CI: 0.097,0.729) and high (RERI: 1.051, 95% CI: 0.615,1.497) genetic risk group in the
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UK Biobank (Figure II-A), meaning the absolute risk elevation due to genetic predisposition
is stronger among current smokers. When comparing the three mediating trait-based CAD-
sub-GRSs, the strongest additive interaction between CAD-GRS and smoking status was
observed for BP-associated CAD loci. Synergistic additive interaction was observed among
past smokers in intermediate genetic risk group of GRScap-sp (RERI: 0.134, 95% CI: 0.011,
0.246) and current smokers with high genetic risk in GRScap-sp (RERI: 0.650, 95% CI:
0.299, 1.032). No additive interaction was observed for GRScap-lipias 0r GRScap-em1. To
replicative the additive interaction effect of smoking status and CAD-GRS, we also
calculated RERI and corresponding bootstrap intervals in the MVP. (Figure 1I-B) No additive
interaction effect was observed in the MVP replication analysis. An individual SNP-based
interaction analysis was also conducted with current smoking in the UK Biobank, no
multiplicative interaction was observed after multiple-testing correction, but one locus
(rs11591147, PCSK9) had an additive interaction effect with current smoking. (Table VI)

The effect of smoking is predominantly observed among homozygotes of the risk allele.

We also explored interaction effects between CAD-GRS and pack-year among ever
smokers in the UK Biobank. Combined effects of CAD-GRS and pack-year on incident CAD
among ever smokers is presented in Table VII. Comparing to the strongest effect observed
when participants have high lipids genetic risk profile and were identified as current smokers
in previous analysis, we observed a stronger effect combining blood pressure genetic risk and
pack-year exposure. Similarly, no multiplicative interaction was observed for any CAD-GRS
with pack-year. However, an additive interaction effect was observed for those who had high
overall genetic risk to CAD and were in the high pack-year group (RERI: 0.519, 95% CI:

0.032, 1.005). (Figure III) After comparing three CAD-mediating traits blood pressure, lipids,
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and BMI, GRScap-iipi¢s had an additive interaction effect with pack-year when both genetic

risk and pack-year exposure were high (RERI: 0.422, 95% CI: 0.072, 0.772).

Discussion

In this study, we have assessed how an overall genetic risk of CAD captured by CAD-
GRS interact with smoking on both multiplicative and additive scale in European population
using data from two large biobank cohorts. To further understand the role of mediating traits
such as BP, lipids and BMI in such gene-smoking interaction on CAD, we also developed
three separate sub-scores (GRScap-sp, GRScab-lipiass and GRScap-smr) focusing on genetic loci
uniquely associated with one mediating trait as well as CAD risk. Our results have shown an
additive and synergistic interaction effect between smoking status and CAD-GRS driven by
BP-associated loci, as well as an additive and synergistic interaction effect between smoking
pack-year and CAD-GRS driven by lipids-associated loci. Individual SNP analysis has
pointed to one locus (rs11591147, PCSK9) for a positive additive interaction effect with

smoking status.

Smoking has been long established as a strong risk factor for CAD. (Huxley and
Woodward 2011) Mechanisms of how tobacco smoke impact cardiovascular health have
been proposed but not fully understood. (Messner and Bernhard 2014) Understanding the
interaction between smoking and genetic predisposition to CAD might reveal unknown
disease pathways and help to stratify the populational susceptibility to CAD. However, very
limited studies have been conducted to estimate the gene-smoking interaction effects on CAD
for both multiplicative and additive scale. Using a weighted GRS constructed with 50 SNPs,

Hindy et al. reported a higher relative increase in CAD risk due to smoking among those with
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lower genetic risk. (Hindy, Wiberg et al. 2018) In our study, we didn’t observe such
multiplicative interaction effect, but we were able to quantify a synergistic interaction effect
on the additive scale between smoking status and an overall CAD-GRS among current
smokers in the UK Biobank. In addition, we observed such synergistic effect with a sub-
CAD-GRS developed focusing on loci that are associated with only BP and CAD. Elevated
blood pressure or hypertension is associated with CAD, and smoking can cause acute
increase in blood pressure and acts synergistically with hypertension to increase the risk of
CAD. (De Cesaris, Ranieri et al. 1992) Our results have supported that blood pressure related
pathways might be important in the development of CAD when smoking is initiated. We also
explored gene-smoking interaction using pack-year to quantify smoking intensity, which has
been reported as the preeminent smoking-related risk factor for cardiovascular disease,
(Lubin, Couper et al. 2016) and found an additively synergistic interaction effect between
genetic risk of CAD and smoking pack-year driven by lipids associated loci. Smoking
cessation among current smokers has been reported to benefit HDL cholesterol (Gepner,
Piper et al. 2011) and our results have shown a larger benefit of reducing smoking intensity

for those who have high genetic risk profile for lipids and CAD.

We also explored gene-smoking interaction for individual CAD risk loci, and one
SNP (rs11591147) at the PCSK9 locus was found to have synergistic interaction with current
smoking on the additive scale (RERI: 0.404, 95% CI: 0.343, 0.465) but no multiplicative
interaction was observed for the 161 loci tested. Our results have shown that the effect of
current smoking on CAD risk is predominantly observed among homozygotes of the risk
allele (G/G) for rs11591147. PCSK9, a gene encoding proprotein convertase subtilisin/kexin
type 9 regulates cholesterol homeostasis and was found to be associated with autosomal

dominant hypercholesterolemia. (Abifadel, Varret et al. 2003) Mutations reducing the
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expression level of PCSK9 were reported to be associated with lower plasma level of LDL
and lower risk of CAD. (Cohen, Pertsemlidis et al. 2005, Cohen, Boerwinkle et al. 2006) Our
findings have shown that PCSK9 might also act as an effect modifier on the elevated risk of
CAD due to smoking. Several other loci including ADAMTS7, (Saleheen, Zhao et al. 2017)
APOE (Gustavsson, Mehlig et al. 2012, Holmes, Frikke-Schmidt et al. 2014) and 9p21
(Hamrefors, Hedblad et al. 2014) were studied previously for interaction effects with

smoking on CAD, but our analysis was not able to detect interaction effects across these loci.

With data from two of the largest biobank cohorts, we assessed how genetic
predisposition to CAD captured by weighted CAD-GRS interact with smoking status as well
as smoking intensity (pack-year) on the risk of primary incident CAD among the European
population. Our findings have shown that smoking, as one of the most established life-style
related CAD risk factors, acts multiplicatively with genetic factors on increasing CAD risk.
However, a synergistic interaction effect on additive scale was observed showing the absolute
risk increase driven by smoking is higher among individuals with higher genetic risk. Such
interaction effect was not reported in previous gene-lifestyle (Khera, Emdin et al. 2016, Said,
Verweij et al. 2018) or gene-smoking interaction studies of CAD partially due to the
analytical focus on multiplicative scale. However, it is often of greater public health
importance to assess interaction effects on the additive scale and additive interaction effects
can be better linked with mechanistic effects under a sufficient component cause framework
with certain assumptions satisfied. (VanderWeele 2009) To further understand the gene-
smoking interaction effect on CAD, we also developed three mediating trait-based CAD sub-
GRSs and identified a BP-driven interaction effect with smoking status and a lipids-driven
interaction effect with smoking intensity measured by pack-year. Our results have provided

novel hypotheses on the potential different mechanisms between smoking initiation and
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smoking intensity on CAD development. Individual SNP-based interaction analysis has also
identified one novel additive interaction effect at the locus of PCSK9, which suggests the role

of lipid metabolism in modifying the effect of smoking on CAD risk.

Our study also has several limitations. First, smoking is measured subjectively at
baseline with questionnaire data and such measurement is susceptible to recall bias.
However, to balance the statistical power required for gene-lifestyle interaction studies and
measurement accuracy as well as ensuring a homogeneous study population, biobank cohorts
seem to be so far the best data resource in conducting large scale gene-lifestyle interaction
studies. Second, we used the MVP cohort as a replication cohort for our primary analysis
conducted in the UK Biobank, but the two populations differ largely in many aspects, which
limited the power and validity of the replication analysis. In addition, CAD cases were
captured in slightly different ways between these two cohorts due to data availability
restrictions, which also lead to slightly different definitions of some covariates in the
analysis. Therefore, our results need to be interpreted with caution when comparing the

primary and replication analysis.

Conclusion

Using data from the UK Biobank and the MVP cohort, we have prospectively
assessed gene-smoking interaction on incident CAD on both additive and multiplicative
scale. No multiplicative interaction was found between genetic predisposition and smoking
status or smoking intensity, but a synergistic additive interaction driven by BP-associated loci
was observed for current smoking and a synergistic additive interaction driven by lipids-

associated loci was observed for smoking intensity. In addition, the PCSK9 locus was
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observed to have strong additive interaction effects with current smoking on CAD risk. Our
findings have raised hypothesis with respect to different interplaying mechanisms between
genetic predisposition to CAD and smoking behaviors, and highlighted the value of

addressing gene-lifestyle interactions in CAD on both additive and multiplicative scale.



Table I. Characteristics of the study population

Characteristic Mean (SD) or N (%)
UK Biobank (N=307,147) MVP (N=102,283)

Age 56.7 (8.0) 63.9 (12.2)
Female 168,880 (55.0%) 8,439 (8.3%)
BMI 27.3 (4.7) 29.9 (5.7)
Smoking Status

Current 29,281 (9.5%) 18,167 (17.8%)

Past 107,049 (34.9%) 49,670 (48.6%)

Never 170,817 (55.6%) 34,446 (33.6%)
Pack-year 22.3 (18.1) n/a
Alcohol Consumption

Ever 297,997 (97.0%) 61,873 (60.5%)

Never
Hypertension
Diabetes
Lipids Medication
Education
School leaving age >=15
School leaving age <15
Some college or higher
Townsend Index
Income
$50,000 or above

9,150 (3.0%)
79,678 (25.9%)

13,059 (4.3%)
45344 (14.8%)

243,327 (79.2%)
63,820 (20.8%)
n/a

-1.6 (2.9)

n/a

40,410 (39.5%)
57,074 (55.8%)
21,932 (21.4%)
43,593 (42.6%)

n/a
n/a
78,189 (76.4%)
n/a

37,571 (36.7%)
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Table I1. 161 SNPs included in the CAD-GRS construction

SNP CHR POS Locus Risk Allele Other Allele Weight
rs36096196 1 2252205 MORNI T C 0.043
rs2493298 1 3325912 PRDM1I16 A C 0.057
rs61776719 1 38461319 SF3A43 A C 0.052
rs11591147 1 55505647 PCSK9 G T 0.257
rs56170783 1 57016131 PLPP3 A C 0.127
rs7528419 1 109817192 CELSR2 A G 0.115
rs11806316 1 115753482 RP4-663N10.1 G A 0.032
rs11810571 1 151762308 TDRKH G C 0.056
136689306 1 154395946 IL6R A G 0.056
rs1892094 1 169094459 ATPIBI C T 0.018
136700559 1 200646073 RP11-92G12.3 C T 0.028
rs2820315 1 201872264 LMODI T C 0.047
rs60154123 1 210468999 RP4-667HI12.4 T C 0.045
rs67180937 1 222823743 MIA3 G T 0.079
13699 1 230845794 AGT G A 0.040
rs16986953 2 19942473 AC019055.1 A G 0.085
1s585967 2 21270554 APOB C A 0.073
134299376 2 44072576 ABCGS G T 0.051
15616381 2 45891708 PRKCE A G 0.033
137568458 2 85788175 GGCX A T 0.060
rs17678683 2 145286559 ZEB2 G T 0.099
rs12999907 2 164957251  AC092684.1 A G 0.047
rs840616 2 188196469  AC007319.1 C T 0.046
rs114123510 2 203831212 CARF A T 0.134
rs17517928 2 216291359 FNI C T 0.057
rs2571445 2 218683154 TNSI A G 0.043
rs2972146 2 227100698 NEU2 T G 0.039
rs13003675 2 233584109 GIGYF2 T C 0.042
rs11677932 2 238223955 STK25 G A 0.037
15748431 3 14928077 FGDS5 G T 0.049
187633770 3 46688562 SNORD77 A G 0.025
187617773 3 48193515 TKT T C 0.039
187623687 3 49448566 RHOA A C 0.070
rs17843797 3 124453022 UMPS G T 0.064
rs10512861 3 132257961 DNAJCI3 G T 0.041
15667920 3 136069472 STAGI T G 0.039
rs9818870 3 138122122 MRAS T C 0.065
rs12493885 3 153839866 ~ ARHGEF26 C G 0.066
154266144 3 156852592 SPTSSB G C 0.032
rs12897 3 172115902 FNDC3B G A 0.050
rs16844401 4 3449652 HGFAC A G 0.072
1$72627509 4 57839051 NOAI G C 0.060
rs12500824 4 77416627 SHROOM3 A G 0.029
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0.128
0.181
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Table II1I. SNPs included in the sub-score construction

A. GRScap-pp
P-value
SNP CHR POS Locus Risk Allele Other Allele Weight
SBP DBP PP

rs61776719 1 38461319 SF3A43 A C 0.0518 4.249E-04 3.323E-02 4.228E-11
rs1892094 1 169094459 ATPIBI C T 0.0185 3.138E-04 8.352E-01 1.570E-05

15699 1 230845794 AGT G A 0.0396 9.473E-10 6.681E-07 2.955E-03
1512999907 2 164957251  AC092684.1 A G 0.0467 5.496E-10 6.652E-03 1.254E-07
1s2571445 2 218683154 TNSI A G 0.0427 2.739E-05 3.214E-05 2.086E-01
rs12500824 4 77416627 SHROOM3 A G 0.0293 2.018E-04 1.381E-04 2.049E-01
152306556 4 156638573 GUCYIA3 A G 0.0673 3.738E-04 5.330E-05 4.855E-01
1s7696431 4 169687725 PALLD T G 0.0362 3.755E-04 7.901E-01 2.143E-06
rs17080091 6 150997401 PLEKHGI C T 0.0632  9.188E-07 1.613E-03 2.379E-03
rs2107595 7 19049388 HDAC9 A G 0.0734 5911E-12 1.441E-01 4.923E-24
rs11556924 7 129663496 ZC3HCI C T 0.0726 4.387E-02 1.954E-04 3.942E-01
rs3918226 7 150690176 NOS3 T C 0.1333 1.312E-04 3.856E-07 7.673E-01
rs1887318 10 30321598 KIAA1462 T C 0.0624 2.333E-03 6.886E-05 1.652E-14
rs10840293 11 9751196 SWAP70 A G 0.0547 1.255E-05 2.922E-03 8.880E-03
rs10841443 12 20220033 RP11-664H17.1 G C 0.0507 4.343E-01 2.268E-04 1.376E-05
1s2681472 12 90008959 ATP2BI G A 0.0741 4.538E-17 1.334E-09 2.131E-06
rs1317507 13 113631780 MCF2L A C 0.0383 2.553E-05 2.351E-01 2.596E-05
rs10139550 14 100145710 HHIPLI G C 0.0554 4.917E-07 9.118E-01 1.353E-10
rs2071382 15 91428197 FES T C 0.0535 1.241E-09 2.491E-04 5.027E-05
rs7500448 16 83045790 CDH13 A G 0.0555 5.865E-05 1.217E-03 5.010E-16
rs17608766 17 45013271 GOSR2 C T 0.0530 1.717E-08 5.656E-01 2.643E-14
rs8068952 17 59286644 BCAS3 G C 0.0339  7.789E-05 2.110E-03 3.874E-02
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rs8108632 19 41854534 TGFBI T A 0.0515 2.089E-01 1.790E-02 9.288E-05

rs867186 20 33764554 PROCR A G 0.0607 6.955E-03 1.613E-01 1.099E-06

1$260020 20 57714025 ZNF831 T C 0.0475 2.819E-06 1.570E-07 3.267E-01
1s28451064 21 35593827 AP000318.2 A G 0.1276  4.984E-02 2.391E-02 6.611E-06

B. GRScAD-lipids

P-value
SNP CHR POS Locus Risk Allele Other Allele Weight
HDL LDL TG TC

rs11591147 1 55505647 PCSK9 G T 0.2565 4.257E-04 1.709E-228 6.362E-01  6.206E-157
1s7528419 1 109817192 CELSR2 A G 0.1145 1.360E-31 0.000E+00 9.278E-05 1.898E-296

1s585967 2 21270554 APOB C A 0.0731  9.090E-01 5.800E-152 9.941E-01 1.310E-111
rs4299376 2 44072576 ABCGS G T 0.0508 1.274E-01  1.698E-72  3.044E-05  1.546E-57
rs7568458 2 85788175 GGCX A T 0.0596 4.813E-02  3.437E-04 3.601E-03  1.095E-04
rs1591805 6 126717064 RP]11-394G3.2 A G 0.0402 1.937E-02 1.911E-01 1.030E-04  1.230E-01
rs10455872 6 161010118 LPA G A 0.3186 6.654E-04  6.167E-50  2.577E-02  7.345E-37
rs6997340 8 18286997 NAT?2 T C 0.0324 6.348E-01  1.383E-02  5.748E-20  6.245E-13
152083636 8 19865263 LPL T G 0.0514 4.002E-246 6.200E-04 2.792E-295 2.188E-04
rs2891168 9 22098619  CDKN2B-ASI G A 0.1934 5424E-01 2.339E-10 4.376E-02  4.920E-09

rs507666 9 136149399 ABO A G 0.0788  2.257E-03  1.706E-80  6.262E-01  2.292E-72
1s2246942 10 91004886 LIPA G A 0.0662  2.049E-02  1.249E-03  2.957E-02  1.694E-04
rs11601507 11 5701074 TRIMS A C 0.0734  6.643E-04  6.652E-08  8.593E-01  4.905E-05
1s2244608 12 121416988 HNF14 G A 0.0476  1.518E-03  1.963E-23  3.819E-01  1.206E-25

15247616 16 56989590  4C012181.1 C T 0.0312 0.000E+00 3.397E-01  2.267E-15  9.586E-64
rs6511720 19 11202306 LDLR G T 0.1253  1.090E-05 1.111E-260 4.610E-01 6.767E-182
1s6102343 20 39924279 ZHX3 A G 0.0451 6.733E-02  2.048E-04  1.345E-05  2.978E-08
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C. GRScap-BmI

SNP CHR POS Locus Risk Allele Other Allele Weight BMI P-value
rs2820315 1 201872264 LMODI T C 0.0467  3.039E-39
rs7116641 11 43696917  AC007319.1 G T 0.0304  2.259E-34

rs11170820 12 54513915 RHOA G C 0.0908 5.933E-06
rs9591012 13 33058333 STAGI G A 0.0457 1.136E-15
rs13723 17 27941886 MRAS G A 0.0374 1.834E-09
rs663129 18 57838401 ARHGEF26 A G 0.0582  2.730E-191
rs840616 2 188196469 UNC5C C T 0.0456  4.026E-08
1s667920 3 136069472 KCNKS5 T G 0.0393  2.884E-19
rs9818870 3 138122122 MADILI T C 0.0646  2.096E-09
rs12493885 3 153839866 ZFPM?2 C G 0.0661 2.808E-09
1s7623687 3 49448566 DAB2IP A C 0.0699  6.093E-07
rs3775058 4 96117371 RPI11-472120.4 A T 0.0351 6.020E-07
rs56015508 6 39152041 FLJ12825 C A 0.0630 1.452E-04
rs10267593 7 1937261 N4BP2L2 G A 0.0418  6.131E-13
rs10093110 8 106565414 CORO6 G A 0.0258 5.492E-06
rs885150 9 124420173  RNU4-17P C T 0.0389  2.903E-05
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Table IV. Associations of comprehensive CAD genetic risk Score (CAD-GRS) and three CAD mediating trait-based sub-genetic risk

scores (sub-GRSs) with incident CAD

A. UK Biobank (HR and 95% CI)

CAD-GRS Comprehensive GRS GRScap-sp GRS cAD-ipids GRScap-m1
. 1.336 1.139 1.184 1.076
per SD increase (1.310, 1.363) (1.117,1.161) (1.162, 1.207) (1.055, 1.098)
Low risk Ref. Ref. Ref. Ref.
Intermediate risk 1.436 1.167 1.208 1.131
(1352, 1.526) (1.105, 1.232) (1.144, 1.276) (1.072, 1.193)
2.196 1.422 1.567 1.245

High risk (2.056, 2.345)

(1335, 1.514)

(1.472, 1.668)

(1.169, 1.326)

B. MVP (OR and 95% CI)

CAD-GRS Comprehensive GRS GRScap-sp GRScAD-ipids GRScap-m1
. 1.212 1.074 1.134 1.025
per SD increase (1.184, 1.241) (1.050,1.099) (1.108, 1.160) (1.003, 1.048)
Low risk Ref. Ref. Ref. Ref.
Intermediate risk 1.339 1.092 1.190 1.036
(1.254, 1.430) (1.027, 1.161) (1.118, 1.267) (0.977, 1.098)
1.749 1217 1.404 1.074

High risk (1.622, 1.885)

(1.131, 1.309)

(1304, 1.511)

(1.001, 1.153)




Table V. Combined associations of CAD-GRSs and smoking status with incident CAD

A. UK Biobank (HR and 95% CI)

Smoking Status N})l; l‘; ?lilllieczfgil;’e
Never Past Current Interaction
Low Risk Ref. (1 .0;42,(1)?360) (1 .55'37,?094)
CAD-GRS  Intermediate Risk .2;";%.2562) (1 .5;77,?.2902) (2.32'56,3?942) 0.51
High Risk (2.0‘421'52,3%506) (2.2395,3.6809) (3.5;"6(?471.7636)
Low Risk Ref. (0.9915; (17228) (1.4413?61?93 1
GRScappe  Intermediate Risk | .oz1 if 11(.)206) (1.2413?51%468) (1.7716?624.‘172) 0.17
HighRisk .221 Sf481) (1.44155914.‘755) (2.3522'?24.1018)
Low Risk Ref. (1.1 11 3?317376) (1.652'9,’4,127253)
GRScapipias  Intermediate Risk (1.121 i?21%332) (1.361:,‘%7621) (2.05???2%572) 0.50
High Risk (1 .555?512?827) (1.7(%2'??2?071) 2.5 122'??259)
Low Risk Ref. (1.071(')3 8153 13) (1.4§EZ 11?986)
GRScappwr  Intermediate Risk | .ozléf ??205) (1.24:4'1?51%468) (1.812 é(,)(:)fzm) 0.95
1229 1.467 2.255

High Risk

(1.116, 1.355)

(1.332,1.616)

(1.978, 2.571)
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B. MVP (OR and 95% CI)

. P-value for
ki tat
Smoking Status Multiplicative
Never Past Current Interaction
. 1.130 1.465
Low Risk Ref. (0.988,1.293)  (1.229,1.747)
o 1.296 1.560 1.890
CAD-GRS  Intermediate Risk 1 1471 464y (1.390,1.752)  (1.657,2.156) 0.26
- 1.834 2.003 2255
High Risk (1.5982.104)  (1.7652.273)  (1.920,2.649)
. 1.194 1517
Low Risk Ref. (1.054, 1.352)  (1.290, 1.784)
o 1112 1317 1.561
GRScap-pp  Intermediate Risk o911 547) (1,181, 1.468)  (1.377, 1.769) 0.63
- 1297 1.452 1.656
High Risk (1.133,1.485)  (1.285,1.640) (1.410, 1.946)
. 1.282 1.621
Low Risk Ref. (1.126,1.459)  (1.371, 1.916)
o 1276 1.512 1781
GRScapaipias  Intermediate Risk 1 135"y 430y (1349, 1.694)  (1.564,2.029) 0.16
- 1.616 1.724 2.052
High Risk (1.409, 1.855)  (1.520,1.955)  (1.749, 2.408)
. 1.195 1.239
Low Risk Ref. (1065, 1.341)  (1.056, 1.454)
o 1.014 1219 1.403
GRScap-pwr  Intermediate Risk 1171 159) (1102, 1.348)  (1.248, 1.578) 0.44
1114 1.224 1.458

High Risk

(0.979, 1.267)

(1.091, 1.373)

(1.253, 1.697)
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Table VI. Interaction between CAD-associated SNPs and current smoking on incident CAD in the UK Biobank

SNP CHR  POS Locus Beta Coefficients P-value — pppy FP-value

SNP  Current smoking Interaction ©f Interaction of RERI

rs11591147 1 55505647 PCSK9 G 0.209 -0.283 0.403 0.05 0404 1.21E-38
rs73015714 19 17855763 FCHOI G 0.046 0.460 0.123 0.01 0.245 1.84E-03
rs1870634 10 44480811  LINC00841 G 0.027 0.391 0.091 0.04 0.158 6.71E-03
rs3918226 7 150690176 NOS3 T 0.031 0.483 0.163 0.02 0317 9.03E-03
rs12897 3 172115902 FNDC3B G 0.033 0.451 0.082 0.05 0.159 1.21E-02
rs4643373 17 47123423 IGF2BP1 T -0.012 0.379 0.095 0.03 0.138 2.07E-02
rs2145598 14 58794001 ARID44 G 0.019 0.449 0.075 0.06 0.135 2.55E-02
rs867186 20 33764554 PROCR A 0.026 0.312 0.110 0.14 0.173 4.24E-02
rs12493885 3 153839866 ~ ARHGEF26 C 0.078 0.402 0.065 0.27 0.149 4.48E-02
rs2891168 22098619  CDKN2B-AS1 G 0.138 0.499 0.015 0.70 0.125 4.54E-02
rs17581137 15 96146414 RP11-61011.1 A 0.009 0.396 0.078 0.10 0.126 4.61E-02
rs8108632 19 41854534 TGFBI T 0.048 0.468 0.054 0.19 0.123  5.28E-02
rs10455872 6 161010118 LPA G 0.202 0.506 0.046 0.50 0242  6.43E-02
rs17080091 6 150997401  PLEKHGI C 0.077 0.349 0.088 0.29 0.174 6.58E-02
rs944172 9 110517794  AL162389.1 C 0.022 0.475 0.065 0.14 0.124 7.27E-02
1$2229357 12 57843711 INHBC G 0.029 0.421 0.061 0.20 0.114 7.82E-02
r$585967 2 21270554 APOB C -0.004 0.363 0.088 0.13 0.131 8.06E-02
12820315 1 201872264 LMODI T 0.032 0.477 0.055 0.19 0.114 8.58E-02
rs12801636 11 65391317 PCNX3 G 0.013 0.409 0.068 0.16 0.113 8.66E-02
1s9367716 6 57160572  RNU7-66P G 0.013 0.426 0.062 0.16 0.107 8.85E-02
rs1508798 5 9556694  RP11-260E18.1 T 0.038 0.415 0.061 0.25 0.118 9.46E-02
rs10267593 7 1937261 MADILI G 0.002 0.384 0.078 0.15 0.120 9.52E-02
rs6700559 1 200646073 RPI11-92G12.3 C 0.038 0.601 -0.082 0.04 -0.117 9.54E-02
rs216172 17 2126504 SMG6 C 0.037 0.571 -0.081 0.05 -0.115 1.01E-01
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Table VII. Combined associations of CAD-GRSs and pack-year with incident CAD in the UK Biobank

Smoldng Pack-year Multiplicative
Low Medium High Interaction
Fow Risk Ref. (1 .0(1)'72,?.265 8) (1 .4;78,;.7291)
CAD-GRS  Intermediate Risk | .2;05}.5952) (1 .5;49,2.3418) (1 .935%.1971) 0.32
High Risk (a .93'71(3).6035) Q2. 131'46,;9347) (3.0357,451.2641)
Fow Risk Ref. a .0315?91%22) (1.451é??2(.)199)
GRScavpr  Intermediate Risk | .061;??%5 86) (1.352??2%020) (1.635(,)?2?456) 0.15
HighRisk g .458?5;1 89) (1.4715%252) (2.1;2(')? ;2.3188)
Fow Risk Ref. (1.011 5?51%53) (1.2915?71?913)
GRScapqpias  Intermediate Risk .055%2?457) (1.211 6?55743) a .621???2?308) 0.94
High Risk (1.141;,‘21?769) (1.42%52,g 112%213) (2.0544,‘ ;?918)
bow sk Ref (0.956?21%5 14) (1.461 i?72§159)
GRScapswr - Intermediate Risk (0.991; 91?444) (1.211 (')4,11?736) (1.5619?223 ) 0.64
1.270 1.629 2.052

High Risk

(1.018, 1.586)

(1.330, 1.994)

(1.696, 2.482)
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Figure 1. Study population QC process
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Figure II. Relative excess risk due to interaction (RERI) for CAD-GRSs and smoking

status on incident CAD (Never smokers with low genetic risk were used as reference group

for each score; 95% CI: 95% bootstrap confidence interval)
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B. MVP
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Figure I1I. Relative excess risk due to interaction (RERI) for CAD-GRSs and pack-year

on incident CAD in the UK Biobank (Ever smokers with low pack-year and low genetic

risk were used as reference group for each score; 95% CI: 95% bootstrap confidence interval)
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Chapter 3

Assessment of gene-physical activity interaction in coronary artery diseases

Introduction

Coronary artery disease (CAD) is the pre-eminent cause of death and lifestyle
modification has played a major role in CAD prevention. (Lloyd-Jones, Hong et al. 2010)
Physical activity is reported to be an independent and protective risk factor associated with
CAD morbidity and mortality. (Winzer, Woitek et al. 2018) A standardized case-control
study of acute myocardial infarction in 52 countries has shown a 14% risk reduction due to
regular physical activity and a 12% population attributable risk explained by physical
activity. (Yusuf, Hawken et al. 2004) In addition, the Health Professional's Study (Tanasescu,
Leitzmann et al. 2002) including 44,452 men has shown a 30% reduction in the risk of
myocardial infarction, providing strong evidence for the cardiovascular benefits of exercise
in primary prevention. A meta-analysis of exercise-based cardiac rehabilitation including
trials conducted in the contemporary medication/intervention era, estimated a reduction in
mortality of 20-32%. (Taylor, Brown et al. 2004) Physical activity can indirectly decrease
CAD risk by providing a gateway through which other risk factors such as cholesterol, blood
pressure and obesity can be favorably modified. However, at least 40% of the risk reduction
due to exercise cannot be explained by such indirect effect through conventional CAD risk
factors. Thus, a cardio-protective ‘vascular conditioning’ effect, including enhanced nitric
oxide vasodilator function, improved vascular reactivity, altered vascular structure or
combinations thereof, has been proposed. (Wilson, Ellison et al. 2016) In addition, exercise is

reported to be a potent stimulator activating numerous downstream cascades at a molecular
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and cellular level, that if sustained and intensive enough enables gross anatomical remodeling
capable of enhancing functional capacity in all spectrums of the population including the

casual exercisers, the sedentary individuals or those with established cardiovascular diseases.

CAD is a heritable condition with estimated heritability of 50% to 60%. (Dai,
Wiernek et al. 2016) The interplay between genetic factors and environmental factors is an
important part in the development of CAD. It has been proven that physical activity is
beneficial for cardiovascular health, however, how the reduced risk due to physical activity
interact with individual’s genetic background in CAD remains unclear. Studies have taken
physical activity into account when constructing a composite score for healthy lifestyle and
reported a uniform benefit of such healthy lifestyle on cardiovascular health across
individuals with different levels of genetic risk. (Khera, Emdin et al. 2016, Pazoki, Dehghan
et al. 2018) A recent study conducted in the UK Biobank also reported similar benefit of
physical activity for coronary heart disease across different genetic risk strata. (Tikkanen,
Gustafsson et al. 2018) However, current evidences for gene-physical activity interaction in
CAD have only focused on multiplicative scale which ignored the potential interaction effect
on additive scale, even though additive scale is useful for assessing the public health
importance of interventions and the public health significance of such interaction effects.
(VanderWeele and Knol 2014) In addition, super-additive interaction effects if unconfounded
under monotonicity assumptions can be more closely linked with mechanistic effects using a
sufficient component cause model. (VanderWeele 2009) Genetic mechanisms of CAD can be
mediated through different traits including cholesterol and other lipid levels, obesity, and
blood pressure level (Webb, Erdmann et al. 2017), and physical activity might interact with
certain mediating trait-based pathways. However, no study has been conducted to assess how

the genetic predisposition of CAD driven by these mediating traits can modify the reduced
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risk due to physical activity. Therefore, the purpose of this study is to assess gene-physical

activity interaction for CAD on both additive and multiplicative scale in populations of

European ancestry using data from two of the largest biobank cohorts.

Methods

Study populations (same as Chapter 2)

The primary study population consists of participants with European ancestry from the

UK Biobank (https://www.ukbiobank.ac.uk/) cohort. The UK Biobank is a major national

and international health resource, and a registered charity in its own right, with the aim of
improving the prevention, diagnosis and treatment of a wide range of serious and life-
threatening illnesses. It is following the health and well-being of 500,000 volunteer
participants and provides health information, which does not identify them, to approved
researchers in the UK and overseas, from academia and industry. Both genetic and
phenotypic data for all participants in the UK Biobank were obtained for this study. The UK
Biobank genetic data contains genome-wide genotypes for 488,377 participants. (Bycroft,
Freeman et al. 2018) These were assayed using two very similar genotyping arrays. A subset
0f 49,950 participants involved in the UK Biobank Lung Exome Variant Evaluation (UK
BiLEVE) study were genotyped at 807,411 markers using the Applied Biosystems UK
BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific), and 438,427
participants were genotyped using the closely related Applied Biosystems UK Biobank
Axiom Array (825,927 markers) that shares 95% of marker content with the UK BiLEVE
Axiom Array. A quality control pipeline was developed and applied specifically to

accommodate the large-scale dataset of ethnically diverse participants, genotyped in many
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batches, using two slightly different arrays, and which will be used by many researchers to
tackle a wide variety of research questions. Markers that passed the quality control check
were imputed using the Haplotype Reference Consortium (HRC) reference panel as well as
the merged UK10K and 1000 Genomes phase 3 reference panels. Information was then
combined using the HRC data as the primary resource. For phenotype data, participants
provided electronic signed consent, answered questions on socio-demographic, lifestyle and
health-related factors, and completed a range of physical measures at baseline recruitment.
All participants also provided consent for follow-up through linkage to their health-related

records including in-patient hospital episode statistics and national death registry data.

The replication population of this study includes participants of European ancestry from
the Million Veteran Program (MVP). The MVP is a national, voluntary research program
funded entirely by the Department of Veterans Affairs (VA) Office of Research &
Development. It is envisioned as a VA-based mega-biobank and launched to establish a
national, representative, and longitudinal study of veterans for genomic and non-genomic
research that combines data from survey instruments, the electronic health record and
biospecimens. (Gaziano, Concato et al. 2016) The source population is defined as active
users of the Veterans Health Administration (VHA), with the ability to provide informed
consent as the only inclusion criterion. Recruitment is currently occurring in person at
selected sites in the VHA health care system. Every Veteran is assigned a study ID number,
which is used to track them throughout the entire process of recruitment, enrollment, sample
collection and use. During recruitment veteran participants were informed about the MVP
study via an invitation letter, explaining that participation in the study involves completing
questionnaires, providing a blood sample for future research, allowing ongoing access to

medical records and other health administrative data by authorized MVP staff, and agreeing



53

to future contact by MVP staff for follow-up studies. The present study included a recent data
release in 2018 containing genotype and phenotype data of over 460,000 participants among
whom ~370,000 identified as non-Hispanic White. Genome-wide genotype data was
measured using a customized Affymetrix Axiom biobank array, the MVP 1.0 Genotyping
Array. With 723,305 total DNA sequence variants, the array is enriched for both common
and rare variants of clinical importance in different ethnic backgrounds. Genotyped variants
that were poorly called (genotype missingness > 5%) or that deviated from their expected
allele frequency based on reference data from the 1000 Genomes Project were excluded. The
remaining variants were used to conduct genotype imputation based on the 1000 Genomes
Project phase 3, v.5 reference panel, which generated a total number of > 30 million variants.
For phenotype data, participants were asked to complete two surveys: the MVP Baseline
Survey and the MVP Lifestyle Survey. The MVP Baseline Survey was designed to collect
information regarding demographics, family pedigree, health status, lifestyle habits, military
experience, medical history, family history of specific illnesses, and physical features. The
MVP Lifestyle Survey contains questions from validated instruments in domains selected to
provide information on sleep and exercise habits, environmental exposures, dietary habits,
and sense of wellbeing. Other health-related information or disease diagnosis data is collected

through linkage to participants’ VA electronic health record.

Outcome measurements (same as Chapter 2)

The disease outcome for this study is defined as primary events of incident CAD. In the
UK Biobank, participants’ survey data is linked to in-patient hospital episode statistics (HES)
as well as national death registry data. CAD definition in the UK Biobank for this study is the

same as the recent GWAS of CAD using the UK Biobank data. (van der Harst and Verweij
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2018) A participant is defined as a CAD case if he/she has at least one occurrence of the
following International Classification of Diseases, 10% edition (ICD-10) codes: 121-125
covering ischemic heart diseases; or at least one occurrence of the following Office of
Population Censuses and Surveys Classification of Interventions and Procedures, version 4
(OPCS-4) codes: K40-K46, K49, K50 and K75 which includes replacement, transluminal
balloon angioplasty, and other therapeutic transluminal operations on coronary artery and
percutaneous transluminal balloon angioplasty and insertion of stent into coronary artery.
Death because of CAD was defined as an occurrence of any ICD-10 codes stated above in the
primary cause of death. To identify incident CAD cases, participants with CAD diagnosis
before enrollment in the UK Biobank were excluded. Participants will be censored on the
earliest date of CAD event/CAD death after enrollment, or the end of HES-based follow-up,

or time of competing death, whichever occurs first.

In the MVP cohort, CAD definition was developed by a group of expert researchers
from the MVP Cardiovascular Working Group. Disease diagnosis data was queried on two
different index dates: date of enrollment and July 1%, 2017. The CAD definition has been
chosen to accommodate both the number of cases for statistical power as well as accuracy in
CAD diagnosis to control false positive rate. Participants were defined as a CAD case if there
is occurrence of any CAD codes on two or more distinct dates on or prior to the index date,
or occurrence of a revascularization procedure code on or prior to the index date. CAD codes
include: International Classification of Diseases, 9" edition (ICD-9) codes 410, 411.0, 411.1,
411.81,411.89,412,414.00,414.01-414.05, 414.2-414.4, 414.8, 414.9, V45.81, V45.82; and
ICD-10 codes 120.0, 121-124, 125.1, 125.2, 125.5, 125.6, 125.70, 125.71, 125.72, 125.73, 125.79,
125.810, 125.82, 125.83, 125.84, 125.89, 125.9, Z95.1, Z98.61. Revascularization procedure

codes include: International Classification of Diseases, 9" edition (ICD-9) codes 00.66, 36.0,
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36.01-36.07, 36.09, 36.1, 36.11-36.17, 36.19, 36.2, 99.10; and ICD-10 codes 0210-0213,
0270-0273, 02C0, 02C1, 02C3, 02C4; and Current Procedural Terminology (CPT) codes:
33510-33514, 33516-33519, 33521-33523, 33530, 33533-33536, 33572, 92928, 92929,
92933, 92934, 92937, 92938, 92941, 92943, 92944, 92973-92975, 92977, 92980-92982,
92984, 92995, 92996, G0290, G0291, C9600-C9608. To identify incident CAD cases,
participants who had CAD diagnosis on or prior to enrollment date were excluded. New CAD

cases were defined as diagnosis between enrollment and July 1%, 2017.

Physical activity and covariate measurements

In the UK Biobank, physical activity is measured using adapted questions from the
International Physical Activity Questionnaire (IPAQ) short form. Participants were asked
about duration and frequency of walks, moderate activity and vigorous activity. The
Guidelines for Data Processing and Analysis of the International Physical Activity
Questionnaire (IPAQ) (2005) was used to process the physical activity data in the UK
Biobank. A continuous variable Metabolic Equivalent of Task (MET) min/week was
calculated then categorized into high, moderate and low physical activity groups. We
collapsed high and moderate physical activity groups in the analysis since no difference was
found between these two groups and used this “physically active” group as reference to align
the two risk factors (higher CAD risk captured by higher genetic risk score as well as higher
level of physical inactivity). In the MVP cohort, due to data availability a “Life’s Simple 7”
criterion (Lloyd-Jones, Hong et al. 2010) was used to derive a binary physical activity
variable (less active vs. more active): adults with at least 150 min/week moderate intensity
activity or at least 75 min/week vigorous intensity activity or combination were defined as

“more active”.
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Genetic data processing and principle component analysis (same as Chapter 2)

Genome-wide genotyped SNP data of the UK Biobank is first examined by quality
control procedures. Markers or individuals with a call rate less than 95 percent are also
excluded. SNPs with Hardy-Weinberg Equilibrium p-value less than 10-® or minor allele
frequency less than 0.0001 are excluded. Individuals with genetically defined non-European
ancestry are excluded. To remove up to the 3™ degree relatedness among the UK Biobank
participants, a pairwise kinship coefficient matrix is used with kinship larger than or equal to
0.0442 as a cutoff to filter the related individual pairs. SNPs that passed the quality control
procedure are then undergone a linkage disequilibrium (LD) pruning procedure with a
window size of 50 kb, a step size of 5 variants, and an r? threshold of 0.05. LD pruned SNPs
are then used in the principle component analysis. Top ten principle components are
calculated and will be included in the main analysis as covariates to control for population
stratification. In the MVP cohort, duplicate samples, samples with more heterozygosity than
expected, an excess (>2.5%) of missing genotype calls, or discordance between genetically
inferred sex and phenotypic gender are excluded. In addition, one individual from each pair
of related individuals is excluded. An ethnicity-specific principle component analysis was
then performed among non-Hispanic White participants who were defined using a
harmonized approach combining genetically predicted ethnicity and self-reported

race/ethnicity. (Fang, Hui et al. 2019)

Genetic risk score (GRS) construction (same as Chapter 2)
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A comprehensive CAD-GRS based on 161 loci that have been reported in the most
recent GWAS of CAD (van der Harst and Verweij 2018) was developed. A weighted GRS
approach was implemented using the formula below:

GRS = B1 x SNP; + B2 x SNP2 + ... + Ba X SNP;,
Bi are effect sizes from GWAS or GWAS-meta-analysis; SNP; is coded as number of risk
alleles. In this study, the effect sizes for CAD-GRS construction were referenced from CAD-
GWAS summary statistics of the CARDIoGRAMplusC4D consortium (Nikpay, Goel et al.
2015) to avoid sample overlap with the UK Biobank or the MVP cohort. In addition, three
mediating trait-based CAD-sub-GRSs were developed based on loci that are associated with
lipids level (GRScap-iipids), blood pressure (GRScap-sr), or BMI (GRScap-mi). Lipids-
associated loci and blood pressure-associated loci were extracted from recent GWAS
publications, (Evangelou, Warren et al. 2018, Klarin, Damrauer et al. 2018) and BMI-
associated loci were obtained from unpublished BMI GWAS of up to 1 million individuals of
European ancestry. Loci that are associated with both CAD and only one of the three target
mediating traits (Bonferroni corrected p<0.05) were included in the mediating trait-specific
CAD-sub-GRS calculation using the same weighted approach. All GRS constructions were

performed using PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/) with “--score”

function, and missing genotypes were imputed to the mean dosage.

Statistical analysis

Cox proportional hazards models were used to assess the association of CAD-GRSs and
sub-GRSs with incident CAD as well as the interaction between GRSs and physical inactivity
in the UK Biobank. All genetic risk scores were 1) standardized and modeled as continuous

variables and 2) categorized into quintiles and divided into low (lowest quintile), intermediate
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(quintiles 2 to 4) and high (highest quintile) genetic risk group. Age, sex, smoking status,
alcohol consumption, education, (Davies, Dickson et al. 2018) history of hypertension,
history of diabetes, cholesterol lowering medication use, BMI, Townsend deprivation index
and top ten principle components of the GWAS data were included as covariates. In the
CAD-sub-GRS analysis, the corresponding mediating trait was not included as a covariate to
avoid over-adjustment. Thus, history of hypertension was not adjusted for in the GRScap-sp
analysis, cholesterol lowering medication was not adjusted for in the GRScap-iipi¢s analysis,
and BMI was not adjusted for in the GRScap-sm1 analysis. Proportional hazards assumption
was assessed using Schoenfeld’s test. When the assumption is violated, categorical variables
were stratified on while interaction terms with time were added for continuous variables.
Multiplicative interaction between CAD-GRSs and physical inactivity was assessed by
including interaction terms in the model and conducting likelihood ratio tests. Additive
interaction was assessed by calculating relative excess risk due to interaction (RERI) based
on the hazard ratio estimates. (Li and Chambless 2007) A bootstrap method was used to
construct 95% confidence intervals for RERI estimates. For the replication analysis in the
MVP, logistic regression models were used controlling for a similar set of covariates to
assess GRS-physical inactivity interaction on both multiplicative and additive scale. Odds
ratio estimates were used to calculate RERI in the MVP replication analysis and same

bootstrap procedures were done to construct confidence intervals.

Results

A detailed inclusion/exclusion and QC process was presented in Figure I. A total of

296,500 participants of European ancestry who were free of CAD at baseline from the UK

Biobank were included in the final analysis. Basic characteristics of the study population
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were shown in Table I. 9,434 primary incident CAD events were identified from the UK
Biobank. In our study sample, the mean age at baseline is 56.7 years and slightly more
females (55%) than males were included. 22.8 percent of the participants who had low
physical activity level based on self-reported questionnaire data at baseline were defined as
physically inactive. In the replication analysis using data from the MVP, 78,510 participants
with no CAD at enrollment were included. A similar inclusion/exclusion process was
presented in Figure I. Using the indexing-date method, we have identified 6,246 incident
CAD cases between enrollment and July 1%, 2017. Baseline characteristics of the MVP
participants were summarized in Table I. The mean age is 65.1 years old and the majority of
them are male (92%). According to the “Life’s Simple 7” criterion, 23.9 percent of the MVP

participants were categorized as physically less active.

In the main analysis, a comprehensive CAD-GRS in the UK Biobank was constructed
based on 161 CAD-loci that were reported in the most recent CAD-GWAS. (van der Harst
and Verweij 2018) One lead SNP (rs582384) was multiallelic in the UK Biobank so a proxy
SNP (15616381, r>=0.86 for European ancestry) was used. A detailed list of all SNPs used for
score construction can be found in Chapter 2, Table II. In the sub-score analysis, 26 SNPs
were included in the GRScap-sp construction, 17 SNPs were included in the GRScap-ipias and
16 SNPs were included in the GRScap-smi. (Chapter 2, Table III) Associations between all
four CAD-GRSs with primary incident CAD in the UK Biobank were presented in Table II-
A. One standard deviation (SD) increase in the comprehensive CAD-GRS is independently
associated with 34.1 percent increase in the risk of primary CAD events (HR: 1.341, 95% CI:
1.314, 1.368) in the UK Biobank. Comparing to those with low genetic risk of CAD, those at
intermediate genetic risk had a 44.6 percent increase in the risk or primary CAD events (HR:

1.446, 95% CI: 1.360, 1.538), and those at high genetic risk had an over two-fold increase in
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the risk of primary CAD events (HR: 2.215, 95% CI: 2.070, 2.369). Among the three CAD
mediating trait-based sub-GRSs, the GRScap-iipids has the strongest association with incident
primary CAD events. Participants with a high genetic risk captured by the GRScap-1ipids had a
56.3 percent increase in CAD risk comparing to those with low genetic risk (HR: 1.563, 95%
CI: 1.466, 1.666), and this genetic effect attenuated when focusing on only BP-associated
CAD loci (HR: 1.428, 95% CI: 1.340, 1.523) or only BMI-associated CAD loci (HR: 1.238,
95% CI: 1.161, 1.320). For physical activity, those who were physically inactive had a 13.1
percent increase in CAD risk comparing to those who were physically active (HR: 1.131,

95% CI: 1.079, 1.184).

To further understand how the genetic predisposition of CAD interacts with physical
inactivity, we assessed GRS-physical inactivity interaction on both multiplicative and
additive scale. Combined associations of CAD-GRS and physical inactivity with incident
CAD in the UK Biobank were presented in Table III-A. Comparing to physically active
(medium or high level of physical activity) participants with low genetic risk in the UK
Biobank, those who were physically active but possess a high genetic risk had over two-fold
increase in CAD risk (HR: 2.239, 95% CI: 2.070,2.422), and those with high genetic risk who
were physically inactive had an additional elevation in the risk of primary CAD events (HR:
2.540, 95% CI: 2.304,2.801). Similar patterns were also observed for each of the three CAD
mediating trait-based sub-GRSs. Comparing to physically active participants with low
genetic risk in GRScap-lipids, physically inactive participants with high genetic risk have a
slightly higher risk elevation (HR: 1.794, 95% CI: 1.627, 1.977) than physically active
participants with high genetic risk (HR: 1.579, 95% CI: 1.465, 1.701). The strongest
combined effect of genetic predisposition and physical inactivity on CAD is observed in

lipids-associated loci, and BMI-associated loci seem to have weaker effects than lipids or BP-



61

associated CAD loci. Overall, no multiplicative interaction between CAD-GRS or CAD-sub-
GRSs and physical inactivity was observed. In the MVP replication analysis, a similar pattern
of associations between CAD-GRS and incident CAD was observed for the comprehensive
CAD-GRS as well as GRScab-lipiass and GRScap-gp. (Table II-B) GRScap-sm1 was found to be
not associated with incident CAD in the MVP. Lipids sub-GRS had the strongest effect on
CAD among all three intermediate traits. When combined with physical inactivity, no

multiplicative interaction was observed. (Table II1I-B)

We then assessed the additive interaction between CAD-GRSs and physical inactivity
by calculating RERI for each GRS. (Figure II) No significant additive interaction with
physical inactivity was observed for comprehensive CAD-GRS, GRScap-ipigs 0 GRScap-Bwm.
A positive but insignificant trend was found for GRScap-sp and physical inactivity in the UK
Biobank. (Figure II-A) In the MVP replication analysis, negative but insignificant additive
interaction effects were observed between comprehensive CAD-GRS and physical inactivity
as well as between GRScap-spr and physical inactivity. (Figure I1-B) The additive interaction
effects between GRScap.iipids and physical inactivity or between GRScap-smr and physical
inactivity were positive. To further understand poteinal heterogeneity of gene-physical
inactivity interaction effects on CAD, we also conducted an individual SNP-based analysis in
the UK Biobank. No significant interaction was identified after multiple-testing correction on
any SNP for either multiplicative or additive scale. (Table IV) However, among the 161 loci
tested, four loci located in genes TGFBI, ATXN2, ZPRI and ZEB2 had marginally significant

interaction (p<0.05) on both multiplicative and additive scale.

Discussion
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In this aim, we assessed how genetic predisposition of CAD captured by CAD-GRS
interact with physical activity on both multiplicative and additive scale in European
population using data from two large biobank cohorts. To further understand the role of
mediating traits such as BP, lipids and BMI in such gene-physical activity interaction on
CAD, we also developed three separate sub-scores (GRScap-sp, GRScap-lipidss and GRScap-
Bmi) focusing on genetic loci uniquely associated with one mediating trait as well as CAD
risk. Overall, we didn’t detect any gene-physical activity interaction effects on either

multiplicative or additive scale for incident CAD.

Physical inactivity has been established as an independent risk factor for CAD.
(Winzer, Woitek et al. 2018) Mechanisms of how physical activity impact cardiovascular
health have been reported for both primary prevention and secondary prevention of CAD.
(Brown 2003, Linke, Erbs et al. 2008) However, very limited studies have been conducted to
estimate the gene-physical activity interaction effects on CAD for both multiplicative and
additive scale. One study has found no multiplicative interaction between physical activity
and an overall CAD-GRS in the UK Biobank. (Tikkanen, Gustafsson et al. 2018) In our
study, we confirmed this finding and observed that genetic risk and physical inactivity acted

multiplicatively on increasing risk for primary incident CAD events.

In our assessment of gene-physical activity interaction on the additive scale, we
observed positive but insignificant additive interaction effects between physical inactivity
and GRScap-sr in the UK Biobank, which suggests a synergistic but very weak effect.
However, no such interaction effect was observed for CAD-sub-GRS constructed using
lipids-associated or BMI-associated loci. In the MVP replication analysis, we observed

inconsistent results where the overall CAD-GRS and GRScap-gp have shown no additive
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interaction but the GRScap-iipiss and GRScap-smr have shown very weak but insignificant

positive additive interaction effects with physical inactivity. Nonetheless, the MVP results
were still questionable since we observed null marginal effects between physical inactivity
and incident CAD, which is inconsistent with physical inactivity being an independent risk

factor for CAD.

We also explored gene-physical activity interaction in the UK Biobank based on
individual CAD-associated loci, and no significant interaction was observed for either
multiplicative or additive scale after multiple testing correction. However, four loci in genes
TGFBI, ATXN2, ZPRI and ZEB2 showed marginally significant interaction on both
multiplicative and additive scale. TGFBI1 is a member of the transforming growth factor beta
(TGFB) superfamily and the role of TGFB in myocardial infarcts and ischemic heart diseases
has been previously reviewed. (Bujak and Frangogiannis 2007, Gordon and Blobe 2008)
TGFBI has also been linked with mitochondrial fuel oxidation in skeletal muscle after
exercise and contribute to the level of insulin sensitivity which is relevant with prevention of
type 2 diabetes. The ATXN2 locus was also reported to be associated with expression levels
of gene MAPKAPKS5, which belongs to the same serine/threonine kinase family as type I and
type Il receptors of the canonical TGFB signaling cascade, but the exact role of this locus in
CAD remains inconclusive. (Zeng, Dang et al. 2016) ZPRI1(ZNF259) locus is associated with
both lipids profile and risk of CAD (Waterworth, Ricketts et al. 2010) but the mechanism of

how this locus can interact with physical inactivity remains unclear.

With data from two of the largest biobank cohorts, we assessed how genetic
predisposition to CAD captured by weighted CAD-GRS interacts with physical activity on

the risk of primary incident CAD among the European population. We didn’t observe any
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significant interaction effects on either multiplicative or additive scale, which can be partly
explained by the limited power using self-reported physical activity levels. A previous study
in the UK Biobank has also reported weaker effect of questionnaire-based physical activity
comparing to objectively measured physical activity on cardiovascular events. (Tikkanen,
Gustafsson et al. 2018) However, a positive synergistic trend was observed on additive scale
between GRScap-sp and physical inactivity on CAD in the UK Biobank, meaning the
mechanistic interaction between genetic predisposition and physical inactivity on CAD might
predominantly act through BP-related pathways. No gene-physical activity interaction has
been previously examined and reported on the additive scale despite the additive scale being
of greater public heath interest as well as more closely aligned with mechanistic interaction
under certain assumptions. (VanderWeele 2009) Therefore, we have made the very first
effort in assessing gene-physical interaction for incident CAD on both scale and future
studies with better measured physical activity levels should be conducted to further evaluate

such interaction effects.

Our study also has several limitations. First, using data from two of the largest
biobank cohorts we relied on self-reported measurements of physical activity level as well as
other potential confounding CAD risk factors such as smoking, alcohol consumption, history
of hypertension and diabetes, thus there might be residual confounding in the interaction
assessment due to inaccurately measured or unmeasured confounding factors. However, to
balance the statistical power required for gene-lifestyle interaction studies and measurement
accuracy as well as ensuring a homogeneous study population, biobank cohorts seem to be so
far the best data resource in conducting large scale gene-lifestyle interaction studies. Second,
we used the MVP cohort as a replication cohort for our primary analysis conducted in the UK

Biobank, but the two populations differ in many aspects, which limited the power and
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validity of the replication analysis. In addition, CAD cases were captured in slightly different
ways between these two cohorts due to restrictions in data availability, which also lead to
different definitions of some covariates in the analysis. Therefore, our results need to be

interpreted with caution when comparing the primary and replication analysis.

Conclusion

Using data from the UK Biobank and the MVP cohort, we have prospectively
assessed gene-physical activity interaction on incident CAD on both additive and
multiplicative scale. No multiplicative or additive interaction was found between genetic
predisposition and physical activity, but our findings have raised hypothesis with respect to
different interplaying mechanisms between genetic predisposition to CAD and physical
activity, and highlighted the value of addressing gene-lifestyle interactions in CAD on both

additive and multiplicative scale.



Table I. Characteristics of the study population

Characteristic Mean (SD) or N (%)
UK Biobank (N=296,500) MVP (N=78,510)
Age 56.7 (8.0) 65.1 (11.5)
Female 162,659 (54.9%) 6,246 (8.0%)
BMI 27.3 (4.7) 29.8 (5.6)
Physical Activity
Low 67,726 (22.8%) 18,727 (23.9%)
Medium or High 228,774 (77.2%) 59,783 (76.1%)
Smoking Status
Current 27,788 (9.4%) 12,265 (15.6%)
Past 103,623 (34.9%) 39,704 (50.6%)
Never 170,817 (55.7%) 26,541 (33.8%)

Alcohol Consumption
Ever
Never
Hypertension
Diabetes
Lipids Medication
Education
School leaving age >=15
School leaving age <15
Some college or higher
Townsend Index
Income
$50,000 or above

287,870 (97.1%)
8,630 (2.9%)
76,517 (25.8%)
12,522 (4.2%)
43,601 (14.7%)

236,853 (79.9%)
59,647 (20.1%)
n/a

-1.7 (2.9)

n/a

48,324 (61.6%)
30,186 (38.4%)
44,468 (56.6%)
16,809 (21.4%)
34,809 (44.3%)

n/a
n/a
60,760 (77.4%)
n/a

30,243 (38.5%)
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Table I1. Associations of comprehensive CAD genetic risk score (CAD-GRS) and three CAD mediating trait-based sub-genetic risk

scores (sub-GRSs) with incident CAD

A. UK Biobank (HR and 95% CI)

CAD-GRS Comprehensive GRS GRScap-sr GRScap-ipids GRScap-sm1
. 1.341 1.140 1.187 1.075
per SD increase (1.314, 1.368) (1.118,1.163) (1.164, 1.211) (1.053, 1.097)
Low risk Ref. Ref. Ref. Ref.
Intermediate risk 1.446 1.172 1.202 1.121
(1360, 1.538) (1.109, 1.239) (1.137,1.272) (1.061, 1.184)
2.215 1.428 1.563 1.238

High risk (2.070, 2.369)

(1.340, 1.523)

(1.466, 1.666)

(1.161, 1.320)

B. MVP (OR and 95% CI)

CAD-GRS Comprehensive GRS GRScap-sr GRScap-ipids GRScap-sm1
. 1.221 1.069 1.144 1.023
per SD increase (1.189, 1.254) (1.042,1.097) (1.114, 1.174) (0.997, 1.049)
Low risk Ref. Ref. Ref. Ref.
Intermediate risk 1.359 1.092 1.194 1.051
(1.262, 1.465) (1.019, 1.171) (1.112, 1.282) (0.984, 1.122)
1.815 1211 1.455 1.072

High risk (1.666, 1.976)

(1.115, 1.315)

(1.339, 1.581)

(0.990, 1.161)




Table II1. Combined associations of CAD-GRSs and physical inactivity with incident CAD

A. UK Biobank (HR and 95% CI)

. . . P-value for
Ph 1 Activit
ysical Activity Multiplicative
Medium or High Low Interaction
, 1.183
Low Risk Ref. (1.043,1.341)
) ) 1.468 1.640
CAD-GRS Intermediate Risk (1.366,1.578) (1.508,1.783) 0.72
) . 2.239 2.540
High Risk (2.070,2.422) (2.304,2.801)
' 1.093
Low Risk Ref. (0.977, 1.223)
. ) 1.157 1.331
GRScab.sp Intermediate Risk (1.084, 1.234) (1.233, 1.437) 072
o 1.417 1.598
High Risk (1.315, 1.526) (1.447, 1.764)
Low Risk Ref. 1180
) (1.056, 1.320)
o 1215 1.380
GRScAD-lipids Intermediate Risk (1.138, 1.297) (1.277, 1.491) 083
) . 1.579 1.794
High Risk (1465, 1.701)  (1.627,1.977)
' 1.161
Low Risk Ref. (1.041, 1.296)
o 1.110 1.337
GRScCAD-BMI Intermediate Risk (1.042, 1.183) (1.240, 1.441) 050
1.248 1.408

High Risk

(1.158, 1.345)

(1.273, 1.557)




B. MVP (OR and 95% CI)

Physical Activity Ml;lvt?;ii:flrve
Medium or High Low Interaction

Low Risk Ref. (0.852?217)

CAD-GRS Intermediate Risk (1_2}'3‘3.1643) (1'21'533,9611) 026
High Risk (1.5é58,§.(?210) (1.6}6%;:5177)
Low Risk Ref. (0.921;,)61?232)

GRScap-sp Intermediate Risk (0'991 4} 163 20) (1 ()Olgf 5103 10) 0.63
High Risk (1.1 11 é?21%563) a -0915351?448)
Low Risk Ref. (0.8(());21%68)

GRScap-ipids Intermediate Risk (0'9§ 6} 3153 07) (0.95; 8? 214,‘280) 0.16
High Risk (1 .0715?71%506) ( -2214?01?614)
Low Risk Ref. (0.7;)6?71?003)

GRScap-sm1 Intermediate Risk (O.Sé)‘f §6l 26) (0.8;) 6?1%064) 044

1.006 0.962

High Risk

(0.855, 1.183)

(0.844, 1.097)
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Table IV. Interaction between CAD-associated SNPs and physical inactivity on Incident CAD in the UK Biobank

Coefficients P-value
SNP CHR POS Locus EA - RERI P-value of RERI
SNP Low PA Interaction (Interaction)
rs8108632 19 41854534 TGFBI T 0.036  0.064 0.072 0.03 0.085 0.02
rs10774625 12 111910219 ATXN?2 A 0.058  0.205 -0.080 0.02 -0.086 0.03
rs964184 11 116648917 ZPRI G -0.013  0.096 0.103 0.03 0.116 0.03
rs7528419 1 109817192 CELSR? A 0.061 0.010 0.072 0.08 0.081 0.03
rs17678683 2 145286559 ZEB2 G -0.007  0.103 0.115 0.04 0.134 0.03
rs2107595 7 19049388 HDAC9 A 0.046  0.097 0.086 0.05 0.108 0.04
rs975722 7 117332914 CFTR G 0.009  0.075 0.064 0.06 0.072 0.04
rs76954792 17 30033514 RPI11-805L22.1 T -0.003  0.089 0.075 0.05 0.085 0.04
rs116843064 19 8429323 ANGPTL4 G 0.052  -0.227 0.179 0.17 0.154 0.05
152083636 8 19865263 LPL T 0.013  0.027 0.065 0.09 0.070 0.05
rs11617955 13 110818102 COL4A1 T 0.066  0.331 -0.116 0.03 -0.136 0.06
rs13003675 2 233584109 GIGYF2 T -0.007  0.080 0.061 0.07 0.067 0.06
rs4918072 10 105693644 STN1 A 0.029  0.090 0.062 0.09 0.075 0.06
rs1887318 10 30321598 KIAA1462 T 0.056  0.185 -0.067 0.04 -0.071 0.07
rs12493885 3 153839866 ~ ARHGEF26 C 0.119  0.305 -0.105 0.03 -0.107 0.07
154643373 17 47123423 IGF2BPI1 T -0.011  0.043 0.058 0.11 0.061 0.09
1$9349379 6 12903957 PHACTRI G 0.048  0.086 0.046 0.17 0.058 0.10
1s2107732 7 45077978 cCM2 G 0.096 0.324 -0.109 0.06 -0.119 0.12
rs2074158 17 40257163 DHX58 C 0.048  0.149 -0.071 0.10 -0.076 0.12
rs35541991 6 22583856  RPI-309HI15.2 C 0.011 0.089 0.049 0.15 0.057 0.12
187623687 3 49448566 RHOA A 0.007  0.014 0.064 0.18 0.068 0.13
157947761 11 100624599  ARHGAP42 G 0.044  0.159 -0.058 0.11 -0.061 0.14
rs12999907 2 164957251  AC092684.1 A 0.054  0.039 0.052 0.24 0.061 0.14
rs9501744 6 1617143 FOXC1 C 0.065 0.254 -0.075 0.13 -0.079 0.19



rs6689306
rs1508798
rs2246942
151867624
157696431
1246600
rs61848342
rs1050362
rs3936511
rs11191416
rs77335401
rs2083460
19964304
rs3851738
1s6984210
112202017
rs60154123
1s3918226
rs11677932
rs17581137
rs1924981
19367716
rs7164479
rs11601507
1s7617773
rs72627509
rs3832966
rs9897596

14
17

154395946
9556694
91004886
62387091
169687725
142516897
12303813
72130815
55860781
104604916
131759825
89574484
47229717
75387533
22033615
134173151
210468999
150690176
238223955
96146414
29022645
57160572
79123054
5701074
48193515
57839051
75614504
17593453

IL6R
RP11-260E18.1
LIPA
RPL31P57
PALLD
ARHGAP26
RN7SL232P
DHX38
CSorf67
PFNIPI1
CSorf56
RP11-326419.2
RP11-813F20.2
CFDPI
BMPI
TARID
RP4-667HI2.4
NOS3
STK25
RP11-61011.1
FLTI
RNU7-66P
MORF4LI
TRIMS
TKT
NOAI
TMEDI0
RAII

HPrHO>» 010000100341 Q43 >

Q

ACCCG

0.009
0.038
0.012
0.034
0.029
0.055
0.072
0.015
0.007
0.031
0.027
0.081
0.063
0.042
0.075
0.062
0.053
0.043
0.058
0.035
0.009
0.037
0.052
0.072
-0.016
0.015
0.058
0.011

0.090
0.049
0.097
0.182
0.171
0.169
0.162
0.154
0.106
0.265
0.140
0.292
0.106
0.177
0.116
0.194
0.111
0.114
0.187
0.193
0.149
0.184
0.094
0.135
0.078
0.110
0.162
0.156

0.041

0.046
0.040
-0.047
-0.044
-0.047
-0.049
-0.043
0.047
-0.077
-0.062
-0.090
0.034
-0.044
0.070
-0.049
0.042
0.058
-0.046
-0.046
-0.038
-0.042
0.027
-0.070
0.035

0.039
-0.039
-0.033

0.22
0.29
0.24
0.17
0.18
0.16
0.15
0.22
0.26
0.19
0.23
0.15
0.36
0.19
0.31
0.18
0.34
0.32
0.20
0.23
0.29
0.25
0.43
0.27
0.31
0.35
0.24
0.31

0.047

0.053

0.047

-0.050
-0.047
-0.047
-0.047
-0.047
0.054

-0.090
-0.067
-0.096
0.048

-0.045
0.098

-0.048
0.056
0.075

-0.045
-0.048
-0.042
-0.044
0.037
-0.073
0.037
0.047
-0.037
-0.037

0.19
0.21
0.21
0.21
0.22
0.22
0.23
0.23
0.23
0.23
0.23
0.24
0.24
0.25
0.25
0.26
0.26
0.27
0.28
0.28
0.29
0.30
0.30
0.31
0.31
0.31
0.32
0.32

71



rs67180937
rs6700559
rs10840293
rs2820315
rs699
152229357
rs10139550
rs10953541
rs1800449
rs6841581
rs10093110
15247616
rs6905288
rs260020
rs16986953
rs6511720
rs216172
rs944172
rs11830157
rs10237377
rs7116641
rs6997340
rs180803
rs7412
rs35879803
rs3827066
rs73015714
152493298

8
16
6
20
2
19
17
9
12
7
11
8
22
19
4
20
19
1

222823743
200646073
9751196
201872264
230845794
57843711
100145710
107244545
121413208
148401190
106565414
56989590
43758873
57714025
19942473
11202306
2126504
110517794
118265441
139757136
43696917
18286997
24658858
45412079
146782837
44586023
17855763
3325912

MIA3
RP11-92G12.3
SWAP70
LMODI
AGT
INHBC
HHIPL1
BCAP29
LOX
EDNRA
ZFPM?2
AC012181.1
VEGFA
ZNF831
AC019055.1
LDLR
SMG6
AL162389.1
KSR2
PARPI2
RP11-472120.4
NAT?2
POMI21L9P
APOE
ZNF827
ZNF335
FCHOI
PRDM16

PO 0000000000 00004 00

0.062
0.020
0.034
0.054
0.026
0.036
0.035
0.002
-0.005
0.061

0.010
0.006
0.061

0.032
0.057
0.090
0.034
0.018
0.017
0.030
0.018
0.021

0.114
0.088
0.022
0.024
0.056
0.049

0.193
0.094
0.094
0.151
0.102
0.079
0.103
0.076
0.111
0.139
0.091
0.085
0.101
0.115
0.133
0.227
0.148
0.108
0.149
0.168
0.108
0.143
0.447
0.237
0.162
0.136
0.115
0.136

-0.046
0.029
0.027
-0.039
0.028

0.030
0.026
0.032
0.039
-0.049
0.028

0.029
0.021

0.038

-0.062
-0.058
-0.033
0.028

-0.030
-0.032
0.026

-0.032
-0.163
-0.060
-0.029
-0.037
0.022

-0.040

0.24
0.39
0.42
0.26
0.41
0.44
0.44
0.40
0.37
0.31
0.41
0.41
0.54
0.44
0.35
0.27
0.34
0.44
0.38
0.35
0.46
0.39
0.30
0.32
0.41
0.43
0.58
0.40

-0.044
0.034
0.034
-0.038
0.035

0.037
0.034
0.036
0.043

-0.049
0.032
0.033

0.031

0.049
-0.064
-0.053
-0.034
0.034

-0.032
-0.033
0.032

-0.034
-0.195
-0.057
-0.030
-0.039
0.034

-0.040

0.33
0.33
0.33
0.34
0.34
0.34
0.35
0.36
0.36
0.37
0.37
0.37
0.38
0.38
0.38
0.39
0.39
0.39
0.40
0.41
0.41
0.42
0.42
0.43
0.45
0.45
0.46
0.46

72



rs7306455
rs11057401
157797644
rs616381
rs4266144
rs11509880
rs17517928
rs1321309
rs7633770
rs2972146
rs6102343
rs585967
154472337
1528451064
rs3130683
17199941
rs1351525
rs56170783
rs840616
154299376
rs10267593
rs11838267
rs10455872
rs11810571
rs10841443
rs885150
rs2839812
rs4752700

12

CIVEINC N S IS IR SR B

—T xR o

~N NN =

95355541
124427306
6486067
45891708
156852592
12261911
216291359
36638636
46688562
227100698
39924279
21270554
34769765
35593827
31888367
81906423
13301548
57016131
188196469
44072576
1937261
7175872
161010118
151762308
20220033
124420173
103673294
124237612

NDUFAI2
CcCDCY2
DAGLB
PRKCE
SPTSSB
TMEMI106B
FNI
LAP3P2
SNORD77
NEU2
ZHX3
APOB
UHRFIBPI
AP000318.2
c2
PLCG2
ARNTL
PLPP3
AC007319.1
ABCGS
MADILI
cls
LPA
TDRKH
RP11-664H17.1
DAB2IP
RP11-563P16.1
HTRAI

a0 prHH> 930> >0 Q0> 0430

0.063
0.027
0.028
0.027
0.052
0.018
0.015
0.027
0.034
0.008
0.022
0.007
0.029
0.106
-0.002
0.030
0.013
0.153
0.033
0.029
0.003
0.030
0.226
0.019
0.049
0.023
0.047
0.042

0.070
0.164
0.089
0.101
0.143
0.141
0.091
0.107
0.110
0.099
0.115
0.079
0.117
0.120
0.080
0.114
0.154
0.222
0.106
0.115
0.089
0.090
0.134
0.094
0.155
0.117
0.118
0.142

0.030
-0.029
0.023

0.020
-0.030
-0.025
0.022
0.018

0.017
0.020
0.021

0.027
0.024
0.015

0.026
0.014
-0.021
-0.053
0.014
0.014
0.021

0.020
-0.051
0.018

-0.022
0.014
0.011

-0.020

0.60
0.42
0.55
0.56
0.41
0.48
0.56
0.59
0.62
0.56
0.59
0.57
0.60
0.75
0.58
0.67
0.57
0.37
0.70
0.69
0.63
0.69
0.36
0.69
0.53
0.70
0.77
0.55

0.040
-0.029
0.029
0.026
-0.028
-0.026
0.027
0.023

0.023

0.023

0.027
0.030
0.031

0.034
0.029
0.020
-0.022
-0.034
0.020
0.020
0.024
0.025

-0.035
0.023

-0.019
0.019
0.019
-0.017

0.47
0.47
0.47
0.47
0.50
0.51
0.51
0.51
0.52
0.53
0.53
0.53
0.54
0.56
0.56
0.59
0.60
0.60
0.60
0.60
0.61
0.61
0.63
0.64
0.64
0.64
0.64
0.65

73



rs11723436
rs17080091
rs867186
rs9591012
rs742115
rs6494488
rs11099493
rs11170820
rs9818870
rs1591805
152145598
rs8068952
rs61776719
rs1892094
rs56015508
rs2891168
112500824
rs36096196
rs17680741
152306556
rs2832227
152244608
rs12801636
rs13723
rs17608766
rs10512861
rs17843797
rs7500448

16

120901336
150997401
33764554
33058333
11327021
65024204
82587050
54513915
138122122
126717064
58794001
59286644
38461319
169094459
39152041
22098619
77416627
2252205
82251514
156638573
30533076
121416988
65391317
27941886
45013271
132257961
124453022
83045790

RPI1-170N16.1

PLEKHGI
PROCR
N4BP2L2
NEDD?9
RBPMS?2
RASGEFIB
FLJ12825
MRAS

RP11-394G3.2

ARID4A4
BCAS3
SF343

ATPIBI

KCNKS5

CDKN2B-AS1

SHROOM3
MORNI
TSPANI14
GUCYIA3
MAP3K7CL
HNFIA
PCNX3
CORO6
GOSR2
DNAJCI3
UMPS
CDHI3

o000 rHHA>O000>00Q0>HAHQ> > 00> 00

0.031
0.082
0.034
0.006
0.012
0.023
0.008
0.103
0.048
0.027
0.037
0.041
0.024
0.026
0.012
0.150
0.031
0.074
0.053
0.055
0.054
0.059
0.031
0.024
0.026
0.025
0.061
0.035

0.117
0.093
0.087
0.107
0.141
0.097
0.145
0.129
0.132
0.115
0.140
0.133
0.142
0.139
0.105
0.155
0.119
0.133
0.152
0.113
0.122
0.136
0.149
0.136
0.129
0.150
0.124
0.144

0.012
0.017
0.021

0.014
-0.015
0.016
-0.015
-0.039
-0.023
0.010
-0.018
-0.020
-0.015
-0.015
0.013

-0.030
0.008

-0.024
-0.019
0.007
0.008

-0.018
-0.016
-0.012
-0.014
-0.015
0.004
-0.013

0.74
0.80
0.73
0.69
0.65
0.73
0.66
0.57
0.60
0.77
0.60
0.63
0.65
0.65
0.75
0.36
0.81
0.60
0.61
0.87
0.86
0.61
0.69
0.72
0.76
0.77
0.93
0.74

0.018

0.029
0.027
0.016
-0.016
0.021

-0.017
-0.034
-0.021
0.015

-0.015
-0.017
-0.014
-0.014
0.016
-0.013
0.014
-0.018
-0.014
0.015

0.017
-0.013
-0.014
-0.010
-0.013
-0.013
0.013

-0.010

0.65
0.66
0.66
0.66
0.67
0.67
0.68
0.68
0.68
0.68
0.69
0.71
0.71
0.71
0.72
0.72
0.72
0.73
0.73
0.73
0.74
0.75
0.76
0.78
0.81
0.81
0.81
0.82

74



rs2571445
rs590121
rs114123510
rs11556924
rs2681472
rs111245230
1572743461
rs2954029
rs663129
rs16844401
rs667920
17568458
rs10857147
rs1317507
rs4613862
rs10417115
rs2071382
rs3775058
rs11806316
rs1870634
rs507666
rs748431
112897
rs11591147
rs112635299

11

12

15

18

13

19
15

10

— W W O

14

218683154
75274150
203831212
129663496
90008959
113169775
67441750
126490972
57838401
3449652
136069472
85788175
81181072
113631780
82612271
33386556
91428197
96117371
115753482
44480811
136149399
14928077
172115902
55505647
94838142

TNS1
SERPINH1
CARF
ZC3HCI
ATP2B1
SVEPI
SMAD3

RPI1-136012.2

RNU4-17P
HGFAC
STAGI
GGCX

RPI1-576N17.4

MCF2L

RPI11-379B8.1

CEPS9
FES
UNC5C

RP4-663N10.1

LINC00841
ABO
FGDS5
FNDC3B
PCSK9
SERPINAI

o —aaEAa9»2>2>0000p43»>

0.012
0.022
0.063
0.028
0.040
0.069
0.039
0.030
0.016
0.017
0.023
0.036
0.045
0.028
0.026
0.026
0.070
0.023
0.033
0.041
0.007
0.025
0.051
0.274
0.122

0.120
0.131
0.129
0.138
0.123
0.126
0.142
0.134
0.128
0.124
0.121
0.126
0.130
0.124
0.125
0.125
0.131
0.127
0.128
0.133
0.126
0.128
0.130
0.214
0.163

0.006
-0.011
-0.018
-0.011
0.004
-0.024
-0.011
-0.009
-0.008
0.007
0.002
-0.001
-0.009
0.000
0.000
0.002
-0.006
-0.005
-0.002
-0.007
-0.002
-0.004
-0.007
-0.045
-0.019

0.85
0.77
0.71
0.76
0.93
0.79
0.77
0.79
0.84
0.91
0.95
0.98
0.81
0.99
0.99
0.98
0.85
0.91
0.95
0.85
0.95
0.90
0.83
0.75
0.87

0.009
-0.010
-0.012
-0.008
0.010
-0.019
-0.007
-0.006
-0.007
0.011

0.006
0.004
-0.004
0.004
0.003

0.006
0.002
-0.002
0.002
-0.002
-0.002
-0.001
-0.001
0.004

-0.003

0.82
0.82
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.88
0.89
0.92
0.92
0.92
0.93
0.95
0.95
0.96
0.96
0.96
0.97
0.97
0.97
0.98
0.98

75



Figure 1. Study population QC process

A. UK Biobank
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Figure I1. Relative excess risk due to interaction (RERI) for CAD-GRSs and physical
inactivity on incident CAD (Physically active individuals with low genetic risk were used as

reference group for each score; 95% CI: 95% bootstrap confidence interval)

A. UK Biobank
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B. MVP

Genetic Risk  Physical Activity RERI(95% CI)
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Chapter 4

Genome-wide association studies of coronary artery diseases accounting for gene-

smoking interaction or gene-physical activity interaction

Introduction

Gene-environment interaction is an important component of the genetic architecture
of complex diseases. Because environmental factors contribute to variation in disease
development, accounting for environmental exposures and GXE interactions in genetic
studies of complex diseases may affect overall trait variance when investigating genetic
contributions and can potentially identify novel loci, highlighting new biological processes
and pathways.(Kraft, Yen et al. 2007) Conventional GWAS of complex disease focused only
on the marginal genetic effects, which may miss variants that exert effect through interactions
with environmental factors. Studies have shown better power when environmental factors
such as smoking and physical activity were considered for investigating novel loci for

complex traits such as BMI.(Graff, Scott et al. 2017, Justice and Winkler 2017)

CAD is a complex disease with both a genetic and an environmental component and
smoking as well as physical activity contributes to the variation in CAD risk, hence,
accounting for smoking/physical activity or gene-smoking/gene-physical activity interaction
can improve power for the discovery of CAD-associated loci. To our knowledge, no GWAS
of CAD has been done incorporating such environmental factors or GXE interaction effects.
A joint two degree of freedom (2-df) testing approach has been proposed to provide better

power for GWAS and can be used to identify novel loci. (Kraft, Yen et al. 2007) However,
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this approach hasn’t been implemented in any of the large-scale GWAS of CAD. Recent
efforts from the CHARGE Gene-Lifestyle Interactions Working Group have shown
promising results in using the 2-df testing approach for conducting large scale GWAS of
CAD risk factors such as blood pressure and lipids. (Feitosa, Kraja et al. 2018, Sung, Winkler
et al. 2018, Bentley, Sung et al. 2019, de Vries, Brown et al. 2019) Therefore, the purpose of
this study is to conduct two separate GWASs accounting for 1) gene-smoking interaction;
and 2) gene-physical activity interaction as well as marginal genetic effect using a joint 2-df

testing approach in European ancestry, respectively.

Methods

Study population (same as Chapter 2 and Chapter 3, descriptive section for the UK

Biobank)

The study population of this aim consists of participants with European ancestry from
the UK Biobank (https://www.ukbiobank.ac.uk/) cohort. The UK Biobank is a major national
and international health resource, and a registered charity in its own right, with the aim of
improving the prevention, diagnosis and treatment of a wide range of serious and life-
threatening illnesses. It is following the health and well-being of 500,000 volunteer
participants and provides health information, which does not identify them, to approved
researchers in the UK and overseas, from academia and industry. Both genetic and
phenotypic data for all participants in the UK Biobank were obtained for this study. The UK
Biobank genetic data contains genome-wide genotypes for 488,377 participants. (Bycroft,
Freeman et al. 2018) These were assayed using two very similar genotyping arrays. A subset

0f 49,950 participants involved in the UK Biobank Lung Exome Variant Evaluation (UK
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BiLEVE) study were genotyped at 807,411 markers using the Applied Biosystems UK
BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific), and 438,427
participants were genotyped using the closely related Applied Biosystems UK Biobank
Axiom Array (825,927 markers) that shares 95% of marker content with the UK BiLEVE
Axiom Array. A quality control pipeline was developed and applied specifically to
accommodate the large-scale dataset of ethnically diverse participants, genotyped in many
batches, using two slightly different arrays, and which will be used by many researchers to
tackle a wide variety of research questions. Markers that passed the quality control check
were imputed using the Haplotype Reference Consortium (HRC) reference panel as well as
the merged UK10K and 1000 Genomes phase 3 reference panels. Information was then
combined using the HRC data as the primary resource. For phenotype data, participants
provided electronic signed consent, answered questions on socio-demographic, lifestyle and
health-related factors, and completed a range of physical measures at baseline recruitment.
All participants also provided consent for follow-up through linkage to their health-related

records including in-patient hospital episode statistics and national death registry data.

CAD identification

In the UK Biobank, participants’ survey data is linked to in-patient hospital episode
statistics (HES) as well as national death registry data. CAD definition is referenced from the
recent GWAS of CAD using the UK Biobank data. (van der Harst and Verweij 2018) A
participant is defined as a CAD case if he/she has at least one occurrence of the following
International Classification of Diseases, 10th edition (ICD-10) codes: 121-I125 covering
ischemic heart diseases; or at least one occurrence of the following Office of Population

Censuses and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4)
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codes: K40-K46, K49, K50 and K75 which includes replacement, transluminal balloon
angioplasty, and other therapeutic transluminal operations on coronary artery and
percutaneous transluminal balloon angioplasty and insertion of stent into coronary artery.
Death because of CAD was defined as an occurrence of any ICD-10 codes stated above in the
primary cause of death. CAD cases included both CAD cases captured by HES data and

deaths of CAD captured by the death registry data.

Genetic data processing and principle component analysis (same as Chapter 2 and

Chapter 3)

Genome-wide genotyped SNP data of the UK Biobank was first examined by quality
control procedures. Markers or individuals with a call rate less than 95 percent were also
excluded. SNPs with Hardy-Weinberg Equilibrium p-value less than 10 or minor allele
frequency less than 0.0001 were excluded. Individuals with genetically defined non-
European ancestry were excluded. To remove up to the 3rd degree relatedness among the UK
Biobank participants, a pairwise kinship coefficient matrix was used with kinship larger than
or equal to 0.0442 as a cutoff to filter the related individual pairs. SNPs that passed the
quality control procedure were then undergone a linkage disequilibrium (LD) pruning
procedure with a window size of 50 kb, a step size of 5 variants, and an 12 threshold of 0.05.
LD pruned SNPs were then used in the principle component analysis. Top ten principle
components were calculated and included in the main analysis as covariates to control for

population stratification.

Statistical analysis



83

In this aim, two GWASs of CAD accounting for 1) smoking and gene-smoking
interaction and 2) physical activity and gene-physical activity interaction were conducted
using a logistic regression model:

logit(P(CAD = 1)) = B, + B,SNP + B,E + B,SNP X E + j3,C
A joint 2-df testing approach was applied by testing:
Py =p=0

Smoking was categorized into current smokers vs. non-current smokers, and physical
activity was categorized into low physical activity (inactive) vs. moderate or high physical
activity (active). SNPs with minor allele frequency larger than 0.005, an imputation quality
score at least 0.8, and Hardy-Weinberg Equilibrium p-value larger than 1019 were kept in the
analysis. A conventional Bonferroni correction p<5x10-® was used to identify genome-wide
significant loci. All significant loci were compared to previously reported CAD-associated
loci for identification of novel loci. Age, sex and top ten principle components of the GWAS
data were controlled for as covariates. Both GWASs were conducted using SUGEN (Lin, Tao
et al. 2014) and robust variance estimates were used to correct for potential heteroscedasticity

in GWASSs accounting for environmental factors as well as gene-environment interaction

effects. (Almli, Duncan et al. 2014)

Results

GWAS of CAD accounting for current smoking and gene-current smoking interaction

20,953 CAD cases and 303,547 controls of European ancestry were included in the

GWAS accounting for current smoking and gene-current smoking interaction. (Figure [-A)

Descriptive statistics of the study population are presented in Table I-A. 8.34 million SNPs
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passed QC and were tested using the joint 2-df approach. 1,132 SNPs were genome-wide
significant. (joint 2-df p<5x10®) After merging significant signals with genomic distance less
than 500 kb or in linkage disequilibrium (r> >0.1), 22 genome-wide significant loci were
detected. (Figure 1) Comparing to the most recent CAD-GWAS meta-analysis conducted by
van der Harst et al using data from the UK Biobank and CARDIoGRAMplusC4D
consortium, (van der Harst and Verweij 2018) one locus (8q22.3) was not reported. (Figure I-
B) A further examination showed that this locus was not replicated in the
CARDIoGRAMplusC4D consortium and was not genome-wide significant in their meta-
analysis. (van der Harst and Verweij 2018) However, the mapped gene at this locus NCALD
has been reported to be associated with systolic blood pressure (Evangelou, Warren et al.
2018) and previous analysis in the UK Biobank has also identified this locus as associated
with cardiovascular diseases. (Kichaev, Bhatia et al. 2019) Overall, the joint 2-df testing
approach accounting for current smoking as well as gene-current smoking interaction effects
has added little information or statistical power over the conventional CAD-GWAS of main
genetic effect. The comparison between p-values of the joint 2-df approach and p-values of
the conventional GWAS approach were presented in Figure II. The overall distributions were
almost identical with conventional GWAS being slightly more powerful. (Figure I1-A)
Focusing on genome-wide significant SNPs (joint 2-df p<5x10®), the two approaches had
similar statistical power. (Figure II-B) When comparing suggestively associated SNPs (p<10
%), the majority had smaller p-values as well as better power using the conventional GWAS

approach. (Figure II-C)

GWAS of CAD accounting for physical activity and gene-physical activity interaction
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20,154 CAD cases and 293,476 controls of European ancestry were included in the
GWAS accounting for physical activity and gene-physical activity interaction. (Figure I-B)
Descriptive statistics of the study population are presented in Table I-B. 8.34 million SNPs
passed QC and were tested using the joint 2-df approach. 1,073 SNPs were genome-wide
significant. (joint 2-df p<5x10®) After merging significant signals with genomic distance less
than 500 kb or in linkage disequilibrium (1> >0.1), 22 genome-wide significant loci were
detected. (Figure IIT) Comparing to the most recent CAD-GWAS meta-analysis conducted by
van der Harst et al using data from the UK Biobank and CARDIoGRAMplusC4D
consortium, (van der Harst and Verweij 2018) all loci have been previously reported. Overall,
the joint 2-df testing approach accounting for physical activity as well as gene-physical
activity interaction effects has added little information or statistical power in the CAD-
GWAS. The comparison between p-values of the joint 2-df approach and p-values of the
conventional GWAS approach were presented in Figure IV. The overall distributions were
similar with conventional GWAS being slightly more powerful. (Figure IV-A) Focusing on
genome-wide significant SNPs (joint 2-df p<5x107®), the 2-df approaches didn’t gain any
statistical power to identify CAD-associated genetic loci. (Figure IV-B) When comparing
suggestively associated SNPs (5x10® < p < 107), the majority had smaller p-values as well as
better power using the conventional GWAS approach (Figure IV-C). However, the variation
suggested that the power was moderately improved for some SNPs when the interaction term

was included in the 2-df test.

Discussion

Smoking and physical inactivity are two well-established lifestyle-related risk factors for

CAD, (Benjamin, Muntner et al. 2019) however, no CAD-GWAS has been conducted
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accounting for gene-smoking or gene-physical activity interaction effects. We have
implemented a joint two degree of freedom approach (Kraft, Yen et al. 2007) and conducted
two GWASs of CAD accounting for gene-smoking and gene-physical activity interaction in a
large population of European ancestry using data from the UK Biobank. Overall, no novel
locus has been identified from our analyses and p-value comparisons haven shown that
comparing to the conventional GWAS method the joint 2-df testing approach added little

power to the detection of novel CAD-associated loci.

CAD is a heritable condition and enormous effort has been made to identify the potential
underlying genetic mechanisms of CAD. (Nikpay, Goel et al. 2015, Khera and Kathiresan
2017, van der Harst and Verweij 2018) Previously reported CAD-associated loci collectively
explained 30 —40% of CAD heritability (Khera and Kathiresan 2017) but failed to account
for environmental factors or potential heterogeneity of genetic effects across different strata
in environmental factors. Lifestyle-related factors such as smoking and physical inactivity are
important risk factors for cardio-metabolic health, and may interact with the genetic
susceptibility. Conventional GWAS is underpowered to detect susceptibility loci that act
through certain strata of lifestyle factors (i.e., gene-lifestyle interaction). Alternative methods
have been developed (Kraft, Yen et al. 2007) but previous studies have been limited by the
lack of large, population-based cohorts with both genotypic and lifestyle-related phenotypic
data. The UK Biobank is a leading resource for large-scale gene-phenotype association
studies, which also enables large-scale GWAS of CAD accounting for potential gene-lifestyle

interaction effects.

Our analyses have revealed that vast majority of the CAD-associated loci do not have a

strong gene-lifestyle interaction component in a large population of European ancestry.
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Although previous work in the CHARGE Gene-Lifestyle Interactions Working Group have
shown promising results in using the 2-df testing approach for conducting large scale GWAS
of CAD risk factors such as blood pressures and blood lipids, (Feitosa, Kraja et al. 2018,
Sung, Winkler et al. 2018, Bentley, Sung et al. 2019, de Vries, Brown et al. 2019) our results
have shown that such 2-df approach for smoking and physical activity added little power in
the detection of novel CAD-associated loci comparing to the conventional GWAS approach.
However, the joint 2-df approach that we have implemented only accounted for the
multiplicative SNP-environmental factor interaction effects and didn’t capture the potential
additive interaction effect. Novel genome-wide scale statistical computing tools are awaiting
to be developed for jointly testing the main genetic effect and additive gene-lifestyle
interaction effects for complex diseases. Our study also has several limitations. First, CAD
cases are identified based on in-patient hospital records which might lead to underdiagnosis
or misclassification of disease status. Smoking and physical activity are self-reported only
which might lead to inaccurate measurement of such complex lifestyle-related factors. In
addition, we have dichotomized smoking into current vs. non-current and physical activity
into inactive vs. active for analytical simplicity, but the actual gene-lifestyle interaction

effects might act through a more complex mechanism than such binary categorization.

Conclusion

In this study, using data from the UK Biobank we have conducted two separate CAD-
GWASSs accounting for gene-smoking interaction and gene-physical activity interaction,
respectively. Overall, no novel loci have been identified from our analyses using a joint 2-df
testing approach, and p-value comparisons have shown that the majority of CAD-associated

loci do not have a strong interaction effect with smoking or physical activity. However, some



aspects in the methods such as neglected potential additive interaction effects can be
improved in the future for CAD-GWAS accounting for environmental factors as well as

gene-environmental interactions.
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Table I. Descriptive statistics of study population in the UK Biobank

A. GWAS accounting for current smoking and gene-current smoking interaction

(N=324,500)
Characteristics Mean (SD) or N (%)
Age 56.9 (8.0)
Female 174,719 (53.8%)
Current smoking 31,536 (9.7%)

B. GWAS accounting for physical activity and gene-physical activity interaction

(N=313,630)
Characteristics Mean (SD) or N (%)
Age 56.9 (8.0)
Female 168,478 (53.7%)
Physical activity
Low 72,951 (23.3%)

Moderate or High 240,679 (76.7%)




Table II. Genome-wide significant loci of CAD using joint 2-df testing approach in the UK Biobank

A. GWAS accounting for current smoking and gene-current smoking interaction

Joint 2-df Testing Approach Conventional GWAS
rsID CHR POS REF ALT Gene
Beta G Beta G:Csmk PG P G:Csmk P 2-df Beta SE P
135896965 9 22099746  TA T CDKN2B-4S1  -0.179 -0.009 2.33E-57 7.77E-01 4.22E-65 | -0.179 0.010 3.30E-66
1s55730499 161005610 T C LPA -0.304 0.034 6.01E-60 5.23E-01  5.26E-65 | -0.299 0.017 5.22E-66
rs12740374 1 109817590 T G CELSR? 0.129 -0.035 1.32E-20  3.59E-01 4.64E-21 | 0.123 0.013 8.62E-22
rs429358 19 45411941 C T APOE -0.115 -0.020 1.21E-14  6.28E-01 3.31E-16 | -0.116 0.014 9.50E-17
1s764429222 15 91428521 C CT FES -0.095 0.069 4.88E-16 3.70E-02  3.55E-15 | -0.085 0.011 6.65E-15
1s28451064 21 35593827 A G AP000318.2 -0.116 -0.025 8.48E-13  5.87E-01 3.01E-14 | -0.119 0.015 3.66E-15
rs12324886 15 79054108 G A ADAMTS7 0.091 -0.015 1.38E-12  6.90E-01 1.03E-12 | 0.089 0.012 8.38E-14
rs11591147 1 55505647 T G PCSKY9 0.295 0.245 5.33E-10 8.91E-02 1.64E-12 | 0.325 0.045 4.27E-13
1s56322312 1 56991890 T G PPAP2B 0.150 -0.140 3.52E-13  1.34E-02  3.20E-12 | 0.129 0.019 1.14E-11
156925904 6 12892486 G A PHACTRI -0.081 0.011 5.64E-12  7.45E-01 3.42E-12 | -0.079 0.011 6.44E-13
rs114846969 19 11191197 A G LDLR 0.119 -0.034 5.06E-11 5.03E-01 8.61E-11 | 0.115 0.017 1.02E-11
1s917054 17 47340153 T C RPI1-6209.3 0.067 0.014 2.11E-09  6.70E-01 4.18E-10 | 0.069 0.010 4.18E-11
rs145168080 203865822 T  TGC RPI1I-544HI4.1 -0.106 0.062 891E-11 2.05E-01 4.66E-10 | -0.096 0.015 3.21E-10
rs2107595 19049388 A G HDACY9 -0.091 0.003 1.96E-09 9.41E-01 1.32E-09 | -0.090 0.014 2.12E-10
rs1169288 12 121416650  C A HNF14 -0.075 0.064 3.82E-10 5.68E-02  2.88E-09 | -0.066 0.011 2.61E-09
rs10160170 10 44692843 G A RPI11-20J15.2 0.101 0.036 3.47E-08 4.83E-01 4.32E-09 | 0.105 0.017 9.54E-10
rs1384705 11 103696851 T C  RPII-563P16.1 0.071 -0.016 523E-09 6.47E-01 8.54E-09 | 0.070 0.011 9.02E-10
rs3918226 7 150690176 T C NOS3 -0.101 -0.077 5.12E-07 1.66E-01  8.98E-09 | -0.113 0.019 1.10E-09
rs77215829 12 112618346  C A HECTD4 0.089 0.040 1.63E-07 3.99E-01 1.69E-08 | 0.093 0.016 3.72E-09
rs500546 8 102870342 A G NCALD 0.080 -0.024 1.65E-08  5.38E-01  3.89E-08 | 0.076 0.013 4.98E-09
rs58721068 148387701 G A RPI11-752L20.1 -0.088 0.031 1.57E-08  4.87E-01 4.58E-08 | -0.083 0.015 1.10E-08
rs35239117 12 95547732 T A FGD6 0.123 0.009 7.45E-08  8.94E-01 4.89E-08 | 0.123 0.021 7.58E-09




B. GWAS accounting for physical activity and gene-physical activity interaction

Joint 2-df Testing Approach Conventional GWAS
rsID CHR POS REF ALT Gene
Beta G Beta G:PA PG P G:PA P 2-df Beta SE P
154007642 9 22093299 T A CDKN2B-AS1 -0.192 0.033 4.56E-53 1.71E-01 6.40E-65 | -0.183 0.011 7.66E-66
1s55730499 6 161005610 T C LPA -0.319 0.068 4.13E-53 9.12E-02 1.93E-63 | -0.301 0.018 1.85E-64
1s12740374 1 109817590 T G CELSR2 0.122 0.018 2.46E-15 5.53E-01 7.09E-21 | 0.127 0.013 3.80E-22
1s769449 19 45410002 A G APOE -0.141 0.047 2.69E-15 1.74E-01 2.06E-16 | -0.127 0.015 1.57E-16
1s764429222 15 91428521 C CT FES -0.094 0.012 7.30E-13  6.29E-01 4.65E-15 | -0.090 0.011 7.06E-16
1528451064 21 35593827 A G AP000318.2 -0.104 -0.041 9.64E-09 2.39E-01 4.09E-13 | -0.115 0.015 1.14E-13
rs11591147 1 55505647 T G PCSK9 0.341 -0.023 3.97E-10 8.16E-01 2.57E-12 | 0.328 0.046 6.70E-13
rs12324886 15 79054108 G A ADAMTS7 0.092 -0.012 1.89E-10 6.53E-01 5.79E-12 | 0.087 0.012 9.75E-13
156925904 6 12892486 G A PHACTRI -0.078 -0.007 291E-09 7.68E-01 8.64E-12 | -0.080 0.011 9.49E-13
rs139853365 19 11190556 C T LDLR 0.127 0.018 1.95E-08 6.72E-01 6.67E-11 | 0.133 0.019 5.98E-12
1s56322312 1 56991890 T G PPAP2B 0.140 -0.028 1.20E-09 5.21E-01 1.05E-10 | 0.132 0.019 8.69E-12
rs2107595 19049388 A G HDAC9 -0.075 -0.059 9.21E-06 6.78E-02 3.61E-10 | -0.092 0.014 2.15E-10
rs145168080 203865822 T  TGC RPI1I1-544HI14.1 -0.115 0.074 2.82E-10 3.90E-02 8.93E-10 | -0.095 0.016 9.84E-10
1s2011767 17 47340297 T C RPI1-6209.3 0.066 0.009 1.47E-07 7.23E-01 1.36E-09 | 0.069 0.011 1.33E-10
rs4846767 1 222763026 T C TAFIA -0.069 -0.011 5.33E-07 6.72E-01 6.67E-09 | -0.071 0.012 1.19E-09
rs10160170 10 44692843 G A RP11-20J15.2 0.099 0.025 1.26E-06 5.19E-01 8.33E-09 | 0.107 0.017 7.97E-10
rs3918226 7 150690176 T C NOS3 -0.102 -0.046 5.98E-06 2.78E-01 8.65E-09 | -0.115 0.019 1.51E-09
rs1169288 12 121416650 C A HNFI14 -0.076 0.038 1.14E-08 1.35E-01 1.89E-08 | -0.066 0.011 7.40E-09
1s2839812 11 103673294 A T RPI11-563P16.1  0.070 0.000 3.72E-07 9.95E-01 1.90E-08 | 0.070 0.012 2.06E-09
rs11394930 10 12306521  CT C RN7SL232P 0.073 -0.054 6.20E-09 2.52E-02 3.01E-08 | 0.059 0.011 4.24E-08
1s2172725 13 110837456 A G COL4A1 -0.076 0.075 433E-09 2.63E-03 3.27E-08 | -0.056 0.011 3.36E-07
1s7641039 3 153768638 A C  ARHGEF26-4AS1 0.102 -0.077 7.45E-09 2.00E-02 3.76E-08 | 0.080 0.015 8.65E-08

91
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Figure 1. Study population QC process

A. GWAS of CAD accounting for current smoking and gene-current smoking interaction
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of European ancestry
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genomic QC (-20,071)
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B. GWAS of CAD accounting for physical activity and gene-physical activity interaction

502,616 participants
with phenotype data

488,377 participants

with genotype data
408,653 participants
of European ancestry

Relatedness (-69,591) Withdrawal (-73)
genomic QC (-20,071)

of European ancestry

Missingness
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Figure II. GWAS of CAD in the UK Biobank accounting for current smoking and gene-

current smoking interaction
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B. Manhattan plot (red line: genome-wide significant with p < 5x1078, highlighted one

locus that was not reported in the most recent CAD-GWAS by van der Harst et al.)
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Figure III. Comparisons between p-values of joint 2-df testing approach account for
current smoking and p-values using conventional GWAS approach for CAD-GWAS in

the UK Biobank
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B. Genome-wide significant SNPs (joint 2-df p<5x10-®) (Highlighted the locus that was

not reported in the most recent CAD-GWAS by van der Harst et al.)
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C. Suggestively associated SNPs (joint 2-df 5x10-3<p<10-%)
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Figure IV. GWAS of CAD in the UK Biobank accounting for physical activity and gene-
physical activity interaction

A. Quantile-Quantile Plot (Inflation Factor = 1.12)

L]

o
©
[
o)

~

S 2

o

(@)

o

|

O

o o |

2 ®

-

(0]

7]

[e]

o
o
139
o |
o | cumms

\ \ \ 1
0 2 4 6

Expected —logio(p)



—logio(p)

B. Manbhattan plot (red line: genome-wide significant with p < 5x107%)
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Figure V. Comparisons between p-values of joint 2-df testing approach account for
physical activity and p-values using conventional GWAS approach for CAD-GWAS in
the UK Biobank

A. All tested SNPs
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C. Suggestively associated SNPs (joint 2-df 5x108<p<1-)
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Chapter 5

Summary and Future Directions

The main goal of the work presented in this dissertation is to assess gene-lifestyle
interactions in CAD with a focus on two established lifestyle-related CAD risk factors:
smoking and physical inactivity, on both additive and multiplicative scale. Specifically, using
data from two of the largest biobank cohorts: the UK Biobank and the Million Veteran
Program, several CAD-associated genetic risk scores were constructed and their interactions
with smoking and physical inactivity were assessed for incident CAD. This dissertation also
aims to identify novel CAD genetic loci by conducting GWAS accounting for gene-smoking
interaction and gene-physical activity interaction in a large population of European ancestry

from the UK Biobank.

Absolute risk increase of CAD for smoking is more substantial among those with high

genetic risk profile

We constructed genetic risk scores for CAD using a most updated list containing up to 161
CAD-associated loci, and also constructed three mediating traits-based (blood pressure, lipids
and BMI) CAD genetic risk scores. Assessment of the interaction effects between these
scores and smoking status has revealed a super-additive effect between genetic risk and
smoking status. We also observed that such interaction effects were driven by blood pressure-
associated loci when comparing current smokers with never smokers, but by lipids-associated
loci when comparing those with cumulatively high smoking intensity vs. those with low

cumulative smoking intensity. Prevalence of tobacco smoking has been consistently declining
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but it remains a leading cause of preventable death in the U.S. and globally. (Benjamin,
Muntner et al. 2019) Results from this dissertation have provided novel evidence on the
interplay between genetic factors and smoking behavior in the development of CAD.
Although smoking has long been realized as a risk for CAD, we conclude that the harmful
impacts of smoking are higher for those with higher genetic susceptibility of developing
CAD. From a public health point of view, elimination of smoking would be beneficial for
CAD control, and even more CAD cases would have been prevented if those with high
genetic risk hadn’t started or quitted smoking. Additive interaction effects were largely
omitted in the past gene-environment interaction studies, but it has been suggested that
additive interaction effects provide more mechanistic insights than multiplicative interaction.
We found one CAD locus at PCSK9 with strong additive interaction with smoking, but more
biological evidence is needed to characterize the role of PCSK9 as an effect modifier for

smoking-caused CAD events.

Accounting for gene-smoking or gene-physical activity interaction did not improve

power in the genome-wide discovery of CAD-associated loci

Two GWASs were conducted in the work of this dissertation and we have identified no novel
loci of CAD by accounting for gene-smoking or gene-physical activity interaction using a
previously proposed joint 2-df testing approach. Previous work in the CHARGE Gene-
Lifestyle Interactions Working Group have shown promising results in using the 2-df testing
approach for conducting large scale GWAS of CAD risk factors such as blood pressure and
lipids, (Feitosa, Kraja et al. 2018, Sung, Winkler et al. 2018, Bentley, Sung et al. 2019, de
Vries, Brown et al. 2019) but our results have shown that this approach has added little power

comparing to the conventional GWAS approach in the detection of CAD-associated loci
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using data from the UK Biobank. However, the implemented joint 2-df approach only
accounted for multiplicative interaction effects which might have missed CAD susceptibility
loci that act through interaction with smoking and physical activity on the additive scale.
Future studies should employ novel statistical methods and computational tools that can
overcome such limitation and can be implemented easily on the genome-wide scale in large

biobank cohorts.

Final Remarks

Previous gene-lifestyle interaction studies of cardio-metabolic health have shown equivalent
benefits of a healthy lifestyle for individuals with different levels of genetic predisposition
captured by genetic risk score. (Khera, Emdin et al. 2016, Pazoki, Dehghan et al. 2018, Said,
Verweij et al. 2018) However, the majority of them reported on the multiplicative scale and
not much attention was paid to individual lifestyle-related risk factors. Although we have
concluded that the absolute risk increase due to smoking is higher for those with higher
genetic risk of CAD, the clinical utilization of genetic risk score informed lifestyle
intervention is still under debate. (Torkamani, Wineinger et al. 2018) It is of large interests to
see future studies conducted in assessing how to best utilize genetic information to guide
lifestyle interventions and improve cardio-metabolic health. Although it is relatively fast and
easy to generate genetic risk scores based on candidate loci, the cost-effectiveness of such
approach in improving public health remains to be seen. In addition, disparities remain in the
prevalence of lifestyle related risk factors as well as incidence of CAD, but genetic evidence
is lacking for many subgroups with high risk. Future gene-lifestyle interaction studies should
expand to a multi-ethnic scale with more data enriched for subgroups under higher pressure

of CAD development.
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