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Abstract 
 
 

Gene-lifestyle Interactions in Coronary Artery Diseases 
 

By Yunfeng Huang 
 
 

Coronary artery disease (CAD) is the pre-eminent cause of death. Both genetic and lifestyle 

factors such as cigarette smoking and physical activity (PA) contribute to development of 

CAD. Over 160 loci have been linked with risk of CAD in genome-wide association studies. 

However, the interaction between genetic predisposition and individual lifestyle factors in 

CAD remains unclear. This dissertation presents research focused on exploring gene-lifestyle 

interactions for CAD among populations of European ancestry using data from two of the 

largest biobank cohorts. Multiple cardio-metabolic traits mediate the genetic effects of CAD, 

so this dissertation also aims to characterize the gene-lifestyle interaction driven by different 

mediating traits. In addition, gene-lifestyle interactions can be an important part of CAD 

heritability and accounting for gene-lifestyle interactions can potentially increase the power 

when detecting CAD-associated loci. Results of this dissertation have shown that the absolute 

risk elevation in CAD due to smoking is stronger among those with higher genetic 

susceptibility and the interaction can be driven by different mediating cardio-metabolic traits 

when different domains of smoking behavior is considered. Also, no evidence of interaction 

was identified between genetic predisposition and physical activity for CAD. Two GWASs of 

CAD accounting for gene-smoking interaction and gene-physical activity interaction found 

no novel loci, and results have shown no gain of power when a joint two degree of freedom 

approach was implemented. Future studies should consider exploring gene-lifestyle 

interactions for complex diseases such as CAD on both additive and multiplicative scale 

considering potential different mediating pathways. Novel methods should be developed to 

better incorporate gene-lifestyle interactions in genetic associations of complex diseases. 
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Chapter 1 

 

Introduction to gene-lifestyle interactions in coronary artery diseases 

 

Coronary artery disease (CAD) is the most common type of cardiovascular disease, it 

involves narrowing or blockage of the coronary arteries (arteries that supply blood to the 

heart). (Parmet, Glass et al. 2004) CAD is usually caused by atherosclerosis, which is a 

process of buildup of plaque (deposits made up of cholesterol, other fats, and calcium) on the 

inner walls of the arteries. When a plaque ruptures, a blood clot will quickly form that can 

block blood flow in the artery and may lead to myocardial infarction which causes permanent 

damage to the heart muscle. Based on data from 2006 to 2016, the annual death rate 

attributable to CAD declined 31.8%. (Benjamin, Muntner et al. 2019) However, CAD 

remains the number one cause of death in the U.S. among both men and women. (CDC and 

NCHS) Both environmental and genetic factors contribute to the development of CAD, and 

lifestyle modification has played a major role in prevention of CAD in the past decades. 

(Lloyd-Jones, Hong et al. 2010)  

 

CAD is a heritable condition with an estimated heritability of 50% to 60%. (Dai, 

Wiernek et al. 2016) A family history of cardiovascular disease has been shown as a strong 

predictor of incident disease. (Lloyd-Jones, Nam et al. 2004) Enormous effort as well as 

substantial progress has been made to understand the genetics behind CAD in the past 

decades and gene discovery studies in CAD have made a transition from recognition of 

familial patterns to discovery of the discrete genetic drivers. Similar to many other complex 

and common diseases, CAD has a polygenic architecture and has been treated as a good 

candidate for genome-wide association study (GWAS). GWAS relies on the usage of 
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genotype arrays to capture the majority of common inter-individual genetic variation. The 

very first GWASs of CAD published in 2007 reported common variants at the 9p21 locus 

associated with a ~30% increased risk of CAD per copy of the risk allele. (Helgadottir, 

Thorleifsson et al. 2007, McPherson, Pertsemlidis et al. 2007) The most recent GWAS of 

CAD combining data from the UK Biobank and the Coronary Artery Disease Genome-wide 

Replication and Meta-analysis plus the Coronary Artery Disease Genetics 

(CARDIoGRAMplusC4D) consortium has reported 64 novel CAD-associated loci, which 

accumulated the total number of CAD-associated loci to 161. (van der Harst and Verweij 

2018) However, most loci have small effect size and fail to appreciably account for CAD 

heritability, which triggered interests in discovery of other genetic components such as rare 

variants and gene-environment interaction. Genetic research on CAD has also expanded 

progressively from pure disease gene localization to biological functions, mechanistic 

insights and clinical utilization. 

 

Gene-environment (G×E) interaction is an important component of the genetic 

architecture of complex diseases. G×E interaction can be broadly defined as the interplay 

between genetic and environmental factors, and such interaction effect can be viewed as how 

genetic susceptibility for subpopulations modify certain environmental effects or how 

exposure to environmental factors modify certain genetic effects. (Gauderman, Mukherjee et 

al. 2017) Studying G×E interactions in complex diseases can improve understanding of 

disease etiology and identify susceptible or resistant sub-populations in response to 

environmental risk factors. (Ritz, Chatterjee et al. 2017) Several modifiable lifestyle-related 

factors such as smoking and physical activity are associated with cardio-metabolic 

conditions, (Benjamin, Muntner et al. 2019) but their interaction with genetic predisposition 

in the development of CAD hasn’t been fully understood. Detection of gene-lifestyle 
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interaction in CAD is usually hampered by availability of accurate measurements of lifestyle 

factors in most populations and individual studies are generally inadequately powered for 

exploration of gene-lifestyle interactions. Recently, consortia-based studies with large-scaled 

meta-analysis have been utilized to characterize gene-lifestyle interactions for complex 

diseases (Ahmad, Rukh et al. 2013, Nickels, Truong et al. 2013, Langenberg, Sharp et al. 

2014, Usset, Raghavan et al. 2016) including CAD related traits. (Rao, Sung et al. 2017) 

Nevertheless, one major challenge of these consortia-based studies is the complexity of data 

sources that are derived from studies with heterogeneous designs and populations. 

 

Large biobank cohorts have recently been established to achieve homogeneous 

measures of genetic and environmental factors while maintaining sufficient power to conduct 

both high-quality genomic and clinical research in complex diseases. One leading example is 

the UK Biobank, a large UK-based national cohort with over 500,000 participants that aims 

to improve prevention, diagnosis and treatment of a wide range of serious and life-

threatening illnesses. It has whole-genome genomic data as well as a wide spectrum of health 

information including numerous environmental measurements. (Sudlow, Gallacher et al. 

2015) Another example is the Million Veteran Program (MVP) which aims to build one of 

the world's largest medical databases by safely collecting blood samples and health 

information from one million veteran volunteers. (Gaziano, Concato et al. 2016) With data 

from survey instruments, the electronic health record, and biospecimens, the MVP is 

designed to facilitate scientific understanding of the potential links between genetic 

heterogeneity and disease. Recent genomic studies on cardio-metabolic phenotypes have 

benefited from the power of the UK Biobank and the MVP, (Warren, Evangelou et al. 2017, 

Evangelou, Warren et al. 2018, Klarin, Damrauer et al. 2018) which have also provided an 



 

 

4 

unparalleled opportunity for conduct of large-scale gene-lifestyle interaction studies for 

complex diseases such as CAD. 

 

Due to the polygenic nature of complex diseases, G×E interaction studies are 

investigated using different analytical approaches. (Gauderman, Mukherjee et al. 2017) 

Candidate gene methods with a panel of SNPs have been widely used in genetic studies of 

CAD, including the development of a disease-specific genetic risk score (GRS). The GRS 

can be defined by summing the number of risk alleles for each of the disease associated SNPs 

weighted by their estimated effect sizes. (Ripatti, Tikkanen et al. 2010) The joint genetic 

effects represented by CAD-GRS have been shown to predict incident CAD. (Mega, Stitziel 

et al. 2015) In addition, gene-lifestyle interactions in CAD have been examined based on 

GRS and composite lifestyle assessments; (Khera, Emdin et al. 2016, Pazoki, Dehghan et al. 

2018) however, whether effects of individual lifestyle factors on CAD risk can be modified 

by overall genetic susceptibility for CAD remains unclear. 

 

Characterizing gene-lifestyle interactions for CAD can facilitate the mechanistic 

understanding of disease and help identify sub-populations more susceptible or resistant to 

CAD risk factors. For example, smoking is one of the most important modifiable CAD risk 

factors, but whether the smoking-related risk of CAD is modified by genomic status remains 

uncertain. Being physically active is protective against CAD; (Winzer, Woitek et al. 2018) 

however, it is not well understood whether the benefit of increased physical activity is 

uniform among all individuals, or whether it is modified by genomic background. Hindy et 

al. recently reported that the genetic predisposition to coronary heart disease (CHD) can 

modify the elevated CHD risk due to cigarette smoking, (Hindy, Wiberg et al. 2018) and 

Tikkanen et al. identified consistent effects of physical activity on CHD across low, 
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intermediate and high genetic risk groups in the UK Biobank. (Tikkanen, Gustafsson et al. 

2018) However, current gene-lifestyle interaction studies for CAD have only focused on the 

multiplicative scale, ignoring potential effect modification on the additive scale. In fact, 

interaction on the additive scale has larger public health impact and under certain 

assumptions can be aligned with mechanistic interaction effects with a sufficient component 

cause framework. (VanderWeele 2009) Therefore, assessment of gene-lifestyle interaction 

effects on both scale should be performed and reported to better understand the causal 

mechanism and interplay between these two facets of CAD. (VanderWeele and Knol 2014)  

 

Genetic mechanisms of CAD can be mediated through different traits including 

cholesterol and other lipid levels, obesity, and blood pressure (BP) level. (Webb, Erdmann et 

al. 2017) Previous studies predominantly focused on developing a comprehensive CAD-

GRS, (Khera, Emdin et al. 2016, Hindy, Wiberg et al. 2018, Pazoki, Dehghan et al. 2018, 

Tikkanen, Gustafsson et al. 2018) however, whether a comprehensive CAD-GRS is specific 

enough to identify interaction effects with individual lifestyle factors such as smoking and 

physical activity remains debatable, since such interaction effects might act through different 

mediating traits including lipids, blood pressure or BMI. Therefore, it is important to capture 

the genetic predisposition to CAD mediated through different mechanisms and assess the 

gene-lifestyle interaction effects in parallel to provide finer evidence on how different 

pathways might interact with individual lifestyle factors. 

 

In genetic studies of complex diseases, accounting for environmental exposures and 

G×E interactions may affect overall trait variance when investigating genetic contributions 

and can potentially identify novel loci, highlighting new biological processes and pathways. 

(Justice, Winkler et al. 2017) A two-degree-of-freedom procedure can be used to test the 
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combination of marginal genetic effects as well as G×E interactions. This method is proposed 

to be more powerful for detecting disease susceptibility loci where the true gene-environment 

interaction model is unknown. (Kraft, Yen et al. 2007) Lifestyle factors such as smoking and 

being physically inactive are important risk factors for CAD, but genetic variants that exert 

effects on CAD through interactions with smoking or physical activity remain undiscovered 

in previous CAD-GWAS due to heterogeneous main effects and stringent significance 

thresholds. 

 

Focus of this dissertation 

 

The work presented here is aimed towards the assessment of gene-lifestyle 

interactions for CAD with a focus on two established lifestyle-related CAD risk factors: 

smoking and physical activity. Specifically, genetic risk of CAD is captured by developing 

multiple genetic risk scores covering the overall genetic predisposition as well as genetic 

effects mediated through multiple clinical traits including blood pressure, lipids and BMI. 

Interaction effects are examined and reported on both additive and multiplicative scale in two 

large populations of European ancestry. In addition, CAD-GWAS accounting for gene-

lifestyle interaction effects are performed for both smoking and physical activity to identify 

potential novel loci that haven’t been discovered. 

 

Chapter 2 presents work assessing gene-smoking interaction for incident CAD on 

both additive and multiplicative scale using data from the UK Biobank and the Million 

Veteran Program. Chapter 3 presents work assessing gene-physical activity interaction for 

incident CAD on both additive and multiplicative scale using data from the UK Biobank and 

the Million Veteran Program. Chapter 4 presents work conducting two GWASs of CAD 



 

 

7 

using a joint two degree of freedom approach accounting for gene-smoking interaction and 

gene-physical activity interaction with data from the UK Biobank. 
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Chapter 2 

 

Assessment of gene-smoking interaction in coronary artery diseases 
 

Introduction 

 

CAD remains the number one of cause of death in the U. S. after the past decade 

when the mortality rate of CAD has been decreasing. (Ford and Capewell 2011) Lifestyle 

modification has played a major role in CAD prevention. Smoking is one of the most 

established CAD risk factor and extensive effort has been made to characterize the linkage 

between smoking and cardiovascular health. A meta-analysis comparing cardiovascular 

disease risks in 503,905 cohort participants >= 60 years of age reported an HR for 

cardiovascular mortality of 2.07 (95% CI, 1.82–2.36) compared with never-smokers and 1.37 

(95% CI, 1.25–1.49) compared with former smokers. (Mons, Muezzinler et al. 2015) It has 

also been reported that female smokers have a 25% increase in risk for CAD than male 

smokers (RR: 1.25, 95% CI: 1.12 – 1.39). (Huxley and Woodward 2011) Despite the 

decreasing trend in smoking-related morbidity, it remains as the top preventable cause of 

death. (Leischow 2019) A recent study has shown that smoking cessation for former heavy 

smokers significantly reduced their risk for cardiovascular disease comparing to current 

smokers. (Duncan, Freiberg et al. 2019) The mechanism of smoking in CAD has been widely 

studied in both clinical and animal studies. Studies have shown that key processes in 

smoking-induced atherogenesis initiation are endothelial dysfunction and damage, increase in 

and oxidation of proatherogenic lipids, as well as decrease of high-density lipoprotein, 

induction of inflammation, and the shift toward a procoagulant state in the circulation. 

(Messner and Bernhard 2014) However, there is still a lack of knowledge on how smoking 
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behavior or cigarette smoke as a complex environmental exposure interacts with individual’s 

genetic background to affect the development of cardiovascular disease outcomes. 

 

CAD is a heritable condition with estimated heritability of 50% to 60%. (Dai, 

Wiernek et al. 2016) Substantial progress has been made to understand the genetic 

architecture of CAD in the past decades. Genetic studies of CAD have made a transition from 

recognition of familial patterns to discovery of individual genetic drivers. Recent genome-

wide association studies (GWAS) of CAD have identified genetic susceptibility loci of CAD 

across the genome and demonstrated a polygenic architecture of CAD. Combining data from 

the UK Biobank and the Coronary Artery Disease Genome-wide Replication and Meta-

analysis plus the Coronary Artery Disease Genetics (CARDIoGRAMplusC4D) consortium, 

the most recent GWAS of CAD has reported 64 novel CAD-associated loci, which 

accumulated the total number of CAD-associated loci to 161. (van der Harst and Verweij 

2018) However, most loci have small effect size and fail to appreciably account for a large 

proportion of CAD heritability, which motivated the discovery of other genetic components 

such as gene-environment interactions. (Manolio, Collins et al. 2009) Gene-environment 

interaction can be broadly defined as the interplay between genetic and environmental 

factors, and such interaction effect can be viewed as how genetic susceptibility for 

subpopulations modify certain environmental effects or how exposure to environmental 

factors modify certain genetic effects. (Gauderman, Mukherjee et al. 2017) Understanding 

gene-environment interaction for CAD can expand our knowledge of potential biological 

mechanisms and clinical utilizations of CAD genetics. (Ritz, Chatterjee et al. 2017) 

 

Gene-environment interaction is an important component of the genetic architecture 

of complex diseases such as CAD. Cigarette smoking is a complex environmental exposure 
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and lifestyle-related risk factor for CAD. Understanding the interaction between smoking and 

genetic predisposition in the development of CAD can potentially lead to better risk 

stratification and disease prevention. (Willett 2002, Ordovas and Tai 2008) However, very 

limited evidence was reported previously for gene-smoking interaction in CAD. One study 

has shown that smoking attenuated the increased risk for CAD associated with 9p21 risk 

alleles. (Hamrefors, Hedblad et al. 2014) A recent gene-smoking interaction study in CAD 

reported a higher magnitude of increased CAD risk by smoking among those with lower 

genetic risk of CAD captured by a CAD-GRS based on 50 SNPs. (Hindy, Wiberg et al. 2018) 

However, previous studies of gene-smoking interaction in CAD have focused and reported on 

multiplicative scale which by ignoring the additive scale only partially covers the potential 

interaction effect between genetic predisposition and smoking on CAD. In fact, interaction on 

the additive scale has larger public health impact and under certain assumptions can be 

aligned with mechanistic interaction effects with a sufficient component cause framework. 

(VanderWeele 2009) Therefore, assessment of gene-smoking interaction effects on both scale 

should be performed and reported to better understand the causal mechanism and interplay 

between these two risk factors. (VanderWeele and Knol 2014) In addition, genetic 

mechanisms of CAD can be mediated through different molecular pathways and mechanisms 

including cholesterol levels, obesity, and blood pressure (BP) levels, (Webb, Erdmann et al. 

2017) but no study has been conducted to assess how the genetic predisposition of CAD 

driven by these intermediate traits can modify the increased risk due to smoking. Previous 

evidence of gene-smoking interaction in CAD is also limited by an incomplete list of CAD 

loci as well as insufficient sample size. Therefore, the purpose of this study is to assess gene-

smoking interaction for CAD on both additive and multiplicative scale in populations of 

European ancestry using data from two of the largest biobank cohorts. 
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Methods 

 

Study populations 

 

The primary study population consists of participants with European ancestry from 

the UK Biobank (https://www.ukbiobank.ac.uk/) cohort. The UK Biobank is a major national 

and international health resource, and a registered charity in its own right, with the aim of 

improving the prevention, diagnosis and treatment of a wide range of serious and life-

threatening illnesses. It is following the health and well-being of 500,000 volunteer 

participants and provides health information, which does not identify them, to approved 

researchers in the UK and overseas, from academia and industry. Both genetic and 

phenotypic data for all participants in the UK Biobank were obtained for this study. The UK 

Biobank genetic data contains genome-wide genotypes for 488,377 participants. (Bycroft, 

Freeman et al. 2018) These were assayed using two very similar genotyping arrays. A subset 

of 49,950 participants involved in the UK Biobank Lung Exome Variant Evaluation (UK 

BiLEVE) study were genotyped at 807,411 markers using the Applied Biosystems UK 

BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific), and 438,427 

participants were genotyped using the closely related Applied Biosystems UK Biobank 

Axiom Array (825,927 markers) that shares 95% of marker content with the UK BiLEVE 

Axiom Array. A quality control pipeline was developed and applied specifically to 

accommodate the large-scale dataset of ethnically diverse participants, genotyped in many 

batches, using two slightly different arrays, and which will be used by many researchers to 

tackle a wide variety of research questions. Markers that passed the quality control check 

were imputed using the Haplotype Reference Consortium (HRC) reference panel as well as 

the merged UK10K and 1000 Genomes phase 3 reference panels. Information was then 
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combined using the HRC data as the primary resource. For phenotype data, participants 

provided electronic signed consent, answered questions on socio-demographic, lifestyle and 

health-related factors, and completed a range of physical measures at baseline recruitment. 

All participants also provided consent for follow-up through linkage to their health-related 

records including in-patient hospital episode statistics and national death registry data. 

 

The replication population of this study includes participants of European ancestry 

from the Million Veteran Program (MVP). The MVP is a national, voluntary research 

program funded entirely by the Department of Veterans Affairs (VA) Office of Research & 

Development. It is envisioned as a VA-based mega-biobank and launched to establish a 

national, representative, and longitudinal study of veterans for genomic and non-genomic 

research that combines data from survey instruments, the electronic health record and 

biospecimens. (Gaziano, Concato et al. 2016) The source population is defined as active 

users of the Veterans Health Administration (VHA), with the ability to provide informed 

consent as the only inclusion criterion. Recruitment is currently occurring in person at 

selected sites in the VHA health care system. Every Veteran is assigned a study ID number, 

which is used to track them throughout the entire process of recruitment, enrollment, sample 

collection and use. During recruitment veteran participants were informed about the MVP 

study via an invitation letter, explaining that participation in the study involves completing 

questionnaires, providing a blood sample for future research, allowing ongoing access to 

medical records and other health administrative data by authorized MVP staff, and agreeing 

to future contact by MVP staff for follow-up studies. The latest data release in 2018 contains 

genotype and phenotype data of over 500,000 participants among whom ~370,000 self-

identified as non-Hispanic White. Genome-wide genotype data was measured using a 

customized Affymetrix Axiom biobank array, the MVP 1.0 Genotyping Array. With 723,305 
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total DNA sequence variants, the array is enriched for both common and rare variants of 

clinical importance in different ethnic backgrounds. Genotyped variants that were poorly 

called (genotype missingness > 5%) or that deviated from their expected allele frequency 

based on reference data from the 1000 Genomes Project were excluded. The remaining 

variants were used to conduct genotype imputation based on the 1000 Genomes Project phase 

3, v.5 reference panel, which generated a total number of > 30 million variants. For 

phenotype data, participants were asked to complete two surveys: the MVP Baseline Survey 

and the MVP Lifestyle Survey. Conceptually, the MVP Baseline Survey was designed to 

collect information regarding demographics, family pedigree, health status, lifestyle habits, 

military experience, medical history, family history of specific illnesses, and physical 

features. The MVP Lifestyle Survey contains questions from validated instruments in 

domains selected to provide information on sleep and exercise habits, environmental 

exposures, dietary habits, and sense of wellbeing. Other health-related information or disease 

diagnosis data is collected through linkage to participants’ VA electronic health record. 

 

Outcome measurements 

 

The disease outcome for this study is defined as primary events of incident CAD. In the 

UK Biobank, participants’ survey data is linked to in-patient hospital episode statistics (HES) 

as well as national death registry data. CAD definition in the UK Biobank for this study is 

referenced from the most recent GWAS of CAD using the UK Biobank data. (van der Harst 

and Verweij 2018) A participant is defined as a CAD case if he/she has at least one 

occurrence of the following International Classification of Diseases, 10th edition (ICD-10) 

codes: I21-I25 covering ischemic heart diseases; or at least one occurrence of the following 

Office of Population Censuses and Surveys Classification of Interventions and Procedures, 
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version 4 (OPCS-4) codes: K40-K46, K49, K50 and K75 which includes replacement, 

transluminal balloon angioplasty, and other therapeutic transluminal operations on coronary 

artery and percutaneous transluminal balloon angioplasty and insertion of stent into coronary 

artery. Death because of CAD was defined as an occurrence of any ICD-10 codes stated 

above in the primary cause of death. To identify incident CAD cases, participants with CAD 

diagnosis before enrollment in the UK Biobank were excluded. Participants will be censored 

on the earliest date of CAD event/CAD death after enrollment, or the end of HES-based 

follow-up, or time of competing death, whichever occurs first.  

 

In the MVP cohort, CAD definition was developed by a group of expert researchers 

from the MVP Cardiovascular Working Group. Disease diagnosis data was queried on two 

different index dates: date of enrollment and July 1st, 2017. The CAD definition has been 

chosen to accommodate both the number of cases for statistical power as well as accuracy in 

CAD diagnosis to control false positive rate. Participants were defined as a CAD case if there 

is occurrence of any CAD codes on two or more distinct dates on or prior to the index date, 

or occurrence of a revascularization procedure code on or prior to the index date. CAD codes 

include: International Classification of Diseases, 9th edition (ICD-9) codes 410, 411.0, 411.1, 

411.81, 411.89, 412, 414.00, 414.01-414.05, 414.2-414.4, 414.8, 414.9, V45.81, V45.82; and 

ICD-10 codes I20.0, I21-I24, I25.1, I25.2, I25.5, I25.6, I25.70, I25.71, I25.72, I25.73, I25.79, 

I25.810, I25.82, I25.83, I25.84, I25.89, I25.9, Z95.1, Z98.61. Revascularization procedure 

codes include: International Classification of Diseases, 9th edition (ICD-9) codes 00.66, 36.0, 

36.01-36.07, 36.09, 36.1, 36.11-36.17, 36.19, 36.2, 99.10; and ICD-10 codes 0210-0213, 

0270-0273, 02C0, 02C1, 02C3, 02C4; and Current Procedural Terminology (CPT) codes: 

33510-33514, 33516-33519, 33521-33523, 33530, 33533-33536, 33572, 92928, 92929, 

92933, 92934, 92937, 92938, 92941, 92943, 92944, 92973-92975, 92977, 92980-92982, 
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92984, 92995, 92996, G0290, G0291, C9600-C9608. To identify incident CAD cases, 

participants who had CAD diagnosis on or prior to enrollment date were excluded. New CAD 

cases were defined as diagnosis between enrollment date and July 1st, 2017. 

 

Smoking and covariate measurements 

 

In the UK Biobank, smoking was self-reported in the touchscreen questionnaire on 

lifestyle and personal exposures. Smoking status is categorized into “current”, “previous”, 

“never” and “prefer not to answer”. Age started smoking is measured among current and 

previous smokers, and age stopped smoking is measured among previous smokers. Number 

of cigarettes currently smoked daily or previously smoked daily was measured among current 

smokers or previous smokers, respectively. Therefore, a pack-year variable is also derived 

and included in the secondary analysis. In the MVP cohort, smoking was self-reported in 

both the MVP Baseline Survey and the MVP Lifestyle Survey. Smoking status is categorized 

into “current”, “previous” and “never”. Information on potential confounders was also 

collected from baseline questionnaire data of the UK Biobank and the MVP cohort including 

age, sex, alcohol consumption, education, history of hypertension and diabetes, usage of 

cholesterol medication, BMI and social economic status. 

 

Genetic data processing and principle component analysis 

 

Genome-wide genotyped SNP data of the UK Biobank is first examined by quality 

control procedures. Individuals with genetically defined non-European ancestry are excluded. 

Markers or individuals with a call rate less than 95 percent are also excluded. SNPs with 

Hardy-Weinberg Equilibrium p-value less than 10-6 or minor allele frequency less than 
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0.0001 are excluded. To remove up to the 3rd degree relatedness among the UK Biobank 

participants, a pairwise kinship coefficient matrix is used with kinship larger than or equal to 

0.0442 as a cutoff to filter the related individual pairs. SNPs that passed the quality control 

procedure are then undergone a linkage disequilibrium (LD) pruning procedure with a 

window size of 50 kb, a step size of 5 variants, and an r2 threshold of 0.05. LD pruned SNPs 

are then used in the principle component analysis. Top ten principle components are 

calculated and will be included in the main analysis as covariates to control for population 

stratification. In the MVP cohort, duplicate samples, samples with more heterozygosity than 

expected, an excess (>2.5%) of missing genotype calls, or discordance between genetically 

inferred sex and phenotypic gender are excluded. In addition, one individual from each pair 

of related individuals is excluded. An ethnicity-specific principle component analysis was 

then performed among non-Hispanic White participants who are defined as: (self-identified 

“non-Hispanic”, “white”, and > 80% genetic European ancestry). 

 

Genetic risk score (GRS) construction 

 

A comprehensive CAD-GRS based on 161 loci that have been reported in the most 

recent GWAS of CAD (van der Harst and Verweij 2018) was developed. A weighted GRS 

approach was implemented using the formula below: 

GRS = β1 × SNP1 + β2 × SNP2 + … + βn × SNPn 

βi are effect sizes from GWAS or GWAS-meta-analysis; SNPi is coded as number of risk 

alleles. In this study, the effect sizes for CAD-GRS construction were referenced from CAD-

GWAS summary statistics of the CARDIoGRAMplusC4D consortium (Nikpay, Goel et al. 

2015) to avoid sample overlap with the UK Biobank or the MVP cohort. In addition, three 

mediating trait-based CAD-sub-GRSs were developed based on loci that are associated with 
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lipids level (GRSCAD-lipids), blood pressure (GRSCAD-BP), or BMI (GRSCAD-BMI). Lipids-

associated loci and blood pressure-associated loci were extracted from recent GWAS 

publications, (Evangelou, Warren et al. 2018, Klarin, Damrauer et al. 2018) and BMI-

associated loci were obtained from unpublished BMI GWAS of up to 1 million individuals of 

European ancestry. Loci that are associated with both CAD and only one of the three target 

mediating traits (Bonferroni corrected p<0.05) were included in the mediating trait-specific 

CAD-sub-GRS calculation using the same weighted approach. All GRS constructions were 

performed using PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/) with “--score” 

function, and missing genotypes were imputed to the mean dosage. 

 

Statistical analysis 

 

Cox proportional hazards models were used to assess the association of CAD-GRSs and 

sub-GRSs with incident CAD as well as the interaction between GRSs and smoking in the 

UK Biobank. All genetic risk scores were 1) standardized and modeled as continuous 

variables and 2) categorized into quintiles and divided into low (lowest quintile), intermediate 

(quintiles 2 to 4) and high (highest quintile) genetic risk group. Smoking status was 

categorized as “never”, “past” and “current” smokers and pack-year was divided into terciles 

as “low”, “medium” and “high”. Age, sex, alcohol consumption, education, (Davies, Dickson 

et al. 2018) history of hypertension, history of diabetes, cholesterol lowering medication use, 

BMI, Townsend deprivation index and ten principle components were included as covariates. 

In the CAD-sub-GRS analysis, the corresponding mediating trait was not included as a 

covariate to avoid over-adjustment. Therefore, history of hypertension was not adjusted for in 

the GRSCAD-BP analysis, cholesterol lowering medication was not adjusted for in the GRSCAD-

lipids analysis, and BMI was not adjusted for in the GRSCAD-BMI analysis. Proportional hazards 
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assumption was assessed using Schoenfeld’s test. When the assumption is violated, 

categorical variables were stratified on while interaction terms with time were added for 

continuous variables. Multiplicative interaction between CAD-GRSs and smoking status was 

assessed by including interaction terms in the model and conducting likelihood ratio tests, 

and additive interaction was assessed by calculating relative excess risk due to interaction 

(RERI) based on the hazard ratio estimates. (Li and Chambless 2007) A bootstrap resampling 

method was used to construct 95% confidence intervals for RERI estimates. For the 

replication analysis in the MVP, logistic regression models were used controlling for a 

similar set of covariates to assess GRS-smoking interaction on both multiplicative and 

additive scale. Odds ratio estimates were used to calculate RERI in the MVP replication 

analysis and same bootstrap procedures were done to construct confidence intervals. 

 

Results 

 

307,147 participants of European ancestry who were free of CAD at baseline from the 

UK Biobank were included in the final analysis. A detailed inclusion/exclusion and QC 

process was presented in Figure I. Basic characteristics of the study population were shown 

in Table I. 9,847 primary incident CAD events were identified from the UK Biobank. In our 

study sample, the mean age at baseline is 56.7 years and slightly more females (55%) than 

males were included. 9.5 percent of the participants were identified as current smokers and 

34.9 percent as past smokers based on self-reported questionnaire data at baseline. In the 

replication analysis using data from the MVP, 102,283 participants with no CAD at 

enrollment were included. A similar inclusion/exclusion process was presented in Figure I. 

Using the indexing-date method, we have identified 8,016 incident CAD cases between 

enrollment and July 1st, 2017. Baseline characteristics of the MVP participants were 



 

 

19 

summarized in Table I. The mean age is 63.9 years old and the majority of them are male 

(91.7%). 17.8 percent and 48.6 percent of participants self-reported as current smokers and 

past smokers, respectively.  

 

In the main analysis, a comprehensive CAD-GRS in the UK Biobank was constructed 

based on 161 CAD-loci that were reported in the most recent CAD-GWAS. (van der Harst 

and Verweij 2018) One lead SNP (rs582384) was multiallelic in the UK Biobank so a proxy 

SNP (rs616381, r2=0.86 for European ancestry) was used. A detailed list of all SNPs used for 

score construction is presented in Table II. In the sub-score analysis, 26 SNPs were included 

in the GRSCAD-BP construction, 17 SNPs were included in the GRSCAD-lipids and 16 SNPs were 

included in the GRSCAD-BMI. (Table III) Associations between all four CAD-GRSs with 

primary incident CAD in the UK Biobank were presented in Table IV-A. One standard 

deviation (SD) increase in the comprehensive CAD-GRS is independently associated with 

33.6 percent increase in the risk of primary CAD events (HR: 1.336, 95% CI: 1.310, 1.363). 

Comparing to those with low genetic risk of CAD, those at intermediate genetic risk have a 

43.6 percent increase in the risk or primary CAD events (HR: 1.436, 95% CI: 1.352, 1.526), 

and those at high genetic risk have an over two-fold increase in the risk of primary CAD 

events (HR: 2.196, 95% CI: 2.056, 2.345). Among the three CAD mediating trait-based sub-

GRSs, the GRSCAD-lipids has the strongest association with incident primary CAD events. 

Participants with a high genetic risk captured by the GRSCAD-lipids have a 56.7 percent 

increase in CAD risk comparing to those with low genetic risk (HR: 1.567, 95% CI: 1.472, 

1.668), and this genetic effect attenuated when focusing on only BP-associated CAD loci 

(HR: 1.422, 95% CI: 1.335, 1.514) or only BMI-associated CAD loci (HR: 1.245, 95% CI: 

1.169, 1.326).  
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To further understand how the genetic predisposition of CAD interacts with smoking 

status, we assessed GRS-smoking interaction on both multiplicative and additive scale in the 

UK Biobank. Combined associations of CAD-GRS and smoking status with incident CAD 

were presented in Table V-A. Comparing to never smokers with low genetic risk, those who 

never smoke but possess a high genetic risk had over two-fold increase in CAD risk (HR: 

2.264, 95% CI: 2.045,2.506), and those with high genetic risk who currently smoke had a 

four times higher risk in primary CAD events (HR: 4.077, 95% CI: 3.586,4.636). Similar 

patterns were also observed for each of the three CAD mediating trait-based sub-GRSs. 

Comparing to never smokers with low genetic risk in GRSCAD-lipids, current smokers with high 

genetic risk have a much higher risk elevation (HR: 2.861, 95% CI: 2.512, 3.259) than never 

smokers with high genetic risk (HR: 1.658, 95% CI: 1.505, 1.827). The strongest combined 

effect of genetic predisposition and smoking status on CAD is observed in lipids-associated 

loci, and BMI-associated loci seem to have weaker effects than lipids or BP-associated CAD 

loci. Overall, no multiplicative interaction between CAD-GRS or CAD-sub-GRSs and 

smoking status was observed. In the MVP replication analysis, a similar pattern of 

associations between CAD-GRS and incident CAD was observed. (Table IV-B and Table V-

B) The comprehensive CAD-GRS as well as all sub-GRSs were found to be associated with 

incident CAD except for intermediate risk category of GRSCAD-BMI. GRSCAD-lipids had the 

strongest effect on CAD among all three intermediate traits. When combined with smoking 

status, no multiplicative interaction was observed between CAD-GRS and smoking status. 

 

We then assessed the additive interaction between CAD-GRSs and smoking status by 

calculating RERI for each GRS. (Figure II) For the comprehensive CAD-GRS, synergistic 

additive interaction was observed among current smokers in both intermediate (RERI: 0.394, 

95% CI: 0.097,0.729) and high (RERI: 1.051, 95% CI: 0.615,1.497) genetic risk group in the 
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UK Biobank (Figure II-A), meaning the absolute risk elevation due to genetic predisposition 

is stronger among current smokers. When comparing the three mediating trait-based CAD-

sub-GRSs, the strongest additive interaction between CAD-GRS and smoking status was 

observed for BP-associated CAD loci. Synergistic additive interaction was observed among 

past smokers in intermediate genetic risk group of GRSCAD-BP (RERI: 0.134, 95% CI: 0.011, 

0.246) and current smokers with high genetic risk in GRSCAD-BP (RERI: 0.650, 95% CI: 

0.299, 1.032). No additive interaction was observed for GRSCAD-lipids or GRSCAD-BMI. To 

replicative the additive interaction effect of smoking status and CAD-GRS, we also 

calculated RERI and corresponding bootstrap intervals in the MVP. (Figure II-B) No additive 

interaction effect was observed in the MVP replication analysis. An individual SNP-based 

interaction analysis was also conducted with current smoking in the UK Biobank, no 

multiplicative interaction was observed after multiple-testing correction, but one locus 

(rs11591147, PCSK9) had an additive interaction effect with current smoking. (Table VI) 

The effect of smoking is predominantly observed among homozygotes of the risk allele.  

 

We also explored interaction effects between CAD-GRS and pack-year among ever 

smokers in the UK Biobank. Combined effects of CAD-GRS and pack-year on incident CAD 

among ever smokers is presented in Table VII. Comparing to the strongest effect observed 

when participants have high lipids genetic risk profile and were identified as current smokers 

in previous analysis, we observed a stronger effect combining blood pressure genetic risk and 

pack-year exposure. Similarly, no multiplicative interaction was observed for any CAD-GRS 

with pack-year. However, an additive interaction effect was observed for those who had high 

overall genetic risk to CAD and were in the high pack-year group (RERI: 0.519, 95% CI: 

0.032, 1.005). (Figure III) After comparing three CAD-mediating traits blood pressure, lipids, 
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and BMI, GRSCAD-lipids had an additive interaction effect with pack-year when both genetic 

risk and pack-year exposure were high (RERI: 0.422, 95% CI: 0.072, 0.772). 

 

Discussion 

 

In this study, we have assessed how an overall genetic risk of CAD captured by CAD-

GRS interact with smoking on both multiplicative and additive scale in European population 

using data from two large biobank cohorts. To further understand the role of mediating traits 

such as BP, lipids and BMI in such gene-smoking interaction on CAD, we also developed 

three separate sub-scores (GRSCAD-BP, GRSCAD-lipids and GRSCAD-BMI) focusing on genetic loci 

uniquely associated with one mediating trait as well as CAD risk. Our results have shown an 

additive and synergistic interaction effect between smoking status and CAD-GRS driven by 

BP-associated loci, as well as an additive and synergistic interaction effect between smoking 

pack-year and CAD-GRS driven by lipids-associated loci. Individual SNP analysis has 

pointed to one locus (rs11591147, PCSK9) for a positive additive interaction effect with 

smoking status. 

 

Smoking has been long established as a strong risk factor for CAD. (Huxley and 

Woodward 2011) Mechanisms of how tobacco smoke impact cardiovascular health have 

been proposed but not fully understood. (Messner and Bernhard 2014) Understanding the 

interaction between smoking and genetic predisposition to CAD might reveal unknown 

disease pathways and help to stratify the populational susceptibility to CAD. However, very 

limited studies have been conducted to estimate the gene-smoking interaction effects on CAD 

for both multiplicative and additive scale. Using a weighted GRS constructed with 50 SNPs, 

Hindy et al. reported a higher relative increase in CAD risk due to smoking among those with 
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lower genetic risk. (Hindy, Wiberg et al. 2018) In our study, we didn’t observe such 

multiplicative interaction effect, but we were able to quantify a synergistic interaction effect 

on the additive scale between smoking status and an overall CAD-GRS among current 

smokers in the UK Biobank. In addition, we observed such synergistic effect with a sub-

CAD-GRS developed focusing on loci that are associated with only BP and CAD. Elevated 

blood pressure or hypertension is associated with CAD, and smoking can cause acute 

increase in blood pressure and acts synergistically with hypertension to increase the risk of 

CAD. (De Cesaris, Ranieri et al. 1992) Our results have supported that blood pressure related 

pathways might be important in the development of CAD when smoking is initiated. We also 

explored gene-smoking interaction using pack-year to quantify smoking intensity, which has 

been reported as the preeminent smoking-related risk factor for cardiovascular disease, 

(Lubin, Couper et al. 2016) and found an additively synergistic interaction effect between 

genetic risk of CAD and smoking pack-year driven by lipids associated loci. Smoking 

cessation among current smokers has been reported to benefit HDL cholesterol (Gepner, 

Piper et al. 2011) and our results have shown a larger benefit of reducing smoking intensity 

for those who have high genetic risk profile for lipids and CAD.  

 

We also explored gene-smoking interaction for individual CAD risk loci, and one 

SNP (rs11591147) at the PCSK9 locus was found to have synergistic interaction with current 

smoking on the additive scale (RERI: 0.404, 95% CI: 0.343, 0.465) but no multiplicative 

interaction was observed for the 161 loci tested. Our results have shown that the effect of 

current smoking on CAD risk is predominantly observed among homozygotes of the risk 

allele (G/G) for rs11591147. PCSK9, a gene encoding proprotein convertase subtilisin/kexin 

type 9 regulates cholesterol homeostasis and was found to be associated with autosomal 

dominant hypercholesterolemia. (Abifadel, Varret et al. 2003) Mutations reducing the 
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expression level of PCSK9 were reported to be associated with lower plasma level of LDL 

and lower risk of CAD. (Cohen, Pertsemlidis et al. 2005, Cohen, Boerwinkle et al. 2006) Our 

findings have shown that PCSK9 might also act as an effect modifier on the elevated risk of 

CAD due to smoking. Several other loci including ADAMTS7, (Saleheen, Zhao et al. 2017) 

APOE (Gustavsson, Mehlig et al. 2012, Holmes, Frikke-Schmidt et al. 2014) and 9p21 

(Hamrefors, Hedblad et al. 2014) were studied previously for interaction effects with 

smoking on CAD, but our analysis was not able to detect interaction effects across these loci.  

 

With data from two of the largest biobank cohorts, we assessed how genetic 

predisposition to CAD captured by weighted CAD-GRS interact with smoking status as well 

as smoking intensity (pack-year) on the risk of primary incident CAD among the European 

population. Our findings have shown that smoking, as one of the most established life-style 

related CAD risk factors, acts multiplicatively with genetic factors on increasing CAD risk. 

However, a synergistic interaction effect on additive scale was observed showing the absolute 

risk increase driven by smoking is higher among individuals with higher genetic risk. Such 

interaction effect was not reported in previous gene-lifestyle (Khera, Emdin et al. 2016, Said, 

Verweij et al. 2018) or gene-smoking interaction studies of CAD partially due to the 

analytical focus on multiplicative scale. However, it is often of greater public health 

importance to assess interaction effects on the additive scale and additive interaction effects 

can be better linked with mechanistic effects under a sufficient component cause framework 

with certain assumptions satisfied. (VanderWeele 2009) To further understand the gene-

smoking interaction effect on CAD, we also developed three mediating trait-based CAD sub-

GRSs and identified a BP-driven interaction effect with smoking status and a lipids-driven 

interaction effect with smoking intensity measured by pack-year. Our results have provided 

novel hypotheses on the potential different mechanisms between smoking initiation and 
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smoking intensity on CAD development. Individual SNP-based interaction analysis has also 

identified one novel additive interaction effect at the locus of PCSK9, which suggests the role 

of lipid metabolism in modifying the effect of smoking on CAD risk. 

 

Our study also has several limitations. First, smoking is measured subjectively at 

baseline with questionnaire data and such measurement is susceptible to recall bias. 

However, to balance the statistical power required for gene-lifestyle interaction studies and 

measurement accuracy as well as ensuring a homogeneous study population, biobank cohorts 

seem to be so far the best data resource in conducting large scale gene-lifestyle interaction 

studies. Second, we used the MVP cohort as a replication cohort for our primary analysis 

conducted in the UK Biobank, but the two populations differ largely in many aspects, which 

limited the power and validity of the replication analysis. In addition, CAD cases were 

captured in slightly different ways between these two cohorts due to data availability 

restrictions, which also lead to slightly different definitions of some covariates in the 

analysis. Therefore, our results need to be interpreted with caution when comparing the 

primary and replication analysis. 

 

Conclusion 

 

Using data from the UK Biobank and the MVP cohort, we have prospectively 

assessed gene-smoking interaction on incident CAD on both additive and multiplicative 

scale. No multiplicative interaction was found between genetic predisposition and smoking 

status or smoking intensity, but a synergistic additive interaction driven by BP-associated loci 

was observed for current smoking and a synergistic additive interaction driven by lipids-

associated loci was observed for smoking intensity. In addition, the PCSK9 locus was 
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observed to have strong additive interaction effects with current smoking on CAD risk. Our 

findings have raised hypothesis with respect to different interplaying mechanisms between 

genetic predisposition to CAD and smoking behaviors, and highlighted the value of 

addressing gene-lifestyle interactions in CAD on both additive and multiplicative scale. 
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Table I. Characteristics of the study population 

 

Characteristic Mean (SD) or N (%) 
 UK Biobank (N=307,147) MVP (N=102,283) 
Age 56.7 (8.0) 63.9 (12.2) 
Female 168,880 (55.0%) 8,439 (8.3%) 
BMI 27.3 (4.7) 29.9 (5.7) 
Smoking Status   

Current 29,281 (9.5%) 18,167 (17.8%) 
Past 107,049 (34.9%) 49,670 (48.6%) 
Never 170,817 (55.6%) 34,446 (33.6%) 

Pack-year 22.3 (18.1) n/a 
Alcohol Consumption   

Ever 297,997 (97.0%) 61,873 (60.5%) 
Never 9,150 (3.0%) 40,410 (39.5%) 

Hypertension 79,678 (25.9%) 57,074 (55.8%) 
Diabetes 13,059 (4.3%) 21,932 (21.4%) 
Lipids Medication 45344 (14.8%) 43,593 (42.6%) 
Education   

School leaving age >=15 243,327 (79.2%) n/a 
School leaving age <15 63,820 (20.8%) n/a 
Some college or higher n/a 78,189 (76.4%) 

Townsend Index -1.6 (2.9) n/a 
Income   

$50,000 or above n/a 37,571 (36.7%) 
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Table II. 161 SNPs included in the CAD-GRS construction 

SNP CHR POS Locus Risk Allele Other Allele Weight 
rs36096196 1 2252205 MORN1 T C 0.043 
rs2493298 1 3325912 PRDM16 A C 0.057 
rs61776719 1 38461319 SF3A3 A C 0.052 
rs11591147 1 55505647 PCSK9 G T 0.257 
rs56170783 1 57016131 PLPP3 A C 0.127 
rs7528419 1 109817192 CELSR2 A G 0.115 
rs11806316 1 115753482 RP4-663N10.1 G A 0.032 
rs11810571 1 151762308 TDRKH G C 0.056 
rs6689306 1 154395946 IL6R A G 0.056 
rs1892094 1 169094459 ATP1B1 C T 0.018 
rs6700559 1 200646073 RP11-92G12.3 C T 0.028 
rs2820315 1 201872264 LMOD1 T C 0.047 
rs60154123 1 210468999 RP4-667H12.4 T C 0.045 
rs67180937 1 222823743 MIA3 G T 0.079 

rs699 1 230845794 AGT G A 0.040 
rs16986953 2 19942473 AC019055.1 A G 0.085 
rs585967 2 21270554 APOB C A 0.073 
rs4299376 2 44072576 ABCG8 G T 0.051 
rs616381 2 45891708 PRKCE A G 0.033 
rs7568458 2 85788175 GGCX A T 0.060 
rs17678683 2 145286559 ZEB2 G T 0.099 
rs12999907 2 164957251 AC092684.1 A G 0.047 
rs840616 2 188196469 AC007319.1 C T 0.046 

rs114123510 2 203831212 CARF A T 0.134 
rs17517928 2 216291359 FN1 C T 0.057 
rs2571445 2 218683154 TNS1 A G 0.043 
rs2972146 2 227100698 NEU2 T G 0.039 
rs13003675 2 233584109 GIGYF2 T C 0.042 
rs11677932 2 238223955 STK25 G A 0.037 
rs748431 3 14928077 FGD5 G T 0.049 
rs7633770 3 46688562 SNORD77 A G 0.025 
rs7617773 3 48193515 TKT T C 0.039 
rs7623687 3 49448566 RHOA A C 0.070 
rs17843797 3 124453022 UMPS G T 0.064 
rs10512861 3 132257961 DNAJC13 G T 0.041 
rs667920 3 136069472 STAG1 T G 0.039 
rs9818870 3 138122122 MRAS T C 0.065 
rs12493885 3 153839866 ARHGEF26 C G 0.066 
rs4266144 3 156852592 SPTSSB G C 0.032 
rs12897 3 172115902 FNDC3B G A 0.050 

rs16844401 4 3449652 HGFAC A G 0.072 
rs72627509 4 57839051 NOA1 G C 0.060 
rs12500824 4 77416627 SHROOM3 A G 0.029 
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rs10857147 4 81181072 RP11-576N17.4 T A 0.055 
rs11099493 4 82587050 RASGEF1B A G 0.048 
rs3775058 4 96117371 UNC5C A T 0.035 
rs11723436 4 120901336 RP11-170N16.1 G A 0.054 
rs35879803 4 146782837 ZNF827 C A 0.048 
rs6841581 4 148401190 EDNRA A G 0.064 
rs2306556 4 156638573 GUCY1A3 A G 0.067 
rs7696431 4 169687725 PALLD T G 0.036 
rs1508798 5 9556694 RP11-260E18.1 T C 0.047 
rs3936511 5 55860781 C5orf67 G A 0.035 
rs1800449 5 121413208 LOX T C 0.045 
rs77335401 5 131759825 C5orf56 C T 0.052 
rs246600 5 142516897 ARHGAP26 T C 0.024 
rs9501744 6 1617143 FOXC1 C T 0.062 
rs742115 6 11327021 NEDD9 C T 0.040 
rs9349379 6 12903957 PHACTR1 G A 0.132 
rs35541991 6 22583856 RP1-309H15.2 C CA 0.051 
rs3130683 6 31888367 C2 T C 0.090 
rs4472337 6 34769765 UHRF1BP1 T C 0.056 
rs1321309 6 36638636 LAP3P2 A G 0.029 
rs56015508 6 39152041 KCNK5 C A 0.063 
rs6905288 6 43758873 VEGFA A G 0.040 
rs9367716 6 57160572 RNU7-66P G T 0.036 
rs4613862 6 82612271 RP11-379B8.1 A C 0.038 
rs1591805 6 126717064 RP11-394G3.2 A G 0.040 
rs12202017 6 134173151 TARID A G 0.067 
rs17080091 6 150997401 PLEKHG1 C T 0.063 
rs10455872 6 161010118 LPA G A 0.319 
rs10267593 7 1937261 MAD1L1 G A 0.042 
rs7797644 7 6486067 DAGLB C T 0.044 
rs11509880 7 12261911 TMEM106B A G 0.039 
rs2107595 7 19049388 HDAC9 A G 0.073 
rs2107732 7 45077978 CCM2 G A 0.045 
rs10953541 7 107244545 BCAP29 C T 0.050 
rs975722 7 117332914 CFTR G A 0.029 

rs11556924 7 129663496 ZC3HC1 C T 0.073 
rs10237377 7 139757136 PARP12 G T 0.032 
rs3918226 7 150690176 NOS3 T C 0.133 
rs6997340 8 18286997 NAT2 T C 0.032 
rs2083636 8 19865263 LPL T G 0.051 
rs6984210 8 22033615 BMP1 G C 0.081 
rs10093110 8 106565414 ZFPM2 G A 0.026 
rs2954029 8 126490972 RP11-136O12.2 A T 0.044 
rs2891168 9 22098619 CDKN2B-AS1 G A 0.193 
rs944172 9 110517794 AL162389.1 C T 0.039 

rs111245230 9 113169775 SVEP1 C T 0.054 
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rs885150 9 124420173 DAB2IP C T 0.039 
rs507666 9 136149399 ABO A G 0.079 

rs61848342 10 12303813 RN7SL232P C T 0.029 
rs1887318 10 30321598 KIAA1462 T C 0.062 
rs1870634 10 44480811 LINC00841 G T 0.076 
rs17680741 10 82251514 TSPAN14 T C 0.045 
rs2246942 10 91004886 LIPA G A 0.066 
rs11191416 10 104604916 PFN1P11 T G 0.079 
rs4918072 10 105693644 STN1 A G 0.040 
rs4752700 10 124237612 HTRA1 G A 0.029 
rs11601507 11 5701074 TRIM5 A C 0.073 
rs10840293 11 9751196 SWAP70 A G 0.055 
rs1351525 11 13301548 ARNTL T A 0.048 
rs7116641 11 43696917 RP11-472I20.4 G T 0.030 
rs12801636 11 65391317 PCNX3 G A 0.050 
rs590121 11 75274150 SERPINH1 T G 0.032 
rs7947761 11 100624599 ARHGAP42 G A 0.047 
rs2839812 11 103673294 RP11-563P16.1 T A 0.066 
rs964184 11 116648917 ZPR1 G C 0.050 

rs11838267 12 7175872 C1S T C 0.049 
rs10841443 12 20220033 RP11-664H17.1 G C 0.051 
rs11170820 12 54513915 FLJ12825 G C 0.091 
rs2229357 12 57843711 INHBC G A 0.012 
rs2681472 12 90008959 ATP2B1 G A 0.074 
rs7306455 12 95355541 NDUFA12 G A 0.055 
rs10774625 12 111910219 ATXN2 A G 0.067 
rs11830157 12 118265441 KSR2 G T 0.035 
rs2244608 12 121416988 HNF1A G A 0.048 
rs11057401 12 124427306 CCDC92 T A 0.027 
rs1924981 13 29022645 FLT1 T C 0.050 
rs9591012 13 33058333 N4BP2L2 G A 0.046 
rs11617955 13 110818102 COL4A1 T A 0.089 
rs1317507 13 113631780 MCF2L A C 0.038 
rs2145598 14 58794001 ARID4A G A 0.028 
rs3832966 14 75614504 TMED10 ACCCG A 0.052 

rs112635299 14 94838142 SERPINA1 G T 0.168 
rs10139550 14 100145710 HHIPL1 G C 0.055 
rs6494488 15 65024204 RBPMS2 A G 0.040 
rs72743461 15 67441750 SMAD3 C A 0.070 
rs7164479 15 79123054 MORF4L1 T C 0.077 
rs2083460 15 89574484 RP11-326A19.2 T C 0.080 
rs2071382 15 91428197 FES T C 0.053 
rs17581137 15 96146414 RP11-61O11.1 A C 0.051 
rs247616 16 56989590 AC012181.1 C T 0.031 
rs1050362 16 72130815 DHX38 A C 0.029 
rs3851738 16 75387533 CFDP1 C G 0.045 
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rs7199941 16 81906423 PLCG2 A G 0.036 
rs7500448 16 83045790 CDH13 A G 0.055 
rs216172 17 2126504 SMG6 C G 0.048 
rs9897596 17 17593453 RAI1 T C 0.041 
rs13723 17 27941886 CORO6 G A 0.037 

rs76954792 17 30033514 RP11-805L22.1 T C 0.029 
rs2074158 17 40257163 DHX58 C T 0.066 
rs17608766 17 45013271 GOSR2 C T 0.053 
rs4643373 17 47123423 IGF2BP1 T C 0.055 
rs8068952 17 59286644 BCAS3 G C 0.034 
rs1867624 17 62387091 RPL31P57 T C 0.040 
rs9964304 18 47229717 RP11-813F20.2 C A 0.035 
rs663129 18 57838401 RNU4-17P A G 0.058 

rs116843064 19 8429323 ANGPTL4 G A 0.141 
rs6511720 19 11202306 LDLR G T 0.125 
rs73015714 19 17855763 FCHO1 G C 0.052 
rs10417115 19 33386556 CEP89 C T 0.069 
rs8108632 19 41854534 TGFB1 T A 0.052 

rs7412 19 45412079 APOE C T 0.137 
rs867186 20 33764554 PROCR A G 0.061 
rs6102343 20 39924279 ZHX3 A G 0.045 
rs3827066 20 44586023 ZNF335 T C 0.052 
rs260020 20 57714025 ZNF831 T C 0.048 
rs2832227 21 30533076 MAP3K7CL G A 0.044 
rs28451064 21 35593827 AP000318.2 A G 0.128 
rs180803 22 24658858 POM121L9P G T 0.181 
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Table III. SNPs included in the sub-score construction 

A. GRSCAD-BP 

SNP CHR POS Locus Risk Allele Other Allele Weight 
P-value 

SBP DBP PP 

rs61776719 1 38461319 SF3A3 A C 0.0518 4.249E-04 3.323E-02 4.228E-11 
rs1892094 1 169094459 ATP1B1 C T 0.0185 3.138E-04 8.352E-01 1.570E-05 

rs699 1 230845794 AGT G A 0.0396 9.473E-10 6.681E-07 2.955E-03 
rs12999907 2 164957251 AC092684.1 A G 0.0467 5.496E-10 6.652E-03 1.254E-07 
rs2571445 2 218683154 TNS1 A G 0.0427 2.739E-05 3.214E-05 2.086E-01 
rs12500824 4 77416627 SHROOM3 A G 0.0293 2.018E-04 1.381E-04 2.049E-01 
rs2306556 4 156638573 GUCY1A3 A G 0.0673 3.738E-04 5.330E-05 4.855E-01 
rs7696431 4 169687725 PALLD T G 0.0362 3.755E-04 7.901E-01 2.143E-06 
rs17080091 6 150997401 PLEKHG1 C T 0.0632 9.188E-07 1.613E-03 2.379E-03 
rs2107595 7 19049388 HDAC9 A G 0.0734 5.911E-12 1.441E-01 4.923E-24 
rs11556924 7 129663496 ZC3HC1 C T 0.0726 4.387E-02 1.954E-04 3.942E-01 
rs3918226 7 150690176 NOS3 T C 0.1333 1.312E-04 3.856E-07 7.673E-01 
rs1887318 10 30321598 KIAA1462 T C 0.0624 2.333E-03 6.886E-05 1.652E-14 
rs10840293 11 9751196 SWAP70 A G 0.0547 1.255E-05 2.922E-03 8.880E-03 
rs10841443 12 20220033 RP11-664H17.1 G C 0.0507 4.343E-01 2.268E-04 1.376E-05 
rs2681472 12 90008959 ATP2B1 G A 0.0741 4.538E-17 1.334E-09 2.131E-06 
rs1317507 13 113631780 MCF2L A C 0.0383 2.553E-05 2.351E-01 2.596E-05 
rs10139550 14 100145710 HHIPL1 G C 0.0554 4.917E-07 9.118E-01 1.353E-10 
rs2071382 15 91428197 FES T C 0.0535 1.241E-09 2.491E-04 5.027E-05 
rs7500448 16 83045790 CDH13 A G 0.0555 5.865E-05 1.217E-03 5.010E-16 
rs17608766 17 45013271 GOSR2 C T 0.0530 1.717E-08 5.656E-01 2.643E-14 
rs8068952 17 59286644 BCAS3 G C 0.0339 7.789E-05 2.110E-03 3.874E-02 
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rs8108632 19 41854534 TGFB1 T A 0.0515 2.089E-01 1.790E-02 9.288E-05 
rs867186 20 33764554 PROCR A G 0.0607 6.955E-03 1.613E-01 1.099E-06 
rs260020 20 57714025 ZNF831 T C 0.0475 2.819E-06 1.570E-07 3.267E-01 

rs28451064 21 35593827 AP000318.2 A G 0.1276 4.984E-02 2.391E-02 6.611E-06 
 
 

B. GRSCAD-lipids 

SNP CHR POS Locus Risk Allele Other Allele Weight 
P-value 

HDL LDL TG TC 

rs11591147 1 55505647 PCSK9 G T 0.2565 4.257E-04 1.709E-228 6.362E-01 6.206E-157 
rs7528419 1 109817192 CELSR2 A G 0.1145 1.360E-31 0.000E+00 9.278E-05 1.898E-296 
rs585967 2 21270554 APOB C A 0.0731 9.090E-01 5.800E-152 9.941E-01 1.310E-111 
rs4299376 2 44072576 ABCG8 G T 0.0508 1.274E-01 1.698E-72 3.044E-05 1.546E-57 
rs7568458 2 85788175 GGCX A T 0.0596 4.813E-02 3.437E-04 3.601E-03 1.095E-04 
rs1591805 6 126717064 RP11-394G3.2 A G 0.0402 1.937E-02 1.911E-01 1.030E-04 1.230E-01 
rs10455872 6 161010118 LPA G A 0.3186 6.654E-04 6.167E-50 2.577E-02 7.345E-37 
rs6997340 8 18286997 NAT2 T C 0.0324 6.348E-01 1.383E-02 5.748E-20 6.245E-13 
rs2083636 8 19865263 LPL T G 0.0514 4.002E-246 6.200E-04 2.792E-295 2.188E-04 
rs2891168 9 22098619 CDKN2B-AS1 G A 0.1934 5.424E-01 2.339E-10 4.376E-02 4.920E-09 
rs507666 9 136149399 ABO A G 0.0788 2.257E-03 1.706E-80 6.262E-01 2.292E-72 
rs2246942 10 91004886 LIPA G A 0.0662 2.049E-02 1.249E-03 2.957E-02 1.694E-04 
rs11601507 11 5701074 TRIM5 A C 0.0734 6.643E-04 6.652E-08 8.593E-01 4.905E-05 
rs2244608 12 121416988 HNF1A G A 0.0476 1.518E-03 1.963E-23 3.819E-01 1.206E-25 
rs247616 16 56989590 AC012181.1 C T 0.0312 0.000E+00 3.397E-01 2.267E-15 9.586E-64 
rs6511720 19 11202306 LDLR G T 0.1253 1.090E-05 1.111E-260 4.610E-01 6.767E-182 
rs6102343 20 39924279 ZHX3 A G 0.0451 6.733E-02 2.048E-04 1.345E-05 2.978E-08 
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C. GRSCAD-BMI 

SNP CHR POS Locus Risk Allele Other Allele Weight BMI P-value 

rs2820315 1 201872264 LMOD1 T C 0.0467 3.039E-39 
rs7116641 11 43696917 AC007319.1 G T 0.0304 2.259E-34 
rs11170820 12 54513915 RHOA G C 0.0908 5.933E-06 
rs9591012 13 33058333 STAG1 G A 0.0457 1.136E-15 
rs13723 17 27941886 MRAS G A 0.0374 1.834E-09 
rs663129 18 57838401 ARHGEF26 A G 0.0582 2.730E-191 
rs840616 2 188196469 UNC5C C T 0.0456 4.026E-08 
rs667920 3 136069472 KCNK5 T G 0.0393 2.884E-19 
rs9818870 3 138122122 MAD1L1 T C 0.0646 2.096E-09 
rs12493885 3 153839866 ZFPM2 C G 0.0661 2.808E-09 
rs7623687 3 49448566 DAB2IP A C 0.0699 6.093E-07 
rs3775058 4 96117371 RP11-472I20.4 A T 0.0351 6.020E-07 
rs56015508 6 39152041 FLJ12825 C A 0.0630 1.452E-04 
rs10267593 7 1937261 N4BP2L2 G A 0.0418 6.131E-13 
rs10093110 8 106565414 CORO6 G A 0.0258 5.492E-06 
rs885150 9 124420173 RNU4-17P C T 0.0389 2.903E-05 
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Table IV. Associations of comprehensive CAD genetic risk Score (CAD-GRS) and three CAD mediating trait-based sub-genetic risk 

scores (sub-GRSs) with incident CAD 

 

A. UK Biobank (HR and 95% CI) 

CAD-GRS Comprehensive GRS GRSCAD-BP GRSCAD-lipids GRSCAD-BMI 

per SD increase 1.336 
(1.310, 1.363) 

1.139 
(1.117,1.161) 

1.184 
(1.162, 1.207) 

1.076 
(1.055, 1.098) 

Low risk Ref. Ref. Ref. Ref. 

Intermediate risk 1.436 
(1.352, 1.526) 

1.167 
(1.105, 1.232) 

1.208 
(1.144, 1.276) 

1.131 
(1.072, 1.193) 

High risk 2.196 
(2.056, 2.345) 

1.422 
(1.335, 1.514) 

1.567 
(1.472, 1.668) 

1.245 
(1.169, 1.326) 

 

B. MVP (OR and 95% CI) 

CAD-GRS Comprehensive GRS GRSCAD-BP GRSCAD-lipids GRSCAD-BMI 

per SD increase 1.212 
(1.184, 1.241) 

1.074 
(1.050,1.099) 

1.134 
(1.108, 1.160) 

1.025 
(1.003, 1.048) 

Low risk Ref. Ref. Ref. Ref. 

Intermediate risk 1.339 
(1.254, 1.430) 

1.092 
(1.027, 1.161) 

1.190 
(1.118, 1.267) 

1.036 
(0.977, 1.098) 

High risk 1.749 
(1.622, 1.885) 

1.217 
(1.131, 1.309) 

1.404 
(1.304, 1.511) 

1.074 
(1.001, 1.153) 
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Table V. Combined associations of CAD-GRSs and smoking status with incident CAD 

A. UK Biobank (HR and 95% CI) 

  Smoking Status P-value for 
Multiplicative 

Interaction   Never Past Current 

CAD-GRS 

Low Risk Ref. 1.208 
(1.074,1.360) 

1.774 
(1.503,2.094) 

0.51 Intermediate Risk 1.422 
(1.295,1.562) 

1.732 
(1.577,1.902) 

2.638 
(2.365,2.942) 

High Risk 2.264 
(2.045,2.506) 

2.536 
(2.289,2.809) 

4.077 
(3.586,4.636) 

GRSCAD-BP 

Low Risk Ref. 1.107  
(0.998, 1.228) 

1.669  
(1.443, 1.931) 

0.17 Intermediate Risk 1.110  
(1.021, 1.206) 

1.351  
(1.243, 1.468) 

1.964 
(1.776, 2.172) 

High Risk 1.345  
(1.221, 1.481) 

1.594  
(1.448, 1.755) 

2.664  
(2.352, 3.018) 

GRSCAD-lipids 

Low Risk Ref. 1.237 
(1.113, 1.376) 

1.947 
(1.682, 2.253) 

0.50 Intermediate Risk 1.222 
(1.121, 1.332) 

1.487 
(1.364, 1.621) 

2.322 
(2.097, 2.572) 

High Risk 1.658 
(1.505, 1.827) 

1.878 
(1.702, 2.071) 

2.861 
(2.512, 3.259) 

GRSCAD-BMI 

Low Risk Ref. 1.185 
(1.070, 1.313) 

1.719 
(1.488, 1.986) 

0.95 Intermediate Risk 1.109 
(1.022, 1.205) 

1.351 
(1.244, 1.468) 

2.006 
(1.818, 2.214) 

High Risk 1.229 
(1.116, 1.355) 

1.467 
(1.332, 1.616) 

2.255 
(1.978, 2.571) 
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B. MVP (OR and 95% CI) 

  Smoking Status P-value for 
Multiplicative 

Interaction   Never Past Current 

CAD-GRS 

Low Risk Ref. 1.130 
(0.988,1.293) 

1.465 
(1.229,1.747) 

0.26 Intermediate Risk 1.296 
(1.147,1.464) 

1.560 
(1.390,1.752) 

1.890 
(1.657,2.156) 

High Risk 1.834 
(1.598,2.104) 

2.003 
(1.765,2.273) 

2.255 
(1.920,2.649) 

GRSCAD-BP 

Low Risk Ref. 1.194  
(1.054, 1.352) 

1.517  
(1.290, 1.784) 

0.63 Intermediate Risk 1.112  
(0.991, 1.247) 

1.317  
(1.181, 1.468) 

1.561 
(1.377, 1.769) 

High Risk 1.297  
(1.133, 1.485) 

1.452  
(1.285, 1.640) 

1.656  
(1.410, 1.946) 

GRSCAD-lipids 

Low Risk Ref. 1.282 
(1.126, 1.459) 

1.621 
(1.371, 1.916) 

0.16 Intermediate Risk 1.276 
(1.132, 1.438) 

1.512 
(1.349, 1.694) 

1.781 
(1.564, 2.029) 

High Risk 1.616 
(1.409, 1.855) 

1.724 
(1.520, 1.955) 

2.052 
(1.749, 2.408) 

GRSCAD-BMI 

Low Risk Ref. 1.195 
(1.065, 1.341) 

1.239 
(1.056, 1.454) 

0.44 Intermediate Risk 1.014 
(0.911, 1.129) 

1.219 
(1.102, 1.348) 

1.403 
(1.248, 1.578) 

High Risk 1.114 
(0.979, 1.267) 

1.224 
(1.091, 1.373) 

1.458 
(1.253, 1.697) 
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Table VI. Interaction between CAD-associated SNPs and current smoking on incident CAD in the UK Biobank 

SNP CHR POS Locus EA 
Beta Coefficients P-value 

of Interaction 
RERI 

P-value 
of RERI SNP Current smoking Interaction 

rs11591147 1 55505647 PCSK9 G 0.209 -0.283 0.403 0.05 0.404 1.21E-38 
rs73015714 19 17855763 FCHO1 G 0.046 0.460 0.123 0.01 0.245 1.84E-03 
rs1870634 10 44480811 LINC00841 G 0.027 0.391 0.091 0.04 0.158 6.71E-03 
rs3918226 7 150690176 NOS3 T 0.031 0.483 0.163 0.02 0.317 9.03E-03 
rs12897 3 172115902 FNDC3B G 0.033 0.451 0.082 0.05 0.159 1.21E-02 

rs4643373 17 47123423 IGF2BP1 T -0.012 0.379 0.095 0.03 0.138 2.07E-02 
rs2145598 14 58794001 ARID4A G 0.019 0.449 0.075 0.06 0.135 2.55E-02 
rs867186 20 33764554 PROCR A 0.026 0.312 0.110 0.14 0.173 4.24E-02 

rs12493885 3 153839866 ARHGEF26 C 0.078 0.402 0.065 0.27 0.149 4.48E-02 
rs2891168 9 22098619 CDKN2B-AS1 G 0.138 0.499 0.015 0.70 0.125 4.54E-02 
rs17581137 15 96146414 RP11-61O11.1 A 0.009 0.396 0.078 0.10 0.126 4.61E-02 
rs8108632 19 41854534 TGFB1 T 0.048 0.468 0.054 0.19 0.123 5.28E-02 
rs10455872 6 161010118 LPA G 0.202 0.506 0.046 0.50 0.242 6.43E-02 
rs17080091 6 150997401 PLEKHG1 C 0.077 0.349 0.088 0.29 0.174 6.58E-02 
rs944172 9 110517794 AL162389.1 C 0.022 0.475 0.065 0.14 0.124 7.27E-02 
rs2229357 12 57843711 INHBC G 0.029 0.421 0.061 0.20 0.114 7.82E-02 
rs585967 2 21270554 APOB C -0.004 0.363 0.088 0.13 0.131 8.06E-02 
rs2820315 1 201872264 LMOD1 T 0.032 0.477 0.055 0.19 0.114 8.58E-02 
rs12801636 11 65391317 PCNX3 G 0.013 0.409 0.068 0.16 0.113 8.66E-02 
rs9367716 6 57160572 RNU7-66P G 0.013 0.426 0.062 0.16 0.107 8.85E-02 
rs1508798 5 9556694 RP11-260E18.1 T 0.038 0.415 0.061 0.25 0.118 9.46E-02 
rs10267593 7 1937261 MAD1L1 G 0.002 0.384 0.078 0.15 0.120 9.52E-02 
rs6700559 1 200646073 RP11-92G12.3 C 0.038 0.601 -0.082 0.04 -0.117 9.54E-02 
rs216172 17 2126504 SMG6 C 0.037 0.571 -0.081 0.05 -0.115 1.01E-01 
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rs1892094 1 169094459 ATP1B1 C 0.013 0.461 0.055 0.17 0.099 1.03E-01 
rs742115 6 11327021 NEDD9 C 0.003 0.452 0.059 0.15 0.097 1.13E-01 
rs4918072 10 105693644 STN1 A 0.038 0.488 0.049 0.27 0.110 1.27E-01 
rs1317507 13 113631780 MCF2L A 0.044 0.557 -0.085 0.07 -0.115 1.32E-01 
rs35879803 4 146782837 ZNF827 C 0.003 0.441 0.056 0.19 0.092 1.37E-01 
rs11170820 12 54513915 FLJ12825 G 0.087 0.504 0.084 0.32 0.217 1.55E-01 
rs2493298 1 3325912 PRDM16 A 0.048 0.541 -0.098 0.10 -0.133 1.59E-01 
rs3775058 4 96117371 UNC5C A 0.035 0.549 -0.080 0.10 -0.111 1.61E-01 
rs13723 17 27941886 CORO6 G 0.035 0.583 -0.070 0.08 -0.096 1.63E-01 

rs11509880 7 12261911 TMEM106B A 0.007 0.479 0.052 0.21 0.092 1.63E-01 
rs9591012 13 33058333 N4BP2L2 G 0.006 0.450 0.050 0.24 0.084 1.74E-01 
rs2306556 4 156638573 GUCY1A3 A 0.074 0.679 -0.101 0.05 -0.129 1.87E-01 
rs17608766 17 45013271 GOSR2 C 0.009 0.494 0.067 0.23 0.120 1.88E-01 
rs663129 18 57838401 RNU4-17P A 0.022 0.546 -0.068 0.15 -0.099 1.90E-01 

rs56170783 1 57016131 PLPP3 A 0.159 0.823 -0.169 0.02 -0.194 1.94E-01 
rs10953541 7 107244545 BCAP29 C 0.007 0.436 0.052 0.27 0.087 1.95E-01 
rs3936511 5 55860781 C5orf67 G 0.038 0.544 -0.078 0.13 -0.106 1.97E-01 
rs72627509 4 57839051 NOA1 G 0.012 0.492 0.058 0.26 0.107 1.98E-01 
rs6905288 6 43758873 VEGFA A 0.062 0.490 0.021 0.60 0.078 2.10E-01 
rs6997340 8 18286997 NAT2 T 0.024 0.550 -0.064 0.16 -0.093 2.10E-01 
rs7947761 11 100624599 ARHGAP42 G 0.031 0.553 -0.065 0.14 -0.090 2.11E-01 
rs1867624 17 62387091 RPL31P57 T 0.033 0.593 -0.064 0.12 -0.089 2.11E-01 
rs10512861 3 132257961 DNAJC13 G 0.034 0.669 -0.089 0.13 -0.140 2.14E-01 
rs1887318 10 30321598 KIAA1462 T 0.025 0.482 0.035 0.38 0.076 2.26E-01 
rs10774625 12 111910219 ATXN2 A 0.033 0.484 0.030 0.45 0.073 2.42E-01 
rs60154123 1 210468999 RP4-667H12.4 T 0.063 0.502 0.034 0.53 0.102 2.47E-01 
rs7116641 11 43696917 RP11-472I20.4 G 0.018 0.489 0.039 0.36 0.078 2.47E-01 
rs748431 3 14928077 FGD5 G 0.033 0.556 -0.058 0.17 -0.077 2.71E-01 
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rs2571445 2 218683154 TNS1 A 0.010 0.484 0.038 0.35 0.069 2.75E-01 
rs3851738 16 75387533 CFDP1 C 0.039 0.585 -0.059 0.15 -0.076 2.76E-01 
rs3827066 20 44586023 ZNF335 T 0.029 0.535 -0.071 0.22 -0.099 2.77E-01 
rs28451064 21 35593827 AP000318.2 A 0.112 0.510 0.016 0.78 0.110 2.80E-01 
rs11556924 7 129663496 ZC3HC1 C 0.023 0.475 0.031 0.45 0.066 2.84E-01 
rs7199941 16 81906423 PLCG2 A 0.036 0.558 -0.057 0.17 -0.073 2.88E-01 
rs7528419 1 109817192 CELSR2 A 0.093 0.656 -0.090 0.06 -0.091 2.96E-01 
rs6689306 1 154395946 IL6R A 0.025 0.557 -0.051 0.21 -0.071 3.00E-01 
rs1351525 11 13301548 ARNTL T 0.006 0.460 0.039 0.38 0.066 3.10E-01 
rs1591805 6 126717064 RP11-394G3.2 A 0.041 0.571 -0.056 0.16 -0.069 3.13E-01 

rs7412 19 45412079 APOE C 0.060 0.439 0.041 0.59 0.103 3.15E-01 
rs11191416 10 104604916 PFN1P11 T -0.003 0.397 0.064 0.38 0.096 3.24E-01 
rs6841581 4 148401190 EDNRA A 0.042 0.504 0.035 0.54 0.089 3.42E-01 
rs11723436 4 120901336 RP11-170N16.1 G 0.034 0.499 0.024 0.57 0.064 3.48E-01 
rs77335401 5 131759825 C5orf56 C 0.017 0.529 -0.062 0.32 -0.091 3.51E-01 
rs11601507 11 5701074 TRIM5 A 0.045 0.508 0.048 0.53 0.115 3.71E-01 
rs16844401 4 3449652 HGFAC A 0.012 0.506 0.064 0.42 0.119 3.73E-01 
rs72743461 15 67441750 SMAD3 C 0.032 0.475 0.025 0.60 0.063 3.77E-01 
rs7623687 3 49448566 RHOA A 0.033 0.624 -0.064 0.26 -0.090 3.83E-01 
rs10857147 4 81181072 RP11-576N17.4 T 0.040 0.502 0.020 0.65 0.061 3.83E-01 
rs10840293 11 9751196 SWAP70 A 0.038 0.495 0.017 0.67 0.054 3.90E-01 
rs76954792 17 30033514 RP11-805L22.1 T 0.027 0.537 -0.048 0.31 -0.064 4.09E-01 
rs4752700 10 124237612 HTRA1 G 0.040 0.556 -0.049 0.23 -0.056 4.10E-01 
rs840616 2 188196469 AC007319.1 C 0.032 0.489 0.019 0.66 0.053 4.19E-01 

rs56015508 6 39152041 KCNK5 C 0.012 0.465 0.031 0.53 0.058 4.25E-01 
rs885150 9 124420173 DAB2IP C 0.029 0.538 -0.046 0.31 -0.058 4.31E-01 
rs1800449 5 121413208 LOX T 0.002 0.528 -0.041 0.45 -0.067 4.33E-01 
rs11617955 13 110818102 COL4A1 T 0.039 0.461 0.030 0.65 0.073 4.33E-01 
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rs8068952 17 59286644 BCAS3 G 0.048 0.539 -0.056 0.26 -0.063 4.35E-01 
rs13003675 2 233584109 GIGYF2 T 0.019 0.542 -0.037 0.37 -0.050 4.58E-01 
rs246600 5 142516897 ARHGAP26 T 0.041 0.504 0.011 0.79 0.046 4.68E-01 
rs4299376 2 44072576 ABCG8 G 0.031 0.504 0.016 0.70 0.049 4.75E-01 
rs10417115 19 33386556 CEP89 C 0.016 0.508 0.054 0.54 0.105 4.76E-01 
rs260020 20 57714025 ZNF831 T 0.041 0.508 0.024 0.69 0.069 4.87E-01 

rs61776719 1 38461319 SF3A3 A 0.021 0.554 -0.035 0.38 -0.046 4.94E-01 
rs116843064 19 8429323 ANGPTL4 G 0.082 0.416 0.050 0.74 0.128 4.94E-01 
rs17680741 10 82251514 TSPAN14 T 0.042 0.499 0.011 0.81 0.046 4.98E-01 
rs12500824 4 77416627 SHROOM3 A 0.025 0.502 0.016 0.70 0.043 5.09E-01 
rs7797644 7 6486067 DAGLB C 0.035 0.491 0.015 0.76 0.048 5.10E-01 
rs1321309 6 36638636 LAP3P2 A 0.030 0.502 0.012 0.77 0.041 5.19E-01 
rs7500448 16 83045790 CDH13 A 0.029 0.490 0.016 0.73 0.046 5.19E-01 
rs2954029 8 126490972 RP11-136O12.2 A 0.025 0.500 0.013 0.74 0.040 5.27E-01 
rs35541991 6 22583856 RP1-309H15.2 C 0.024 0.504 0.015 0.73 0.041 5.39E-01 
rs12202017 6 134173151 TARID A 0.040 0.503 0.008 0.86 0.041 5.51E-01 
rs61848342 10 12303813 RN7SL232P C 0.056 0.514 -0.001 0.99 0.038 5.72E-01 
rs2107732 7 45077978 CCM2 G 0.072 0.639 -0.068 0.32 -0.068 5.78E-01 
rs2244608 12 121416988 HNF1A G 0.062 0.545 -0.048 0.27 -0.039 5.81E-01 
rs4613862 6 82612271 RP11-379B8.1 A 0.024 0.503 0.011 0.78 0.034 5.86E-01 
rs2972146 2 227100698 NEU2 T 0.012 0.549 -0.027 0.52 -0.037 5.91E-01 
rs11677932 2 238223955 STK25 G 0.043 0.509 0.004 0.92 0.036 5.93E-01 
rs975722 7 117332914 CFTR G 0.025 0.538 -0.031 0.45 -0.035 5.98E-01 

rs11810571 1 151762308 TDRKH G 0.023 0.485 0.017 0.76 0.043 6.03E-01 
rs2107595 7 19049388 HDAC9 A 0.071 0.515 -0.001 0.98 0.047 6.05E-01 
rs7617773 3 48193515 TKT T -0.007 0.538 -0.018 0.66 -0.036 6.08E-01 
rs590121 11 75274150 SERPINH1 T 0.015 0.529 -0.027 0.55 -0.035 6.24E-01 
rs2681472 12 90008959 ATP2B1 G 0.036 0.511 0.009 0.86 0.040 6.39E-01 
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rs10841443 12 20220033 RP11-664H17.1 G 0.036 0.508 0.004 0.92 0.032 6.39E-01 
rs11838267 12 7175872 C1S T 0.026 0.488 0.015 0.80 0.042 6.40E-01 
rs2832227 21 30533076 MAP3K7CL G 0.063 0.515 -0.002 0.97 0.040 6.54E-01 
rs247616 16 56989590 AC012181.1 C 0.017 0.548 -0.025 0.56 -0.032 6.55E-01 

rs699 1 230845794 AGT G 0.037 0.513 0.002 0.97 0.028 6.63E-01 
rs2839812 11 103673294 RP11-563P16.1 T 0.056 0.537 -0.041 0.36 -0.031 6.66E-01 
rs616381 2 45891708 PRKCE A 0.030 0.509 0.004 0.92 0.027 6.69E-01 
rs2083460 15 89574484 RP11-326A19.2 T 0.051 0.500 0.008 0.92 0.048 6.75E-01 
rs10139550 14 100145710 HHIPL1 G 0.045 0.516 -0.002 0.95 0.027 6.84E-01 
rs7568458 2 85788175 GGCX A 0.041 0.516 -0.001 0.97 0.025 6.93E-01 
rs17843797 3 124453022 UMPS G 0.057 0.515 -0.001 0.99 0.038 6.95E-01 
rs6984210 8 22033615 BMP1 G 0.092 0.515 -0.004 0.96 0.058 6.96E-01 
rs507666 9 136149399 ABO A 0.008 0.509 0.016 0.76 0.032 7.06E-01 
rs9501744 6 1617143 FOXC1 C 0.040 0.507 0.004 0.94 0.035 7.06E-01 
rs6102343 20 39924279 ZHX3 A 0.029 0.511 0.005 0.92 0.028 7.06E-01 
rs2083636 8 19865263 LPL T 0.021 0.503 0.008 0.87 0.027 7.06E-01 
rs4266144 3 156852592 SPTSSB G 0.035 0.513 0.001 0.97 0.027 7.10E-01 
rs7696431 4 169687725 PALLD T 0.018 0.537 -0.022 0.59 -0.024 7.11E-01 
rs9897596 17 17593453 RAI1 T 0.003 0.503 0.012 0.77 0.022 7.33E-01 
rs16986953 2 19942473 AC019055.1 A 0.040 0.513 0.008 0.92 0.042 7.46E-01 
rs3832966 14 75614504 TMED10 ACCCG 0.048 0.522 -0.007 0.85 0.020 7.52E-01 
rs2074158 17 40257163 DHX58 C 0.029 0.513 0.002 0.97 0.024 7.80E-01 
rs180803 22 24658858 POM121L9P G 0.058 0.669 -0.078 0.68 -0.099 7.83E-01 
rs964184 11 116648917 ZPR1 G 0.020 0.512 0.007 0.90 0.026 7.84E-01 
rs9818870 3 138122122 MRAS T 0.046 0.516 -0.005 0.93 0.023 8.00E-01 
rs17678683 2 145286559 ZEB2 G 0.018 0.513 0.008 0.91 0.026 8.16E-01 
rs7633770 3 46688562 SNORD77 A 0.039 0.520 -0.007 0.86 0.015 8.18E-01 
rs11099493 4 82587050 RASGEF1B A 0.005 0.505 0.007 0.87 0.015 8.28E-01 
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rs7164479 15 79123054 MORF4L1 T 0.063 0.553 -0.034 0.41 -0.014 8.39E-01 
rs11057401 12 124427306 CCDC92 T 0.019 0.514 0.000 0.99 0.013 8.45E-01 
rs4472337 6 34769765 UHRF1BP1 T 0.043 0.522 -0.026 0.63 -0.016 8.57E-01 
rs9964304 18 47229717 RP11-813F20.2 C 0.072 0.527 -0.022 0.63 0.012 8.68E-01 
rs3130683 6 31888367 C2 T 0.011 0.536 -0.013 0.82 -0.015 8.79E-01 
rs7306455 12 95355541 NDUFA12 G 0.076 0.557 -0.024 0.72 0.014 8.95E-01 

rs111245230 9 113169775 SVEP1 C 0.071 0.517 -0.041 0.70 -0.023 8.96E-01 
rs112635299 14 94838142 SERPINA1 G 0.138 0.674 -0.082 0.59 -0.034 8.96E-01 
rs11806316 1 115753482 RP4-663N10.1 G 0.034 0.537 -0.018 0.65 -0.008 9.04E-01 
rs12999907 2 164957251 AC092684.1 A 0.069 0.554 -0.024 0.65 0.009 9.17E-01 
rs667920 3 136069472 STAG1 T 0.023 0.536 -0.014 0.77 -0.008 9.18E-01 

rs17517928 2 216291359 FN1 C 0.019 0.520 -0.004 0.94 0.007 9.24E-01 
rs6494488 15 65024204 RBPMS2 A 0.031 0.545 -0.018 0.76 -0.009 9.25E-01 
rs1050362 16 72130815 DHX38 A 0.008 0.519 -0.007 0.87 -0.006 9.25E-01 
rs11830157 12 118265441 KSR2 G 0.011 0.515 -0.001 0.99 0.006 9.26E-01 
rs2071382 15 91428197 FES T 0.072 0.540 -0.026 0.52 0.006 9.26E-01 
rs6511720 19 11202306 LDLR G 0.075 0.578 -0.036 0.57 -0.007 9.47E-01 
rs10237377 7 139757136 PARP12 G 0.021 0.523 -0.006 0.88 0.004 9.53E-01 
rs67180937 1 222823743 MIA3 G 0.048 0.540 -0.017 0.71 0.004 9.58E-01 
rs36096196 1 2252205 MORN1 T 0.064 0.522 -0.023 0.68 0.004 9.65E-01 
rs1924981 13 29022645 FLT1 T 0.005 0.515 -0.001 0.98 0.001 9.83E-01 
rs2246942 10 91004886 LIPA G 0.022 0.520 -0.008 0.84 0.001 9.90E-01 
rs9349379 6 12903957 PHACTR1 G 0.070 0.538 -0.029 0.48 -0.001 9.91E-01 

rs114123510 2 203831212 CARF A 0.062 0.521 -0.024 0.69 0.001 9.94E-01 
rs10093110 8 106565414 ZFPM2 G 0.021 0.524 -0.008 0.84 0.000 9.99E-01 
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Table VII. Combined associations of CAD-GRSs and pack-year with incident CAD in the UK Biobank 

  Smoking Pack-year P-value for 
Multiplicative 

Interaction   Low Medium High 

CAD-GRS 

Low Risk Ref. 1.292 
(1.007,1.658) 

1.827 
(1.457,2.291) 

0.32 Intermediate Risk 1.575 
(1.270,1.952) 

1.963 
(1.594,2.418) 

2.421 
(1.973,2.971) 

High Risk 2.406 
(1.907,3.035) 

2.679 
(2.144,3.347) 

3.752 
(3.033,4.641) 

GRSCAD-BP 

Low Risk Ref. 1.296  
(1.035, 1.622) 

1.790  
(1.458, 2.199) 

0.15 Intermediate Risk 1.302  
(1.069, 1.586) 

1.671  
(1.382, 2.020) 

2.039 
(1.693, 2.456) 

High Risk 1.755  
(1.408, 2.189) 

1.821  
(1.473, 2.252) 

2.618 
(2.150, 3.188) 

GRSCAD-lipids 

Low Risk Ref. 1.256 
(1.015, 1.553) 

1.573 
(1.293, 1.913) 

0.94 Intermediate Risk 1.209 
(1.003, 1.457) 

1.456 
(1.216, 1.743) 

1.938 
(1.627, 2.308) 

High Risk 1.423 
(1.145, 1.769) 

1.813 
(1.485, 2.213) 

2.418 
(2.004, 2.918) 

GRSCAD-BMI 

Low Risk Ref. 1.222 
(0.986, 1.514) 

1.776 
(1.461, 2.159) 

0.64 Intermediate Risk 1.197 
(0.993, 1.444) 

1.449 
(1.210, 1.736) 

1.871 
(1.569, 2.231) 

High Risk 1.270 
(1.018, 1.586) 

1.629 
(1.330, 1.994) 

2.052 
(1.696, 2.482) 

 

 



 45 

Figure I. Study population QC process 

A.  UK Biobank 

 

B.  The MVP Cohort 

504,027 participants 
with phenotype data

351,820 participants 
with genotype data

237,004 participants 
of European ancestry

CAD before baseline
(-57,200)

179,804 participants 
of European ancestry

Missingness
(-77,521)

102,283 participants 
of European ancestry
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Figure II. Relative excess risk due to interaction (RERI) for CAD-GRSs and smoking 

status on incident CAD (Never smokers with low genetic risk were used as reference group 

for each score; 95% CI: 95% bootstrap confidence interval) 

A. UK Biobank 
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B. MVP 
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Figure III. Relative excess risk due to interaction (RERI) for CAD-GRSs and pack-year 

on incident CAD in the UK Biobank (Ever smokers with low pack-year and low genetic 

risk were used as reference group for each score; 95% CI: 95% bootstrap confidence interval) 
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Chapter 3 

 

Assessment of gene-physical activity interaction in coronary artery diseases 

 

Introduction 

 

Coronary artery disease (CAD) is the pre-eminent cause of death and lifestyle 

modification has played a major role in CAD prevention. (Lloyd-Jones, Hong et al. 2010) 

Physical activity is reported to be an independent and protective risk factor associated with 

CAD morbidity and mortality. (Winzer, Woitek et al. 2018) A standardized case-control 

study of acute myocardial infarction in 52 countries has shown a 14% risk reduction due to 

regular physical activity and a 12% population attributable risk explained by physical 

activity. (Yusuf, Hawken et al. 2004) In addition, the Health Professional's Study (Tanasescu, 

Leitzmann et al. 2002) including 44,452 men has shown a 30% reduction in the risk of 

myocardial infarction, providing strong evidence for the cardiovascular benefits of exercise 

in primary prevention. A meta-analysis of exercise-based cardiac rehabilitation including 

trials conducted in the contemporary medication/intervention era, estimated a reduction in 

mortality of 20–32%. (Taylor, Brown et al. 2004) Physical activity can indirectly decrease 

CAD risk by providing a gateway through which other risk factors such as cholesterol, blood 

pressure and obesity can be favorably modified. However, at least 40% of the risk reduction 

due to exercise cannot be explained by such indirect effect through conventional CAD risk 

factors. Thus, a cardio-protective ‘vascular conditioning’ effect, including enhanced nitric 

oxide vasodilator function, improved vascular reactivity, altered vascular structure or 

combinations thereof, has been proposed. (Wilson, Ellison et al. 2016) In addition, exercise is 

reported to be a potent stimulator activating numerous downstream cascades at a molecular 
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and cellular level, that if sustained and intensive enough enables gross anatomical remodeling 

capable of enhancing functional capacity in all spectrums of the population including the 

casual exercisers, the sedentary individuals or those with established cardiovascular diseases. 

 

CAD is a heritable condition with estimated heritability of 50% to 60%. (Dai, 

Wiernek et al. 2016) The interplay between genetic factors and environmental factors is an 

important part in the development of CAD. It has been proven that physical activity is 

beneficial for cardiovascular health, however, how the reduced risk due to physical activity 

interact with individual’s genetic background in CAD remains unclear. Studies have taken 

physical activity into account when constructing a composite score for healthy lifestyle and 

reported a uniform benefit of such healthy lifestyle on cardiovascular health across 

individuals with different levels of genetic risk. (Khera, Emdin et al. 2016, Pazoki, Dehghan 

et al. 2018) A recent study conducted in the UK Biobank also reported similar benefit of 

physical activity for coronary heart disease across different genetic risk strata. (Tikkanen, 

Gustafsson et al. 2018) However, current evidences for gene-physical activity interaction in 

CAD have only focused on multiplicative scale which ignored the potential interaction effect 

on additive scale, even though additive scale is useful for assessing the public health 

importance of interventions and the public health significance of such interaction effects. 

(VanderWeele and Knol 2014) In addition, super-additive interaction effects if unconfounded 

under monotonicity  assumptions can be more closely linked with mechanistic effects using a 

sufficient component cause model. (VanderWeele 2009) Genetic mechanisms of CAD can be 

mediated through different traits including cholesterol and other lipid levels, obesity, and 

blood pressure level (Webb, Erdmann et al. 2017), and physical activity might interact with 

certain mediating trait-based pathways. However, no study has been conducted to assess how 

the genetic predisposition of CAD driven by these mediating traits can modify the reduced 



 

 

51 

risk due to physical activity. Therefore, the purpose of this study is to assess gene-physical 

activity interaction for CAD on both additive and multiplicative scale in populations of 

European ancestry using data from two of the largest biobank cohorts. 

 

Methods 

 

Study populations (same as Chapter 2) 

 

The primary study population consists of participants with European ancestry from the 

UK Biobank (https://www.ukbiobank.ac.uk/) cohort. The UK Biobank is a major national 

and international health resource, and a registered charity in its own right, with the aim of 

improving the prevention, diagnosis and treatment of a wide range of serious and life-

threatening illnesses. It is following the health and well-being of 500,000 volunteer 

participants and provides health information, which does not identify them, to approved 

researchers in the UK and overseas, from academia and industry. Both genetic and 

phenotypic data for all participants in the UK Biobank were obtained for this study. The UK 

Biobank genetic data contains genome-wide genotypes for 488,377 participants. (Bycroft, 

Freeman et al. 2018) These were assayed using two very similar genotyping arrays. A subset 

of 49,950 participants involved in the UK Biobank Lung Exome Variant Evaluation (UK 

BiLEVE) study were genotyped at 807,411 markers using the Applied Biosystems UK 

BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific), and 438,427 

participants were genotyped using the closely related Applied Biosystems UK Biobank 

Axiom Array (825,927 markers) that shares 95% of marker content with the UK BiLEVE 

Axiom Array. A quality control pipeline was developed and applied specifically to 

accommodate the large-scale dataset of ethnically diverse participants, genotyped in many 
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batches, using two slightly different arrays, and which will be used by many researchers to 

tackle a wide variety of research questions. Markers that passed the quality control check 

were imputed using the Haplotype Reference Consortium (HRC) reference panel as well as 

the merged UK10K and 1000 Genomes phase 3 reference panels. Information was then 

combined using the HRC data as the primary resource. For phenotype data, participants 

provided electronic signed consent, answered questions on socio-demographic, lifestyle and 

health-related factors, and completed a range of physical measures at baseline recruitment. 

All participants also provided consent for follow-up through linkage to their health-related 

records including in-patient hospital episode statistics and national death registry data. 

 

The replication population of this study includes participants of European ancestry from 

the Million Veteran Program (MVP). The MVP is a national, voluntary research program 

funded entirely by the Department of Veterans Affairs (VA) Office of Research & 

Development. It is envisioned as a VA-based mega-biobank and launched to establish a 

national, representative, and longitudinal study of veterans for genomic and non-genomic 

research that combines data from survey instruments, the electronic health record and 

biospecimens. (Gaziano, Concato et al. 2016) The source population is defined as active 

users of the Veterans Health Administration (VHA), with the ability to provide informed 

consent as the only inclusion criterion. Recruitment is currently occurring in person at 

selected sites in the VHA health care system. Every Veteran is assigned a study ID number, 

which is used to track them throughout the entire process of recruitment, enrollment, sample 

collection and use. During recruitment veteran participants were informed about the MVP 

study via an invitation letter, explaining that participation in the study involves completing 

questionnaires, providing a blood sample for future research, allowing ongoing access to 

medical records and other health administrative data by authorized MVP staff, and agreeing 
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to future contact by MVP staff for follow-up studies. The present study included a recent data 

release in 2018 containing genotype and phenotype data of over 460,000 participants among 

whom ~370,000 identified as non-Hispanic White. Genome-wide genotype data was 

measured using a customized Affymetrix Axiom biobank array, the MVP 1.0 Genotyping 

Array. With 723,305 total DNA sequence variants, the array is enriched for both common 

and rare variants of clinical importance in different ethnic backgrounds. Genotyped variants 

that were poorly called (genotype missingness > 5%) or that deviated from their expected 

allele frequency based on reference data from the 1000 Genomes Project were excluded. The 

remaining variants were used to conduct genotype imputation based on the 1000 Genomes 

Project phase 3, v.5 reference panel, which generated a total number of > 30 million variants. 

For phenotype data, participants were asked to complete two surveys: the MVP Baseline 

Survey and the MVP Lifestyle Survey. The MVP Baseline Survey was designed to collect 

information regarding demographics, family pedigree, health status, lifestyle habits, military 

experience, medical history, family history of specific illnesses, and physical features. The 

MVP Lifestyle Survey contains questions from validated instruments in domains selected to 

provide information on sleep and exercise habits, environmental exposures, dietary habits, 

and sense of wellbeing. Other health-related information or disease diagnosis data is collected 

through linkage to participants’ VA electronic health record. 

 

Outcome measurements (same as Chapter 2) 

 

The disease outcome for this study is defined as primary events of incident CAD. In the 

UK Biobank, participants’ survey data is linked to in-patient hospital episode statistics (HES) 

as well as national death registry data. CAD definition in the UK Biobank for this study is the 

same as the recent GWAS of CAD using the UK Biobank data. (van der Harst and Verweij 
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2018) A participant is defined as a CAD case if he/she has at least one occurrence of the 

following International Classification of Diseases, 10th edition (ICD-10) codes: I21-I25 

covering ischemic heart diseases; or at least one occurrence of the following Office of 

Population Censuses and Surveys Classification of Interventions and Procedures, version 4 

(OPCS-4) codes: K40-K46, K49, K50 and K75 which includes replacement, transluminal 

balloon angioplasty, and other therapeutic transluminal operations on coronary artery and 

percutaneous transluminal balloon angioplasty and insertion of stent into coronary artery. 

Death because of CAD was defined as an occurrence of any ICD-10 codes stated above in the 

primary cause of death. To identify incident CAD cases, participants with CAD diagnosis 

before enrollment in the UK Biobank were excluded. Participants will be censored on the 

earliest date of CAD event/CAD death after enrollment, or the end of HES-based follow-up, 

or time of competing death, whichever occurs first.  

 

In the MVP cohort, CAD definition was developed by a group of expert researchers 

from the MVP Cardiovascular Working Group. Disease diagnosis data was queried on two 

different index dates: date of enrollment and July 1st, 2017. The CAD definition has been 

chosen to accommodate both the number of cases for statistical power as well as accuracy in 

CAD diagnosis to control false positive rate. Participants were defined as a CAD case if there 

is occurrence of any CAD codes on two or more distinct dates on or prior to the index date, 

or occurrence of a revascularization procedure code on or prior to the index date. CAD codes 

include: International Classification of Diseases, 9th edition (ICD-9) codes 410, 411.0, 411.1, 

411.81, 411.89, 412, 414.00, 414.01-414.05, 414.2-414.4, 414.8, 414.9, V45.81, V45.82; and 

ICD-10 codes I20.0, I21-I24, I25.1, I25.2, I25.5, I25.6, I25.70, I25.71, I25.72, I25.73, I25.79, 

I25.810, I25.82, I25.83, I25.84, I25.89, I25.9, Z95.1, Z98.61. Revascularization procedure 

codes include: International Classification of Diseases, 9th edition (ICD-9) codes 00.66, 36.0, 
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36.01-36.07, 36.09, 36.1, 36.11-36.17, 36.19, 36.2, 99.10; and ICD-10 codes 0210-0213, 

0270-0273, 02C0, 02C1, 02C3, 02C4; and Current Procedural Terminology (CPT) codes: 

33510-33514, 33516-33519, 33521-33523, 33530, 33533-33536, 33572, 92928, 92929, 

92933, 92934, 92937, 92938, 92941, 92943, 92944, 92973-92975, 92977, 92980-92982, 

92984, 92995, 92996, G0290, G0291, C9600-C9608. To identify incident CAD cases, 

participants who had CAD diagnosis on or prior to enrollment date were excluded. New CAD 

cases were defined as diagnosis between enrollment and July 1st, 2017. 

 

Physical activity and covariate measurements 

 

In the UK Biobank, physical activity is measured using adapted questions from the 

International Physical Activity Questionnaire (IPAQ) short form. Participants were asked 

about duration and frequency of walks, moderate activity and vigorous activity. The 

Guidelines for Data Processing and Analysis of the International Physical Activity 

Questionnaire (IPAQ) (2005) was used to process the physical activity data in the UK 

Biobank. A continuous variable Metabolic Equivalent of Task (MET) min/week was 

calculated then categorized into high, moderate and low physical activity groups. We 

collapsed high and moderate physical activity groups in the analysis since no difference was 

found between these two groups and used this “physically active” group as reference to align 

the two risk factors (higher CAD risk captured by higher genetic risk score as well as higher 

level of physical inactivity). In the MVP cohort, due to data availability a “Life’s Simple 7” 

criterion (Lloyd-Jones, Hong et al. 2010) was used to derive a binary physical activity 

variable (less active vs. more active): adults with at least 150 min/week moderate intensity 

activity or at least 75 min/week vigorous intensity activity or combination were defined as 

“more active”. 
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Genetic data processing and principle component analysis (same as Chapter 2) 

 

Genome-wide genotyped SNP data of the UK Biobank is first examined by quality 

control procedures. Markers or individuals with a call rate less than 95 percent are also 

excluded. SNPs with Hardy-Weinberg Equilibrium p-value less than 10-6 or minor allele 

frequency less than 0.0001 are excluded. Individuals with genetically defined non-European 

ancestry are excluded. To remove up to the 3rd degree relatedness among the UK Biobank 

participants, a pairwise kinship coefficient matrix is used with kinship larger than or equal to 

0.0442 as a cutoff to filter the related individual pairs. SNPs that passed the quality control 

procedure are then undergone a linkage disequilibrium (LD) pruning procedure with a 

window size of 50 kb, a step size of 5 variants, and an r2 threshold of 0.05. LD pruned SNPs 

are then used in the principle component analysis. Top ten principle components are 

calculated and will be included in the main analysis as covariates to control for population 

stratification. In the MVP cohort, duplicate samples, samples with more heterozygosity than 

expected, an excess (>2.5%) of missing genotype calls, or discordance between genetically 

inferred sex and phenotypic gender are excluded. In addition, one individual from each pair 

of related individuals is excluded. An ethnicity-specific principle component analysis was 

then performed among non-Hispanic White participants who were defined using a 

harmonized approach combining genetically predicted ethnicity and self-reported 

race/ethnicity. (Fang, Hui et al. 2019) 

 

Genetic risk score (GRS) construction (same as Chapter 2) 
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A comprehensive CAD-GRS based on 161 loci that have been reported in the most 

recent GWAS of CAD (van der Harst and Verweij 2018) was developed. A weighted GRS 

approach was implemented using the formula below: 

GRS = β1 × SNP1 + β2 × SNP2 + … + βn × SNPn 

βi are effect sizes from GWAS or GWAS-meta-analysis; SNPi is coded as number of risk 

alleles. In this study, the effect sizes for CAD-GRS construction were referenced from CAD-

GWAS summary statistics of the CARDIoGRAMplusC4D consortium (Nikpay, Goel et al. 

2015) to avoid sample overlap with the UK Biobank or the MVP cohort. In addition, three 

mediating trait-based CAD-sub-GRSs were developed based on loci that are associated with 

lipids level (GRSCAD-lipids), blood pressure (GRSCAD-BP), or BMI (GRSCAD-BMI). Lipids-

associated loci and blood pressure-associated loci were extracted from recent GWAS 

publications, (Evangelou, Warren et al. 2018, Klarin, Damrauer et al. 2018) and BMI-

associated loci were obtained from unpublished BMI GWAS of up to 1 million individuals of 

European ancestry. Loci that are associated with both CAD and only one of the three target 

mediating traits (Bonferroni corrected p<0.05) were included in the mediating trait-specific 

CAD-sub-GRS calculation using the same weighted approach. All GRS constructions were 

performed using PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/) with “--score” 

function, and missing genotypes were imputed to the mean dosage. 

 

Statistical analysis 

 

Cox proportional hazards models were used to assess the association of CAD-GRSs and 

sub-GRSs with incident CAD as well as the interaction between GRSs and physical inactivity 

in the UK Biobank. All genetic risk scores were 1) standardized and modeled as continuous 

variables and 2) categorized into quintiles and divided into low (lowest quintile), intermediate 
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(quintiles 2 to 4) and high (highest quintile) genetic risk group. Age, sex, smoking status, 

alcohol consumption, education, (Davies, Dickson et al. 2018) history of hypertension, 

history of diabetes, cholesterol lowering medication use, BMI, Townsend deprivation index 

and top ten principle components of the GWAS data were included as covariates. In the 

CAD-sub-GRS analysis, the corresponding mediating trait was not included as a covariate to 

avoid over-adjustment. Thus, history of hypertension was not adjusted for in the GRSCAD-BP 

analysis, cholesterol lowering medication was not adjusted for in the GRSCAD-lipids analysis, 

and BMI was not adjusted for in the GRSCAD-BMI analysis. Proportional hazards assumption 

was assessed using Schoenfeld’s test. When the assumption is violated, categorical variables 

were stratified on while interaction terms with time were added for continuous variables. 

Multiplicative interaction between CAD-GRSs and physical inactivity was assessed by 

including interaction terms in the model and conducting likelihood ratio tests. Additive 

interaction was assessed by calculating relative excess risk due to interaction (RERI) based 

on the hazard ratio estimates. (Li and Chambless 2007) A bootstrap method was used to 

construct 95% confidence intervals for RERI estimates. For the replication analysis in the 

MVP, logistic regression models were used controlling for a similar set of covariates to 

assess GRS-physical inactivity interaction on both multiplicative and additive scale. Odds 

ratio estimates were used to calculate RERI in the MVP replication analysis and same 

bootstrap procedures were done to construct confidence intervals. 

 

Results 

 

A detailed inclusion/exclusion and QC process was presented in Figure I. A total of 

296,500 participants of European ancestry who were free of CAD at baseline from the UK 

Biobank were included in the final analysis. Basic characteristics of the study population 
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were shown in Table I. 9,434 primary incident CAD events were identified from the UK 

Biobank. In our study sample, the mean age at baseline is 56.7 years and slightly more 

females (55%) than males were included. 22.8 percent of the participants who had low 

physical activity level based on self-reported questionnaire data at baseline were defined as 

physically inactive. In the replication analysis using data from the MVP, 78,510 participants 

with no CAD at enrollment were included. A similar inclusion/exclusion process was 

presented in Figure I. Using the indexing-date method, we have identified 6,246 incident 

CAD cases between enrollment and July 1st, 2017. Baseline characteristics of the MVP 

participants were summarized in Table I. The mean age is 65.1 years old and the majority of 

them are male (92%). According to the “Life’s Simple 7” criterion, 23.9 percent of the MVP 

participants were categorized as physically less active.  

 

In the main analysis, a comprehensive CAD-GRS in the UK Biobank was constructed 

based on 161 CAD-loci that were reported in the most recent CAD-GWAS. (van der Harst 

and Verweij 2018) One lead SNP (rs582384) was multiallelic in the UK Biobank so a proxy 

SNP (rs616381, r2=0.86 for European ancestry) was used. A detailed list of all SNPs used for 

score construction can be found in Chapter 2, Table II. In the sub-score analysis, 26 SNPs 

were included in the GRSCAD-BP construction, 17 SNPs were included in the GRSCAD-lipids and 

16 SNPs were included in the GRSCAD-BMI. (Chapter 2, Table III) Associations between all 

four CAD-GRSs with primary incident CAD in the UK Biobank were presented in Table II-

A. One standard deviation (SD) increase in the comprehensive CAD-GRS is independently 

associated with 34.1 percent increase in the risk of primary CAD events (HR: 1.341, 95% CI: 

1.314, 1.368) in the UK Biobank. Comparing to those with low genetic risk of CAD, those at 

intermediate genetic risk had a 44.6 percent increase in the risk or primary CAD events (HR: 

1.446, 95% CI: 1.360, 1.538), and those at high genetic risk had an over two-fold increase in 



 

 

60 

the risk of primary CAD events (HR: 2.215, 95% CI: 2.070, 2.369). Among the three CAD 

mediating trait-based sub-GRSs, the GRSCAD-lipids has the strongest association with incident 

primary CAD events. Participants with a high genetic risk captured by the GRSCAD-lipids had a 

56.3 percent increase in CAD risk comparing to those with low genetic risk (HR: 1.563, 95% 

CI: 1.466, 1.666), and this genetic effect attenuated when focusing on only BP-associated 

CAD loci (HR: 1.428, 95% CI: 1.340, 1.523) or only BMI-associated CAD loci (HR: 1.238, 

95% CI: 1.161, 1.320). For physical activity, those who were physically inactive had a 13.1 

percent increase in CAD risk comparing to those who were physically active (HR: 1.131, 

95% CI: 1.079, 1.184). 

 

To further understand how the genetic predisposition of CAD interacts with physical 

inactivity, we assessed GRS-physical inactivity interaction on both multiplicative and 

additive scale. Combined associations of CAD-GRS and physical inactivity with incident 

CAD in the UK Biobank were presented in Table III-A. Comparing to physically active 

(medium or high level of physical activity) participants with low genetic risk in the UK 

Biobank, those who were physically active but possess a high genetic risk had over two-fold 

increase in CAD risk (HR: 2.239, 95% CI: 2.070,2.422), and those with high genetic risk who 

were physically inactive had an additional elevation in the risk of primary CAD events (HR: 

2.540, 95% CI: 2.304,2.801). Similar patterns were also observed for each of the three CAD 

mediating trait-based sub-GRSs. Comparing to physically active participants with low 

genetic risk in GRSCAD-lipids, physically inactive participants with high genetic risk have a 

slightly higher risk elevation (HR: 1.794, 95% CI: 1.627, 1.977) than physically active 

participants with high genetic risk (HR: 1.579, 95% CI: 1.465, 1.701). The strongest 

combined effect of genetic predisposition and physical inactivity on CAD is observed in 

lipids-associated loci, and BMI-associated loci seem to have weaker effects than lipids or BP-
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associated CAD loci. Overall, no multiplicative interaction between CAD-GRS or CAD-sub-

GRSs and physical inactivity was observed. In the MVP replication analysis, a similar pattern 

of associations between CAD-GRS and incident CAD was observed for the comprehensive 

CAD-GRS as well as GRSCAD-lipids and GRSCAD-BP. (Table II-B) GRSCAD-BMI was found to be 

not associated with incident CAD in the MVP. Lipids sub-GRS had the strongest effect on 

CAD among all three intermediate traits. When combined with physical inactivity, no 

multiplicative interaction was observed. (Table III-B) 

 

We then assessed the additive interaction between CAD-GRSs and physical inactivity 

by calculating RERI for each GRS. (Figure II) No significant additive interaction with 

physical inactivity was observed for comprehensive CAD-GRS, GRSCAD-lipids or GRSCAD-BMI. 

A positive but insignificant trend was found for GRSCAD-BP and physical inactivity in the UK 

Biobank. (Figure II-A) In the MVP replication analysis, negative but insignificant additive 

interaction effects were observed between comprehensive CAD-GRS and physical inactivity 

as well as between GRSCAD-BP and physical inactivity. (Figure II-B) The additive interaction 

effects between GRSCAD-lipids and physical inactivity or between GRSCAD-BMI and physical 

inactivity were positive. To further understand poteinal heterogeneity of gene-physical 

inactivity interaction effects on CAD, we also conducted an individual SNP-based analysis in 

the UK Biobank. No significant interaction was identified after multiple-testing correction on 

any SNP for either multiplicative or additive scale. (Table IV) However, among the 161 loci 

tested, four loci located in genes TGFB1, ATXN2, ZPR1 and ZEB2 had marginally significant 

interaction (p<0.05) on both multiplicative and additive scale.  

 

Discussion 
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In this aim, we assessed how genetic predisposition of CAD captured by CAD-GRS 

interact with physical activity on both multiplicative and additive scale in European 

population using data from two large biobank cohorts. To further understand the role of 

mediating traits such as BP, lipids and BMI in such gene-physical activity interaction on 

CAD, we also developed three separate sub-scores (GRSCAD-BP, GRSCAD-lipids and GRSCAD-

BMI) focusing on genetic loci uniquely associated with one mediating trait as well as CAD 

risk. Overall, we didn’t detect any gene-physical activity interaction effects on either 

multiplicative or additive scale for incident CAD.  

 

Physical inactivity has been established as an independent risk factor for CAD. 

(Winzer, Woitek et al. 2018) Mechanisms of how physical activity impact cardiovascular 

health have been reported for both primary prevention and secondary prevention of CAD. 

(Brown 2003, Linke, Erbs et al. 2008) However, very limited studies have been conducted to 

estimate the gene-physical activity interaction effects on CAD for both multiplicative and 

additive scale. One study has found no multiplicative interaction between physical activity 

and an overall CAD-GRS in the UK Biobank. (Tikkanen, Gustafsson et al. 2018) In our 

study, we confirmed this finding and observed that genetic risk and physical inactivity acted 

multiplicatively on increasing risk for primary incident CAD events.  

 

In our assessment of gene-physical activity interaction on the additive scale, we 

observed positive but insignificant additive interaction effects between physical inactivity 

and GRSCAD-BP in the UK Biobank, which suggests a synergistic but very weak effect. 

However, no such interaction effect was observed for CAD-sub-GRS constructed using 

lipids-associated or BMI-associated loci. In the MVP replication analysis, we observed 

inconsistent results where the overall CAD-GRS and GRSCAD-BP have shown no additive 
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interaction but the GRSCAD-lipids and GRSCAD-BMI have shown very weak but insignificant 

positive additive interaction effects with physical inactivity. Nonetheless, the MVP results 

were still questionable since we observed null marginal effects between physical inactivity 

and incident CAD, which is inconsistent with physical inactivity being an independent risk 

factor for CAD. 

 

We also explored gene-physical activity interaction in the UK Biobank based on 

individual CAD-associated loci, and no significant interaction was observed for either 

multiplicative or additive scale after multiple testing correction. However, four loci in genes 

TGFB1, ATXN2, ZPR1 and ZEB2 showed marginally significant interaction on both 

multiplicative and additive scale. TGFB1 is a member of the transforming growth factor beta 

(TGFB) superfamily and the role of TGFB in myocardial infarcts and ischemic heart diseases 

has been previously reviewed. (Bujak and Frangogiannis 2007, Gordon and Blobe 2008) 

TGFB1 has also been linked with mitochondrial fuel oxidation in skeletal muscle after 

exercise and contribute to the level of insulin sensitivity which is relevant with prevention of 

type 2 diabetes. The ATXN2 locus was also reported to be associated with expression levels 

of gene MAPKAPK5, which belongs to the same serine/threonine kinase family as type I and 

type II receptors of the canonical TGFB signaling cascade, but the exact role of this locus in 

CAD remains inconclusive. (Zeng, Dang et al. 2016) ZPR1(ZNF259) locus is associated with 

both lipids profile and risk of CAD (Waterworth, Ricketts et al. 2010) but the mechanism of 

how this locus can interact with physical inactivity remains unclear. 

 

With data from two of the largest biobank cohorts, we assessed how genetic 

predisposition to CAD captured by weighted CAD-GRS interacts with physical activity on 

the risk of primary incident CAD among the European population. We didn’t observe any 
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significant interaction effects on either multiplicative or additive scale, which can be partly 

explained by the limited power using self-reported physical activity levels. A previous study 

in the UK Biobank has also reported weaker effect of questionnaire-based physical activity 

comparing to objectively measured physical activity on cardiovascular events. (Tikkanen, 

Gustafsson et al. 2018) However, a positive synergistic trend was observed on additive scale 

between GRSCAD-BP and physical inactivity on CAD in the UK Biobank, meaning the 

mechanistic interaction between genetic predisposition and physical inactivity on CAD might 

predominantly act through BP-related pathways. No gene-physical activity interaction has 

been previously examined and reported on the additive scale despite the additive scale being 

of greater public heath interest as well as more closely aligned with mechanistic interaction 

under certain assumptions. (VanderWeele 2009) Therefore, we have made the very first 

effort in assessing gene-physical interaction for incident CAD on both scale and future 

studies with better measured physical activity levels should be conducted to further evaluate 

such interaction effects. 

 

Our study also has several limitations. First, using data from two of the largest 

biobank cohorts we relied on self-reported measurements of physical activity level as well as 

other potential confounding CAD risk factors such as smoking, alcohol consumption, history 

of hypertension and diabetes, thus there might be residual confounding in the interaction 

assessment due to inaccurately measured or unmeasured confounding factors. However, to 

balance the statistical power required for gene-lifestyle interaction studies and measurement 

accuracy as well as ensuring a homogeneous study population, biobank cohorts seem to be so 

far the best data resource in conducting large scale gene-lifestyle interaction studies. Second, 

we used the MVP cohort as a replication cohort for our primary analysis conducted in the UK 

Biobank, but the two populations differ in many aspects, which limited the power and 
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validity of the replication analysis. In addition, CAD cases were captured in slightly different 

ways between these two cohorts due to restrictions in data availability, which also lead to 

different definitions of some covariates in the analysis. Therefore, our results need to be 

interpreted with caution when comparing the primary and replication analysis. 

 

Conclusion 

 

Using data from the UK Biobank and the MVP cohort, we have prospectively 

assessed gene-physical activity interaction on incident CAD on both additive and 

multiplicative scale. No multiplicative or additive interaction was found between genetic 

predisposition and physical activity, but our findings have raised hypothesis with respect to 

different interplaying mechanisms between genetic predisposition to CAD and physical 

activity, and highlighted the value of addressing gene-lifestyle interactions in CAD on both 

additive and multiplicative scale. 
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Table I. Characteristics of the study population 

Characteristic Mean (SD) or N (%) 
 UK Biobank (N=296,500) MVP (N=78,510) 
Age 56.7 (8.0) 65.1 (11.5) 
Female 162,659 (54.9%) 6,246 (8.0%) 
BMI 27.3 (4.7) 29.8 (5.6) 
Physical Activity   
  Low 67,726 (22.8%) 18,727 (23.9%) 
  Medium or High 228,774 (77.2%) 59,783 (76.1%) 
Smoking Status   
  Current 27,788 (9.4%) 12,265 (15.6%) 

Past 103,623 (34.9%) 39,704 (50.6%) 
Never 170,817 (55.7%) 26,541 (33.8%) 

Alcohol Consumption   
Ever 287,870 (97.1%) 48,324 (61.6%) 
Never 8,630 (2.9%) 30,186 (38.4%) 

Hypertension 76,517 (25.8%) 44,468 (56.6%) 
Diabetes 12,522 (4.2%) 16,809 (21.4%) 
Lipids Medication 43,601 (14.7%) 34,809 (44.3%) 
Education   

School leaving age >=15 236,853 (79.9%) n/a 
School leaving age <15 59,647 (20.1%) n/a 
Some college or higher n/a 60,760 (77.4%) 

Townsend Index -1.7 (2.9) n/a 
Income   

$50,000 or above n/a 30,243 (38.5%) 
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Table II. Associations of comprehensive CAD genetic risk score (CAD-GRS) and three CAD mediating trait-based sub-genetic risk 

scores (sub-GRSs) with incident CAD 

A. UK Biobank (HR and 95% CI) 

CAD-GRS Comprehensive GRS GRSCAD-BP GRSCAD-lipids GRSCAD-BMI 

per SD increase 
1.341 

(1.314, 1.368) 
1.140 

(1.118,1.163) 
1.187 

(1.164, 1.211) 
1.075 

(1.053, 1.097) 
Low risk Ref. Ref. Ref. Ref. 

Intermediate risk 
1.446 

(1.360, 1.538) 
1.172 

(1.109, 1.239) 
1.202 

(1.137, 1.272) 
1.121 

(1.061, 1.184) 

High risk 
2.215 

(2.070, 2.369) 
1.428 

(1.340, 1.523) 
1.563 

(1.466, 1.666) 
1.238 

(1.161, 1.320) 
 

B. MVP (OR and 95% CI) 

CAD-GRS Comprehensive GRS GRSCAD-BP GRSCAD-lipids GRSCAD-BMI 

per SD increase 
1.221 

(1.189, 1.254) 
1.069 

(1.042,1.097) 
1.144 

(1.114, 1.174) 
1.023 

(0.997, 1.049) 
Low risk Ref. Ref. Ref. Ref. 

Intermediate risk 
1.359 

(1.262, 1.465) 
1.092 

(1.019, 1.171) 
1.194 

(1.112, 1.282) 
1.051 

(0.984, 1.122) 

High risk 
1.815 

(1.666, 1.976) 
1.211 

(1.115, 1.315) 
1.455 

(1.339, 1.581) 
1.072 

(0.990, 1.161) 
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Table III. Combined associations of CAD-GRSs and physical inactivity with incident CAD 

A. UK Biobank (HR and 95% CI) 

  Physical Activity P-value for 
Multiplicative 

Interaction   Medium or High Low 

CAD-GRS 

Low Risk Ref. 
1.183 

(1.043,1.341) 

0.72 Intermediate Risk 
1.468 

(1.366,1.578) 
1.640 

(1.508,1.783) 

High Risk 
2.239 

(2.070,2.422) 
2.540 

(2.304,2.801) 

GRSCAD-BP 

Low Risk Ref. 
1.093  

(0.977, 1.223) 

0.72 Intermediate Risk 
1.157  

(1.084, 1.234) 
1.331  

(1.233, 1.437) 

High Risk 
1.417  

(1.315, 1.526) 
1.598  

(1.447, 1.764) 

GRSCAD-lipids 

Low Risk Ref. 
1.180 

(1.056, 1.320) 

0.83 Intermediate Risk 
1.215 

(1.138, 1.297) 
1.380 

(1.277, 1.491) 

High Risk 
1.579 

(1.465, 1.701) 
1.794 

(1.627, 1.977) 

GRSCAD-BMI 

Low Risk Ref. 
1.161 

(1.041, 1.296) 

0.50 Intermediate Risk 
1.110 

(1.042, 1.183) 
1.337 

(1.240, 1.441) 

High Risk 
1.248 

(1.158, 1.345) 
1.408 

(1.273, 1.557) 
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B. MVP (OR and 95% CI) 

  Physical Activity P-value for 
Multiplicative 

Interaction   Medium or High Low 

CAD-GRS 

Low Risk Ref. 
1.042 

(0.892,1.217) 

0.26 Intermediate Risk 
1.411 

(1.213,1.643) 
1.399 

(1.215,1.611) 

High Risk 
1.860 

(1.565,2.210) 
1.875 

(1.616,2.177) 

GRSCAD-BP 

Low Risk Ref. 
1.069  

(0.927, 1.232) 

0.63 Intermediate Risk 
1.146  

(0.994, 1.320) 
1.150  

(1.009, 1.310) 

High Risk 
1.322  

(1.118, 1.563) 
1.258  

(1.093, 1.448) 

GRSCAD-lipids 

Low Risk Ref. 
0.926 

(0.802, 1.068) 

0.16 Intermediate Risk 
1.135 

(0.986, 1.307) 
1.124 

(0.988, 1.280) 

High Risk 
1.272 

(1.075, 1.506) 
1.406 

(1.224, 1.614) 

GRSCAD-BMI 

Low Risk Ref. 
0.879 

(0.770, 1.003) 

0.44 Intermediate Risk 
0.986 

(0.864, 1.126) 
0.943 

(0.836, 1.064) 

High Risk 
1.006 

(0.855, 1.183) 
0.962 

(0.844, 1.097) 
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Table IV. Interaction between CAD-associated SNPs and physical inactivity on Incident CAD in the UK Biobank 

SNP CHR POS Locus EA 
Coefficients P-value 

RERI P-value of RERI 
SNP Low PA Interaction (Interaction) 

rs8108632 19 41854534 TGFB1 T 0.036 0.064 0.072 0.03 0.085 0.02 

rs10774625 12 111910219 ATXN2 A 0.058 0.205 -0.080 0.02 -0.086 0.03 

rs964184 11 116648917 ZPR1 G -0.013 0.096 0.103 0.03 0.116 0.03 

rs7528419 1 109817192 CELSR2 A 0.061 0.010 0.072 0.08 0.081 0.03 

rs17678683 2 145286559 ZEB2 G -0.007 0.103 0.115 0.04 0.134 0.03 

rs2107595 7 19049388 HDAC9 A 0.046 0.097 0.086 0.05 0.108 0.04 

rs975722 7 117332914 CFTR G 0.009 0.075 0.064 0.06 0.072 0.04 

rs76954792 17 30033514 RP11-805L22.1 T -0.003 0.089 0.075 0.05 0.085 0.04 

rs116843064 19 8429323 ANGPTL4 G 0.052 -0.227 0.179 0.17 0.154 0.05 

rs2083636 8 19865263 LPL T 0.013 0.027 0.065 0.09 0.070 0.05 

rs11617955 13 110818102 COL4A1 T 0.066 0.331 -0.116 0.03 -0.136 0.06 

rs13003675 2 233584109 GIGYF2 T -0.007 0.080 0.061 0.07 0.067 0.06 

rs4918072 10 105693644 STN1 A 0.029 0.090 0.062 0.09 0.075 0.06 

rs1887318 10 30321598 KIAA1462 T 0.056 0.185 -0.067 0.04 -0.071 0.07 

rs12493885 3 153839866 ARHGEF26 C 0.119 0.305 -0.105 0.03 -0.107 0.07 

rs4643373 17 47123423 IGF2BP1 T -0.011 0.043 0.058 0.11 0.061 0.09 

rs9349379 6 12903957 PHACTR1 G 0.048 0.086 0.046 0.17 0.058 0.10 

rs2107732 7 45077978 CCM2 G 0.096 0.324 -0.109 0.06 -0.119 0.12 

rs2074158 17 40257163 DHX58 C 0.048 0.149 -0.071 0.10 -0.076 0.12 

rs35541991 6 22583856 RP1-309H15.2 C 0.011 0.089 0.049 0.15 0.057 0.12 

rs7623687 3 49448566 RHOA A 0.007 0.014 0.064 0.18 0.068 0.13 

rs7947761 11 100624599 ARHGAP42 G 0.044 0.159 -0.058 0.11 -0.061 0.14 

rs12999907 2 164957251 AC092684.1 A 0.054 0.039 0.052 0.24 0.061 0.14 

rs9501744 6 1617143 FOXC1 C 0.065 0.254 -0.075 0.13 -0.079 0.19 
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rs6689306 1 154395946 IL6R A 0.009 0.090 0.041 0.22 0.047 0.19 

rs1508798 5 9556694 RP11-260E18.1 T 0.038 0.049 0.046 0.29 0.053 0.21 

rs2246942 10 91004886 LIPA G 0.012 0.097 0.040 0.24 0.047 0.21 

rs1867624 17 62387091 RPL31P57 T 0.034 0.182 -0.047 0.17 -0.050 0.21 

rs7696431 4 169687725 PALLD T 0.029 0.171 -0.044 0.18 -0.047 0.22 

rs246600 5 142516897 ARHGAP26 T 0.055 0.169 -0.047 0.16 -0.047 0.22 

rs61848342 10 12303813 RN7SL232P C 0.072 0.162 -0.049 0.15 -0.047 0.23 

rs1050362 16 72130815 DHX38 A 0.015 0.154 -0.043 0.22 -0.047 0.23 

rs3936511 5 55860781 C5orf67 G 0.007 0.106 0.047 0.26 0.054 0.23 

rs11191416 10 104604916 PFN1P11 T 0.031 0.265 -0.077 0.19 -0.090 0.23 

rs77335401 5 131759825 C5orf56 C 0.027 0.140 -0.062 0.23 -0.067 0.23 

rs2083460 15 89574484 RP11-326A19.2 T 0.081 0.292 -0.090 0.15 -0.096 0.24 

rs9964304 18 47229717 RP11-813F20.2 C 0.063 0.106 0.034 0.36 0.048 0.24 

rs3851738 16 75387533 CFDP1 C 0.042 0.177 -0.044 0.19 -0.045 0.25 

rs6984210 8 22033615 BMP1 G 0.075 0.116 0.070 0.31 0.098 0.25 

rs12202017 6 134173151 TARID A 0.062 0.194 -0.049 0.18 -0.048 0.26 

rs60154123 1 210468999 RP4-667H12.4 T 0.053 0.111 0.042 0.34 0.056 0.26 

rs3918226 7 150690176 NOS3 T 0.043 0.114 0.058 0.32 0.075 0.27 

rs11677932 2 238223955 STK25 G 0.058 0.187 -0.046 0.20 -0.045 0.28 

rs17581137 15 96146414 RP11-61O11.1 A 0.035 0.193 -0.046 0.23 -0.048 0.28 

rs1924981 13 29022645 FLT1 T 0.009 0.149 -0.038 0.29 -0.042 0.29 

rs9367716 6 57160572 RNU7-66P G 0.037 0.184 -0.042 0.25 -0.044 0.30 

rs7164479 15 79123054 MORF4L1 T 0.052 0.094 0.027 0.43 0.037 0.30 

rs11601507 11 5701074 TRIM5 A 0.072 0.135 -0.070 0.27 -0.073 0.31 

rs7617773 3 48193515 TKT T -0.016 0.078 0.035 0.31 0.037 0.31 

rs72627509 4 57839051 NOA1 G 0.015 0.110 0.039 0.35 0.047 0.31 

rs3832966 14 75614504 TMED10 ACCCG 0.058 0.162 -0.039 0.24 -0.037 0.32 

rs9897596 17 17593453 RAI1 T 0.011 0.156 -0.033 0.31 -0.037 0.32 
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rs67180937 1 222823743 MIA3 G 0.062 0.193 -0.046 0.24 -0.044 0.33 

rs6700559 1 200646073 RP11-92G12.3 C 0.020 0.094 0.029 0.39 0.034 0.33 

rs10840293 11 9751196 SWAP70 A 0.034 0.094 0.027 0.42 0.034 0.33 

rs2820315 1 201872264 LMOD1 T 0.054 0.151 -0.039 0.26 -0.038 0.34 

rs699 1 230845794 AGT G 0.026 0.102 0.028 0.41 0.035 0.34 

rs2229357 12 57843711 INHBC G 0.036 0.079 0.030 0.44 0.037 0.34 

rs10139550 14 100145710 HHIPL1 G 0.035 0.103 0.026 0.44 0.034 0.35 

rs10953541 7 107244545 BCAP29 C 0.002 0.076 0.032 0.40 0.036 0.36 

rs1800449 5 121413208 LOX T -0.005 0.111 0.039 0.37 0.043 0.36 

rs6841581 4 148401190 EDNRA A 0.061 0.139 -0.049 0.31 -0.049 0.37 

rs10093110 8 106565414 ZFPM2 G 0.010 0.091 0.028 0.41 0.032 0.37 

rs247616 16 56989590 AC012181.1 C 0.006 0.085 0.029 0.41 0.033 0.37 

rs6905288 6 43758873 VEGFA A 0.061 0.101 0.021 0.54 0.031 0.38 

rs260020 20 57714025 ZNF831 T 0.032 0.115 0.038 0.44 0.049 0.38 

rs16986953 2 19942473 AC019055.1 A 0.057 0.133 -0.062 0.35 -0.064 0.38 

rs6511720 19 11202306 LDLR G 0.090 0.227 -0.058 0.27 -0.053 0.39 

rs216172 17 2126504 SMG6 C 0.034 0.148 -0.033 0.34 -0.034 0.39 

rs944172 9 110517794 AL162389.1 C 0.018 0.108 0.028 0.44 0.034 0.39 

rs11830157 12 118265441 KSR2 G 0.017 0.149 -0.030 0.38 -0.032 0.40 

rs10237377 7 139757136 PARP12 G 0.030 0.168 -0.032 0.35 -0.033 0.41 

rs7116641 11 43696917 RP11-472I20.4 G 0.018 0.108 0.026 0.46 0.032 0.41 

rs6997340 8 18286997 NAT2 T 0.021 0.143 -0.032 0.39 -0.034 0.42 

rs180803 22 24658858 POM121L9P G 0.114 0.447 -0.163 0.30 -0.195 0.42 

rs7412 19 45412079 APOE C 0.088 0.237 -0.060 0.32 -0.057 0.43 

rs35879803 4 146782837 ZNF827 C 0.022 0.162 -0.029 0.41 -0.030 0.45 

rs3827066 20 44586023 ZNF335 T 0.024 0.136 -0.037 0.43 -0.039 0.45 

rs73015714 19 17855763 FCHO1 G 0.056 0.115 0.022 0.58 0.034 0.46 

rs2493298 1 3325912 PRDM16 A 0.049 0.136 -0.040 0.40 -0.040 0.46 
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rs7306455 12 95355541 NDUFA12 G 0.063 0.070 0.030 0.60 0.040 0.47 

rs11057401 12 124427306 CCDC92 T 0.027 0.164 -0.029 0.42 -0.029 0.47 

rs7797644 7 6486067 DAGLB C 0.028 0.089 0.023 0.55 0.029 0.47 

rs616381 2 45891708 PRKCE A 0.027 0.101 0.020 0.56 0.026 0.47 

rs4266144 3 156852592 SPTSSB G 0.052 0.143 -0.030 0.41 -0.028 0.50 

rs11509880 7 12261911 TMEM106B A 0.018 0.141 -0.025 0.48 -0.026 0.51 

rs17517928 2 216291359 FN1 C 0.015 0.091 0.022 0.56 0.027 0.51 

rs1321309 6 36638636 LAP3P2 A 0.027 0.107 0.018 0.59 0.023 0.51 

rs7633770 3 46688562 SNORD77 A 0.034 0.110 0.017 0.62 0.023 0.52 

rs2972146 2 227100698 NEU2 T 0.008 0.099 0.020 0.56 0.023 0.53 

rs6102343 20 39924279 ZHX3 A 0.022 0.115 0.021 0.59 0.027 0.53 

rs585967 2 21270554 APOB C 0.007 0.079 0.027 0.57 0.030 0.53 

rs4472337 6 34769765 UHRF1BP1 T 0.029 0.117 0.024 0.60 0.031 0.54 

rs28451064 21 35593827 AP000318.2 A 0.106 0.120 0.015 0.75 0.034 0.56 

rs3130683 6 31888367 C2 T -0.002 0.080 0.026 0.58 0.029 0.56 

rs7199941 16 81906423 PLCG2 A 0.030 0.114 0.014 0.67 0.020 0.59 

rs1351525 11 13301548 ARNTL T 0.013 0.154 -0.021 0.57 -0.022 0.60 

rs56170783 1 57016131 PLPP3 A 0.153 0.222 -0.053 0.37 -0.034 0.60 

rs840616 2 188196469 AC007319.1 C 0.033 0.106 0.014 0.70 0.020 0.60 

rs4299376 2 44072576 ABCG8 G 0.029 0.115 0.014 0.69 0.020 0.60 

rs10267593 7 1937261 MAD1L1 G 0.003 0.089 0.021 0.63 0.024 0.61 

rs11838267 12 7175872 C1S T 0.030 0.090 0.020 0.69 0.025 0.61 

rs10455872 6 161010118 LPA G 0.226 0.134 -0.051 0.36 -0.035 0.63 

rs11810571 1 151762308 TDRKH G 0.019 0.094 0.018 0.69 0.023 0.64 

rs10841443 12 20220033 RP11-664H17.1 G 0.049 0.155 -0.022 0.53 -0.019 0.64 

rs885150 9 124420173 DAB2IP C 0.023 0.117 0.014 0.70 0.019 0.64 

rs2839812 11 103673294 RP11-563P16.1 T 0.047 0.118 0.011 0.77 0.019 0.64 

rs4752700 10 124237612 HTRA1 G 0.042 0.142 -0.020 0.55 -0.017 0.65 
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rs11723436 4 120901336 RP11-170N16.1 G 0.031 0.117 0.012 0.74 0.018 0.65 

rs17080091 6 150997401 PLEKHG1 C 0.082 0.093 0.017 0.80 0.029 0.66 

rs867186 20 33764554 PROCR A 0.034 0.087 0.021 0.73 0.027 0.66 

rs9591012 13 33058333 N4BP2L2 G 0.006 0.107 0.014 0.69 0.016 0.66 

rs742115 6 11327021 NEDD9 C 0.012 0.141 -0.015 0.65 -0.016 0.67 

rs6494488 15 65024204 RBPMS2 A 0.023 0.097 0.016 0.73 0.021 0.67 

rs11099493 4 82587050 RASGEF1B A 0.008 0.145 -0.015 0.66 -0.017 0.68 

rs11170820 12 54513915 FLJ12825 G 0.103 0.129 -0.039 0.57 -0.034 0.68 

rs9818870 3 138122122 MRAS T 0.048 0.132 -0.023 0.60 -0.021 0.68 

rs1591805 6 126717064 RP11-394G3.2 A 0.027 0.115 0.010 0.77 0.015 0.68 

rs2145598 14 58794001 ARID4A G 0.037 0.140 -0.018 0.60 -0.015 0.69 

rs8068952 17 59286644 BCAS3 G 0.041 0.133 -0.020 0.63 -0.017 0.71 

rs61776719 1 38461319 SF3A3 A 0.024 0.142 -0.015 0.65 -0.014 0.71 

rs1892094 1 169094459 ATP1B1 C 0.026 0.139 -0.015 0.65 -0.014 0.71 

rs56015508 6 39152041 KCNK5 C 0.012 0.105 0.013 0.75 0.016 0.72 

rs2891168 9 22098619 CDKN2B-AS1 G 0.150 0.155 -0.030 0.36 -0.013 0.72 

rs12500824 4 77416627 SHROOM3 A 0.031 0.119 0.008 0.81 0.014 0.72 

rs36096196 1 2252205 MORN1 T 0.074 0.133 -0.024 0.60 -0.018 0.73 

rs17680741 10 82251514 TSPAN14 T 0.053 0.152 -0.019 0.61 -0.014 0.73 

rs2306556 4 156638573 GUCY1A3 A 0.055 0.113 0.007 0.87 0.015 0.73 

rs2832227 21 30533076 MAP3K7CL G 0.054 0.122 0.008 0.86 0.017 0.74 

rs2244608 12 121416988 HNF1A G 0.059 0.136 -0.018 0.61 -0.013 0.75 

rs12801636 11 65391317 PCNX3 G 0.031 0.149 -0.016 0.69 -0.014 0.76 

rs13723 17 27941886 CORO6 G 0.024 0.136 -0.012 0.72 -0.010 0.78 

rs17608766 17 45013271 GOSR2 C 0.026 0.129 -0.014 0.76 -0.013 0.81 

rs10512861 3 132257961 DNAJC13 G 0.025 0.150 -0.015 0.77 -0.013 0.81 

rs17843797 3 124453022 UMPS G 0.061 0.124 0.004 0.93 0.013 0.81 

rs7500448 16 83045790 CDH13 A 0.035 0.144 -0.013 0.74 -0.010 0.82 
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rs2571445 2 218683154 TNS1 A 0.012 0.120 0.006 0.85 0.009 0.82 

rs590121 11 75274150 SERPINH1 T 0.022 0.131 -0.011 0.77 -0.010 0.82 

rs114123510 2 203831212 CARF A 0.063 0.129 -0.018 0.71 -0.012 0.82 

rs11556924 7 129663496 ZC3HC1 C 0.028 0.138 -0.011 0.76 -0.008 0.83 

rs2681472 12 90008959 ATP2B1 G 0.040 0.123 0.004 0.93 0.010 0.84 

rs111245230 9 113169775 SVEP1 C 0.069 0.126 -0.024 0.79 -0.019 0.85 

rs72743461 15 67441750 SMAD3 C 0.039 0.142 -0.011 0.77 -0.007 0.86 

rs2954029 8 126490972 RP11-136O12.2 A 0.030 0.134 -0.009 0.79 -0.006 0.87 

rs663129 18 57838401 RNU4-17P A 0.016 0.128 -0.008 0.84 -0.007 0.88 

rs16844401 4 3449652 HGFAC A 0.017 0.124 0.007 0.91 0.011 0.88 

rs667920 3 136069472 STAG1 T 0.023 0.121 0.002 0.95 0.006 0.89 

rs7568458 2 85788175 GGCX A 0.036 0.126 -0.001 0.98 0.004 0.92 

rs10857147 4 81181072 RP11-576N17.4 T 0.045 0.130 -0.009 0.81 -0.004 0.92 

rs1317507 13 113631780 MCF2L A 0.028 0.124 0.000 0.99 0.004 0.92 

rs4613862 6 82612271 RP11-379B8.1 A 0.026 0.125 0.000 0.99 0.003 0.93 

rs10417115 19 33386556 CEP89 C 0.026 0.125 0.002 0.98 0.006 0.95 

rs2071382 15 91428197 FES T 0.070 0.131 -0.006 0.85 0.002 0.95 

rs3775058 4 96117371 UNC5C A 0.023 0.127 -0.005 0.91 -0.002 0.96 

rs11806316 1 115753482 RP4-663N10.1 G 0.033 0.128 -0.002 0.95 0.002 0.96 

rs1870634 10 44480811 LINC00841 G 0.041 0.133 -0.007 0.85 -0.002 0.96 

rs507666 9 136149399 ABO A 0.007 0.126 -0.002 0.95 -0.002 0.97 

rs748431 3 14928077 FGD5 G 0.025 0.128 -0.004 0.90 -0.001 0.97 

rs12897 3 172115902 FNDC3B G 0.051 0.130 -0.007 0.83 -0.001 0.97 

rs11591147 1 55505647 PCSK9 G 0.274 0.214 -0.045 0.75 0.004 0.98 

rs112635299 14 94838142 SERPINA1 G 0.122 0.163 -0.019 0.87 -0.003 0.98 
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Figure I. Study population QC process 

A. UK Biobank 

 

B. The MVP Cohort 
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CAD before baseline
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Missingness
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504,027 participants 
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351,820 participants 
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237,004 participants 
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Missingness
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78,510 participants of 
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Figure II. Relative excess risk due to interaction (RERI) for CAD-GRSs and physical 

inactivity on incident CAD (Physically active individuals with low genetic risk were used as 

reference group for each score; 95% CI: 95% bootstrap confidence interval) 

 

A. UK Biobank 
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B. MVP  
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Chapter 4 

 

Genome-wide association studies of coronary artery diseases accounting for gene-

smoking interaction or gene-physical activity interaction 

 

Introduction 

 

Gene-environment interaction is an important component of the genetic architecture 

of complex diseases. Because environmental factors contribute to variation in disease 

development, accounting for environmental exposures and G×E interactions in genetic 

studies of complex diseases may affect overall trait variance when investigating genetic 

contributions and can potentially identify novel loci, highlighting new biological processes 

and pathways.(Kraft, Yen et al. 2007) Conventional GWAS of complex disease focused only 

on the marginal genetic effects, which may miss variants that exert effect through interactions 

with environmental factors. Studies have shown better power when environmental factors 

such as smoking and physical activity were considered for investigating novel loci for 

complex traits such as BMI.(Graff, Scott et al. 2017, Justice and Winkler 2017) 

 

CAD is a complex disease with both a genetic and an environmental component and 

smoking as well as physical activity contributes to the variation in CAD risk, hence, 

accounting for smoking/physical activity or gene-smoking/gene-physical activity interaction 

can improve power for the discovery of CAD-associated loci. To our knowledge, no GWAS 

of CAD has been done incorporating such environmental factors or G×E interaction effects. 

A joint two degree of freedom (2-df) testing approach has been proposed to provide better 

power for GWAS and can be used to identify novel loci. (Kraft, Yen et al. 2007) However, 
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this approach hasn’t been implemented in any of the large-scale GWAS of CAD. Recent 

efforts from the CHARGE Gene-Lifestyle Interactions Working Group have shown 

promising results in using the 2-df testing approach for conducting large scale GWAS of 

CAD risk factors such as blood pressure and lipids. (Feitosa, Kraja et al. 2018, Sung, Winkler 

et al. 2018, Bentley, Sung et al. 2019, de Vries, Brown et al. 2019) Therefore, the purpose of 

this study is to conduct two separate GWASs accounting for 1) gene-smoking interaction; 

and 2) gene-physical activity interaction as well as marginal genetic effect using a joint 2-df 

testing approach in European ancestry, respectively. 

 

Methods 

 

Study population (same as Chapter 2 and Chapter 3, descriptive section for the UK 

Biobank) 

 

The study population of this aim consists of participants with European ancestry from 

the UK Biobank (https://www.ukbiobank.ac.uk/) cohort. The UK Biobank is a major national 

and international health resource, and a registered charity in its own right, with the aim of 

improving the prevention, diagnosis and treatment of a wide range of serious and life-

threatening illnesses. It is following the health and well-being of 500,000 volunteer 

participants and provides health information, which does not identify them, to approved 

researchers in the UK and overseas, from academia and industry. Both genetic and 

phenotypic data for all participants in the UK Biobank were obtained for this study. The UK 

Biobank genetic data contains genome-wide genotypes for 488,377 participants. (Bycroft, 

Freeman et al. 2018) These were assayed using two very similar genotyping arrays. A subset 

of 49,950 participants involved in the UK Biobank Lung Exome Variant Evaluation (UK 
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BiLEVE) study were genotyped at 807,411 markers using the Applied Biosystems UK 

BiLEVE Axiom Array by Affymetrix (now part of Thermo Fisher Scientific), and 438,427 

participants were genotyped using the closely related Applied Biosystems UK Biobank 

Axiom Array (825,927 markers) that shares 95% of marker content with the UK BiLEVE 

Axiom Array. A quality control pipeline was developed and applied specifically to 

accommodate the large-scale dataset of ethnically diverse participants, genotyped in many 

batches, using two slightly different arrays, and which will be used by many researchers to 

tackle a wide variety of research questions. Markers that passed the quality control check 

were imputed using the Haplotype Reference Consortium (HRC) reference panel as well as 

the merged UK10K and 1000 Genomes phase 3 reference panels. Information was then 

combined using the HRC data as the primary resource. For phenotype data, participants 

provided electronic signed consent, answered questions on socio-demographic, lifestyle and 

health-related factors, and completed a range of physical measures at baseline recruitment. 

All participants also provided consent for follow-up through linkage to their health-related 

records including in-patient hospital episode statistics and national death registry data. 

 

CAD identification 

 

In the UK Biobank, participants’ survey data is linked to in-patient hospital episode 

statistics (HES) as well as national death registry data. CAD definition is referenced from the 

recent GWAS of CAD using the UK Biobank data. (van der Harst and Verweij 2018) A 

participant is defined as a CAD case if he/she has at least one occurrence of the following 

International Classification of Diseases, 10th edition (ICD-10) codes: I21-I25 covering 

ischemic heart diseases; or at least one occurrence of the following Office of Population 

Censuses and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4) 
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codes: K40-K46, K49, K50 and K75 which includes replacement, transluminal balloon 

angioplasty, and other therapeutic transluminal operations on coronary artery and 

percutaneous transluminal balloon angioplasty and insertion of stent into coronary artery. 

Death because of CAD was defined as an occurrence of any ICD-10 codes stated above in the 

primary cause of death. CAD cases included both CAD cases captured by HES data and 

deaths of CAD captured by the death registry data. 

 

Genetic data processing and principle component analysis (same as Chapter 2 and 

Chapter 3) 

 

Genome-wide genotyped SNP data of the UK Biobank was first examined by quality 

control procedures. Markers or individuals with a call rate less than 95 percent were also 

excluded. SNPs with Hardy-Weinberg Equilibrium p-value less than 10-6 or minor allele 

frequency less than 0.0001 were excluded. Individuals with genetically defined non-

European ancestry were excluded. To remove up to the 3rd degree relatedness among the UK 

Biobank participants, a pairwise kinship coefficient matrix was used with kinship larger than 

or equal to 0.0442 as a cutoff to filter the related individual pairs. SNPs that passed the 

quality control procedure were then undergone a linkage disequilibrium (LD) pruning 

procedure with a window size of 50 kb, a step size of 5 variants, and an r2 threshold of 0.05. 

LD pruned SNPs were then used in the principle component analysis. Top ten principle 

components were calculated and included in the main analysis as covariates to control for 

population stratification. 

 

Statistical analysis 
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In this aim, two GWASs of CAD accounting for 1) smoking and gene-smoking 

interaction and 2) physical activity and gene-physical activity interaction were conducted 

using a logistic regression model: 

!"#$%&'()*+ = 1)/ = 	b1 + b345' + b67 + b845' × 7 + b:) 

A joint 2-df testing approach was applied by testing: 

b3 = b8 = 0 

Smoking was categorized into current smokers vs. non-current smokers, and physical 

activity was categorized into low physical activity (inactive) vs. moderate or high physical 

activity (active). SNPs with minor allele frequency larger than 0.005, an imputation quality 

score at least 0.8, and Hardy-Weinberg Equilibrium p-value larger than 10-10 were kept in the 

analysis. A conventional Bonferroni correction p<5×10-8 was used to identify genome-wide 

significant loci. All significant loci were compared to previously reported CAD-associated 

loci for identification of novel loci. Age, sex and top ten principle components of the GWAS 

data were controlled for as covariates. Both GWASs were conducted using SUGEN (Lin, Tao 

et al. 2014) and robust variance estimates were used to correct for potential heteroscedasticity 

in GWASs accounting for environmental factors as well as gene-environment interaction 

effects. (Almli, Duncan et al. 2014) 

 

Results 

 

GWAS of CAD accounting for current smoking and gene-current smoking interaction 

 

20,953 CAD cases and 303,547 controls of European ancestry were included in the 

GWAS accounting for current smoking and gene-current smoking interaction. (Figure I-A) 

Descriptive statistics of the study population are presented in Table I-A. 8.34 million SNPs 
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passed QC and were tested using the joint 2-df approach. 1,132 SNPs were genome-wide 

significant. (joint 2-df p<5´10-8) After merging significant signals with genomic distance less 

than 500 kb or in linkage disequilibrium (r2 >0.1), 22 genome-wide significant loci were 

detected. (Figure 1) Comparing to the most recent CAD-GWAS meta-analysis conducted by 

van der Harst et al using data from the UK Biobank and CARDIoGRAMplusC4D 

consortium, (van der Harst and Verweij 2018) one locus (8q22.3) was not reported. (Figure I-

B) A further examination showed that this locus was not replicated in the 

CARDIoGRAMplusC4D consortium and was not genome-wide significant in their meta-

analysis. (van der Harst and Verweij 2018) However, the mapped gene at this locus NCALD 

has been reported to be associated with systolic blood pressure (Evangelou, Warren et al. 

2018) and previous analysis in the UK Biobank has also identified this locus as associated 

with cardiovascular diseases. (Kichaev, Bhatia et al. 2019) Overall, the joint 2-df testing 

approach accounting for current smoking as well as gene-current smoking interaction effects 

has added little information or statistical power over the conventional CAD-GWAS of main 

genetic effect. The comparison between p-values of the joint 2-df approach and p-values of 

the conventional GWAS approach were presented in Figure II. The overall distributions were 

almost identical with conventional GWAS being slightly more powerful. (Figure II-A) 

Focusing on genome-wide significant SNPs (joint 2-df p<5´10-8), the two approaches had 

similar statistical power. (Figure II-B) When comparing suggestively associated SNPs (p<10-

5), the majority had smaller p-values as well as better power using the conventional GWAS 

approach. (Figure II-C) 

 

GWAS of CAD accounting for physical activity and gene-physical activity interaction 

 



 

 

85 

20,154 CAD cases and 293,476 controls of European ancestry were included in the 

GWAS accounting for physical activity and gene-physical activity interaction. (Figure I-B) 

Descriptive statistics of the study population are presented in Table I-B. 8.34 million SNPs 

passed QC and were tested using the joint 2-df approach. 1,073 SNPs were genome-wide 

significant. (joint 2-df p<5´10-8) After merging significant signals with genomic distance less 

than 500 kb or in linkage disequilibrium (r2 >0.1), 22 genome-wide significant loci were 

detected. (Figure III) Comparing to the most recent CAD-GWAS meta-analysis conducted by 

van der Harst et al using data from the UK Biobank and CARDIoGRAMplusC4D 

consortium, (van der Harst and Verweij 2018) all loci have been previously reported. Overall, 

the joint 2-df testing approach accounting for physical activity as well as gene-physical 

activity interaction effects has added little information or statistical power in the CAD-

GWAS. The comparison between p-values of the joint 2-df approach and p-values of the 

conventional GWAS approach were presented in Figure IV. The overall distributions were 

similar with conventional GWAS being slightly more powerful. (Figure IV-A) Focusing on 

genome-wide significant SNPs (joint 2-df p<5´10-8), the 2-df approaches didn’t gain any 

statistical power to identify CAD-associated genetic loci. (Figure IV-B) When comparing 

suggestively associated SNPs (5´10-8 < p < 10-5), the majority had smaller p-values as well as 

better power using the conventional GWAS approach (Figure IV-C). However, the variation 

suggested that the power was moderately improved for some SNPs when the interaction term 

was included in the 2-df test. 

 

Discussion 

 

Smoking and physical inactivity are two well-established lifestyle-related risk factors for 

CAD, (Benjamin, Muntner et al. 2019) however, no CAD-GWAS has been conducted 
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accounting for gene-smoking or gene-physical activity interaction effects. We have 

implemented a joint two degree of freedom approach (Kraft, Yen et al. 2007) and conducted 

two GWASs of CAD accounting for gene-smoking and gene-physical activity interaction in a 

large population of European ancestry using data from the UK Biobank. Overall, no novel 

locus has been identified from our analyses and p-value comparisons haven shown that 

comparing to the conventional GWAS method the joint 2-df testing approach added little 

power to the detection of novel CAD-associated loci.  

 

CAD is a heritable condition and enormous effort has been made to identify the potential 

underlying genetic mechanisms of CAD. (Nikpay, Goel et al. 2015, Khera and Kathiresan 

2017, van der Harst and Verweij 2018) Previously reported CAD-associated loci collectively 

explained 30 – 40% of CAD heritability (Khera and Kathiresan 2017) but failed to account 

for environmental factors or potential heterogeneity of genetic effects across different strata 

in environmental factors. Lifestyle-related factors such as smoking and physical inactivity are 

important risk factors for cardio-metabolic health, and may interact with the genetic 

susceptibility. Conventional GWAS is underpowered to detect susceptibility loci that act 

through certain strata of lifestyle factors (i.e., gene-lifestyle interaction). Alternative methods 

have been developed (Kraft, Yen et al. 2007) but previous studies have been limited by the 

lack of large, population-based cohorts with both genotypic and lifestyle-related phenotypic 

data. The UK Biobank is a leading resource for large-scale gene-phenotype association 

studies, which also enables large-scale GWAS of CAD accounting for potential gene-lifestyle 

interaction effects.  

 

Our analyses have revealed that vast majority of the CAD-associated loci do not have a 

strong gene-lifestyle interaction component in a large population of European ancestry. 
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Although previous work in the CHARGE Gene-Lifestyle Interactions Working Group have 

shown promising results in using the 2-df testing approach for conducting large scale GWAS 

of CAD risk factors such as blood pressures and blood lipids, (Feitosa, Kraja et al. 2018, 

Sung, Winkler et al. 2018, Bentley, Sung et al. 2019, de Vries, Brown et al. 2019) our results 

have shown that such 2-df approach for smoking and physical activity added little power in 

the detection of novel CAD-associated loci comparing to the conventional GWAS approach. 

However, the joint 2-df approach that we have implemented only accounted for the 

multiplicative SNP-environmental factor interaction effects and didn’t capture the potential 

additive interaction effect. Novel genome-wide scale statistical computing tools are awaiting 

to be developed for jointly testing the main genetic effect and additive gene-lifestyle 

interaction effects for complex diseases. Our study also has several limitations. First, CAD 

cases are identified based on in-patient hospital records which might lead to underdiagnosis 

or misclassification of disease status. Smoking and physical activity are self-reported only 

which might lead to inaccurate measurement of such complex lifestyle-related factors. In 

addition, we have dichotomized smoking into current vs. non-current and physical activity 

into inactive vs. active for analytical simplicity, but the actual gene-lifestyle interaction 

effects might act through a more complex mechanism than such binary categorization. 

 

Conclusion 

 

In this study, using data from the UK Biobank we have conducted two separate CAD-

GWASs accounting for gene-smoking interaction and gene-physical activity interaction, 

respectively. Overall, no novel loci have been identified from our analyses using a joint 2-df 

testing approach, and p-value comparisons have shown that the majority of CAD-associated 

loci do not have a strong interaction effect with smoking or physical activity. However, some 
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aspects in the methods such as neglected potential additive interaction effects can be 

improved in the future for CAD-GWAS accounting for environmental factors as well as 

gene-environmental interactions. 
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Table I. Descriptive statistics of study population in the UK Biobank 

A. GWAS accounting for current smoking and gene-current smoking interaction 

(N=324,500) 

Characteristics Mean (SD) or N (%) 
Age 56.9 (8.0) 
Female 174,719 (53.8%) 
Current smoking 31,536 (9.7%) 

 
 

B. GWAS accounting for physical activity and gene-physical activity interaction 

(N=313,630) 

Characteristics Mean (SD) or N (%) 
Age 56.9 (8.0) 
Female 168,478 (53.7%) 
Physical activity  

Low 72,951 (23.3%) 
Moderate or High 240,679 (76.7%) 
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Table II. Genome-wide significant loci of CAD using joint 2-df testing approach in the UK Biobank 

A. GWAS accounting for current smoking and gene-current smoking interaction 

rsID CHR POS REF ALT Gene 
Joint 2-df Testing Approach Conventional GWAS 

Beta_G Beta_G:Csmk P_G P_G:Csmk P_2-df Beta SE P 

rs5896965 9 22099746 TA T CDKN2B-AS1 -0.179 -0.009 2.33E-57 7.77E-01 4.22E-65 -0.179 0.010 3.30E-66 

rs55730499 6 161005610 T C LPA -0.304 0.034 6.01E-60 5.23E-01 5.26E-65 -0.299 0.017 5.22E-66 

rs12740374 1 109817590 T G CELSR2 0.129 -0.035 1.32E-20 3.59E-01 4.64E-21 0.123 0.013 8.62E-22 

rs429358 19 45411941 C T APOE -0.115 -0.020 1.21E-14 6.28E-01 3.31E-16 -0.116 0.014 9.50E-17 

rs764429222 15 91428521 C CT FES -0.095 0.069 4.88E-16 3.70E-02 3.55E-15 -0.085 0.011 6.65E-15 

rs28451064 21 35593827 A G AP000318.2 -0.116 -0.025 8.48E-13 5.87E-01 3.01E-14 -0.119 0.015 3.66E-15 

rs12324886 15 79054108 G A ADAMTS7 0.091 -0.015 1.38E-12 6.90E-01 1.03E-12 0.089 0.012 8.38E-14 

rs11591147 1 55505647 T G PCSK9 0.295 0.245 5.33E-10 8.91E-02 1.64E-12 0.325 0.045 4.27E-13 

rs56322312 1 56991890 T G PPAP2B 0.150 -0.140 3.52E-13 1.34E-02 3.20E-12 0.129 0.019 1.14E-11 

rs6925904 6 12892486 G A PHACTR1 -0.081 0.011 5.64E-12 7.45E-01 3.42E-12 -0.079 0.011 6.44E-13 

rs114846969 19 11191197 A G LDLR 0.119 -0.034 5.06E-11 5.03E-01 8.61E-11 0.115 0.017 1.02E-11 

rs917054 17 47340153 T C RP1-62O9.3 0.067 0.014 2.11E-09 6.70E-01 4.18E-10 0.069 0.010 4.18E-11 

rs145168080 2 203865822 T TGC RP11-544H14.1 -0.106 0.062 8.91E-11 2.05E-01 4.66E-10 -0.096 0.015 3.21E-10 

rs2107595 7 19049388 A G HDAC9 -0.091 0.003 1.96E-09 9.41E-01 1.32E-09 -0.090 0.014 2.12E-10 

rs1169288 12 121416650 C A HNF1A -0.075 0.064 3.82E-10 5.68E-02 2.88E-09 -0.066 0.011 2.61E-09 

rs10160170 10 44692843 G A RP11-20J15.2 0.101 0.036 3.47E-08 4.83E-01 4.32E-09 0.105 0.017 9.54E-10 

rs1384705 11 103696851 T C RP11-563P16.1 0.071 -0.016 5.23E-09 6.47E-01 8.54E-09 0.070 0.011 9.02E-10 

rs3918226 7 150690176 T C NOS3 -0.101 -0.077 5.12E-07 1.66E-01 8.98E-09 -0.113 0.019 1.10E-09 

rs77215829 12 112618346 C A HECTD4 0.089 0.040 1.63E-07 3.99E-01 1.69E-08 0.093 0.016 3.72E-09 

rs500546 8 102870342 A G NCALD 0.080 -0.024 1.65E-08 5.38E-01 3.89E-08 0.076 0.013 4.98E-09 

rs58721068 4 148387701 G A RP11-752L20.1 -0.088 0.031 1.57E-08 4.87E-01 4.58E-08 -0.083 0.015 1.10E-08 

rs35239117 12 95547732 T A FGD6 0.123 0.009 7.45E-08 8.94E-01 4.89E-08 0.123 0.021 7.58E-09 



 

 

91 

B. GWAS accounting for physical activity and gene-physical activity interaction 

rsID CHR POS REF ALT Gene 
Joint 2-df Testing Approach Conventional GWAS 

Beta_G Beta_G:PA P_G P_G:PA P_2-df Beta SE P 

rs4007642 9 22093299 T A CDKN2B-AS1 -0.192 0.033 4.56E-53 1.71E-01 6.40E-65 -0.183 0.011 7.66E-66 

rs55730499 6 161005610 T C LPA -0.319 0.068 4.13E-53 9.12E-02 1.93E-63 -0.301 0.018 1.85E-64 

rs12740374 1 109817590 T G CELSR2 0.122 0.018 2.46E-15 5.53E-01 7.09E-21 0.127 0.013 3.80E-22 

rs769449 19 45410002 A G APOE -0.141 0.047 2.69E-15 1.74E-01 2.06E-16 -0.127 0.015 1.57E-16 

rs764429222 15 91428521 C CT FES -0.094 0.012 7.30E-13 6.29E-01 4.65E-15 -0.090 0.011 7.06E-16 

rs28451064 21 35593827 A G AP000318.2 -0.104 -0.041 9.64E-09 2.39E-01 4.09E-13 -0.115 0.015 1.14E-13 

rs11591147 1 55505647 T G PCSK9 0.341 -0.023 3.97E-10 8.16E-01 2.57E-12 0.328 0.046 6.70E-13 

rs12324886 15 79054108 G A ADAMTS7 0.092 -0.012 1.89E-10 6.53E-01 5.79E-12 0.087 0.012 9.75E-13 

rs6925904 6 12892486 G A PHACTR1 -0.078 -0.007 2.91E-09 7.68E-01 8.64E-12 -0.080 0.011 9.49E-13 

rs139853365 19 11190556 C T LDLR 0.127 0.018 1.95E-08 6.72E-01 6.67E-11 0.133 0.019 5.98E-12 

rs56322312 1 56991890 T G PPAP2B 0.140 -0.028 1.20E-09 5.21E-01 1.05E-10 0.132 0.019 8.69E-12 

rs2107595 7 19049388 A G HDAC9 -0.075 -0.059 9.21E-06 6.78E-02 3.61E-10 -0.092 0.014 2.15E-10 

rs145168080 2 203865822 T TGC RP11-544H14.1 -0.115 0.074 2.82E-10 3.90E-02 8.93E-10 -0.095 0.016 9.84E-10 

rs2011767 17 47340297 T C RP1-62O9.3 0.066 0.009 1.47E-07 7.23E-01 1.36E-09 0.069 0.011 1.33E-10 

rs4846767 1 222763026 T C TAF1A -0.069 -0.011 5.33E-07 6.72E-01 6.67E-09 -0.071 0.012 1.19E-09 

rs10160170 10 44692843 G A RP11-20J15.2 0.099 0.025 1.26E-06 5.19E-01 8.33E-09 0.107 0.017 7.97E-10 

rs3918226 7 150690176 T C NOS3 -0.102 -0.046 5.98E-06 2.78E-01 8.65E-09 -0.115 0.019 1.51E-09 

rs1169288 12 121416650 C A HNF1A -0.076 0.038 1.14E-08 1.35E-01 1.89E-08 -0.066 0.011 7.40E-09 

rs2839812 11 103673294 A T RP11-563P16.1 0.070 0.000 3.72E-07 9.95E-01 1.90E-08 0.070 0.012 2.06E-09 

rs11394930 10 12306521 CT C RN7SL232P 0.073 -0.054 6.20E-09 2.52E-02 3.01E-08 0.059 0.011 4.24E-08 

rs2172725 13 110837456 A G COL4A1 -0.076 0.075 4.33E-09 2.63E-03 3.27E-08 -0.056 0.011 3.36E-07 

rs7641039 3 153768638 A C ARHGEF26-AS1 0.102 -0.077 7.45E-09 2.00E-02 3.76E-08 0.080 0.015 8.65E-08 
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Figure I. Study population QC process 

A. GWAS of CAD accounting for current smoking and gene-current smoking interaction 
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B. GWAS of CAD accounting for physical activity and gene-physical activity interaction 
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Figure II. GWAS of CAD in the UK Biobank accounting for current smoking and gene-

current smoking interaction 

A. Quantile-Quantile Plot (Inflation Factor = 1.13) 
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B. Manhattan plot (red line: genome-wide significant with p < 5´10-8, highlighted one 

locus that was not reported in the most recent CAD-GWAS by van der Harst et al.) 
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Figure III. Comparisons between p-values of joint 2-df testing approach account for 

current smoking and p-values using conventional GWAS approach for CAD-GWAS in 

the UK Biobank 

 

A. All tested SNPs 
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B. Genome-wide significant SNPs (joint 2-df p<5´10-8) (Highlighted the locus that was 

not reported in the most recent CAD-GWAS by van der Harst et al.) 
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C. Suggestively associated SNPs (joint 2-df 5´10-8<p<10-5
)  
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Figure IV. GWAS of CAD in the UK Biobank accounting for physical activity and gene-

physical activity interaction 

A. Quantile-Quantile Plot (Inflation Factor = 1.12) 
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B. Manhattan plot (red line: genome-wide significant with p < 5´10-8) 
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Figure V. Comparisons between p-values of joint 2-df testing approach account for 

physical activity and p-values using conventional GWAS approach for CAD-GWAS in 

the UK Biobank 

A. All tested SNPs 
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B. Genome-wide significant SNPs (joint 2-df p<5´10-8) 
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C. Suggestively associated SNPs (joint 2-df 5´10-8
<p<1

-5
) 
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Chapter 5 

 

Summary and Future Directions 

 

The main goal of the work presented in this dissertation is to assess gene-lifestyle 

interactions in CAD with a focus on two established lifestyle-related CAD risk factors: 

smoking and physical inactivity, on both additive and multiplicative scale. Specifically, using 

data from two of the largest biobank cohorts: the UK Biobank and the Million Veteran 

Program, several CAD-associated genetic risk scores were constructed and their interactions 

with smoking and physical inactivity were assessed for incident CAD. This dissertation also 

aims to identify novel CAD genetic loci by conducting GWAS accounting for gene-smoking 

interaction and gene-physical activity interaction in a large population of European ancestry 

from the UK Biobank. 

 

Absolute risk increase of CAD for smoking is more substantial among those with high 

genetic risk profile 

 

We constructed genetic risk scores for CAD using a most updated list containing up to 161 

CAD-associated loci, and also constructed three mediating traits-based (blood pressure, lipids 

and BMI) CAD genetic risk scores. Assessment of the interaction effects between these 

scores and smoking status has revealed a super-additive effect between genetic risk and 

smoking status. We also observed that such interaction effects were driven by blood pressure-

associated loci when comparing current smokers with never smokers, but by lipids-associated 

loci when comparing those with cumulatively high smoking intensity vs. those with low 

cumulative smoking intensity. Prevalence of tobacco smoking has been consistently declining 
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but it remains a leading cause of preventable death in the U.S. and globally. (Benjamin, 

Muntner et al. 2019) Results from this dissertation have provided novel evidence on the 

interplay between genetic factors and smoking behavior in the development of CAD. 

Although smoking has long been realized as a risk for CAD, we conclude that the harmful 

impacts of smoking are higher for those with higher genetic susceptibility of developing 

CAD. From a public health point of view, elimination of smoking would be beneficial for 

CAD control, and even more CAD cases would have been prevented if those with high 

genetic risk hadn’t started or quitted smoking. Additive interaction effects were largely 

omitted in the past gene-environment interaction studies, but it has been suggested that 

additive interaction effects provide more mechanistic insights than multiplicative interaction. 

We found one CAD locus at PCSK9 with strong additive interaction with smoking, but more 

biological evidence is needed to characterize the role of PCSK9 as an effect modifier for 

smoking-caused CAD events. 

 

Accounting for gene-smoking or gene-physical activity interaction did not improve 

power in the genome-wide discovery of CAD-associated loci  

 

Two GWASs were conducted in the work of this dissertation and we have identified no novel 

loci of CAD by accounting for gene-smoking or gene-physical activity interaction using a 

previously proposed joint 2-df testing approach. Previous work in the CHARGE Gene-

Lifestyle Interactions Working Group have shown promising results in using the 2-df testing 

approach for conducting large scale GWAS of CAD risk factors such as blood pressure and 

lipids, (Feitosa, Kraja et al. 2018, Sung, Winkler et al. 2018, Bentley, Sung et al. 2019, de 

Vries, Brown et al. 2019) but our results have shown that this approach has added little power 

comparing to the conventional GWAS approach in the detection of CAD-associated loci 
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using data from the UK Biobank. However, the implemented joint 2-df approach only 

accounted for multiplicative interaction effects which might have missed CAD susceptibility 

loci that act through interaction with smoking and physical activity on the additive scale. 

Future studies should employ novel statistical methods and computational tools that can 

overcome such limitation and can be implemented easily on the genome-wide scale in large 

biobank cohorts. 

 

Final Remarks 

 

Previous gene-lifestyle interaction studies of cardio-metabolic health have shown equivalent 

benefits of a healthy lifestyle for individuals with different levels of genetic predisposition 

captured by genetic risk score. (Khera, Emdin et al. 2016, Pazoki, Dehghan et al. 2018, Said, 

Verweij et al. 2018) However, the majority of them reported on the multiplicative scale and 

not much attention was paid to individual lifestyle-related risk factors. Although we have 

concluded that the absolute risk increase due to smoking is higher for those with higher 

genetic risk of CAD, the clinical utilization of genetic risk score informed lifestyle 

intervention is still under debate. (Torkamani, Wineinger et al. 2018) It is of large interests to 

see future studies conducted in assessing how to best utilize genetic information to guide 

lifestyle interventions and improve cardio-metabolic health. Although it is relatively fast and 

easy to generate genetic risk scores based on candidate loci, the cost-effectiveness of such 

approach in improving public health remains to be seen. In addition, disparities remain in the 

prevalence of lifestyle related risk factors as well as incidence of CAD, but genetic evidence 

is lacking for many subgroups with high risk. Future gene-lifestyle interaction studies should 

expand to a multi-ethnic scale with more data enriched for subgroups under higher pressure 

of CAD development. 
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