
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a

degree from Emory University, I hereby grant to Emory University and its

agents the non-exclusive license to archive, make accessible, and display my

thesis in whole or in part in all forms of media, now or hereafter now, in-

cluding display on the World Wide Web. I understand that I may select

some access restrictions as part of the online submission of this thesis. I

retain all ownership rights to the copyright of the thesis. I also retain the

right to use in future works (such as articles or books) all or part of this thesis.

Raul Enrique Platero April 12, 2017

Least Squares Updating for Kronecker Products

by

Raul Enrique Platero

Dr. James Nagy

Adviser

Department of Mathematics and Computer Science

Dr. James G. Nagy

Adviser

Dr. Michael K. Rogers

Committee Member

Dr. Effrosyni Seitaridou

Committee Member

2017

Least Squares Updating for Kronecker Products

by

Raul Enrique Platero

Dr. James Nagy

Adviser

Abstract of

A thesis submitted to the Faculty of Emory College

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2017

Abstract

Least Squares Updating for Kronecker Products

By Raul Enrique Platero

In this thesis, we consider an application within image processing where

Kronecker products naturally arise. In image deblurring, we attempt to

reconstruct the original image from a given blurred image. Due to the ill-

conditioned nature of such matrices, along with the large size of the blurring

matrix, it becomes difficult to use direct techniques to find the solution to

this problem. Therefore, we can use iterative methods and in particular, we

used LSQR. However, in order for us to use LSQR efficiently, we constructed

a preconditioner using the rank-one updating problem extended to Kronecker

products. We show that this method can provide us with a good precondi-

tioner and through some deblurring examples, the solution is as accurate

while reducing the average run time.

Least Squares Updating for Kronecker Products

by

Raul Enrique Platero

Advisor : Dr. James Nagy

A thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelors of Science with Honors

Department of Mathematics and Computer Science

2017

Contents

1 Introduction 1

1.1 QR Factorization . 2

1.2 Givens Rotations . 3

1.3 Updating problem . 7

1.4 Kronecker Product . 10

2 Kronecker Product 11

2.1 Definition . 12

2.2 Properties . 13

2.3 Applications . 15

3 New Preconditioner Based on QR Updating 17

3.1 Tikhonov Regularization . 18

3.2 Rank-One Updating Problem 20

3.3 Rank-One Update for Kronecker Products 21

3.4 LSQR in Image Deblurring . 23

4 Numerical Results 27

5 Conclusion 32

List of Figures

4.1 Original Images (64× 64) . 28

4.2 Reconstructed Image (64× 64) 28

4.3 Relative Error (64× 64) . 29

4.4 Original Images (256× 256) 30

4.5 Reconstructed Image (256× 256) 30

4.6 Relative Error (256× 256) . 31

List of Tables

4.1 Average Run Times . 31

1

Chapter 1

Introduction

In this thesis we consider the following important situation that arises in

many applications: Given a solution to a mathematical problem, efficiently

compute a new solution when the problem is slightly modified. This is

generally referred to as an updating problem. There can be many ways in

which the problem is modified, but the basic aim is to use the solution of the

original problem (and any intermediate quantities needed to compute it) to

efficiently compute the solution to a new problem.

We focus mainly on linear least squares problems where the matrix is

modified by the addition of a new rank-one matrix. Since least squares

problems are often solved using a QR factorization we consider methods

to update this factorization. In particular, we develop a new approach for

matrices that have a Kronecker product structure. We also describe how this

problem arises in an image deblurring application.

2

In order for us to begin the discussion on the application of extending the

updating QR problem for Kronecker product to image deblurring, we will

introduce QR factorization and Givens rotations and their uses along with

the updating problem. Then we will briefly introduce the Kronecker product.

1.1 QR Factorization

QR factorization (or QR decomposition) is a factorization method for

matrices that is often used to solve linear least squares problems. Linear

least square problems are problems having the following form:

min
x
‖Ax− b‖22, (1.1)

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm. Least squares problems are a

particularly useful formulation since often times there may not be an exact

answer to

Ax = b

and hence we would like to find a good solution to the problem

Ax ≈ b,

which is formulated in equation (1.1).

QR factorization factors a matrix into an orthogonal matrix Q and an

3

upper triangular matrix R. If A ∈ Rm×n, then there exist matrices Q and R

such that

A = QR, (1.2)

where Q ∈ Rm×m, QTQ = I (i.e Q is an orthogonal matrix) and R ∈ Rm×n.

QR factorization is often used with linear least squares problems because the

2-norm is invariant to orthogonal transformations, meaning that

‖Ax− b‖2 = ‖Rx−QTb‖2 (1.3)

for a given QR factorization of A. There are a few methods to compute the

QR factorization of a matrix. For such derivations along with an algorithmic

presentation of such derivations, one can refer to Å. Björck’s book on ma-

trix computations [2] or G.H. Golub and C.F. Van Loan’s book on matrix

computations [5].

1.2 Givens Rotations

Givens rotations [4] (or Plane rotations) are a method to construct an

orthogonal matrix that can introduce zeros to a matrix. Givens rotations

are named after the American mathematician Wallace Givens. These rota-

tions are quite useful, especially when introducing zeros selectively to a given

matrix.

A Givens rotation is a matrix that represents a clockwise rotation by an

4

angle θ.

G =

 c s

−s c

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


If we want to apply this transformation to an n× n (or even m× n) matrix,

we must embed the Givens rotation to be an n× n (or m×m) matrix. The

matrix representation of this is:

Gij(θ) =



1

. . .

c s

. . .

−s c

. . .

1



,

where i and j are determined by the entries that are to become zero. Al-

though this representation exists, it isn’t necessary to explicitly form this

version of the Givens rotation. In fact, it is equivalent to applying to 2 × 2

Givens rotation to the subset (two rows containing the entry that will become

zero and the entry that we will use to create the zero) of the full matrix.

To better understand Givens rotations, we will give a sketch of how they

can be used to transform a full 3×3 matrix into an upper triangular matrix.

The focus of the sketch will be on the uses of Givens rotations and not the

construction of a Givens rotation. Suppose, the 3 × 3 matrix has random

5

non-zero elements denoted by the letter “x”. Although the same letter is

used, the values need not be the same.

A =


x x x

x x x

x x x

 .

Since Givens rotations can be applied to introduce zeros to a matrix, we

will systematically pick which of the entries we want to be zero until we get

the desired matrix. First, let’s start with the entry at A(3, 1). The entry at

A(2, 1) will be used to introduce this first zero. To do this, we will only be

looking at the second and third row of A. In this sketch we are rotating the

element at i into the element of j and thus creating a zero at j. Applying

the first Givens rotation for a suitable θk will produce the following:

G23(θ1)
TA =


x x x

x̄ x̄ x̄

0 x̄ x̄

 .

We will denote that the entry has changed from the original entry by writing

x̄. Subsequent changes to altered entries will not be monitored. We will be

creating zeros in the first column and then move onto the second and the

third. The next step is to zero out entry A(2, 1) by rotating entry A(1, 1)

6

into this entry. It is produced by applying G12(θ2) in the following manner:

G12(θ2)
TG23(θ1)

TA =


x̄ x̄ x̄

0 x̄ x̄

0 x̄ x̄

 .

Now that the first column is reduced, we will move on to the next column.

It is important to note that a zero entry rotated into a zero entry will remain

zero, a non-zero entry rotated to a zero entry will change the zero entry into

a non-zero entry. Thus, it becomes important to choose how one will reduce

a matrix wisely. We will follow the same pattern in reducing the subsequent

columns as the first column. In our case, there is simply just one more entry

to introduce a zero into. The end result will be the following:

G23(θ3)
TG12(θ2)

TG23(θ1)
TA =


x̄ x̄ x̄

0 x̄ x̄

0 0 x̄

 .

The matrix A has been successfully reduced to an upper triangular ma-

trix. The above expression can be re-written to be

(G23(θ1)G12(θ2)G23(θ3))
TA = R.

Because the product of orthogonal matrices is an orthogonal matrix, we let

7

Q = G23(θ1)G12(θ2)G23(θ3), and we obtain

QTA = R =⇒ A = QR.

Therefore, we can apply a series of orthogonal matrices to a matrix to create

a triangular matrix.

1.3 Updating problem

Now let’s introduce the updating problem and how it relates to QR fac-

torization. Although we can use various direct factorization techniques to

solve linear systems, it becomes useful to consider a different type of prob-

lem where direct factorization may not be the best. These types of problems

are updating problems. Updating problems are problems where we already

have a matrix that has been factored but want to solve a similar matrix that

closely resembles the first matrix but has yet to be factored. One such class

of problem is adding a row.

Appending a Row

Suppose we have a matrix A that has already been factored using QR

factorization. Also, suppose we want to append a row to the original matrix

A. We want to exploit the previously computed QR factorization of A to

factor to the new matrix composed of A with an additional row. Here, we

do not want to directly compute the factorization of this new matrix since it

8

closely resembles the original matrix. This problem can be addressed in the

following manner:

Ã =

 A
uT

 .
We can note that QT 0

0 1

 Ã =

QTA

uT

 =

R
uT

 .
Since our goal is to find the QR factorization for this new matrix Ã, we

need to introduce zeros into the last row such that the matrix will become

upper triangular again. We also need to do it in such a way that we produce

orthogonal matrices so that we can produce the matrix Q̃. This can be done

using Givens rotations. Therefore, using Givens rotations we get

G(n−1)n(θn)TG(n−2)n(θn−1)
T . . . G1n(θ1)

T

 R

uT

 =

 R̂

0

 = R̃.

So, we have found a way to reduce our matrix Ã into an upper triangular

matrix R̃ thus providing us with a factorization. Since we were able to

exploit the original matrix A’s factorization, this generates a more efficient

method for computing the decomposition of Ã. Å. Björck’s book on matrix

computations [2] provides a more in depth discussion on the computational

complexity of this method.

9

Appending a column

The next type of updating problem is where we add a column to A. This

is solved similarly to how we solve the appending a row problem. First,

suppose we have a matrix A and the QR factorization is already computed.

Suppose we are given a new matrix that consists of A along with an extra

column:

Ã =

[
A uT

]
.

We want to also compute its QR factorization indirectly. We again can

use Givens rotations to introduce zeros to the extra column so that we get

an upper triangular matrix. Å. Björck’s book [2] also provides a detailed

explanation of this type of problem and the derivation of the method along

with its computational complexity.

Rank-one Update

In this next class of updating problem, we now want to add a rank-one

matrix to the original matrix and still exploit the previously computed QR

factorization.

Ã = A+ wzT ,

where w, z are column vectors. We will the discussion and derivation for

this class of updating problem until section 3.2.

10

1.4 Kronecker Product

Now we will look at structured matrices. Particularly, we will consider the

Kronecker product. The Kronecker product is a generalized outer product

that is performed on two matrices that results in a block matrix.

K = A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

...

am1B am2B . . . amnB


The Kronecker product is also known as tensor product and it arises naturally

in multidimensional data fitting [2]. A more in depth look at the Kronecker

product is presented in the following chapter.

11

Chapter 2

Kronecker Product

Research on the Kronecker product began in the 1800s and now one can

easily find the Kronecker product along with its basic properties in most lin-

ear algebra literature. Although the notation is first stated to have been used

by the German mathematician Johann Georg Zehfuss, it had been credited

to Leopold Kronecker. Kronecker presented some of its basic properties to

his students in a series of lectures [8]. Independently, near the same time

period, Hurwitz and Stéphanos developed some of these properties. A few

years after them, Rados also independently published a paper on some of the

basic properties of the Kronecker product [8].

Despite the various people contributing to the development of this matrix

operation, Leopold Kronecker received the credit and it is now known as

the Kronecker product. In this chapter, we will explain in more detail the

Kronecker product and a few key properties. We will also briefly discuss

12

some of the applications of the Kronecker product.

2.1 Definition

The Kronecker product is denoted by A ⊗ B and it is computed in the

following manner:

K = A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

...

am1B am2B . . . amnB


.

To better understand the definition, here are a couple examples. The first

example illustrates how to apply the definition where both A and B are

square matrices.

If A =

 1 2

3 4

 and B =

 1 0

0 1

 , then

A⊗B =

1B 2B

3B 4B

 =



1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4


.

13

Note that the resulting matrix will have the dimensions 4× 4 since A and B

were both 2× 2 matrices ((2 ∗ 2)× (2 ∗ 2)).

The next example will be applying the definition when A is not square.

If A =

1 2 3

3 4 5

 and B =

 1 0

0 1

 , then

A⊗B =

1B 2B 3B

3B 4B 5B

 =



1 0 2 0 3 0

0 1 0 2 0 3

3 0 4 0 5 0

0 3 0 4 0 5


.

As we can see, the definition is still very easily applied for non-square ma-

trices. In this case, the dimensions of the resulting matrix will be 4 × 6

((2 ∗ 2)× (3 ∗ 2)). The dimensions of the resulting matrix can begin to grow

very quickly as the dimensions of A and B increase.

2.2 Properties

Now we will begin to present some key properties of the Kronecker prod-

uct without proof. Proofs for each of these properties can be found in A.J.

Laub’s book [11].

Property 1

The first property is about the transpose of a Kronecker product. This

14

property is different than one would expect, based on matrix multiplication:

(A⊗B)T = AT ⊗BT . (2.1)

Property 2

The inverse of a Kronecker product behaves similar to the transpose:

If A and B are invertible, then A⊗B is invertible and

(A⊗B)−1 = A−1 ⊗B−1. (2.2)

Property 3

This next property is used often, although it isn’t used explicitly.

If A and B are orthogonal, then A⊗B is also orthogonal. (2.3)

The importance of this property is that now we know that for a given QR

factorization for a matrix A that is produced from the Kronecker product,

we can express the orthogonal matrix Q as a Kronecker product of two or-

thogonal matrices.

Property 4

This property is also useful for expressing the QR factorization for a

matrix produced in terms of the Kronecker product.

(A⊗B)(C ⊗D) = AC ⊗BD (2.4)

15

For example, if we combine this property along with property 3, we can see

that if K = A⊗B and K = QR, then K = (Q1 ⊗Q2)(R1 ⊗R2).

2.3 Applications

Once the Kronecker product was properly studied, it became easy to find

applications for it in various fields. For example, as previously stated, in

signal and image processing it became even easier to formulate problems

because often times the data naturally formed the Kronecker product. In

particular, certain aspects of image deblurring can be expressed using the

Kronecker product [7].

Another field where the Kronecker product can be used is in computer

vision. In both 2D [12] and 3D [3] computer vision, the introduction of the

Kronecker product simplified many well-known facts within that field.

In information theory, there has also been many applications of the Kro-

necker product that helped develop methods such as covariance estimation

[15, 6]. In stability theory, the Kronecker product was used to reformulate

well-known equations such as the Sylvester and Lyapunov equations [11].

Lastly, the Kronecker product has even found its way to the natural sci-

ences. There are applications of the Kronecker product in the biological

sciences [14] and in neuroscience [1]. The Kronecker product is a compact

form that has found its way to various different fields. Therefore, under-

standing the properties of the Kronecker product is important to recognize

16

potential applications for it.

17

Chapter 3

New Preconditioner Based on

QR Updating

Although the Kronecker product has many uses in various fields, we will

focus on one specific application: image processing. In particular, we will

focus on image deblurring. A blurred image b is given, where

b = Ax+ η,

where A is a blurring matrix, x is the true (but unknown) image, and η is

unknown additive noise. Here we try to solve for x. The blurring matrix is

defined by:

K = A1 ⊗B1 + A2 ⊗B2 + · · ·+ An ⊗Bn (3.1)

18

However, a good approximation for equation (3.1) usually ends up being

simply the first two terms,

K ≈ A1 ⊗B1 + A2 ⊗B2 . (3.2)

Furthermore, the second term, B1 ⊗B2 can be approximated with rank-one

matrices so that equation (3.2) becomes

K ≈ A = A1 ⊗B1 +wzT , (3.3)

where w = w1⊗w2 and z = z1⊗z2. Now equation (3.3) provides us with a

rank-one matrix and a Kronecker product where we can apply the updating

problem.

3.1 Tikhonov Regularization

For ill-posed problems (problems where the solution does not depend

continuously on the data), it becomes difficult to solve the least squares

problem (defined in equation (1.1)) since noise in the data is amplified in the

solution [2]. Equation (3.3) turns out to be a discrete ill-posed problem and

so it becomes helpful to reformulate the problem in a different manner.

Tikhonov regularization is used to accomplish this. Tikhonov regulariza-

19

tion is expressed in the damped least squares problem

min
x

{
||Ax− b||22 + λ2||x||22

}
. (3.4)

The regularization parameter λ affects the smoothness of the solution. λ is

a scalar between 0 and 1. When λ is 0, we go back to least squares problem.

There are many methods to compute this constant ??. The solution to

problem (3.4) is equivalent to

min
x

∥∥∥∥∥∥∥
 A

λI

x−
 b

0


∥∥∥∥∥∥∥
2

2

. (3.5)

which is an overdetermined least squares problem. We can express problem

(3.5) using equation (3.3) as

min
x

∥∥∥∥∥∥∥
 A1 ⊗ A2 +wzT

λI

x−
 b

0


∥∥∥∥∥∥∥
2

2

. (3.6)

Once we find the solution to equation (3.6), we will find the true image to

image deblurring problem.

There are many techniques available to solve equation (3.6). One com-

monly used method is the QR factorization (section 1.1), however when con-

sidering extremely large matrices, QR factorization may not be the most

efficient. We will use LSQR [13] which is an algorithm recommended for

20

large least squares problems. MATLAB has the built-in function lsqr which

we will use in all of our experiments.

3.2 Rank-One Updating Problem

In order for us to efficiently compute the solution to equation (3.6) using

LSQR, we need to continue developing the rank-one updating problem for

Kronecker products. As it was previously stated in section 1.3, the rank-

one updating problem [4] is stated as computing the QR factorization for a

matrix that consists of a rank-one matrix added to another matrix (we will

call this matrix A). Suppose we have the QR factorization for the original

matrix, we want to still exploit the previously computed QR factorization.

Ã = A+ wzT ,

where w, z are column vectors. The first step is to re-write the stated problem

using the information provided (QR factorization of the original matrix A).

Ã = A+ wzT = QR + wzT = Q[R +QTwzT].

We focus on the second term within the brackets (QTwzT) and work to

make it upper triangular. This can be done easily by reducing w into the

21

standard unit vector e1 using Givens rotations which results in

Ã = Q[R +QQTwzT] = QQ[Q
T
R + ce1z

T].

Upon inspection, we notice that Q
T
R is upper Hessenberg. An upper Hes-

senberg matrix is an upper triangular matrix where the subdiagonal below

the major diagonal does not consist of only zeros and an upper Hessenberg

matrix is denoted as H. What now remains is an upper Hessenberg matrix

added to a sparse matrix, ce1z
T , with nonzero entries only on the first row

and the remaining entries are zeros. Adding these two matrices together will

result in another upper Hessenberg matrix. This can now be transformed to

the desired upper triangular form using Givens rotations. This results in the

following:

Ã = QQ[H] = QQQ̂R̃ = Q̃R̃

where Q̃ = QQQ̂.

3.3 Rank-One Update for Kronecker Prod-

ucts

We can follow the same scheme for Kronecker products as developed in

section 3.2 to extend the updating problem to Kronecker products.

Suppose we are given matrices A1 and A2 and their corresponding QR

22

factorizations,

A = A1 ⊗ A2 + wzT = (Q1 ⊗Q2)(R1 ⊗R2) + (w1 ⊗w2)(z1 ⊗ z2)
T .

Normally, we would like to compute the complete QR factorization of A effi-

ciently. However, since we are focusing on solving the damped least squares

problem, we will be more concerned about using the information the updat-

ing scheme can provide. Therefore we will modify the scheme slightly.

This problem is restated as

A = (Q1 ⊗Q2)[(R1 ⊗R2) + (QT
1 ⊗QT

2)(w1 ⊗w2)(z1 ⊗ z2)
T]. (3.7)

The first step is to reduce the second term into an upper triangular matrix.

This is accomplished in the same manner using Givens rotations

A = (Q1⊗Q2)(Q̄1⊗Q̄2)[(Q̄1
T ⊗Q̄2

T
)(R1⊗R2)+v(e1⊗e1)(z1⊗z2)

T], (3.8)

where v is a scalar. Note that the first term can be rewritten so that the

problem now becomes

A = (Q̃1⊗ Q̃2)[(H1 ⊗H2) + v(e1 ⊗ e1)(z1 ⊗ z2)
T]. (3.9)

Note that H1 and H2 are upper Hessenberg matrices. From here, rather

than continuing, we will stop and resume consideration of the damped least

23

squares problem.

3.4 LSQR in Image Deblurring

LSQR is an iterative algorithm for computing solutions to linear least

squares problems. Since it is an iterative algorithm, the cost of computing

the solutions is dependent on the cost of each iteration and the number of

iterations. Therefore, if we can increase the convergence rate, this method

can provide an efficient way to solve the damped least squares problem.

The acceleration of convergence is accomplished by using preconditioners.

In order for us to solve the image deblurring problem, we must first find an

efficient preconditioner and then solve the problem using LSQR with the

provided preconditioner. Let’s first focus on the preconditioner. We want to

find a matrix M that has the following properties:

• M can be computed efficiently.

• Solving linear systems with M and MT can be done efficiently.

• M has the property that MTM ≈ ATA + λ2I. Ideally, if MTM −

(ATA+λ2I) is a matrix of rank r, then LSQR will converge in at most

r iterations.

The idea is that we want to find a preconditioner that speeds up the con-

vergence enough that it mitigates the additional costs associated with the

preconditioner.

24

We will use the rank-one updating scheme for constructing the precon-

ditioner, in particular we will use the matrices H1 and H2 and the scalar v.

Consider the singular value decomposition [5] of H1 and H2:

H1 = U1Σ1V
T
1 and H2 = U2Σ2V

T
2 .

We will use the following as our preconditioner:

M = D(V1 ⊗ V2)T , where D = (Σ2
1 ⊗ Σ2

2 + λ2I)1/2 .

Notice that

MTM = [D(V1 ⊗ V2)T]TD(V1 ⊗ V2)T

= (V1 ⊗ V2)DD(V1 ⊗ V2)T

= (V1 ⊗ V2)(Σ2
1 ⊗ Σ2

2 + λ2I)(V1 ⊗ V2)T

= (V1 ⊗ V2)(Σ2
1 ⊗ Σ2

2 + λ2(I1 ⊗ I2))(V1 ⊗ V2)T

= V1Σ
2
1V

T
1 ⊗ V2Σ2

2V
T
2 + λ2V1V

T
1 ⊗ V2V T

2

= V1Σ
T
1U

T
1 U1Σ1V

T
1 ⊗ V2ΣT

2U
T
2 U2Σ2V

T
2 + λ2I

= HT
1 H1 ⊗HT

2 H2 + λ2I

= (H1 ⊗H2)
T (H1 ⊗H2) + λ2I

= HTH + λ2I.

Now if A = A1⊗A2 +wzT , and H = H1⊗H2, observe that using what our

25

rank-one updating scheme produced in equation (3.9) we get

ATA = [HT + v(z1e
T
1 ⊗ z2e

T
1)]QTQ[H + v(e1 ⊗ e1)z

T]

= HTH + v(HT
1 e1z

T
1 ⊗HT

2 e1z
T
2)

+ v(z1e
T
1H1 ⊗ z2e

T
1H2) + v2(z1e

T
1 e1z

T
1 ⊗ z2e

T
1 e1z

T
2)

= HTH +R,

where R is the sum of the three remaining rank-one matrices. Now if we add

λ2I to both sides,

ATA+ λ2I = HTH + λ2I +R

= MTM +R

and we satisfy one of the desired properties for a preconditioner. Moreover,

we can show that rank(R) ≤ 3. Recall that rank(A ⊗ B) =rank(A)rank(B)

[10] and that rank(A+B) ≤ rank(A)+rank(B) [9]. Since

(ATA+ λ2I)−MTM = R

and since rank(R) ≤ 3, if we use LSQR with this preconditioner, we will

reach its stopping criteria in at most three iterations.

Furthermore, M can be computed efficiently using our rank-one updating

scheme for Kronecker products. Lastly, solving linear systems with M and

26

MT can be done efficiently since V1 and V2 are both orthogonal and since D

is a diagonal matrix. Therefore, we have satisfied the three conditions and

M is indeed a good preconditioner.

27

Chapter 4

Numerical Results

Now that the method for efficiently computing the solution of a regular-

ized least squares problem using the Kronecker product has been established,

we will present a few experiments. For each experiment we are comparing

between using LSQR with no preconditioner versus LSQR with our defined

preconditioner.

The first experiment was for a blurred image of a satellite, where A is a

matrix of size 4, 096×4, 096. The blurred image and the true image are shown

in Figure 4.1. The matrix A was approximated from a point spread function

and then used in an attempt to reconstruct the original image. With the use

of our preconditioner, the reconstructed image (Figure 4.2) was computed.

Using our preconditioner, LSQR reached a convergence with significantly

fewer iterations than without a preconditioner, as expected. A plot of the

relative error at each iteration is found in Figure 4.3.

28

True image Observed image

True image. Blurred image.

Figure 4.1: True image of satellite and blurred image of satellite of size
64× 64. The true image was blurred and then the blurred image was passed
to our algorithm in an attempt to reconstruct the original image.

Reconstructed image

Figure 4.2: Reconstructed image satellite when using LSQR with our pre-
conditioner on the blurred image of size 64× 64.

29

0 10 20 30 40 50
Iteration

10-2

10-1

100

R
el

at
iv

e
E

rr
or

Preconditioning
No Preconditioning

Figure 4.3: Plot of normalized relative error at each iteration when using
LSQR with our preconditioner on the blurred image of size 64× 64.

Now, we will repeat the same experiment but with a 256 × 256 satellite

image having a matrix A of size 65, 536×65, 536. Figure 4.4 is the true (orig-

inal) image and the blurred image. Similarly, the blurred image in Figure 4.4

was approximated and the reconstructed image was computed using LSQR

with our preconditioner. Again, convergence was reached within 3 iterations

as expected. The plot of the relative error is found in Figure 4.6.

Both experiments support our claim that LSQR is guaranteed to termi-

nate within 3 iterations. Also, the experiments seem to suggest that LSQR

with our preconditioner is indeed faster even though extra costs are incurred

by having to compute the preconditioner and solve a linear system containing

the preconditioner for each iteration. This is verified by the timings shown

30

True image Observed image

True image. Blurred image.

Figure 4.4: True image of satellite and blurred image of satellite of size
256 × 256. The true image was blurred and then the blurred image was
passed to our algorithm in an attempt to reconstruct the original image.

Reconstructed image

Figure 4.5: Reconstructed image satellite when using LSQR with our pre-
conditioner on the blurred image of size 256× 256.

31

0 10 20 30 40 50
Iteration

10-2

10-1

100

R
el

at
iv

e
E

rr
or

Preconditioning
No Preconditioning

Figure 4.6: Plot of normalized relative error at each iteration when using
LSQR with our preconditioner on the blurred image of size 256× 256.

in Table 4.1.

Preconditioner No Preconditioner

size Time (s) rel.error # Itr. Time (s) rel.error # Itr.

4, 096 0.0707 8.2326 · 10−5 3 0.5155 8.2369 · 10−5 50

65, 536 0.5140 3.5307 · 10−4 3 11.5040 3.5505 · 10−4 50

Table 4.1: For both sizes of matrices, and for LSQR with both preconditioner

and no preconditioner, table of average run time, relative error, and number

of iterations. Averages over 50 runs.

32

Chapter 5

Conclusion

In image deblurring problems, we would like to solve the true or original

image x from a blurred image b

b = Ax+ η,

where A is a matrix that models the blurring operation. Since A is very

large, it can be difficult to find the solution using direct techniques.

When we are considering large matrices that construct the blurred image,

iterative methods become a good choice. In particular, we can use LSQR to

find a solution to the ill-posed image deblurring problem. In order for us

to construct a competitive method, we found an efficient preconditioner for

LSQR so that there will be at most three iterations. We have found that

using the rank-one updating scheme for Kronecker products provides us with

33

an efficient preconditioner. Using this preconditioner provides us with a fast

and accurate method compared to using no preconditioner.

The numerical experiments that were conducted support our claim of an

efficient preconditioner. This leads us to believe that this method is very

promising. There are many avenues to explore for future research. For

example, extending our approach to rank-k modifications, where k > b.

34

Bibliography

[1] Fetsje Bijma, Jan C. de Munck, and Rob M. Heethaar. The spatiotem-

poral meg covariance matrix modeled as a sum of kronecker products.

NeuroImage, 27, 2005.

[2] Ake Bjorck. Numerical Methods in Matrix Computations. Springer,

Cham, 2015.

[3] Andrea Fusiello. A matter of notation: Several uses of the kronecker

product in 3d computer vision. Pattern Recognition Letters, 28:2127–

2132, 2007.

[4] Philip E. Gill, Walter Murray, and Margaret H. Wright. Numerical

Linear Algebra and Optimization, volume 1. Addison-Wesley Publishing

Company, Redwood City, California, 1996.

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns

Hopkins University Press, Baltimore, third edition, 1996.

35

[6] Kristjan Greenewald, Theodoros Tsiligkaridis, and Alfred O. Hero III.

Kronecker sum decompositions of space-time data. In 5th IEEE Interna-

tional Workshop on Computational Advances in Multi-Sensor Adaptive

Processing, 2013.

[7] Per Christian Hansen, James G. Nagy, and Dianne P. O’Leary. Deblur-

ring Images: Matrices, Spectra, and Filtering. SIAM: Fundamentals of

Algorithms, 2006.

[8] H. V. Henderson, F. Pukelsheim, and S.R. Searle. On the history of the

kronecker product. Linear and Multilinear Algebra, 14:113–120, 1983.

[9] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge,

1985.

[10] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis.

Cambridge, 1991.

[11] Alan J. Laub. Matrix Analysis for Scientists and Engineers. SIAM,

2005.

[12] Juan Liu, Emmanouil Psarakis, and Ioannis Stamos. Automatic kro-

necker product model based detection of repeated patterns in 2d urban

images. In International Conference on Computer Vision, 2013.

[13] Christopher C. Paige and Michael A. Saunders. Lsqr: An algorithm for

sparse linear equations and sparse least squares. ACM: Transactions on

Mathematical Software, 8:43–71, 1982.

36

[14] D. V. Savostyanov, S. V. Dolgov, J. M. Werner, and Ilya Kuprov. Exact

nmr simulation of protein-size spin systems using tensor train formalism.

PHYSICAL REVIEW B 90, 085139, 2014.

[15] Theodoros Tsiligkaridis and Alfred O. Hero III. Covariance estimation in

high dimensions via kronecker product expansions. arXiv:1302.2686v10

[stat.ME], 2013.

