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Abstract

Determining Greek Architectural Design Units in the Sanctuary of the Great Gods,
Samothrace: Application of and Extensions to the Cosine Quantogram Method

By Susan Margueritte Cox

Investigations into derivations of ancient Greek architectural units of measure have

been limited in their statistical rigor. The primary method to find an indivisible unit,

the quantum, has been D. G. Kendall’s cosine quantogram analysis (1974), used by

J. Pakkanen (2002; 2004a; 2004b; 2005) to calculate quanta based on architectural

components. However, no inference has been conducted beyond simple point estima-

tion and testing a quantum’s existence. We expand Kendall’s method by calculating

standard bootstrap confidence intervals for point estimates and introducing a likeli-

hood ratio-based hypothesis test for the equality of quanta between buildings at the

same site.

As a case study, individual block dimensions from two Doric structures are con-

sidered from the Sanctuary of the Great Gods, located on the island of Samothrace:

the Dedication and the Hieron. The cosine quantogram method yielded a quantum of

0.211 m. for the Dedication (95% CI: (0.070 m., 0.352 m.)) and the quantum for the

Hieron is 0.253 m. (95% CI: (0.163 m., 0.343 m.)). There is no statistically significant

difference between these two quanta (p = 0.270), although in architectural terms, they

differ considerably. The possibility of a 0.208-m. quantum, which indicates that the

Dedication may have been designed based on the interaxial distance between columns

due to a 1:10 ratio between the quantum and the interaxial space, is also explored.

A 0.253-m. quantum indicates that the Hieron was probably designed with the outer

dimensions in mind since the ratio between the quantum to the building’s width and

length at the level of the stylobate is 1:50:155. Future directions of this method are

presented as well as potential applications to biology and public health.
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1 Introduction

1.1 History of the Site and Excavations

The Sanctuary of the Great Gods is an archaeological site on the Greek island of

Samothrace, located in the northeast Aegean Sea. Historically, the Sanctuary was

a major seat of religious life during the late Classical period (beginning around the

middle of the 4th century BCE) until the 3rd century CE. The distinguishing feature

of this site was its association with a mystery cult whose rituals were known only

to initiates of the cult. Initiation rites took place in the Sanctuary and there was

no discrimination based on sex, age, or social status. Various important historical

figures during the era wrote about, visited, or were initiated in the Sanctuary. Among

these were Herodotus, the ‘Father of History;’ Lysander, the Spartan General; Marcus

Terentius Varro, the Roman scholar; and L. Calpurnius Piso Caesoninus, consul of the

Roman Republic and father-in-law of Julius Caesar. It was during their initiations

that the Macedonian king Philip II met his fifth wife, Olympias, who later bore him

Alexander the Great. Furthermore, Philip II and his successors became major patrons

of the Sanctuary, causing the site to reach its zenith in the 3rd and 2nd centuries BCE

(Matsas & Bakirtzis, 2001).

The Samothracian Mysteries centered on a pantheon of four gods, known as the

Theoi Megaloi, or ‘Great Gods.’ They are also referred to as the Kabeiroi. Axieros,

the Great Mother, was the principal goddess whose Greek counterpart was Deme-

ter. Two other gods, Axiokersa and Axiokersos, are associated with Persephone and

Hades, respectively. The fourth, Kadmilos, is equivalent to the Greek god Hermes.

The local heroes of Samothrace, separate from the Great Gods, had their own asso-

ciated rituals within the Sanctuary. Zeus and Elektra, daughter of Atlas, conceived

Dardanos, Aetion, and Harmonia. Dardanos founded the Trojan race; Aetion taught
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the mysteries to mortals. An annual festival included a dramatic interpretation of the

wedding between Harmonia and the hero Kadmos, brother of Europa and founder of

Thebes. This myth is similar to, and may have evolved from, the rape of Persephone

by Hades and their subsequent marriage. Although the details of the Mysteries were

never divulged, archaeological evidence suggests that animal sacrifices and libations

were offered to the underworld gods (K. Lehmann, 1998).

Exploration of the site started in 1854 with the German archaeologists Ernst Otto

Blau and Konstantin Schlottmann followed by Alexander Conze of Austria in 1858.

In 1863 the French archaeologist Charles François Noël Champoiseau discovered the

statue of the Winged Victory of Samothrace (ca. 200-190 BCE) and sent it back to

Paris; it now resides in the Louvre. The statue depicts the goddess Nike descend-

ing to the prow of a ship to commemorate a victorious naval battle. Inspired by

the success and profit of Champoiseau’s discovery, the French government sent Gus-

tave Deville and Ernest George Coquart in 1866 to conduct more excavations. Conze

returned in 1873 and 1875 and carried out more methodical excavations of the Propy-

lon of Ptolemy II, the Stoa, and partial excavations of the Hieron, the Hall of Choral

Dancers, and the Rotunda of Arsinoe. Champoiseau also returned in 1879 and 1891,

acquired the base of the Nike statue, and searched for her head. In 1923 and 1927,

French-Czechoslovak excavations were led by Antońın Salač, Fernand Chapouthier,

and Jan Nepomucký. The Institute of Fine Arts of New York University took over

excavations in 1938 under the direction of Karl Lehmann, who was followed by James

R. McCredie in 1962. Since the 1950’s, the focus has been on excavation, conservation

of the site, and in recent years, digital reconstruction.

Today, the Sanctuary of the Great Gods is best known for its magnificent Hel-

lenistic buildings. Most buildings were made of marble which came from a single

quarry on Thasos, a neighboring island. Over a dozen buildings of innovative design
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were constructed between the mid-4th and late 3rd centuries BCE. Despite the broad

sample, there has not yet been an attempt to understand the metric basis for the

way in which the buildings were designed. At a site like the Sanctuary of the Great

Gods, in which the buildings were constructed within a fairly narrow period and the

main material came from the same quarry, we want to determine if the buildings were

designed according to an indivisible unit of measure (a quantum).

1.2 The Study

The purpose of this study is to use the cosine quantogram method developed by D.

G. Kendall (1974) to determine if there are differences in the fundamental quantum

underlying the design and construction of two Doric structures in the Sanctuary: the

Dedication of Philip III and Alexander IV and the Hieron. Whereas the quantum for

length is generally established in Roman and Egyptian metrology due to the survival

of measuring rods, it is more difficult to establish Greek metrology (Chippendale,

1986; Wilson Jones, 2000). Weight quanta are also easier to establish in the ancient

world due to the discovery of unit weights (Chippendale, 1986). Certain regions do

appear to employ specific units of length and there are several established Greek

foot-lengths (Rottländer, 1996; Wilson Jones, 2000). However, for regions that do

not have established measurement units, the evidence of a length quantum must then

be deduced from architectural components.

The Dedication of Philip III and Alexander IV (the Dedication) was constructed

between 323 and 317 BCE using Pentelic marble on the front façade and Thasian

marble on the three remaining walls. This structure was dedicated to the Great

Gods by the joint successors of Alexander the Great: Philip III, his half-brother; and

Alexander IV, his posthumous son. From the restored plan, the width of the front

façade measures 11.01 meters and the length front-to-back is ca. 8.95 meters. These
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measurements are at the level of the stylobate – the floor level of the temple. Although

the exact function of the Dedication is unknown, it is likely that it was a pavilion for

distinguished visitors to observe the proceedings conducted in the Theatral Circle,

where the preparations for the initiation rites occurred (Wescoat, forthcoming). The

Dedication also included a porch of the Ionic order appended to its west side. Because

this addition is later in date and may have a been designed using a different quantum,

measurements from this structure were not included in this analysis.

The Hieron, whose name means ‘sacred place,’ was constructed between 325 and

150 BCE. The addition of a colonnade and completion of the roof account for the

large span of construction time (Matsas & Bakirtzis, 2001). Like the Dedication, the

dominant building material used was Thasian marble. It measures about 39.25 meters

north-to-south by 13 meters east-to-west and was 10.72 meters tall. According to P.

W. Lehmann (1969b), it was used for the initiation into the epopteia, the highest order

of the Mysteries, which included rites of confession and purification. Not including

the foundation, about 800 surviving blocks are attributed to this structure.

The Dedication and the Hieron are ideal for analysis because they were con-

structed using marble, which allows for precise cuts. Marble was quarried off-island;

Pentelic marble comes from Mount Pentelicus near Athens and Thasian marble comes

from Thasos, near Samothrace. Other structures in the Sanctuary, such as the Stoa,

were constructed using porous limestone blocks that were then covered with plaster.

This post-treatment of the exterior walls concealed measurement errors made at the

quarry or by masons at the site. Measurements from the Doric order are ideal for

calculating a quantum because the components used to construct temples were fairly

standardized by 600 BCE (Janson & Janson, 2001). Art and architecture of the

Ancient Greeks were designed applying the concept of symmetria, the foundation of

proportional aesthetics based on geometry (Wilson Jones, 2000). By the time of the

4



Roman Republic, the idea of a quantum existed. Vitruvius, the Roman architect, in

Book IV of De architectura (ca. 27 BCE), outlines the specific rules of Doric symme-

try. Vitruvius mentions the existence of a module – which is similar to a quantum

except that it may be subdivided – upon which all temples are designed. Given the

evidence for a quantum’s existenceand the clear indication from other structures that

the Greeks, at least in part, designed their buildings using units of measure, can a

quantum be identified for the buildings in the Sanctuary?

Calculating quanta is not a theoretical exercise without practical value. From the

estimated quantum, insight into the origin of the architect can be determined. If the

proposed quantum is close to or a divisor of an established quantum of a particular

region, it may indicate that the architect is from that region. Also, since measurement

systems change over time, determination of a quantum could establish a time frame

for a building’s design and construction. Moreover, identifying a quantum can aid

in the process of reconstruction by helping to determine the dimension of missing

elements.

1.3 Literature Review

So far, research into statistical analysis of quanta has been limited to merely deter-

mining if a quantum exists in a sample and calculating that quantum. Originally,

the problem was applied to the topic of atomic weights of chemical elements. In 1815

William Prout hypothesized that since atomic weights of elements measured up to

that point are integer multiples of the atomic weight of hydrogen, 1.0079, it must be

the element from which all other elements are formed. However, this conclusion was

incorrect and was disproved, leading to further conjecture on the quantum for atomic

weights. Richard von Mises (1918) applied statistical techniques to the problem by

developing the von Mises distribution, which is a circular analog to the normal dis-
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tribution for linear data. Francis Aston (1920), inventor of the mass spectrometer,

observed that all atomic weights so far measured, except for hydrogen, were multiples

of 1
16

the weight of oxygen (15.9994). This discovery became known as the Whole

Number Rule.

The use of statistical methods for calculating archaeological quanta was introduced

by A. Thom (1955) in order to determine the Megalithic yard from British stone

circles similar to Stonehenge and circles found at Avebury. This method was based

on S. R. Broadbent’s observation that multimodal data with peaks at evenly-spaced

intervals support the existence of a quantum (1955). Broadbent had two methods

for determining a quantum based on minimizing the mean squared error (MSE) of

the equation yrs = β + rq + εrs, where yrs is the sth stone circle’s diameter in the rth

subdivision of the data, β is the location of the first mode, q is the quantum, and

εrs is the error. One method verifies or refutes whether a hypothesized value of q,

q̂, is the true quantum; the other method calculates the quantum when no a priori

knowledge of q is given (1955; 1956).

D. G. Kendall (1974) used the cosine quantogram method derived from the von

Mises distribution to analyze Thom’s stone circle data. This method is similar to

Broadbent’s method, but it assumes a zero intercept (β = 0). Although Kendall

used Monte Carlo simulations to construct a test that a quantum exists, he did not

calculate confidence intervals for the point estimate nor did he construct an objective

test for comparing quanta from his two regions: England/Wales and Scotland, which

he concludes could have different quanta. J. T. Kent (1975) and Csörgő (1980) found

that the cosine quantogram equation converges weakly to a simple Gaussian process.

Bayesian methods developed by P. R. Freeman (1976) have also been applied to

Thom’s Megalithic yard problem, which supported Kendall’s claim that the quantum

based on the Scottish circles was 1.658 meters, but did not support Thom’s conclusion
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that the stone rows show evidence of a 0.829-meter Megalithic yard. The cosine

quantogram method has also been applied to the weight systems of the Ashanti

people of Ghana (Hewson, 1980). The methods of Broadbent, Kendall, and Freeman

are summarized in M. Baxter’s Statistics in Archaeology (2003).

Recent research by classicist J. Pakkanen has focused on determining the design

unit in Ancient Greek architecture using the cosine quantogram method. He con-

cluded that the quantum underlying the design of the Erechtheion in Athens is 0.3242

meters based on a sample size of 19 measurements on individual blocks (2002). This

quantum differs only slightly from the ca. 0.326-meter Doric foot (Dinsmoor, 1961).

The Early Iron Age building of the Toumba cemetery at Lefkandi, located on the

Greek Island of Euboea, is another focus of Pakkanen’s research into design units

using the cosine quantogram method. Pakkanen (2004b) concludes that the quantum

for this building is between 0.485 and 0.493 meters. For the Temple of Zeus at Stratos,

there are three proposed quanta. Courby and Picard (1924) proposed a quantum of

0.316 meters that W. Koenigs (1979) supported, Mertens (1981) proposed the Doric

foot, and Bankel (1984) proposed the 0.294-meter Ionic foot. Pakkanen (2004a) finds

evidence of another possible quantum using the cosine quantogram method: 0.1053

meters (significant at the α = 0.05 level). Pakkenen notes that this value is equal

to roughly one third of the 0.316-meter quantum proposed by Courby and Picard.

In Pakkanen’s study of the Temple of Athena Alea at Tagea, the quantum derived

from block dimensions is around 0.099 meters, or roughly one third of the Ionic foot

(2005).

Currently, metrological studies have been primarily concerned with determining a

quantum and, as a secondary goal, determining if the result is statistically significant

based on a distribution of data resembling the sample but not governed by a quantum.

However, no studies have delved into the subject of statistically significant differences
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between quanta of buildings employing similar design principles at the same site

nor have they included any procedure for calculating confidence intervals of point

estimates. The objective of this project is to develop a generalized approach to

comparisons between buildings and to supplement point estimates with confidence

intervals.
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2 Methods

2.1 The Sample

Types of blocks included in the dataset were those most likely to have standardized

measurements due to their uniformity in their respective buildings. Two types of

structural elements were considered: wall blocks and frieze elements. Wall blocks

make up the major sides of each building and may be further classified as stretch-

ers, binders, or corner blocks. The latter category may also be further classified as

stretcher or binder corner blocks. Exterior walls are constructed using alternating

rows of stretcher and binder blocks. Stretchers tend to have heights around 0.5 me-

ters while binders tend to be shorter with heights between 0.225 and 0.275 meters.

Architrave wall blocks were also included, because the architrave has similar struc-

tural and design standards as the main walls. Binders from the string course and

the epikranitis of the Dedication were also included. However, wall blocks from the

orthostate were excluded. Apse wall blocks from the Hieron were also excluded be-

cause different design principles govern the construction of the apse. Wall blocks were

chosen for analysis because of their consistent dimensions and their abundance in the

dataset to avoid issues with small sample sizes.

The other type of blocks most likely to be cut using a quantum are frieze elements:

triglyphs, metopes, mutules, and regulae. Triglyphs are made up of three channels

(glyphs) and three ridges (femora) arranged as half-glyph, femur, glyph, femur, half-

glyph. In between two triglyphs is a metope, which could be plain, painted, or

have embellishments in relief. In this period in Greek architecture, each triglyph

should have approximately the same dimensions as every triglyph in the structure;

each metope should have approximately the same dimensions as every metope. The

combination of a triglyph with its adjacent metope is known as a frieze unit. The frieze
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contains a periodic pattern of the frieze unit motif repeated symmetrically around

the perimeter of the building. It is from this strict symmetry that the mathematical

concepts of frieze patterns and frieze groups are derived. Assuming plain metopes,

the frieze unit motif belongs to the frieze group applying horizontal translation (i.e.,

the frieze unit is repetitively shifted horizontally in one direction). Mutules are part

of the underside of horizontal geison blocks and are located above and in line with

the triglyphs and the center line of the metopes. Regulae are ornamental portions

of the architrave and are located below the triglyphs and metopes. The lengths

of these elements are the same as the lengths of their corresponding triglyphs and

therefore add similar dimensions to the dataset. Sources of information on mutule

and regula lengths include: architrave wall blocks, epistyle blocks, and horizontal and

lateral geison blocks. Triglyph and metope heights and lengths were included, when

available, as well as lengths of mutules and regulae.

Block measurements used in this study came from two sources: blocks from the

Dedication were measured by a team led by Bonna Wescoat of Emory University;

blocks from the Hieron came from Volume III (Plates) of the Samothrace publica-

tion series (P. W. Lehmann, 1969a). In order to measure the coarse block surfaces,

metal angles made of either steel or aluminum were used to simulate a smooth surface

by touching down on several points of the original surface. When measuring whole

blocks, the thin side of two metal angles (steels) were positioned at the same place on

each end of the desired dimension. The distance between the two steels was then mea-

sured using a metal metric measuring tape. Blocks were selected for inclusion in the

Hieron volume by Lehmann if they represented ideal or unbroken blocks of the struc-

ture. Additionally, Wescoat’s team has remeasured blocks of the Hieron, but these

measurements are not currently in the dataset because they must be checked against

Lehmann’s Hieron volume first. Blocks must have at least one complete dimension
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to be included in the final dataset. Analysis did not include broken dimensions (i.e.,

censored observations) because they do not contribute to a reliable estimate of the

quantum.

2.2 Block Dimensions

Blocks are measured across three dimensions: height, length, and width. Height is

defined as the vertical dimension on the block that extends from the floor of the

building to the roof. The length of a block is the horizontal breadth on the outer

façade to the floor. The block’s width is how deep the block extends from the exterior

into the interior of the building. Because the wall depth in Doric buildings is not

consistent throughout the building, widths were excluded from analysis. The data

have been collapsed across dimension so that each measurement is not distinguishable

between height and length. However, the model given below can be easily generalized

to include information on dimension.

2.3 Quantum Model

A quantum is formally defined as the smallest unit common to a set of measurements

of size n such that each measurement is a positive integer multiple of the quantum

itself, represented by

yi = qMi + εi, i = 1, 2, . . . , n (1)

where yi is the observed length of block i with a fixed dimension, q is the quantum, Mi

is a positive integer,1 and εi is the error.2 This model is the foundation for deriving the

cosine quantogram equation. Suppose the measurement data are marked on a piece

1Mi ∈ Z+ = {1, 2, 3, . . .}
2The error term may then be calculated for each measurement i by exploiting the nature of Mi.

Because Mi ∈ Z+, εi is the solution of yi mod q
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of tape starting at one end. Suppose there is also a circle of circumference equal to C.

When the tape is wrapped around the perimeter of the circle, and if a quantum exists

for the data and is equal to C, the markings should cluster around the zero-point of

the circle. The distribution formed is known as the von Mises distribution (Kendall,

1974). The von Mises distribution is similar to the wrapped normal distribution,

which is a version of the normal distribution around a unit circle (C = 2π). Thus,

the error term is assumed to be distributed von Mises.

2.4 Calculations

2.4.1 Cosine Quantogram

Kendall (1974) defined the cosine quantogram equation used to find the quantum q

as:

φ

(
1

q

)
=

√
2

n

n∑
i=1

cos

(
2πyi
q

)
(2)

The quantum of the data, if it exists, is found by calculating φ
(

1
q

)
over a range of

values of q and determining the value of q that maximizes φ(·), q̂. Kendall uses the

term
√

2
n

to add a dependence on the sample size and to allow the cosine quantogram

to approach a standard normal distribution for moderate values of n and q. However,

since this factor does not depend on q and we are only concerned with the value of

q̂, not φ
(

1
q̂

)
itself, it may be eliminated from calculations of the cosine quantogram.

The other portion of the quantogram, cos
(

2πyi

q

)
, may also be written in terms of the

error as cos
(

2πεi

q

)
, because yi is equal to qMi + εi and Mi ∈ Z+ from equation (1).

This quantity is proportional to the von Mises probability density, which is essential

for constructing a test statistic for hypothesis testing.
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2.4.2 Lower and Upper Bounds of q

In order to exclude nonsensical quanta, lower and upper bounds were placed on pos-

sible values of q. The metrological relief from Salamis and the Oxford metrological

relief, most likely found in western Asia Minor or a nearby island, demonstrate that

measurement systems based on body proportions were common (Wilson Jones, 2000).

Because cubits based on six human palm lengths, or 24 fingers (dactyls),3 were per-

vasive units throughout Ancient Greece and Rome, these lower and upper limits on

possible values of q are based on previously defined dactyls and cubits. The procedure

for finding an appropriate lower bound captures the estimate of the dactyl, while the

procedure for finding the upper bound captures the estimate of the cubit, based on

a flowchart from Rottländer (1996) and Wilson Jones (2000) (Tables 1 and 2). The

lower bound is 90% smaller than the smallest dactyl. Dactyls are found reliably from

foot measurements: there are 16 dactyls in a foot. The smallest dactyl, 0.0144 meters,

is derived from the Earth foot (Table 2). The upper bound is 110% larger than the

largest cubit in Table 1, one of two Late Egyptian cubits (0.5417 meters). The lower

and upper bounds of q are, therefore, 0.013 meters and 0.596 meters. The cosine

quantogram was calculated with millimeter precision.

2.4.3 Unrounding

In order to account for measurement error committed by archaeologists, measure-

ments were ‘unrounded’ before analysis according to Kendall’s recommended method

(1974). Measurements ranged in precision from the nearest tenth of a meter (decime-

ter) to the nearest thousandth of a meter (millimeter). The process of unrounding

involves adding a random value within [−0.05, 0.05) for measurements rounded to the

nearest decimeter, a random value within [−0.005, 0.005) for measurements rounded

3Equivalently, a cubit is the length of the forearm from the elbow to the tip of the middle finger
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Table 1: Table of Cubits (Ordered from Largest to Smallest)

Type Length (meters)

Late Egyptian cubit (A) 0.5417
Late Egyptian cubit (B) 0.5363
Great Ptolemaic cubit 0.5332
Great Egyptian Royal cubit 0.5289
‘New cubit’ 0.5270
Egyptian Royal Cubit 0.5236
‘Compromis’ cubit 0.5210
Nippur cubit 0.5184
Salamis cubit 0.4838
Cubitus Romanus 0.4444

Table 2: Table of Dactyls (Ordered from Largest to Smallest)

Type Length (meters) Dactyl Length (meters)

Great Ptolemaic foot 0.3554 0.0222
Samian-Ionian foot 0.3477 0.0217
Indus foot 0.3456 0.0216
Cretan-Aeginetan foot 0.3332 0.0208
Drusian foot 0.3332 0.0208
Doric-Pheidonic foot 0.3269 0.0204
Pied du roi 0.3248 0.0203
Byzantine foot 0.3206 0.0200
Milesian foot 0.3173 0.0198
Common Greek foot 0.3160 0.0198
‘Eginean’ foot 0.3142 0.0196
Attic-Olympic foot 0.3110 0.0194
Small Ptolemaic foot 0.3086 0.0193
pes Romanus 0.2962 0.0185
Attic-Cycladic foot 0.2943 0.0184
Punic foot 0.2941 0.0184
Vindonissa foot 0.2925 0.0183
Oscian-Umbrian foot 0.2757 0.0172
Gudea foot (ideal) 0.2654 0.0166
Gudea foot (real) 0.2646 0.0165
Pythic foot 0.2488 0.0156
Earth foot 0.2304 0.0144
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to the nearest centimeter, and so on. Therefore, if the newly unrounded measurement

is rounded to the same decimal place as the original value, it would be rounded up

or down to the original value. A formula for unrounding the data is:

yi,unrounded = yi +
(
0.5× 10−νi

)
· U,

where νi is the number of decimal places of measurement i and U is a random number

from a UNIF (0, 1) distribution.

During the measuring phase, some block dimensions appeared to be between two

measurements at the millimeter level, so the arithmetic mean of the two measurements

was recorded. These measurements were treated as though they were accurate to

the last decimal place given. Approximations at that level are unlikely to affect

the quantal estimates since unrounding using a random fraction of ±0.0001 should

adequately account for any error.

2.5 Hypothesis Testing

The next step from Kendall’s method is to construct significance tests between sub-

groups of the dataset. The simple model (1) can be generalized to provide for a better

description of the data:

yijk = qijMijk + εijk, (3)

where i is redefined from earlier as the building index (i = 1 is the Dedication, i = 2

is the Hieron), j is the block type index (j = 1 is wall blocks, j = 2 is frieze elements),

and k indexes each measurement in a set of n measurements (k ∈ {n··, ni·, n·j, nij}).

From this equation, the cosine quantogram (2) can also be generalized to include
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information on buildings and block types:

φ

(
1

qij

)
=

√
2

n

n∑
k=1

cos

(
2πyijk
qij

)
, (4)

for every i, j, and k. The hypotheses of interest are whether the quanta calculated

for each building, the Dedication and the Hieron, are equal and whether the quanta

calculated for each block type are equal given that they come from the same building.

Only two-sided tests were of interest because there was no reason to suspect that one

quantum should be larger than the other a priori.

Assuming a von Mises distribution, we may construct likelihood functions of the

data under H0 and HA for each test, take the ratio and compare it to a pre-specified

critical value based on the bootstrap distribution of q̂∗. For the von Mises distribution

with mean direction µ and concentration parameter κ, the probability density function

of VM (µ, κ) for angle θ is

f (θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), (5)

where I0(·) is the modified Bessel function of the first kind and order zero. The

parameters µ and κ are similar to the mean and variance of a normal distribution,

respectively. The mode of the distribution occurs at µ, which represents the mean

direction from the zero-point on the circle that values of angle θ take. Parameter κ

is analogous to 1/σ2; larger values of κ indicate distributions with higher peaks and

less spread while smaller values of κ indicate distributions with lower peaks and more

spread at a given value of µ. If κ = 0, the distribution is uniform on the circle.

The objective of the first hypothesis test is to determine if the quantum from each

building’s marginal distribution is equal to the quantum for the joint distribution;

that is, if the quantum for each building is equal to the quantum calculated for

16



both buildings. The simple null hypothesis and composite alternative hypothesis are,

therefore,

H0 : q·· = qi·,

for all buildings i

HA : q·· 6= qi·,

for at least one building i. Denote the likelihood under the null hypothesis as L (Y |H0)

and the likelihood under the alternative hypothesis as L (Y |HA). Because the cosine

quantogram equation is proportional to the von Mises distribution, the likelihood

ratio is

LR1 =
L (Y |H0)

L (Y |HA)
=

supqij |q··=qi·,∀i
∏

i

∏
j

∏
k exp

(
κ cos

(
2πεijk

qij

))
supqij

∏
i

∏
j

∏
k exp

(
κ cos

(
2πεijk

qij

)) ,

for building i, block type j, and measurement k. The test statistic is the logarithm

of the likelihood ratio, given by

LLR1 =
∑
i

∑
j

∑
k

exp

(
κ cos

(
2πε̂∗ijk
q̂∗··

))
−
∑
i

∑
j

∑
k

exp

(
κ cos

(
2πε̂∗ijk
q̂∗i·

))

for building i, block type j, and measurement k. The parameter q̂∗ is estimated from

the resampled data and ε̂∗ is the error calculated from the resampled data. If the

log-likelihood ratio is greater than a specified critical value, then the null hypothesis

may be rejected in favor of the alternative hypothesis.

The second hypothesis test of interest determines if the quanta calculated for the

marginal distributions of wall blocks and frieze elements equals the joint distribution

of blocks in the Dedication only; that is, if the quanta for the wall blocks and for the

frieze elements in the Dedication are equal to the quantum associated with all blocks
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in the Dedication. The null and alternative hypotheses are:

H0 : q1· = q1j,

for block types j in the Dedication and

HA : q1· 6= q1j,

for at least one block type j in the Dedication. The log-likelihood ratio is, therefore,

LLR2 =
∑
i

∑
j

∑
k

exp

(
κ cos

(
2πε̂∗1jk
q̂∗1·

))
−
∑
i

∑
j

∑
k

exp

(
κ cos

(
2πε̂∗1jk
q̂∗1j

))
,

for block type j, and measurement k of the Dedication.

Similarly, the third hypothesis test determines if the quanta for the wall blocks

and for the frieze elements in the Hieron are equal to the quantum associated with

all blocks in the Hieron. The null and alternative hypotheses are:

H0 : q2· = q2j,

for block types j in the Hieron and

HA : q2· 6= q2j,

for at least one block type j in the Hieron. The test statistic is, therefore,

LLR3 =
∑
i

∑
j

∑
k

exp

(
κ cos

(
2πε̂∗2jk
q̂∗2·

))
−
∑
i

∑
j

∑
k

exp

(
κ cos

(
2πε̂∗2jk
q̂∗2j

))
,

for block type j and measurement k of the Hieron.

18



In all tests, the value of κ is unknown. Because κ is a nuisance parameter, the

log-likelihood ratio cannot be compared to a critical value from a pre-specified dis-

tribution. However, κ may be factored out without loss of power, and the quantity

Ct = 1
κ
LLRt for tests t = 1, 2, 3 can become the test statistic:

C1 =
LLR1

κ
=
∑
i

∑
j

∑
k

exp

(
cos

(
2πε̂∗ijk
q̂∗··

))
−
∑
i

∑
j

∑
k

exp

(
cos

(
2πε̂∗ijk
q̂∗i·

))

C2 =
LLR2

κ
=
∑
i

∑
j

∑
k

exp

(
cos

(
2πε̂∗1jk
q̂∗1·

))
−
∑
i

∑
j

∑
k

exp

(
cos

(
2πε̂∗1jk
q̂∗1j

))

C3 =
LLR3

κ
=
∑
i

∑
j

∑
k

exp

(
cos

(
2πε̂∗2jk
q̂∗2·

))
−
∑
i

∑
j

∑
k

exp

(
cos

(
2πε̂∗2jk
q̂∗2j

))
Critical values for the log-likelihood ratios may be found by resampling, generat-

ing LLRs for each replicate sample, and creating a set of sufficiently numerous

percentiles to arrive at a well-defined distribution for the LLRs (PCTL = 0.5x,

x = (0, 1, 2, . . . , 200)). The p-value for the test is the probability under the null

hypothesis of obtaining an LLR at least as extreme as the original, so p = 100−

PCTL. The distribution of percentiles (p-values) is discrete, so linear interpolation

should be used to calculate the p-value. This equation is given by

pt = pL + (Ct − CL)
pU − pL
CU − CL

,

where Ct is the test statistic of test t and pt is its corresponding p-value. (CL, pL), and

(CU , pU) are the lower and upper neighboring critical values of (Ct, pt), respectively.

2.5.1 Monte Carlo Simulations and Bootstrapping

Monte Carlo methods were used to calculate confidence intervals and to conduct hy-

pothesis tests. In general, Monte Carlo methods compare the original sample to a
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distribution from an assumed model. A bootstrap test is a special case of the Monte

Carlo test. The basis of bootstrapping is random sampling from the original dataset.

If the original sample is of size n, then N resamples also of size n are taken using un-

restricted random sampling (i.e., sampling with replacement). Unrestricted random

sampling gives each observation an equal probability of selection. This resampling

method is particularly helpful if the parameter of interest is from an unknown distri-

bution. The more random samples are generated, the faster the bootstrap distribution

converges to the actual distribution of the parameter.

In order to construct an accurate distribution for the data, N = 10, 000 samples

were taken, stratified by both building and block type to ensure that the proportions of

measurements from the same building and type are equal to those from the original

dataset for each subset of the data. The unrounding procedure was performed on

each replicate sample. From the replicate samples, the standard deviation of the

collection of point estimates q̂∗ from each sample approximates the standard error

of the underlying distribution. Marriott (1979) provides a formula for determining

the number of simulations, N , needed to reject H0 of one-sided tests. However, we

are concerned with two-sided hypothesis tests. We only consider large values of N

(such that Npq > 5), so the normal approximation to the binomial distribution of

the probability of rejecting H0 may be used:

P ≈ PL + PU ,

where

PL ≈ 1− Φ

(
(N + 1)−mL − 1

2
−Nq

√
Npq

)
and

PU ≈ 1− Φ

(
(N + 1)−mU − 1

2
−Nq

√
Npq

)
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where N is the number of simulations, p = α
2
, q = 1 − α

2
, mL = α

2
(N + 1) and

mL =
(
1− α

2

)
(N + 1), and Φ(·) is the cumulative distribution function of a normal

distribution. The continuity correction of 1
2

is needed to convert from a discrete

distribution to a continuous one. Table 3 summarizes the probability of rejecting H0

Table 3: Probability of Rejecting H0 in Monte Carlo Tests

p

N 0.070 0.065 0.060 0.055 0.050 0.045 0.040 0.035 0.030

500 0.091 0.143 0.219 0.319 0.446 0.592 0.741 0.868 0.952
1000 0.036 0.077 0.155 0.283 0.462 0.667 0.847 0.955 0.993
2500 0.003 0.015 0.064 0.205 0.476 0.782 0.957 0.997 1.000
5000 0.000 0.001 0.017 0.131 0.483 0.874 0.993 1.000 1.000

10,000 0.000 0.000 0.002 0.060 0.488 0.951 1.000 1.000 1.000

given that the actual p-value is 0.05. From this table, it appears that N = 1000

simulations is adequate because the probability of rejecting H0 is greater than 80%

when p is very close to 0.05 (such as when p = 0.045); however, larger numbers of

simulations give even better results and do not drastically increase computing time.

For example, the probability of rejecting H0 when p = 0.045 is 0.95 – very close to

one.

Confidence intervals will be calculated using the standard bootstrap method. The

quantum, or any statistic, is calculated for each of the N replicate samples and the

standard error is found from this distribution. The assumptions of the standard

bootstrap confidence interval are:

1. q̂ is approximately normally distributed

2. q̂ is unbiased

3. Bootstrap resampling provides a good approximation for the standard deviation

of q, σ (Manly, 2007).
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If these assumptions hold, then a 100(1 − α)% confidence interval for q takes the

form q̂ ± zα/2σ̂, where σ̂ is estimated from the collection of bootstrap estimates of q.

Therefore, a 95% confidence interval for q is q̂ ± 1.96σ̂.

2.6 Diagnostics

2.6.1 Conversion of Linear Data to Circular/Angular Data

In order to perform other tests on the data, such as goodness-of-fit tests and sig-

nificance tests on parameters of the von Mises distribution of the errors, the linear

data must first be converted into circular data. For each subset of the data (i.e.,

data from either building, and data from either types of blocks from each building),

the calculated quantum will be assumed to be the true quantum of the data. From

these quanta, circles with circumferences equal to q̂ may be constructed upon which

the inferred von Mises distribution lies. Returning to the indexing conventions in

equations (1) and (2), for each unrounded measurement yi, the calculated error is

equivalent to arc length. In general, an angle ∠θi, in radians, is derived from the

linear measurement from the formula ∠θi = 2πyi

q̂
, where i = 1, 2, . . . , n.

2.6.2 Goodness-of-Fit Tests

To confirm that the calculated quanta are valid, the assumption that the data are from

a von Mises distribution will be tested using a goodness-of-fit test that was derived by

Watson (1961) and expanded by Lockhart and Stephens (1985). Because both µ and

κ are unknown parameters, they must be estimated using their maximum likelihood

estimates (MLEs). The MLE for µ (µ̂) is the direction of the resultant (R) of the

vectors formed from the origin O to a point on the circle Pi for every observation

i. The MLE of κ is κ̂ = A−1(R̄) (i.e., the inverse of the ratio of the first and
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zeroth order Bessel functions evaluated at the value of R̄, the mean resultant length).

After estimating these parameters, zi = F (θi;µ, κ), where F (·) is the cumulative

density function of the von Mises distribution, is calculated. Next, the order statistics(
z(1), z(2), . . . , z(n)

)
are obtained for zi. The statistic U2 is then calculated where

U2 =
n∑
i=1

{(
z(i) − (2i− 1)

2n

)2
}
− n

(
z̄ − 1

2

)2

+
1

12n

and is compared to critical values. Because results of goodness-of-fit tests in smaller

samples are more sensitive to slight departures from the distribution, only the marginal

distributions of the buildings will be tested.

2.6.3 Significance Testing for µ (κ Unknown)

If the estimates q̂ are appropriate, the mean of the errors for each subset should

be equal to zero. Therefore, the null hypothesis is that µ = 0 and the alternative

hypothesis is that µ 6= 0. Let C =
∑n

i=1 cos θi and C̄ = C
n

. Because κ is unknown

and n is not large for all subsets, but n > 5, an approximate likelihood ratio statistic

is:

W =


2n3

n2+C2+3n
log 1−C̄2

1−R̄2 if C̄ > 2
3

4n(R̄2−C̄2)
2−C̄2 if C̄ ≤ 2

3

,

(Mardia & Jupp, 2000; Upton, 1973). This statistic is asymptotically distributed χ2
1.

2.6.4 Homogeneity between Pairs of Subsets

The homogeneity between pairs of distributions will be tested using Watson’s two-

sample test, which checks whether the data from two samples come from the same

population (Jammalamadaka, 2001). In general, the test takes the form H0 : F1 = F2

where F1 and F2 are the empirical density functions of distributions of size n1 and
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n2, respectively, such that n = n1 + n2. This test assumes that κ1 = κ2 (Mardia &

Jupp, 2000). We will test to see if the data from the Dedication and the Hieron come

from the same population and also if the measurements from different block types

within a building come from the same population. The three tests are H0 : F1· = F2·,

F11 = F12, and F21 = F22 versus their corresponding two-tailed alternatives.

2.7 Software Packages

Univariate analysis and cosine quantogram analysis were performed using SAS version

9.2. Analysis of circular data was done using R version 2.6.2 and using the circular

package version 0.3-9 developed by Claudio Agostinelli and Ulric Lund (2007). Plots

were generated in R version 2.6.2.
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3 Results

Seventy-six blocks were included in the final analysis. Twenty were wall blocks from

the Dedication, 24 were frieze elements from the Dedication, 20 were wall blocks

from the Hieron, and 12 were frieze elements from the Hieron. In the Dedication, 31

measurements came from wall blocks and 26 measurements came from frieze elements.

For the wall blocks there were 20 height measurements and 11 lengths. For the frieze

elements, there were 3 heights and 23 lengths, because only the lengths of mutules and

regulae were included. In the Hieron, there were 39 measurements from wall blocks:

20 heights and 19 lengths. For the frieze elements, there were 17 measurements: 6

heights and 11 lengths. These data are summarized in Tables 4 and 5.

Table 4: Summary of Blocks Used

Building # of Blocks Block Type # of Blocks

Dedication 44
Wall Blocks 20
Frieze Elements 24

Hieron 32
Wall Blocks 20
Frieze Elements 12

3.1 Missing Data

The definition of missing data differs for blocks and measured dimensions. Missing

blocks can be blocks that are present in a building’s restored plan, but are not present

in the dataset. A missing block may also be a block that is present in the dataset,

but does not have at least one complete (i.e., unbroken) dimension. Dimensions are

considered missing if no value is present or if it is incomplete (i.e., broken). Some

blocks contained partial lengths of mutules and regulae that are to be matched with

others to form the length of a complete mutule or regula. These dimensions were not
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included and were not considered to be broken.

From the reconstructed plan of the Dedication, there are ca. 462 wall blocks and

192 frieze elements. In the dataset, however, there are only 27 wall blocks and 26

frieze elements with at least one dimension value given, either broken or unbroken.

Of the 27 wall blocks present, 20 had at least one complete dimension. Of the 33

frieze elements present, 24 had complete dimensions. The percentage of wall blocks

used was 4.3% (95.7% missing) and the percentage of frieze elements used was 12.5%

(87.5% missing). This difference between proportions was statistically significant at

the α = 0.05 level (p = 0.001). Of the 924 potential measurements from wall blocks

(462 heights and 462 lengths), 31 were present. Of the 268 potential frieze element

measurements (40 triglyph lengths, 40 triglyph heights, 36 metope lengths, 36 metope

lengths, 76 mutule lengths, and 40 regula lengths), 26 were present. The percentage

of wall blocks measurements used (3.4% present, 96.6% missing) compared to frieze

elements (9.7% present, 90.3% missing) was statistically significant (p = 0.001). Wall

blocks and measurements from wall blocks tended to be missing more often than

frieze elements. From a statistical standpoint, this high percentage of missing data is

troubling; however, the percentage of measurements included in the dataset is high

for an archaeological study.

There are ca. 688 wall blocks and 432 frieze elements present in the Hieron’s

reconstructed plan. Twenty wall blocks were present in the dataset and all had at

least one complete dimension. There were 13 frieze elements in the dataset, and 12

had at least one complete dimension. In the Hieron, the percentage of wall blocks

present was 2.9% (97.1% missing) and the percentage of frieze elements present was

2.8% (97.2% missing). This difference was not statistically significant (p = 0.899).

Of the 1376 possible wall block measurements (688 heights, 688 lengths), 39 were

usable (2.8% non-missing, 97.2% missing). For frieze elements, there are 604 possible
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measurements: 88 triglyph lengths, 88 triglyph heights, 84 metope lengths, 84 metope

heights, 172 mutule lengths, and 88 regula lengths. Seventeen measurements were

usable (2.8% non-missing, 97.2% missing). The diffence between proportions of non-

missing measurements between wall blocks and frieze elements was not statistically

significant (p = 0.981). Similarly, the proportions of usable blocks and measurements

may appear to be small to the statistician, but to the archaeologist, these proportions

are large.

Differences between proportions of missing/non-missing blocks and measurements

in the Dedication and the Hieron is due to the way the data were collected. Blocks of

the Hieron were chosen because they represented prototypical blocks; they are far less

likely to have any broken dimensions. However, only a few examples of prototypical

blocks were given, so similar blocks were not included. Therefore, there tended to

be smaller proportions of blocks and measurements from the Hieron compared to

the Dedication. A comparison between total blocks used from the Dedication (6.7%

present, 93.3% missing)and the Hieron (2.9% present, 97.1% missing) was highly

significant (p < 0.001). The proportion of usable measurements from the Dedication

was 4.8% while the proportion of usable measurements from the Hieron was 2.8%.

This difference was statistically significant (p = 0.007). These proportions translate

to 95.2% and 97.2% missing, respectively.

3.2 Univariate Analysis of Block Subgroups between Build-

ings

A comparison between the average block dimensions of subgroups of blocks (binders,

stretchers, triglyphs, etc.) shows that the properties of blocks used in the Dedication

and the Hieron are different. Because the assumption of normality was violated
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for most subgroups of blocks, non-parametric tests between buildings were used for

consistency and simplicity. Power is reduced when using non-parametric tests on

normal data, but there was a statistically significant difference between each subgroup

considered at the α = 0.05 level (Table 6). The median length of wall blocks from the

Dedication was 1.0420 meters and the median length of wall blocks from the Hieron

was 1.3100 meters (p = 0.0017). Binders tended to have heights between 0.228 and

0.259 meters (interquartile range) in the Dedication and between 0.246 and 0.275

meters in the Hieron (IQR). The median height for binders in the Dedication was

0.2320 meters and 0.2635 for the Hieron (p = 0.0064). The heights of stretchers

tended to be between 0.474 and 0.478 meters in the Dedication and between 0.564

and 0.586 meters in the Hieron (IQR). The median stretcher height was 0.4750 meters

in the Dedication and 0.5720 meters in the Hieron (p < 0.0001). The height of

triglyphs and metopes in the Dedication was 0.6700 meters and 0.7475 meters in the

Hieron (p = 0.0269). The triglyph lengths, which include mutule and regula lengths,

have medians of 0.4150 meters in the Dedication and 0.4873 meters in the Hieron

(p = 0.0003).

Table 6: Summary of Measurements of Subgroups of Blocks between Buildings

Block Type (Dimension)
Dedication Hieron

p-value
N Median N Median

Wall Blocks
All (L) 11 1.0420 19 1.3100 0.0017
Binders (H) 7 0.2320 8 0.2635 0.0064
Stretchers (H) 11 0.4750 11 0.5720 0.0001

Frieze Elements
All (H) 3 0.6700 6 0.7475 0.0269
Triglyphs (L) 19 0.4150 4 0.4873 0.0003
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3.3 Comparison of Quanta between Buildings

The distribution of all measurements from both the Dedication and the Hieron (Figure

1) suggests that quanta may exist for the two buildings, but that they may not be

equal because the modes do not occur at regularly-spaced intervals. The distance

between the first and second peaks is 0.622 meters while the distance between the

second and third peaks is 0.893 meters. Figures 2 and 3 show the distributions of the

data for the Dedication and Hieron, respectively, and also suggest that a quantum

may exist for their respective measurements.

The estimate of the quantum q for the Dedication is q̂1· = 0.211 meters (SE =

0.0719 meters). A 95% confidence interval for q1· is (0.070 m., 0.352 m.). Figure 4

is the plot of the cosine quantogram for the Dedication with a maximum value of

φ(·) occurring at q = 0.211 meters. The estimate of q2· for the Hieron is q̂2· = 0.253

meters (SE = 0.0458 meters). A 95% confidence interval for q2· is (0.163 m., 0.343

m.). Figure 5 is the plot of the cosine quantogram for the Hieron, showing that the

ideal quantum is q̂2· = 0.253. These results are shown in Table 7. For the test that

the quanta for the two buildings are equal, the test statistic T1 is -13.7929. There

is not a statistically significant difference between the at least one of the two quanta

and the joint distribution (p = 0.270).

Table 7: Comparison of Quanta between Buildings

Building q̂ SE(q̂) 95% Confidence Interval

Dedication 0.211 0.0719 (0.070, 0.352)
Hieron 0.253 0.0458 (0.163, 0.343)
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Figure 1: Histogram and KDE Function of Measurements from the Dedication and
Hieron
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Figure 2: Histogram and KDE Function of Measurements from the Dedication
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Distribution of Measurements:
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Figure 3: Histogram and KDE Function of Measurements from the Hieron
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3.4 Comparison of Quanta between Block Types within Build-

ings

3.4.1 Comparison of Quanta between Block Types of the Dedication

Figures 6 and 7 show the bimodal and multimodal distributions of the wall blocks

and frieze elements of the Dedication, respectively. The modes of the distribution

of the wall blocks occur at 0.444 meters and 1.003 meters. The 0.444-meter peak

corresponds height measurements and the 1.003-meter peak corresponds to lengths.

The modes of the frieze elements occur at 0.414 meters, 0.653 meters, and 1.043

meters, which represent the triglyph lengths, metope lengths and all heights, and

frieze unit lengths, respectively.

In the Dedication, the estimate of the quantum for wall blocks is q̂11 = 0.255

meters (SE = 0.0718 meters, 95% CI: (0.114 m., 0.396 m.)) and the quantum

for frieze elements is q̂12 = 0.210 meters (SE = 0.0704 meters, 95% CI: 0.072 m.,

0.348 m.). These results are summarized in Table 8. The test statistic T2 for the

hypothesis that the quanta for the two block types within the Dedication are equal

to the quantum for all blocks in the Dedication is -11.0078. There is not enough

evidence to suggest that q1· 6= q1j for at least one block type j (p = 0.645). However,

these quanta are vastly different in architectural terms. Figures 8 and 9 are plots of

the cosine quantogram for the wall blocks and frieze elements, respectively.

Table 8: Comparison of Quanta between Wall Blocks and Frieze Elements of the
Dedication

Block Type q̂ SE(q̂) 95% Confidence Interval

Wall Blocks 0.255 0.0718 (0.114, 0.396)
Frieze Elements 0.210 0.0704 (0.072, 0.348)
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Figure 6: Histogram and KDE Function of Wall Blocks Measurements from the Ded-
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Distribution of Measurements:
Frieze Elements of the Dedication

Measurement (meters)

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
2

4
6

8

0.414 0.653 1.043

Figure 7: Histogram and KDE Function of Frieze Element Measurements from the
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3.4.2 Comparison of Quanta between Block Types of the Hieron

The distributions of the measurements for Hieron wall blocks and frieze elements are

shown in Figures 10 and 11. In Figure 10, modes occur at 0.501 meters and 1.214

meters, which correspond to heights and lengths of wall blocks, respectively. The

distribution of frieze elements in the Hieron (Figure 11) has peaks at 0.516 meters,

0.730 meters, and 1.205 meters, which are not evenly-spaced. The distance between

the peaks at 0.730 meters and 1.205 meters is between 3 and 4 times the distance

between 0.730 meters and 0.516, which does not suggest that there is a quantum

for these data. However, the sample size may be too small (n22 = 17) to draw an

accurate conclusion based on evenly-spaced modes of the absence of a quantum.

The estimate of the quantum for wall blocks of the Hieron is q̂21 = 0.295 meters

(SE = 0.0693 m., Figure 12). The estimate of the quantum for frieze elements in the

same building is q̂22 = 0.244 meters (SE = 0.0150 m., Figure 13). A 95% confidence

interval for wall blocks is (0.159 m., 0.431 m.) and a 95% confidence interval for frieze

elements is (0.241 m., 0.247 m.) (Table 9). The test statistic T3 for the hypothesis

that the quanta for the two block types are equal to the quantum for all blocks in

the Hieron is -15.9371. There is not enough evidence to suggest that q2· 6= q2j for at

least one block type j (p = 0.810).

Table 9: Comparison of Quanta between Wall Blocks and Frieze Elements of the
Hieron

Block Type q̂ SE(q̂) 95% Confidence Interval

Wall Blocks 0.295 0.0693 (0.159, 0.431)
Frieze Elements 0.244 0.0015 (0.241, 0.247)
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Figure 10: Histogram and KDE Function of Wall Block Measurements from the
Hieron
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Distribution of Measurements:
Frieze Elements of the Hieron

Measurement (meters)

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

6

0.516 0.730 1.205

Figure 11: Histogram and KDE Function of Frieze Element Measurements from the
Hieron
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3.5 Diagnostics

3.5.1 Goodness-of-Fit Tests

For the Dedication, the estimated von Mises distribution under the assumption that

the circle’s circumference is q̂1· = 0.211 meters is VM (0.214, 1.541) where µ̂1· = 0.214

radians is the maximum likelihood estimate of the mean direction and κ̂1· = 1.541 is

the MLE of the concentration parameter. Watson’s test indicates that this von Mises

distribution does not fit the data well (U2
1· = 0.4797, critical value = 0.092). This

lack of fit suggests 0.211 meters may not be a good estimate of the quantum. For the

Hieron, the estimated von Mises distribution under the assumption that the circle’s

circumference is q̂2· = 0.253 meters is VM (0.055, 0.876). This von Mises distribution

does fit the measurements from the Hieron well (U2
2· = 0.0476, critical value = 0.079).

Figures 14 and 15 show the distributions of errors for the Dedication and the Hieron,

respectively. The red line shows the MLE of µ and the value is of µ̂ labeled in red.

3.5.2 Significance Testing for the Mean Direction Parameter, µ

For the Dedication, the MLE of the mean direction parameter µ of the assumed von

Mises distribution formed around a circle of circumference equal to q̂1· = 0.211 meters

is µ̂1· = 0.214 radians (SE = 0.1371). The MLE of the concentration parameter κ

is κ̂1· = 1.541 (SE = 0.2707). Using 10,000 replicates, a 95% bootstrap confidence

interval for µ1· is (-0.04, 0.52) and for κ1· is (1.09, 2.12). In the test to determine

whether the mean direction is equal to zero, H0 cannot be rejected at the α = 0.05

level; there is not enough evidence to suggest that the mean direction is not equal to

zero (W = 2.305, p = 0.1290).

For the Hieron, the von Mises distribution formed around a circle with circumfer-

ence q̂2· = 0.253 meters has a mean direction µ̂2· = 0.055 radians (SE = 0.2255) and
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concentration parameter κ̂2· = 0.876 (SE = 0.2162). A 95% bootstrap confidence

interval for µ̂2· is (-0.41, 0.53) and for κ̂2· is (0.52, 1.32). There is no significant dif-

ference between the mean direction from the distribution errors from the Hieron and

zero (W = 0.059, p = 0.8087).

Within the Dedication, the MLE of the mean direction parameter µ11 of the

assumed von Mises distribution formed around a circle of circumference equal to

q̂11 = 0.255 meters for wall blocks is µ̂11 = −0.259 radians (SE = 0.1501) and the

MLE of the concentration parameter κ11 is κ̂11 = 2.035 (SE = 0.4496). Using 10,000

replicates, a 95% bootstrap confidence interval for µ11 is (-0.53 m., 0.09 m.) and for

κ̂11 is (1.40 m., 3.01 m.). There is not enough evidence to suggest that the mean

direction is not equal to zero (W = 0.009, p = 0.9257). The von Mises distribution

formed around a circle with circumference q̂12 = 0.210 meters for frieze elements

in the Dedication has a mean direction µ̂12 = −0.046 radians (SE = 0.0830) and

concentration parameter κ̂12 = 6.111 (SE = 1.6050). A 95% bootstrap confidence

interval for µ12 is (-0.17, 0.13) and for κ12 is (3.39, 35.83). There is no statistically

significant difference between the mean direction from the distribution of errors from

Dedication frieze elements and zero (W = 0.001, p = 0.9751).

Within the Hieron, the MLE of the mean direction parameter µ21 of the assumed

von Mises distribution formed around a circle of circumference q̂21 = 0.295 meters

(wall blocks) is µ̂21 = −0.282 radians (SE = 0.1670) and the MLE of the concen-

tration parameter κ21 is κ̂21 = 1.526 (SE = 0.3253). Using 10,000 replicates, a 95%

bootstrap confidence interval for µ21 is (-0.54, 0.00) and for κ21 is (0.86, 2.72). In the

test to determine whether the mean direction is equal to zero, we cannot reject H0 at

the α = 0.05 level and conclude that the mean direction is equal to zero (W = 2.647,

p = 0.1037). The von Mises distribution formed around a circle with circumference

q̂22 = 0.244 meters (Hieron frieze elements) has a mean direction of µ̂22 = 0.051 radi-
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Distribution of Errors on the Circle:
Dedication

q̂1. = 0.211

(0.214 rad.)

0

Figure 14: Distribution of Calculated Errors Assuming a Von Mises Distribution for
Measurements from the Dedication
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Distribution of Errors on the Circle:
Hieron

q̂2. = 0.253

(0.055 rad.)
0

Figure 15: Distribution of Calculated Errors Assuming a Von Mises Distribution for
Measurements from the Hieron
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ans (SE = 0.0937) and a concentration parameter of κ̂22 = 7.222 (SE = 2.3720). A

95% bootstrap confidence interval for µ22 is (-0.14, 0.23) and for κ22 is (4.59, 15.03).

There is no statistically significant difference between the mean direction from the

distribution of errors from Hieron frieze elements and zero (W = 0.002, p = 0.9624).

3.5.3 Two-Sample Tests of Homogeneity

In the tests of homogeneity of distributions, the α = 0.05 level critical value against

which the test statistics are compared is 0.187. For the comparison between blocks

in the Dedication and blocks of the Hieron the test statistic is 0.314; there is a statis-

tically significant difference between the distributions of the Dedication and Hieron

measurements. For the test of homogeneity in wall blocks and frieze elements within

the Dedication, the test statistic is 0.8372; there is a statistically significant difference

between the distributions of the wall block and frieze element measurements within

the Dedication. Similarly, when comparing the distributions between wall block and

frieze elements in the Hieron, the test statistic is 0.3118; there is a statistically signif-

icant difference between the distributions of the wall block and frieze element mea-

surements within the Hieron. Rejecting the null hypothesis that the measurements

come from the same distribution in all cases indicates that the measurements (and

errors) in pairs of subgroups come from different populations.
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4 Discussion

4.1 Art Historical Implications of the Calculated Quanta

The relevance of a quantum calculated at the micro-dimensional level (i.e., from indi-

vidual block measurements) relies on how the unit is used at the macro-dimensional

level. The macro-dimensional level consists of larger measurements such as length

and width of the building at the stylobate level, length of the frieze, and interaxial

space between columns. It also includes ‘ideal’ measurements of smaller components,

such as triglyph and metope lengths, which are generally established by finding the

median of unbroken measurements. An objective way to verify that a quantum fits a

dimension well is to divide the measurement by the quantum, round the result to the

nearest positive integer M to find the approximate number of quanta in the measure-

ment, then divide the measurement M to find what the quantum should be, based

on M . Because small errors build up quickly in larger dimensions, if the discrepancy

d between the original proposed quantum and the new M -based quantum (q̃) is less

than 0.001 meters, then the original quantum works well for that component. Fur-

thermore, a quantum may be considered ‘good’ if M is divisible by 5 or by values

that relate to 16, the number of dactyls in a cubit – namely 2, 4, 8, 16, 24, and 32.4

Cosine quantogram analysis yielded a quantum of 0.211 meters for the Dedication.

Vertical measurements (heights) did not have q̃’s close to the estimate of the quantum

(Table 10). The best fit of the quantum to a major component is with the interaxial

space between columns, at 9q̂1· (d = 0.0002). This relationship puts the ratio between

the quantum and the interaxial distance at 1:10, but with 0.0034 meters discrepancy.

The quantum fits the stylobate width and the building width at the first step well (d =

4According to M. Wilson Jones (2001), “the appeal of multiples of 5 may be linked to the fact
that this number is one of the bases of Greek counting systems” (p. 690).
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0.0007 and 0.0006, respectively). However, the relationship between these dimensions

and the quantum are not ideal and do not make sense: the stylobate width is 52q̂1·

and the width of the building at the first step is 59q̂1·. The large errors associated

with the 10q̂1· interaxial distance hypothesis raises the possibility of a quantum with

high likelihood of being the quantum and with small errors (d) associated with both

the micro- and macro-dimension levels.

An interesting dilemma arises if we consider the quantum for the Dedication to be

half the length of an average triglyph (0.416 meters),5 or q̂1· = 0.208 meters. Based

on the number of best-fitting dimensions, a quantum of 0.208 meters fits the principal

façade dimensions better than the 0.211-meter quantum found using the cosine quan-

togram method (Table 10). The positive integer multiple, M , of each quantum is the

same for all dimensions except the building width at the first step and the stylobate

width. If the quantum is indeed 0.208 meters, then the interaxial distance between

columns is almost exactly 10q̂1· (d = 0.0004). The positive integer multiple of the

0.208-quantum for building width at first step becomes a more favorable 60q̂1·, but

at the cost of a large d. It should also be noted that the next highest peak in Figure

4 occurs at q = 0.069, or a little less than one third of 0.208 meters. Furthermore,

q = 0.104 meters, one half of 0.208 meters, is also a local maximum.

The two possible values for q̂1·, 0.211 meters and 0.208 meters, appear to be

equivalent in terms of errors produced when they are fitted against the micro-level

components (Table 11). From Table 10 there is no statistically significant difference

between the paired discrepancies calculated from the proposed quanta q̂ and their

corresponding M -based quanta q̃ (Wilcoxon signed-rank test p-value = 0.2398). The

5The median triglyph length was calculated to be 0.415 meters based on the lengths of actual
triglyphs and whole mutules and regulae. However, halves of mutules and regulae may be present
on geison blocks and epistyle blocks, respectively. These portions may be matched to others in the
dataset. For simplicity, these were not included in the cosine quantogram analysis. However, the
average of 0.416 meters comes from the inclusion of these other lengths.
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next step in this dilemma is to construct a test for the simple null hypothesis that q1· =

0.208 and the composite alternative that q1· 6= 0.208. This test may be constructed

using a log-likelihood ratio test and bootstrapping as before to determine where in

the distribution of φ̂∗ (0.208) the estimate φ̂ (0.208) lies. If the result of this test is not

statistically significant (i.e., we conclude that q1· may be 0.208 meters), then we can

test if 0.208 and 0.211 are statistically significantly different from each other with the

simple null hypothesis that q1· = 0.211 versus the simple alternative that q1· = 0.208.

Table 11: Summary of Errors Produced with a 0.208-meter and a 0.211-meter Quan-
tum in the Dedication

Quantum (m.) Mean (SD) SE Median Min. Max. Range

0.208 0.0244 (0.0259) 0.0034 0.0100 0.0000 0.0780 0.0780
0.211 0.0263 (0.0229) 0.0030 0.0150 0.0010 0.0870 0.0860

At first glance, the quantum of 0.253 meters for the Hieron does not fit the

smaller architectural elements such as the capital height, epistyle height, diameters of

columns, interaxial space between columns, etc. (Table 12). The quantum performed

well for the triglyph and metope lengths. However, the larger building dimensions

such as length and width at the stylobate, length of frieze, etc. are remarkable. For

a couple of dimensions, M is a multiple of five, with very small discrepancy. Both

of these dimensions pertain to the stylobate level – the length and the width of the

building at the level stylobate. The length of the building appears to be equal to

155q̂2· and the width is exactly 50q̂2·. If the 0.253-meter quantum is correct, then it

suggests that the Hieron was designed with the overall dimensions in mind.

For the within buildings tests, it was determined that the quantum for wall blocks

within the Dedication (q11) and the quantum for frieze elements of the Dedication

(q12) were equal. This was also true in the Hieron; it was concluded that q21 = q22.

However, to an archaeologist, there is a large discrepancy between appropriate pairs
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Table 12: Use of a 0.253-meter Quantum in the Hieron

Component Y (m.) M q̃ d = |q̂ − q̃|
Building Width at First Step 14.03 55 0.2551 0.0021
Euthynteria Width 12.79 51 0.2508 0.0022
Stylobate Length 39.25 155 0.2532 0.0002∗

Stylobate Width 12.65 50 0.2530 0.0000∗

Interaxial Distance at Corner 2.18 9 0.2422 0.0108
Interaxial Space of Columns 2.39 9 0.2656 0.0278
Lower Column Diameter 0.901 4 0.2253 0.0278
Upper Column Diameter 0.783 3 0.2610 0.0080

Abacus Width 1.021 4 0.2553 0.0023
Epistyle Width 0.86 3 0.2867 0.0337
Metope Length 0.72 3 0.2400 0.0013
Triglyph Length 0.48 2 0.2400 0.0013

Capital Height 0.41 2 0.2050 0.0480
Column Height 5.66 22 0.2573 0.0043
Entablature Height 1.607 6 0.2678 0.0148
Epistyle Height 0.637 3 0.2123 0.0407
Frieze Height 0.745 3 0.2483 0.0047
Geison Height 0.225 1 0.2250 0.0280

*sufficiently small d (< 0.001 m.)
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of point estimates. Ancient Greek buildings were constructed with small errors on a

scale of millimeters, even for large dimensions. The difference between q̂11 = 0.255

and q̂12 = 0.210 is 0.045 meters. The difference between q̂21 = 0.295 and q̂22 = 0.244 is

0.051 meters. Archaeologists assume that the quanta for block types within building

are the same, with the possible allowance of a few millimeters variation. This conflict

can be resolved by deriving a new hypothesis testing procedure that has more power

– the probability that we reject a false null hypothesis (i.e., we conclude that the

quanta are not equal given that quanta are actually not equal).

4.2 Sources of Error in Block Dimensions

All blocks of the same type should have exactly the same measurements with no

variance. Error occurs when the measured dimension of a block is different than the

ideal value. There are several possible sources of error when dealing with measure-

ments. First, there is human error during the measuring phase, which includes, but

is not limited to, rounding error. An obvious source of error is erosion. This source,

however, is minimal because block surfaces were smoothed to allow for smooth exte-

rior and interior walls, as well as seamless joints between adjacent blocks and these

surfaces have been preserved. The method of measurement accounts for it as much

as possible.

The largest source of potential error is the conflict between the building as de-

signed and the building as constructed. Assuming there was a building plan prior to

construction, the number and dimensions of every block imported from off-site would

have to be known prior to sending the block orders to the quarry. In addition, to pre-

vent block dimension loss during transport, blocks would have been cut larger at the

quarry and cut smaller on-site. If a block used was too long, in order to compensate,

another block would have to be cut smaller than its original design. The dimension
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most affected by this type of error is length. Height was probably a stable dimension,

because height needed to be consistent for the roof to be level.

Although Greek architecture aimed at mathematical harmony, it was nonetheless

problematic. The Doric corner conflict arises when a triglyph must line up with the

corners of the frieze. Because columns must also support the corners of the structure,

the conflict occurs when the middle of the triglyph does not line up with the middle

of the corresponding column. One solution to this, which could affect the outcome of

analysis, is to adjust the length of the corner triglyphs so that the middle extends to

the middle of the corner column (Coulton, 1977). However, by the Hellenistic period,

architects were able to project dimensions downward from a uniform frieze.

Any errors produced by any of these sources are accounted for in this study. First,

any modern measurement error should be minimized with the unrounding procedure

used. Errors produced by ancient measurement error are accounted for in the con-

fidence intervals. However, if we knew the location in the façade of all the blocks,

we could determine and model the errors in heights. Length errors would be more

difficult to model because it is the most variable.

4.3 Limitations of Previous Studies

In each study involving the cosine quantogram method by Kendall and Pakkanen, the

only inference conducted involved testing the existence of a quantum, but no focus is

given to determining confidence intervals for the quantum or testing the equality of

quanta between groups of data. The confidence interval is as important as the point

estimate q̂ because it accounts for other possible samples from the population of mea-

surements. Significance testing provides a way to test if a quantum from one building

of unknown quantum is equal to the quantum from a another building (or buildings)

of known quantum (quanta). Not utilizing other types of statistical inference besides
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point estimation limits the ability to arrive at meaningful conclusions.

4.4 Limitations of This Study

One limitation of this method of calculating the quantum is that it does not take

into account a correlation between the height, length, and width of each block. These

measurements have been assumed to be independent. This näıve approach to the

problem is not detrimental to calculating an accurate quantum, but the more infor-

mation about the source of the measurements that is incorporated into the method,

the more meaningful the conclusion.

It appears in the literature that there have been no attempts to test the validity

of the cosine quantogram method. A way to test the validity would be to simulate

data where the data are forced to have a predefined quantum. Since a quantum

exists and is known, 10,000 samples from the distribution could be generated. The

cosine quantogram method is then applied to each sample. The mean and standard

error of the calculated quanta could be calculated and a confidence interval could be

constructed.

Another issue with the cosine quantogram method is that often a integer multiple

of the quantum plus a fraction of the quantum will fit one of the macro-dimension

measurements well. By definition, this subdivision of the quantum cannot happen; it

is the smallest unit present in the data. This issue raises the question of whether a

subdivision of the proposed quantum could be the true quantum instead? A subdi-

vision of the quantum fits the definition that it is a unit that cannot be subdivided

further and that each measurement can be expressed as a positive integer multiple of

the quantum. However, the cosine quantogram equation describes the likelihood that

a value of q is the true quantum; the higher the value of φ (·), the more likely that

value of q is the quantum. In the cosine quantogram plot of the Dedication, it was
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apparent that divisors of 0.208, which was not the abscissa of the maximum of φ (·),

had higher likelihoods of being the quantum than other q’s around them. It appears

that the cosine quantogram method is similar to other statistical methods, such as

model selection in regression analysis, in that it is steeped in objective mathematical

theory, but in the end, choosing a quantum also has a subjective component.

4.5 Biological Applications

Newson, Parker, and Barlow (1993) used the cosine quantogram method to determine

if the distances between lateral roots of the Lycopersicon esculentum Miller species

of tomato plant were multiples of a quantum measurement. Lateral, or secondary,

roots extend horizontally from the primary root, which extends vertically into the

ground. From inspection of the distribution of the distances, there appeared to be a

multimodal distribution with modes occurring at fixed distances. The existence of a

quantum from these data would provide insight into growth and cell differentiation

mechanisms in the tomato plant. However, in general, the data presented by Newson,

et al. did not exhibit a quantal relationship.

The cosine quantogram method may be applied to study any periodic biological

phenomenon. One such application in phenology is to study the effects of global

warming. Because temperature data may not exist in some regions and some time

periods, temperature-dependent animal and plant life cycles may be used as surrogate

indicators of temperature. Departures from a quantal relationship between time and

onset of a phenomenon, such as germination or bird migration, could indicate a

climate change effect.
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4.6 Public Health Implications

Thaler and Braun (1984) applied the cosine quantogram method to determine if

albumin production in clonal cells is clustered around values of the geometric sequence

of the form an = c
(√

(2)
)n

. The null hypothesis that the ith observation of activity

level Yi is equal to some constant c multiplied by a constant P raised to a positive

integer Mi (i.e., H0 : yi = aPMi) may be log-transformed to be log(yi) = log(C) +

Mi log(P ). The term log(C) may be omitted without loss of generality because only

relative enzyme activities are considered. In this study, the quantum q = log(P ) is

equal to log(
√

(2)). There was no evidence to suggest that q = log(
√

(2)) is the

quantum. Furthermore, no evidence of periodicity exists for any value of q related

to
√

(2), which is supported by the fact that higher peaks in the quantogram exist

for values of q unrelated to
√

(2), although a local maximum occurs at q = log(2) =

2 log(
√

(2)). The authors conclude that albumin production in clonal cells is not

clustered around a geometric sequence involving
√

(2).

An important application of finding a quantum would be in morphometry. In the

case of neuroimaging, voxel-based morphometry has been used to study differences

in brain structure among patients in disorder populations (Ashburner & Friston,

2000). Quantal analysis is most pertinent to the issue of brain shape and the size

of structures, but is not particularly useful for providing insight into the location of

certain structures. Studying the quanta of brain structures in ‘normal’ patients could

lead to a more accurate brain atlas for comparison with diseased brains and brains

with physiological disorders.
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4.7 Future Directions

The next step in analyzing the data from the Sanctuary of the Great Gods is to

incorporate other Doric buildings from the site, such as the Stoa and the Rotunda

of Arsinoe. Each building adds its own unique challenges to analysis. Recall that

the Stoa was constructed using porous limestone blocks, which were then covered in

plaster. It was not necessary to have precise measurements for each block dimension

because the plaster concealed any imperfections. The Rotunda of Arsinoe is the

largest circular structure in the Ancient Greek world. Because its blocks are curved,

the measurements governed by the quantum may not be the dimensions of the surface

area of the external face. The length could be the maximum length of the block or

the arc length of the interior or the exterior face.

We assume that there is no difference in the quantum defined for heights, lengths,

and widths within blocks and that there is no correlation between dimensions. The

assumption that the quanta for heights, lengths, and widths are equal is reasonable

because there is no evidence to suggest that there were different measuring rods for

each dimension. However, the assumption that there is no correlation between di-

mensions within a block is näıve because the Ancient Greeks placed considerable

emphasis on symmetria. Ratios between dimensions may be consistent and might

resemble established ratios such as the golden ratio (φ ≈ 1.61803) or the silver ratio

(δs = 1 +
√

(2) ≈ 2.41421). There should at least be some dependence relation-

ship between height and length, because the aesthetics of the exterior and interior

block faces would be most obvious to an observer. Incorporating information about

dimensions and determining the correlation between measurements of different di-

mensions (if any) would only add to the understanding of how the given building was

constructed.

If a reliable correlation is found between dimensions, then the true measurement
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of applicable now-lost dimensions could be modeled. Because lost dimensions are

essentially censored observations, analysis of the originally excluded data falls into

the survival analysis branch of statistics and is a missing data problem. An ‘event’

in this application is a break of one of the major dimensions. Instead of looking at

time to event, however, interest is in the length of a given measurement. Survival

analysis approaches could be used to determine which dimensions are more likely to

break and at what rate.

Another potential method, related to Broadbent’s method of minimizing the MSE

of the simple equation (1) is to minimize the sum of squared errors (SSE). If equation

(1) is treated as a linear regression problem, we have the equation E(Yi) = qMi with

two unknowns: q and Mi. This method differs from a standard linear regression

problem because we are trying to determine the values of Mi, assuming q is known.

This peculiarity is analogous to having a regression equation Yi = β0 + β1Xi + εi, i =

1, 2, . . . , n where β1 is known, and we are trying to find the values of the independent

variables Xi. If we generate Mi’s for a range of q, we can build a regression model to

estimate q. The optimal quantum is the value of q̂ that minimizes the residuals.

The motivating principle of this project was to evaluate the efficacy of a value-

neutral approach to determining units of measure in ancient Greek architecture

(Pakkanen, 2004a). Whereas archaeologists search for quanta by inductive reasoning,

this statistical method is based in deductive reasoning. In general, archaeological

investigation of a quantum has involved the identification of a quantum in one of

two ways: by attempting to fit a hypothetical quantum (for example, an established

ancient foot-unit) against the measurement of building components, or by finding

a quantum based on a fraction of an average building component, such as triglyph

length. The second method is certainly preferred over the first. However, the cosine

quantogram minimizes bias toward any particular value by finding a value that has
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the greatest likelihood of being the true quantum when taking into account all mea-

surements, not a suggestive few. Nonetheless, refinement of the methods is needed to

achieve statistically significant results that are also architecturally and archaeologi-

cally reasonable.
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A Appendix: SAS Program for the Cosine Quan-

togram Method

libname sgg ‘<path>’;

****************************************************************

Monte Carlo Simulations

****************************************************************;

/* Sample WITH replacement 10000 times */

proc sort data=sgg.measurements;

by building type;

run;

proc surveyselect data=sgg.measurements

out=resample

rate=1

rep=10000

method=urs

seed=315709091

outhits;

strata building type;

run;

/* Concatenate original sample with MC samples and unround*/

data unrounded;

set sgg.measurements resample;

Y_unrnd = Y + ((0.5*(10**-decimal))*(2*ranuni(1324601)-1));

keep ID building type dimension replicate Y_unrnd;

run;

****************************************************************

Calculate the Cosine Quantogram 1x10^-3 precision)

****************************************************************;

data cosineq_001;

set unrounded;

array Q Q1-Q584;

array cosine cosine1-cosine584;

start = 0.013;
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do over Q;

Q = start + (_I_ - 1)*0.001;

tau = 1/Q;

cosine = cos(2 * arcos(-1) * Y_unrnd * tau);

end;

drop tau Q1-Q584;

run;

****************************************************************

Find the optimum quantum for each subset of the data

Q_...: all buildings and types grouped

Q_b..: each building

Q_1t.: each type for building 1

Q_2t.: each type for building 2

****************************************************************;

/* Q_... */

proc sort data=cosineq_001;

by replicate;

run;

proc univariate data=cosineq_001 noprint;

var cosine1-cosine584;

by replicate;

output out=phi_all sum=phi1-phi584;

run;

data Q_all;

set phi_all;

cos_max=max(of phi1-phi584);

array Q Q1-Q584;

array phi phi1-phi584;

start = 0.013;

do over Q;

Q = start + (_I_ - 1)*0.001;

if cos_max = phi then Q_star=Q;

end;

drop start cos_max Q1-Q584 phi1-phi584;

run;

proc sort data=unrounded;

by replicate;

run;
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proc sort data=Q_all;

by replicate;

run;

data error_all;

merge unrounded Q_all;

by replicate;

error = modz(Y_unrnd, Q_star);

tau_star = 1/Q_star;

if error > Q_star/2 then error = error - Q_star;

summand_all = cos(2* arcos(-1) * error * tau_star);

drop tau_star;

run;

/* Q_b.. */

proc sort data=cosineq_001;

by replicate building;

run;

proc univariate data=cosineq_001 noprint;

by replicate building;

var cosine1-cosine584;

output out=phi_b sum=phi1-phi584;

run;

data Q_b;

set phi_b;

cos_max=max(of phi1-phi584);

array Q Q1-Q584;

array phi phi1-phi584;

start = 0.013;

do over Q;

Q = start + (_I_ - 1)*0.001;

if cos_max = phi then Q_star = Q;

end;

drop start cos_max Q1-Q584 phi1-phi584;

run;

proc sort data=unrounded;

by replicate building;

run;

proc sort data=Q_b;

by replicate building;
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run;

data error_b;

merge unrounded Q_b;

by replicate building;

error = modz(Y_unrnd, Q_star);

tau_star = 1/Q_star;

if error > Q_star/2 then error = error - Q_star;

summand_b = cos(2* arcos(-1) * error * tau_star);

drop tau_star;

run;

/* Q_1t. */

proc sort data=cosineq_001;

by replicate building type;

run;

proc univariate data=cosineq_001 noprint;

by replicate building type;

var cosine1-cosine584;

output out=phi_t sum=phi1-phi584;

run;

data Q_1t;

set phi_t;

where building = 1;

cos_max=max(of phi1-phi584);

array Q Q1-Q584;

array phi phi1-phi584;

start = 0.013;

do over Q;

Q = start + (_I_ - 1)*0.001;

if cos_max = phi then Q_star = Q;

end;

drop start cos_max Q1-Q584 phi1-phi584;

run;

proc sort data=unrounded;

by replicate building type;

run;

proc sort data=Q_1t;

by replicate building type;

run;
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data error_1t;

merge unrounded Q_1t;

by replicate building type;

where building = 1;

error = modz(Y_unrnd, Q_star);

tau_star = 1/Q_star;

if error > Q_star/2 then error = error - Q_star;

summand_1t = cos(2* arcos(-1) * error * tau_star);

drop tau_star;

run;

/* Q_2t. */

data Q_2t;

set phi_t;

where building = 2;

cos_max=max(of phi1-phi584);

array Q Q1-Q584;

array phi phi1-phi584;

start = 0.013;

do over Q;

Q = start + (_I_ - 1)*0.001;

if cos_max = phi then Q_star = Q;

end;

drop start cos_max Q1-Q584 phi1-phi584;

run;

proc sort data=unrounded;

by replicate building type;

run;

proc sort data=Q_1t;

by replicate building type;

run;

data error_2t;

merge unrounded Q_2t;

by replicate building type;

where building = 2;

error = modz(Y_unrnd, Q_star);

tau_star = 1/Q_star;

if error > Q_star/2 then error = error - Q_star;

summand_2t = cos(2* arcos(-1) * error * tau_star);
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drop tau_star;

run;

/* Create a dataset with only the quanta from the original sample */

data sgg.quanta3;

set Q_all Q_b Q_1t Q_2t;

where replicate = 0;

keep ID building type Q_star;

run;

****************************************************************

Calculate Portions of Log-likelihood Ratios

****************************************************************;

/* LLR_... */

proc univariate data=error_all noprint;

by replicate;

var summand_all;

output out=stat_all sum=LLR_all;

run;

/* LLR_b.. */

proc univariate data=error_b noprint;

by replicate;

var summand_b;

output out=stat_b sum=LLR_b;

run;

/* LLR_1.. */

proc univariate data=error_b noprint;

where building = 1;

by replicate;

var summand_b;

output out=stat_1 sum=LLR_1;

run;

/* LLR_2.. */

proc univariate data=error_b noprint;

where building = 2;

by replicate;

var summand_b;

output out=stat_2 sum=LLR_2;

run;
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/* LLR_1t. */

proc univariate data=error_1t noprint;

by replicate;

var summand_1t;

output out=stat_1t sum=LLR_1t;

run;

/* LLR_2t. */

proc univariate data=error_2t noprint;

by replicate;

var summand_2t;

output out=stat_2t sum=LLR_2t;

run;

****************************************************************

Calculate Log-likelihood Ratios

****************************************************************;

/* Test #1: all buildings the same */

data test1;

merge stat_all stat_b;

by replicate;

test_stat = LLR_all - LLR_b;

run;

data resampled1;

set test1;

if replicate = 0 then delete;

run;

/* Test #2: all types in building 1 are the same */

data test2;

merge stat_1 stat_1t;

by replicate;

test_stat = LLR_1 - LLR_1t;

run;

data resampled2;

set test2;

if replicate = 0 then delete;

run;

/* Test #3: all types in building 2 are the same */

70



data test3;

merge stat_2 stat_2t;

by replicate;

test_stat = LLR_2 - LLR_2t;

run;

data resampled3;

set test3;

if replicate = 0 then delete;

run;

data sgg.LLR;

set test1 test2 test3;

where replicate=0;

keep test_stat;

run;

proc print data=sgg.LLR;

run;

****************************************************************

Calculate Test Region

Calculate percentiles (0 to 100 by 0.5)

Find where the calculated LLR falls in the resampled LLRs

****************************************************************;

/* Test #1: all buildings the same */

proc univariate data=resampled1 noprint;

var test_stat;

output out=LLR1 pctlpre=P_ pctlpts= 0 to 100 by 0.5;

run;

/* Test #2: all types in building 1 are the same */

proc univariate data=resampled2 noprint;

var test_stat;

output out=LLR2 pctlpre=P_ pctlpts= 0 to 100 by 0.5;

run;

/* Test #3: all types in building 2 are the same */

proc univariate data=resampled3 noprint;

var test_stat;

output out=LLR3 pctlpre=P_ pctlpts= 0 to 100 by 0.5;

run;

data sgg.test_region;

set LLR1 LLR2 LLR3;

run;
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proc print data=sgg.test_region;

run;

****************************************************************

Calculate 95% Confidence Intervals

****************************************************************;

data quanta_all;

set Q_all;

if replicate = 0 then delete;

run;

proc univariate data=quanta_all noprint;

var Q_star;

output out=stats_all pctlpre=P_ pctlpts=2.5, 97.5 std=SE;

run;

data stats_all;

set stats_all;

building = .;

type = .;

run;

data quanta_b;

set Q_b;

if replicate = 0 then delete;

run;

proc sort data=quanta_b;

by building;

run;

proc univariate data=quanta_b noprint;

var Q_star;

by building;

output out=stats_b pctlpre=P_ pctlpts=2.5, 97.5 std=SE;

run;

data quanta_1t;

set Q_1t;

if replicate = 0 then delete;

run;

proc sort data=quanta_1t;

by type;

run;

proc univariate data=quanta_1t noprint;

var Q_star;
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by type;

output out=stats_1t pctlpre=P_ pctlpts=2.5, 97.5 std=SE;

run;

data stats_1t;

set stats_1t;

building = 1;

run;

data quanta_2t;

set Q_2t;

if replicate = 0 then delete;

run;

proc sort data=quanta_2t;

by type;

run;

proc univariate data=quanta_2t noprint;

var Q_star;

by type;

output out=stats_2t pctlpre=P_ pctlpts=2.5, 97.5 std=SE;

run;

data stats_2t;

set stats_2t;

building = 2;

run;

proc sort data=sgg.quanta3;

by building type;

run;

data sgg.summary;

retain building type Q_star SE P_2_5 P_97_5;

set stats_all stats_b stats_1t stats_2t;

merge sgg.quanta3;

by building type;

run;

proc print data=sgg.summary;

run;
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