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Abstract 

 

 

Local Community Structures and the Novelty and Generality of Innovations 

By: Scott D. Hayward 

 

 

 

 

Location has become a key factor in explaining innovation and technological change. 

 Local inventors form communities around particular technologies and industries, 

facilitating the flow of knowledge.  Local knowledge flows drive inventor productivity 

and give innovations a local flavor.  Yet every given region houses many communities, 

and a current debate pits the advantages of knowledge flowing within a local industry 

against those of knowledge flowing across local industries within the same region. 

 While location matters for innovation, is it deep pools or diverse selections of local 

knowledge which matter more?  This dissertation addresses this debate by focusing on 

whether an inventor‟s place within a broad structure of regional communities shapes 

the types of innovations they create.  Combining patent data with employment and 

establishment data for the years 1977 through 1997, I locate inventors in technical and 

industrial communities housed within different U.S. metropolitan areas.  Results 

suggest that local knowledge spillovers shape innovation novelty, while innovation 

generality follows a different process.  While prior investigations focus on local counts 

of innovations, these findings advance the field by testing the logic of local knowledge 

spillovers to understand the antecedents of innovation novelty and generality.  

Furthermore, I introduce technical communities as a more direct measure than local 

industries, providing evidence to suggest they are different concepts and should be 

considered in future examinations of local innovation.  This dissertation drives a 

broader understanding of how location matters for innovation, with subsequent 

implications for regional growth and technological development. 
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1 INTRODUCTION 

George Washington Carver has been credited with inventing three hundred uses 

for peanuts and hundreds more for soybeans, sweet potatoes and Alabama clay while 

teaching in Tuskegee, Alabama.  From these products he developed a broad set of uses: 

adhesives, axle grease, linoleum and mayonnaise to name a few.  Would Carver had 

found a similarly broad utility if he had worked in New Jersey?  Johannes Gutenberg 

brought together knowledge of printing, metal working, and winemaking to create a new 

printing machine that fostered future science, arts and religion.  Would Gutenberg have 

sparked the modern world had he not lived in the mining town of Mainz in southern 

Germany?   

Inventors are often influenced by their local communities, and they have often 

influenced the fates of those communities.  This observation finds its way into some of 

the canonical works in economics.  In discussing differences among nations, Adam Smith 

proposed in 1776 that larger local markets drive technological progress as a consequence 

of specialization (Smith, 1981).  Schumpeter described technological possibilities as 

“uncharted seas”, but suggested that progress depends on current market structures, 

supplies of entrepreneurs, and social forces (Schumpeter, 1934, 1942).  Marshall laid the 

foundation for subsequent studies by noting how knowledge and innovation diffuses 

between co-located actors driving further local innovation and economic development 

(Marshall, 1936). The extent to which these factors differ across locations may help 

explain the extent to which innovation differs as well.   
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Outside of economics, urbanist such as Jane Jacobs and AnnaLee Saxenian also 

recognize the local roots of innovation.  Like Marshall, Jacobs (1968) observed how co-

location spurs innovation as economic actors observe and use the products and ideas of 

others.  In the words of Jacobs, “one kind of work leads to another” and thus the make-up 

of a city‟s economy molds the innovations that emerge from it.  Saxenan (1996) raised 

location as a source of organizational competitive advantage and a determinant of 

industry evolution.  In her comparison of Silicon Valley and Boston‟s Route-128, she 

illustrated how local market structure and local culture leads to differences in the flow of 

ideas across economic actors.  Part of the success of Silicon Valley computer firms, she 

described, rose from their ability to continually innovate as knowledge flowed more 

freely there than in Boston.  

Motivated in part by Silicon Valley‟s rise, scholars have rediscovered the insights 

of Marshall and Jacobs, combining them with new data sets like the County Business 

Pattern Data, allowing us to move beyond small-N case studies in search of systematic 

patterns linking location and innovation.  Three lines of inquiry have grown 

simultaneously to provide important tools and insights allowing for a renewed focus on 

location and innovation.  First, new economic growth models sought to understand 

differences in economic development across locations.  Models by Romer (1986) and 

Lucas (1988) featured technology and knowledge spillovers.  As Glaeser (2000)  noted 

"knowledge spillovers solved the technical problem in economic theory of reconciling 

increasing returns (which are generally needed to generate endogenous growth) with 

competitive markets (p.83)."  This work relies on innovation and local knowledge flows 

as the intermediate between local context and local growth.   It suggests that knowledge 
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does not flow freely across borders, but that geography - and in particular the city (Lucas, 

1988) - matters.  In cities, proximity enables workers to imitate plentiful role models and 

learn by seeing.  The flow of ideas increases the rate of technical innovation leading to 

faster rates of new product introductions (Glaeser, 2000). 

Empirical testing for knowledge spillovers first employed localized knowledge 

production functions.  Jaffe (1986) found that states with higher public university and 

private research were associated with higher patenting among local firms.  This he 

interpreted as evidence of within-state knowledge spillovers.  Subsequent examinations 

showed this result held for new product innovations (Acs, Audretsch, & Feldman, 1992) 

and with patents at the metropolitan statistical area (Anselin, Varga, & Acs, 1997).  The 

co-location of innovative activity occurs even beyond the co-location of production, and 

is particularly evident in industries where we would expect knowledge spillovers to play 

a particularly crucial role (Audretsch & Feldman, 1996). 

While this literature provided an account of the uneven distribution of inventive 

active, patent citations analyses provide systematic evidence of local knowledge 

spillovers.  Using citations as direct measures of knowledge flowing from one inventor to 

another, Jaffe et al. (1993) explored the reach of knowledge spillovers across time and 

distance.  Patents in their sample tended to cite other patents from the same city more 

frequently, particularly in the cited patent's first year.  Furthermore, two studies of 

within-patent variations in citation rates found that inventors are far more likely to cite 

other local state and metropolitan area patents than examiners who serve as an external 

control (Alcácer & Gittelman, 2006; Thompson 2006). 
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In a parallel approach, Glaeser et. al (1992) sought to understand if the impact of 

knowledge spillovers differed depending on whether those spillovers come from others 

with similar knowledge or  others with different knowledge.  Drawing from the insights 

of Jacobs and Marshall, they tested local industry employment data from the County 

Business Pattern data to examine two sets of spillovers which may lead to local growth, 

with innovation as the key (albeit unmeasured) mechanism.  Within a local industry, 

concentration within a given city facilitates the “spying, imitation, and rapid interfirm 

movement of highly skilled labor” that disseminates ideas among neighboring firms 

(Glaeser et al., 1992: 1127).  Across local industries, a diversity of local knowledge flows 

provides fodder for Schumpeterian recombination that leads to innovation and growth.  

Inter-industry knowledge flows may, in fact, be more important for innovation than intra-

industry knowledge, as Jacobs (1968) explains.  Examining a cross section of 

employment in city-industries, Glaeser et. al (1992) found evidence in favor of inter-

industry knowledge spillover and against intra-industry spillovers.  Henderson et. al 

(1995) followed by suggesting that both types of spillover matter, depending on the level 

of industry maturity.  Thus, the local composition of economic activity seems to matter, 

although the exact nature of its impact remains an open question. 

Building on Glaeser et al.‟s path breaking work, other scholars provide evidence 

of local community composition‟s impact on innovation and inventiveness itself.    In a 

study of new product introductions, Feldman and Audretsch (1999) found evidence that 

local industrial diversity within a shared science-base promotes innovation.  Duranton 

and Puga (2001) presented and tested a model of co-existing diversified and specialized 

cities, where diversified cities as “nurseries” for innovation and entrepreneurship.   With 
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an eye on local rates of patenting, Paci and Usai (1999) and Gruenz (2004) estimated 

positive effects of both diversity and specialization in local European patenting.  

While we begin to understand that innovations are shaped by their communities of 

origin, most studies linking location and innovation focus specifically on local counts of 

innovations.  Yet innovations differ in important ways.  Nelson and Winter (1982) and 

others explored the degree to which an innovation refines and extends an existing 

technological field versus changing the entire direction of technological development (see 

also Dewar & Dutton, 1986).  Fleming (2001) described innovations according to their 

novelty, as some innovations employ well-known combinations of technical knowledge 

while others break from the familiar.  Bresnahan and Trajtenberg (1995) coined the 

phrase “general purpose technologies,” depicting differences in an invention‟s utility in a 

wide range of sectors.  Differences among innovations link to their impact on firms, 

industries and economies.  Thus, it behooves us to understand the antecedents of such 

differences. 

Extending the work of Glaeser et al. (1992) and others, this dissertation seeks to 

understand local patterns of innovation novelty and generality.  Chapters 2 and 4 use an 

alternative measure of communities.  Rather than focusing on local industry employment, 

I employ the number of patent inventors active in each technical field and each 

metropolitan area.  This variable gets to key knowledge flows, as one inventor‟s 

proximity with another is likely to have a more direct influence on subsequent innovation 

than proximity between line-workers.  I find evidence that large technical communities 

focus inventors on familiar technical combinations, while diversity supports novelty.  The 
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breadth of an innovation's impact seems more shaped by diffusion rather than inventor's 

selecting more general problems. 

Chapter 3 uses local industry employment, linking the County Business Pattern 

data with USPTO patent data to identify local industry innovations.  Estimating at the 

patent level, the chapter differs from prior work not only by focusing on the novelty and 

generality of patents but also by using fixed effect to control for unobserved time, 

industry and metropolitan area factors.  Innovation novelty differs across cities rather 

than changing with local industry structures.  The degree to which the locale supports 

given industry and the diversity that surrounds the industry both focus the innovations 

subsequent impact. 

The studies in this dissertation contribute to our understanding of the dynamics of 

location and innovation.  Yet research is still just beginning to understand key topics in 

this vein.  Our ability to model and estimate the creative sparks of Carver and Gutenberg 

remains limited.  In conclusion, I lay out some of the most important open questions. 

First, what is the impact of novelty and generality at the local level?  As discussed 

in the following chapters, it is exceedingly difficult to identify exogenous variation in 

innovation that is independent of other sources of economic growth, and vice versa.   In 

favor of the approach used here,  relative city sizes tend to be stable over time, but there 

may be a relatively high degree of industrial churn as industries migrate across locales 

(Duranton, 2007; Findeisen & Südekum, 2008).  Variation at the local industry level, 

rather than city-level change, may have identifiable impacts on innovation.  Yet Kerr 

(2010) suggested that breakthrough innovations attract future inventors from other 
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locales.  Thus, local community characteristics may follow the nature of local innovations 

as well as driving them.  More generally, while economic development models assume 

local structures drive innovations leading to economic growth, we still lack compelling 

evidence of the link at the level of cities and regions.       

Second, current studies provide evidence that innovation increases with the 

availability of relevant inputs.  University research, corporate research and industrial 

production are local sources of knowledge corresponding with local innovation (e.g., 

Jaffe, 1989).  As this dissertation suggests, these inputs may be captured within local 

inventor communities.  Still, there is much work to do to determine which of these are 

more important and to what extent and where.  University and corporate research may 

impact innovation differently depending on the nature of the technology, the 

characteristics of the organization, or in the local networks connecting them. 

Inventors themselves are not isolated actors, but are a part of networks of friends, 

relatives and colleagues that together offer information, norms and opportunities (e.g., 

Granovetter, 1985).  Social interactions channel and spread innovation knowledge 

(Rogers, 2003).  Clearly, we should seek to better understand how the sources of 

knowledge and the density of social interactions work in tandem to shape local 

innovation.  In this sense, social interactions serve as a local multiplier of innovation, 

giving more impact to local inputs.  So while we know the supply curve of innovation 

slopes up, how might this supply curve differ across inventors, organizations, and 

metropolitan areas? 
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Of course, inventive activity may also be governed by the expected value of the 

solution to technical problems.  Inventors produce innovations for which they believe 

they will be rewarded (Schmookler, 1966).  The rewards may be pecuniary, as inventors 

sell the new ideas or products.  However, rewards may be social: a culture of creativity, 

opportunities for professional advancement, status among one‟s peers, etc.  In the 

extreme, some locations may offer a New Atlantis-type paradise: a great hall housing 

statues of inventors in wood, marble, silver and gold (depending on the innovations 

importance) (Bacon, 1974).  Rewards may be social and organizational in nature, and are 

perhaps tied to geographic space in ways monetary incentives aren‟t.  Thus, while we 

measure and test local inputs to the innovation process, variation in innovation across 

regions may result from variation in community norms and opportunities amplified by 

local social interactions. 

Innovation is rooted in a place.  Few people would doubt that Silicon Valley and 

Nashville have special characteristics that help make them centers of innovation in 

information technology and music respectively.  Few people would also doubt that 

innovation plays a major role in building local economies.  Clearly, not all innovations 

are equal.  Innovations which radically change existing technologies or form the basis of 

entirely new industries likely have a more profound impact on local economies than those 

making small improvements in minor products.  For these reasons, I seek to test theories 

of local knowledge spillovers and examine the community contexts from which novelty 

and generality emerge.   

The dissertation proceeds as follows.  Chapter two describes technical 

communities - groups of co-located inventors actively developing a particular 
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technology.  I propose why we might expect the technical community's local structure, 

particularly its size and surrounding diversity, will shape the novelty and generality of 

emergent innovations.  Chapter three takes a similar approach for local industries, 

measured by their employment.  This refocuses a current debate in economic geography 

on innovation novelty and generality, rather than local innovation counts. Chapter four 

explores both technical community and local industry structures simultaneously, testing 

for their unique and joint effects on the novelty and generality of their innovations. 
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2 TECHNICAL COMMUNITIES 

2.1 Introduction 

In 1983, Victor Althouse in Los Altos, CA invented a semiconductor wafer and 

handling method, an important innovation and an interesting example of a key way in 

which innovations differ from one another.  Althouse moved outside of the single field of 

semi-conductors, and drew from what was currently known in the field of adhesives and 

packing to invent a method for safely moving semiconductor chips without the adhesive 

residue left by previous methods (Althouse, 1983).  Furthermore, intended or not, 

Althouse‟s innovation has contributed to subsequent innovation in many different 

technological fields.  Not only has it been useful to subsequent innovations in 

semiconductors and adhesives, it has also been developed further by inventors in 

packaging, optical systems and elements, and other technologies.  The scope of the 

innovation‟s impact surprised Althouse, and gave rise to new organizations and new lines 

of work.  

In trying to understand social progress, scholars across disciplines seek to 

understand why and how some technological innovations represent radical ideas that 

fundamentally alter the landscape, while other innovations are incremental steps 

improving technologies already in use (Gilfillan, 1935; Mokyr, 1990; Schumpeter, 1934; 

Tushman & Anderson, 1986).  In the realm of regions and civilizations, radical 

innovations represent great leaps forward in human development (Mokyr, 1990).  In the 
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realm of firms and industries, Tushman and Anderson (Anderson & Tushman, 1990; 

Tushman & Anderson, 1986) and others showed that radical innovations shift the 

competitive environment, destroying the value of certain advantages and giving rise to 

new industry leaders.  No matter the label ascribed to inventions - radical or incremental, 

competence destroying or competence enhancing - they have important impacts on 

technological development, industry evolution and economic growth.  Yet, for all of their 

consequences, the origins of these differences are not well understood.  

The challenge to understanding when and where more novel innovations emerge, 

as the economic historian Joel Mokyr pointed out, requires researchers to move beyond 

cumulative innovation models to pursue the “macrofoundations of technological 

creativity (Mokyr, 1990: 8).”  In this view, differences in innovations are not simply the 

unpredictable product of genius and serendipity, but rather emerge from the social and 

economic conditions that provide different opportunities for their development.  While 

many scholars have explored the terrain of innovations, none have offered a clear answer 

to the question: where do novel or general innovations come from?  

Innovations do not come from nothing, as Schumpeter (1934) noted, but are the 

“carrying out of New Combinations (88)” of existing knowledge and technologies.  

Schumpeter outlines a portrait of an entrepreneur drawing from a pool of available 

technologies to generate innovations.  Yet inventors do not draw ideas at random from 

the universal pool of all that is known.  Schumpeter observed that advances made by 

industry incumbents will likely be incremental in nature, drawing from the technologies 

and knowledge already common in the industry.  Jaffe (1986) and Podolny and Stuart 
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(1995) showed that technological development tends to occur in crowded spaces, with 

firms building on established technological bases (Stuart & Podolny, 1996).  

Innovations are cumulative and evolutionary by nature (Dosi, 1988; Gilfillan, 

1935).  Given the inherent uncertainty of generating something new (Dosi, 1988; Kline & 

Rosenberg, 1986) building on established knowledge for established goals helps reduce 

uncertainty and increase the likelihood of success (March, 1991).  Innovators typically 

search for solutions to defined problems in technologies that are well understood 

(Fleming, 2001), and thus we should expect that inventors will draw from what society 

knows in systematically biased ways.  

In the course of technological development, individuals developing particular 

products or technologies often begin to interact and support activities that support their 

ability to innovate.  Communities form around technologies to improve information 

exchanges, mutually beneficial decision-making, and standards setting for all involved.  

Individuals within a technical community can come from different organizations in 

different industries, as well as from government and academia, but they share a common 

interest in the focal technology (Rosenkopf & Tushman, 1998).  In this way they not only 

coalesce around a given technological opportunity, but they also influence the rate and 

direction which the opportunity will subsequently take (Dosi, 1982; Jaffe, 1986; Levin et 

al., 1987; Scherer, 1965).  

In part, opportunities to innovate  reflect the institutional dynamics surrounding 

scientific and technological development.  Communities of individuals working with a 

technology can develop their own language, procedures, conventions and understandings 
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of appropriate problems and solutions (Dosi, 1982; Wenger, 1998), leading them to 

different uses or ideas than they may come upon on their own.  In part, opportunities to 

innovate  reflect the increasing returns to knowledge resulting from the research efforts of 

others.  Economic studies of knowledge spillovers capture the common benefits 

generated between research teams “working on similar things and hence benefiting much 

from each other‟s research (Griliches, 1992: S36-S37)” – even when they occur between 

firms and between industries.  Clearly, the size and social dynamics of technical 

communities influence the opportunities inventors have to innovate.  

Still, as Althouse and the semiconductor handling method shows, not all 

innovations draw from a pre-defined set of technologies.  History provides another 

example.  Koestler (1964) tells of Gutenberg‟s challenge to clearly put ink onto paper.  

Past inventions were not satisfactory for printing clear, whole pages.  One day Gutenberg 

was watching a local wine harvest festival when: “I studied the power of this [wine] press 

which nothing can resist…”  The solution to the problem became clear.  Drawing from 

the printing domain‟s knowledge of ink, paper, scripts, wood-cutting, etc., and drawing 

from his own past experience with metalworking, Gutenberg combined knowledge from 

many technical fields with wine production to invent the printing press.  

The story of Gutenberg illustrates an inventor‟s technological experience may tell 

only part of the story of novelty.  Innovators are situated actors who, like other social 

actors, can engage in creative agency only to the extent that they are embedded in 

communities that provide them opportunities to observe disparate artifacts, understand 

disparate ideas, and interact with disparate others (Hargadon & Sutton, 1997). Thus 

innovations are situated in, as Mokyr (1990) suggested, macro-foundations that shape an 
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inventor‟s technological opportunities.  To the extent macro-foundations differ by place, 

geographic location matters too.  

Past approaches to understand the relationship between geography and innovation 

counts characterize locations by their knowledge sources (e.g., Jaffe, 1986)  and their 

infrastructures and institutions (e.g., Almeida & Kogut, 1999; Cooke, Gomez Uranga, & 

Etxebarria, 1997).  Variations in the knowledge locally available, and the institutions that 

guide the flow of knowledge, provide local inventors with varying opportunities to 

innovate.  These approaches paint an innovation landscape of regions with unique 

knowledge and local rules, cultures and networks for spreading that knowledge, all of 

which help determine how many innovations a group of inventors create.  

My approach to regional innovation remains consistent with this view.  Some 

critical knowledge is local and difficult to transfer across distance.  Interactions between 

inventors allow critical knowledge to transfer, and those social and economic structures 

which shape inventor interactions also shape innovation.  However, my approach differs 

in two distinct and important ways.  First, I suggest looking at the demography of local 

inventor communities may shed light on the dynamics of local innovation.  Large 

communities generate opportunities through common objectives and familiar 

technologies.  The diversity surrounding a community facilitates innovation through 

variation and opportunities to bridge domains. This paper focuses on how these different 

dimensions of local community‟s factor into innovation. Second, I suggest we study 

variations in the novelty of innovations as consequents of local technical community 

structures.  For instance, large and small communities may both generate opportunities to 

innovate, yet these opportunities differ in ways which are hidden when we focus solely 
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on regional innovation counts.  In this paper I argue that the size of a local technical 

community, and the diversity of surrounding communities, shape the type of innovations 

we see emerge.  

2.2 Technological Opportunities and Knowledge Spillovers 

While demand and the “uncharted seas” induce some innovations (Levin et al., 

1987), inventors draw from available knowledge and technologies in order to innovate. 

There is a lot an inventor might do, yet what the inventor does is much more limited.  The 

supply of available knowledge plays a large part in defining the technological 

opportunities available to the inventor.  For example, in medicine the demand and need 

for improvement existed throughout the history of mankind.  Still, it was not until the 

development of bacteriology in the second half of the nineteenth century that scientists 

actually advanced medicine (Rosenberg, 1974: 97).  In their survey of managers from 

various industries, Levin et al. (1987) concluded that scientific development and research 

in public laboratories spurred research investments and innovations by increasing the 

knowledge available to researchers in those industries.  Thus, the technological 

opportunity to innovate surrounding a technology results largely from the knowledge 

available to support it. 

While unexplored territories allow inventors to do something not yet done before, 

inventors use available knowledge to guide them across the territory, building something 

a little less expensive or risky than would blind experimentation.  Kline and Rosenberg 

(1986: 275) began their influential chapter by discussing the uncertainty inherent to 

innovation: “Successful outcomes thus require the running of two gauntlets: the 

commercial and the technological.”  Why are successful outcomes so difficult to predict?  
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Knowledge that a problem exists is usually incomplete, how to build a solution may be 

unknown, and precise links between consequences and actions are impossible to know 

(Dosi, 1988).  Kline and Rosenberg (1986: 275-276) suggested “an important and useful 

way to consider the process of innovation is as an exercise in the management and 

reduction of uncertainty.”  

Inventors reduce uncertainty by building on familiar technologies (Fleming, 

2001), their own work and the work of others.  In his study of technological 

opportunities, Jaffe (1986) found that firms researching technologies where many other 

firms were also researching had, on average, higher returns to R&D expenditures in terms 

of both patents and profits.  Similarly, Podolny and Stuart (1995) concluded that the 

number of actors and patents contributing to or drawing on a particular patent increases 

the rate at which other patents will cite the patent.  Fleming (2001), also looking at the 

impact of individual patents, found patents using more familiar combinations of 

technology classes were on average more useful for subsequent technological 

development.  These studies suggest that the number of researchers working to advance a 

given technology increases the chances any one of them has to innovate.  

Why do technological opportunities become more favorable as the number of 

other researchers increases, even in the face of crowding and competition?  Innovation 

and research are – at their core – the production of information. Arrow (1962b) explored 

the characteristics of information and observed the relative ease with which information 

can be replicated and transmitted.  Arrow suggested research results spread between 

firms as the inventor tries to appropriate benefits; whether marketing the information on 

its own, or using the information in the firm‟s own products and processes, others gain 
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access to the information a firm‟s R&D produced.  Considering its fluidity, employee 

mobility between firms, and ability of others to design around legal-protection, 

knowledge - unlike other strategic assets and resources - is to a significant degree a 

public commodity (Arrow, 1962b).  

Congruent with Arrow‟s observations, empirical evidence builds a strong case for 

the public benefits of private research, and the transfer of knowledge across researchers.  

Not only does knowledge transfer from scientists and public research laboratories – with 

their public mandates – but knowledge also “spills over” between researchers conducting 

private R&D as well (see Griliches, 1992 for a comprehensive review of this evidence).  

These spillovers benefit others because accessing and adopting the knowledge of others is 

cheaper that generating that knowledge oneself (Mansfield, 1977).  Thus, when 

knowledge spills over, it generates benefits for research and development - lowering the 

cost and risks of working with that technology - for which the recipient did not pay.  

Indeed, private research may have social benefits that far exceed the inventor‟s private 

returns (Griliches, 1992).
 
 As Jaffe (1986) suggested, the size of the community available 

to inventors increases innovation by reducing the costs the inventor faces to make 

progress, and by decreasing the risk the inventor faces by offering guidance across the 

open terrain. 

Thus, the concepts of technological opportunities and knowledge spillovers are 

close cousins.  Knowledge spillovers are the foundation of technological opportunities.  

Knowledge spillovers not only expand the technology and knowledge base available for 

recombinations, they also define the space in which the costs and risks of technological 

development are decreasing, and thus the space where technological opportunities are 
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increasing.  As Griliches suggests, and Jaffe (1986) and Podolny and Stuart (1995) find, 

as the number of inventors and the amount of research they do increases in given 

technological space, the more productive inventors in that space will be.  As communities 

increase spillovers, they create favorable opportunities for innovation.  

2.3 Local Technical Communities 

Recent models of regional economic growth differences propose a geographic 

dimension to technical communities and spillovers.  Regions accumulate knowledge and 

technologies at different rates over time through the transfer of knowledge and 

technologies between local actors (Lucas, 1988; Romer, 1986).  These models make 

technological progress a process endogenous to the region, as researchers search for new 

ideas to create profitable inventions.  Local levels of R&D, and the spillovers that occur 

between local researchers, create the opportunity to innovate – i.e., technological 

opportunities - which differ from place to place.  

Localized technological opportunities may exist even within the same technical 

field.  This logic lies at the heart of public policy efforts to become the next Silicon 

Valley or biotech center.  Saxenian‟s now famous comparative study of Silicon Valley 

and Route 128 showed that, in the 1980s computer industry, Silicon Valley presented 

inventors considerable opportunities unavailable in Route 128 (Saxenian, 1996).  While 

she focused on local culture and institutions, I suggest studying the demography of local 

technical communities shaping technological spillovers might reveal a great deal about 

why innovation opportunities differ across time and space.  Empirical evidence supports 

the importance of location and proximity to knowledge sources.  In an initial test of 

localized knowledge spillovers, Jaffe (1989) found that university research had a positive 
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correlation with the research productivity of private firms in the state, both directly and 

through the inducement of private R&D spending.  A number of follow-up studies 

support Jaffe‟s findings using different techniques and at different levels of analysis (e.g., 

Acs et al., 1992; Anselin et al., 1997).  In a more direct test of knowledge spillovers, Jaffe 

et al. (1993) show that an innovation has a greater impact, as captured in patent citation 

patterns, on others located in the same geographic area.  

To understand why local matters we must first reassess our understanding of the 

nature of information and knowledge.  New economic growth models challenge our prior 

notion of knowledge and where researchers search for profitable innovations.   If 

knowledge is a public commodity, knowledge should spillover across organizations, 

industries and regions; technological opportunities should be widely available regardless 

of geography.  Spurred by this theoretical inconsistency with new growth models, 

knowledge spillover studies begin to unravel the geographic constraints and influence of 

distance on knowledge flows.  At the heart of these studies is the realization that Arrow 

(1962a) was only partially right because uncodifiable knowledge limits the public and 

non-rivalrous nature of information.  

There are many reasons some knowledge may go uncodified.  First, the technical 

community may not yet have codified new knowledge (e.g., recent scientific findings or 

technological advances).  Jaffe (1989) found that the effect of co-location on patent 

citations tended to be stronger earlier in the life of the innovation, suggesting locals have 

a head start in noticing and understanding an innovation.  Second, inventors may never 

fully codify and disseminate knowledge because of a lack of incentives (e.g., failed tests) 

or high costs (Cowan, David, & Foray, 2000).  Third, some knowledge cannot be 
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codified because it is contextual, or is incomprehensible without using the knowledge or 

seeing others using the technology (von Hippel, 1994).  Finally, some knowledge is best 

transferred through informal conversation.  

Inventors may not codify some knowledge, but that knowledge (e.g., early results, 

failed results, research processes) still lies at the heart of technological opportunities and 

knowledge spillovers.  In their study of the geographic concentration of innovative 

activity, Audretsch and Feldman (1996) found that technology industries – industries who 

are most likely to require uncodified and semi-private knowledge - are also the industries 

which concentrate geographically.  

While public information transfers relatively easily, particularly as 

communication technologies improve our ability to search for and access information, 

semi-private information transfers and diffuses through other mechanisms.  Some 

knowledge transfers through informal inventor networks.  Saxenian illustrated this in 

Silicon Valley, quoting Tom Wolfe (1983):  

Every year there was some place, the Wagon Wheel, Chez Yvonne, Rickey's, the 

Roundhouse, where members of this esoteric fraternity, the young men and 

women of the semiconductor industry, would head after work to have a drink and 

gossip and brag and trade war stories about contacts, burst modes, bubble 

memories, pulse trains, bounceless modes, slow-death episodes, RAMs, NAKs, 

MOSes, PCMs, PROMs, PROM blowers, PROM blasters, and teramagnitudes, 

meaning multiples of a million millions. 

These informal conversations provided up-to-date information and gossip 

unavailable through journals and trade magazines (Saxenian, 1996).  Furthermore, Arrow 

(1962b) observed that “mobility of personnel among firms provides a way of spreading 

information (615).” This may be particularly true for uncodified knowledge, as inventors 
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carry with them important knowledge (Cowan et al., 2000).  Almeida and Kogut (1999) 

demonstrated through an analysis of patent data that knowledge in the semiconductor 

industry spread through the mobility of key engineers, and that differences in local 

employee mobility may explain regional differences in innovation.  Saxenian (1996) also 

suggested as much, noting the high degree of mobility in Silicon Valley where “people 

change jobs without changing carpools (35).” 

The local spillover literature not only shows regional differences in 

innovativeness, but it also suggests that those structures which enable and guide 

knowledge spillovers also enable and guide local technological opportunities.  The 

current evidence suggest that the greater the local spillovers, the greater the technological 

opportunities for inventors.  This line of reasoning can be developed further.  

Technological opportunities not only define how many innovations are likely to emerge, 

but different opportunities will lead to different kinds of innovations.  As Mokyr (1990) 

suggested, there are macro-foundations – conditions existing at a higher level than the 

inventor or firm – that spur an inventor to generate something novel.  In addition to 

regional institutions and resources, the structure of the local knowledge base, and the size 

and diversity of spillovers coming from that knowledge base, is likely to play a role in an 

inventor‟s opportunity to create inventions of a more radical nature.  

2.4 From Innovation Counts to Innovation Novelty and Generality 

Technological opportunity has two different supply-side logics: familiar 

knowledge and knowledge spillovers make innovation cheaper and less risky, while 

diverse knowledge supports creativity.  A number of theoretical debates illustrate these 

two dimensions.  The networks literature, studying the structure of actors in a network of 
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knowledge flows, examines the relative benefits of brokering (reaching across groups in 

order to access new knowledge) and closure (tight-knit groups with greater trust and 

reinforcing knowledge flows) (Burt, 2005).  The innovation literature examines the 

relative benefits and dynamics of combining previously uncombined components (radical 

innovation) and combining already combined components in new ways (architectural 

innovations) (Henderson & Clark, 1990). Economic geography also studies these two 

supply-side logics, examining the influence of local industrial agglomerations and local 

industrial diversity on local innovativeness and growth (Duranton & Puga, 2001).  

While more of either similar knowledge or diverse knowledge may increase 

opportunities to invent, the opportunities may be very different with different outcomes.  

A larger pool of similar knowledge lowers the cost and risk of innovating within that 

domain, leading to innovations which contribute back to that domain.  These innovations 

exploit established technologies and offer relatively minor changes to existing 

innovations and products (Henderson & Clark, 1990).  These innovations may be, in fact, 

the most common innovations and have – cumulatively – the largest consequences over 

time (Hollander, 1965).  

Pools of diverse knowledge provide access to a variety of ideas.  Bringing 

together knowledge from seemingly disparate domains is at the very heart of creativity 

(Amabile, 1996).  Sitting at the intersection of domains allows inventors to draw from 

multiple domains. Hargadon and Sutton (1997) illustrated the impact of technological 

brokering.  Industries and technical communities act as subgroups of larger social 

structures: they share common artifacts and concepts, they “know one another, are aware 

of the same kinds of opportunity, have the same access to resources, and share the same 
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kinds of perception (Burt, 1983: 180)”.  Technological brokers with access to multiple 

communities are aware of multiple opportunities, access multiple resources, and share 

multiple perceptions.  Accessing diverse communities leads to innovations combining 

technologies from multiple domains, which may unite a technical solution from one 

domain with a technical problem in another (Hargadon & Sutton, 1997), or which may 

generate solutions to more general problems (Bresnahan & Trajtenberg, 1995). When 

inventors successfully reach across domains, they create innovations noticeably different 

from innovations residing strictly within a technological domain.  Given the importance 

of location for accessing critical information, various local technical community 

structures may lead to innovations of various types.  

2.5 Local Technical Community Structure and the Characteristics of Innovations 

2.5.1 Community Size, Novelty and Generality 

At least since Marshall (1936), we have understood that the size of a local 

community creates benefits for innovation.  Marshall (1936: 271) famously observed that 

agglomerations are prime location for knowledge diffusion:  

The mysteries of the trade become no mysteries… Good work is rightly 

appreciated, inventions and improvements in machinery, in processes, and the 

general organization of the business have their merits promptly discussed: if one 

man starts a new idea, it is taken up by others and combined with suggestions of 

their own; and thus it becomes the source of further new ideas.  

For local technical communities, then, we should expect the benefits of being 

there to increase as the community adds new inventors.  More inventors means more 

knowledge is transferred, revised, and transferred again. As localized knowledge 

transfers grow, local innovation in the technological field becomes cheaper and less risky, 

increasing technological opportunities for generating more innovation. Commonly 
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recognized opportunities, shared resources and shared perceptions lower the cost of 

sharing knowledge and make one innovator‟s discoveries relevant to another.  Thus, the 

knowledge cycling through large local communities increase innovation because of their 

relevance and familiarity: other local inventors can adopt and develop it relatively easily.  

This familiarity, while spurring innovation, will most likely spur incremental 

advances (Fleming, 2001).  As Fleming suggests, when faced with a problem innovators 

generally prefer familiar solutions.  Boundedly rational individuals do not randomly seek 

solutions in the “uncharted seas”, they focus on areas familiar to their expertise, and lying 

within the domains of the problem and current alternative solutions (Simon, 1997).  The 

search for solutions continues until the inventor finds a satisfactory solution (Cyert & 

March, 1963).  Given the local nature of interactions and mobility, in larger local 

communities an inventor‟s search may be satisfied within the community.  Thus, large 

communities decrease the cost of searching the domain, and increase the likelihood of 

finding a solution within that domain.  

 Cyert and March  (1963) model an incremental process of search, whereby the 

search for a solution expands to other domains when the more familiar domain fails to 

yield a satisfactory solution. Smaller communities offer a smaller within-domain network 

and fewer domain specific spillovers, increasing the cost of searching the domain and 

increasing the likelihood of exhausting search within that domain.  Thus, inventors in 

smaller local communities are more likely to reach outside the domain for knowledge 

critical for innovation.   

H1a: A local technical community’s size is negatively associated with innovation 

novelty. 
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Both the supply of available knowledge and the nature of market demand shape 

innovation  (Mowery & Rosenberg, 1979).  While studies of localized knowledge 

spillovers tend to focus on the knowledge supply, the direction innovation takes likely 

depends on local information about what problems exist and would be fruitful to address.  

To conclude their examination of demand-pull studies, Mowery and Rosenberg (1979) 

noted the importance of “the frequency and the intimacy of interactions” among 

knowledge producers and users for encouraging innovation. 

Co-location increases both the frequency and intimacy of interactions among 

inventors, part of what transfers is knowledge about what problems are valuable to 

address and possible to solve.  Interactions in larger local technical communities likely 

revolve around problems particular to that community.  Dosi (1982) noted that intra-

community interactions generate paradigms about what problems are appropriate.  With a 

greater intensity of intra-community interactions in larger local communities, we should 

expect that larger local technological communities encourage addressing problems which 

are more specialized and particular to that technical community.  Inventor interactions in 

smaller local communities may include interactions outside a particular paradigm, 

encouraging innovations addressing more fundamental or broadly applicable problems.  

As a result, I expect innovations from larger local technical communities will result in 

innovations with a more narrow scope of subsequent impact.   

H1b: A local technological community’s size is negatively associated with the 

innovation generality. 
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2.5.2 Local Diversity and Novelty 

Community size influences innovation largely because the number of local 

individuals working on a particular technology generates norms and externalities: 

interactions among inventors establish paradigms which focus inventors on particular 

solutions and increase the probability of success within those domain-solutions.  Yet 

regions also surround inventors with other communities that may also contribute to the 

innovation.  Because of the unique opportunities generated by local knowledge, regions 

with diverse local spillovers are particularly useful for pulling ideas and technologies 

from multiple fields and successfully combining them in an innovation. 

Much of the evidence linking local diversity and innovation comes indirectly 

from new growth models.  Jane Jacobs (1968) provided one model of local economic 

growth where knowledge spreading across industries benefits growth more than 

knowledge spreading within an industry.  Growth requires innovation in the 

Schumpeterian sense of combining existing materials and knowledge in new ways 

(Schumpeter, 1934); the additive and  recombinative capacity of the local economy 

accelerates economic development (Jacobs, 1968; Schumpeter, 1934).  Underlying 

growth then, is the capacity of a region to innovate; this capacity increases with the 

variety of communities already in a region. 

The number of local technical communities surrounding an inventor may not tell 

the whole story.  The degree to which surrounding inventive activity is concentrated in a 

single community or is spread more evenly across many communities matters.  Activity 

focused on few communities may not be as fecund for novel combinations as might 

otherwise be suggested by community counts.  Thus, studies focus on the role of diversity 
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in generating local innovation.  Empirical findings suggest that local diversity does 

generate growth (Glaeser et al., 1992), particularly for new and innovative sectors 

(Henderson et al., 1995) and firms (Duranton & Puga, 2001).  Furthermore, innovative 

activity tends to occur in diverse cities (for a review, Duranton & Puga, 2000). 

As local inventors search for solutions, local technical communities provide 

technical options that are salient, cheaper to access and more likely to be successful 

(Wenger, 1998) than those less proximate.  As the inventor expands her search for 

solutions, she likely expands that search not only to what is technologically related 

(March, 1991) but also to what is geographically local.  Inventors surrounded by a 

diversity of local technical communities will thus be more likely to draw from a diversity 

of technical fields, leading to less familiar, more novel innovations in their field.  On the 

other hand, focused regions limit the number of technologies an inventor can access 

locally.  Thus, I expect that local diversity increases the novelty of innovations, while 

local focus decreases it.  

H2a. The diversity of technical communities surrounding a local technical 

community is positively associated with innovation novelty 

Inventor assessments of what solutions are valuable and viable are also likely 

shaped by local access to other communities.  The ability to reach across technical 

communities not only provides access to knowledge leading to „bridging solutions‟, but 

also to knowledge about fundamental problems whose utility lies in multiple domains.  

Nelson (1959) suggests that inventors focused on a narrow domain may not realize the 

full value of solving fundamental problems.  Co-location among a diversity of technical 

communities may facilitate frequent and intimate interactions that cross technical 
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boundaries and encourage innovations addressing problems with broader impact. As a 

result, I expect innovations from technical communities surrounded by a diversity of 

other technical communities will result in innovations with a broader scope of subsequent 

impact.   

H2b. The diversity of technical communities surrounding a local technical 

community is positively associated with innovation novelty 

2.5.3 Size and Diversity as Moderators 

Recent examinations of local innovation assume local size and local diversity 

coexist as important innovation factors independent of each other.  Each is a source of 

technological opportunities based on a different logic of innovation.  Community size 

generates benefits by multiplying the number of people working with a similar 

technology, and thus reducing the cost and risk of innovations along these lines.  Local 

diversity generates benefits by multiplying the variety of ideas available.  What is less 

clear is how the benefits of community size interact with the benefits of local diversity: 

does local diversity condition the influence of local community size?  

As noted earlier, Cyert and March proposed a model of search rules and processes 

that relaxes the need for inventors to fully understand the costs and benefits of particular 

technologies.  Instead, they suggest that search follows a sequential pattern, ordered by 

the conspicuousness of the technologies (Cyert & March, 1963).  One implication of this 

model, I suggested earlier, is that inventors in larger communities will look for 

technological solutions within that community longer, and are more likely to find a 

satisfactory solution within the community.  This focuses inventors and generates more 

incremental innovations.  
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Thus, we should consider the effects that a simple, sequential search model would 

have on the novelty of innovations.  The first stage of innovation search for a 

technological solution occurs around the core technology itself.  Innovators first cover 

familiar terrain.  Both local community paradigms and the probability of finding a 

satisfactory technical solution reinforce the exploitation of familiar combinations for 

innovation (Cyert & March, 1963; Dosi, 1982). 

At some point, however, inventors move away from exploiting familiar 

knowledge and begin exploring more broadly (Cyert & March, 1963; Dosi, 1982).  When 

this shift occurs depends on the strength of community norms and paradigms, and the 

relative probability of success through broader exploration.  Larger local communities 

with deeper pools of familiar knowledge and stronger community norms likely delay the 

move to broader exploration.  A greater degree of surrounding diversity, however, 

encourages earlier shifts to exploration by providing inventors with alternative paradigms 

and a wider selection of technological choices.  Thus, search for a technological solution 

shifts from exploitation to exploration depending on the size of the local community 

relative to the diversity of communities surrounding it.  As surrounding community 

diversity increases, the shift from exploitation to exploration occurs earlier, decreasing 

the effect of community size on the novelty of innovation. 

H3a.  The interaction between a local technical community’s size and the local 

diversity of innovation activity is positively associated with innovation novelty. 

 

Until now, this paper treats an inventor‟s selection of a technical problem to 

address as a function of the degree of inter- and intra-community interactions locally 

available to her.  However, the problem selection process may also be one of sequential 
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search as inventors look for potentially useful innovations to work toward.  In this case, 

we would expect the local community structure to encourage some innovations over 

others depending on when an inventor‟s problem search shifted from exploiting 

community paradigms to exploring other potentially useful challenges. A search for a 

technological problem shifts depending on the size of the local community relative to the 

diversity of communities surrounding it.  As surrounding community diversity increases, 

the shift from exploitation to exploration occurs earlier, decreasing the effect of 

community size on the breadth of innovation an innovation‟s impact. 

H3b.  The interaction between a local technical community’s size and the local 

diversity of innovation activity is positively associated with innovation generality. 

2.6 Data and Variables 

2.6.1 Data Sources 

For the analysis, I draw from patents registered at the United States Patent and 

Trademark Office (Hall, Jaffe, & Trajtenberg, 2001).  Patents are public documents 

disclosing details of inventions and offering a large sample of innovations covering a 

wide range of technologies, inventors and locations.  Each patent divulges details 

categorized in ways that enable relatively smooth comparisons between innovations. I use 

patent data from the National Bureau of Economic Research (NBER) dataset compiled by 

Hall, Jaffe, and Trajtenberg and colleagues.  They include information for over 3 million 

patents granted between 1963 and 2002 (Hall et al., 2001).  These data include:  

1. the names and postal addresses of the inventor(s),  

2. the organization, if any, to which the patent property right was assigned when the 

patent was issued, 

3. a detailed technological classification of the innovation, and 

4. a list of patent which subsequently cite the focal patent.  
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The NBER datasets contain complete data for all patents since 1977, and 

identifies inventors through 1999.  For my purposes, patents offer three key benefits over 

other potential innovation data.  First, using the names and addresses of inventors, and 

the patent‟s primary technology class, I am able to locate patents to the local 

technological communities from which they likely emerged.  Second, the patent 

generation process creates a record of each specific innovation‟s ancestors and offspring.  

Innovation scholars gain considerable insight into technological evolution by leveraging 

the forward and backward citations of the patent (Powell & Snellman, 2004).   

Third, examiners in the patent office act as a third-party reviewer, assigning 

patents to technology classes and increasing the reliability of citations by checking and 

adding citations when appropriate.  The USPTO groups of patents by similarities in 

technology, to create an administrative tool for patent examiners searching existing 

patents determine the originality of a patent application‟s claims.  Examiners assign each 

patent to one original classification and additional cross-reference classifications as 

needed (Rotkin & Dood, 1999). Empirically, I use patent classes to indicate the 

technological stream in which the patent is situated.  To a degree, examiners in the patent 

office act as a third-party reviewer, increasing the reliability of classifications by adding 

and revising patent classifications when appropriate.   

2.6.2 Geographic Units 

Since this examination is built on the principle that local communities of 

inventors shape innovation through their interactions and opportunities, I must 

approximate what constitutes „local‟ to establish community boundaries.  Following Jaffe 

et al. (1993) - who similarly used patents to study localized spillovers - I assign patents to 
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the metropolitan area using the inventors‟ city and state information.  The United States 

Office of Management and Budget (OMB) identifies metropolitan areas in their 2000 

standards (Spotila, 2000) and revisions.  The OMB seeks to provide a single set of 

geographic definitions for the largest centers of population and economic activity, and the 

2000 standards extend past standards by identifying Micropolitan Statistical Areas, 

covering more territory. Metropolitan Statistical Areas and Micropolitan Statistical Areas 

are collectively called Core Based Statistical Areas (CBSAs).  Per the OMB‟s 2000 

definitions, CBSAs range in size from the micropolitan - with at least one core, urban 

area of 10,000 or more inhabitants - to the metropolitan - with at least one core, urban 

area of 50,000 or more inhabitants.  The logic underlying this definition is that “the range 

of services and functions provided within an area largely derive from the size of the 

core… [and single cores] provide a wider variety of functions and services that does a 

group of smaller cores, even when such a group may have a [greater] collective 

population... (Spotila, 2000: 82232)” 

  The OMB‟s goal is to establish geographic areas defined by the complex social 

and economic interactions that occur within the area.  To this end, as of 2000 they 

identified all areas through the commuting patterns of residents between counties.  

Counties as building blocks offer stable, familiar boundaries and are the level of more 

Federal statistical programs than sub-county levels.  An employment interchange 

measure is calculated as the sum of the percentage of region‟s residents who commute to 

some larger community, and the percentage of employment is by residents of the larger 

community.  Scores of 25 or higher are automatically grouped in a CBSA.  CBSAs with 

employment interchange measures between 15 and 25 may be combined based on local 
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opinion, or may compose an additional category, the Combined Statistical Area (CSA) 

(Spotila, 2000).  In 2006, there were 1088 CBSAs and 61 CSAs.  This study uses the 

2006 metropolitan area (MA) definitions to retroactively construct MAs for all areas of 

the country.  Reclassifications and recompositions of MAs are relatively minor, and 

preliminary empirical tests using a different year of MA definitions show no significant 

effect.  

Because the OMB builds metropolitan areas based on the commuting patterns of 

its residents, it is an ideal geographic area to study.  Rather than being a political 

jurisdiction, these areas represent geographic communities with a high degree of social 

and economic integration (Spotila, 2000).  Duranton and Puga (2000) observed the 

importance of MAs for innovation, noting most innovative activity occurs in occur in 

cities and thus they capture most patents.  Given that CBSAs may be nested within CSAs, 

the analysis which follows embeds a patent in the highest MA available.  Thus, some 

patents will be considered embedded in CSAs, a more moderately integrated region but 

that still captures significant commuting ties.  

Assigning inventors to MAs.  Each MA not only may include multiple counties, 

but they may also include multiple towns and cities.  While city names repeat across 

states, almost all city-state combinations are unique, and can be placed within or outside 

of MAs with a great deal of accuracy.  As previously mentioned, each patent includes the 

city-state information for each inventor, and therefore we can place innovations in an 

MA, extending the advantages of patent data for making comparisons across innovations, 

to those interested in comparing innovations across regions.  Previous studies have done 

this with success (see Carlino, Chatterjee, & Hunt, 2005; Jaffe et al., 1993).  Using a 
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commercially available dataset, I place inventor city/states into MAs
1
, an approach that 

past studies have used to capture the within-MA localization of citation patterns between 

patents (Almeida & Kogut, 1999; Jaffe et al., 1993). 

The main challenge to assigning patents to MAs is when there are multiple 

inventors residing in different locales.  Researchers have used different approaches in the 

past – for example, assigning patents to the MA of their primary inventor or majority of 

inventors.  When studies have compared different methods, they do not indicate that 

different methods generate different outcomes
2
.    Still, there may be confounding 

influences by inventor teams from multiple MAs – either because they draw from 

different experiences and networks, or because of coordinating and organizing dynamics 

that must occur across multiple MAs.  Because I theorize about the influence of a 

location on the problems and solutions inventors‟ select, I eliminate these confounding 

influences by limiting my sample to those patents whose inventors come from a single 

MA.  

Matching patents to MAs.  Matching patents to metropolitan areas begins with 

the inventors database available from the NBER.  The Inventor file includes the patent 

number, inventor name, city, state, zip code (where available), and inventor sequence 

number of inventors listed on patents generally issued from January 1, 1975 to December 

31, 1999.  I focus on only those inventors with addressed in the United States, 

particularly the 50 US states and Washington DC (thus, I dropped foreign inventors, 

                                                
1 It may be that inventors list the city/state of their employment rather than their residence.  Given that MAs 
are constructed using local commuting patterns, I suggest that this will not add bias since any differences 

between residence and employment are likely lost in the MA aggregation. 
2 Carlino, Chatterjee and Hunt (2004) compared using first or second authors, and found only 15% of 

patents would change.  Jaffe et al. (1993) used majority as the criterion for assignment, and found that only 

14% of their patents could not be assigned unanimously. 



50 
 

  

inventors from US territories/commonwealths, and inventors with military post office 

addresses).  I researched, through the USPTO website, those inventors with no country or 

state code, dropping twenty or so inventors where the state or country was 

indeterminable.  Many city names appeared to be addresses or partial city names.  When 

available, I used the inventor zip codes to confirm the appropriate city name.  Repeat 

inventors, aligned by name and state, also helped to identify missing cities.  Others, I 

identified by researching the actual patent.  I confirmed other city names which appeared 

incomplete.  Finally, deceased inventors (i.e., “late of”) were coded according to their 

city address prior to death.  The resulting database contains 2,147,310 inventors on 

1,209,987 patents from 1975-1999.  

2.6.3 Data Sample: Single MA patents. 

This paper focuses the sample of patents to a particular set which allows for more 

focused analysis and controls for potential confounds.  As mentioned above, to avoid the 

noise which may arise from patents with inventors from multiple regions, I focus on 

patents from a single MA.  This required identifying single MA patents from the 

population of patents and inventors above.  After identifying all patents with single 

CBSAs and CSAs, I rank-order locations assigning patents to CSAs first, and CBSAs 

second.  This narrows the population to 880,882 patents (with 79% assigned to CSAs and 

the remainder to CBSAs
3
) for the years 1977 through 1997.  

The sample represents about 45% of the population of patents captured in the 

NBER data.  Note that the percentage of patents which are from a single MA is declining 

                                                
3 654,629 patents might have been allocated to either a single CSA or a single CBSA.  42,787 could only be 

allocated to a single CSA (i.e., the patents were from multiple CBSAs within the single CSA).  183,466 

could only be allocated to a single CBSA (i.e., the patents were from a CBSA which was not also 

incorporated in a CSA. 
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over time.  In 1977, over 55% of patents are from a single-MA.  This declines to only 

41% by 1996.  In part, this might be due to an increase in multi-inventor patents.  For US 

inventors, the average number of inventors has risen over time from about 1.5 to about 

2.1 US inventors per patent.  Over this time, single U.S. inventor patents have declined 

from close to 64% of patents to about 44% of patents. 

Comparing the distribution of the sample across technology classes, with the 

distribution of the NBER population across technology classes suggests that some classes 

may be overrepresented and others underrepresented by the sample. While the sample‟s 

top five technology classes are the same as the NBER‟s top five for the years 1977-1997, 

the sample contains relatively more patents from some classes (e.g., Surgical Equipment: 

Classes 600, 604, 606) – and relatively less patents from other classes (e.g., Radiation 

Imagery Chemistry and Internal-Combustion Engines: Classes 430 and 123 respectively).  

Conceivably, the Single-MA sample may be overrepresented by innovations created 

outside a larger organization‟s R&D efforts. 

To understand sample differences across assignee types, I compare the 

distribution of the NBER patent population (1977-1997) with the Single-MA sample.  As 

suggested above, the percentage of unassigned and individual patents rises from 17.16% 

of the NBER population to 24.97% of the sample population.  Also of note, the 

percentage of Non-U.S. assignees falls from 38.13% of the NBER patent population to 

1.59% of the sample patents.  Among U.S. assigned patents only, there is little difference 

in the distributions of patents between government and non-government (mostly 

corporations) assignees. 
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2.6.4 Innovation Measures 

Testing the above hypotheses requires a measure or set of measures capturing the 

recombinant nature of innovations, and which are comparable across technology areas 

over time.  Following the logic of Fleming and colleagues (Fleming, 2001), I consider the 

technology classes identified by the patent‟s examiners as a proxy for the pre-existing 

technologies that are the building blocks of the invention
4
.  An innovation is more novel 

if it combines technical building block into less common combinations.  In summary, the 

novelty of an innovation is captured by the rarity of each pairing of technical building 

blocks; the generality of an innovation is captured by the diversity of innovations that 

subsequently build on it. 

To capture subclass combinations, I augment the NBER patent data with annual 

data from MicroPatent for the years 1977-1997.  Pair-wise novelty focuses on pairs of 

subclasses appearing in the focal patent and how often each pair appeared in patents for 

the five years preceding the focal patent‟s application
5
.  The application year captures the 

year in which the inventor filed for the patent, and is therefore closer (than the patent‟s 

subsequent grant year) to the actual timing of the invention‟s creation (Hall et al., 2001).  

I choose the five year period in general accordance with Fleming (2001), who used five 

years as the time constant of knowledge loss implying that a patent‟s influence dissipates 

over time as “it is more likely that an inventor will have learned from previous use of a 

sub-class, if that sub-class was used three years prior, instead of thirty (p. 123).”  For 

                                                
4 As discussed in Fleming (2001), inventors need not be specifically aware of the USPTO‟s subclass 
definitions. 
5 For patients with an original class and no cross-classes, novelty is calculated from the count of other 

patents which have the same original class and no cross-classes. 90 single-metropolitan area patents were 

not included in the MicroPatent database; 84 patents had the same technology class listed as its original 

class and its cross class; these 174 patents are dropped from the analysis. 
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Fleming‟s (2001) analysis, the influence of a patent‟s knowledge is reduced by two-thirds 

over the first five-year period
6
.  Average pair-wise class frequencies counts how often a 

focal patent‟s subclass pairs appeared during the preceding five-year period, and averages 

that count across all subclass pairs embodied in the patent.  This measure captures the 

patent inventors‟ central tendency to make more familiar links between technological 

streams.  To convert this to a measure of the inventions tendency to make less familiar, 

more novel technical links, I measure patent novelty as the negative of the logged 

average pair-wise class frequencies. 

To capture the breadth of an innovation‟s impact, I measure how widely cited is 

the patent across USPTO patent classes by subsequent users.  Following Trajtenberg et 

al. (1997) and others, I use the generality measure available in the NBER database and 

described in Hall et al. (2001): 

Generalityp = (Np/(Np-1)) (1-∑ spq
2
) 

Here, spq denotes the percentage of citations made to patent p from patent class q, 

out of np patent classes.  The more widely cited a patent is across technological fields, the 

higher the generality measure will be. The Herfindahl index tends to be correlated with 

the number of citations made to the patent.  This confounds the distribution of patent 

citations with the number citations received, introducing systematic bias into the measure 

– particularly for patents with fewer forward citations.  To correct for this bias, I include 

the (Np/(Np-1)) adjustment to create the above bias-adjusted measure (Hall, Jaffe, & 

Trajtenberg, 2005).  Note that patents with no or a single forward citation will have an 

                                                
6 Note that this time period may capture a small window from which inventor‟s draw knowledge.  On 

average, only about one-third of backward citations are from the five-years preceding the patents grant 

data.   
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undefined generality measure. Since forward citations continue to accrue over time, I 

code those patents as censored data, suspecting that generality may still be revealed in the 

future.  Again, the measure is confined to measures between and including 0 and 1.  

Patent level controls.  Given the theoretical interest in knowledge spillovers, the 

models should ideally control for other differences among innovations.  Technological 

areas may differ in the intrinsic characteristics of the underlying technical knowledge, 

innovation demands (Jaffe, 1986) or norms for determining appropriate problems and 

solutions (Dosi, 1982).  Following the literature, I capture differences in recombinant 

novelty across technological areas by including patent technology class dummy variables 

(Hall et al., 2001). 

Furthermore, Mowery and Ziedonis (2002) show how institutional changes can 

influence the number and nature of patents entering the system over time.  Changes in 

patent office routines over time also cause some variation among patents.  To account for 

these changes, I use application year dummy variables as appropriate controls for 

innovation cohort effects (Hall et al., 2001). 

Given the theoretical interest on local community structure, the models also 

control for other local influences.  Universities and other local amenities are important 

sources of local knowledge (Jaffe, 1989), particularly knowledge which is more original 

and more closely tied to basic science, and may also influence the novelty of local 

innovations independently of community demography.  I control for the potential 

influence of time-invariant local effects through a series of metropolitan area dummy 

variables. 
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Finally, while I am focused on the effects of local technical communities on 

recombinant novelty, other aspects of the innovation itself may shape its novelty.  First, 

consider an innovation‟s use of science.  Sorenson and Fleming (2004) created a measure 

of science-based novelty by noting if patents reference published materials.  They find 

that these patents are generally more highly cited, and are cited faster.  Because science-

based novelty may influence the patent‟s impact, without being influenced by the local 

industrial composition, I will control for this using the number of non-patent citations for 

all patents through at least 1999. Furthermore, the number of the invention‟s components 

may have a strong effect.  Thus, I also control for the number of sub-classes recognized 

by the patent examiners.  Because some subclasses may be too coarse to identify the 

recombinant nature of its patents, I also include a dummy variable for single subclass 

patents (which comprise 8% of the patents.)  

2.6.5 Local Community Measures 

Technical community size.  To measure the size of a local technical community, I 

focus on the number of active inventors in the technological field in a given year.  

Inventors come from a variety of organizations and firms in a variety of industries.  

However, this theory focuses on researchers “working on similar things” and “benefiting 

much from each other‟s research  (Griliches, 1992)”, obscuring organizational and 

industrial boundaries.  Spillovers and the transfer of knowledge occur between 

individuals, and thus I focus on the number of inventors in the region actively innovating 

in a particular field.  Following a number of recent studies, I use the USPTO 

classification system to define technological fields, and I count an inventor as a member 

of a technological field when she invents a patented innovation whose original 
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classification is in that technological field.  Note, the patent data does not provide unique 

identifiers for unique inventors.  To determine when two different patent records refer to 

the same person, I adopt Singh‟s (2005) algorithm.  Two inventor records are counted as 

a single inventor if the following conditions hold: 

1. First and last names match exactly, 

2. middle initials, if available, are the same, and 

3. when the middle initial field was left blank in at least one to the two records, the 

records also overlapped on at least one of their technology subcategories. 

 

With unique inventors thus identified, the local community size is calculated as:  

 Size_Communitykl =∑ inventorskl (3) 

where the size of community k in region j is the sum of all inventors patenting in original 

class and listing a city in region l as their residence.  I assign each inventor in a team of 

inventors to the technical community of their invention, and each inventor may be 

assigned to multiple technical communities when they patent in multiple original 

classifications in that year
7
.  I calculate communities by metropolitan areas, generating a 

population of 615 MAs and 22,647 MA-technological field communities.  

Surrounding community diversity.   For each local technical community, I calculate the 

inverse of a Herfindahl concentration index of all other local communities to capture 

                                                
7 Trajtenberg et al offer a similar algorithm that uses more of the data and identifies unique inventors 

probabilistically.  This algorithm warrants further exploration, although the outcome of this analysis is not 

likely to change. 
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whether the focal community is surrounded by a wide range of technical communities, or 

by a specialized set of communities:  

 Diversity_Communitykl = 1/∑
n-1

 Community Sharenl
2
 (5) 

where the diversity surrounding community k in region j is a function of the squared 

share of all n-1 industries in region l, with n-1 denoting all local industries except 

industry kj. I use the inverse of the Herfindahl index - or “Herfindahl numbers 

equivalent” – which may be interpreted as the number of equal-sized communities which 

would have the same Herfindahl index as the actual size distribution of communities 

(Nelson & Winter, 1978).  It gives a value of 1 when there is just one other community in 

the locale.  For the 1494 patents whose inventors are surrounded by no other inventor 

communities, I code their Diversity_Community as zero. 

 Table 2-1:  Description of Technical Community Variables summarizes the 

variables employed in the following analysis.  All variables come from patent data 

provided by the NBER or MicroPatent except Employment and Science-base.  

Employment data comes from the County Business Patern data collected by the U.S. 

Census Bureau.  Science-base data calculates the number of non-patent citiations listed 

by the patent: this data was collected by Bhaven N. Sampat.  



58 
 

  

Table 2-1:  Description of Technical Community Variables 

Construct Variable name Description

Recombinant Novelty Noveltyp -1*Natural log of the average # times each patent 

class pair in a patent occurred in the prior 5 years

Generality Generalityp 1-Herfindahl of patent forward citation 

distribution across technology classes (bias 

corrected)

Local Community Size Size_Communityk,l,t Natural log of the # unique inventors in each class-

year-metropolitan area

Surrounding Community Diversity Div_Communityk,l,t Inverse of Herfindahl of Local Community Sizes 

(other than the focal community)

Patent Class Size #Patentsk,t Natural log of  # Patents in technology class-year

Metropolitan area size #Employmentl,t Natural log of  # of employees in the year-

metropolitan area

Science-base #ScienceCitesp # Non-patent citiations listed in the patent

Subclass count #Subclassesp # subclasses identified by examiners to which 

patent, p, is assigned

Single subclass indicator SingleIDp Equal to 1 for patents assigned to a single subclass 

, 0 for more than one subclass

Subscripts t  (time), k  (patent class), l  (metropolitan area), p  (patent)  

2.7 Models and Results 

2.7.1 Summary Statistics 

Table 2-2 provides selected summary statistics for the sample.  Note, there are 

about 325,000 patents, from 22,451 local technological communities from 1977-1997 

(101,064 specific year-MA-technology combinations).  Because of the large number of 

patents, subsequent estimates should be quite precise.  By including a large number of 

industry and technology fixed effects, I hope to control for most general attributes that 

affect innovation novelty and generality. 
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Table 2-2 Summary: Uncentered Technical Community Variables, Single-MA patents 77-97 

Variable Mean St. Dev. Min Max

Patent-level observations

Noveltyp -0.88 1.03 -7.00 0

Generalityp 0.42 0.37 0 1

#Subclassesp
4.27 3.46 1 190

#ScienceCitesp 5.69 14.25 0 885

SingleIDp
0.08 0.27 0 1

IndividualIDp 0.25 0.43 0 1

GovernmentIDp
0.02 0.14 0 1

MA-class-year observations

Size_Communityk,l,t
0.94 1.02 0 6.73

Div_Communityk,l,t 53.16 37.22 1 170.74

MA-year observations

#Employmentl,t 10.44 1.37 7.29 15.88

Class-year observations

#Patentsk,t 4.74 1.31 0 8.53

Subscripts t  (time), k  (patent class), l  (metropolitan area), p  (patent)

N  = 877,237 at the patent level; N  = 269,840 at the MA-class-year level; N = 12,687

      at the MA-year level; N = 8,453 at the class-year level  

To better interpret the interaction terms included in the estimation models, I 

center key variables at their sample means.  Summary statistics for the centered variables 

are included in Table 2-3: 



60 
 

  

Table 2-3 Summary: Centered Technical Community Variables, Single-MA patents 77-97 

Variable Mean St. Dev. Min Max

MA-class-year observations

Size_Communityk,l,t
0.00 1.02 -0.94 5.79

Div_Communityk,l,t 0.00 37.22 -52.16 117.58

MA-year observations

#Employmentl,t 0.00 1.37 -3.15 5.45

Class-year observations

#Patentsk,t 0.00 1.31 -4.74 3.79

Subscripts t  (time), k  (patent class), l  (metropolitan area), p  (patent)

N  = XXX at the patent level; N  = 272,234 at the MA-class-year level; N  = 8,453 

      at the class-year level; N = 12,688 at the MA-year level  

Table 2-4 provides correlations for the variables, including the centered variables: 

Table 2-4 Technical Community Correlation Coefficients 

1 2 3 4 5 6 7 8 9 10 11 12

1 Noveltyp
1

2 Generalityp
0.05 1

3 Size_Communityk,l,t
-0.22 -0.02 1

4 Div_Communityk,l,t
0.03 0.06 0.40 1

5 #Patentsk,t
-0.19 -0.05 0.53 -0.06 1

6 #Employmentl,t -0.06 0.02 0.60 0.81 0.08 1

7 #ScienceCitesp -0.14 -0.01 0.15 -0.02 0.18 0.04 1

8 #Subclassesp 0.01 0.15 0.07 0.02 0.06 0.02 0.08 1

9 SingleIDp -0.14 -0.10 -0.01 0.01 -0.04 0.00 -0.01 -0.28 1

10 CoTownIDl -0.02 0.00 0.01 -0.24 0.04 -0.20 -0.02 0.00 -0.01 1

11 IndividualIDp 0.12 -0.06 -0.26 -0.01 -0.15 -0.05 -0.08 -0.09 0.03 -0.08 1

12 GovernmentIDp 0.02 0.00 -0.02 0.00 -0.01 -0.02 0.01 -0.01 0.00 -0.02 -0.08 1

Subscripts t  (time), k  (patent class), l  (metropolitan area), p  (patent)

Note  : Correlations are at the patent level of observation, N  = 877,237.  

As shown in Table 6-1, the count of individuals working on the same technology 

in a given region-year ranges from one individual inventor to local communities as large 
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as 1839.  The largest technical community was San Jose‟s Molecular Biology and 

Microbiology (patent class 435) in 1995.  Note that average community size has 

increased with the number of patents over the years.  However, this increase outpaces 

patent counts possibly reflecting the trend toward more multi-inventor patents. 

Table 6-2 shows the annual trend for the diversity of communities surrounding 

each focal community.  Diversity_community ranges from 1 to a community equivalent 

score if 170 surrounding Los Angeles‟ Measuring and Testing community in 1977.  Note 

that Diversity_community has generally declined over time.  The decline in diversity may 

reflect the disproportionate growth of patenting in particular technologies or a trend 

toward geographic consolidation.  Future studies may examine the churn of inventos 

within and across regions to better understand these dynamics. 

Annual trends of the dependent variables reveal other dynamics of patenting.  

Table 6-3 and Table 6-4 show the changes in mean novelty and generality since 1977.  

Patent class pair frequencies have generally increased since 1977, likely with the 

increase in overall patenting.  Generality decreases, although this is mostly likely the 

result of time-lags in the accumulation of forward citations rather than differences in 

patenting dynamics.  

2.7.2 Novelty Estimation and Results 

Theories of local search and knowledge spillovers suggest that inventors in larger 

local communities will rely on more familiar technological combinations rather than 

exploring more broadly, and thus create less novel innovations.  Model 1 in Table 2-5 

tests this hypothesis by estimating a baseline model with size_community, key control 
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variables, and fixed effects for patents application year, metropolitan area, and 

technology class; all subsequent models include these variables and fixed effects as well.  

Size_community is centered in log natural form.  In support of Hypothesis 1a, Model 1 

estimates that - at the average - a 1% increase in size_community leads to a .074% 

decrease in patent novelty.  For a community with a size similar to Boston‟s electric 

heating technical community in 1990, adding an additional unique inventor would lower 

expected novelty by almost .2%, all else equal.   

Table 2-5 OLS Estimation: Novelty as a function of Technical Community Structure 

1 2 3

Size_Community -0.0739 *** -0.0737 *** -0.0771 ***

0.0053 0.0054 0.0059

Diversity_Community 0.0007 * 0.0004

0.0003 0.0003

Size*Diversity 0.0002

0.0001

Patents -0.1119 *** -0.1084 *** -0.1067 ***

0.0327 0.0330 0.0332

Employment 0.0440 0.0296 0.0296

0.7542 0.0754 0.0765

CoTownID -0.1025 *** -0.0998 *** -0.1032 ***

0.0306 0.0307 0.0301

IndividualID 0.1284 *** 0.1284 *** 0.1281 ***

0.0077 0.0078 0.0078

GovernmentID 0.1487 *** 0.1480 *** 0.1485 ***

0.0198 0.0195 0.0196

SingleID -0.5629 *** -0.5626 *** -0.5625 ***

0.0160 0.0160 0.0160

Subclass Count 0.0056 * 0.0056 * 0.0056 *

0.0024 0.0024 0.0024

Science Citations -0.0001 -0.0001 -0.0001

0.0001 0.0001 0.0001

Constant -1.3970 *** -1.3640 *** -1.3687 ***

0.2630 0.2650 0.2643

R-squared 0.2204 0.2203 0.2204

Observations 875883 874496 874496

DV: logged 5-year average frequency that a patent's technology class pairs occurred.

Robust standard errors (clulstered by metorpolitan area) in parentheses.

+ significant at 10%; * significant at 5%; ** significant at 1%.

All equations include year, metropolitan area and technology class dummy variables.  
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Hypothesis 2a predicts that inventors, in local communities surrounded by a 

diversity of other communities, will be more likely to bridge other communities to try 

less familiar technological combinations, and thus create more novel innovations.  To test 

this hypothesis, Model 2 in Table 2-5 introduces diversity_community, and estimates a 

positive relationship with novelty.  On average adding one equivalent community to the 

surrounding region increases the expected novelty of a focal community‟s patents by .1%.  

For a community like Atlanta‟s Electric Heating technical community, with a 

surrounding community equivalence score of almost 75 in 1995, the surrounding region 

would need to add an additional community of about 22 inventors to increase expected 

novelty by .1%, all else equal. 

If inventor search occurs sequentially, searching outside their community occurs 

only once it appears a more likely place to generate a satisfactory solution, then we would 

expect that the diversity surrounding the local community will influence the impact local 

community size has on innovation novelty.  Hypothesis 3a predicts that the degree to 

which diversity_community influences novelty is contingent on the size of the inventor‟s 

community.  To test this hypothesis, model 3 includes an interaction term of 

size_community and diversity_community.  Model 3 in Table 2-5 fails to estimate a 

significant interaction term, suggesting that across all communities, there is not a 

contingent relationship between community size and diversity_community.  Thus, Model 

3 does not support Hypothesis 3.  Interestingly, once I include the interaction term, the 

direct and independent effect of diversity_community disappears.  At least at average 

size_community, the impact of diversity_community isn‟t evident. 
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2.7.3 Post Hoc Analysis 

As discussed earlier, the number of patents granted in a particular technology 

class provides one measure of the extent of technical opportunities in that domain; the 

higher the degree of patenting, the more “high-tech” the domain.  Using #Patents as a 

control variable, Models 1-3 estimate that the more patenting occurring in a domain, the 

more likely inventors will find satisfactory solutions among familiar combinations, thus 

lowering the expected novelty of patents.  This variable controls for not only the 

availability of patents in that domain, but also reflects the size of the technological 

opportunity and the importance of patenting and intellectual property.  Audretsch and 

Feldman (1996)  find that industries where research and skilled labor are most important 

tend to be the industries with more clustered innovative activity.  Clustering, they 

explain, occurs because of the critical importance of local knowledge spillovers for high-

tech industries. 

To better understand the boundary conditions of Hypotheses 1-3, I look at the 

strength of the size_community and diversity_community influence on innovation novelty 

in “high-tech” domains reflected by #Patents.  If local knowledge spillovers are more 

important in high-tech domains, then the greater the degree of patenting in a domain, the 

greater the effect that size_community and diversity_community should have on novelty.  

Models 4-5 in Table 6-5 OLS Estimation: Novelty and Community Structure interactions 

interact #Patents with size_community and diversity_community.  Model 5, which 

includes both product-terms, estimates that the relationships are indeed amplified in high-

tech domains.   
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Using a different approach, Models 9-12 in Table 6-6 split the data at the overall 

mean of 369 patents per patent technology class.  As expected, in Table 6-6 the 

size_community coefficient for High-Patenting classes is greater than those for Low-

Patenting classes.  The negative relationship between novelty and diversity_community is 

also larger (significantly different from zero) for High-Patenting class patents. 

Individual inventors (compared to corporate inventors) may also be more or less 

influenced by size_community and diversity_community.  The control dummy variable, 

IndividualID, estimates that patents from individual inventors are almost 13% more novel 

than patents for corporate inventors
8
.  For commercialization, corporations tend to focus 

on incremental innovations.  Thus, as Kline and Rosenberg (1986) detail, many corporate 

activities set the stage for innovation, linking research, manufacturing, and the market 

through systematic trial-and-error.  For individuals outside formal organizations, 

however, the process may be different.  Without the systemization and empiricism that 

guides corporate innovation, chance may play a larger role in setting the stage for 

innovative insights (Usher, 1982: 65).  To better understand inventor type as a boundary 

condition of Hypotheses 1-3, I compare the strength of the size_community and 

diversity_community influence on innovations from individuals to innovations from 

corporations.  If individuals are less focused on systematic trial-and-error and more open 

to chance, then local community conventions may have less of an influence on these 

inventors.  I expect size_community will have a more moderate effect on individual 

inventors than it has on corporate inventors.  Furthermore, as individuals are open to 

                                                
8 The USPTO classifies patents according assignee type.  I code IndividualID as 1 if the USPTO assignee 

type is U.S. individual, Non-U.S. individual  or if the patent is unassigned.  GovernmentID equals 1 if the 

assignee code is the U.S. Federal Government or Non-U.S. Governments.  The USPTO codes all other 

patents as non-government organizations, and most of these are corporations (Hall et. al 2001).  
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chance, Gutenberg-like observations of the activites around them may have greater 

impact.  I expect community size will have a greater effect on individuals. 

Models 6 and 7 interact IndividualID with size_community and 

diversity_community.  These models find support that individuals are less influenced by 

size_community than corporate inventors.  They find only limited support that individuals 

are more influenced by diversity_community than corporate inventors.  Using the second 

approach, Table 6-7 splits the data between individual inventors and corporate inventors.  

Comparing the models, the coefficient for size_community in the corporate inventor data 

is almost twice the size of the coefficients in the individual inventor data.  Unexpectedly, 

the effect of diversity_community in the split-data models is only evident for 

corporations. 

2.7.4 Generality Estimation and Results 

As previously discussed, generality is measured by a Herfindahl index corrected 

for bias.  The Herfindahl index along with the correction leads to a non-trivial number of 

zeros and ones in the dependent variables.  While generality in this sample is essentially 

continuous between 0 and 1, 36% and 6% of the patents have generality measures of 0 

and 1 respectively.  Assuming there is an underlying and latent degree of generality 

which differentiates these corner solutions but which the corrected Herfindahl is unable 

to measure, I must be cautious estimating the parameters using a linear model 

(Wooldridge, 2002).  Observations censored at 0 and 1 may shift the regression line 

resulting in inconsistent estimates with only asymptotic justification (Masssard & Riou, 

2002).  Given the larger number of zeros than ones, we might expect a linear model to 
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underestimate the intercept and overestimate the slopes.  Thus, like Mowery and Ziedonis 

(2002), I consider estimates of generality produced by tobit models. 

Beyond the common concerns of heteroskedasticity and non-normal errors, 

estimating generality with Tobit models, however, presents two particular challenges.  

First,  imprecise estimations of the fixed effects in nonlinear models may lead to 

inconsistent estimates of the slope coefficients (Chamberlain, 1984; Hsiao, 1986).   Still, 

this might not be consequential for this data sample. Rosenthal and Strange (2003) note 

the bias resulting from noisy estimates of fixed effects in nonlinear models goes to zero 

as the number of observations per fixed effect increases.  Since my sample has at least 

(depending on the model) 600 patents per fixed effect, inconsistency arising from noisy 

estimates of the fixed effect is likely to be small.  Examining the tobit model in particular, 

Greene (2004) finds little bias with larger groups.  Furthermore, Greene notes that 

estimators appear essentially unbiased as the degree of censoring approaches 50%.  Thus, 

employing fixed effects for these tobit model is likely unproblematic. 

The second challenge is likely more problematic.  Ai and Norton (2003) note that 

interaction effects in non-linear models like the tobit model include not only the marginal 

effects of a change in the interacted variable, but also the cross-partial derivative of the 

expected value of outcome variable.  Thus, the estimated coefficient of the interacted 

variables may not reflect the true impact in either size or direction, and cannot be tested 

with a simple t-test.  To test the boundary conditions of generality, I employ both tobit 

and OLS estimation models.  In a sense, in the OLS models I trade potential 

inconsistencies for the interpretability of linear interaction terms.  I compare both tobit 

and OLS estimates to understand just how much bias may be included in the OLS 
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models.  As the following discussion illuminates, the results are compatible, providing 

some comfort using the OLS interaction terms for inference.  

To start, Table 2-6 displays the tobit models for the above hypotheses and changes 

in the expected values of the latent generality variable. 

Table 2-6 Tobit Estimation: Generality as a function of Technical Community structure 

1 2 3

Size_Community -0.015 *** -0.015 *** -0.016 ***

0.005 0.004 0.005

Diversity_Community -0.001 *** -0.001 ***

0.000 0.000

Size*Diversity 0.000

0.000

Patents 0.013 *** 0.013 *** 0.013 ***

0.003 0.002 0.002

Employment 0.067 ** 0.084 *** 0.084 ***

0.025 0.027 0.027

CoTownID -0.024 -0.028 + -0.028 +

0.016 0.016 0.015

IndividualID -0.065 *** -0.065 *** -0.065 ***

0.004 0.004 0.005

GovernmentID -0.078 *** -0.077 *** -0.077 ***

0.010 0.010 0.010

SingleID -0.149 *** -0.149 *** -0.149 ***

0.005 0.005 0.005

Subclass Count 0.019 *** 0.019 *** 0.019 ***

0.001 0.001 0.001

Science Citations 0.000 ** 0.000 *** 0.000 ***

0.000 0.000 0.000

Constant 0.212 *** 0.199 *** 0.198 ***

0.043 0.044 0.044

Pseudo R-squared 0.053 0.053 0.053

Observations 875965 874578 874578

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%.

All equations include year, metropolitan area and technology class dummy variables.  

If local communities focus inventors on problems particular to that community, I expect 

inventors from large local communities to be more likely to choose problems with narrow 

utility leading to less general patents.  In support of hypothesis 1b, Model 1 finds that for 
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a 1% increase in community size, there is a change in a patent‟s expected generality of 

.015%, holding all other variables constant. 

Hypothesis 2 proposes that the diversity of local communities provides inventors 

insights into the full utility of fundamental inventions, increasing the expected generality 

of those innovations.  However, model two estimates the opposite: for a 1% increase in 

the diversity_community, there is a .001% decline in a patent‟s expected generality. 

Hypothesis 3b proposes that inventors search for problems in sequential steps, exploiting 

familiar and particular problems before exploring more broadly.  Thus, I would expect 

that the size of an inventor‟s local community affects the impact of diversity_community 

on generality.  Model 3 in Table 2-6 tests this hypothesis, but finds no support for it. 

Paralleling the examination of novelty, subsequent tables explore the boundary 

conditions of the impact of inter- and intra-community knowledge spillovers on patent 

generality.  Again, the variable #Patents captures the size of the technological 

opportunity and/ or the importance of patenting in a given technological class. Models 4 

and 5 in Table 6-8 find that not only does #Patents increase the expected generality of a 

given patent, but it moderates the focusing effect of local size_community.  

Table 6-9 splits the patent data between patents from technology classes with 

above and below the annual mean #Patents for all patent classes in the original NBER 

database.  The different effect of size_community and diversity_community on patent 

generality when conditioned in this way is not obvious in the split-data models.  

Interestingly, the direction of the #Patents effect on generality changes, suggesting a non-

linear, U-Shaped relationship between generality and levels of patenting.  In an 
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unreported test, I include a squared term for #Patents and estimate a positive coefficient.  

This suggests expected generality is greatest at low and high levels of technology class 

patenting, all else equal. 

Models 6 and 7 in  Table 6-8  Tobit Estimation: Generality and Community Structure 

interactions examine the influence of being an individual inventor.  The negative examine 

the influence of being an individual inventor. The negative coefficient in IndividualID 

suggests these inventors create patents with less generality than corporate inventors.  

Furthermore, the generality of individuals‟ patents are also less affected by the 

composition of local communities: both size_community and diversity_community are 

moderated by the IndividualID variable. 

Table 6-10 splits the patent data between individual inventors and corporate 

inventors.  It reveals the relationship between community size and surrounding diversity 

is driven by corporate patents; the models find no evidence that the composition of local 

communities influences the generality of individual-inventor patents.  Furthermore, the 

direction of the #Patents parameter changes: greater degrees of technology-class 

patenting reduce the expected generality of patents from individual inventors, while 

increasing the expected generality of patents from corporate inventors. 

Note that, although the individuals and high-technology class models are slightly 

higher than their counterparts, goodness-of-fit does not change much across models.  The 

McFadden pseudo R-squared value of our models remain between .053 and .056, 

confirming intuition that there are many factors affecting the novelty and generality of 

patents that cannot be accounted for by these models. 
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2.7.5 Interpretation 

Built on theories of localized technological paradigms and closed community 

networks, I posited that larger local technical communities would generate innovations 

that were less novel and less general.  The effect of community size on innovation is 

relatively clear.  The estimates across models support these hypotheses, generating 

evidence from patent data of the focusing effect that local larger local communities have 

on innovation. Community size has a strong, negative effect on innovation novelty, 

robust to various specifications of the model.  Community size also has a negative effect 

on innovation generality.  Thus, larger local technical communities do seem to focus 

inventors on a more narrow set of technologies and problems, suggesting that these 

communities narrow opportunities and may develop paradigms that differ to some degree 

from the same technical community in other locations.  While effect appears across 

communities, being an individual inventor seems to mute the focusing affect of 

community size more than with corporate inventors engaged in more systematic 

innovation.  Still, there are some differences in when community size has the most impact 

on novelty and generality: for innovation novelty the focusing effect of community size is 

strongest in high-tech communities where local knowledge spillovers are particularly 

important, while communities with lower levels of patenting are more subject to the 

focusing effect of size on generality. 

In this paper I also investigate the diversity of communities surrounding the 

inventor‟s own community, and the moderating effect that surrounding diversity might 

have on community size.  These findings are not as clear.  Across the range of 

community sizes, surrounding diversity has a positive influence on innovation novelty as 
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predicted.  Still, this influence is relatively small.  Adding one more community of 

equivalent size to a locale increases innovation novelty by .1%.  Furthermore, the 

influence of surrounding diversity may be more complicated than previously thought.  

While for high-tech communities, diversity facilitates novelty directly, in low-tech 

communities the influence of diversity appears only as a moderator of the limiting effect 

of community size on innovation novelty.    Future work should consider the role of local 

diversity on innovation through two different mechanisms: where local knowledge 

spillovers are critical, we should expect a direct impact.  Where local knowledge 

spillovers are less critical, diversity may have an indirect impact, relaxing the technical 

paradigms that tend to form over time. 

Surprisingly, surrounding diversity has a negative effect on generality.  I build the 

above hypothesis on a model of inventors choosing which problems to address – some 

problems might be particular to a technical community, some problems more 

fundamental across communities.  I expected community diversity to lead inventors to 

address fundamental problems resulting in general innovations.  However, these model 

estimates suggest another dynamic may drive generality. 

Inventors find predicting an innovation‟s impact very difficult (Kline & 

Rosenberg, 1986).  Generality may result from the aggregated choices of subsequent 

adopters  (Bresnahan & Trajtenberg, 1995) rather than the foresight of inventors.  Before 

a subsequent adopter builds on a focal innovation, she must be aware that the knowledge 

exists and how it might be useful (Rogers, 2003).  Jaffe et al. (1993) found that 

innovations were built-on first by co-located inventors, before spreading to other locales.  

If we think of diffusion occurring in stages, then the second stage of adoption likely 
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occurs with non-local inventors with collegial ties to inventors in the focal location.  

Thus, an innovations generality emerges from the diffusion networks originating in local 

community structures. 

Modeling generality as the result of diffusion rather than pre-meditated choice 

helps explain the above findings.  First, a large local community may lead to a more 

focused adoption as it spreads locally within the technical community, and then spreads 

through inventor networks to others working on the same technology elsewhere.  

Furthermore,   Romanelli and Khessina (2005) suggested that some locales build 

identities around certain communities that become the focus of attention for others 

working in that industry or on that technology.  Thus, inventors working on similar things 

may attend to the innovations coming from larger local communities.  

Second, while we might expect local diversity to provide local touch points 

leading to geographic diffusion along many paths, these results suggests diversity 

fragments inventor attention focusing them further on their own technical community.  

The more diverse the composition of local communities the more likely potential 

adopters will overlook the innovation limiting its generality.  

Third, the above models estimate that corporate patents tend to be more general 

than individual-inventor patents.  Because of economic competition, because of quality 

signals, or simple because they are easier to find, corporate patent may capture the 

attention of a broader audience.  Thus, monitoring and awareness by potential adopters, 

rather than inventor foresight, may explain why corporate patents tend to be more general 
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and why the generality of corporate patents seems more affected by local community 

structures. 

2.8 Discussion and Conclusion 

The geography of innovation literature incorporates a prominent set of themes and 

findings relating local inventor communities to technological opportunities.  These 

perspectives commonly hold that the availability of local interactions partially determines 

the opportunities an inventor has to innovate (Almeida & Kogut, 1999; Asheim, 2005; 

Jaffe et al., 1993).  In their findings, Feldman and Audtresch (1999) lend support to the 

importance of technical communities sharing knowledge of a technology across industry 

boundaries.  Yet studies of local technological opportunities have not given much 

attention to how opportunities to create more innovations might differ from opportunities 

to create novel and general innovations.  In this paper, I argue and demonstrate that local 

opportunities for novelty and generality vary across the geographic landscape according 

to the demography of local technical communities.  

In particular, the paper looks at the role of inventor community size and 

surrounding community diversity in the familiarity of the technical combinations 

patentees use in their innovations and who develops the innovation further.  The results 

suggest that, all things equal, inventors in large local technical communities rely on more 

familiar combinations than inventors from smaller technical communities. These 

inventions further imact a focused group of inventors.  Furthermore, the diversity of 

communities surrounding the focal community has the expected, positive effect on 

novelty, but through different mechanisms depending on the importance of local 
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spillovers.  Surprisingly, diversity seems to fragment subsequent development leading to 

less general innovations. 

While this paper offers a nuanced view linking community structures and 

innovation, a more complete understanding of the innovation process and the role of 

geography requires additional research.  These estimates account for only a small portion 

of the factors leading to innovation novelty.  For example, inventor characteristics likely 

shape the characteristics of the innovation.  This paper assumes that inventors of 

particular characteristics are randomly distributed across geography.  However, this may 

not be the case.  Florida (2002) suggests certain types of inventors may be attracted to 

certain types of regions.  Large technological communities may offer employment 

opportunities that attract the more productive inventors; diverse regions may offer 

intellectual freedom attracting creative inventors.  In such cases, the influence of 

community structure might be mediated by inventor characteristics.  Moreover, if 

productive or creative inventors are attracted to productive or creative regions, the above 

estimates may suffer from endogeneity. 

To overcome these limitations, future research should identify the individual 

characteristics responsible for differences in innovation novelty.  Such research may be 

linked to recent studies following the geographic mobility of patentees (e.g., Marx, 

Strumsky, & Fleming, 2009) to better understand the geographic dynamics underlying 

community differences in innovations.  Are inventors shaped by their communities - as is 

the common and necessary assumption in the current local knowledge spillover literature 

-   or are inventors of different types attracted to communities of different types?  If the 
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later, then we might investigate the role of inventor mobility and labor market dynamics 

on the results reported here. 

These findings have implications for regional growth models and public policy.  

Current regional growth models create a central place for innovation, but remain 

ambiguous on the role of innovation heterogeneity and the mechanisms generating 

growth.  This paper suggests that, while innovation generates growth, the mechanisms for 

growth differ.  In some regions, innovation and growth comes from incremental 

improvements of existing technologies.  As Tushman and Anderson (1986) suggest, these 

innovations reinforce current industries and create the growth-generating externalities at 

the heart of the M-A-R model (Glaeser et al., 1992).  In these regional-communities, we 

should see employment growth through doing more-of-the-same-but-better.  In other 

regions, innovation and growth may come from recombinant improvements and 

Schumpeterian innovation.  These innovations destabilize current industries and lead to 

the rise of new industries and industry players (Tushman & Anderson, 1986).  Here, the 

Jacobian model may reign, and we should see employment growth through the 

emergence of entrepreneurs, new firms and new industries (Jacobs, 1968).  The question 

for growth scholars is not which model is the right one, but where is each which model 

more prominent.  

For policy makers and community participants alike, the co-existence of M-A-R 

and Jacobian innovation and growth models is not merely academic. While this paper 

focuses on static models of community innovation, technological obsolescence may be 

more problematic in one model than in another.  March and colleagues (e.g., Levinthal & 

March, 1993; Levitt & March, 1988) coined the phrase “competency traps” to describe 
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the threat inventors face of becoming too focused on one opportunity, and innovating 

themselves into obsolescence.  Dosi (1982) suggested that technical communities can 

become myopic until swept away by something new.  Locales built around large 

technical communities may generate a stable stream of innovations, but with increasing 

obsolescence (Sull, 2001).  The warning provided to managers about the threat of the 

competence traps may be equally valid for policy makers too.  Moreover, given the focus 

economic geography on the agglomeration benefits for innovation, we might also study 

the role of large local communities as incubators of technological obsolescence.  

Despite results suggesting the influence of local community structures on 

innovation novelty and generality, clearly additional research would enhance our 

knowledge of localized technological opportunities.  While this paper focuses on the 

structure of technical communities, industrial communities also provide opportunities to 

learn about technologies (Arrow, 1962a; Rosenberg, 1982) and to choose problems with 

commercial value (Mansfield, 1977; Nelson, 1959).  Given the importance of industries 

for learning and evoking innovation, the next chapter examines the role of industrial 

agglomerations and local industrial diversity on novelty and generality.  Additionally, 

Feldman and Audretsch  (1999) suggest that industrial diversity within technical 

communities matters for innovation counts.  Building on this, the final chapter considers 

how local industrial structures interact with local technical communities to generate 

innovation, and how they impact the novelty and generality of those innovations.  Finally, 

by focusing on the role of technical communities, this study ignores the important role of 

organizations in innovating  (e.g., Schumpeter, 1942).  In this respect, future research 
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should consider organizations, and their role in facilitating or insulating inventors from 

local effects, and in bridging locales and local communities.  
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3 LOCAL INDUSTRY STRUCTURES 

3.1 Introduction 

Understanding economic growth requires understanding the local knowledge 

flows that facilitate innovation.  A current debate in economic geography centers the 

influence of knowledge flowing within a local industry and knowledge flowing across 

local industries.  Glaeser et al. (1992) found that the diversity of local industries, but not 

local specialization, led to subsequent growth.  They concluded that intra-industry 

knowledge and local competition for spurs industry innovations that lead to growth, 

although the influence of industrial structure may depend on the industries life-stage 

(Henderson et al., 1995). 

Following Glaeser et al., a handful of studies investigated the direct impact of 

industrial organization on innovation.  Similar to Glaeser et al. (1992), Feldman & 

Audretsch (1999) find no evidence for inter-industry knowledge flows, but positive 

effects for diversity within a given science base.  Yet the jury is still out.  Subsequent 

studies found evidence of both specialization and diversity (Greunz, 2004; Paci & Usai, 

1999), and – in the case of French R&D investments - a negative effect of specialization 

(Masssard & Riou, 2002).  There is still much to learn about the geography of innovation. 

While further establishing the study of local industrial structure to reveal local 

knowledge flows, these studies assume that the number of innovations is the critical 

growth driver.  Innovations differ in important ways, and innovation counts may not fully 

reflect local knowledge spillovers.  Innovations differ in their novelty and their 
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generality.  Inventors combining existing knowledge in less familiar ways are more likely 

to create breakthrough innovations (Fleming, 2001) which fashion new industries and 

drive subsequent economic growth (Schumpeter, 1934).  Inventors focused on more 

general technical problems create innovations with broad impact, useful to the subsequent 

development of many technologies and industries (Bresnahan & Trajtenberg, 1995).  

These differences suggest that some innovations are more likely than others to drive local 

economic growth and technical development.  Furthermore, if these differences result 

from the information inventors have at hand, they may provide a more nuanced approach 

to revealing local knowledge flows.  By examining whether local context shapes 

innovation characteristics, we might further understand the role local knowledge 

spillovers play in innovation and economic growth. 

This paper examines the influence of local industrial organization on innovation 

novelty and generality.  I employ a pooled cross-section of patents and local industry 

employment to investigate changes within cities over time.  Section One introduces the 

innovation and economic geography literatures to develop specific hypotheses.  Section 

Two describes the patent and employment data and the specific measures I use to test my 

hypotheses.  Section Three presents the estimation models and their results.  Section Four 

concludes with a discussion of the results and their implications. 

3.2 Local Industry Structure and the Characteristics of Innovations 

Industrial activity generates new knowledge important for innovation.  According 

to Arrow (1962a): “technical change in general can be ascribed to experiences (156)”: 

specifically, production experiences raise problems to be tackled and solutions to be tried.  

Outside of the research lab, industrial activity shapes the direction of technological 
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change by promoting several forms of learning that link back to research.  As Rosenberg 

(1982) stated: “productive activities always involve specialized kinds of knowledge 

which may be unique to a specific industrial process (122).”  Development searches out 

and discovers optimal designs of a product, and benefits from close ties to manufacturing 

and marketing (Kline & Rosenberg, 1986).  Manufacturing and marketing themselves 

generate new knowledge as workers identify new opportunities for improvement (Arrow, 

1962a).  Learning also occurs through the use of products and tools themselves 

(Rosenberg, 1982; von Hippel, 1986).  Thus, we should expect that industrial activity is a 

source of knowledge feeding the innovation process. 

Local industrial activity may be particularly influential for inventors.  The 

knowledge generated from manufacturing and other activities tends to be location 

specific.  Experiential learning is often difficult to explain to others, and shaped by the 

people and conditions under which the technology or knowledge is put to use (von 

Hippel, 1994).  Inventors themselves learn about and use geographically local 

technologies more readily than distant technologies (Jaffe et al., 1993).  Between local 

knowledge and distant knowledge, we expect knowledge flowing locally from industrial 

activity to inventors may be particularly influential. “After all,” Glaeser et al. (1992)  

noted, “intellectual breakthroughs must cross hallways and streets more easily than 

oceans and continents (1127).” 

New economic growth theories rely on local knowledge flows to link the present 

industrial activity and innovation with future development (Romer, 1986).  Glaeser et al. 

(1992)  introduce three mechanisms: intra-industry knowledge flows, inter-industry 

knowledge flows, and local competition. 
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Intra-industry knowledge flows recognize the importance of knowledge spilling 

over between actors within the same industry.  Marshall  (1936) explained the 

agglomeration of industries in the same locale as partly the results of these knowledge 

flows.  Larger local industries create a place where “Good work is rightly appreciated, 

inventions…have their merits promptly discussed: if one man starts a new idea, it is taken 

up by others and combined with suggestions of their own; and thus it becomes the source 

of further new ideas (Marshall, 1936: 271).”  Industrial actors co-locate in part because 

technical knowledge more readily spreads and develops among proximate actors than 

distant actors (Lucas, 1993).  Given this benefit of co-location, we might expect that large 

local industries steep local inventors in familiar technical knowledge.  Further, local 

industry knowledge flows lower the cost of acquiring and using technologies familiar to 

the industry, freeing resources for further experimentation and "further new ideas".  This 

logic predicts that larger local industries generate disproportionately more innovations.  

Recent empirical studies provide increasing evidence for the positive relationship 

between local industry size and the innovation counts from local firms (e.g., Audretsch & 

Feldman, 1996; Baptista & Swann, 1998). 

Local knowledge flows may also shape the types of innovations emerging from 

local firms.  Inventors tend to draw from familiar knowledge for solutions to technical 

problems (Cyert & March, 1963), partly because familiar knowledge reduces the 

uncertainty surrounding innovation (Fleming, 2001).   Large local industries provide deep 

pools of familiar technical knowledge for inventors to exploit, keeping them from having 

to explore for solutions more broadly.  Innovations combine existing knowledge in new 

ways (Schumpeter, 1934).  Yet some combinations are more familiar to the scientific 
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community than others (Fleming, 2001).  As the local availability of industry knowledge 

increases, inventors will create inventions which build on familiar combinations of 

technologies.  Thus: 

H1a: The larger the size of the local industry, the less novel the innovations 

emerging from that local industry. 

Innovations also differ in their scope of impact.  Some innovations contribute to 

development of many different products and technologies – the laser (Rosenberg, 1982) 

and electricity (David, 1990) being two common examples.  Subsequent inventor adopt 

these general technologies to a range of further development and uses (Bresnahan & 

Trajtenberg, 1995).  While the current literature focuses on the important consequences 

of generality, little attention has been paid to its antecedents and contexts (Mokyr, 1990). 

In part, generality grows from an inventor‟s choice to focus on a fundamental 

technical problem or a basic solution. In addition to technical uncertainty (“Will the 

invention work?”), inventors face market uncertain (“Will anyone find it valuable?”)  To 

assess an invention‟s value, inventors often look to the expectations of potential users or 

others engaged in the technical community.  Customer feedback guides the investment 

decisions of inventors (Clayton, 1993).  Further, built on collective experience, the 

technical community converges to define interesting and „appropriate‟ problems worth 

solving (Dosi, 1982). 

With ties to manufacturing and marketing, local industrial activity not only 

provides knowledge about which technical solutions will likely work, but also 

information about which technical problems are worth solving.  For inventors, deeper 

pools of industry activity immerse inventors in community and customer expectations 
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focusing inventors on problems particular to the industry.    Interactions with others in 

these pools of activity likely focus inventors on problems particularly valuable to the 

industry, even while ignoring problems with more general utility. Thus: 

H1b: The larger the size of the local industry, the less general the innovations 

emerging from that local industry. 

While knowledge flowing within an industry may reduce the cost and uncertainty 

of innovation, knowledge flowing across industries may provide inventors with the spark 

for creative combinations.  Urban scholar Jane Jacobs considered the relative impact 

inter-industry knowledge flows in 19th century Manchester.  For Jacobs (1968), the size 

of the local textile industry made Manchester a city of “stunning efficiency (86).” Yet 

efficiency also led to Manchester's ultimate demise as a “profoundly obsolescent city 

(88).”  Manchester‟s specialization fostered little in the way of the innovations which 

spur new work and new industries.  Comparatively, “the economy of Birmingham did not 

become obsolete… It‟s fragmented and inefficient little industries kept adding new work, 

and splitting off new organizations... (89).”  Rather than local industry size, local industry 

diversity may be more important for innovation. 

A diversity of experience at the individual level, and access to diversity of 

knowledge at the social level, facilitates creativity (Amabile, 1996).  One outstanding 

question is whether regional diversity provides a social context for innovation.  Recent 

studies expand our attention from single industry agglomerations, to the diversity of 

industries that surround them (e.g., Feldman & Audretsch, 1999; Glaeser et al., 1992).  

Building from the observations of Jane Jacobs (1968), Glaeser et. al. (1992) found that 

industries in more diverse regions realized greater growth between 1956 and 1987, 
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suggesting that critical knowledge spills across rather than within industries.  Duranton 

and Puga (2001) characterized diverse cities as “nurseries” for new firms, “churning new 

ideas and new products (which requires a diversified base), whereas other cities 

specialize in more standard production (which in turn, is better carried out in a more 

specialized environment.) (1471).”  Diverse cities and agglomerated industries offer 

advantages, but – like Birmingham and Manchester – the former suited for novelty and 

the latter suited for efficiency.  

In perhaps the most direct test of industrial composition and innovation, Feldman 

and Audretsch (1999) tested the relationship between industrial diversity and the 

generation of new products by small businesses.  In cities specialized in a particular 

industry, the local industry produced fewer new products.  However cities with many 

others sharing a science base spurred more new products.  With these studies in mind, the 

diversity of industrial activity provides a social context for combining ideas in new ways.  

As the availability of diverse industry knowledge increases, inventors should find greater 

opportunities to, or less uncertainty in, drawing from a variety of technical streams.  In 

time, this leads to inventors creating less familiar, more novel combinations.  Formally, I 

expect:  

H2a: The more diverse the local industries surrounding an inventor, the more 

novel the innovations emerging from that local industry. 

Surrounding industrial diversity not only provides information about a variety of 

technologies, it also provides access to a variety of technical communities and customers.  

Nelson, explaining why private firms tend not to engage in basic research, argued that 

most inventors consider the value of the innovation for a limited set of current markets.  
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Only inventors who may realize the value of a general invention in many markets will 

bother with the uncertainty and expense solving general problems entails.  

With a greater ability to consider the value of a solution across many industries 

(Nelson, 1959),  inventors surrounded by a diversity of industrial activity can better 

assess the broad value of solving fundamental problems.  This increases the incentives 

and reduces the uncertainty of generating something fundamental.  Thus, diversity should 

not only correlate with novelty, but by revealing fundamental technical problems and 

enabling broad development, the diversity of activity surrounding a local industry should 

lead to innovations contributing to a wider scope of technologies.  Formally, I expect: 

H2b: The more diverse the local industries surrounding an inventor, the more 

general the innovations emerging from that local industry. 

Theoretically, explanations of local knowledge spillovers focus on the size of 

local industries.  Yet operationally, Glaeser et al. (1992) and subsequent empirical 

examinations consider the size of the local industry relative to what we might expect 

given a random distribution of industrial activity across locales. Arthur (1990) noted how 

the early presence of an industry in a location – even if it occurs through happenstance – 

can signal advantages that attracts resources and entrepreneurs.  Specialization suggests 

that local industrial activity has not only scale advantages for innovation, but that some 

locales are more fertile for the industry than other locales. 

Local industries exist in a wider network of local industries.  They vie with others 

for resources and opportunities, and whether that industry dominates the local industrial 

activity or stands on the periphery shapes its ability to attract resources (Romanelli & 

Khessina, 2005).  Under uncertainty, share can serve as a quality signal generated from 
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the aggregated decisions of individuals (Caminal & Vives, 1996).  A local industry 

commanding a larger share of regional activity than we would otherwise expect signals 

the quality of that industry in that location.  This signal guides investments and attracts 

human and financial resources to that local industry (Romanelli & Khessina, 2005). 

Specialization effects suggest a local gravity exists, pulling resources to some 

communities at the expense of others.  In part, the local opportunity may be a story about 

local policy: politics, university initiatives, and local firm and investor decisions support 

industries with a large local presence.  This lowers the cost of operating and innovating in 

that local industry, and frees the resources for further innovation.  Still, empirical findings 

provide mixed support for the benefits of specialization on local innovation:  Feldman 

and Audretsch (1999) found no evidence of an effect of specialization on new product 

introductions in the United States.  Greunz (2004) and Paci and Usai (1999) find that 

industrial specialization had a positive effect on innovation in Europe. 

Romanelli and Khessina (2005) propose that these industry clusters generate a 

shared understanding about the suitability of the locale for the industry's activities, which 

then shape local and industry investments. As an example, they note Pittsburgh's 

specialization in steel, and suggest that investments continued to focus on familiar 

technologies and financial expertise rather than broader knowledge.  Thus, resources 

attracted to the local industry support innovation around the core technology.  In his 

study of the tire industry, Sull (2001) suggested that such investments and local 

interactions in the specialized Akron tire-industry lead to myopic innovations, with a 

critical breakthrough innovation, the radial tire, ultimately coming from a tire-maker 
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outside the specialized local industry.  In focusing knowledge about familiar technologies 

and the value of solving given problems, we may expect: 

H3a: The larger the degree of specialization of the local industry, the less novel 

the innovations emerging from that local industry. 

H3b: The larger the degree of specialization of the local industry, the less general 

the innovations emerging from that local industry. 

No discussion of local industrial structure is complete without considering the 

link between local competition and innovation.  For Schumpeter (1942), market power 

drives innovation.  Monopolistic firms innovate more because they have deeper pockets 

and because they are better positioned to capture the benefits of their efforts.  On the 

other hand, Porter (1990) suggested competition drives local innovation and growth.  

Product rivalries spur firms to innovate to survive and stay ahead of other firms who also 

innovate (Aghion & Howitt, 1998).  Given that firms tend to focus on local competitors 

more than distant ones (Baum & Mezias, 1992), competitive local markets likely 

encourage innovation.  Pouder and St. John (1996) suggested a dynamic dimension, early 

competitive locales drive innovation, but as the local industry evolves and the number of 

firms decline, firms become myopic and innovation declines. 

Empirical studies of both economic growth (see Combes, 2000; Glaeser et al., 

1992) and innovation (Feldman & Audretsch, 1999) do not resolve this theoretical 

horserace.  Glaeser et al. (1992) found local competition associated positively with local 

employment growth but negatively with local wage growth.  Combes (2000) found 

competition in France had a negative relationship with growth in all industries and most 

services.  For innovation, Feldman and Audretsch (1999) also get mixed results, but 
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conclude that within cities of a given size, more competitive local industries link to more 

product innovations.   

Investigating heterogeneity among innovations themselves may better identify the 

effect of local competition.  Innovation counts may hide the true originality and impact of 

local innovations.  Following prior studies (Feldman & Audretsch, 1999; Porter, 1990; 

Pouder & St. John, 1996), we might expect competitive local industries lead to more 

innovation, but these innovations may be more incremental.  As local firms monitor each 

other, competition provides continual feedback as to the performance of the firm leading 

to myopic learning (Barnett & Hansen, 1996).  Combining the pressures to stay neck-in-

neck with local competitors (Aghion & Howitt, 1998) along with pressures to survive and 

appropriate returns to innovation, I expect local inventors in competitive locales will 

focus on less risky, more incremental and marketable innovations.  Thus: 

H4a: The higher the degree of competition of the local industry, the less novel the 

innovations emerging from that local industry. 

H4b: The higher the degree of competition of the local industry, the less general 

the innovations emerging from that local industry. 

3.3 Data and Variables 

3.3.1 Data Sources 

Data for the analysis come from two sources: patents registered at the United 

States Patent and Trademark Office (Hall et al., 2001), and employment data collected by 

the United States Census Bureau into the County Business Patterns (CBP) data.  Patents 

offer a large sample of innovations covering a wide range of technologies, inventors and 

locations.  Each patent divulges details categorized in ways that enable relatively smooth 

comparisons between innovations. I use patent data from the National Bureau of 
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Economic Research (NBER) dataset compiled by Hall, Jaffe, and Trajtenberg and 

colleagues.  The NBER datasets contain complete data for all patents since 1977, and 

identifies inventors through 1999.  Datasets from the NBER also link corporate assignees 

of over 500,000 patents to publicly traded manufacturing firms listed in Compustat
9
 (Hall 

et al., 2005).  

County Business Patterns data offer annual insights into most of the economic 

activity and industrial composition occurring at the local level throughout the United 

States.  My sample includes the total employment and number of establishments in each 

county for the years 1977 through 1997. For some years, this information is only readily 

available at the 2 digit SIC code level, but even in years where 4 digit SIC code 

information is available, the 2 digit SIC remains appropriate for two reasons.  First, not 

all industries are segmented to the 4 digit level.  Thus, using more detailed data loses 

much of the local economic activity or makes industries incomparable.  Second, the skills 

and expertise required across four digit SIC code industries may not be differentiated 

enough to warrant this level of detail to draw inferences on the relationship between 

industrial activity and innovations.  

Since this examination is built on the principle that local spillovers and 

competition shape innovation, the county level may be too small a region of analysis.  As 

in the previous chapter, I assign patents and aggregate the CBP data to the metropolitan 

area identified by the United States Office of Management and Budget (OMB) in their 

2000 standards (Spotila, 2000) and revisions.  

                                                
9 About 50-65% of all patents of granted to U.S. corporations.  Note that about ¼ of patents do not have an 

assignee, indicating the property rights were originally granted to an individual Hall, B. H., Jaffe, A., & 

Trajtenberg, M. 2005. Market Value and Patent Citations. The RAND Journal of Economics, 36(1): 16-

38.. 
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Assigning inventors to MAs.  Each MA may not only include multiple counties, 

but they may also include multiple towns and cities.  While city names repeat across 

states, almost all city-state combinations are unique, and can be placed within or outside 

of MAs with a great deal of accuracy.  As previously mentioned, each patent includes the 

city-state information for each inventor, and therefore we can place innovations in one (or 

many) MAs, opening the advantages of patent data for making comparisons across 

innovations, to data comparing regions.  Previous studies have done this with success 

(e.g., Carlino et al., 2005; Jaffe et al., 1993).  Using a commercially available dataset, I 

place inventor city/states into MAs
10

, an approach that past studies have used to capture 

the within-MA localization of citation patterns between patents (Almeida & Kogut, 1999; 

Jaffe et al., 1993).  

3.3.2 Data Sample: Single MA and Identifiable Industry Codes. 

This paper focuses the sample of patents to a particular set which allows for more 

focused analysis and controls for potential confounds.  The main challenge with 

assigning patents to MAs is when there are multiple inventors residing in different 

locales.  Researchers have used different approaches in the past – for example, assigning 

patents to the MA of their primary inventor or majority of inventors.  When studies have 

compared different methods, they do not indicate that different methods generate 

different outcomes
11

.    Still, there may be confounding influences by inventor teams 

                                                
10 It may be that inventors list the city/state of their employment rather than their residence.  Given that 

MAs are constructed using local commuting patterns, I suggest that this will not add bias since any 

differences between residence and employment are likely lost in the MA aggregation. 
11 Carlino, Chatterjee and Hunt Carlino, G., Chatterjee, S., & Hunt, R. 2005. Matching and learning in 

cities: urban density and the rate of invention. Federal Reserve Bank of Philadelphia Working Papers, 

No. 04-16/R. compared using first or second authors, and found only 15% of patents would change.  Jaffe 

et al. (1993) used majority as the criterion for assignment, and found that only 14% of their patents could 

not be assigned unanimously. 
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from multiple MAs – either because they draw from different experiences and networks, 

or because of coordinating and organizing dynamics that must occur across multiple 

MAs.  Because I theorize about the influence of a location on the problems and solutions 

inventors‟ select, I eliminate these confounding influences by limiting my sample to 

patents whose inventors come from a single MA.  After identifying all patents with single 

CBSAs and CSAs, I rank-order locations assigning patents to CSAs first and CBSAs 

second.  Additionally, to place patents in local industries, I further reduced my sample to 

patents with assignees which have been linked to Compustat by Hall et al. (2001), and 

with application years between 1977 and 1997.  

Focusing on patents from a single U.S. metropolitan area reduces the sample to 

880,882 patents
12

.  Further focusing on patents with an identified CUSIP number further 

reduces the sample size to 401,336 patents.  Note that the Single-MA sample contains a 

higher percentage of Compustat-linked patents (45.56%) than the NBER population 

(28.75%). 

The sample of Single MA patents with identified Compustat assignees represents 

about 20.88% of the population of patents captured in the NBER data for application 

years 1977-1997.  Note that the percentage of the NBER patents captured by this sample 

declines over time: from almost 29% in 1977 to 15.6% in 1996.  This decline is largely a 

result of the overall decline in NBER patents with identifiable Compustat assignees (from 

over 36% in 1977 to about 22% in 1996)
13

.   

                                                
12 See chapter one for a comparison of Single U.S. MA patents to the NBER population of patents for years 

1997-1997.  
13 Hall et al. (2001) note that, while they were able to match almost 70% of U.S. patents through the early 

1980s, they percentage of patent-Compustat matches declined thereafter – a likely result of using the 1989 
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The Single-MA, Compustat-assignee sample‟s distribution across technology 

classes may differ from the NBER population to a degree.  As with the NBER 

population, the two most common groups of patents are drugs and semiconductors.  The 

sample captures almost 22% of all drug patents (Classes 424 and 514) and 27.5% of 

semiconductors patents (Classes 428, 438 and 439).  Still, Synthetic resins/Natural 

rubbers (Classes 524 and 525) may be overrepresented (the sample captures over 35% of 

those patents) while underrepresented in Static Structures (Class 52), Land Vehicles 

(Class 280) and some Surgical Equipment (Classes 600 and 606) (the sample captures 

11% of those patents combined). Overrepresented patents may come from established 

industries with large, stable firms; for example, synthetic resins patents tend to come 

from large chemical or petroleum companies (e.g., Dow Chemical).  Underrepresented 

patents may come from a high-proportion of non-U.S. firms or private, supplier firms 

(e.g., Land Vehicles), or from a technology class with a high proportion of individual 

inventors or more recent growth (e.g., Surgical equipment). Thus, inference for this 

analysis may the bounded to innovation within large firms in more mature industries
14

. 

Thus, by combining patent data with County Business Patterns data, we can locate 

a pooled cross-section of patents in the local industrial structures of their birth.  With this 

data set I can test for the influence of local industrial composition on the novelty and 

generality of innovations, and gain much insight into the role of geography on 

technological development and industry evolution.   

                                                                                                                                            
Compustat file and the rapidly changing composition of patents, with many of the new entrants not yet 
traded by 1989 (p. 24). 
14 Differences in the distributions of patents across technology classes are more driven by the criteria 

limiting the sample to patents with Compustat assignees, rather than the Single-MA patents criteria.  In 

some cases, like Class 52:Static Structures, classes overrepresented in the Single-MA sample are 

underrepresented in the Single-MA, Compustat-assignee sample. 
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3.3.3 Innovation Measures 

By definition, all patented innovations are novel and useful, but defining and 

measuring the degrees of these two characteristics is difficult (Fleming, 2001).  I use two 

current measures to capture the novelty and generality of a patent:  

Novelty. To quantify novelty, I follow Fleming's (2001) study of innovation 

familiarity, examining the extent to which an innovation makes unusual combinations of 

technological streams, captured by patent examiner assigned technology classes.  

Familiarity is the average count of the number of times technology class pairs were 

combined in the current and preceding four years in patent p in industry i from 

metropolitan areal.  Thus, if a patent is assigned to technology classes that have not been 

combined in the past, the noveltypil measure will be high; if the patent makes familiar 

technology class combinations, the measure will be low.   

Generality. I measure the breadth of an innovation‟s impact by examining the 

extent to which an innovation contributes to subsequent innovation in a broad array of 

technology fields, rather to a more focused impact on one or few technological fields:  

 Generalitypil = (Np/(Np-1)) (1-∑ spq
2
)     (1) 

Here, spq denotes the percentage of citations made to patent p from patent class q, 

out of np patent classes.  The more widely cited a patent is across technological fields, the 

higher the generality measure will be. The Herfindahl index tends to be correlated with 

the number of citations made to the patent.  This confounds the distribution of patent 

citations with the number citations received, introducing systematic bias into the measure 

– particularly for patents with fewer forward citations.  To correct for this bias, I include 
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the (Np/(Np-1)) adjustment to create the above bias-adjusted measure (Hall, 2000).  Note 

that patents with no or a single forward citation will have an undefined generality 

measure. Since forward citations continue to accrue over time, I code those patents as 

censored data, suspecting that generality may still be revealed in the future.  Again, the 

measure is confined to measures between and including 0 and 1.  

3.3.4 Local Industry Measures 

Local Industry Size.  To measure the size of a local industry, I aggregate the 

county employment data in the 2 digit SIC to the metropolitan area:  

 Size_Industryil =∑ employmentic (2) 

where the size of industry i in region l is the sum of all county employment in industry i 

and in count c for all counties in the region. To account for outliers and to aid with model 

interpretations, I log the variable. 

Local Industry Specialization.  I capture the degree to which a city is specialized 

in a particular industry by calculating a location quotient (Glaeser et al., 1992).  A given 

community‟s local employment share is standardized by its share of all U.S. employment, 

capturing the difference in local industry activity compared to what we would expect 

based on a random distribution of activity across the United States:  

 Spec_Industryil = Industry Shareil / (∑
U.S.

Industry Sizel /∑
 U.S.

Industry Size)

 (3) 

where the specialization of industry i in region l is divided by the share of industry i 

across the United States. 
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Local Industry Diversity.   For each local industry, I calculate a Herfindahl 

concentration index of all other local industries to capture whether the focal industry is 

surrounded by a wide range of industrial activity, or by a specialized set of industries:  

 Diveristy_Industryil = 1/∑
n-1

 Industry Sharenl
2
 (4) 

where the diversity surrounding industry i in region l is a function of the squared share of 

all n-1 industries in region l, with n-1 denoting all local industries except industry il.  

Local Industry Competition.   Following Glaeser et al. (1992), I measure local 

competition as the number of firms in the local industry, common-sized for the number of 

employees in the local industry. 

Table 3-1 summarizes the variables employed in subsequent analysis. 
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Table 3-1 Description of Local Industry Variables 

Construct Variable name Description

Recombinant Novelty Noveltyp
-1*Natural log of the average # times each patent 

class pair in a patent occurred in the prior 5 years.

Generality Generalityp 1-Herfindahl of patent forward citation 

distribution across technology classes (bias 

corrected).

Local Industry Size Size_Industryi,l,t Natural log of the employment in each 2-digit sic-

year-metropolitan area.

Surrounding Industry Diversity Div_Industryi,l,t Inverse of Herfindahl of Local Industry Sizes 

(other than the focal community).

Local Industry Specialization Spec_Industryi,l,t
Location quotient of 2-digit sic-year-metropolitan 

area.

Local Industry Competition Comp_Industryi,l,t # firms per employee in 2-digit sic-year-

metropolitan area.

Patent Class Size #Patentsk,t
Natural log of  # Patents in technology class-year.

Metropolitan area size #Employmenti,t Natural log of  # of employees in the year-

metropolitan area.

Science-base #ScienceCitesp
# Non-patent citiations listed in the patent.

Subclass count #Subclassesp # subclasses identified by examiners to which 

patent, p, is assigned.

Single subclass indicator SingleIDp
Equal to 1 for patents assigned to a single 

subclass , 0 for more than one subclass.

Subscripts i  (industry), k  (patent class), l  (metropolitan area), p  (patent), t  (time)  

3.4  Models and Results 

3.4.1 Summary Statistics 

Table 6-11 through Table 6-14 in the Appendix illustrate the persistent nature of 

local economic organization from 1977-1997 for the local industries engaged in corporate 

patenting and used in this analysis.  The table includes all local industries captured by the 

County Business Patters data. Note that the number of local industries increases slightly 

over the years, while the average size of local industries grows steadily.  Even so, the 

specialization of local industries and the diversity surrounding these industries, on 

average, remains relatively steady - peaking in the 1980s. 
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Table 6-15 and Table 6-16 in the Appendix show annual trends in patent novelty 

and generality.  Novelty and generality decrease. Decreases in novelty may reflect overall 

increases in patenting.  Given the time required for patents to acquire forward citations, 

we should also expect year to year differences in generality, particularly for more recent 

years, which result from the inherent process of accumulating citations rather than from a 

fundamental difference in the patents‟ generality.  The more recent the patent, the fewer 

the citations and the more likely the patent is to have censored data.  Indeed, if we focus 

on truncated generality (unreported here), they reveal a similar pattern, but to a much 

weaker degree. 

Given these trends in patent characteristics, any analysis of patent characteristics 

likely requires time dummy variables to hold constant variance due to unobserved 

variables which would otherwise be spuriously captured in the models. 

Summary statistics for the centered variables are included in Table 3-2. 
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Table 3-2  Summary: Centered Explanatory Variables, Single-MA patents 77-97 

Variable Mean St. Dev. Min Max

Patent-level observations

Noveltyp -1.02 1.10 -7.00 0.00

Generalityp 0.45 0.36 0 1.00

#Subclassesp 0.08 0.27 1 190

SingleIDp
4.52 3.97 0 1

MA-sic-year observations

Size_Industryk,i,t
0.00 2.02 -7.30 5.62

Div_Industryk,i,t 0.00 5.06 -21.77 11.76

Spec_Industryk,i,t
0.00 10.30 -2.16 648.14

Comp_Industryk,i,t 0.03 0.05 0.00 0.75

MA-year observations

#Employmenti,t 2.11 1.62 -2.30 5.45

Class-year observations

#Patentsk,t 0.18 1.14 -4.7412 3.79

Subscripts i  (industry), k  (patent class), l  (metropolitan area), p  (patent), t  (time)

N  = 326,798 at the patent level; N = 21,671  at the MA-sic-year level;

 N =  21,671 at the sic-year level; N =  7,849 at the class-year level  

Table 3-3 shows the correlations among these variables.  Of note, #Employment is 

correlated with size_industry and diversity_industry at 74% and 50% respectively.   
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Table 3-3 Local Industry Correlation Coefficients 

1 2 3 4 5 6 7 8 9 10 11

Noveltyp 1

Generalityp 0.05 1

Size_Industryk,i,t
-0.05 0.03 1

Div_Industryk,i,t
0.08 0.05 0.31 1

Spec_Industryk,i,t
0.01 -0.02 0.01 -0.16 1

Comp_Industryk,i,t
-0.02 0.01 -0.26 -0.09 -0.17 1

CoTowni,t -0.02 -0.01 -0.15 -0.24 0.14 -0.08 1

#Employmenti,t -0.06 0.01 0.73 0.49 -0.27 -0.02 -0.30 1

#Patentsk,t -0.15 -0.05 0.06 -0.19 -0.01 0.00 0.05 0.08 1

#Subclassesp
0.00 0.13 0.00 0.03 0.00 0.01 -0.01 0.02 0.01 1

SingleIDp
-0.12 -0.09 0.01 0.02 0.00 0.00 -0.01 0.01 -0.03 -0.25 1

Subscripts i  (industry), k  (patent class), l  (metropolitan area), p  (patent), t  (time)

Note  : Correlations are at the patent level of observation, N  = 326,832.  

3.4.2 Novelty Estimation 

The data is a pooled cross-section of all corporate patents, allowing me to control 

for unobserved technology-class factors which might confound the estimates.  

Additionally, the patents are not identically distributed over time.  Time dummy variables 

account for potential changes in the models' intercepts.  While unreported here, the 

coefficients on the year dummy variables declines, suggesting that even after controlling 

for local economic organization and other factors, the patterns of decreasing novelty and 

generality remain.  In additional unreported analysis, I interact these time dummy 

variables with the key local economic organization variables to explore potential changes 

in the slopes over time. Wald tests of the variables indicate they are jointly significant, 

but individual T-tests of the interactions are generally not significant and illuminate no 

discernable pattern.  Including these interactions has no effect on the key results, except 

for the diversity_industry coefficient.  Thus, while I do not include year-interaction 

variables in the final estimates, it is possible that the effect of diversity diversity_industry 
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had a stronger impact in some years (particularly 1978-80, and 1981) than others.  Why 

these years differ from other years is open for speculation. 

I expect the observations are correlated among industries within MAs.  To 

account for unobserved differences across cities, I include dummy variables for each 

metropolitan area focusing the analysis on variation within each city.  Further, a Breusch-

Pagan / Cook-Weisberg test for heteroskedasticity shows usual standard errors are likely 

unreliable.  To adjust for potential correlation among error terms within cities, I use 

robust standard errors calculated with cluster-level scores (Wooldridge, 2002). 

By pooling the patent data, I increase the sample size for more precise estimates 

of fixed effects and interactions in both the OLS estimations (for dependent variable 

novelty) and Tobit estimations (for dependent variable generality).  Given the relationship 

between the patent characteristics and economic organization seems consistent over time, 

pooling will be helpful as the estimate models become more complex. 

3.4.3 Novelty Results 

Table 3-4 estimates the relationship between novelty and local industry structure 

with OLS and including controls for the total metropolitan area employment and 

metropolitan area fixed effects  Model 1 is a baseline including local industry size and 

control variables. Note that local industries organized around particular firms - "company 

towns" - generate less novel patents through all models.  Further, patents assigned by 

examiners to single subclasses have less novelty.  Wald tests of subcategory- and sic-

dummy variables support their inclusion in the models.  
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Table 3-4  OLS Estimation: Novelty as a function of Local Industry structure 

1 2 3 4

Size_Industryi,l,t 0.000 -0.001 -0.002 0.002

0.010 0.010 0.015 0.016

Div_Industryi,l,t
0.002 0.002 0.002

0.003 0.004 0.004

Spec_Industryi,l,t 0.001 0.001

0.004 0.004

Comp_Industryi,l,t 0.240

0.223

#Patentsk,t -0.014 -0.014 -0.014 -0.014

0.012 0.012 0.012 0.012

SingleIDp -0.560 *** -0.560 *** -0.560 *** -0.560 ***

0.036 0.036 0.036 0.036

CoTownIDI -0.106 ** -0.105 * -0.104 * -0.105 **

0.040 0.041 0.041 0.041

#Subclassesp -0.005 -0.005 -0.005 -0.005

0.003 0.003 0.003 0.003

#Employmentl,t -0.110 -0.109 -0.108 -0.111

0.142 0.142 0.142 0.142

Constant -0.830 -0.765 -0.768 -0.804

0.516 0.502 0.500 0.492

Observations 322744 322744 322744 322744

Adj R -squared 0.136 0.136 0.136 0.136
Subscripts  t  (time), i  (2 digi t s ic), l  (metropol i tan area), p  (patent).

DV: logged 5-yr average frequency that a  patent's  technology class  pa irs  occurred.

Robust s tandard errors  (clustered by metropol i tan area) in parentheses

+ s igni ficant at 10%; * s igni ficant at 5%; ** s igni ficant at 1%, *** s igni ficant at .5%.

Al l  equations  include year, technology subclass , 2-digi t industry code and metropol i tan area dummy variables .  

The models in Table 3-4 are surprising in that they offer no evidence linking local 

industry structure and patent novelty.  Although the large number of observations in the 

dataset mitigates multi-collinearity concerns somewhat, after partialing out the effects of 

total city employment and accounting for unobserved metropolitan area factors, the 

model 1-4 find no evidence of a relationship between patent novelty and local industry 

structure variables. 
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In Table 3-4 I assume that unobserved factors at the city-level may confound the 

estimates.  Cities differ in ways that might share local industry size, specialization, 

diversity and/or competition and the creativity of its inventors.  In the now classic 

examination of Boston and Silicon Valley, Saxenian (1996) notes persistent differences 

in their firms and labor markets, ascribing the differences to the subsequent divergence in 

innovation and growth of these two city-industries. More recently, Richard Florida 

(2002) argues differences in local cultures and amenities attract more or less creative 

workers.  Over the long-run, these differences may vary; during the two decade period in 

this paper, we might expect these differences between cities to remain steady.  Thus, to 

isolate the effect of economic organization from other city-level factors, I tested the 

results using city-level fixed effects. 

Focusing on variance both within industries and within locales is an important 

choice.  By regressing the individual economic variables on the MA dummy variables, I 

find that between 27.7% (for competition_industry) and 74.6% (for 

specialization_industry) of the variation is between-city variation; but for the novelty and 

generality variables, 3.7% and 1.4% of their respective variation exists between cities.  

While some variation remains within cities, much of the critical variation in the 

explanatory variables exists in the cross-section comparisons. 

However, this study builds on previous estimates of local economic organization 

offered by Feldman and Audretsch (1999) and Greuz (2004) at the city/region level, and 

by Baptista and Swan (1998) at the firm level.  Data limitations may have forced these 

papers to use variation across locations to estimate the effects of local economic 

structure.  To capture variation across locales, in Table 6-17 I re-estimate the models 
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without the #Employment control and without metropolitan area dummy variables.  This 

allows for a test including between-city variation that doesn't net out city employment 

variation, but does account for the size of the local industry.  Of course, this raises 

concerns about the model's specification that will be discussed later. 

Hypothesis 1a suggests that if inventors in larger local industries draw more 

heavily in redundant knowledge spillovers, we should expect a decrease in novelty from 

these locales.  Even controlling for technology and industry differences, Model 1 

estimates that a 1% increase in local industry size correlates with a .02% decrease in local 

patent novelty.  In subsequent models, controlling for other aspects of economic 

organization, this estimate increases to around .025% decreases with a 1% increase in 

size.  These models support hypothesis 1a. 

Hypothesis 2a suggests that inventors from local industries surrounded by a 

diversity of industries will draw from a diversity of knowledge spillovers, leading to 

more novel innovations.  Model 2 introduces diversity_industry and finds a positive 

relationship with patent novelty.  Note that this coefficient is statistically significant at 

.10, but the coefficient increases in subsequent models controlling for other dimensions 

of local economic organization.  Still, the impact of local diversity seems limited.  Per 

Model 2, a 1% increase in diversity_industry relates to a .0033% increase in patent 

novelty. 

Hypothesis 3a suggests that local specialization in an industry encourages the use 

of intra-industry spillovers, leading to less novel innovations.  Model 3 introduces 

specialization_industry.  Instead of a negative relationship, the model instead estimates a 
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positive relationship although this estimate is generally not significantly different from 

zero.  Thus, I find no support for the specialization hypothesis. 

Hypothesis 4a predicts a negative relationship between competition_industry and 

innovation novelty, as inventors reduce technical uncertainty.  As predicted, Model 4 

estimates a negative relationship between competition_industry and patent novelty.  As 

Glaeser et al. (1992) note, the competition measure is the inverse of average 

establishment size.  If smaller firms lack the resources necessary for exploration, we 

might find similar results. 

Note the fixed estimates in Table 3-4 vary markedly from the estimates in Table 

6-17.  Allison (2009) suggested the lack of significance for the fixed estimates results 

from either: 1) the fixed effect coefficient is substantially closer to zero, an/or 2) the fixed 

effect standard error is substantially larger.  Comparing the estimates shows the fixed 

effect models are generally less efficient with standard errors roughly twice previous 

estimates for the variables (other than competition.)  Still, there seems to be a real and 

substantial change in the magnitudes of the effects when city-level effects are controlled.  

The inflation of standard errors in the fixed effects model suggest that they have limited 

utility for understanding the impact of local industrial organization.  Even across two 

decades the variation with cities may be insufficient for estimation, despite the large 

number of observations included in the pooled dataset. 

However, the shift in coefficients suggests that there are unobserved variables that 

"explain away" the observed associations between local industrial organization and 

innovation.  Models estimated from cross-sectional data may more accurately suggest 
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"cities supporting local industries" with certain characteristics have certain innovation 

outcomes, rather than the characteristics themselves directly reflecting local knowledge 

spillovers. 

3.4.4 Novelty Post-Hoc Analysis 

Technological communities may differ according to opportunities available for 

innovation.  Table 6-18 separates patents according to the degree to which they engage in 

innovation and patenting.  Again, size continues to have a negative relationship with 

patent novelty.  The positive relationship with diversity_industry, however, occurs 

primarily with low-patenting technology classes; the negative influence of 

competition_industry seems driven by its effect in high-patenting technology classes. 

While the split novelty models are mirror images of each other, the MA-

employment and technology class patenting are uncorrelated.  Further, out of the 100,000 

unique year-MA-technology class combinations, 67% of local communities are low-

patenting technology classes.  Of those almost 67,000 communities, 56% are in areas 

with above average employment.    

Locations differ by size.  Table 6-19 estimates separate models for patents from 

Consolidated Statistical Areas (CSAs) and Core-Based Statistical Areas (CBSAs).  

Across these models, size continues to have a negative relationship with patent novelty.  

For diversity_industry, however, the collective models seem confounded by differences 

between CSAs and CBSAs.  While diversity_industry in CBSAs is not significantly 

different from zero, diversity_industry has a stronger, positive effect on patent novelty in 
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CSAs.  Conversely, the influence of competition_industry seems driven by its effect in 

CBSAs. 

3.4.5 Generality Estimation and Results 

As previously discussed, generality is measured by a Herfindahl index corrected 

for bias.  The Herfindahl index along with the correction leads to a non-trivial number of 

zeros and ones in the dependent variables.  Observations censored at 0 and 1 may shift 

the regression line resulting in inconsistent estimates with only asymptotic justification 

(Long, 1997).  Given the larger number of zeros than ones, we might expect a linear 

model to underestimate the intercept and overestimate the slopes.  Thus, like Mowery and 

Ziedonis (2002), I consider estimates of generality produced by tobit models. 

To start, Table 3-5 displays the tobit models for the above hypotheses and changes 

in the expected values of the latent generality variable.  Note, these models reintroduce 

#Employment and MA fixed effects
15

. 

                                                
15 Table 6-23 in the Appendix reveals the generality estimates without these controls. 
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Table 3-5 Tobit Estimation: Generality as a function of Local Industry structure 

1 2 3 4

Size_Industryi,l,t -0.005 -0.003 0.003 0.009 +

0.006 0.005 0.005 0.005

Div_Industryi,l,t
-0.004 * -0.004 * -0.003 *

0.002 0.002 0.002

Spec_Industryi,l,t -0.004 *** -0.004 ***

0.001 0.001

Comp_Industryi,l,t 0.334 *

0.140

#Patentsk,t -0.033 + -0.035 * -0.036 * -0.037 *

0.019 0.018 0.017 0.017

SingleIDp -0.132 *** -0.132 *** -0.132 *** -0.132 ***

0.007 0.007 0.007 0.007

CoTownIDI 0.008 + 0.008 + 0.008 0.008

0.005 0.005 0.005 0.005

#Subclassesp 0.014 *** 0.014 *** 0.014 *** 0.014 ***

0.001 0.001 0.001 0.001

#Employmentl,t 0.125 *** 0.122 *** 0.117 *** 0.113 ***

0.038 0.037 0.037 0.037

Constant -0.458 + -0.468 + -0.446 + -0.493 *

0.238 0.240 0.237 0.241

Observations 326819 326819 326819 326819

Psuedo R -squared 0.053 0.053 0.054 0.054

Subscripts  t  (time), i  (industry), l  (metropol i tan area), p  (patent).

Robust s tandard errors  (clustered by metropol i tan area) in parentheses

+ s igni ficant at 10%; * s igni ficant at 5%; ** s igni ficant at 1%, *** s igni ficant at .5%.

Al l  equations  include year, technology subclass , 2-digi t industry code and MA dummy variables .  

Model one is the baseline with size_industry and the control variables.  As 

expected, patents assigned to a single subclass tend to be less general.  However, 

controlling for single subclass patents, fewer subclasses are associated with greater levels 

of generality.  Furthermore, larger cities are associated with more general patents.  Given 

the focusing effect that inter-community knowledge flows likely have on the problems 
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inventors choose to address, I expected larger local industries to lead to less general 

patents.  However, Model 1 finds no evidence of this effect. 

Hypothesis 2 proposes that the diversity of local industries would positively relate 

with patent generality.  However, model two estimates the opposite: for a 1% increase in 

the diversity_industry, there is a .004% decline in a patent‟s expected generality. 

Hypothesis 3b proposes that, beyond size_industry, the degree to which the local 

specializes in the industry will also focus inventor problem selection. In support of this 

hypothesis, model 3finds a negative relationship between specialization_industry and 

patent novelty.  Hypothesis 4b suggests that competition leads to a degree of myopic 

learning which focuses inventors.  However, Model 4 estimates the opposite: a positive 

relation between competition_industry and patent generality
16

.   

Following the examination of novelty, Table 6-20 explores the boundary condition 

of the impact of inter- and intra-industry knowledge spillovers on patent generality.  

Again, the variable #Patents captures the size of the technological opportunity and/ or the 

importance of patenting in a given technological class.    Table 6-20 splits the patent data 

between patents from technology classes with above and below the median #Patents. 

Note for this analysis, the subsample suffered from sparse indicator variables.  To 

generate interpretable standard errors, I excluded all metropolitan areas and industries 

with fewer than 10 patents in the dataset. 

Comparing the subsamples raises two points.  First, competition_industry matters 

for both technologies with more patenting activity and with less patenting activity, 

                                                
16 Table 6-23 in the Appendix confirms these findings employing OLS models. 
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although the relationship is stronger for high-patenting technologies.  Second, the 

negative relationship between diversity_industry and patent novelty is only evident in 

high-patenting technologies. 

Table 6-21 splits the patent data between patents in Core-based statistical areas 

(CBSA) and patents from consolidated statistical areas (CSA).  CSAs tend to be larger 

than CBSAs; in this dataset, CSAs average employment of 2,402,844 with a range of 

19,769 to 7,905,173 while CBSAs average 344,063 with a range of 3,408 to 1,742,807.  

Comparing these tables suggests that the effects of both diversity_industry and 

competition_industry are driven by the larger CSAs. While specialization_industry limits 

patent generality in both sets of locales, this factor is also stronger in CSAs.  Note that, 

although the CBSA models are slightly higher than their counterparts, goodness-of-fit 

does not change much across models.  The McFadden pseudo R-squared value of our 

models remain between .051 and .068. 

3.5 Discussion and Conclusion 

3.5.1 Interpretation and Reconsideration 

The above hypotheses propose that industrial structure reflects the knowledge 

about technical solutions and technical problems flowing within a region.  These flows 

then shape the expected novelty and generality of local inventions.  While the expected 

novelty of local innovations supports this view, the expected generality results suggest 

other processes are at work.  The benefit of considering these two outcomes together is it 

forces us to think about the processes underlying local knowledge flows.  Thus, I begin 

this discussion considering other localized mechanisms which may link local industrial 

structure with the degree of novelty and generality we may expect in focal innovations.   
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First, labor markets tend to be more localized than the market for information and 

technology (Martin, 2000) and draw our attention to what technical knowledge local 

inventors likely have.  Second, Singh (2005) and Breschi and Lissoni (Breschi & Lissoni, 

2003, 2006) found that collaboration ties explain most local knowledge spillovers and 

may explain the diffusion of an innovation among inventors.  The following discussion 

addresses each – labor market dynamics and collaboration networks – in turn. 

Labor market pooling may be critical for explaining industrial agglomeration.  

Labor markets intrinsically operate at the local level: employers hire through local 

advertisements and word of mouth; employees favor shorter commutes, find jobs through 

social networks, and generally avoid the costs of relocating (Hanson & Pratt, 1992).  

While Dumais et al. (Dumais, Ellison, & Glaeser, 1997) found evidence of spillovers, 

they concluded that the dominant force was that new plants located near other industries 

sharing a similar labor pool.  They argue that workers in agglomerations are protected 

from firm-specific shocks as other firms in the locale are ready to hire them.  In turn this 

encourages workers to invest in acquiring industry specific-knowledge (Rosenthal & 

Strange, 2004).  In this manner we might expect workers in larger, more competitive 

locales to specialize in industry knowledge (Rotemberg & Saloner, 2000). 

Saxenian‟s (1996) comparative case of Silicon Valley and Route-128 supports 

this theory.  She paints a picture of Silicon Valley as a "regional network" composed of 

larger numbers of smaller firms, while Route-128 was composed of fewer, independent 

firms.  In Silicon Valley, firm-specific risk was reduced to the extreme through, as one 

observed noted, the "huge supply of contract labor (xi)."  In Silicon Valley inventors with 

specific knowledge moved from firm-to-firm quite easily, and their investments in 
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learning chip design, for example, paid off.   Thus, we should expect individuals in larger 

local industries and industries with more local firms will specialize their knowledge.  

Linking this theory to the results of this paper, it is unsurprising that patents from large 

and competitive local industries have lower expected novelty.    

Agglomerations reduce firm-specific risk, yet they do not limit the worker‟s 

exposure to downturns in the industry overall (Rosenthal & Strange, 2003).  In diverse 

locations, employees may have incentives to gain broad skills and reduce their risk of an 

particular industry downturn.  Again, as the current analysis finds, local industrial 

diversity will be linked to inventions with higher expected novelty. 

 A theory of local labor market specialization fits with both Dumais et al.‟s (2002) 

findings and the innovation novelty findings here.  Yet innovation generality seems to 

come through a different process.  While this paper proposes that generality is a matter of 

inventor‟s selecting basic problems, inventors may have far less control over generality 

than that.  Rosenberg (1990) noted: “If Pasteur had been asked what he thought he was 

doing back around 1870, he would have replied that he was trying to solve some very 

practical problems connected with fermentation and putrefaction in the French wine 

industry.  He solved those practical problems – but along the way he invented the modern 

science of bacteriology (169).”  Instead of choosing general problems, inventors may 

carry out basic research unintentionally.  Rather than search for patent generality in the 

selection of basic problems by inventors, we should consider what local factors may lead 

to an invention‟s diffusion and development by subsequent inventors (Bresnahan & 

Trajtenberg, 1995). 



113 
 

  

While industry knowledge may exist locally “as if in the air” (Marshall, 1936), 

the knowledge diffuses through more tangible channels of communication (Rogers, 2003) 

like inventor collaboration networks.  Fleming, King and Juda (2007) argued that these 

connections between local inventors drove knowledge flows leading to greater inventive 

productivity.  Singh (2005) found that inventor collaboration networks explain much of 

the local diffusion of knowledge: inventors in connected - rather than isolated - networks 

are subsequently used in more future inventions. With inventor collaboration networks in 

mind, we might expect that specialized locations - where a locale is particularly suited for 

or focused on a particular industry - collaborations likely center on the local industry.   

Not unsurprisingly, the above analysis finds that local specialization limits the generality 

of innovations. 

More curious, the generality estimates diverge from novelty in the effects of 

surrounding diversity and local competition.  If we consider geographic distance as the 

key predictor of diffusion, the diversity effects are puzzling: more local industries should 

lead to collaborations across industries or have no impact at all.  Yet local industrial 

diversity leads to less general innovations suggesting that local collaboration ties do not 

transcend industry boundaries.  This fits with the findings of Fleming et al. (2007) who 

expected that regional “small worlds” - cohesive groups of inventors with occasional ties 

- would enhance creative knowledge flows; yet they found no effect.  Local ties may not 

be as useful as originally thought.   Wellman (1996) found that co-location increased 

contacts but did not translate into close personal ties.  The local fragmentation of 

collaboration ties suggests that location alone does not overcome other boundaries.  

Among scientists, Blau (1974) found that they exchanged information about their 
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research most frequently with others in their field of specialization: the intellectual 

division of labor has a segregating effect on specialists, creating problems for integrating 

ideas.  Integration requires scientists who are familiar with each other along other social 

dimensions or through other social institutions. 

What likely separates diverse locales are the number of local links that appear 

between two groups of specialists.  As the results of Fleming et al. suggest, local 

integration likely depends on more than occasional gatekeepers linking two groups of 

specialists.  Cross field ties may be less persistent (Burt, 2000) requiring multiple bridges 

between groups of inventors.  In diverse locales, cross-group ties are thin, fragmented, 

and do not generate the degree of information exchanges required to build critical 

collaborations.  Without this integration, inventions from diverse locales may spread 

rapidly within the local community but have a difficult time spreading more broadly.  

Thus, we would expect innovation from diverse regions to have limited generality.  

While the fragmentation of local inventor networks increases with the number of 

industry boundaries, organizational boundaries within the industry do not fragment 

inventors.  Comparisons between Silicon Valley and Boston provide some insights into 

the role of competition and the number of local firms on innovation.  Fleming and 

Frenken (Fleming & Frenken, 2007) noted that engineers in both regions supported 

technical cooperation.  As one interviewee put it: “At Digital… management thought we 

had all these great secrets to conceal: the engineers knew that the value was in 

collaboration.”  All things else equal, management in regions with fewer firms may 

enforce distinct organizational boundaries.   For Saxeninan (1996), the real benefit of 

Silicon Valley‟s regional network was the blurring of organizational boundaries.  
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Blurring of organizational boundaries increase collaborations and knowledge about an 

inventor‟s research.  This results in a dynamic local network.  Furthermore, the blurring 

of organizational boundaries attracted others from outside the locale to try to tap into 

these dynamic local networks (Saxenian, 1996).  If Silicon Valley and Boston provide 

two ends of a spectrum of local competition, then we might conclude that increases in 

local competition blurs organizational boundaries and leads to expansive collaboration 

networks.  Thus, we might expect inventions from regions with more local competition. 

Thus far the discussion focuses on a more nuanced theory of local innovation 

built on specialization in local labor markets and the breadth of collaboration networks to 

explain differences in the expected novelty and generality of innovations.  The following 

section discusses some of the empirical limitations for interpreting the above estimates. 

3.5.2 Limitations 

The previous chapter, which focused on local inventor communities, suggested 

that the novelty of innovations and the generality of innovations result from different 

local process.  The above results echo the previous chapter's findings.  For novelty, I 

examined two different models.  The model which accounted for variation across 

metropolitan areas (the MA-fixed effect model) found no evidence of a relationship 

between local industry structure and invention novelty, while the models without these 

effects (cross-sectional models) did.  The cross-sectional models follow prior work, and 

find evidence linking local knowledge spillovers from both inter- and intra-industry 

sources to novelty.  Across cities, a deeper pool of intra-industry spillovers is linked to 

innovations of limited novelty; while a diversity of inter-industry spillovers facilitates 

greater novelty.   
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However, controlling for time-invariant and unobserved differences across cities, 

within-city estimates provide no evidence of an effect.  Empirically, distinguishing the 

effects of local industry structure from unobserved, site-specific factors has challenged 

urban.  Few studies control for local characteristics sufficiently (Hanson, 2000).  Still, the 

literature provides a couple alternatives to fixed effects models.  Glaeser et al. (1992) 

employ a growth model to test for industrial structure effects.  They use a much broader 

time frame (industrial structure in 1956 and growth by 1987) and focus on variation at the 

city-industry level.  Subsequent analysis might average novelty to the city-industry level 

and focus on changes over a broader time frame.  Head et al. (1995) took a different 

approach, studying the 1980 decisions of Japanese firms to locate near other Japanese 

firms, controlling for the number of local U.S. firms in the same industry.  In a sense, the 

subsample of U.S. firms captures the exogenous factors, and the discussion to locate near 

other Japanese firms captures spillovers.  To understand innovation, I might select a 

control industry – computer hardware for example – to study the relationship between 

local industry structure and innovation in semiconductors.  These models may offer other 

means to account for local conditions that influence industrial structure and innovation 

novelty while using a cross-section of patents or city-industries. 

Of course, even within-city studies may prove inconclusive until they address 

potential endogeneity biases: local economic organization and local innovation may be 

jointly determined.  For example, firm and inventor mobility may drive results, as firms 

of particular type (Shaver & Flyer, 2000) and inventors of particular character (Florida, 

2002) select themselves into cities with certain cultures and institutions.  Until we study 
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an exogenous "shock" (perhaps Hurricane Katrina in New Orleans), studies of local 

economic organization and innovation will be a challenge. 

Still, geographic locations continue to "provide a platform upon which knowledge 

may be effectively organized" (Feldman & Audretsch, 1999: 427).  However unclear the 

underlying sources and mechanisms, it would be wrong to conclude from this analysis 

that local knowledge spillovers have no influence on innovation.  Innovations from 

similar technologies and/or in the same industry do differ according to where they were 

invented.   The main message here is that the use of aggregate data does not reveal 

sufficient linkages between industrial specialization, diversity and innovation 

characteristics to contend that these reflect the direct drivers of innovation.  Future 

research in this area should further study the micro linkages between city- and regional-

structures and the nature of the innovation process.  Through such research, it will be 

possible to identify when and where productive spillovers occur, and to improve our 

recommendations to policy makers on how to support industry evolution and economic 

growth.  
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4 THE JOINT EFFECTS OF LOCAL INDUSTRY AND TECHNICAL 

COMMUNITY STRUCTURES 

4.1 Introduction 

Inventors, like all social actors, are embedded in communities of individuals 

sharing knowledge and shaping what gets done by whom.  Ideas and opportunities, as 

Almeida and Kogut (1999) noted, “because they have no material content, should be the 

least spatially-bounded of all economic activity (905).”  Yet an ever growing body of 

literature describes how the spread of knowledge is, to an important degree, localized.  

What knowledge an inventor accesses, and what opportunities an inventor attends to, 

depends on her local context (Jaffe, 1986; Saxenian, 1996).  In particular, the structure of 

local communities guides the spread of ideas and opportunities. 

Chapters Two and Three examined the structure of two types of local 

communities: technical communities and local industries.  Smaller technical communities 

focus inventors on novel innovations but launches innovations with a general impact.  A 

decrease in the diversity of technical communities surrounding an inventor mitigates the 

focusing effect of community size but further generalizes the innovation‟s impact.  Local 

industry structure had little effect within cities on the innovation‟s novelty, but was 

clearly associated with the innovation‟s generality.  Seemingly, an innovation‟s 

characteristics reflect both the local industrial structure and technical community 

structure from which it emerges. 
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While each dimension of local structure matters when modeled in isolation from 

each other, in reality inventors do not work in either industries or technical communities 

but are members of both simultaneously.  Local industries share science-bases (Feldman 

& Audretsch, 1999) and thus the boundaries of any given technical community very 

likely overlap industry boundaries.  Likewise, local industries may incorporate a variety 

of local technical communities.  Examining the coexistent influences of local industry 

and technical community structures gives us a full picture of the local structures we as a 

field should explore.  By discovering confounds, we can make our models of local 

innovation more parsimonious and efficient.  By discovering interactions we can find the 

boundary conditions under which each structure matters.  This full picture may allow us 

to articulate ideal types that support theory development and public policy. 

As we examine the local structural context of innovation, our understanding of 

innovation creation and diffusion improves, allowing us to understand better how locale 

shapes technical development and industry evolution.  But studying technical 

communities and local industries in isolation ignores the reality of joint community 

membership.  In this chapter, I combine the models in Chapters One and Two to test 

these structures together and propose two ideal locale types which seem to facilitate the 

create of novel innovations which break from the past, and general innovations which 

help develop a variety of technical streams. 

While this chapter is exploratory, the next section offers theoretical motive and 

potential explanations for the empirical analysis.  Then Section 3 articulates the models, 

first testing the coexistent but unique effects of each set of community characteristics, 

then by testing the joint effects through their interactions 
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These models reinforce and, in the case of technical community size, update the 

previous chapters‟ findings.  They find support for the unique effects of the technical 

community structures, even when accounting for industry structures.  Furthermore, they 

estimate joint effects between local industry and technical community structures, 

suggesting the local antecedents of innovation are more complex than previously studied. 

4.2 Crosscutting Local Industries and Technical Communities 

Given the similarities of the variables, it is tempting to think technical community 

structures and industrial structures are mirror images: larger industries will likely support 

more inventors; surrounding industrial diversity likely accompanies surrounding 

technical diversity.  If the two communities closely resemble each other, then studying 

the communities jointly may only muddle our understanding of community structures and 

innovation novelty and generality, as we risk throwing away, through regression 

estimates, all but the most marginal effects. 

However, previous observations suggest that the differences between technical 

communities and local industries are more than marginal.  For situated inventors, 

technical communities differ from local industries in the knowledge they make available, 

and in the activities and goals they draw attention to.  Local industries provide knowledge 

of particular processes applying a scientific principle toward some function or product 

(Arthur, 2007).  Technical communities revolve around innovation: identifying new 

market opportunities, developing new technologies, or designing new products 

(McKendrick, Doner, & Haggard, 2000).   The boundaries between industries and 

technical community cross, each generating its own norms and ways of going about its 

business (Dosi, 1982; Van Maanen & Barley, 1984; Wenger, 1998).  
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St. John and Pouder (2006) highlighted many differences between local industries 

and technical communities.  Technical communities may grow around universities and 

research labs with the specific goal of generating new knowledge (Zucker, Darby, & 

Brewer, 1998) based on informed decisions and trial-and-error testing.  What they learn 

and how they learn it may differ across locales even within the same technical field (St. 

John & Pouder, 2006).  Furthermore, each technical community may support a diversity 

of industries (Feldman & Audretsch, 1999).  Relative to local industries, local technical 

communities support inventors with idiosyncratic technical knowledge leading to more 

novel innovations than what we would expect from the local industry alone (St. John & 

Pouder, 2006). 

In contrast, local industries comprise a multitude of occupations and activities 

united to support in a common process or product.  While local industries include R&D 

and innovation, the bulk of local industry employment likely centers on manufacturing.  

For example, a recent report on the high-tech orthopedic devices industry in the small 

community of Warsaw, Indiana notes that of the 20,000 jobs attributed to the industry, 

about 12,000 are directly in manufacturing (Marsh, 2007).  Local industries generate 

knowledge outside R&D, and this knowledge focuses on manufacturing, assembly and 

logistics (Arrow, 1962b; McKendrick et al., 2000).  Product and technical innovations 

may occur, but the principle goal of the industry community is “to achieve operational 

efficiency; any new technologies they create are meant to improve production processes 

or supply chain management (McKendrick et al., 2000: 45).”   For an inventor, the 

interaction with other industry activities, such as manufacturing and marketing, can direct 
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attention to particular problems and products which the industry can effectively produce, 

and which the industry and its customers will value (Kline & Rosenberg, 1986). 

Further, while technical communities emerge around local universities and 

research centers, local industries may form around suppliers and customers (Audia, 

Freeman, & Reynolds, 2006; St. John & Pouder, 2006).  With a focus on production, and 

key ties to suppliers and customers, knowledge developed in local industries tracks the 

industry life-cycle.  Compared to technical communities, we would expect local 

industries to focus inventors on incremental innovations with evident applications. 

Local industries and technical communities differ in purpose, ties and activities.  

Given these differences, industrial activity and research activity need not be tied together 

so tightly as to make their specific structures mirror images.  In semiconductors, we have 

long seen firms relocate manufacturing to low labor cost locations while research and 

development remains in the technical communities of Silicon Valley (Audretsch & 

Feldman, 1996; McKendrick et al., 2000) found considerable differences between the 

propensity of an industry‟s productive activity and its inventive activity to cluster 

geographically.  Thus, we might expect the relationship between innovation 

characteristics and technical community structures to remain even when accounting for 

her industry‟s structure.   Still, Audretsch and Feldman found that the geographic 

structure of production and inventive activity associate based on the importance for new 

knowledge in the industry.  They suggested researchers need to control for production 

before explaining the geography of an industry‟s inventive activity, making concurrent 

tests a worthwhile enterprise. 
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Few studies have heeded Audretsch and Feldman‟s recommendation to test local 

industry structures and local technical community structures simultaneously.  Those that 

did focused on the diversity and specialization of patents to understand which structures 

support subsequent increases in patenting or new product counts.  They generally found 

that local industries and local science-bases have unique effects, even as they disagree as 

to what those effects are (Greunz, 2004; Paci & Usai, 1999; van der Panne & van Beers, 

2006). 

Furthermore, despite their differences, the technical community and local industry 

may not guide the inventor independently of each other.  Instead, one may enable or curb 

the other.  For example, the technical community‟s influence on the inventor may depend 

on the resources the industry provides her.  Larger  industries may provide an inventor 

with the resources necessary to generate broader searches (Cyert & March, 1963), 

mitigating the dependence of the inventor on the technical community.  Conversely, large 

industries may provide inventors with a sizeable market for specialized innovations 

(Marshall, 1936), enhancing the influence of the technical community. Thus, this analysis 

goes a step further to study how one community‟s structure may affect the other‟s 

influence on innovation novelty and generality.  This analysis is based on the potential 

that the dynamics occurring within a technical community – that is, how its structure 

shapes what knowledge an inventor can access or attends to – may be influenced by the 

industrial structure housing the inventor. 

The following section extends the prior chapters‟ findings.  For both innovation 

novelty and generality, I model technical community structures and local industry 

structures simultaneously, comparing the results to those of the previous chapters to test 
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for unique effects.  Then I estimate interactions.  While local industries and technical 

communities differ in their networks and activities, they may amplify or moderate each 

other in ways that shed light on the efficacy of collocating production and research for 

innovation. 

4.3 Data and Variables 

I draw the data and variables used in this analysis from the prior two chapters.  

The outcomes of interest are patent novelty and generality.  Novelty remains the average 

frequency with which each of a patent's pairs of subclasses appeared in other patents in 

the application year and in the prior five years.  Generality remains 1 minus a Herfindahl 

index of the patent's subsequent citations across technology classes, adjusted for the bias 

that comes from the number of subsequent citations.  Table 4-1provides the descriptive 

statistics of these variables, before the log transformation used in subsequent analysis. 

Table 4-1 Summary: Untransformed Variables (with Average Pair-wise Frequency) 

  Obs. Mean 
Std. 
Dev. Min Max 

Average Pair Frequency 322755 7.30 24.01 1.00 1094 

Generality (censored) 322789 0.45 0.36 0.00 1 

Tech. Comm. Size 322541 46.71 80.96 1.00 848 

Tech. Comm. Specialization 322541 7.56 52.48 0.03 17201 

Surr. Tech. Diversity 322429 72.90 37.84 1.00 171 

Industry Size 322789 55806 91863 0.00 1018774 

Industry Specialization 322789 2.47 5.62 0.00 650 

Surr. Ind. Diversity 322789 26.26 4.25 3.13 37 

Avg. Establishment Size 322778 143.74 214.04 1.33 4379.13 

 

Explanatory variables are divided into technical community characteristics and 

industrial community characteristics.   Technical community size is the number of 

inventors patenting in that technology class and in that year who identify that 
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metropolitan area as their location.  Surrounding technical community diversity is the 

inverse of the local concentration of inventors patenting in other technology classes in the 

metropolitan area during the year.  Technical community specialization is the ratio of the 

technology classes' local share of inventors to the technology classes' share of all U.S. 

inventors during that year.  Local industry structure variables are calculated in similar 

ways using employment data rather than inventor counts.  Finally, local-industry average 

establishment size is the local industry employment divided by the number of local 

industry establishments.  Each of these variables is also included in Table 4-1, prior to 

being centered and log-transformations.  Note local-industry average establishment size 

is the inverse of the local competition measure from Chapter Three.  I make this 

substitution in light of the findings and discussion from Chapter Three.  Further, in light 

of Chapter Three I added the technical community specialization variable.  

The variables have noteworthy distributions that invite transformation.  All 

variables except generality are positive with long right tails.  Four variables (including 

novelty) are counts or average counts.  The specialization variables are ratios. Subsequent 

analysis will use log-linear transformations of these variables
17

.    

Bivariate analysis helps to describe the patterns of associations among the 

different dimensions of local industry structure.  Table 4-2 presents the correlation 

coefficients of the community structure variables and the characteristics of local 

innovations.  In pair-wise correlations, all were significant (p< .001) except for the 

correlation between (logged) novelty and (logged) local industry specialization.  Among 

                                                
17 Eleven local industries have employment of zero, meaning that although the local inventors were 

working for firms housed in a particular two-digit industry, at the location identified by the inventors there 

were no employees working in the industry per the Census Bureau. For these eleven observations, their 

employment and specialization measures were input as .01 before the log transformation. 
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variables capturing dimensions of the same community type, most variables are only 

moderately correlated.  Average local-industry establishment size is one exception with a 

strong correlation with local industry specialization (r = .69).  Within the same dimension 

across community type, surrounding diversity indicates the strongest correlation (r = .62).   

The various measures of community structure appear to capture distinct dimensions, with 

some potential for collinearity issues among inventor community structure and local 

industry size. 

Table 4-2 Technical Community and Local Industry Correlation Coefficients - Logged 

Transformations 

Novelty Gen. Size Inv. Spec. Inv Div. Inv. Size Ind. Spec. Ind. Div. Ind. Est. Size

Novelty (ln) 1

Generality 0.05 1

Tech. Comm. Size (ln) -0.21 -0.07 1

Tech. Comm. Specialization (ln) -0.02 -0.09 0.04 1

Surr. Tech. Diversity 0.03 0.04 0.27 -0.51 1

Industry Size (ln) -0.05 0.03 0.46 -0.39 0.55 1.00

Industry Specialization (ln) 0.00 -0.01 0.06 0.20 -0.22 0.35 1.00

Surr. Ind. Diversity 0.08 0.05 0.05 -0.31 0.62 0.31 -0.14 1.00

Avg. Establishment Size (ln) 0.06 -0.01 -0.09 0.19 -0.19 0.11 0.69 -0.09 1.00  

4.4 Models and Results 

While the bivariate relationships shed light on the relationships among the 

independent variables, I can draw few conclusions about their relationships with novelty 

and generality without employing multivariate models.  To estimate the effect of 

community structure on innovation characteristics, I must account for how the technology 

and the industry itself (among other controls) confound the community structure or 

innovation characteristic relationships.  Further, the multivariate model allows me to 

estimate the net effects of each community- and industry-structure variable that measure 

different aspects of the local context, and hence are (in some cases) correlated.  Thus, to 

understand if technical communities and local industries exert simultaneous influence on 
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innovations, I build on the multivariate OLS and tobit models presented in the previous 

chapters. 

The prior chapter results parallel each other in key ways: size_community and 

size_industry (across cities) both had negative relationships with innovation novelty; 

diversity_industry (across cities) and diversity_community both limited innovation 

generality.  One may ask if these measures capture the same or different dimensions of 

local context.  Also, the two sets of analysis differ in interesting ways.  Novelty, they find, 

has a positive relationship with diversity_industry but a negative relationship with 

diversity_community; generality has a negative relationship with size_community but no 

statistically significant relationship with size_industry.  These differences may result 

from the addition of specialization_industry and average establishment size in Chapter 

Three.  This chapter explores the technical community findings in the presence of local 

industry characteristics, including specialization_industry and average establishment 

size. 

Conjecture suggests the technical community structure may interact with local 

industry structures, but no particular theory offers a clear advantage for hypothesizing the 

effect this interaction would have on novelty and generality.  Chapter Two‟s findings 

offer an initial insight into the role of the technical community, and an exploration of its 

interactions with local industry structure sheds additional light on the potential 

boundaries of a community structure approach to understanding novelty and generality.  

Furthermore, linking technical community structure with local industry employment fits 

it into prior work in economic geography.  To gain insight, following exploratory models 
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include second-order interaction variables, capturing the joint influence of dimensions of 

technical community structure and their local industry structure counterparts. 

4.4.1 Novelty 

The following models build on the OLS models of Novelty in the prior chapters.  

Note, they include only the corporate patent samples from Chapter Three, rather than 

Chapter Two‟s complete sample of single-MA patents.  Again, to account for key 

categorical differences I include fixed effects for the year of the patent‟s application, 2-

digit industry SIC code, metropolitan area, and patent technology subcategories.  

Computational limitations require that I use the 36-technology subclass categories 

identified by the USPTO, rather than the more specific technology classes.  Subclass 

categories have been used in prior work noted to be an acceptable alternative (Hall et al., 

2001).  Finally, I include specialization_commuity as an additional dimension of 

community-structure.  Including this variable makes the technical community analysis 

more parallel with local industry analysis.  Below, I discuss where these model 

differences change the results. 
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Table 4-3  OLS Estimation: Novelty, Techincal Community and Local Industry structures 

1 2 3 4 5 6 7

Size_Community -0.115 *** -0.115 *** -0.146 *** -0.147 *** -0.147 *** -0.144 *** -0.145 ***

0.014 0.014 0.044 0.043 0.043 0.043 0.044

Diversity_Community 0.002 *** 0.002 *** 0.001 *** 0.001 *** 0.002 *** 0.002 ***

0.001 0.000 0.000 0.000 0.001 0.001

Spec_Community 0.033 0.033 0.032 0.029 0.029

0.048 0.048 0.048 0.048 0.049

Size_Industry 0.008 -0.006 + -0.007 -0.005

0.010 0.016 0.016 0.016

Spec_Industry 0.025 0.027 + 0.021

0.016 0.016 0.018

Diversity_Industry -0.005 -0.005

0.003 0.004

Avg. Establishment Size 0.007

0.013

Patents 0.060 *** 0.060 *** 0.091 + 0.091 + 0.092 + 0.089 + 0.089 +

0.020 0.020 0.051 0.050 0.051 0.051 0.051

CoTownID -0.111 *** -0.104 *** -0.105 ** -0.104 ** -0.100 ** -0.103 *** -0.102 ***

0.034 0.035 0.035 0.036 0.036 0.035 0.036

SingleID -0.556 *** -0.557 *** -0.556 *** -0.556 *** -0.556 *** -0.556 *** -0.556 ***

0.036 0.036 0.036 0.036 0.035 0.035 0.035

SubclassCnt -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005

0.003 0.003 0.003 0.003 0.003 0.003 0.003

Constant -1.872 *** -1.839 *** -2.125 *** -2.106 *** -2.160 *** -2.130 *** -2.126 ***

0.159 0.157 0.449 0.457 0.484 0.479 0.477

N 322507 322507 322395 322395 322395 322395 322385

Adj R-sq 0.14 0.1402 0.1403 0.1403 0.1404 0.1405 0.1405

Year, Subcategory, Sic and MA fixed effects

+ signicant at .10, * significant at .05, ** significant at .01, *** significant at .005  

Ordinary least squares regression in Table 4-3 shows that even when local industry 

structure variables were taken into account, technical community size and surrounding 

diversity continue to have a significant relationship with patent novelty
18

.  Chapter Two 

found a negative relationship with between size_community and patent novelty.  

Controlling for local industry structure, size_community continues to have a negative 

relation in these corporate patents.  Accounting for local industry structure, a one percent 

increase in size_community is associated with a .14 percent increase in patent novelty.  

                                                
18 Wald test of the industrial variable coefficients indicates that jointly they differ from zero (P = .0692).  

Variance inflation factors for the local industry structure and technical community structure variables were 

all equal to or less than three (mean VIF=2.23). 
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Different from Chapter Two, holding specialization_community constant changes 

the technical community size-generality estimates (suggesting a refinement is needed to 

the Chapter Two model.)  Additionally, the models in Table 4-3  estimate a positive 

relationship between surrounding technical diversity and patent novelty (which was 

statistically except for corporate patents in Chapter Two).    Controlling for local industry 

structure, a one percent increase in the number of equal-sized communities leads to a 

.0018 increase in patent novelty.  The model does not estimate a significant direct 

relationship between specialization_community and patent novelty. 

While technical community structure appears impact novelty independent of local 

industry structure, industry structure might still condition the magnitude of that effect.  

Table 6-24 examines potential interactions between the technical community and local 

industry variables.  Models one through three interact each dimension with its 

counterpart, with limited significance.  Models four through six investigate how the 

average size of local industry establishments interacts with technical community 

variables.  Wald test of the interaction variable coefficients indicates they are jointly 

different than zero (P = .0000); the relationship between local structures and innovation 

characteristics may not be purely linear
19

.   

The estimates suggest that size_community has a negative relationship with patent 

novelty across the range of  size_industry, but as industries become larger the influence of 

size_community dissipates.  The models find that the positive relationship between 

diversity_community and patent novelty is conditioned by diversity_industry.  At average 

                                                
19 Variance inflation factors of the interaction variables with the local industry- and technical community-

structure variables are all less than 4 (mean VIF = 2.27). 
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levels of diversity_industry, the effect of  diversity_community is a third less than it is 

across all levels of diversity_industry.  Finally, while neither structural dimension is 

significant on its own, the interaction between average establishment size and 

specialization_community is negative and significant.  Seemingly, the focusing effect of 

specialization_community matters when local industrial activity occurs in larger firms. 

For a clearer picture of the impact of local structures, I explore a more 

parsimonious model by simplifying the regression equations with the complete set of 

variables and interactions.  Lower order estimates and interactions are not usually 

independent, raising questions about reducing the models.  Yet in this case, strong theory 

predicts the main effects while the interaction terms are more exploratory.  Given this 

motivation, I determine the parsimonious model using a step-down procedure based on 

the significance of the interaction terms (Aiken & West, 1991).  Of course, interpreting 

the results of all exploratory models requires some caution given we would expect some 

significant terms based solely on the test. 

Given the predictive improvement of the interaction-terms model, test individual 

terms to further characterize the nature of community structure and innovation 

characteristics.  Beginning with the full model, I employ a step-down hierarchical 

examination, omitting non-significant terms sequentially beginning with the interaction 

terms.  The resulting model of innovation novelty is Model 8 in Table 6-24.  The source of 

deviation from linearity found in the prior Wald test results from three interactions: 

community size interactions, community diversity interactions, and the interaction 

between average establishment size and diversity_community.  
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4.4.2 Generality 

The Tobit estimates in Table 4-4 show that technical community structure has a 

significant relationship with patent generality even holding local industry structure 

variables constant
20

.  In a change from Chapter Two, the Tobit models estimate a 

significant relationship between size_community and patent generality; but this change is 

due to the inclusion of specialization_community and not due to the inclusion of local 

industry structure.  Note that accounting for specialization_community also changes the 

sign and magnitude of the Patents estimate.  As with the larger patent sample in Chapter 

Two, technical community diversity continues to have a negative relationship with patent 

generality. The final model including local industry structure also estimates that patent 

generality decreases with the added variable, specialization_community.  

                                                
20 Wald test of the industrial variable coefficients added to the OLS model indicates that jointly they differ 

from zero (P = .0000).  Variance inflation factors for the local industry structure and technical community 

structure variables were all equal to or less than three (mean VIF =2.23)  
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Table 4-4  Tobit Estimation: Generality, Technical Community and Local Industry 

structures 

1 2 3 4 5 6 7

Size_Community -0.030 *** -0.030 *** 0.055 *** 0.054 *** 0.055 *** 0.056 *** 0.056 ***

0.006 0.005 0.007 0.007 0.007 0.007 0.007

Diversity_Community -0.001 *** -0.001 *** -0.001 *** -0.001 *** -0.001 *** -0.001 ***

0.000 0.000 0.000 0.000 0.000 0.000

Spec_Community -0.092 *** -0.092 *** -0.091 *** -0.092 *** -0.093 ***

0.008 0.008 0.008 0.008 0.008

Size_Industry 0.009 + 0.022 *** 0.022 *** 0.021 ***

0.005 0.005 0.005 0.005

Spec_Industry -0.023 ** -0.022 ** -0.015 *

0.008 0.007 0.007

Diversity_Industry -0.002 -0.002

0.002 0.002

Avg. Establishment Size -0.007

0.007

Patents 0.029 *** 0.029 *** -0.057 *** -0.056 *** -0.057 *** -0.058 *** -0.058 ***

0.004 0.004 0.008 0.008 0.008 0.008 0.008

CoTownID -0.033 -0.038 -0.035 -0.034 -0.037 -0.038 -0.039 +

0.024 0.024 0.026 0.027 0.025 0.024 0.023

SingleID -0.128 *** -0.128 *** -0.128 *** -0.128 *** -0.128 *** -0.128 *** -0.128 ***

0.007 0.007 0.007 0.007 0.007 0.007 0.007

SubclassCnt 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 ***

0.001 0.001 0.001 0.001 0.001 0.001 0.001

Constant 0.014 -0.013 0.786 *** 0.807 *** 0.856 *** 0.870 *** 0.866 ***

0.064 0.064 0.067 0.063 0.062 0.064 0.064

N 322541 322429 322429 322429 322429 322429 322419

Pseudo R-sq 0.0519 0.0522 0.0535 0.0536 0.0538 0.0539 0.0539

Year, Subcategory, and SIC fixed effects

+ signicant at .10, * significant at .05, ** significant at .01, *** significant at .005  

 Focusing on the local industry structure estimates, once I account for technical 

community structure, Tobit estimates of the relationship between patent generality and 

local industry structure change somewhat.  Relative to the results in Chapter Three, 

size_industry has a larger expected impact on patent generality.  Including technical 

community variables also mediates  specialization_industry’s and diversity_industry’s 

relationship with patent generality.  Thus, accounting for technical community structure 

isolates the impact of size_industry while capturing some of the variation previously 

attributed to specialization_industry and diversity_industry. 
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While Table 4-4 employs Tobit models to account for potential bias given the 

nature of the patent generality variable, interpreting interaction variables with Tobit is 

exceedingly difficult.  Ai and Norton (1991) note that interaction effects in non-linear 

models like the tobit model include not only the marginal effects of a change in the 

interacted variable, but also the cross-partial derivative of the expected value of outcome 

variable.  Thus, the estimated coefficient of the interacted variables may not reflect the 

true impact in either size or direction, and cannot be tested with a simple t-test.  To 

examine the joint effects of technical community structure and local industry structure, I 

use OLS models of patent generality.  

Table 6-25 in the Appendix supports the Tobit estimates with OLS estimates, 

although the OLS estimates tend to be both weaker relationships and lower standard 

errors (resulting in models with similar significance test results.)   

Table 6-26 extends the OLS generality models by including interaction terms.  A 

Wald test indicates the interaction term coefficients are all significantly different from 

zero. Models one through three interact each dimension with its counterpart, with limited 

significance.  Models four through six investigate how the average size of local industry 

establishments interacts with technical community variables.  Table 6-26 models suggest 

that the interaction variables have a strong effect over each other
21

.  Model 8 simplifies 

the full model and adds to its efficiency by dropping the insignificant interactions and 

terms (Aiken & West, 1991) to generate a preferred equation.  The model suggests that 

size_industry amplifies the effect size_community.  Furthermore, the local industry‟s 

average establishment size strengthens the impact of size_community and 

                                                
21 Again, variance inflation factors all measure less than four (mean VIF = 2.27). 
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specialization_community to a small degree by.  On the other hand, average 

establishment size moderates the focusing effect that diversity_community has on patent 

generality. 

The resulting model of innovation generality is Model 8 in Table 6-26.  The source 

of deviation from linearity found in the prior f-test results from the size interactions and 

the interactions of average establishment size and technical community structure 

variables. 

4.5 Discussion and Conclusion 

Inventor membership in both local industries and technical communities 

potentially confounds prior research on locale and innovation.  We might expect that 

these two types of communities mirror each other; that larger, more diverse local 

industries go hand-in-hand with larger, more diverse technical communities.  This is true 

to some degree.  This chapter finds a correlation between the structural characteristics of 

an inventor‟s local industry and her local technical community. 

Yet while the two co-exist, they differ in the activities and networks they support.  

I argue that local industries focus on manufacturing and marketing, linking inventors with 

suppliers, buyers and production.  In contrast, local technical communities focus on 

technological development, and may link inventors across universities, research labs, 

firms and industries which share an interest in a given technology.  Echoing Audretsch 

and Feldman (1996), geographic industry structures and inventive activities differ enough 

that they should be accounted for as unique attributes, but they are related enough that 

studying one should not preclude accounting for the other. 
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This chapter tested the unique and joint effects of local industry and technical 

community structures on the degree of novelty and generality we might expect in a local 

innovation.  With patent data and employment data, it assigns corporate patents to both 

local industries and technical communities and analyzes the effects of their local size, 

specialization, and the diversity surrounding them.  The evidence concurs with Audretsch 

and Feldman‟s recommendation: industries and technical communities have unique 

effects, and are spate but related communities.  Yet failure to include both in past studies 

does not invalidate past results; while improving the models, accounting for each 

community does not significantly change the estimated effect of the other. 

For novelty, technical community size continues to focus inventors on more 

familiar innovations, while surrounding technical diversity shapes broader searches and 

more novel innovations.  Accounting for local industry structure does not change those 

results
22

.  For generality, estimates remain steady in size and significance even holding 

local industry structure constant.  Local industries and technical communities parallel 

each other: size increase expected generality, specialization limits it.  Thus, we should 

search further for the fundamental mechanisms through which community structures 

influence innovation, even as communities differ in their substance. 

Identifying community co-membership also provided an opportunity to explore 

the joint effects local industries and technical communities have on innovation type.  The 

size of an inventor‟s local industry employment mitigated the focusing effect of technical 

community size on innovation novelty, but amplified technical community size‟s support 

                                                
22 Furthermore, the effect of local industry structure continues to matter for variation across cities rather 

than within cities. 
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for innovation generality.  This fits with prior conclusions, that novelty is a product on an 

inventor‟s search for solutions, focused by localized technological paradigms and closed 

community networks.  Generality requires diffusion, and all else equal large communities 

compliment large local industries in disseminating innovations more broadly. 

Interestingly, diversity and specialization had no evident joint effects.  If the 

structure of local industry and technical communities focus and fragment inventor 

searches and diffusion networks, we might expect technical communities to compliment 

local industries; the focusing effect of locally specialized technical community is stronger 

in locally specialized industries, for example.  Future research may explore how 

community structures shape search and diffusion, as size may capture a different 

mechanism that those underlying specialization and surrounding diversity. 

Finally, I note the joint effect that the size of local industry firms has with 

technical community structure.  As inventor‟s search isn‟t constrained by community 

specialization nor by the average size of local firms.  Yet they are constrained by both 

working in unison.  For generality, local industries with larger local establishments 

complement the broad diffusion effect of technical community size and the focusing 

effect of technical community specialization.  Establishment size moderated the 

fragmenting effect of diversity.  Just how organizational demographics interact with and 

co-determine community structure remains an open pasture for future exploration. 

This dissertation seeks to define the locales from which novel and general 

innovations emerge.  For individual innovations, I find a small but significant effect of 

local industry and technical community structures.  We should expect innovations from 
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smaller technical communities and this surrounded by a diversity of technical 

communities to be more novel, all else considered. For generality, size matters.  Large 

technical communities in large local industries with large establishments increase the 

expected generality of an innovation.  Further, given the community specialization and 

diversity results, large surrounding technical communities may help too.  These findings 

suggest that, while the expected effect of community structures on individual innovations 

is small, in aggregate it may add up, shaping regional growth and technological 

trajectories. 
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6 APPENDICES 

Table 6-1 Change in Local Technical Community Size, 77-97 

Application 

Year Obs Mean

Std. 

Dev. Min Max

Mean 

Change

1977 12058 16.83 25.77 1 216

1978 12004 16.25 25.33 1 214 -3.44%

1979 11933 15.95 25.46 1 223 -1.86%

1980 11949 15.87 25.32 1 243 -0.48%

1981 11229 16.02 26.09 1 252 0.96%

1982 11152 17.19 27.99 1 238 7.29%

1983 10825 17.06 29.80 1 269 -0.79%

1984 11090 18.33 33.00 1 300 7.46%

1985 11395 20.61 39.89 1 357 12.45%

1986 11736 21.17 40.99 1 377 2.69%

1987 12351 22.92 45.66 1 426 8.31%

1988 13289 23.90 43.69 1 394 4.24%

1989 13805 26.67 49.92 1 460 11.62%

1990 14252 28.18 48.93 1 441 5.63%

1991 14030 30.86 52.81 1 452 9.51%

1992 14179 36.58 62.68 1 494 18.55%

1993 14482 40.71 71.45 1 566 11.29%

1994 15209 51.37 89.90 1 599 26.20%

1995 15424 74.36 130.20 1 839 44.74%

1996 14812 61.98 99.12 1 539 -16.66%

1997 13942 55.63 93.58 1 562 -10.24%

Note: For all years, the New York CSA drug, bio-affecting and body

 treating compositions (patent class 514) is the largest community.  
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Table 6-2 Change in Surrounding Community Diversity, 77-97 

Application 

Year Obs Mean

Std. 

Dev. Min Max

Mean 

Change Community with most surrounding diversity

1977 11987 63.4 48.3 1 170.7 Los Angeles CSA; Measuring and Testing (Class 73)

1978 11922 62.2 45.8 1 164.1 -3.87% New York CSA; Drug, Bio-affecting compositions (Class 514)

1979 11852 61.9 46.2 1 168.9 2.93% Los Angeles CSA; Measuring and Testing (Class 73)

1980 11871 60.4 44.3 1 160.8 -4.82% Los Angeles CSA; Radiant Energy (Class 250)

1981 11150 58.6 43.0 1 159.9 -0.57% Los Angeles CSA; Measuring and Testing (Class 73)

1982 11077 57.1 41.5 1 159.2 -0.39% Los Angeles CSA; Measuring and Testing (Class 73)

1983 10753 55.9 41.4 1 155.0 -2.69% Los Angeles CSA; Measuring and Testing (Class 73)

1984 11016 55.3 40.4 1 155.6 0.42% Los Angeles CSA; Measuring and Testing (Class 73)

1985 11315 52.9 37.5 1 150.9 -3.05% Los Angeles CSA; Measuring and Testing (Class 73)

1986 11681 52.9 36.9 1 148.3 -1.73% Los Angeles CSA; Radiant Energy (Class 250)

1987 12284 53.2 36.3 1 146.8 -0.97% Los Angeles CSA; Optical: Systems and Elements (Class 359)

1988 13226 54.2 35.6 1 146.9 0.06% Los Angeles CSA; Surgery (Class 604)

1989 13754 52.0 34.0 1 141.5 -3.67% Los Angeles CSA; Optical: Systems and Elements (Class 359)

1990 14203 53.3 34.0 1 144.6 2.21% Los Angeles CSA; Surgery (Class 604)

1991 13976 51.5 32.8 1 139.3 -3.73% Los Angeles CSA; Surgery (Class 604)

1992 14121 50.3 31.5 1 142.0 1.96% Los Angeles CSA; Surgery (Class 604)

1993 14448 48.1 30.4 1 141.4 -0.39% Los Angeles CSA; Surgery (Class 604)

1994 15162 45.9 28.7 1 129.8 -8.21% Los Angeles CSA; Surgery (Class 604)

1995 15384 43.7 26.8 1 126.1 -2.88% Los Angeles CSA; Chemistry: Molecular Biology (Class 435)

1996 14764 46.6 29.0 1 134.9 6.98% Los Angeles CSA; Comm.: Directive Radio Wave (Class 342)

1997 13894 47.2 30.4 1 134.1 -0.60% Los Angeles CSA; Surgery (Class 604)  
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Table 6-3  Change in the 5-year average of patent class pair frequencies, 77-97 

Application 

Year Obs Mean

Std. 

Dev. Min Max

Mean 

Change

1977 35879 2.73 5.91 1 167

1978 34677 2.93 5.97 1 176 7.19%

1979 33937 3.23 7.19 1 176 10.25%

1980 33765 3.49 8.66 1 171 7.87%

1981 31851 3.41 7.80 1 200 -2.29%

1982 31687 3.61 8.92 1 330 6.07%

1983 29827 3.61 8.58 1 225 -0.11%

1984 31278 3.75 9.69 1 352 3.86%

1985 32241 4.04 11.22 1 369 7.89%

1986 33213 4.22 12.80 1 368 4.46%

1987 36015 4.43 12.22 1 378 4.74%

1988 39602 4.71 11.66 1 394 6.44%

1989 42344 5.41 13.69 1 428 14.77%

1990 44512 5.92 15.08 1 411 9.50%

1991 44634 6.59 18.16 1 410 11.38%

1992 47060 6.87 19.27 1 514 4.25%

1993 48784 7.02 19.69 1 569 2.15%

1994 54202 7.97 23.91 1 586 13.54%

1995 62510 10.02 36.05 1 749 25.67%

1996 57477 9.50 36.65 1 870 -5.22%

1997 49968 11.71 48.99 1 1094 23.33%  
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Table 6-4 Change in patent generality, 77-97 

Application 

Year Obs Mean

Std. 

Dev. Min Max

Mean 

Change

1977 36670 0.45 0.36 0 1

1978 35142 0.45 0.36 0 1 -0.65%

1979 34412 0.46 0.36 0 1 0.91%

1980 34257 0.46 0.36 0 1 -0.09%

1981 32328 0.46 0.36 0 1 1.00%

1982 32194 0.46 0.36 0 1 -0.34%

1983 30400 0.46 0.35 0 1 1.17%

1984 31801 0.47 0.35 0 1 0.61%

1985 32866 0.47 0.35 0 1 0.08%

1986 33870 0.47 0.35 0 1 -0.36%

1987 36737 0.47 0.35 0 1 0.34%

1988 40552 0.46 0.36 0 1 -1.71%

1989 43766 0.46 0.36 0 1 0.65%

1990 45632 0.45 0.36 0 1 -2.05%

1991 46019 0.44 0.36 0 1 -2.11%

1992 48553 0.44 0.37 0 1 -1.45%

1993 50195 0.42 0.37 0 1 -3.29%

1994 55796 0.40 0.38 0 1 -5.63%

1995 64935 0.36 0.38 0 1 -9.52%

1996 59368 0.32 0.38 0 1 -11.13%

1997 51744 0.26 0.37 0 1 -18.67%  
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Table 6-5 OLS Estimation: Novelty and Community Structure interactions 

4 5 6 7 8

Size_Community -0.0564 *** -0.0461 *** -0.0832 *** -0.0833 *** -0.0539 ***

0.0060 0.0065 0.0064 0.0064 0.0072

Diversity_Community 0.0002 0.0001 0.0004 0.0005 + 0.0002

0.0003 0.0003 0.0003 0.0003 0.0003

Size*Diversity 0.0002 + -0.0002 0.0002 0.0002 -0.0002

0.0001 0.0001 0.0001 0.0001

Size*Patents -0.0134 *** -0.0199 *** -0.0181 ***

0.0029 0.0032 0.0032

Div*Patents 0.0008 *** 0.0007 ***

0.0002 0.0002

Size*Individuals 0.0283 *** 0.0316 *** 0.0248 ***

0.0044 0.0047 0.0050

Div*Individuals -0.0002 * -0.0001

0.0001 0.0001

Patents -0.0840 ** -0.0809 ** -0.1045 ** -0.1043 ** -0.0817 **

0.0355 0.0351 0.0334 0.0334 0.0352

Employment 0.0108 0.0276 0.0254 0.0251 0.0254

0.0795 0.0801 0.0774 0.0775 0.0807

CoTownID -0.1002 *** -0.0979 *** -0.1027 *** -0.1029 *** -0.0981 ***

0.0301 0.0300 0.0301 0.0301 0.0300

IndividualID 0.1301 *** 0.1297 *** 0.1019 *** 0.1034 *** 0.1093 ***

0.0077 0.0076 0.0072 0.0071 0.0071

GovernmentID 0.1480 *** 0.1470 *** 0.1458 *** 0.1457 *** 0.1449 ***

0.0197 0.0193 0.0190 0.0190 0.0188

SingleID -0.5624 *** -0.5616 *** -0.5623 *** -0.5622 *** -0.5615 ***

0.0159 0.0159 0.0160 0.0160 0.0159

Subclass Count 0.0057 * 0.0059 * 0.0056 * 0.0055 * 0.0058 *

0.0024 0.0024 0.0024 0.0024 0.0024

Science Citations -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

0.0001 0.0001 0.0001 0.0001 0.0001

Constant -1.3121 *** -1.2296 *** -1.3517 *** -1.3489 *** -1.2246 ***

0.2684 0.2717 0.2646 0.2642 0.2716

R-squared 0.2206 0.2210 0.2206 0.2206 0.2212

Observations 874496 874496 874496 874496 874496

DV is the log of the 5-year average frequency that a patent's technology class pairs occurred.

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%.

All equations include year, metropolitan area and technology class dummy variables.  
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Table 6-6 OLS Estimation: Novelty and patenting class subsamples 

OLS Estimation: Novelty and Community Structure patenting subsamples

9 10 11 12

Size_Community -0.0810 *** -0.0813 *** -0.0677 *** -0.0727 ***

0.0051 0.0052 0.0043 0.0047

Diversity_Community 0.0011 * 0.0010 ** 0.0001 -0.0001

0.0004  0.0002 0.0002

Size*Diversity 0.0000 0.0002 **

0.0002 0.0001

Patents -0.2660 *** -0.2657 *** -0.2343 *** -0.2355 ***

0.0322 0.0324 0.0140 0.0142

Employment 0.0166 0.0157 -0.0328 -0.0357

0.0697 0.0708 0.0266 0.0270

CoTownID -0.0742 ** -0.0746 ** -0.1625 *** -0.1661 ***

0.0253 0.0254 0.0479 0.0470

IndividualID 0.1481 *** 0.1482 *** 0.1028 *** 0.1023 ***

0.0105 0.0106 0.0059 0.0060

GovernmentID 0.1549 *** 0.1550 *** 0.1300 *** 0.1306 ***

0.0312 0.0312 0.0130 0.0130

SingleID -0.5327 *** -0.5327 *** -0.5560 *** -0.5560 ***

0.0265 0.0265 0.0122 0.0122

Subclass Count 0.0213 *** 0.0213 *** 0.0116 *** 0.0116 ***

0.0012 0.0012 0.0017 0.0017

Science Citations -0.0002 * -0.0002 * 0.0001 0.0001

0.0001 0.0001 0.0001 0.0001

Constant -0.7333 -0.7383 -1.6725 *** -1.6851 ***

0.2244 0.2246

R-squared 0.2139 0.2139 0.2791 0.2791

Observations 436887 436887 436004 436004

DV is the log of the 5-year average frequency that a patent's technology class pairs occurred.

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%.

All equations include year, metropolitan area and technology class dummy variables.

High Patenting Classes  (>369) Low Patenting Classes  (<369)
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Table 6-7 OLS Estimation: Novelty and inventor type subsamples 

13 14 15 16

Size_Community -0.0376 *** -0.0435 *** -0.0807 *** -0.0839 ***

0.0041 0.0042 0.0065 0.0071

Diversity_Community 0.0002 0.0000 0.0009 * 0.0006 +

0.0002 0.0002 0.0004 0.0004

Size*Diversity 0.0002 + 0.0002

0.0001 0.0001

Patents -0.2425 *** -0.2407 *** -0.0750 + -0.0737 +

0.0119 0.0118 0.0384 0.0386

Employment -0.0149 -0.0156 0.0439 0.0437

0.0260 0.0263 0.1073 0.1088

CoTownID -0.2344 -0.2465 -0.0913 *** -0.0938 ***

0.2202 0.2170 0.0257 0.0252

SingleID -0.5854 *** -0.5851 *** -0.5429 *** -0.5428 ***

0.0125 0.0124 0.0226 0.0225

Subclass Count 0.0215 *** 0.0215 *** 0.0039 0.0039

0.0013 0.0013 0.0026 0.0026

Science Citations 0.0000 0.0000 -0.0002 + -0.0002 +

0.0001 0.0001 0.0001 0.0001

Constant -1.6407 *** -1.6484 *** -1.2763 *** -1.2827 ***

0.4858 0.4824 0.3036 0.3030

R-squared 0.204 0.204 0.215 0.215

Observations 219936 219936 636870 636870

DV is the log of the 5-year average frequency that a patent's technology class pairs occurred.

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%.

All equations include year, metropolitan area and technology class dummy variables.

Individuals Corporations
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Table 6-8  Tobit Estimation: Generality and Community Structure interactions 

4 5 6 7

Size_Community -0.025 *** -0.027 *** -0.015 *** -0.016 ***

0.004 0.005 0.005 0.005

Diversity_Community -0.001 *** -0.001 *** -0.001 *** -0.001 ***

0.000 0.000 0.000 0.000

Size*Diversity 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

Size*Patents 0.006 *** 0.006 ***

0.002 0.001

Size*Individuals 0.008 ***

0.003

Div*Patents 0.0001 0.000

0.0001  0.000

Div*Individuals 0.0003 ***

0.0001

Patents 0.009 *** 0.008 *** 0.012 *** 0.012 ***

0.003 0.003 0.002 0.002

Employment 0.091 *** 0.091 *** 0.088 *** 0.087 ***

0.027 0.027 0.027 0.027

CoTownID -0.029 + -0.029 + -0.028 + -0.027 +

0.015 0.015 0.015 0.015

IndividualID -0.066 *** -0.074 *** -0.066 *** -0.072 ***

0.005 0.004 0.005 0.004

GovernmentID -0.077 *** -0.077 *** -0.077 *** -0.077 ***

0.010 0.010 0.010 0.010

SingleID -0.149 *** -0.149 *** -0.149 *** -0.149 ***

0.005 0.005 0.005 0.005

Subclass Count 0.019 *** 0.019 *** 0.019 *** 0.019 ***

0.001 0.001 0.001 0.001

Science Citations 0.000 *** 0.000 *** 0.000 *** 0.000 ***

0.000 0.000 0.000 0.000

Constant 0.207 *** 0.210 *** 0.204 *** 0.203 ***

0.044 0.044 0.044 0.044

Pseudo R-squared 0.0531 0.0531 0.053 0.0531

Observations 874578 874578 874578 874578

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%.

All equations include year, metropolitan area and technology class dummy variables.  
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Table 6-9 Tobit Estimation: Generality and patenting class subsamples 

High Patenting Low Patenting

8 9 10 11

Size_Community -0.015 * -0.016 * -0.020 *** -0.017 ***

0.006 0.007 0.003 0.004

Diversity_Community -0.001 *** -0.0011 *** -0.001 *** -0.0005 *

0.000 0.0004 0.000 0.0002

Size*Diversity 0.000 -0.0001 *

0.000 0.0000

Patents 0.027 *** 0.026 *** -0.007 * -0.006 *

0.006 0.006 0.003 0.003

Employment 0.107 *** 0.105 *** 0.041 + 0.043 +

0.034 0.035 0.023 0.024

CoTownID -0.029 * -0.030 * -0.019 -0.017

0.014 0.013 0.024 0.024

IndividualID -0.072 *** -0.072 *** -0.058 *** -0.057 ***

0.005 0.005 0.004 0.004

GovernmentID -0.078 *** -0.078 *** -0.069 *** -0.070 ***

0.011 0.011 0.011 0.011

SingleID -0.110 *** -0.110 *** -0.178 *** -0.178 ***

0.008 0.008 0.004 0.004

Subclass Count 0.021 *** 0.021 *** 0.018 *** 0.018 ***

0.001 0.001 0.001 0.001

Science Citations 0.000 ** 0.000 ** 0.000 + 0.000 +

0.000 0.000 0.000 0.000

Constant 0.316 *** 0.310 *** 0.202 *** 0.209 ***

0.016 0.018 0.043 0.042

Pseudo R-squared 0.0585 0.0551 0.0550 0.0551

Observations 436947 436947 436026 436026

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%.

All equations include year, metropolitan area and technology class dummy variables.  
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Table 6-10 Tobit Estimation: Generality and inventor type subsamples 

Individuals Corporate

12 13 14 15

Size_Community 0.007 + 0.008 + -0.022 *** -0.023 ***

0.004 0.004 0.005 0.005

Diversity_Community 0.000 -0.0002 -0.001 *** -0.0012 ***

0.000 0.0002 0.000 0.0003

Size*Diversity 0.000 0.0000

0.000 0.0001

Patents -0.019 *** -0.018 *** 0.021 *** 0.021 ***

0.003 0.003 0.003 0.003

Employment -0.003 -0.003 0.129 *** 0.129 ***

0.022 0.022 0.029 0.029

SingleID -0.159 *** -0.159 *** -0.134 *** -0.134 ***

0.007 0.007 0.006 0.006

Subclass Count 0.039 *** 0.039 *** 0.017 *** 0.017 ***

0.001 0.001 0.001 0.001

Science Citations 0.000 * 0.000 * 0.000 * 0.000 *

0.000 0.000 0.000 0.000

Constant 0.064 0.067 0.236 *** 0.235 ***

0.046 0.047 0.047 0.047

Pseudo R-squared 0.057 0.057 0.0534 0.0534

Observations 219958 219958 636929 636929

Robust standard errors (clulstered by metorpolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%; *** significant at .5%

All equations include year, metropolitan area and technology class dummy variables.  
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Table 6-11 Change in Local Industry Size 

Application 
Year Obs Mean 

Std. 
Dev. Min Max 

Mean 
Change Largest Local Industry 

1977 14635 49187 64710 3 426792   New York Health Services 

1978 13795 52240 69106 0 390867 6.21% New York Business Services 

1979 13580 55147 75002 3 437709 5.57% New York Business Services 

1980 13516 53465 71117 0 444269 -3.05% New York Business Services 

1981 13035 51493 71323 3 512881 -3.69% New York Business Services 

1982 13309 51179 72647 3 485174 -0.61% New York Business Services 

1983 11952 50828 77216 3 505007 -0.69% New York Business Services 

1984 12307 49738 76789 3 591278 -2.14% New York Health Services 

1985 12479 51853 82059 3 618358 4.25% New York Health Services 

1986 12273 52217 84498 3 637675 0.70% New York Health Services 

1987 12805 52249 88955 3 670302 0.06% New York Health Services 

1988 14132 47336 72320 3 712581 -9.40% New York Health Services 

1989 15135 48598 73719 3 857673 2.67% New York Health Services 

1990 16079 48097 75472 3 881124 -1.03% New York Health Services 

1991 16439 51347 85730 3 910236 6.76% New York Health Services 

1992 17464 52639 87055 3 936861 2.52% New York Health Services 

1993 17659 50137 79961 3 968166 -4.75% New York Health Services 

1994 19886 57242 102787 3 1002545 14.17% New York Health Services 

1995 24649 65127 120119 3 1004357 13.77% New York Health Services 

1996 22613 70616 126276 3 1013335 8.43% New York Health Services 

1997 19077 74381 135407 3 1018774 5.33% New York Health Services 

 

 



157 
 

  

Table 6-12 Change in Surrounding Industry Diversity 

Application 

Year Obs Mean Std. Dev. Min Max

Mean 

Change Most surrounding industry diversity

1977 14635 29.22 5.70 3.13 36.66 New York Health Services

1978 13804 29.22 5.10 3.58 35.55 -0.01% York-Gettysburg, PA Industrial machinery and equipment

1979 13580 29.02 5.23 3.70 35.22 -0.70% Los Angelas Health Services

1980 13520 28.78 4.98 3.78 34.84 -0.81% New York Business Services

1981 13035 28.36 4.96 3.39 35.01 -1.47% New York Business Services

1982 13309 27.93 4.70 5.94 34.75 -1.51% Charlotte, NC Textile mill products

1983 11952 27.40 4.43 3.31 34.40 -1.92% Charlotte, NC Textile mill products

1984 12307 27.47 4.26 4.24 34.96 0.28% Charlotte, NC Textile mill products

1985 12479 27.40 3.94 4.29 35.62 -0.25% Charlotte, NC Textile mill products

1986 12273 27.13 3.96 4.03 35.71 -1.00% Charlotte, NC Textile mill products

1987 12805 26.88 3.59 4.45 35.48 -0.92% Charlotte, NC Textile mill products

1988 14132 27.40 3.63 5.98 35.25 1.93% Charlotte, NC Textile mill products

1989 15135 26.25 3.25 6.31 34.29 -4.20% Charlotte, NC Textile mill products

1990 16079 26.00 3.05 5.09 34.32 -0.93% Charlotte, NC Textile mill products

1991 16439 25.28 3.14 4.12 33.13 -2.77% New York Health Services

1992 17464 24.67 3.08 6.68 32.87 -2.42% New York Health Services

1993 17659 24.28 2.73 7.81 31.98 -1.56% New York Health Services

1994 19886 23.93 2.63 5.25 31.26 -1.46% New York Health Services

1995 24649 23.97 2.60 5.48 30.85 0.15% Charlotte, NC Textile mill products

1996 22613 23.74 2.60 5.43 31.37 -0.95% Charlotte, NC Business Services

1997 19077 23.24 2.57 5.45 30.91 -2.08% Charlotte, NC Business Services  
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Table 6-13 Change in Local Industry Specialization 

 

Application 

Year Obs Mean Std. Dev. Min Max

Mean 

Change Most specialized local industry

1977 14635 2.57 4.88 0.00 66.51 Borger, TX Petroleum and coal products

1978 13804 2.72 5.66 0.00 75.08 5.99% Richmond,VA Tobacco products

1979 13580 2.53 5.14 0.00 80.43 -7.08% Borger, TX Petroleum and coal products

1980 13520 2.53 5.33 0.00 69.36 0.10% Richmond,VA Tobacco products

1981 13035 2.46 5.19 0.00 72.16 -2.71% Richmond,VA Tobacco products

1982 13309 2.46 5.02 0.00 73.55 -0.29% Richmond,VA Tobacco products

1983 11952 2.43 4.66 0.00 76.62 -1.08% Borger, TX Petroleum and coal products

1984 12307 2.34 4.51 0.00 86.06 -3.91% Borger, TX Petroleum and coal products

1985 12479 2.51 5.06 0.00 97.00 7.63% Borger, TX Petroleum and coal products

1986 12273 2.65 5.17 0.00 79.10 5.39% Borger, TX Petroleum and coal products

1987 12805 2.67 5.72 0.00 93.93 0.87% Borger, TX Petroleum and coal products

1988 14132 2.71 10.31 0.00 616.58 1.27% Richmond,VA Tobacco products

1989 15135 2.58 4.92 0.01 89.63 -4.67% Borger, TX Petroleum and coal products

1990 16079 2.65 7.38 0.00 623.73 2.66% Borger, TX Petroleum and coal products

1991 16439 2.77 8.55 0.01 637.63 4.75% Elko, NV Metal mining

1992 17464 2.61 5.61 0.00 85.73 -6.05% Richmond,VA Tobacco products

1993 17659 2.30 3.67 0.00 124.65 -11.93% Borger, TX Petroleum and coal products

1994 19886 2.28 7.48 0.00 650.29 -0.46% Elko, NV Metal mining

1995 24649 2.20 3.64 0.00 89.89 -3.63% Borger, TX Petroleum and coal products

1996 22613 2.24 3.05 0.00 144.78 1.66% Borger, TX Petroleum and coal products

1997 19077 2.31 3.03 0.00 78.09 3.15% Dalton, GA Textile mill products  
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Table 6-14 Change in Local Industry Competition 

 

Application 

Year Obs Mean Std. Dev. Min Max

Mean 

Change

1977 14635 0.02 0.03 0.0003 0.73

1978 13795 0.02 0.03 0.0003 0.40 -11.95%

1979 13580 0.02 0.03 0.0003 0.40 -2.02%

1980 13516 0.02 0.03 0.0003 0.50 2.11%

1981 13035 0.02 0.03 0.0003 0.40 1.25%

1982 13309 0.02 0.03 0.0004 0.73 8.52%

1983 11952 0.02 0.03 0.0004 0.42 10.41%

1984 12307 0.02 0.03 0.0005 0.67 -1.16%

1985 12479 0.02 0.03 0.0004 0.40 -3.41%

1986 12273 0.02 0.03 0.0004 0.40 0.59%

1987 12805 0.02 0.03 0.0004 0.40 4.03%

1988 14132 0.02 0.02 0.0004 0.75 -9.08%

1989 15135 0.02 0.02 0.0003 0.40 -3.47%

1990 16079 0.02 0.02 0.0004 0.40 5.41%

1991 16439 0.02 0.02 0.0004 0.40 3.18%

1992 17464 0.02 0.02 0.0004 0.60 7.75%

1993 17659 0.02 0.02 0.0003 0.40 1.90%

1994 19886 0.02 0.02 0.0003 0.40 6.19%

1995 24649 0.02 0.02 0.0003 0.50 0.10%

1996 22613 0.02 0.02 0.0002 0.40 -0.62%

1997 19077 0.02 0.02 0.0005 0.40 -4.27%

Note: Mulitple local industries have max competition measure  
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Table 6-15 Change in Corporate Patent Novelty (natural log) 

 

Application 

Year Obs Mean

Std. 

Dev. Min Max

Mean 

Change

1977 14635 -0.62 0.77 -5.1 0

1978 13804 -0.67 0.82 -5.2 0 8.92%

1979 13580 -0.74 0.87 -5.2 0 9.35%

1980 13520 -0.74 0.88 -5.1 0 1.25%

1981 13035 -0.79 0.91 -5.3 0 5.78%

1982 13309 -0.81 0.92 -5.8 0 2.46%

1983 11952 -0.82 0.92 -5.4 0 1.85%

1984 12307 -0.84 0.94 -5.9 0 1.66%

1985 12479 -0.87 0.99 -5.9 0 4.46%

1986 12273 -0.89 0.99 -5.9 0 2.49%

1987 12805 -0.94 1.00 -5.9 0 4.57%

1988 14132 -1.00 1.06 -6 0 7.10%

1989 15135 -1.09 1.11 -6.1 0 9.09%

1990 16077 -1.16 1.15 -6 0 6.44%

1991 16439 -1.20 1.20 -6 0 3.43%

1992 17462 -1.19 1.21 -6.2 0 -1.21%

1993 17658 -1.17 1.20 -6.3 0 -1.97%

1994 19880 -1.19 1.21 -6.4 0 1.85%

1995 24640 -1.26 1.27 -6.6 0 5.87%

1996 22604 -1.24 1.22 -6.8 0 -1.45%

1997 19072 -1.36 1.27 -7 0 9.50%  
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Table 6-16 Change in Corporate Patent Generality (censored and bias corrected) 

 

Application 

Year Obs Mean

Std. 

Dev. Min Max

Mean 

Change

1977 14635 0.47 0.36 0 1

1978 13804 0.47 0.36 0 1 -1.62%

1979 13580 0.47 0.35 0 1 1.88%

1980 13520 0.48 0.35 0 1 0.83%

1981 13035 0.48 0.35 0 1 0.20%

1982 13309 0.47 0.35 0 1 -1.74%

1983 11952 0.48 0.35 0 1 2.15%

1984 12307 0.48 0.35 0 1 -0.13%

1985 12479 0.48 0.35 0 1 0.70%

1986 12273 0.49 0.35 0 1 0.52%

1987 12805 0.49 0.34 0 1 0.46%

1988 14132 0.48 0.35 0 1 -2.19%

1989 15135 0.48 0.35 0 1 -0.57%

1990 16079 0.47 0.35 0 1 -0.73%

1991 16439 0.46 0.35 0 1 -2.69%

1992 17464 0.46 0.36 0 1 -0.77%

1993 17659 0.45 0.36 0 1 -0.39%

1994 19886 0.44 0.36 0 1 -3.93%

1995 24649 0.39 0.38 0 1 -9.49%

1996 22613 0.36 0.38 0 1 -7.86%

1997 19077 0.30 0.38 0 1 -16.67%  
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Table 6-17 OLS Estimation: Novelty as a function of local industry structure; without MA 

fixed effects or local employment control (cross-MA variation) 

  1   2   3   4   

Size_Industryi,l,t -0.017 * -0.021 *** -0.022 *** -0.025 *** 

  0.007   0.007   0.007   0.008   

Div_Industryi,l,t     0.003 + 0.004 * 0.004 * 

      0.002   0.002   0.002   

Spec_Industryi,l,t         0.001   0.001   

          0.001   0.001   

Comp_Industryi,l,t             -0.546 * 

              0.222   

#Patentsk,t -0.021 + -0.020 + -0.020 + -0.020 + 

  0.012   0.012   0.012   0.012   

SingleIDp -0.559 *** -0.560 *** -0.559 *** -0.559 *** 

  0.036   0.036   0.036   0.036   

CoTownIDI -0.112 * -0.105 * -0.107 * -0.110 ** 

  0.046   0.043   0.044   0.042   

#Subclassesp -0.005 + -0.005 + -0.005 + -0.005 + 

  0.003   0.003   0.003   0.003   

#Employmentl,t                 

                  

Constant -1.151 *** -1.155 *** -1.154 *** -1.137 *** 

  0.132   0.132   0.132   0.132   

Observations 322744   322744   322744   322744   

Adj R-squared 0.127   0.127   0.127   0.127   

Subscripts t (time), i (2 digit sic), l (metropolitan area), p (patent). 

 The DV is the natural log of the average frequency that a patent's technology class pairs occurred over  5 years. 
Robust standard errors (clustered by metropolitan area) in parentheses;+ significant at 10%; * significant at 5%; ** significant 
at 1%, *** significant at .5%. 

All equations include year, technology subclass, and 2-digit industry code dummy variables. 
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Table 6-18 OLS Estimation: Novelty and patenting class subsample (cross-MA variation) 

High-patenting technology class Low-patenting technology class

5 6 7 8 9 10 11 12

Size_Industryi,l,t -0.016 * -0.018 ** -0.020 ** -0.023 *** -0.018 * -0.024 *** -0.024 *** -0.027 ***

0.008 0.007 0.007 0.008 0.008 0.008 0.007 0.008

Div_Industryi,l,t 0.002 0.003 0.003 0.004 * 0.005 * 0.005 *

0.003 0.003 0.003 0.002 0.002 0.002

Spec_Industryi,l,t
0.002 0.002 0.000 0.000

0.001 0.001 0.001 0.001

Comp_Industryi,l,t -0.675 * -0.455

0.280 0.282

#Patentsk,t -0.088 ** -0.087 ** -0.087 ** -0.087 ** -0.030 * -0.030 * -0.030 * -0.030 *

0.032 0.032 0.032 0.031 0.015 0.015 0.015 0.015

SingleIDp -0.583 *** -0.583 *** -0.583 *** -0.583 *** -0.537 *** -0.537 *** -0.537 *** -0.537 ***

0.053 0.053 0.053 0.053 0.025 0.025 0.025 0.025

CoTownIDI -0.126 *** -0.122 *** -0.127 *** -0.130 *** -0.084 -0.071 -0.071 -0.074

0.034 0.033 0.034 0.033 0.064 0.062 0.062 0.060

#Subclassesp
0.020 *** 0.020 *** 0.020 *** 0.020 *** -0.017 *** -0.017 *** -0.017 *** -0.017 ***

0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003

#Employmentl,t

Constant -0.515 *** -0.519 *** -0.518 *** -0.472 *** -1.162 *** -1.153 *** -1.152 *** -1.137 ***

0.143 0.142 0.142 0.147 0.110 0.111 0.111 0.111

Observations 179709 179709 179709 179709 143080 143080 143080 143080

Adj R -squared 0.137 0.137 0.137 0.137 0.139 0.139 0.139 0.139

Subscripts  t  (time), k  (patent class ), l  (metropol i tan area), p  (patent).

Robust s tandard errors  (clustered by metropol i tan area) in parentheses

+ s igni ficant at 10%; * s igni ficant at 5%; ** s igni ficant at 1%, *** s igni ficant at .5%.

Al l  equations  include year, technology subclass , and 2-digi t industry code.  
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Table 6-19 OLS Estimation: Novelty and MA subsamples (cross-MA variation) 

CSA CBSA

13 14 15 16 17 18 19 20

Size_Industryi,l,t -0.024 *** -0.028 *** -0.029 *** -0.030 *** -0.018 ** -0.014 + -0.015 + -0.028 ***

0.008 0.008 0.010 0.010 0.007 0.008 0.008 0.009

Div_Industryi,l,t 0.007 * 0.007 * 0.007 * -0.005 -0.004 -0.003

0.003 0.003 0.003 0.003 0.003 0.003

Spec_Industryi,l,t
0.001 0.001 0.001 0.001

0.004 0.004 0.001 0.001

Comp_Industryi,l,t -0.236 -0.869 ***

0.287 0.236

#Patentsk,t -0.024 + -0.024 + -0.024 + -0.023 + -0.006 -0.006 -0.006 -0.006

0.014 0.014 0.014 0.014 0.020 0.020 0.020 0.020

SingleIDp -0.559 *** -0.559 *** -0.559 *** -0.559 *** -0.565 *** -0.566 *** -0.566 *** -0.566 ***

0.043 0.043 0.043 0.043 0.038 0.038 0.038 0.038

CoTownIDI -0.120 * -0.101 * -0.106 ** -0.106 * -0.125 -0.135 + -0.135 + -0.148 *

0.049 0.046 0.053 0.053 0.080 0.071 0.072 0.072

#Subclassesp
-0.003 -0.003 -0.003 -0.003 -0.014 ** -0.014 ** -0.014 ** -0.014 **

0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.005

#Employmentl,t

Constant -1.109 *** -1.126 *** -1.124 *** -1.118 *** -0.910 *** -0.912 *** -0.912 *** -0.890 ***

0.134 0.134 0.133 0.133 0.134 0.136 0.136 0.135

Observations 264896 264896 264896 264896 57893 57893 57893 57893

Adj R -squared 0.128 0.128 0.128 0.128 0.133 0.134 0.134 0.134

Subscripts t (time), k (patent class), l (metropolitan area), p (patent).

Robust standard errors (clustered by metropolitan area) in parentheses

+ significant at 10%; * significant at 5%; ** significant at 1%, *** significant at .5%.

All equations include year, technology subclass, and 2-digit industry code.  



165 
 

  

Table 6-20 Tobit Estimation: Generality and patenting classes subsamples 

High Patenting Classes Low Patenting Classes

6 7 8 9 10 11 12 13

Size_Industryi,l,t -0.005 -0.003 0.014 + 0.014 + -0.004 -0.003 0.001 0.006

0.007 0.006 0.007 0.007 0.005 0.005 0.006 0.006

Div_Industryi,l,t -0.005 ** -0.004 * -0.004 * -0.001 0.000 0.000

0.002 0.002 0.002 0.002 0.002 0.002

Spec_Industryi,l,t
-0.006 *** -0.006 *** -0.002 * -0.003 *

0.001 0.001 0.001 0.001

Comp_Industryi,l,t 0.414 * 0.259

0.190 0.160

#Patentsk,t 0.005 0.004 0.004 0.004 -0.011 * -0.011 * -0.011 * -0.011 *

0.010 0.010 0.010 0.010 0.005 0.005 0.005 0.005

SingleIDp -0.102 *** -0.101 *** -0.101 *** -0.101 *** -0.160 *** -0.160 *** -0.160 *** -0.160 ***

0.011 0.011 0.011 0.011 0.008 0.008 0.008 0.008

CoTownIDI -0.022 *** -0.025 *** -0.027 *** -0.027 *** -0.045 -0.045 -0.046 -0.047

0.008 0.008 0.008 0.008 0.049 0.048 0.049 0.048

#Subclassesp
0.016 *** 0.016 *** 0.016 *** 0.016 *** 0.012 *** 0.012 *** 0.012 *** 0.012 ***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

#Employmentl,t 0.109 ** 0.111 ** 0.098 * 0.098 * 0.083 * 0.082 * 0.079 * 0.075 *

0.042 0.042 0.042 0.042 0.036 0.036 0.037 0.036

Constant -0.018 -0.039 -0.056 -0.056 0.120 0.117 0.124 0.104

0.053 0.052 0.052 0.052 0.080 0.080 0.079 0.083

Observations 181358 181358 181358 181358 143961 143961 143961 143961

R -squared 0.058 0.058 0.058 0.058 0.057 0.057 0.057 0.057

Subscripts  t  (time), i  (industry), l  (metropol i tan area), p  (patent).

Robust s tandard errors  (clustered by metropol i tan area) in parentheses

+ s igni ficant at 10%; * s igni ficant at 5%; ** s igni ficant at 1%, *** s igni ficant at .5%.

Al l  equations  include year, technology subclass , 2-digi t industry code and metropol i tan area dummy variables .  
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Table 6-21 Tobit Estimation: Generality and MA subsamples 

CSA CBSA

14 15 16 16 17 18 19 20

Size_Industryi,l,t -0.008 -0.006 0.002 0.012 -0.002 -0.002 0.003 0.002

0.007 0.006 0.007 0.007 0.005 0.005 0.006 0.008

Div_Industryi,l,t -0.005 *** -0.005 ** -0.004 ** 0.000 0.000 0.000

0.002 0.002 0.002 0.003 0.003 0.003

Spec_Industryi,l,t
-0.005 ** -0.006 *** -0.002 * -0.002 +

0.002 0.002 0.001 0.001

Comp_Industryi,l,t 0.594 *** -0.010

0.151 0.188

#Patentsk,t 0.006 0.006 0.006 0.005 0.020 * 0.020 *** 0.019 *** 0.019 ***

0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007

SingleIDp -0.131 *** -0.131 *** -0.131 *** -0.131 *** -0.130 *** -0.130 *** -0.131 *** -0.130 ***

0.008 0.008 0.008 0.008 0.014 0.014 0.014 0.014

CoTownIDI -0.034 + -0.037 * -0.039 * -0.040 * 0.133 + 0.132 + 0.128 0.128

0.018 0.017 0.018 0.017 0.071 0.080 0.080 0.080

#Subclassesp
0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 ***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

#Employmentl,t 0.126 ** 0.130 *** 0.126 *** 0.118 *** 0.138 * 0.139 ** 0.136 * 0.136 **

0.047 0.046 0.048 0.047 0.047 0.053 0.053 0.053

Constant -0.486 * -0.505 * -0.478 * -0.563 * 0.123 0.124 0.128 + 0.129 +

0.240 0.243 0.239 0.245 0.077 0.078 0.078 0.078

Observations 264896 264896 264896 264896 57893 57893 57893 57893

R -squared 0.051 0.051 0.051 0.051 0.068 0.068 0.068 0.068

Subscripts  t  (time), i  (industry), l  (metropol i tan area), p  (patent).

Robust s tandard errors  (clustered by metropol i tan area) in parentheses

+ s igni ficant at 10%; * s igni ficant at 5%; ** s igni ficant at 1%, *** s igni ficant at .5%.

Al l  equations  include year, technology subclass , 2-digi t industry code and metropol i tan area dummy variables .  
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Table 6-22  Tobit Estimation: Generality as a function of Local Industry structure (cross-

MA variation) 

 

1 2 3 4 5

Size_Industryi,l,t 0.007 * 0.008 * 0.008 *** 0.010 *** 0.010 ***

0.003 0.003 0.003 0.003 0.003

Div_Industryi,l,t -0.001 -0.002 -0.002 -0.001

0.001 0.001 0.001 0.001

Spec_Industryi,l,t -0.002 -0.002 -0.002

0.001 0.001 0.001

Comp_Industryi,l,t 0.243 * 0.299 *

0.126 0.130

Size*Diversity -0.001 *

0.000

#Patentsk,t -0.015 -0.017 -0.014 -0.012 -0.013

0.028 0.029 0.027 0.027 0.028

SingleIDp -0.134 *** -0.134 *** -0.134 *** -0.135 *** -0.134 ***

0.007 0.007 0.007 0.007 0.007

CoTownIDI 0.014 *** 0.014 *** 0.014 *** 0.014 *** 0.014 ***

0.001 0.001 0.001 0.001 0.001

Constant -0.164 * -0.167 * -0.169 * -0.175 * -0.178 **

0.066 0.066 0.067 0.068 0.068

Observations 326819 326819 326819 326819 326819

Psuedo R -squared 0.046 0.046 0.046 0.046 0.046

Subscripts t  (time), k  (patent class), l  (metropolitan area), p  (patent).

Robust standard errors (clustered by metropolitan area) in parentheses.

+ significant at 10%; * significant at 5%; ** significant at 1%, *** significant at .5%.

All equations include year, technology subclass, and 2-digit industry code.  
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Table 6-23  OLS Estimation: Generality as a function of local industry structure 

 

1 2 3 4

Size_Industryi,l,t -0.003 -0.002 0.002 0.005

0.003 0.003 0.003 0.003

Div_Industryi,l,t
-0.002 * -0.002 * -0.002 *

0.001 0.001 0.001

Spec_Industryi,l,t -0.002 *** -0.002 ***

0.001 0.001

Comp_Industryi,l,t 0.196 *

0.091

#Patentsk,t 0.003 0.003 0.003 0.003

0.003 0.003 0.003 0.003

SingleIDp -0.075 *** -0.075 *** -0.075 *** -0.075 ***

0.003 0.003 0.003 0.003

CoTownIDI -0.024 + -0.025 * -0.026 * -0.026 *

0.013 0.013 0.013 0.013

#Subclassesp 0.010 *** 0.010 *** 0.010 *** 0.010 ***

0.001 0.001 0.001 0.001

#Employmentl,t 0.064 *** 0.062 *** 0.059 *** 0.057 ***

0.020 0.020 0.020 0.020

Constant 0.042 0.061 0.066 0.036

0.147 0.145 0.144 0.147

Observations 326819 326819 326819 326819

R -squared 0.088 0.088 0.088 0.088

Subscripts t  (time), k  (patent class), l  (metropolitan area), p  (patent).

Robust standard errors (clustered by metropolitan area) in parentheses.

+ significant at 10%; * significant at 5%; ** significant at 1%, *** significant at .5%.

All equations include year, technology subclass, 2-digit industry code and MA dummy variables.  
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Table 6-24  OLS Estimation: Novelty, Technical Community and Local Industry 

interactions 

1 2 3 4 5 6 7 8

Size_Community -0.142 *** -0.148 *** -0.150 *** -0.146 *** -0.149 *** -0.146 *** -0.152 *** -0.152 ***

0.045 0.043 0.044 0.043 0.043 0.044 0.045 0.044

Diversity_Community 0.002 *** 0.002 *** 0.001 + 0.002 *** 0.002 *** 0.002 *** 0.001 + 0.001 +

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Spec_Community 0.027 0.035 0.035 0.031 0.036 0.030 0.040 0.040

0.049 0.046 0.049 0.048 0.046 0.049 0.046 0.047

Size_Industry -0.005 -0.007 -0.005 -0.007 -0.006 -0.006 -0.005 0.008

0.016 0.016 0.016 0.016 0.016 0.016 0.017 0.013

Spec_Industry 0.022 0.025 0.022 0.021 0.025 0.025 0.028

0.018 0.019 0.018 0.018 0.018 0.019 0.020

Diversity_Industry -0.005 -0.004 -0.004 -0.005 -0.005 -0.004 -0.003 -0.003

0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Avg. Establishment Size 0.009 0.009 0.009 0.006 0.009 0.009 0.011 0.022

0.014 0.013 0.013 0.014 0.012 0.013 0.013 0.012

Size Interactions 0.007 + 0.008 * 0.007 *

0.004 0.004 0.003

Specialization Interactions -0.014 -0.001

0.009 0.012

Diversity Interactions 0.000 + 0.000 + 0.000 +

0.000 0.000 0.000

Avg. Est. Size * Community Size -0.004 0.000

0.004 0.000

Avg. Est. Size * Community Spec -0.018 ** -0.017 * -0.017 *

0.007 0.008 0.007

Avg. Est. Size * Community Div 0.000 -0.003

0.000 0.003

Patents (ln) 0.085 + 0.093 + 0.095 + 0.090 + 0.094 + 0.090 + 0.096 + 0.095 +

0.051 0.050 0.051 0.050 0.050 0.051 0.051 0.051

CoTownID -0.104 *** -0.102 *** -0.103 *** -0.103 *** -0.105 *** -0.104 *** -0.108 *** -0.109 ***

0.034 0.034 0.035 0.035 0.034 0.036 0.032 0.033

SingleID -0.556 *** -0.556 *** -0.556 *** -0.556 *** -0.556 *** -0.556 *** -0.556 *** -0.556 ***

0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035

SubclassCnt -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.004 -0.004

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Constant -2.103 *** -2.164 *** -2.255 *** -2.135 *** -2.194 *** -2.140 *** -2.298 *** -2.248 ***

0.484 0.465 0.490 0.473 0.462 0.478 0.484 0.474

N 322385 322385 322385 322385 322385 322385 322385 322385

Adj R-sq 0.1406 0.1407 0.1406 0.1405 0.1409 0.1406 0.1411 0.1411

Year, Subcategory, Sic and MA fixed effects

+ signicant at .10, * significant at .05, ** significant at .01, *** significant at .005  
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Table 6-25  OLS Estimation: Generality, Technical Community and Local Industry 

structure 

 

1 2 3 4 5 6 7

Size_Community -0.022 *** -0.022 *** 0.033 *** 0.032 *** 0.032 *** 0.033 *** 0.033 ***

0.003 0.003 0.004 0.004 0.004 0.004 0.004

Diversity_Community -0.001 *** -0.001 *** -0.001 *** -0.001 *** -0.001 *** -0.001 ***

0.000 0.000 0.000 0.000 0.000 0.000

Specialization_Community -0.059 *** -0.059 *** -0.059 *** -0.060 *** -0.060 ***

0.005 0.005 0.005 0.005 0.005

Size_Industry 0.006 + 0.013 *** 0.013 *** 0.012 ***

0.003 0.003 0.004 0.004

Specialization_Industry -0.013 *** -0.012 *** -0.008 *

0.005 0.004 0.004

Diversity_Industry -0.001 -0.001

0.001 0.001

Avg. Establishment Size -0.004

0.005

Patents_ln 0.019 *** 0.018 *** -0.037 *** -0.037 *** -0.037 *** -0.038 *** -0.038 ***

0.002 0.002 0.005 0.005 0.005 0.005 0.005

CoTownID -0.025 -0.028 -0.026 -0.024 -0.026 -0.027 -0.027

0.017 0.017 0.018 0.019 0.018 0.017 0.017

SingleID -0.073 *** -0.072 *** -0.072 *** -0.072 *** -0.072 *** -0.072 *** -0.073 ***

0.003 0.003 0.003 0.003 0.003 0.003 0.003

SubclassCnt 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 ***

0.000 0.000 0.000 0.001 0.001 0.001 0.001

Constant 0.211 *** 0.196 0.714 *** 0.727 *** 0.754 *** 0.762 *** 0.760 ***

0.039 0.039 0.043 0.040 0.039 0.040 0.040

N 322541 322429 322429 322429 322429 322429 322419

R-sq 0.0886 0.089 0.0912 0.0914 0.0917 0.0917 0.0918

Year, Subcategory, and SIC fixed effects

+ significant at .10, * significant at .05, ** significant at .01, *** significant at .005  
 



171 
 

  

Table 6-26 OLS Estimation: Generality, Technical Community and Local Industry 

interactions 

1 2 3 4 5 6 7 8

Size_Community 0.034 *** 0.033 *** 0.032 *** 0.032 *** 0.033 *** 0.033 *** 0.031 *** 0.032 ***

0.004 0.004 0.005 0.004 0.004 0.004 0.005 0.005

Diversity_Community 0.000 *** 0.000 *** -0.001 *** 0.000 *** -0.001 *** -0.001 *** -0.001 *** 0.000 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Spec_Community -0.060 *** -0.060 *** -0.059 *** -0.058 *** -0.059 *** -0.060 *** -0.058 *** -0.058 ***

0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004

Size_Industry 0.012 *** 0.012 *** 0.012 *** 0.011 ** 0.012 *** 0.012 *** 0.010 *** 0.008 ***

0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.002

Spec_Industry -0.008 + -0.008 + -0.008 + -0.007 -0.008 + -0.006 + -0.004

0.004 0.005 0.004 0.005 0.004 0.005 0.005

Diversity_Industry -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

0.001 0.001 0.001 0.001 0.001 0.001 0.001

Avg. Establishment Size -0.004 -0.004 -0.004 -0.006 -0.004 -0.004 -0.005 0.007 +

0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.003

Size Interactions 0.001 0.002 * 0.002 *

0.001 0.001 0.001

Specialization Interactions 0.000 0.001

0.002 0.002

Diversity Interactions 0.000 0.000

0.000 0.000

Avg. Est. Size * Community Size -0.005 0.000 ** 0.000 ***

0.002 0.000 0.000

Avg. Est. Size * Community Spec -0.001 -0.007 ** -0.007 ***

0.002 0.002 0.002

Avg. Est. Size * Community Div 0.000 * 0.002 0.003 *

0.000 0.002 0.001

Patents (ln) -0.039 *** -0.038 *** -0.037 *** -0.037 *** -0.038 *** -0.038 *** -0.037 *** -0.037 ***

0.005 0.005 0.005 0.004 0.005 0.005 0.004 0.004

CoTownID -0.028 -0.027 -0.027 -0.028 + -0.027 -0.028 + -0.031 + -0.030 +

0.017 0.017 0.017 0.017 0.017 0.016 0.016 0.016

SingleID -0.072 *** -0.072 *** -0.073 *** -0.072 *** -0.073 *** -0.072 *** -0.072 *** -0.072 ***

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

SubclassCnt 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 *** 0.010 ***

0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Constant 0.764 *** 0.759 *** 0.738 *** 0.749 *** 0.755 *** 0.753 *** 0.725 *** 0.737 ***

0.040 0.040 0.046 0.040 0.040 0.040 0.049 0.040

N 322419 322419 322419 322419 322419 322385 322385 322385

Adj R-sq 0.0918 0.0918 0.0918 0.0921 0.0918 0.0919 0.0925 0.0924

Year, Subcategory, Sic and MA fixed effects

+ significant at .10, * significant at .05, ** significant at .01, *** significant at .005  

 


