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Abstract

On Cycles, Chorded Cycles, and Degree Conditions
By Ariel Keller

Sufficient conditions to imply the existence of certain substructures in a graph are
of considerable interest in extremal graph theory, and conditions that guarantee a
large set of cycles or chorded cycles are a recurring theme. This dissertation explores
different degree sum conditions that are sufficient for finding a large set of vertex-
disjoint cycles or a large set of vertex-disjoint chorded cycles in a graph.

For an integer ¢t > 1, let 04(G) be the smallest sum of degrees of ¢ independent
vertices of G. We first prove that if a graph G has order at least 7k+1 and degree sum
condition o4(G) > 8k —3, with k£ > 2, then G contains k vertex-disjoint cycles. Then,
we consider an equivalent condition for chorded cycles, proving that if G has order
at least 11k + 7 and 04(G) > 12k — 3, with k£ > 2, then G contains k vertex-disjoint
chorded cycles. We prove that the degree sum condition in each result is sharp.
Finally, we conjecture generalized degree sum conditions on o4(G) for ¢ > 2 sufficient
to imply that G contains k vertex-disjoint cycles for £ > 2 and k vertex-disjoint
chorded cycles for £ > 2. This is joint work with Ronald J. Gould and Kazuhide

Hirohata.
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Chapter 1

Introduction

1.1 History

Extremal graph theory studies relationships between graph invariants, like the number
of edges or vertices in a graph, and different graph properties. Often we are interested
in how far we can push certain properties before other properties or substructures
must exist in the graph. For example, we might ask what is the largest number of
edges a graph of a fixed order may contain and still be acyclic. Alternatively, this
tells us how many edges the graph must have to guarantee the existence of a cycle.

Over the years, many different results have been proved regarding cycles in graphs.
Some such results include graph properties that guarantee a graph contains a Hamil-
tonian cycle, a set of cycles with specified graph elements, a large set of many different
cycles, or a large set of many different chorded cycles or doubly chorded cycles.

The degree of a vertex x, d(x), is defined to be the number of edges incident with
x. Let §(G) denote the minimum degree over all vertices in a graph G. Clearly, if
the minimum degree is large enough relative to the number of vertices in the graph,
the graph will contain a Hamiltonian cycle. In particular, Dirac’s famous result [3]

states that any graph G on n > 3 vertices with minimum degree §(G) > n/2 contains



a Hamiltonian cycle (see Figure .

<o

Figure 1.1. A Hamiltonian cycle in a graph G with n = 6 and §(G) = 3.

Ore’s Theorem [13] strengthens this result, giving a weaker degree condition suffi-
cient to imply a graph contains a Hamiltonian cycle. It states that, for a graph G on
n vertices, if the degrees of any pair of nonadjacent vertices total at least n, then the
graph G contains a Hamiltonian cycle. This condition allows an individual vertex to
have degree less than n/2; hence it is possible for a graph to satisfy the condition of
Ore’s Theorem while not satisfying the condition of Dirac’s Theorem.

In the same vein as Dirac’s Theorem and Ore’s Theorem for Hamiltonian cycles,
density conditions can be used to force a graph to contain many disjoint cycles or
chorded cycles.

Cycles are called vertez-disjoint if they share no vertices. Let §(G) denote the

minimum degree of G and

o(G) = min{z de(z) : S is an independent set of G with |S| = t}.
zes

In 1963, Corradi and Hajnal [2] first considered a minimum degree condition that
would imply a graph must contain k different vertex-disjoint cycles, proving that if
|G| > 3k and 6(G) > 2k, then G contains k vertex-disjoint cycles. Enomoto [4] and
Wang [15] independently proved a more general result, requiring a weaker condition
on the degree sum of any two independent vertices: if |G| > 3k and 09(G) > 4k — 1,
then G contains k vertex-disjoint cycles. Fujita et al. [6] proved the most recent
generalization of this result, showing that if £ > 2, |G| > 3k + 2, and 03(G) > 6k — 2,
then G contains k vertex-disjoint cycles.

In all three theorems, the degree conditions are sharp as illustrated by the graph



Gy = Ko,_1+mK;. The only independent vertices in GGy are the vertices in mK;, each
of which has degree 2k — 1. It follows that for any t < m, 04(Go) = t(2k—1) = 2kt —t.
Any cycle in Gy must contain two vertices of Ko,_1 since no two vertices of mK; are
adjacent. But then the graph GGy cannot contain k£ vertex-disjoint cycles. Thus, none
of the conditions 6(G) = 2k — 1, 02(G) = 4k — 2, 03(G) = 6k — 3, and in general for
t <m, 04(G) = t(2k — 1) = 2kt — t is sufficient to imply G contains k vertex-disjoint
cycles.

In Chapter 2, we consider the next value of ¢; that is, we show that if o4(G) >
8k — 3, then G contains k vertex-disjoint cycles. We also prove that the degree sum
condition is sharp, and we conjecture a sharp degree sum condition on o;(G) for any
fixed t > 2 to imply that a graph contains k vertex-disjoint cycles.

An extension of the study of disjoint cycles is that of disjoint chorded cycles. A
chord of a cycle is an edge between two vertices of the cycle that is not an edge of
the cycle. We say a cycle is chorded if it induces at least once chord and doubly
chorded if it induces at least two chords. In 1960, Pésa [14] asked what conditions
would imply a graph contains a chorded cycle. In answer to the question, Czipzer
(see Lovész |12], problem 10.2) proved in 1963 that if a graph has minimum degree
at least 3, it must contain a chorded cycle. More recently, the relevant literature has
focused on conditions to imply a graph contains many vertex-disjoint chorded cycles.
Finkel [5] extended the work of Corradi and Hajnal by showing that if |V (G)| > 4k and
d(G) > 3k, then G contains k vertex-disjoint chorded cycles. Chiba et al. [1] extended
this result, proving that for a graph G of order at least 3r+4s, if 0o(G) > 4r+6s—1,
then G contains r + s vertex-disjoint cycles, with s of them chorded. In [8], doubly
chorded cycles were considered, showing that if oo(G) > 6k — 1, then G contains k
vertex-disjoint doubly chorded cycles.

In Chapter 3, we consider the degree condition for ¢ = 4. In particular, we show

that if G is a graph of order n > 11k + 7, and if 04(G) > 12k — 3, then G contains



k vertex-disjoint chorded cycles. Furthermore, we prove that this degree condition is
sharp, and we conjecture a sharp degree condition on o,(G) for any fixed t > 2 to

imply the graph G contains k vertex-disjoint chorded cycles.

1.2 Definitions and Notation

We consider only simple graphs, without loops or multiedges. Let G = (V(G), E(G))
be a simple graph. Then |G| is the order of G, §(G) is the minimum degree of G,
comp(@G) is the number of components of G, a(G) is the independence number of G.
For a vertex u € V(G), the set of neighbors of v in G is denoted by Ng(u), and we
denote the degree of the vertex u by dg(u) = |[Ng(u)|. Let H be a subgraph of G. For
u € V(G)—V(H), we denote the neighborhood of u in H by Ny (u) = Ng(u)NV (H),
and the degree of w in H is given by dg(u) = |[Ng(u)|. For X C V(G), let duy(X) =

Y vex dr(x). For an integer t > 1, let

o(G) = min{z de(v) | X is an independent set of G with | X| = t.},
veX
and 04(G) = oo when a(G) < t. Note that if ¢ = 1, then 0,(G) = §(G).

For a set S C V(G), the subgraph of G induced by S is denoted by (S). If there
is no fear of confusion, then we use the same symbol for a graph and its vertex set.
For graphs G; and G, with V/(G1) NV (Gy) = 0, G1 UG5 denotes the union of G; and
G, G1 + G5 denotes the join of G and G5, and mG denotes the union of m disjoint
copies of G, see [7].

For a path (or a cycle) @ in a graph G, we write Q = x1, xa, ..., 2y (, 1), where
V(Q) =A{z1,29,...,2¢} and {x1, 20}, {20, 23}, ... {zi1, 2} ({11 }) € E(Q). f Q
is a path (or a cycle), say Q) = 1, xo, ..., 7y (, 1), then we assume that an orientation
of @ is given from z; to x;. We say that x; precedes z;, and x; follows z;, on @ if

i < j. If x € V(Q), then 2T denotes the first successor of x on @ and z~ denotes



the first predecessor of x on Q. For z,y € V(Q), we let Q[z,y] denote the path of @
from z to y (including x and y) in the given direction. The notation [z, y| denotes
the path from y to x in the opposite direction. We also write Q(x,y] = Qlz™, y],
Qlz,y) = Qlz,y~| and Q(z,y) = Q[zT,y~]. For u,v € V(Q), we define the path
QF[u,v] as follows; if u precedes v on Q, then Q*[u,v] = Q[u,v], and if v precedes u
on @, then Q*[u,v] = Q™ [u,v]. If T is a tree with at least one branch and z,y € V (T,
where a branch vertex of a tree is a vertex of degree at least three, then we denote
the path from z to y as T'[z, y|.

For an integer » > 1 and two disjoint subgraphs A, B of G, we denote by
(dy,ds, . ..,d,) a degree sequence from A to B such that dg(v;) > d; and v; € V(A)
for each 1 < ¢ < r. Throughout this dissertation, it is sufficient to consider the case of
equality in the above inequality; hence, when we write (dy,ds, . . ., d,), we will assume
that dp(v;) = d; for each 1 < i <r. For X|Y C V(G), E(X,Y) denote the set of
edges of GG joining a vertex in X and a vertex in Y. For vertex-disjoint subgraphs
Hy, Hy of G, we simply write E(Hy, Hs) instead of E(V(Hy),V(Hy)). A forest is a
graph each of whose components is a tree, and a leaf is a vertex of a forest whose

degree is at most one. A cycle of length ¢ is called an £-cycle.

Definition 1. Any chorded six-cycle must be one of two types. Either the chord
splits the cycle into a three-cycle and a five-cycle—we call this type 1, or the chord

splits the cycle into two four-cycles—we call this type 2.

(a) Type 1 six-cycle. (b) Type 2 six-cycle.

Figure 1.2. Six-cycle types.

Definition 2. We say a set € = {C4,...C,} of r vertex-disjoint cycles in a graph G

is mingmal if ||J;_, V' (C;)| is minimal over all such sets of r cycles.



Definition 3. Let C' = vy, ..., v, v1 be an oriented cycle with a chord v;v;, i < 7.
We say a chord vyu; # viv; is parallel to vv; if vg, v, € Clu;, vj] or vg, v € Cluj, vl
Note that if two chords share an endpoint, they are parallel. We say two chords are

crossing if they are not parallel.

Definition 4. Let v;u; and viu; be two edges between two oriented paths P, = vy,
o,veand Py =y, ..., us. We say vu; and vy are parallel if either ¢« < k and j <1,
or k <17 and [ < j. Note that if two edges between P; and P, share an endpoint,
they are parallel. We say two edges between two oriented paths are crossing if they

are not parallel.

Definition 5. Let v;v; and v,y be two distinct edges between vertices of a path
P =, ..., v, withi < jand k < [. We say v;v; and vzv; are nested if either

1<k<l<jork<i<j<lI.

Definition 6. Let P = vq,...,v; be a path. We say a vertex v; on P has a left edge
if there exists an edge v;v; for any j < i —1. We say v; has a right edge if there exists

an edge v;v; for any [ > 1 + 1.

Definition 7. Let X be a set of vertices in a graph H with | X| > 1. We call a vertex

x of X isolated from the rest of X if it is the only vertex of X in some component H;

of H.

For terminology and notation not defined here, see [7].



Chapter 2

Degree Conditions to Imply the

Existence of Vertex-Disjoint Cycles

In this chapter, we prove a result regarding the existence of a large set of vertex-
disjoint cycles in a graph. Let G be a graph such that |G| > 7k+1 and 04(G) > 8k—3
for integer £ > 2. We prove that such a graph contains a set of k vertex-disjoint cycles.
We also conjecture a generalized result for o,(G), and we show that the degree sums

in the result on 04(G) and the conjecture for o,(G) are sharp.

2.1 Introduction

The study of cycles in graphs is an important and rich area. One of the more interest-
ing questions is to find conditions that insure the existence of k (k > 2) vertex-disjoint
cycles. A number of such results exist. As noted in the introduction, Corradi and
Hajnal [2] proved that if a graph G has order at least 3k and 6(G) > 2k, then G
contains k disjoint cycles. Justesen |11] proved the same result from the condition
09(G) > 4k. Enomoto |4] and Wang [15] independently improved Justesen’s bound
to 09(G) > 4k — 1. Fujita et al. [6] proved that if |G| > 3k + 2 and 03(G) > 6k — 2,

then G contains k disjoint cycles. The purpose of this chapter is to further extend



these results. We also conjecture the following;:

Conjecture 2.1 ([10]). Let G be a graph of sufficiently large order. If o,(G) >

2kt — (t — 1) for any two integers k > 2 and t > 1, then G contains k disjoint cycles.

The cases for t = 1, 2, 3 have already been shown. We add to the evidence for this

conjecture by showing the following:

Theorem 2.1 ([10]). Let G be a graph of order n > Tk + 1 for an integer k > 2. If

04(G) > 8k — 3, then G contains k disjoint cycles.

The degree sum condition conjectured above would be sharp. And in particular,
the degree sum condition of Theorem is sharp. Sharpness is given by G = Ko+
mK;. The only independent vertices in G are those in mK;. Each of these vertices
has degree 2k — 1. Thus, for any ¢ with 1 <t < m, 0:(G) = t(2k — 1) = 2kt — ¢,
and G fails to contain k disjoint cycles as any such cycle must contain two vertices of

Kop_1.

2.2 Lemmas

In the proof of Theorem we make use of the following lemmas. Fujita, Mat-
sumura, Tsugaki and Yamashita proved Lemmas 2.A, 2.B and 2.C in [6]. The proofs
of Lemmas and appear after the proof of Theorem [2.1] that is, in Section 2.4.

Let Cy, ..., C, be r disjoint cycles of a graph G. If C7, ..., C! are r disjoint cycles
of G and |U[_, V(C!)| < |Ul_, V(C;)|, then we call C7, ..., C! a shorter (family of)
cycles than Cy,...,C,.. We also call {C,...,C.} a minimal (family of) cycles if G

does not contain shorter r disjoint cycles than C,...,C,.

Lemma 2.A (Fujitaet al. [6]). Let r be a positive integer and C, . .., C, be r minimal

disjoint cycles of a graph G. Then do,(x) < 3 for any x € V(G) — U_,V(C;) and



for any 1 <i < r. Furthermore, dc,(x) = 3 implies |C;| = 3, and d¢,(x) = 2 implies

Cy] < 4.

Lemma 2.B (Fujita et al. [6]). Suppose that F is a forest with at least two components
and C 1s a triangle. Let xq, xo, x3 be leaves of F' from at least two components. If
de({x1,x9,23}) > 7, then there exist two disjoint cycles in (F'UC) or there exists a

triangle C" in (F' U C) such that comp({(F U C) — C") < comp(F).

Lemma 2.1. Suppose that F is a forest with at least two components and C' 1is
a triangle. Let x1, 1o, x3, x4 be leaves of F from at least two components. If
do({z1, xe, x3,24}) > 9, then there exist two disjoint cycles in (FUC) or there exists

a triangle C" in (F'UC) such that comp((F UC) — C") < comp(F).

Lemma 2.C (Fujita et al. [6]). Let C be a cycle and T be a tree with three leaves 1,
To, x3. If do({x1, w9, x3}) > 7, then there exist two disjoint cycles in (C'UT) or there

ezists a cycle C" in (C'UT) such that |C'| < |C].

Lemma 2.2. Let C be a cycle and T be a tree with four leaves xi, xo, x3, T4. If
do({z1, xe, x3,24}) > 9, then there exist two disjoint cycles in (C'UT) or there exists

a cycle C" in (C'UT) such that |C'] < |C].

Proof. Let X = {z, 29,23, 24}. If de(x;,) < 2 for some 1 < iy < 4, then deo(X —
{z;,}) > 7, and we apply Lemma to X — {x;,}. Otherwise, d¢(x;) > 3 for each

1 <7 <4, and we apply Lemma to any three vertices in X. O

Lemma 2.3. Let G be a graph satisfying the assumption of Theorem and let
{C1,...,Cx_1} be a minimal (family of) k — 1 disjoint cycles of G. Suppose that
there exists a tree T with at least four leaves, which is a component of G — Uf;llCl-.

Then G contains k disjoint cycles.

Proof. Let € = U""}C;, and let X = {x1, x5, 73, 24} be a set of leaves of T. Since X

is an independent set, dg(X) > (8k —3) —4 = 8(k — 1) + 1. Then there exists a cycle
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C; for some 1 < i < k — 1 such that d¢,(X) > 9. Since {C4,...,Ck_1} is minimal,
there exist two disjoint cycles in (C; UT) by Lemma [2.2] Thus G contains k disjoint

cycles. O]

Lemma 2.4. Let G be a graph satisfying the assumption of Theorem and let C1,

, Cr_1 be k — 1 minimal disjoint cycles of G. Suppose that H = G — U"!'C; has
at least two components at least one of which is a tree T with at least three leaves.
Then there exist two disjoint cycles in (C; UT) for some 1 <i < k—1 or there exists

a triangle C' in (H U C;) such that comp({(H U C;) — C) < comp(H).

Proof. Let € = Uf;llCZ-. Let z1, x9, x3 be three leaves of the tree T', and let x4 be
a leaf from another component, and X = {x1, x9, x3,24}. Since X is an independent
set, dg(X) > (8k —3) —4 = 8(k — 1) + 1. Then there exists a cycle C; for some
1 <i <k —1such that d¢,(X) > 9. If de,(z4) < 2, then do({x1, 22, 23}) > 7. By
Lemma , there exist two disjoint cycles in (C; U T) or there exists a cycle C' in
(C; UT) such that |C] < |C;]. Since {C4,...,Ck_1} is minimal, the lemma holds. If
de,(z4) > 3, then Cj is a triangle by Lemma [2.A] Thus the lemma holds by Lemma
211 O

Lemma 2.5. Let Cy and Cy be two disjoint cycles such that |Cy| > 6. Suppose that
Cy contains vertices with at least one of the following degree sequences from Cy to Cf.
(i) (2,2,2,2,2)

(i) (5,3)

(iii) (3,1,1,1,1,1)

(iv) (3,2,1,1)

(v) (3,3,1)

Then (Cy U Cy) contains two disjoint cycles C and CY such that |C1| + |CY| <
|C1] + |Cyl.

Lemma 2.6. Let H be a graph with two components Hy, Hy, where Hy = x1, ..., x4
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(s > 1) is a path and Hy = y1, ..., ys (t > 3) is a path. Let W = {x1,y1,Yi, y¢} for
any 2 < i <t—1, and let C be a triangle. If there exists a degree sequence (3,3,2,0)

or (3,3,1,1) from W to C, then (H U C) contains two disjoint cycles.

2.3 Proof of Theorem 2.1

For convenience, we restate our main result.

Theorem 2.1. Let G be a graph of order n > Tk + 1 for an integer k > 2. If

04(G) > 8k — 3, then G contains k disjoint cycles.

Proof of Theorem [2.1] Suppose that the theorem does not hold. Let G be an edge-
maximal counterexample. If G is a complete graph, then G contains £k disjoint cycles.
Thus we may assume that G is not a complete graph. Let zy ¢ E(G) for some z,y €
V(G), and define G' = G + zy. Since G’ is not a counterexample by the maximality
of G, G’ contains k disjoint cycles C1,...,Cy. Without loss of generality, we may
assume that zy ¢ UM E(C;), that is, G contains k — 1 disjoint cycles Cy, ..., Cy_1.

Let € = Ufz_llCi and H = G — %. Choose (1, ..., Cy_1 such that
(1) ¢! €y is minimal, and
(2) subject to (1), comp(H) is minimal.

Note that any cycle C'in € has no chords by (1). Clearly, H is a forest, otherwise,
since H contains a cycle, G contains k disjoint cycles, a contradiction. If H contains
at least two components at least one of which is a tree with at least three leaves, then
by Lemma , either G contains k disjoint cycles, or we contradict (2). Thus if H
contains at least two components, H must be a collection of paths. If H has only one
component, then it is a tree. If H is a tree with at least four leaves, then the theorem
holds by Lemma [2.3] Thus if H has only one component, then H is a tree with at

most three leaves.
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Now, we consider two cases on |H|.
Case 1. |H| < 7.

Let C be a longest cycle in €. Suppose that |C| < 7. Then |C’| < 7 for any cycle
C'in%,and |€| < 7(k—1). Since |G| > Tk+1, |H| = |G|—|€| > (Tk+1)—T7(k—1) =
8, contradicting the assumption of this case. Thus |C| > 8. Let |C| =4t +7r,t > 2
and 0 < r < 3. Then there exist at least ¢ disjoint independent sets in V(C') each
of which has four vertices. By (1) and |C| > 8, d¢(v) < 1 for any v € V(H). Thus
|E(H,C)| <T.

Suppose that k = 2. Then % has only one cycle C, and H = G—C'. Since |C| > 8,
C' contains at least two independent sets each of which has four vertices. Let X; and
Xy be such sets. Since do(X;) = 8 for each i € {1,2}, dy(X;) > (8k —3) — 8 =
8k — 11. Then dy(X; U X3) > 16k — 22 > 10, since k > 2. Thus |E(C, H)| > 10, a
contradiction.

Suppose that & > 3. We claim that |E(C,C")| > 8t for some cycle C" in ¢ — C.
Note that each of ¢ disjoint independent sets in V(C') sends at least (8k —3) — 8 =
8k — 11 edges out of C. Since |E(C,H)| < 7and t > 2, |[E(C,% — C)| > t(8k —
11) = 7 > 8t(k — 2). Thus the claim holds. Since |C| = 4t + r < 4t + 3 and
|E(C,C"|/|C| > 8t/(4t + 3) > 8t(4t +4) = 2t/(t +1) > 1, dev(v) > 2 for some
ve V(D).

Suppose that max{dc (v)|v € V(C)} = 2. Let X = {v € V(C)|der(v) < 1} and
Y =V(C) — X. Then noting that ¢ > 2 and r < 3,

8t < [E(C,C)| < |X[+2)Y] = (|C| = [Y]) +2]Y[ = [C[+ |V
= V| >8t—|C| =8t — (4t +71) =4t — 7

>8—3="5.

Thus we have the degree sequence (2,2,2,2,2) from C to C’. By Lemma[2.5(1), (CUC")
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contains two shorter disjoint cycles, contradicting (1).

Suppose that h = max{dc(v)|lv € V(C)} > 3. Let dev(v*) = h for some v* €
V(C). Since |C'"| < |C| = 4t + r by the choice of C, der(v*) < |C'] < 4t + 7. Then
since t > 2 and r < 3, |[E(C —v*,C")| > 8t — (4t +r) = 4t — r > 5. This implies that
N (C —v*) # 0. Let Z = {v € V(C)|Ner(v) # 0}. Then |Z] > 2.

Suppose that |Z| = 2. Then der(v) > 5 for any v € Z by the above observations.
By Lemma [2.5(ii), (C'U C") contains two shorter disjoint cycles, contradicting (1).

Suppose that |Z| > 3. Since |E(C' — v*,C")| > 5, we may assume that the
minimum degree sequence S from vertices of C' to C’ is at least one of (h,4,1),
(h,3,2), (h,3,1,1), (h,2,2,1), (h,2,1,1,1), or (h,1,1,1,1,1), where by the definition
of h, if S = (h,4,1), then h > 4, and if S is the other degree sequence, then h > 3. If
S = (h,4,1) or (h,3,2), then by Lemma (V)7 (C'UC") contains two shorter disjoint
cycles. If S = (h,3,1,1), (h,2,2,1) or (h,2,1,1,1), then by Lemma[2.5{iv), (CUC")
contains two shorter disjoint cycles. If S = (h,1,1,1,1,1), then by Lemma (iii),

(C'UC") contains two shorter disjoint cycles.
Case 2. |H| > 8.
Claim 1. H is connected.

Proof. Suppose to the contrary that H is disconnected. Then note that H is a
collection of paths. Suppose that X is an independent set that consists of four leaves
from at least two components in H such that dy(X) < 4. Then dy(X) > (8k—3)—4 =
8(k —1) + 1, and dc, (X) > 9 for some 1 <4y < k — 1. Thus d¢, (z) > 3 for some
z € X, and |C;| = 3 by Lemma[2.A] By Lemma [2.1] and (2), (H U C;,) contains two
disjoint cycles, and G contains k disjoint cycles, a contradiction. Thus H does not
contain such an independent set.

Now, we consider three cases on comp(H ).

Case 1. comp(H) > 4.
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i T1 T2
Hio Hio—o
Y Y2 Y3 Yt 1 Y2 Y3 Yt
Ho o o o o - - —o Hyo——o o o o - —o
Figure 2.1. |Hy| =1 Figure 2.2. |H;| =2

We take four leaves xy, xo, o3, x4, one from each component of H. Then X =

{1, 29, 23,24} is an independent set such that dy(X) < 4, a contradiction.

Case 2. comp(H) = 3.

We take three leaves xy, xs, x3, one from each component of H. Since |H| > 8,
some component of H, say Hy, has order at least 3. Now, we take the other leaf from
Hy, call it x4. Then X = {x, 29, x3, 24} is an independent set such that dy(X) < 4,

a contradiction.

Case 3. comp(H) = 2.

Let Hy, Hy be two distinct components in H. Without loss of generality, we may
assume that |H;| < |Hs|. Suppose that |H;| > 3. Then we take two leaves from each
component of H, yielding a set X of four independent vertices such that dg(X) = 4,
a contradiction. Suppose that |H;| € {1,2}. Since |H| > 8, |Hs| > 6. Let H; = x4,
zs (s € {1,2}); Hy =1, y2, ..., y: (t > 6), and let W = {x1,y1,y3,y:} (see Figures
2.1]and [2.2)). Since W is an independent set and dy (W) < 5, dg(W) > (8k—3)—5 =
8(k — 1). Then there is a cycle Cy in € such that dg,(W) > 8. By Lemma 2.4]
dey(u) < 3 for any w € W, and |Cy| < 4. Then the minimum possible degree
sequence S from W to Cy is (3,3,2,0), (3,3,1,1), (3,2,2,1) or (2,2,2,2).

Suppose that |Cy| = 4. Let Cy = vy, va, vs, vy, v1. Then dg,(u) < 2 for any
u € W by Lemma . Thus we must have degree sequence (2,2,2,2). If some u € W
has consecutive neighbors in Cj, then u and these two neighbors form a 3-cycle,
contradicting (1). Thus for any u € W, its neighbors in Cy are not consecutive. It

follows that for any u € W, either N¢,(u) = {v1,v3} or Ng,(u) = {ve,v4}. Without
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loss of generality, we may assume that Ng,(z1) = {v1,v3}. If y4,, yj, with some i,
Jo € {1,3,t} and iy < jo do not share neighbors in Cy with z1, then we can easily
find two disjoint cycles, as follows. Since Ng,(ym) = {ve,v4} for each m € {ig, jo},

Hs[yios Yiol, Vas Yip 1s a cycle, and 1, vs, ve, v1, 7 is the other disjoint cycle (see

Figure .

X Y1 Y2 Y3 Yt

Co (%1 (%) (%] (o

Figure 2.3. An example where ig = 1 and jy, = t.

Thus at most one vertex in {y;,ys,y;} does not share neighbors in Cy with z;.
Suppose that some vertex in {y1,y3, y; } does not share neighbors in Cy with x;. First,
suppose that such a vertex is y, that is, No,(y1) = {va, v4}. Then vy, vy, v3, vo, Y1 is
a cycle. Since v; € N¢,(y;) for each i € {3,t}, Ha[ys, y:], v1, y3 is the other disjoint
cycle. If Ne,(yi) = {ve,vs}, then y, vy, vs, vo, y; and Ha[y1, ys3], v1, y1 are two disjoint
cycles. Suppose that N, (y3) = {v2, v4}. Then we form a 4-cycle C| = ys3, vy, vs, va,
y3. Since v € N¢, (y;) for each i € {1,t}, (HUC,) —Cj is connected, contradicting (2)
(see Figure 2.4)). Thus N¢,(21) = N, (y;) for each i € {1,3,t}. Then Cj = Ha[y1, ys],
v1, Y1 is a 4-cycle. Since vy € Ng,(u) for each u € {x1,y:}, (HUCy) — C{ is connected,

contradicting (2). Thus if there exists a 4-cycle in €, we get a contradiction.

H
T Y1 Y2 Y3 Yt

C() (%1 (%) V3 V4

Figure 2.4. A new cycle C such that (H U Cy) — Cj is connected.

Suppose that |Cy| = 3. Let Cy = vy, v, vs, v;.



16
Subcase 1. S =(3,3,2,0) or S = (3,3,1,1).
By Lemma we can find two disjoint cycles in (Co U H), a contradiction.
Subcase 2. S = (3,2,2,1).

If de, (y3) = 1, then since {1, y1, y;} satisfies the conditions of Lemma[2.B] we get
a contradiction. Thus dg¢,(y3) € {2, 3}.

First, suppose that d¢,(z1) = 1. Let v; € Ng,(21). Note that de,(y;) > 2 for each
i€ {1,3,t}. If vy & Ng,(yi,) for some iy € {1,t}, then de,(yi,) = 2, and C} = y;,,
vs, U2, Ui, 1S a 3-cycle. Since dg, (y;,) = 3 for some iy € {1,3,t} — {io}, v1 € Ny (yi,)-
Then (CoUH)—C} is connected, contradicting (2) (see Figure[2.5)). Thus v; € N, (v:)
for each ¢ € {1,t}. Since d¢,(y;,) = 3 for some iy € {1,3,t}, CJ = yi,, v3, V2, Yj, is a

3-cycle. Then (CyU H) — C{/ is connected, contradicting (2).

H
T Y1 Y2 Y3 Yt

Co (%1 V2 V3

Figure 2.5. The case when 7o = 1 and iy, = 3.

Next, suppose that dg,(x1) = 2. Without loss of generality, we may assume that
v1, vo € Ngy(x1). Suppose that de,(ys3) = 2. Since |Cy| = 3, we may assume that
v1 € Ney(z1) N Ney(ys). Since de, (y;,) = 3 for some jo € {1,t}, Cf = yj,, vs, Vo,
Yj, is a 3-cycle. Then (Cy U H) — C is connected, contradicting (2). Suppose that
dey(y3) = 3. If v3 € Ngy(Ym,) for some mo € {1,t}, then Hi [ys, Ym,], vs, y3 and
x1, Vg, U1, 1 are two disjoint cycles. Thus vz € Ng,(ym) for each m € {1,t}, that
is, Noy(ym) C {v1,v9}. Since one of y; and y; has the degree 1 and the other has
the degree 2, without loss of generality, we may assume that vy, € Ne,(y1) N Ney ()-
Since de, (y3) = 3, Cf = ys, vs, v2, y3 is a 3-cycle, and (Co U H) — C{/ is connected,
contradicting (2) (see Figure [2.6).
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Finally, suppose that d¢,(z1) = 3. Since de,(viy) = de,(yj,) = 2 for some i,
Jo € {1,3,t} with iy < jo, we may assume that v; € Ng,(yi,) N Ney(yj,). Then
Hs[Yio, Yiol, V1, Yio 18 & cycle. Since de, (z1) = 3, a second disjoint cycle is given by z,

v3, v2, 71 (see Figure[2.7), a contradiction.

H
T Y1 Y2 Y3 c Yt

C() U1 Vo V3

Figure 2.6. The case when v; € N¢,(y1) N Ney ()-

1 Y1 Y2 Y3 Yig Yjo Yi
A

Figure 2.7. The case when v; € N¢, (yi,) N Ney (Y50)-

Subcase 3. S =(2,2,2,2).

Without loss of generality, we may assume that Ne, (1) = {vi,v}. If v3 €
Ney(Yip) N Ney(y;,) for some ig, jo € {1,3,t} with iy < jo, then Halyiy, Yjol, V3, Uiy
and x1, vy, v1, o7 are two disjoint cycles. Thus at most one in {y1,ys,y:} can be
adjacent to vs. Suppose that vs € N¢,(y;,) for some ig € {1,3,t}. Since d¢,(vi,) = 2,
we may assume that vy € Ngy(vi,). Then C) = y,,, vs, v, i, is a 3-cycle. For
each i € {1,3,t} — {io}, N¢,(vi) = {vi,v2}. Then (Cy U H) — Cf is connected,
contradicting (2). Thus vz & N¢,(y;) for each i € {1, 3,t}, that is, N¢, (y;) = {v1, v2}.
Then C§ = Has[y1,ys], v2, 1 is a 3-cycle, and (CoUH) — C is connected, contradicting
(2). This completes the proof of Claim O

Claim 2. H is a path.
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Proof. Suppose that H is not a path. Then recall that H is a tree with one branch
vertex of degree 3 in H. Then H has three leaves, say xy, T2, r3. Removing the
branch vertex in H, there exist three disjoint paths each of which has one vertex
from {z1, 9,23} as an endpoint. Also, some path has order at least three, say P,
since there exist at least seven vertices distributed over three paths. Without loss of
generality, we may assume that x; is one of the endpoints of P, and let the other
endpoint be 4. Let X = {z1, s, 3,24} (see Figure2.8). Then X is an independent
set. Since dg(X) =5, de(X) > (8k —3) — 5 = 8(k — 1). Thus there exists a cycle
C;, in € such that dci()(X) > 8 for some 1 <4y <k —1. Then dcio(x) > 2 for some

x € X. By Lemma , do,, (r) < 3 and |Cy| < 4.

H Ty

T Ty T3

Figure 2.8. The graph H and an independent set X = {z1, 9, T3, x4}.

Case 1. |C;,| = 3.

Let Cj, = v1, vg, v3, v1. Suppose that dc, (z) = 2 for each z € X. Without
loss of generality, let vy, vy € Ncio(xl). Since |C;,| = 3, ch.o(xg) N Ne,, (x3) #
0. If v3 € Ne, (z2) N Ng, (x3), then Hlwy, 3], v3, T2 and x1, v, v1, 71 are two
disjoint cycles (see Figure . Thus without loss of generality, we may assume that
v1 € Ng,, (x2) N Ne,, (x3). Then Hl[zy,x3], v1, x2 is a cycle. Since dc;, (x4) = 2,
Ne,y—v (74) # 0. If vy € Ne, (24), then H[wi,24], vo, 21 is the other disjoint cycle
(see Figure , and if v3 € N, (x4), then H[xq,x4), v3, vo, 1 is the other disjoint
cycle. Thus there exists at least one vertex z € X such that dg, (z) = 3. Then the

minimum possible degree sequences from X to C;, are (3,3,2,0), (3,3,1,1) or (3,2,2,1).

Subclaim 2.1. If there exists a degree sequence at least (3,3,1,0) from X to Cj,,
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then there exist two disjoint cycles in (H U Cy,).

First, suppose that dc, (7;,) = 1 for some 1 < jo < 3. Let v; € Ng, (x,). If
de,, (r4) = 0, then since d¢, (zm) = 3 for each m € {1,2,3} — {Jjo}, Hlzj, Tm], v1,
zj, is a cycle. Since dg, (v,,/) = 3 for m' € {1,2,3} — {jo,m}, it follows that z,,,
V3, Vg, Ty forms another cycle, vertex-disjoint from the first (see Figure . If
do, (v4) = 3, then H[z;,, z4], v1, xj, is a cycle, and since dc, (Tr,) = 3 for some
mo € {1,2,3} — {jo}, the other disjoint cycles is given by x,,,, v3, V2, Ty, Next,
suppose that dc, (v4) = 1. Let v; € Ng, (z4). Then de, (zm,) = 3 and de, (wm,) = 3
for some 1 < my < mg < 3, and H[zy,, 4], v1, Tpm, and z,,, v, Vs, T, are two
disjoint cycles, and Subclaim holds.

Thus by the claim, we have only to consider the degree sequence (3,2,2,1). If the
degree 3 vertex does not lie on the path in H connecting the degree 2 vertices, then
since the two vertices with degree 2 must have a common neighbor by |C;,| = 3, we can
easily find two disjoint cycles. Thus the degree 3 vertex does lie on the path connecting
the two vertices with degree 2. This implies that d¢, (74) = 3, d¢, (21) = 2 (see Figure
, and we may assume that dc, (z2) = 1 and dc, (v3) = 2. Let v; € Ng, (72). Since
|Ne,, (21) N Ne,, (74)| = 2, there exists vy, € Ne, (21) N Ng, (24) for some hg € {2,3}.
Then H|xy, 4], vp,, o1 is a cycle. Since dc;, (x3) = 2, there exists vy, € Ne,, (x3) for
some hy € {1,2,3} — {ho}. If hy = 1, then H[xq,x3], v1, 2 is the other disjoint cycle
(see Figure [2.12)), and if hy € {2,3}, then H|xzs, 23], vp,, v1, 22 is the other disjoint

cycle.

T2 X3

Ci,

U1 V2 U3

Figure 2.9. The case when v3 € N¢, (2) N Ne, (z3).
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H 1 ... T4

Z3

Ci,

Figure 2.10. The case when vy € Ng, (24).

H Tt ... 74

X3

Ci,

U1 V2 U3

Figure 2.11. An example with jo =1,m =2,m’ = 3.

Case 2. |C;,| = 4.

Let C;, = vy, vq, v3, vy, v1. By Lemma , dcio(a:) < 2 for each z € X. Since
de,, (X) > 8, dc, (x) = 2 for each x € X. No vertex in X has consecutive neighbors
in C;,, otherwise, we can immediately find a 3-cycle, contradicting (1). Thus for each

z € X, either N, (z) = {v1,v3} or N, (z) = {va, va}.

Subcase 1. All four vertices in X have the same two neighbors in Cj,.
We may assume that N¢, (X) = {vi,v3}. Then Hlzy,z4], v1, 71 and H[zs, 73],

vs, T9 are two disjoint cycles.

Subcase 2. Three vertices in X have the same two neighbors in Cj,.

Suppose that =1, x4 have the same two neighbors in C;,. Then we may assume that

H 1 ... T4

X3

Ci,

(%1 V2 U3

Figure 2.12. An example with hg =2 and h; = 1.
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X Ty
®

Uy x3

Ciy

(%1 % U3 V4

Figure 2.13. An example where vy € N¢, (2) and vy € Ng, (23).

H 1 A

T2 €3
Cio

¢ v
U1 V2 U3 4

Figure 2.14. The case when z; and x4 have the same neighbors in Cj,.

v1 € Ng,, (21) N Ney, (74), and Hlxy, 24], v1, 21 is a cycle. Since dg, (z;) = 2 for each
J €42,3}, Noyy v (75) # 0. Then (H[xy, 23] U (Cj, — v1)) contains the other disjoint
cycle (see Figure . Suppose that z1, 4 do not have the same two neighbors in
C;,- Since x9, x3 have the same two neighbors in Cj,, we repeat the above arguments,

replacing z1, x4 with zo, x3.

Subcase 3. Two vertices of X have the same two neighbors in C;,, and the other two
vertices of X have the same two neighbors, different from the neighbors of the first
two.

Suppose that zq,x, have the same two neighbors. We may assume that v; €
Ne,, (x1) N Ne,, (x4). Then Hlxy, x4, v1, x1 is a cycle. Since xo, x3 have the same
two neighbors, different from the neighbors of x1 and x4, H|[zs, x3], vg, x5 is the other
disjoint cycle (see Figure . Suppose that x1, x4 have different neighbors. We
may assume that v; € N, (x1) and vy € Ncio(a:4). Then H[xy,x4), vo, v1, T1 is &
cycle. Since o, x3 have the neighbors, different from vy, vy, (H[zg, x3) U {vs, v4})

contains the other disjoint cycle. This completes the proof of Claim 2. O

Since H is a path by Claim [2| let H = zy, 2o, ..., 3 (t > 8). Let X =
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{z1,23,25,2;}. Then X is an independent set with dy(X) = 6, and dg(X) >
(8k—3)—6=8k—9>T7(k—1), since k > 2. Thus either d¢,(X) > 8 for some cycle
Co in €, or do(X) = 7 for every cycle C in €. If do(X) > 8 for some cycle C' in
%, then we have the minimum possible degree sequences (3,3,2,0), (3,3,1,1), (3,2,2,1)
or (2,2,2,2) from X to C. If do(X) = 7 for some cycle C' in €, then we have the
minimum possible degree sequences (3,3,1,0), (3,2,1,1), (3,2,2,0) or (2,2,2,1) from X
to C.

Claim 3. If there exists a degree sequence at least (3,3,1,0) from X to C, then there

ezist two disjoint cycles in (H U C).

Proof. By Lemma , |IC| = 3. Let C' = vy, vy, v3, v1. We may assume that
de(zy,) = 1 for some iy € {1, 3}, otherwise, ig € {5,1}, and we may argue in a similar
manner from the other end of the path H. Let v; € Ng(x;,). First, suppose that
ip = 1, that is, do(z1) = 1. Then do(z;,) = de(xj,) = 3 for some jy, jo € {3,5,t}
with j1 < jo. Thus Hlxy,xj,], v1, 71 and z;,, vs, v2, T, are two disjoint cycles. Next,
suppose that iy = 3, that is, do(z3) = 1. If do(21) = 0, then since de(x;) = 3 for each
Jj € {5,t}, w3, x4, x5, v1, x3 and x4, v3, V9, T4 are two disjoint cycles. If do(z1) = 3,
then @y, x9, x3, v1, 1 is a cycle, and since do(xj,) = 3 for some jy € {5,t}, zj,, vs,

va, Tj, is the other disjoint cycle. O

Claim 4. If there ezists a degree sequence at least (2,2,2,1) from X to C, then there

exist two disjoint cycles in (H U C).

Proof. By Lemma , |C] < 4. Let C = vy, va, ..., vy, vi, where ¢ = |C|. We
may assume that de(x;,) = 1 for some iy € {5,t}, otherwise, iy € {1,3}, and we may

argue in a similar manner from the other end of the path H. Let v; € Ne(zy,).

Case 1. No(x1) N Ne(x3) # 0.
First, suppose that vj, € Ny, (21) N No_y, (x3) for some 2 < jo < g. Then 4,

Ty, T3, Vjy, T1 18 a cycle. Since deo(x,) = 2 for v € {5,t} — {io}, Ne—,, (v,) # 0.
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Then (H[zs,z:) U (C — vj,)) contains the other disjoint cycle. Next, suppose that
v1 € No(x1) N No(xs). Then xq, xs, x3, v1, o1 is a cycle. Since dg(z,) = 2 for
r € {5,t} — {io}, if v1 & Ne(z,), then (z, U (C — vy)) contains the other disjoint
cycle. Thus we may assume that vy € No(z,). Then H|[zs, 2], v1, x5 is a cycle. Since
do(z;) = 2 for each i € {1,3}, No—y, (z;) # 0, and (H[z1, 23] U (C' — v1)) contains the

other disjoint cycle.

Case 2. Neo(x1) N Ne(x3) = 0.

In this case, if |C'| = 3, then since d¢(x;) = 2 for each i € {1,3}, No(x1)NNe(x3) #
(), contradicting our assumption. Thus |C| = 4, and either Ng(x1) = {v1,v3} and
Ne(x3) = {va, 04} or No(zq) = {va,v4} and Neo(x3) = {v1,v3}.

Suppose that Ne(x1) = {v1,v3} and No(z3) = {v2, v4}. Suppose that de(x5) = 1.
Then z5v; € E(G) by our earlier assumption, and do(z;) = 2. If 20 € E(G), then
Hlzs, 2], v1, x5 is a cycle, and x3, vy, v3, va, 3 is the other disjoint cycle. Thus
Neo(xy) = {va,v4}. Then Hxg, 4], vy, 3 and x4, v3, v, v1, 1 are two disjoint cycles.
Suppose that de(x;) = 1. Then we can find two disjoint cycles in (H U C) similar to
the case where dg(x5) = 1.

Suppose that Ne¢(z1) = {ve,v4} and Ne(x3) = {v1,v3}. Then xy, vy, v3, Vo, x1 is
a cycle, and since d¢(z;,) = 1 for some iy € {5,t} and z;,v1 € E(G), H[zs, 4], v1,

x3 is the other disjoint cycle. O

By Claims [3| and [4] if do(X) > 8 for some cycle C' in %, noting the minimum
possible degree sequences, then (H U C') contains two disjoint cycles. Thus we may
assume that do(X) = 7 for every cycle C' in %.

1 Ty T3 T4 Ty Tg Tt
O

X = {$1,$37375,5€t}, X' = {Jf27ilf4,lli671ft}

Figure 2.15. Sets X and X'.
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Let X' = {x2, %4, 6, 2:} (see Figure 2.15). Then X’ is an independent set with
dg(X') =7, and de(X') > (8k —3) — 7 =8k — 10 > 6(k — 1), since k > 2. Thus we
can choose some cycle C' in € such that do(X’) > 6. And we know that do(X) =7
, since X sends seven edges into every cycles in €. Since do(z;) < 3 by Lemma ,
note that do(X' —{z;}) > 6 —3 = 3. Now, we have only to consider degree sequences
(3,2,1,1) and (3,2,2,0) from X to C' by Claims [3[ and . Since both degree sequences
contain degree 3, |C| = 3 by Lemma [2.A] Let C' = vy, vs, v, v1.

Case 1. The sequence is (3,2,1,1).

Suppose that do(z1) = 3. By the degree sequence of this case, and since |C| = 3,
there are distinct integers iy, 4o € {3,5,t} with ¢y < iy such that No(z;,) N No(z4,) #
(). Without loss of generality, we may assume that v; € Ng(z;,) N No(z,). Then
Hlz;,, xi,),v1, 24 is a cycle. Since deo(xy) = 3, 1, vs, va, 1 is the other disjoint
cycle. If do(x;) = 3, then we can find two disjoint cycles similar to the case where

de(x1) = 3. Thus we may assume that de(x;,) = 3 for some ig € {3,5}.

Ty Ty T3 T4 Tz Tg " Ty
o o o

Suppose that do(z1) = 2. Without loss of generality, we may assume that vy, vy €
Ne(xq). First, suppose that do(x3) = 1. Then de(x5) = 3. If 2301 € E(G), then z,
T, T3, U1, 1 and x5, vs, Uy, Ty are two disjoint cycles. If z3v, € E(G), then we can
find two disjoint cycles similar to the case where x3v; € E(G), replacing vy with vs.
If z3v3 € E(G), then x3, x4, x5, v3, x3 and 1, va, vy, x1 are two disjoint cycles. Next,
suppose that deo(x3) = 3. If x5v3 € E(G), then x3, x4, x5, vs, T3 and x1, ve, vy, T1
are two disjoint cycles. Thus z5v;, € E(G) for some j, € {1,2}. If j, = 1, that is,

x50 € E(Q), then x3, vs, vg, x3 is a 3-cycle, and ((H — x3) U vy) is connected and
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not a path. Thus we can find two disjoint cycles in (H U C') as in the proof of Claim
2] Similarly, we can prove the case where j, = 2.

If do(z;) = 2, then we can find two disjoint cycles similar to the case where
dc(x1) = 2. Thus we may assume that de(x,,,) = 2 for some mg € {3,5}.

Then de(z;) = 1 for each i € {1,t}. Let 2301 € E(G). Then we may assume that
de(x3) = 2 and do(25) = 3, otherwise, do(z3) = 3 and de(x5) = 2, and we may argue
in a similar manner from the other end of the path H. If x3v; € F(G), then H|[zq, x3],
vy, x1 and x5, vs, Ve, 5 are two disjoint cycles (see Figure . Thus z3v; € E(G)
for each i € {2,3}. If z;u1 € E(G), then H[xs, x4, v1, x5 and x3, vs, vy, T3 are two
disjoint cycles. If x,v9 € E(G), then H|xs, 4], ve, x5 and H|xy, z3], vs, v1, 1 are two
disjoint cycles. If z,v3 € E(G), then H|xs, x|, vs, x5 and H[xq, z3], va, v1, 1 are two

disjoint cycles.

Xy T2 T3 T4 Tz Tg " Tt
H ® ° —o
C U1 V2 V3

Figure 2.16. Two disjoint cycles when z3v; € E(G).

Case 2. The sequence is (3,2,2,0).

We may assume that do(z;,) = 0 for some iy € {1,3}, otherwise, iy € {5,t},
and we may argue in a similar manner from the other end of the path H. Let
Jo € {1,3} —{ip}. Then de(xj,) > 2. Without loss of generality, we may assume that
v1, V2 € Ne(xj,).

Suppose that de(zs) = 2. If de(z;,) = 2, then Ne(z;)) N Ne(zs) # 0; say
v € Ne(zj,), and H[zj,, x5, v, ;. is a cycle. Since do(z¢) = 3, (2, U(C —v)) contains
the other disjoint cycle. If do(xj,) = 3, then do(x;) = 2 for each j € {5,¢}. Since

Ne(zs5) N Ne(xy) # 0, say v € No(ws) N Ne(xy), Hlxs, 2], v, x5 is a cycle. Since
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do(zj,) = 3, (zj, U (C —v)) contains the other disjoint cycle.

Suppose that de(x5) = 3. If [No(xj, )N\ Ne(x,)| = 1, then let v € Ne(zj,) —Ne ().
Then H{z;,, zs5], v, z;, is a cycle, and (z;U(C' —v)) contains the other cycle (see Figure
. Thus xj,, z; have all the same neighbors in C, say vy, v2. Recall that do(X') >
6. It follows that do(X' — {z:}) > 4 and do(X' — {z:} — {z5}) = de({x4,26}) > 1.
Suppose that Ng(xg) # 0. If No(z6) N Ne(xy) # 0, say v € No(xg) N Ne(zy), then
Hlzg, x4, v, x¢ is a cycle, and (z5 U (C' — v)) contains the other disjoint cycle. If
Neo(z6) N Ne(zy) = 0, then xgvs € E(G). Thus x5, 6, vs, x5 and xy, vg, v, x; are
two disjoint cycles.

Ty T2 T3 T4 Tz Tg - Ty
H o—o—o

C U1 (%) V3

Figure 2.17. Two disjoint cycles. Example when v = v3.

Suppose that No(z4) # (0. Then replacing x¢ in the above argument with x4 and
x; with 1, we can prove this case by the same arguments above. Thus N¢(x;) = ()
for each ¢ € {4,6}. This implies that dc(z2) = 3. Then xj,, 2, v1, xj, and x5, v, Vo,

x5 are two disjoint cycles. O

2.4 Proofs of Lemmas

2.4.1 Proof of Lemma [2.1]

Let F,C,z; (1 < i < 4) be as in Lemma . Let Fy, F5 be two components of F,

C = vy, vy, v3, V1, and X = {x1, x5, x3,24}. Now, we consider two cases.
Case 1. At most two vertices of X lie in the same component of F'.

Since de(X) > 9, de(x;,) > 3 for some 1 < 4y < 4. By |C| = 3, de(z;) < 3
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for each 1 < i < 4. Thus dc(z;,) = 3. Without loss of generality, we may assume
that i = 1, that is, do(z1) = 3. Then deo({z2,x3,24}) > 6. Also, we may assume
that do(x2) > do(3) > do(xy). Now, we claim that do({z2, x3}) > 4. Otherwise, if
do({z2, z3}) < 3, thende(z;,) < 1forsome jo € {2,3}. That implies that do(z4) < 1,
since dg(x4) is the smallest degree in {xo, x3,24}. Then de({xe, x3,24}) < 3+1=14,a
contradiction. Thus the claim holds. Noting our assumption of this case, {1, zo, 23}
is a set of leaves from at least two components of F'. Since de¢({x1, z2,23}) > 3+4 =7,

Lemma applies, completing this case.
Case 2. Three vertices of X lie in the same component of F.

Without loss of generality, we may assume that 1, xq, x3 € V(F}), 24 € V(F}),
and do(x1) > do(xe) > de(x3). Recall that de(X) > 9. It follows that the minimum

possible degree sequence S from X to C'is (3,3,3,0), (3,3,2,1) or (3,2,2,2).

Subcase 1. S = (3,3,3,0).

If do(z;,) = 0 for some 1 < ig < 3, then ig = 3, that is, do(z3) = 0. Now, we
take {x1, 29,24} that is a set of leaves from at least two components of F. Since
de({z1, xe, 24}) = 9, Lemma applies. If do(z4) = 0, then deo(x;) = 3 for each
1 <4 < 3. Since all the ;s are leaves, x3 does not lie on the path in F} connecting x;

and 5. Then Fi[xy, x5, v1, 1 and x3, v3, vg, o3 are two disjoint cycles in (F U C').

Subcase 2. S = (3,3,2,1).
Take {x1, 9, x4}. If do(z4) € {1,2}, then do({z1,22}) > 6. If do(x4) = 3, then
do({z1,22}) > 5. Since do({x1, 22, 24}) > 7 for all cases, Lemma [2.B] applies.

Subcase 3. S = (3,2,2,2).

Take {1, 29,24} If do(z4) = 2, then do({x1,22}) > 5. If do(zs) = 3, then
do({z1,22}) > 4. Since de ({1, 22, z4}) > 7 for all cases, Lemma [2.B| applies. O
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2.4.2 Proof of Lemma 2.5

Proof of (i). Let vy, v, v3, vy, v5 be the vertices such that de, (v;) = 2 for each
1 <4 <5, appearing in this order on Cy. Let wy,wy € N¢, (v1) appear in this order
on Cy. The neighbors of vy partition C} into two intervals Cy(wy, ws] and C;(wg, wy].
We claim that each of vy, v3, v4, v5 has one neighbor in different interval of C4.
First, suppose that v;,,v;,,v;, for some 2 < i3 < 45 < i3 < 5 have both their
neighbors in a common interval of Cy, say C(wy,wy]. We may assume that at least
one of their neighbors is not ws. Let 2z, € Ney(wywe) (Vi) and zi, € Nej(wy ws) (Viy)-
Then Cf[zi,, zi,], Cy [Viy, vi,], 2, and Ci[wy, w1], v1, wy form a shorter pair of disjoint

cycles, since vy, is not used (see Figure [2.18)).

Figure 2.18. Shorter cycles in (Cy U Cy).

Next, suppose that v;,,v;, for some 2 < 43 < 15 < 5 have both their neighbors
in a common interval of C, say C}(w;,ws]. Then we may assume that i; = 2 and
19 = b, otherwise, we can prove the other pairs of 7; and iy by the same arguments
above. Let 2, € Ney(wyw,)(v2) and zi, € Neywywe) (V). I Neywyw) (v5,) # 0 for
some jo € {3,4}, then there exist shorter two disjoint cycles. Thus N¢, (w,,ws)(v;) = 0
for each j € {3,4}. Since d¢,(v;) = 2 for each j € {3,4}, Ney(ws,uw](v;) # 0. Let
Zis € Ny (waun)(v3) and zi, € Ney(wswi)(va). Then C#l2i,, 2], Cy [va,v3], 2, and
Ci 2,5 23y, Calvs,va], 2, are shorter two disjoint cycles, since wy is not used (see

Figure [2.19)).
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Figure 2.19. Shorter cycles in (C7 U Cy).

Finally, suppose that v;, for some 2 < 45 < 5 has both the neighbors in an interval
of C1, say Cy(wy,wy]. Then we have only to consider ig = 2 or iy = 3, otherwise,
we take a cycle from vy in the opposite direction. First, suppose that i = 2. Let
21, T2 € Nej(wi,wo](V2), appearing in this order on Cy. If x5 # wy, then C[wy, x5],
ve, 1 and Ciws, wy], vy, we are shorter two disjoint cycles, since v is not used.
Thus xo = wy. Let y1,y2 € Ne,(v3), appearing in this order on C}. Suppose that
y1 € C(wy, wy). Then C5Flay, y1], Cy [vs, va], 21 and Cy[wy, w], v1, wy are shorter two
disjoint cycles, since vy is not used. Thus y; & C1(wq,ws), that is, y; € C1lwsg, ws].
Note that yo € Cy(wq,wy]. If y; # we, then Cylz1,ws|, vo, x1 and Cily1, ya], vs, 11
are shorter two disjoint cycles, since v; is not used. Thus y; = we. If yo # wq, then
Cy[wa, Yo, v3, we and Chlwy, 1], Cy [va,v1], wy are shorter two disjoint cycles, since
vy is not used. Thus yo, = wy. Let 21,29 € N¢, (vy), appearing in this order on Cf.
Suppose that z; € Ci[wy, ws). Then Cilwy, 21|, Cy [v4, v3], w1 and Cylvy, vol, wa, vy
are shorter two disjoint cycles, since vs is not used. Suppose that z; € Cjlws, wy).
Then C1[wy,x1], Cy [v2,v1], wy and Cy|ws, 21], Cy [vy, v3], wo are shorter two disjoint
cycles, since vy is not used. Next, suppose that ig = 3. Then, by the same arguments

as the case where 7o = 2, we have shorter two disjoint cycles, replacing v, with vs.
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Thus each of vy, v3, v4, vs has one neighbor in each interval of C. Let z €
NCl(’UJLIUQ](UQ)? y e NC1(w1,w2](v3)7 Z € NC1(w2,w1](U4>7u € NCl(w2,w1](U5)' Then Cli[xv y]?
Cy [vs,v9], x and CT [z, u], Cy [vs,v4], 2 are shorter two disjoint cycles, since v; is not

used. O

Proof of (ii). Let vy, v, € V(C3) such that d¢,(v1) = 5 and d¢, (v2) = 3, appearing
in this order on Cy. Let wy, we, ws, wy, ws € N¢, (v1), appearing in this order on
C4, and let wuq, ug, uz € Ng,(v2), appearing in this order on C;. The neighbors of
vy partition C into five intervals C}(w;, w;11],1 < i <5 (mod 5). Suppose that u;,,
wj, € C1(Wpy, Wing+1] (mod 5) for some 1 < ig < jo < 3 and for some 1 < my < 5.
Without loss of generality, we may assume that ig = 1, jo = 2 and mg = 1. Then
Cylug, ug), ve, uy and Cy|ws, wy], vy, ws are shorter two disjoint cycles, since w; is
not used. Thus neighbors of v, are contained in different intervals. Since C is
partitioned into five intervals, some two neighbors of v, lie in neighboring intervals,
say uj € (wy,wsy] and uy € Cp(we, ws]. Then Cilug, us], ve, u; and Chlwy, ws], vy, wy

are shorter two disjoint cycles, since w; is not used. O]

Proof of (iii). Let vy, v, vs, v4, v5, vg be the vertices on Cy with the degree
sequence (3,1,1,1,1,1), appearing in this order on Cy. Without loss of generality, we
may assume that de, (v1) = 3 and d¢, (v;) = 1 for each 2 < i < 6. Let wy, wq, w3 €
Ne¢, (v1), appearing in this order on C. The neighbors of v; partition C; into three
intervals: C}(wy, ws], C1(we,ws], C1(ws,w;]. Then there exist some integer 1 <
ip < 3 and distinct integers 2 < ji < j» < 5 such that Ne, (w4 (V) 7 0 and
Ny (wigwig 11 (Vi) 7 (. Without loss of generality, we may assume that ip = 1. Let
Ut € Ney(unws) (Vjy) and s € Ney(wywa)(Vj). Then Cif[ur, us), Cy [vj,,v;], w1 and

Cy[ws, wy], vy, ws are shorter two disjoint cycles, since vg is not used. O]

Proof of (iv). Let vy, v, v3, v4 be the vertices on Cy with the degree sequence
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(3,2,1,1), say d¢, (v1) = 3, de, (ve) = 2 and dg, (v;) = 1 for each i € {3,4}. Suppose
that v, ve are in this order on Cy. Let wy, wq, ws € Ng,(v1) be in this order on
C4, and let uy, us € Ng,(vg) be in this order on C;. Let vs, vy be in this order on
Cy. Let z; € Ng,(v3), and let z5 € Ng, (v4). The neighbors of vy partition Cy into
three intervals: Cy(wy, ws], Cy(waq, ws], Cy(ws, wy]. If vy has both its neighbors in the
same interval in (', then we can find shorter two disjoint cycles. If the neighbors of
vy are into two different intervals of C and neither is in {w;, wy, w3}, then we can
also find shorter two disjoint cycles. Thus the neighbors of v, are into two different
intervals of C'; and at least one of them is at an endpoint of these intervals. Without
loss of generality, we may assume that u; € Cy(wy, ws] and uy € C(wsy, w3]. Now, we

consider two cases.
Case 1. v3, vg € Cy(v1,v3) or vz, vy € Cy(va,v7).

Without loss of generality, we may assume that vs, vy € Chy(vy,vg). If 29 €
C(wy,ws), then CF[uy, 2], Calvy, vo], uy and Cy[ws, w1 ], vy, w3 are shorter two disjoint
cycles, since vz is not used. If zo € Cjws,w), then Cilug, z5], Csvy, o], us and
Cy[wy, we], vy, wy are shorter two disjoint cycles, since vz is not used. Thus zo = w;.

If uy € C1(we,ws), then Cylug, us], vo, u; and Cylws, wy], v1, ws are shorter two
disjoint cycles, since v3 is not used. Thus uy = ws.

If 21 € C1(ws,uy), then CF[z, w1, Calvy, vs], 21 and Cy[uy, ws), va, uy are shorter
two disjoint cycles, since vy is not used. Thus z; € Cy[ug, ws].

Suppose that u; € Cy(wy,wsy). If z1 € Cylug, ws), then Cylwy, z1], Colvs, vyg], wy
and C1[wsy, ws], vy, wy are shorter two disjoint cycles, since vy is not used. If z; = ws,
then Cslvy,vs], we, vy and Ciwy, u1], Cy [ve, v4], wy are shorter two disjoint cycles,
since ws is not used. If z; € C(way, ws], then Cy[z1,ws], Calvy, vs], 21 and Cywy, us],
Cy [va, v4], wy are shorter two disjoint cycles, since wsy is not used. Thus u; = ws.

Now, we consider two disjoint cycles C" = wy, Csv1, v4], wy and C” = Cy|ws, w3,

v9, wy. Note that |Cy| > 6. If Cy(vy,ve) # 0 or Cy(vg,v1) # O, then C’ and C”
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are shorter two disjoint cycles. Thus Co(vy,v9) = 0 and Cy(ve,v1) = 0. First, sup-
pose that z; € Cilwg, w3). If Co(vy,v3) # 0, then Clws, w], vy, ws and Calvs, va],
Chwe, z1], v3 are shorter two disjoint cycles. If Cy(vs, vq) # 0, then Cy[ws, 21], Cy [vs, v1],
wy and Cf|ws, w1], Calvy, v9], ws are shorter two disjoint cycles. Next, suppose that
21 = ws. If Cy(vy,v3) # 0, then Cywy, ws], v, wy and Cyfvs, va], ws, vs are shorter
two disjoint cycles. If Cy(vs,vy4) # 0, then Colvy, vs], w3, v1 and Cy[wy, wel, C5 [v2, v4],

wy are shorter two disjoint cycles.
Case 2. v3 € Cy(v1,v2) and vy € Co(vg, v1).

If 2, € Cy (w1, ws), then C[uy, 21], Calvs, va], uy and Cy[ws, wy], vy, w3 are shorter
two disjoint cycles, since vy is not used. If z; € Cy[ws, wy), then Cilug, z1], Colvs, ve],
up and Chwy, we], vy, wy are shorter two disjoint cycles, since vy is not used. Thus
z1 = wy. Then Cyluy, vs], wy, vy and C4[ug, ug|, va, uy are shorter two disjoint cycles,

since vy is not used. ]

Proof of (v). Let vy, vg, vz be the vertices on Cy with the degree sequence (3,3,1).
Suppose that vy, vo, v3 exist in this order on C5. Without loss of generality, we may
assume that de, (v;) = 3 each ¢ € {1,2} and d¢,(v3) = 1. Suppose that wy, ws,
w3 € N¢, (v1) exist in this order on Cy. Let W = {wy, wq, w3}. These neighbors of
vy partition Cy into three intervals: C(wq,ws], C1(we,ws], C1(ws,wq]. Let wuy, ug,

us € N¢, (v2), and suppose that uq, us, uz are in this order on Cj.
Case 1. Some two neighbors of vy are in the same interval of Cf.

Without loss of generality, we may assume that uj, us € Cj(wq,ws]. Then
Cilug, us], ve, up and Cilws,w], vy, wz are shorter two disjoint cycles, since v3 is

not used.
Case 2. No two neighbors of vy are in the same interval of C}.

Then uy € Cy(wy,ws), us € C1(wsy, ws), and uz € Cy(ws,w;]. First, suppose that
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Uiy, Ujy € W for some 1 < ip < jo < 3. Without loss of generality, we may assume
that i = 1 and jy = 2, that is, u; € C} (w1, ws) and uy € C1(we, ws). Then Cyluq, us),
v9, uy and Cf[ws, w1], vy, ws are shorter two disjoint cycles, since vz is not used.

Next, suppose that u;, € W for only some 1 < iy < 3. Without loss of generality,
we may assume that i = 1, that is, u; € Cj(wy,wz). Then note that ug = wy,
C1wy, uq], ve, wy and Chws, ws], vy, wy are shorter two disjoint cycles, since v3 is not
used.

Finally, suppose that u; = w;1 (mod 3) for each 1 < i < 3. Without loss of
generality, we may assume that vzz; € E(G) for z; € (wq, ws]. Now, we have two
choices for constructing shorter two disjoint cycles. We may construct C[wq, ws], va,
wy and Cyz1,ws], C5 vy, vs], z1, or Cylwy, ws], v1, wy and Cy[z1, ws], Colva, vs], 2.
Since |Cy] > 6, one of these two choices must leave out a vertex of Cy, and hence we

may form shorter two disjoint cycles. O

2.4.3 Proof of Lemma 2.6
Let C' = vy, 09, v3, v1.
Case 1. The sequence is (3,3,2,0).

Suppose that de(z1) = 0. Then de(y;,) = 3 for some ig € {1,4,t}, and we may
assume that ig = 1, that is, do(y1) = 3. Since do(y,.) > 2 for each r € {i,t} and
|C| = 3, vmy € Ne(y:) N Ne(y:) for some 1 < mg < 3. Without loss of generality, we
may assume that mg = 1. Then Hs[y;, y], v1, y; and y1, vs, ve, y; are two disjoint
cycles.

Suppose that do(z1) = 2. Without loss of generality, we may assume that vy, vy €
Nc(x1). Then xq,vq,v1, 271 is a cycle. Since de(yi,) = de(yj,) = 3 for some iy, jo €
{1,4,t} with iy < jo and |C| =3, vs € Ne(yi,) N Ne(y;,). Then Halyiy, yiols s, Yig 18

the other disjoint cycle.
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Suppose that do(z1) = 3. Since de(ys,) > 2 and de(y,,) > 2 for some ig, jo €
{1,4,t} with iy < jo and |C| = 3, v, € Ne(¥i,) N Ne(yj,) for some 1 < mg < 3.
Without loss of generality, we may assume that mg = 1. Then Hs[y;,, y;,], v1, ¥i, and

x1, U3, Vg, 1 are two disjoint cycles.
Case 2. The sequence is (3,3,1,1).

Suppose that de(z1) = 1. Then de(y;,) = 3 for some ip € {1,4,t}, and we may
assume that iy = 1, that is, do(y;) = 3. Since one of y; and y, has degree 3 to C' and
the other one of them has degree 1 to C, noting that |C| = 3, v, € Neo(yi) N Ne(ye)
for some 1 < my < 3. Without loss of generality, we may assume that mg = 1. Then
Hslyi, yi], v1, yi and yy, vs, vg, Y1 are two disjoint cycles.

Suppose that deo(x1) = 3. Since one of ¥y, y;, y; has degree 3 to C' and the others of
them have degree 1 to C, dc(y;,) = 3 and de(yj,) = 1 for some distinct ig, jo € {1,4,%}.
Then note that either iy < jo or 49 > jo. Since |C| = 3, vy, € Ne(yiy) N Ne(y;,) for
some 1 < my < 3. Without loss of generality, we may assume that mg = 1. Then

H5 [Yios Yjo)s V1, Ui and a1, v3, v2, x1 are two disjoint cycles. O
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Chapter 3

Degree Conditions to Imply the
Existence of Vertex-Disjoint

Chorded Cycles

In this chapter, we extend our work on vertex-disjoint cycles to vertex-disjoint chorded
cycles. In particular, we consider the existence of a large set of vertex-disjoint chorded
cycles in a graph. Let G be a graph such that |G| > 11k + 7 and 04(G) > 12k — 3 for
integer k > 2. We prove that such a graph contains a set of k vertex-disjoint cycles.
We also conjecture a generalized result for 04(G). And we show that the degree sums

in the result on 04(G) and the conjecture for o4(G) are sharp.

3.1 Introduction

An extension of the study of disjoint cycles is that of disjoint chorded cycles. A
chord of a cycle is an edge between two vertices of the cycle that is not an edge of
the cycle. We say a cycle is chorded if it induces at least once chord and doubly
chorded if it induces at least two chords. As noted in the introduction, interest in

ensuring a chorded cycle as a subgraph dates back to 1960, when Pésa first asked what
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conditions would imply the existence of a chorded cycle in a graph. In 1963, Czipzer
(see Lovész [12], problem 10.2) provided an answer to the question by proving that if
a graph has minimum degree at least 3, it must contain a chorded cycle. In the years
since, results have focused on guaranteeing the existence of a set of k disjoint chorded
cycles. Finkel [5] proved a Corrddi-Hajnal type result for chorded cycles, showing
that if |V(G)| > 4k and 6(G) > 3k, then G contains k vertex-disjoint chorded cycles.
Chiba et al. [1] extended this result, proving that for a graph G of order at least
3r + 4s, if 02(G) > 4r + 6s — 1, then G contains r + s vertex-disjoint cycles, with s
of them chorded. The following corollary is a direct consequence of this theorem of

Chiba et al. [1]:

Corollary 1. Suppose that |G| > 4k and o9(G) > 6k — 1. Then G contains k

vertex-disjoint chorded cycles.

Both Corollary 1 and Finkel’s result are sharp as evidenced by the graph Gy =
Ksk—1, n—sk+1. For this graph, 0(Gy) = 3k — 1,09(Go) = 6k — 2 and 04(Gy) =
3kt — t. But Gy cannot contain k vertex-disjoint chorded cycles, as any chorded
cycle must contain 3 vertices from the 3k — 1 partite set. Hence, in general, at least
0(G) > 3kt —t + 1 is necessary to imply G contains k vertex-disjoint chorded cycles.
This pattern uncovered in the sharpness example for Corollary (1] and Finkel’s result

motivated Conjecture |3.1]

Conjecture 3.1 ([9]). Let G be a graph of sufficiently large order. If o4(G) > 3kt —
t+ 1 for any two integers k > 2 and t > 1, then G contains k vertex-disjoint chorded

cycles.

Note that the conjectured degree sum condition would be sharp by the same
example. The purpose of this chapter is to further extend the known results on
chorded cycles and to add to the evidence for Conjecture by proving the case

when t = 4. We show the following:
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Theorem 3.1 ([9]). If G is a graph of order n > 11k + 7 and if 04(G) > 12k — 3,

then G contains k vertex-disjoint chorded cycles.

It follows from the graph G, described above that Theorem is sharp with
respect to the degree sum condition o4(G) > 12k — 3.

The proof of Theorem in Section 3.3 proceeds by contradiction using an edge-
maximal counterexample. An edge-maximal counterexample G does not contain k
chorded cycles, but if any edge is added, the resulting graph does contain k chorded
cycles. Thus, G must contain a set ¢ of kK — 1 vertex-disjoint chorded cycles. We
let H=G\ U V(C;); that is, H is what is left in G after the chorded cycles are
removed. We first prove that the order of H must be large enough. Then we show
that H must contain a large connected component, and in this connected component,
we find a set X of four independent vertices having small degree in H. Finally, we
use the o4 condition to find many edges between the set X and some cycle C' in the

set €. We get a contradiction by constructing two vertex-disjoint chorded cycles in

(HUC).

3.2 Preliminaries

In the proof of Theorem 3.1 we make use of the following Lemmas, as well as Theorem
[3-2|due to Czipzer (Lovész [12], problem 10.2), and Theorem|3.3] a direct consequence
of Chiba et al. [1].

Theorem 3.2. (Czipzer (see [12], problem 10.2)) Suppose |G| > 4 and §(G) > 3.

Then G contains a chorded cycle.

Theorem 3.3. (Chiba, Fujita, Gao, Li [1]) Suppose that |G| > 4k and 02(G) > 6k—1.

Then G contains k vertex-disjoint chorded cycles.

Lemma 3.1. Let € = {C,C,,...,C.} be a minimal set of r vertex-disjoint cycles

wm a graph G. For any i, 1 <1 <7, the cycle C; cannot have two parallel chords.
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Proof. This follows easily from the minimality of . [

Lemma 3.2. Let € = {C,C,,...,C.} be a minimal set of r vertex-disjoint cycles
in a graph G. If |C;| > 7 for some 1 < i < r, then C; has at most two chords.

Furthermore, if it has two chords, these chords must be crossing.

Proof. Suppose C; contains at least three chords. By Lemma no two of them
can be parallel. Thus they are all mutually crossing. Label the endpoints of three of
these chords vy, vs, ... vg in that order. Because the chords are mutually crossing, the
three chords are given by wvyvy, vous, v3v5. These six endpoints partition the vertex
set of C; into six path segments: Cj[vy, v2), Ci[ve,v3), ..., Ci[vs,v1). Since |C;| > 7,
some segment contains at least one vertex of C; which is not an endpoint of one of
the three chords. Without loss of generality, say C;[v, v2) contains some vertex of C;
other than vy. Then, vy, C;[vs, v1], C; [v4, V2] is a smaller chorded cycle. (See Figure

2

m) Thus, C; contains at most two chords, and by Lemma they must cross. [

22N

Figure 3.1. A smaller chorded cycle.

Lemma 3.3. Let r be a positive integer and € = {C,...,C.} be a set of r minimal
vertex-disjoint chorded cycles of a graph G such that the number of Kys in € is
maximal. And suppose G does not contain r+ 1 vertex-disjoint chorded cycles. Then,
de,(z) < 4 for any v € V(G) — U;_,V(Cj) and any i,1 < i < r. Furthermore,
if C € ¢ and x € V(G) — Uj_,V(C})) such that do(z) = 4, then C = Ky and if
de(x) =3, then |C| <5 or C is a type 2 chorded siz-cycle (see Definition .

Proof. Suppose we have a chorded cycle C' and a vertex z € V(G) — Uj_,V(C}) such
that do(z) > 4.
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Claim 5. If dc(z) > 4, then cycle C is a 4-cycle, and hence also do(x) = 4.

Proof. Suppose to the contrary |C| > 5. Consider four neighbors of x on C, say
{v1,v9,v3,v4} = X C Ng(x), in that order. These neighbors define five intervals
Clvi,viz1) on C, where i = 1,...4, and for i = 4,7+ 1 = 1. Since |C| > 5, by the
Pigeonhole Principle, a vertex of C'— X lies in one of the intervals Cv;, v;11). Without
loss of generality, say there is a vertex of C' — X in C[vy,vy). Then (Clvg, v4] U x)
induces a shorter chorded cycle in (C' U x), contradicting the minimality of €. Thus,
dc(x) > 4 implies |C| = 4, which in turn implies do(x) = 4. Hence, for any x €

V(G) — Ui, V(Cj) and for any i,1 <4 < r, we know that do(x) < 4. ]
Claim 6. If |C| =4, then C = Kj.

Proof. Suppose C # K4. Then, C = K4 — e. Label the vertices of C' with vy, vy, vs,
vy, in that order, such that the chord is given by vyvs. Then, ({vy, v, v3} Uz) = K.

This contradicts the fact that the number of K s in ¥ was maximal. O

Now suppose d¢(x) = 3.

Claim 7. Either |C| <5 or C is a type 2 chorded siz-cycle.

Proof. Let X = {v1,vs,v3} be neighbors of x in C' in that order on the cycle. If
|C| > 7, then some interval defined by two consecutive neighbors of x contains at
least two vertices of C'— X. Without loss of generality, say C[vy,v2) contains at
least two vertices of C'— X. Then (C[vq, v;] Uz) induces a smaller chorded cycle,
contradicting the minimality of . Thus, |C| < 7.

Suppose C'is a type 1 chorded six- cycle. Label the vertices of C' with x1, xs, ...,
xg in order such that the three-cycle is given by z1, o, x3, 1 and the five-cycle is
given by 1, x3, x4, 5, Tg, 1.

If = has two neighbors in the three-cycle, then (C[xy, 23] U z) contains a chorded

four-cycle. On the other hand, if x is adjacent to all three of the vertices outside of
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the three-cycle, that is, 24, x5, 26, we get a chorded four-cycle from (C[z4, ] U ).
Thus, x must be adjacent to one vertex in the three-cycle and two vertices outside
the three-cycle. Let x be adjacent to one of {1, x2,z3} and any two of {x4, x5, x4}

If x is adjacent to z1, then (x Uz U Clxy, z6]) contains a chorded five-cycle if z is
adjacent to x4, or contains a chorded four-cycle if z is not adjacent to x4. A similar
argument applies if z is adjacent to x3. Suppose z is adjacent to z5. Then, if z is
adjacent to x4, (x U C|xy, z4]) induces a chorded five-cycle xy, 3, x4, x, x9, x1 with
edge xox3 as a chord. Otherwise, if x is not adjacent to x4, it must be adjacent to
xg, and (x U C|xy, 23] U z6) induces a chorded five-cycle xq, x3, x9, x, g, 21 with
edge z1x9 as a chord. In all cases we can find a smaller chorded cycle, contradicting
the minimality of ¥". Hence, if do(x) = 3, the cycle C' cannot be a type 1 chorded
six-cycle. And since |C| < 7, it follows that either C'is a type 2 chorded six-cycle, or
|C| < 5. Thus, the claim holds. O

This completes the proof of Lemma |3.3 [

Lemma 3.4. Suppose we have three edges either all mutually parallel or all mutually

crossing, connecting two paths, Py, Py. Then there is a chorded cycle in (P, U Py)

Proof. Say the edges are x1yy, Toys, x3y3. Without loss of generality, let zq, x9, and
x3 appear in that order in P;. If the edges are mutually crossing, the endpoints ¥,
Y2, y3 must appear in the order ys, y2, y1 on P,. Else, the edges are all mutually
parallel, and the endpoints v, ¥, y3 must appear in that order in . In either case,

Py[z1, w3], ys, P5(ys,y1], 71 is a chorded cycle with s as a chord. O]

Lemma 3.5. Suppose we have at least five edges connecting two paths Py and Ps.

Then we can form a chorded cycle in (P U Pa) which leaves out at least one vertex

from Py or Ps.

Proof. Any two edges between P; and P, are either parallel or crossing. Since there

are five edges between P; and P, by the Pigeonhole Principle there must be either
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three mutually parallel edges or three mutually crossing edges. Then, by Lemma
M, we can form a chorded cycle in (P; U Pp). Suppose this chorded cycle uses every
vertex of P, and P,. Then the cycle has at least three chords, and by Lemma |3.2] a

shorter chorded cycle exists in (P, U Py). O

Lemma 3.6. Let xq, x5 be two vertices on a path Py, each having degree two to another

path Py. Then we can form a chorded cycle in (Py[x1,xs) U Py).

Proof. Let u;,uj, © < j, be z1’s neighbors on P, = w4, ..., us. If 2o has a neigh-
bor that lies in Py[uj, us] or Psluy, u;], then we can easily form a chorded cycle in

(Pi[z1, 2] U P). (See Figure[3.2])

Pl PQ Pl P2
() ) ° °
iﬁ Uj . Uk
uj Ui
z2
® ® Uk Z2 uj
) ) ) )
(a) Note that it is possible u; = uy. (b) Note that it is possible uj = u;.

Figure 3.2. A chorded cycle in (Py[z1, x2] U Py).

Thus, both of zy’s neighbors in P, must lie in Py(u;, u;), call them ug,w; wtih
k < 1. So the neighbors of z; and x5 lie in the order w;, uy, w;, u; on Py. (See Figure

ﬁ) Then, Pi[z1, 23], w, Pa(uk,u ], z1 forms a chorded cycle, with chord zou;. O

Lemma 3.7. Let x1, xo, x3 be three vertices which lie either in order xi, xa, x3 or
in order x3, To, x1 on a path P, with x1 having degree two and x4, x3 each having

degree 1 to another path P,. Then we can form a chorded cycle in (Py[x1,x3] U Py).
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Pl P2
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Ui
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U
U4
® J
(]

Figure 3.3. A chorded cycle in (P [z, 2] U Ps).

Proof. We may assume x1, x2, x3 lie in that order, else we can reverse the order of
the path. Let wq, ws be x1’s neighbors in P,. As in the previous lemma, if either
or x3 has a neighbor that lies beyond w, or prior to wy in P, then we can easily form
a chorded cycle in (P; U Py). Thus, the neighbor of each of s, x5 lies in Py (wy, ws).
Call z5’s neighbor w3 and x3’s neighbor wy. If ws appears before wy in Py(wy, ws),
then we have three parallel edges between P, and P, one from each of the w;’s. Else,
ws appears in Py(wy, wy), and we have three mutually crossing edges between P; and

Py, one from each of the w;’s. In either case, a chorded cycle exists by Lemma[3.4 [

Lemma 3.8. Let H be a graph containing a path P. If there exist nested edges

between vertices of P in E(G) — E(P), then H contains a chorded cycle.

Proof. The proof is obvious. (See Figure 5.) O]

Figure 3.4. Nested edges in a path.

P

Lemma 3.9. Let H be a graph containing a path P = vy, vs,--- ,v, and v;,v;y1 be
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neighboring vertices on the path. If v; has a right edge v;v; and viyq has a left edge

Vi1V then H contains a chorded cycle.
Proof. Clearly, Plvy,v;], vj, P~ (vj, vit1], vk is a cycle with edge v;v;41 as a chord. O

Lemma 3.10. Let H be a graph containing a path P = vy, vq, -+ ,v, and v;, v;11 be
neighboring vertices on the path. Then v; and v;y1 cannot both have degree at least 4

to P.

Proof. Suppose dp(v;) > 4 and dp(v;41) > 4. Then v; has two neighbors in Plvy, v;_o]
U Plviye,v,], and v;y1 has two neighbors in Plvy,v; 1] U Plviis,v,]. If v; has a
neighbor in Plv;i2,v,] and v, has a neighbor in Plvy,v;_1], then H contains a
chorded cycle by Lemma Thus, either v; must have two neighbors in Plvy, v;_s]

or v;y1 has two neighbors in Plv;,3,v,]. In either case, nested edges exist and H

contains a chorded cycle by Lemma [3.8] O
Lemma 3.11. Let H be a graph containing a path P, = vy, ..., vy, t > 12, and not

containing a chorded cycle. If viv, € E(H) for any i < t — 2, then dp,(vx) < 3 for
any k > 1 and dp,(viy1) = 2. And if viv; € E(H) for any j > 3, then dp, (v;) < 3 for

any | < j and dp,(vj_1) = 2.

Proof. Suppose v;v; € E(H) for some i <t — 2. No vertex vy with k£ > ¢ has a right
edge, otherwise that edge nests with v;v;, and by Lemma [3.8] H contains a chorded
cycle, a contradiction. Thus, dp, (vx) < 3 for any k > i. Furthermore, vertex v
cannot have a left edge by Lemma [3.9) Thus, dp, (vi41) = 2

By symmetry, the same proof shows that if v,v; € E(H) for some j > 3, then

dp,(v;) <3 for any [ < j and dp, (vj_1) = 2. O

Lemma 3.12. Let H be a graph containing a path Py = vy, ..., v, t > 12, and not
containing a chorded cycle. If dp (v1) = 1, then one of vs, vy, vs has degree two in

(P1). Orifvivs € E(H), then one of vy, vs, vg has degree two in (Py).
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Proof. Let either vivg € E(H) or dp,(vy) = 1. If vyjvs € E(H), we let i = 4, and
if dp,(v1) = 1, we let i = 3. Vertex v; cannot have a left edge, else in the first case
we get a chorded cycle, and in the second case we have dp, (v1) = 2; hence, we have
a contradiction in either case. If vertex v; has degree 2 in P;, we are done. Thus
v; must have a right edge, say v;v;. If j = i + 2, then vertex v;;; cannot have a
left edge or a right edge and must have degree 2, else we get a chorded cycle. Thus,
j > i+ 2. By Lemma 3.9, v;41 cannot have a left edge. If v;; has degree 2 we
are done. Thus, v;y; has a right edge, say v, 1v,. If & < j, then we have nested
edges and a chorded cycle by Lemma [3.8, a contradiction. Thus, £ > j. By the
same argument as for v;, 1, vertex v;, o either has degree 2, or has a right edge v;;1v;
such that [ > k. In the later case, edges v;v;, vit1Vk, Vitov; are three parallel edges
between the subpaths v;, v;11, vi12 and v;, ..., v;, and hence a chorded cycle exists by

Lemma (3.4} a contradiction. Thus, vertex v;;o must have degree 2 in P;, and we are

done. O

Lemma 3.13. Let H be a graph containing a path P, = vy,..., v, t > 12 and not
containing a chorded cycle. If dp,(v;) = 1, then one of v;_4, vi_3, V4o has degree two

in (Py). Orif vw,_o € E(H), then one of vi_s, vy_4, V43 has degree two in (Py).
Proof. The lemma follows from the proof of Lemma by symmetry. n

Lemma 3.14. Let H = (P, U P), where Py = vq,...,v;, Py = uy,...,us, such that
H does not contain a chorded cycle. If a vertex v; € Py is adjacent to an endpoint of
P5 and a vertex v; € Py with j > i+ 2 is adjacent to an endpoint of P, then one of

Vit1, Vj—1 has degree 2 in (P; U Ps).

Proof. Let H = (P, U P,) such that H does not contain a chorded cycle. Let vertex
v; € P; be adjacent to an endpoint of P,, without loss of generality say uq, and let

vertex v; € P, be adjacent an endpoint of P, for some j > i + 2, without loss of
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generality say w;. (If instead v;, v; are both adjacent to u; or u;, in the cycles following
replace uy, Po(uq,u;] and uy, Py (uy, u1] with just u; or u; as necessary.)

If vertex v;41 has a left edge, say v;y1vg, with & <4, then Py [vk, v;], w1, Pa(uq, ugl,
vj, Py (vj,vit1], v forms a chorded cycle with edge v;v;41 as a chord. By symmetry,
vertex v;_; cannot have a right edge, else a chorded cycle exists with the edge v;_;v;
as a chord.

Thus, either v;4; or v;_; has degree 2 in (P, U P,) and we are done, or vertex v;
has a right edge, and vertex v;_; has a left edge.

No vertex in Pj[v;,v;] can have an edge that does not lie on P, to some other
vertex in P [v;, v;], else this edge is a chord of the cycle Py [v;, v;], w, Py (ug, u1], v;.

Thus, we have edges v; 10y, with k > j, and v;_yv;, with [ <. But then, P [v;, v;],
w1, Po(uy, us), vj, Pi(vj, v, vig1, Pi(vigr, vj—1], v forms a chorded cycle with edges
v;Vi41 and vj_jv; as chords.

Thus, one of v;41,v;-1 has degree 2 in H, and hence is also independent from vy,

Vg, U1, Ug. ]

Lemma 3.15. Let H = (P, U Py), where PL = vy, ..., vy, Py =y, ..., us, such that
Py, Py is a maximal pair of paths, with Py as long as possible. Suppose H does not
contain a chorded cycle or a Hamiltonian path. Finally, suppose dp, ({ui,us}) > 1.
If vy has a neighbor v; in Pylvg, v, then dg(vii) = 2. If vy has a neighbor v; in

Pi[vy, 3], then dp(vjs1) = 2.

Proof. Suppose v is adjacent to a vertex in Pj[vg, v;]. If vy is adjacent to vy, then
H contains a Hamiltonian path, a contradiction. Thus, v; has a neighbor v; in
Pi[vg, v;_1]. Note that vertex v;_; cannot be adjacent to any vertex in Py, else either
H contains a Hamiltonian path or there exists a maximal pair of paths Pj, P, such
that |P{| > |Pi|, a contradiction. By Lemma [3.11] v;_; has degree 2 in P;. Hence,

dH(Uifl) = 2.
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By symmetry, a similar argument shows that if v; has a neighbor v; in P [vy, v_3],

then dy(vj41) = 2. O

3.3 Proof of Theorem 3.1]

For convenience, we restate our main result.

Theorem 3.1. Let k > 2 be a positive integer. If G is a graph of order n > 11k + 7

with 04(G) > 12k — 3, then G contains k vertez-disjoint chorded cycles.

Proof of Theorem[3.1. Let G be an edge-maximal counterexample. That is, G fails
to have k vertex-disjoint chorded cycles, but for any new edge e, G + e does have k
vertex-disjoint chorded cycles. This implies there exists a collection of k — 1 vertex-

disjoint chorded cycles in G. Over all such collections, choose one, say %, such that:
(1) % is minimal.
(2) Subject to (1), the number of components in H = G — U=V (C;) is minimal.
(3) Subject to (1) and (2), the number of Kys in ¢ is maximal.

Claim 1. |H| > 18.

Proof. Suppose to the contrary that |H| < 17. First suppose |V (C;)| < 11 for
all i, 1 < i < k — 1. Since by assumption |G| > 11k + 7, it follows that |H| >
(11k+7) — 11(k — 1) = 18, a contradiction. Thus, |V (C;)| > 12 for some 1.

Let C be a largest cycle in 4. By Lemma 3.2 |C] > 12 implies that C' contains
at most two chords and these chords must be crossing. Let |C| = 4t 4+ r where t > 3

and 0 <r < 3.

Subclaim 1.1. The cycle C' contains t different sets X, ..., X; of four independent

vertices each, such that do(X; U XU ---UX;) < 8t+4
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Proof. Cycle C' has at most two chords, and if it has two chords, they must be
crossing. For any 4t vertices of C, their degree sum in C'is at most 4t X 2 + 4, since
C' has at most 2 chords. Thus it only remains to show that C' contains ¢ sets of four
independent vertices each.

Recall that |C| = 4t +r > 4t. Start anywhere on C' and label the first 4t vertices
of C with labels 1 through ¢ in order, starting over again with 1 after using label ¢.
If » > 1, label the remaining r vertices of C' with the labels ¢ + 1,...,t + r. (See
Figure |3.5l) The labeling above yields ¢ sets of 4 vertices each, where all the vertices
labeled with 1 are one set, all the vertices labeled with 2 are another set, and so on.
Given this labeling, since t > 3, any vertex in C' has a different label than the vertex
that preceeds it on C' and the vertex that succeeds it on C. Let C' be cycle C' minus
its chords, if it has any. Then, the vertices in each of the sets are independent in C.
Thus, the only way vertices in the same set are dependent in C' is if the endpoints of
a chord of C' were given the same label. Note that any vertex labeled ¢ is distance
at least 3 in C from any other vertex labeled i. Thus, if a vertex and the neighbor
preceeding it on C' or the neighbor succeeding it on C' have their labels swapped, the

vertices in each of the classes are still independent in C.

Figure 3.5. An example where t = 3 and r = 2.

Case 1.1.1. Suppose no chord of C' has endpoints with the same label. Then, we

have found t sets of 4 independent vertices in C, and we are done.
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Case 1.1.2. Suppose one chord of C' has endpoints with the same label. Because C'
contains at most two chords and those chords must be crossing, each chord has an
endpoint with a neighbor that is not an endpoint of a chord. Pick such an endpoint
of the chord whose endpoints were assigned the same label, and swap the label of this
vertex with its non-endpoint neighbor. The vertices in each of the resulting classes
are still independent in €, and now no chord of C' has endpoints with the same label.

Thus, we have found ¢ sets of four independent vertices each in C.
Case 1.1.3. Suppose two chords of C' each have endpoints with the same label.

Subcase 1. If an endpoint of one chord of C' is adjacent to an endpoint of the other
chord, swap the labels of these adjacent endpoints. Then, the vertices in each of the
resulting classes are still independent in C, and now no chord of C' has endpoints

with the same label. Thus, we have found t sets of four independent vertices each in

C.

Subcase 2. If no endpoint of the first chord in C is adjacent to an endpoint of
the second chord, then swap the labels of an endpoint of the first chord, call it e;
and one of its neighbors in C. The vertices in each of the resulting classes are still
independent in C. Now pick an endpoint of the second chord that is not adjacent to
a vertex that has had its label swapped, call it e,. Then, pick a neighbor in C' of e,
that is of maximal distance in C' from e;. This neighbor is not adjacent to any vertex
which has had its color swapped. Thus, we may swap the labels of e; and its selected
neighbor, and the vertices in each of the resulting classes are still independent in C.
Furthermore, now no chord of C' has endpoints with the same label, and thus we have

found our sets.

In all cases, we were able to construct ¢ different sets of four independent vertices

each in C. Thus, Subclaim [L.1] holds. O
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Since |C] > 12, do(v) < 2 for any vertex v € V(H); otherwise, we could form a
chorded cycle shorter than C' in (C'U H), contradicting (1). Because |H| < 17 and
each vertex of H has at most two neighbors in C, it follows that |E(H,C)| < 34.

Each set of four independent vertices in C' has at least 12k — 3 edges in G, since
04(G) > 12k — 3. Thus, X; U Xy U---U X, has total degree at least ¢(12k — 3) in G.

Suppose that k = 2. Then % has only one cycle C', and H = G — C. By Subclaim
[I.1} C contains t independent sets X;, 1 < i < ¢ each of which has four vertices and
such that de(X;U---UX;) < 8 +4. Then, dy(X;U---UX;) > t(12k—3) — (8t +4)

=12kt — 11t —4 > 24t — 11t — 4 = 13t — 4 > 35, since t > 3. Thus, |E(C, H)| > 35,

a contradiction.

Suppose that £ > 3. We bound the order of E(C,%¢ — C') from below.
|[E(C, ¢ —-C)| > |E(XjU---UX;,, ¢ —C)|
Subtracting from dg(X; U -+ U X}) both do(X; U --- U X;) and dy(C), we get:

IE(X;U---UX;, € —C)| >t(12k —3) — (8t +4) — 34
— 12kt — 3t — 8t — 4 — 34

= 12kt — 11t — 38.

And since t > 3,

12kt — 11t — 38 > 12kt — 12t — 35 = 12t(k — 1) — 35

> 12t(k — 1) — 12t = 12t(k — 2).

Thus, [E(C,C")| > |E(X1U---U Xy, C")| > 12t for some cycle C" in ¢’ — C, since

¢ — C contains k — 2 cycles. Because |C| = 4t +r < 4t + 3, it follows that the average
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degree to C’ of the vertices of X; U---U X; is greater than 2; that is,

12t 3t
> >
44+3 ~t+1

IE(X,U---UX,C)|/|C] > 2.

It follows that dev(v) > 3 for some vertex v € X3 U--- U X;.

Let h = max{de/(v)lv € X; U--- U X;}. Let v* be a vertex of C' such that
der(v*) = h, and let v** be a vertex of C'—v* having maximal degree to C’. Certainly
der(v**) < h. By the maximality of C, we know that |C’| < |C| = 4t + r. It follows

that h = dor(v*) < |C'| < 4t + r. Recall that t > 3 and r < 3.

Then, |[E((X;U---UX;) —v*,C")| > 12t — der (v¥)

> 12t — (4t +r) = 8 —r > 21. (3.4)

Futher, |[E((X;U---UX;) —v" — 0™, C")| > 12t — der (v*) — der (0*)
> 12t — (4t +7r) — (4t +7) = 4t — 2r > 6.
(3.5)

Case 1.1. Suppose that h = 3.

Then because we have 4t vertices in X; U --- U X; sending a sum of at least 12¢
edges to (', it follows that every vertex of X; U---U X, sends 3 edges to C’. Thus,
there are at least 12 vertices in C having degree 3 to C".

Let W = {wq,ws, ..., w12} be a set of 12 vertices of C', each having degree 3 to
C'. Let vy, vy, v3 be wy’s neighbors in C’. They partition C’ into three intervals:
C'vy, v2), C'vg, v3), C'lvs,v1). Denote W — {w, } by W'.

Claim 1.1.1. No three vertices in W’ all have three neighbors to the same single

interval in C".

Proof. Suppose three different vertices in W', say w;, w;, wy, 2 <i < j <k <12, all
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have three neighbors to the same single interval in C”, without loss of generality say
C'[vy,v2). Then each of w;, w;, w; has at least two neighbors in C(vq,v3). So there
exist 6 edges between Cw;, w;] and C'(vq, v2). By Lemma a chorded cycle exists in
(Clw;, w) UC'(v1,v2)) that leaves out at least one vertex. And (wy U C’[vg, v;]) forms
a second chorded cycle, vertex-disjoint from the first. Thus, we have constructed a
shorter pair of vertex-disjoint chorded cycles in (C'U C"), contradicting (1). Thus,
the claim holds. O

Claim 1.1.2. No vertex w;,2 < ¢ < 12 has three or more neighbors in a single

interval of C'.

Proof. Suppose w; has three neighbors in a single interval of C, without loss of gen-
erality say C’[vy,v2). Then by Lemma [3.4] a chorded cycle exists in (w; U C'[vy, v2)).
By Claim at most one other vertex in {wsy,..., w2}, call it w;, has at least
three neighbors in C'[vy,vy). Thus, every vertex in {ws,..., w12} — {w;, w;} has
edges into C’[va,v1). And therefore, by Lemma [3.5] there exists a chorded cycle in
(C' — w;, C'[vg, v1)) which leaves out at least one vertex. Together with the chorded
cycle in (w; U C’[v1,v9)), we have a shorter pair of vertex-disjoint chorded cycles in

(C'U "), contradicting (1). Thus, the claim holds. O

Thus, every vertex in W — w; sends edges into at least 2 intervals.

Note that the set of vertices {wz, ..., w12} sends 18 edges to C’. It follows that
some interval in C” gets at least 6 edges from {wr, ..., w2}, say C'[v1, v2). Then there
exists a chorded cycle in (Cwr, wy2] U C'[vy, v2)) which leaves out at least one vertex,
by Lemma [3.5] Also, because every vertex sends edges to at least 2 intervals, each of
Wy, . .., ws has an edge into C’[ve, v1). This implies that |E(C[wy, ws], C'[ve, v1))| > 6.
Hence by Lemma [3.5] there exists a chorded cycle in (Clwy, ws) U C'[vg,v1)). Thus,
we have formed a shorter pair of vertex-disjoint chorded cycles, contradicting (1).

This completes Case [1.1]
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Case 1.2. Suppose that h > 4.

Recall that [E((X; U---UX) —0*,C")] > 21 and |[E(X; U --- U X;) — v —
v, C")| > 6, by and (3.5). Thus, Noi(C — v* —v**) # 0, and letting W = {v €
V(C)|Ner(v) # 0}, it follows that |[W] > 3; that is, at least three vertices in C' have

neighbors in C".

Subcase 1. Suppose that |W| = 3. Let W = {wy, wy, w3} where dev(wq) > deor(ws) >
der(w3).

Then, |E({wq, w3}, C")| > 21, and |E({ws}, C")| > 6. Since dev(wy) > der(wg) >
der(ws), it follows that dev(w) > 6 for any w € W. Since |E({ws, ws}, C')| > 21 and
der(wy) > der(ws), it follows that der(wy) > 11. Thus, we have degree sequence at
least (11,11,6) from W to C".

Let vy, vs,. .., vs denote ws’s neighbors in C’, appearing in that order on C’. The
neighbors of w3 partition C” into six intervals, C'[v;, v;11), for all 1 < i < 6 (where
i+ 1=1fori=6). Because {wy,wy} sends at least 22 edges total into C’, some
interval in C” receives at least 4 edges from {wy, w9}, without loss of generality say
C'[v1,v2). And either every interval receives at least one edge from {wy, ws} or some
interval receives at least five edges from {wy, wo}.

If every interval receives at least one edge, then taking the interval with at least 4
edges and a neighboring interval, some pair of neighboring intervals receives at least
five edges total from {wy, w9}, without loss of generality say intervals C’'[vy,v,) and
C'[vg,v3). There exist five edges between C|wy, ws] and C'[vy, v3). Thus, by Lemma
3.5 there exists a chorded cycle in (Clwy, wa] U C’'[v1, v3)) which leaves out at least
one vertex of (Clwy, ws] U C'[vy,v3)). And (w3 U C'[vs,v5]) forms a second chorded
cycle in (C'U ("), vertex-disjoint from the first, contradicting (1).

Thus, some interval in C’ receives at least five edges from {wy, w9}, without loss of
generality say [v1,v2). By Lemma [3.5] there exists a chorded cycle in (P} U C'[vq, v2))

which leaves out at least one vertex of (P, U C’[vy,v2)). And (w3 U C’[vs, vs]) forms
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a second chorded cycle in (C'U C"), vertex-disjoint from the first, contradicting (1).

Subcase 2. Suppose that |[W| > 4.

Recall that vertex v* has at least four neighbors in C”. Let v1, v, v3, v4 be neighbors
of v* in C". Note that vy, ..., v, partition C” into four intervals, C'[v;, v;11) (where
i+1=1fori=4). By (4), there are at least 21 more edges into C’ from C — v*.
By the Pigeonhole Principle, some interval C’[v;, v;11) contains six of these additional
edges. Without loss of generality, say this interval is C’[vy, v1). Then by Lemma ,
(C'— v* U C'vyg,v1)) contains a chorded cycle which leaves out at least one vertex of
(C'—v* U vy, v1)). Note that Cy = v*, C'[vy, v3], v* forms a chorded cycle with the
edge v*vy as a chord, and it uses no vertices from C’[vy, v1). Thus we have a pair of

shorter vertex-disjoint chorded cycles in (C'U C"), contradicting (1)
This completes the proof of Claim [I] Thus, |H| > 18. ]

Claim 2. Every component H; of H that has a vertex x with dg,(x) < 2 either
contains two independent vertices each with degree at most two in H;, or contains a

vertex with degree at most two in H; that is not a cut-vertex.

Proof. Suppose not. It follows that H; fails to contain two independent vertices
each with degree at most two in H;. Furthermore, H; contains a vertex v such that
dy,(v) < 2 and v is a cut-vertex. Since v is a cut-vertex, dg,(v) = 2. Let a and b
be the neighbors of v in H;. Let H! be the component of H; — {v} containing a and
H! be the component of H; — {v} containing b. Either dy, (a) > 3 or dg,(b) > 3,
otherwise a, b are two independent vertices in H; such that their degree sum in H; is
at most 4. Say dp,(b) > 3. (See Figure [3.6])

If |H!| < 4, then there exists a vertex ve in H; with degree at most two in H;
independent from v, a contradiction. Thus, |H/| > 4. Then, Theorem implies
that o9(H/) < 5. This implies that there exist two vertices x;,zo € H]' such that

dpr ({1, 22}) < 4. Thus, either each of zy, x5 has degree in H;’ at most 2, or one of
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Figure 3.6. The case when dg,(b) > 3.

then has degree one in H/'. Vertex b has degree at least 2 in H{’, so it is possible that
one of these two vertices is b, say b = x1, but then the other vertex, x,, would still
have degree at most 2 in H;. Thus, there must be some vertex in H]', other than
vertex b, having degree at most 2 in H!. But this vertex is independent from v, a

contradiction. Thus, the claim holds. O

Claim 3. H is either connected, or H has two components, one of which has order

less than 4.

Proof. Suppose not. Then H is disconnected, and if it has two components, both of

them have order at least 4.

Subclaim 3.1. H contains a set X of four independent vertices from at least two

components of H such that dg(X) < 8.

Proof. The number of components of H, comp(H), is at least 2. Label the compo-
nents of H with Hy, Hy, ..., Heompimy- We will consider three cases: comp(H) > 4,

comp(H) = 3, comp(H) = 2.
Case 3.1.1. Suppose comp(H) > 4.

Then, there exists z; € H; for 1 < ¢ < 4 such that dg,(z;) < 2. Otherwise,
by Theorem [3.2] H; would contain a chorded cycle, yielding a contradiction. Then
the set X = {x1,x9,x3, 24} is a set of four independent vertices from four different

components in H, and dg(X) < 8.



55

Case 3.1.2. Suppose comp(H) = 3.

Then some component of H, say Hj, has order at least four, since |H| > 18. Then,
there exist at least two independent vertices in H;. Otherwise, any two vertices in
H, are adjacent, and hence H; contains a K4, contradicting the fact that H contains
no chorded cycles. Thus, H; contains at least two independent vertices. It follows
from Theorem that there exist two independent vertices in H;, call them x1, x4,
such that dy, ({x1,24}) < 4. Otherwise, 03(H;) > 5, and H; contains a chorded
cycle. As in Case 1, by Theorem there must exist 9 € Hy and x3 € Hs such
that dp,(z2) < 2 and dy,(x3) < 2. Then the set X = {1, 29,23, 24} is a set of four

independent vertices from two components of H with dy(X) < 8.
Case 3.1.3. Suppose comp(H) = 2.

Since we supposed Claim [3{ does not hold, by assumption |H;| > 4 and |Hy| > 4.
Then, as in component H; in Case 2, there must exist x1, 2o € Hy and x3,x4 € Hy
such that 1, zo and z3, x4 are independent and dy, ({x1,22}) < 4, dy,({x3,24}) < 4.
Otherwise, if one of the components of H does not contain any two independent ver-
tices, it must contain a Ky, a contradiction; or if, for any two independent vertices in
the component, their degree sum in the component is at least 5, then by Theorem [3.3]
the component contains a chorded cycle, a contradiction. Thus, X = {x, 29, x3, 24}

is a set of four independent vertices from two components of H with dg(X) < 8.

Therefore, in all cases, Subclaim [3.1] holds. O

In the above construction of X, if comp(H) = 2, then exactly two vertices of X
are from one component of H and exactly two are from the other component of H.
Thus either comp(H) > 3, or no z € X is isolated from the rest of X. Also, according
to the construction of X above, if any x; in H; is isolated from the rest of X, then
we know dp(z;) = dg,(z;) < 2. And if z; is a cut-vertex, by Claim [2] there exists a

second vertex z; in H;, not adjacent to x;, with dp,(x;) < 2. Thus, we can remove
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from X some other vertex x; which was isolated from the rest of X and add z; to X.
Then dy(X) < 8 still, and z; is no longer isolated from the rest of X. Thus, without
loss of generality, we may assume that if a vertex x is isolated from the rest of X, it
1s not a cut-vertex.

Since dg(X) < 8, it follows that dy(X) > 12k — 3 — 8 = 12k — 11 > 12(k — 1).
Thus, there is some cycle C € € such that do(X) > 13. Note that if we have only
two components, x; lies in the same component as some other z;.

Also, by Lemma[3.3] for any x; € X, dc(x;) < 4. It follows that the possible degree
sequences are: (4,4,4,1), (4,4,3,2), (4,3,3,3). Hence, by Lemma[3.3) C' = K, since
in all cases there exists z; € X such that do(z;) = 4. Let C' = vy, vq, v3, vy, v1.

We consider two cases based on the number of components of H.
Case 3.1. Suppose comp(H) = 2.

Then each component of H contains two vertices of X. Let z1,25 be in one
component of H, call it H; and x3, x4 in the other, call it H,.

Without loss of generality, let 24 be the vertex of X with smallest degree to C'. If
we have degree sequence (4,4,4,1) or (4,4, 3,2), it immediately follows that either z;
or xo has degree 4 to C, say z;. If instead we have degree sequence (4,3, 3,3), then
we can label x1, ..., x4 so that x; has degree 4, x1, x5 are in one component of H,
and z3, x4 are in the other.

Thus, we may assume without loss of generality that x4 is the vertex of X with
smallest degree to C' and that x; has degree 4 to C'. It follows that x5, z3 have degree
at least 3 to C.

Let P, be a path in H; connecting x, and x5, and let P, be a path in Hy connecting
z3 and 4.

Vertices x3 and x4 must share a neighbor in C, say v;. Take a second neighbor
of x3 in C, say ve. Then vy, va, 3, Py(x3,24], v1 is a chorded cycle in (H U C) with

x3v; as a chord. Since x9 has three neighbors in C, it is adjacent to at least one of
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the remaining vertices of C| say vs. Vertex x; is adjacent to v3 and vy. Thus, o,
vs, Vg, 1, Pi(x1, 23], v3 is a second chorded cycle in (H U C) with zyv5 as a chord,

vertex-disjoint from the first. (See Figure [3.7)

Figure 3.7. Two vertex-disjoint chorded cycles in (H U C).

Therefore, if comp(H) = 2, we get two vertex-disjoint chorded cycles in (H U C),

a contradiction.
Case 3.2. Suppose comp(H) > 3.

Recall that we have one of the following degree sequences from X to C: (4,4,4,1),
(4,4,3,2), (4,3,3,3). Label the vertices of X with x;,1 < i < 4 such that do(z;) >
do(w2) > do(x3) > do(w).

Since |C| = 4, for each possible degree sequence, x5, 3, x4 must all have a common
neighbor in C, say v1. And vertex x; has degree 4 to C'. Thus, C' = x1, vy, v3, V4, T1
is a chorded cycle in (H U C) with chord z;vs.

Recall that, by the construction of X in Subclaim , if comp(H) = 2, no vertex
x € X is isolated from the rest of X. Hence, if x; is the only vertex of X in its
component H; of H, then comp(H) > 3, x; it is not a cut-vertex, and comp(H; —
{z1}) = 1. Then, replacing C' in € by C’, the remaining H has fewer components, a
contradiction.

Otherwise, some other vertex z; of X is also in H;. Since dy,(x1) < 2, comp(H; —
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{z1}) < 2. Further, the new H formed by replacing C' in ¢ with C’ has fewer
components, since one of the two components of H; — {x1} contains x; for some 2 <

J <4, and x3, x3, x4 are all connected in the new H. Again we have a contradiction.

(See Figure [3.8}) Thus, in all cases the claim holds. O

Figure 3.8. Fewer components in H.

Now by Claim[1]} |H| > 18, and by Claim 3| H is either connected or has only two
components, one of which has order at most 3. Thus, H is either connected or has a

component H; such that |H;| > 15. Let H be the largest component of H.

Claim 4. H contains a set X of four independent vertices such that dy(X) <8.

Proof.

Subclaim 4.1. If H contains a Hamiltonian path, we can find the desired set X.

Proof. Suppose H contains a Hamiltonian path. Then H = (Py), where P, =
U1, ..., 0, t > 15, Without loss of generality, let dg(v1) < dg(vy), otherwise we
relabel the path.

If vy € B (]:I ), then every vertex of H has degree two by Lemma . The set
X = {vy,v3,v5,v7} forms a set of four independent vertices with degree 8 in H, and
we are done.

Thus, viv, ¢ E(H). Tt follows that v, and v, are independent. Also, d(v;) < 2

and d(v;) < 2 else a chorded cycle exists in H, a contradiction.
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Suppose dg(v;) =1 and dg(v;) = 1. By Lemma one of vz, vy, v5 has degree 2
in H, call it v;, and one of v,_4, v,_3, v,_o has degree 2 in H, call it v;. Then, choose
X = {v1,v;,v5,v,}, and we are done.

Suppose dj(v1) = 1 and dg(v,) = 2 with vw; € E(H). Suppose j <t — 5. Then
vertices v; 41 and v, 43 are independent from v;. By Lemma , vertex v;41 has degree
2 in H, and vertex vj+3 has degree at most 3 in H. Choose X = {v1,v;41, V)43, U4},
and we are done.

So, j > t—5. By Lemma , one of v, vy, vs has degree 2 in H, say v;. If
J < t—3, then v;; is still independent from v; and has degree 2 by Lemma . So,
X = {v1,v;,vj41,v;} is the desired set. Thus, j =t —2. By Lemma one of v;_s,
V4, Vy_3 has degree two in I:I, call it v;. Since t > 15, v; and v; are independent,
and X = {v1,v;,v;, v} is the desired set.

Thus, dg(v1) =2 and dg(v;) = 2.

Suppose we have either vivs or vv;_o in K (]:I ). Without loss of generality, say v;vs.
Then, one of vy, vs, vg has degree 2 in E(H) by Lemma , say v;. If w9 € E(FI),
then one of v;_5, v;_4,v;_3 has degree two in FI, call it v, and X = {vy,v;,v;, v} is
the desired set.

If vyv,_o ¢ E(f[), then v,v, € E(}NI) for some s < t — 2. Hence, vertex vy, has
degree 2 by Lemma [3.11] and is independent from v;. Clearly, s > 3, else we have a
chorded cycle. If vgyq & {v;_1, v, V41 }, then X = {v1,v;, v541, v} i the desired set.

Thus, vsy1 € {vi—1,v;,vi41}. This implies that vs € {v;_9,v;_1,v;}. Clearly,
vs # v;, since vgv; € E(]:I), and vertex v; has degree two in E(ﬁ) So, vy = v;_o OT
vs = v;_1. Since v; € {vg,vs,v6} and s > 3, we know that vy € {vs,v4,v5}. Then,
if one of vs14 or vey5 has degree 2, X = {vy, vy, v504, 0}, or X = {v1,v5, 0515, 0},
and we are done. Thus, both v,,4 or v, 5 have degree at least 3 in H. Furthermore,

neither v, 4 nor vg, 5 has a right edge, else this edge nests with vsv;, and we have a

chorded cycle by Lemma (3.8 Thus, both vsy4 or vs,5 have left edges. It follows that
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Vsta4Vk, V5150 € E(H), and k < | < s else we have nested edges and a chorded cycle
by Lemma But then, vy, Py, v, vy, P, Us14, g 1s a chorded cycle with edge v;v545
as a chord.

Thus, neither vyv3 or vvy, is in E(ﬁ) It follows that viv;, vv; € E(FI) for some
i>3,7 <t—2. And dg(vie1) = 2, di(vjs1) = 2. Then, X = {v1,vi-1, 41,0},
unless i — 1 € {j,7 4+ 1,7 + 2}.

Thusi—1€ {j,j+ 1,7+ 2}. And hence, i > j. Claim: dg(vs) = 2. We know v3
cannot have a left edge, else we have nested edges. And if v3 has a right edge vsv, with
k < i, we have nested edges and hence a chorded cycle by Lemma (3.8 If v3 has a right
edge vsv, with k£ > 1, since ¢ > j, we again get a chorded cycle, vy, H, Vj, Uy, H= v, 0
with edge vs, v, as a chord. Thus, dy(vs) = 2. Claim: dg(v—2) = 2. We know
vL_9 cannot have a right edge, else we have nested edges. And if v,_5 has a left edge
vp_ov; with [ > j, we have nested edges and hence a chorded cycle by Lemma |3.8|
If v;_5 has a left edge v;_sv; with [ < j, since 7 > j, we again get a chorded cycle,

vi, H,vj, v, H,v;,v1 with edge v;v,—5 as the chord.

In all cases, Subclaim [.1] holds. O

Thus, we may assume the component H does not contain a Hamiltonian path.

Choose two paths P, and P in H such that:

(A) P, and P, are a maximal pair of paths; that is, the sum of the lengths of P

and P, is maximal.
(B) Subject to (A), path P, is as long as possible.
Let P =wvq,...,v; and P, = uq, ..., us.

Subclaim 4.2. No endpoint of Py or Py has a neighbor in H — (P, U Py). No endpoint
of Py has a neighbor in Py. Hence, dg(v1) = dp,(v1) and dg(ve) = dp,(v:). No end-
point p of a path P; or vertex p in H — (P,) can have degree dp,(p) > 2. Furthermore,

dig(vn) <2, dg(v) <2, and dp,({u1,us}) < 3.



61

Proof. Clearly, none of vy, v, uy,us has a neighbor outside (P U Py), else Py, Py is
not a maximal pair of paths. Furthermore, neither v; nor v; can have a neighbor in
P,, else we can choose a maximal pair of paths P|, P, such that P] is longer than Py,
contradicting (2). And no endpoint p of a path P; or vertex p in H — (P,) can have
degree dp,(p) > 2, else H contains a chorded cycle. So, dg(v1) < 2 and dg(v;) < 2.
Suppose dp, ({u1,us}) > 4. Clearly, dp,(u1) = 2 and dp, (us) = 2, else we have
a chorded cycle. But then by Lemma [3.6] we again have a chorded cycle. Hence,

dpl({ul,us}) § 3. ]
Subclaim 4.3. If |Py| < 3, then we may assume H = (P, U Py).

Proof. Suppose |P,| < 3. Without loss of generality, we may assume dp, (u;) <

dp, (us). It follows from Subclaim [4.2 that dp, (u;) < 1 and dy(uq) < 2.

Claim: No vertex of Py has a neighbor outside (P; U Py).

By Subclaim , no endpoint or P, has a neighbor in H — (P, U Py). Hence, if
|P»| < 2, no vertex of P, has a neighbor in H — (P, U P,). Thus |P,| = 3. Suppose
nu € B (ﬁ ). Then any vertex of P; can be regarded as an endpoint of the path, and
hence by Subclaim , no vertex of P, has a neighbor in H — (P,). Furthermore,
for any i, j with i < j and j # i + 1, we know that v;v; ¢ E(H); otherwise, we have
nested edges in P, and by Lemma , a chorded cycle exists in (P;). Now, since
|H| > 15, it follows that |Pi| > 12, and X = {vy,vs,v5,v7} forms the desired set.
Thus, we may assume vyv; ¢ E(H).

If uyus € E(H), then no vertex of P, has a neighbor outside (P, U P,), else we can
form a longer path P}, contradicting (A). Thus, uyus ¢ E(H), and hence dp, (uy) < 1,
dp,(us) <2 and dg(u1) <2, dg(us) < 3.

Suppose a vertex on P, has a neighbor w; in H — (P, U P,). By Subclaim ,

clearly wywy, usw; ¢ E(H). So ww; € E(H). If dg({ui,us}) < 4, then X =

{v1,v4, u1,uz} forms the desired set. Thus, we may assume dg(u1) = 2 and dg(u3) =
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3. Hence, dp, (u;) = 1 and dp, (us) = 2. Clearly, w; has no neighbor in H — (P; U P,),
else we can form a longer path Pj and hence a longer pair of paths P;, Py, contradicting
(A). If djg(wy) < 2, then X = {vy, v, wy,u1} forms the desired set. Thus, w; has
two neighbors on P;. Note that the vertices w; and ug lie on a path P = wy, ug, us,
and wy, ug send two edges each to P;. By Lemma there exists a chorded cycle in

(P, U P), a contradiction. Thus, we may assume no vertex on P, has a neighbor in

H — (P, U Py), and the claim holds.

Claim: No vertex of P, has a neighbor in H — (P, U Py).
Suppose there exists a vertex v; in P, with a neighbor w; in H— (PLUDRy). If
dg(wy) < 2, then X = {vy, vy, uy,w; } forms the desired set and we are done. Thus,

d;(wy) > 3. Hence we have one of the following cases:

1. Vertex w; has 3 neighbors in P;, but then H contains a chorded cycle by Lemma

3.4
2. Vertex w; has 2 neighbors in P; and one neighbor in H — (P U Py).
3. Vertex w; has 2 neighbors in H— (P, U Py) and one neighbor in P;.
Case 4.3.2. Suppose w; lies in case 2.

Then, vertex w; has two neighbors in P, say v;,v;, and one neighbor in H—
(P U Py), say wa. If dg(wq) < 2, then X = {vy, vy, us,wy} forms the desired set, and

we are done. Thus, dj(ws) > 3, and one of the following cases must occur:
(a) Vertex wq has 1 neighbor in H— (P, U Py) and 2 neighbors in P;.
(b) Vertex w, has 2 neighbors in H — (P, U P,) and 1 neighbor in P.
(¢) Vertex w, has 3 neighbors in H — (P, U P,).

If wy lies in case (a), we have two vertices on a path wi, ws, each sending two

edges to another path P;, and by Lemma (3.6} a chorded cycle exists, a contradiction.
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If wy lies in case (b), let w3 be the additional neighbor of wy in H — (Py U Py).
If dg(ws) < 2, X = {vy, v, us, w3} is the desired set, and we are done. Thus,
di(ws) > 3, and hence w; sends two edges to P, else a path P, longer than P;
exists in H — (Py U Py), contradicting the maximality of P, P,. But then the path
wy, wo, ws sends at least 5 edges to P;, and a chorded cycle exists by Lemma |3.5] a
contradiction.

Thus, wsy lies in case (¢). Let ws and wy be neighbors of wy in H— (P U Py).
If either w3 or wy has degree at most 2 in H , we can find the desired set X and we
are done. If either ws or wy has another neighbor in H — (Py U Py), then we can find
a path Py in H — (P, U P,) longer than P, (since |Py| < 3), a contradiction. Thus,
w3z and wy must each have two neighbors in P;. But then, by Lemma |3.6] a chorded

cycle exists, a contradiction.
Case 4.3.3. Suppose w; lies in case 3.

Let ws, w3 be the neighbors of wy in H — (P, U Py). If dj(wsy) = 2 or dj(ws) = 2,
then X = {vy, vy, u1, we} or {vy, vy, ug, ws} is the desired set and we are done. Thus,
di(we) > 3 and dj(ws) > 3. For each of wy and w; one of the following cases must

occur:

(a) The vertex has 1 neighbor in H-— (P, U Py) and 2 neighbors in P;.
(b) The vertex has 2 neighbors in H-— (P, U Py) and 1 neighbor in P;.

(¢) The vertex has 3 neighbors in H — (P, U P,).

Suppose either wy or ws is in case (c), without loss of generality say wy. Then ws
has a neighbor w, in H — (P U Py) distinct from ws, and hence w3, wy, we, wy forms
a path P} longer than P, (since |P,| < 3), a contradiction. Thus, each of wy, w3 have

at least one neighbor in P;.
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Suppose either wy or ws is in case (b), without loss of generality say ws. Then,
either wy has a neighbor w, in H— (P, U Py) distinct from w3 and we get a contra-
diction as before, or wy is adjacent to ws. Let v; be the neighbor of ws on P;, and let
v; be the neighbor of w3 on P;. Then, v;, P, v;, ws, wi, ws, v; forms a chorded cycle
with the edge wows as a chord.

It follows that both wy and ws must lie in case (a). Then, we have five edges
between the paths wsy, wy, wy and P;, and by Lemma [3.5] a chorded cycle exists, a
contradiction.

Thus, if any vertex in P; or P has a neighbor outside (P, U P,), then we can either
find the desired set, or we get a contradiction. Hence no vertex in P, or P, has a
neighbor in H — (Py U Py). And because H is connected, it follows that H = (PLU Py),
and Subclaim [£.3] holds. O

Subclaim 4.4. For the endpoints uy,us of Pa, we must have dp, ({uy,us}) > 1.

Suppose, to the contrary, that dp, ({uy,us}) = 0.
If vijvy ¢ E(H) and uyus ¢ E(H), then vy, vy, ug, us are all independent and each
have degree at most 2 in H, hence X = {vy,v;, us, us} is the desired set and we are

done. Thus, either vyv, € E(H) or uju, € E(H).
Case 4.4.1. Suppose |P,| < 3.

Then, by Subclaim , H = (PUPy). If vyu, € E(H), then every vertex of P
can be regarded as an endpoint, and no vertex of P, has a neighbor in P,. Hence,
every vertex v of P, has dp, (v) = dy(v) = 2, otherwise we have nested edges and a
chorded cycle by Lemma [3.8] We know |P;| > 8 since (P, U P,) = H > 15. Thus, vy,
vs, v, v7 are all independent, X = {vy,v3, v5,v7} is the desired set, and we are done.

Thus, vyv; ¢ E(H), and hence ujus € E(H). Suppose that at least one of vy, v
has degree 1 in P, or that either vyv3 or v;_sv; is in E(H). Then by Lemmas m

and one of vy, v3, V4, Us, Vs_5, V4, Vi 3, Vs_o has degree 2 in P;, call it v,
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and hence is also independent from vy, v;. Thus, X = {vy, v, ug,v;} is the desired
set, and we are done. So, viv; € E(H) for some j > 3 and vv, € E(H) for some
1 <t — 3. Then the path P, could be rewritten with vertex v;;; as an endpoint,
and hence dy(viy1) = dp,(v;11). By Lemma vertex v;,1 has degree 2 in P;, and

hence X = {v1,vi41,v;,u1} is the desired set, and we are done.

Case 4.4.2. Suppose |P»| > 4.

Proof. 1f viv, € E(H) and wus € E(H), then every vertex of P, and every vertex
of P, can be regarded as an endpoint, and no vertex of P; or P, has a neighbor in
H— (P, U P,). Hence, every vertex v of P, or vertex u of P, has dp, (v) = dy(v) =2 =
dp,(u) = dg(u), otherwise we have nested edges and a chorded cycle by Lemma [3.8|
We know |Py| > |Py| > 4. Thus, vy, v3,u1, us are all independent, X = {vy, vs, u1, us}
is the desired set, and we are done.

If vyv, € E(H) and wyu, ¢ E(H), then again for any vertex v € Py, dp,(v) =
dg(v) = 2. Also uy,us are independent. And because dp,(u1) = 0 = dp,(us), we
know that dg(u;) < 2 and dg(us) < 2. Hence, X = {vy, va, u1,us} is the desired set,
and we are done.

Thus, viv; ¢ E(H) and ujus € E(H). Suppose that at least one of vy, v; has
degree 1 in Py, or that either vyv3 or v;_suv; is in E(H). Then by Lemmas and
B.13] one of va, v3, v, Vs, Vy—s5, Vi—4, Vi_3, V;_2 has degree 2 in Py, call it v;, and hence
is also independent from vy, v;. Thus, X = {vy, vy, u1,v;} is the desired set, and we
are done. So, viv; € E(H) for some j > 3 and v;v, € E(H) for some ¢ < ¢t — 3.
Then the path P, could be rewritten with vertex v;;; as an endpoint, and hence
dy(viy1) = dp,(vi11). By Lemma , vertex v;41 has degree 2 in P;, and hence
X = {v1,v41, v, u1 } i the desired set, and we are done.

Thus, dp, ({u1,us}) > 1, and Subclaim {4.4] holds. O

Case 4.1. Suppose that |P| = 1.
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Then P, = w;. By Subclaim , H = (P UP,). Hence, |P;| > 14. And by

Subclaim di(uy) < 2.

Subcase 1. Suppose dg(u;) = 2.

Let v;, v;, © < j be uy’s neighbors on P;. If v;, v; are consecutive on P, then
H contains a Hamiltonian path, and we are done by Subclaim 4.1} Thus, j > 7+ 2.
Furthermore, neither of v;, v; is an endpoint of P, by Subclaim By Lemma m,
one of v;41, vj_1 has degree 2 in H, say v;i11. Then, X = {vy, v, ug, v;41} is the desired

set.
Subcase 2. Suppose dg(u;) = 1.

At most one vertex in P;[vs, v1o] is adjacent to uy. It follows that there exists in
Py [vs, v12] a group of at least 4 consecutive vertices all nonadjacent to u; and another
distinct group of at least 5 consecutive vertices all nonadjacent to uy, say v;, ..., v;13
and vj,...,vj44, or there exists a group of 6 consecutive vertices all nonadjacent to
Uy, say v;,...,Vir5. Thus, there exist at least three distinct pairs of two consecu-
tive vertices all nonadjacent to uy: either {v;,vit1}, {vite, vizs}, and {v;,v;41}; or
{Uiavi—i-l}’ {Uz‘+2,Uz'+3}, and {Uz‘+4,Uz’+5}.

By Lemma at least one vertex from each of the three pairs has degree at
most three to P;.

Recall that since vy, v; are endpoints of the path, by Subclaim , dp,(v1) < 2
and dp, (v;) < 2. Thus, vertex v; has at most one neighbor in P [vs, v12] and vertex vy
has at most one neighbor in P;[vs, v15]. Thus, at least one of the three vertices above,
all nonadjacent to u; and having degree at most three to Py, is also independent from

vy and vy, call it v. Then, X = {vy, v, ug, vi} is the desired set, and we are done.
Case 4.2. Suppose that |P| = 2.

Recall by Subclaim [4.2] dp, ({u1,u2}) < 3 and dp, (u1) < dp,(u2). So, dp,(u1) <1

and dp, (ug) <2



67

Subcase 1. Suppose {uy,us} has 2 or more distinct neighbors on P;.

Say these neighbors are v; and v; with ¢ < j. We know that j must be at least
1+ 2. Otherwise j = i+ 1 and we can form either a Hamiltonian path, if each of uq, ug
has an endpoint to Py, in which case we are done by Subclaim [4.1] or a maximal pair
of paths Py, Py with |P{| > | Pi|, a contradiction.

But now, by Lemma one of v;11,v;_1, call it v; has degree 2 in H. Hence,

X = {v1, v, u1, v} forms the desired set, and we are done.
Subcase 2. Suppose {uy,us} has one distinct neighbor in P;.

Since dp,(u1) < dp,(uz), either dp, (uy) = 0 or dp,(u1) = 1 = dp, (u2) and wuy, us
have the same neighbor in P;. Thus, dp, (u;) <1 and dg(uy) < 2.

If dg(vi) = 1, dg(v;) = 1, or either vyvs or v,_ov, € E(H), by Lemmas and
m, one of v3, V4, Vs, Vg, Vs_5, Vs_4, Vs_3, OF V;_o has degree two in lf[, call it v;. Then,
X = {v1, v, u1, v} forms the desired set, and we are done.

Thus, v; must have a neighbor v; in P[v4, v;] and v; must have a neighbor v; in
Pi[vy,v4_5]. Then, by Lemma di(vic1) = 2 and dg(vj4q) = 2. Thus, X =

{v1, ve, vi_1, vj1o} forms the desired set and we are done. This completes Case .
Case 4.3. Suppose that |P| = 3.

We know H = (Py U Py) by Subclaim . Recall, by Subclaim , that 3 >
dp, ({uy,us} > 1. If uyus € E(H), then there is at most one edge between Py and P,
else a chorded cycle exists. It follows that dj(u;) < 2. By Lemmas and ,
if dg(v1) = 1, dz(v,) = 1, or either vyvs or v_sv, € E(H), then one of vs, vy, vs,
Vg, Ut_5, Vs_4, Us_3, OF U;_o has degree two in H, call it v;. Then, X = {v1, v, ur, v}
forms the desired set, and we are done.

Thus, v; must have a neighbor in Pj[vs,v;] and v, must have a neighbor in

Py[vy,v;_5]. By Lemma [3.15] if v; has a neighbor v; in P [vg, v;] or v; has a neighbor
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vj in Pj[vy, ve_3)], then either X = {vy, vy, v;m1,u1} or X = {vy, vy, vj41, 41} forms the

desired set, and we are done.
Case 4.4. Suppose that |P| = s > 4.

Suppose both u; and ug have an edge into P;. Then dp,(u;) = 1 and dp, (us) = 1,
else a chorded cycle exists. Hence, by Subclaim dj(u1) < 2. Then if dp, (u;) =1
and dp, (us) = 1, we see that X = {vy, vy, uy, us} is the desired set. Thus, dp, (us) > 2.
Let v;, v; be neighbors of us on P;. Consider vertex us_;; if it has degree at most 2 in
f[, then {vy, vy, uy, us—1} is the desired set, and we are done. Hence, us_; must have
degree 3 or more. If us_; has degree 3 in P, a chorded cycle exists, a contradiction.
Thus us_ 1 has a neighbor in P; or in H — (PyUPy). If u; or ug_; has an edge to
the left or the right of both v; and v;, we have three parallel edges between P; and
P, and hence a chorded cycle exists by Lemma (3.4} Thus, the neighbors on P; of u;
and us_; must lie in P;[v;, v;]. But then we again get three parallel chords, or three
crossing chords, and hence a chorded cycle by Lemma (3.4, Thus, us_; must have a
neighbor w; in H — (P U Py).

If dj(wq) < 2, then {vy, v, uq,w;} is the desired set, and we are done. Thus,
dg(wy) > 3. Vertex w; cannot have a neighbor in H— (P, U Py), else we can form a
longer pair of paths Py, P, a contradiction. Furthermore, vertex w; cannot have two
neighbors in P;, else by Lemma 4 we have a chorded cycle, since u, has two neighbors
in P;. Thus, vertex w; has two neighbors in P, and one neighbor in P;.

Let v; be the neighbor of u; in P; and v,, be the neighbor of w; in P;. Vertex w;
is not adjacent to u; or ug, hence wy’s second neighbor u; in P lies in Py[ug, us_1).
Then wy, Py [us—1,u1], v;, Pli(vi,vj], U, wy forms a chorded cycle with wyu; as a
chord, a contradiction.

Thus, in all cases, Claim [4] holds. O

Thus, H is connected with |H| > 15, and there exists a set X in H containing
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4 independent vertices such that dz(X) = dy(X) < 8. It follows that dy(X) >
12k —3 —8 = 12k — 11 > 12(k — 1). And hence there exists C' € € such that
dc(X) > 13. By Lemma [3.3] for any x; € X, do(z;) < 4. It follows that the possible
degree sequences are: (4,4,4,1),(4,4,3,2),(4,3,3,3). Hence, by Lemma[3.3, C = K,

since in all cases there exists x; € X such that de(x;) = 4. Let C' = vy, vy, v3, v, v1.
Case 1. Suppose we have sequence (4,4,4,1).

Let x4 have degree 1 to C' and let the vertices 1, x9, x3 have degree 4 to C.
Without loss of generality, say x4 is adjacent to v;.
Since H is connected, there is a path from z4 to some other z; € X disjoint from

X —{xy4,2;}. Without loss of generality say there is such a path P connecting x4 and

z3. (See Figure 3.9])

Figure 3.9. A path P connecting x3 and x,.

Then, x4, v1, vo, 3, P(x3,x4] is a chorded cycle with vy23 as a chord, and x4, vs,
To, V4, T1 is a chorded cycle with vsv, as a chord. Thus, we have two chorded cycles

in <ﬁ U C>, a contradiction.
Case 2. Suppose we have sequence (4,4, 3, 2).

Label the vertices of X with x, x9, x3, x4 such that do(zq) = 4, do(zg) = 4,

de(z3) = 3, do(xy) = 2. Without loss of generality, say x4 is adjacent to v; and vs.
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Since H is connected, there is a path P from z, to some other z; € X disjoint

from X — {z4, x;}.

Subcase 1. Suppose path P connects x4 and the vertex of X with degree 3 to C,

that is x3.

Vertices 3 and x4 have a common neighbor in C| say it’s v;. Then vy, v, P[4, x3],
vy forms a chorded cycle with edge vyz4 as a chord. (See Figure ) Vertices
and zo both have degree 4 to C, hence they are both adjacent to vs and vy. Then,
x1, U3, Ta, U4, x1 forms a second chorded cycle with edge v3v, as a chord. (See Figure

3.10.) Thus, we have two chorded cycles in <]:I uc >, a contradiction.

Subcase 2. Suppose path P connects x4 and a vertex of X with degree 4 to C.

Without loss of generality, say P connects x4 and z7.

Vertices x5 and x3 have three common neighbors in C', at least one of which is not
also a neighbor of x4. Say w3 is one of these common neighbors, and call the other
one v;. Then xo, v;, x3, v3, T9 is a chorded cycle with chord v;v3. At least one of x4’s
neighbors in C' has not yet been used, say v;. Let v; be the last remaining vertex of
C'. Vertex x4 may or may not be adjacent to v;, but certainly z; is adjacent to both
v; and v;. Thus, x1, P, x4, v1, vj, 1 forms a second chorded cycle with chord v, ;.

(See Figure ) Again, we have two chorded cycles in <}~I uc >, a contradiction.

-
- it

Figure 3.10. A chorded cycle. Figure 3.11. A chorded cycle.

Case 3. Suppose we have sequence (4, 3,3, 3).
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Label the vertices of X with zy, z9, z3, 24 such that that do(x1) = 4, do(z2) = 3,
de(x3) = 3, de(z4) = 3. Since H is connected, there is a path from z; to some other
x; € X disjoint from X — {xy, z;}. Without loss of generality, say there is such a path
P connecting x; and x5. Vertices x3 and x4 share two neighbors in C say vy, v. Then
X3, U1, T4, Vg, T3 is a chorded cycle with vyvy as a chord. Vertex x5 has degree 3 to C
therefore, it has some remaining neighbor in C', say v4. Vertex z; is adjacent to both

v and vy. Then, Plxy, x5, vy, vs, x1 is a second chorded cycle with x;v4 as a chord.

(See Figure m) Thus, we have two chorded cycles in <1fl ucC >, a contradiction.

X1 P T2 Z3 T4

U3 U2

Figure 3.12. Two chorded cycles in <];~I U O>.

In all cases we get a contradiction. Thus, there cannot be an edge-maximal coun-

terexample and the proof is complete.
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