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Abstract

On Cycles, Chorded Cycles, and Degree Conditions

By Ariel Keller

Sufficient conditions to imply the existence of certain substructures in a graph are

of considerable interest in extremal graph theory, and conditions that guarantee a

large set of cycles or chorded cycles are a recurring theme. This dissertation explores

different degree sum conditions that are sufficient for finding a large set of vertex-

disjoint cycles or a large set of vertex-disjoint chorded cycles in a graph.

For an integer t ≥ 1, let σt(G) be the smallest sum of degrees of t independent

vertices of G. We first prove that if a graph G has order at least 7k+1 and degree sum

condition σ4(G) ≥ 8k−3, with k ≥ 2, then G contains k vertex-disjoint cycles. Then,

we consider an equivalent condition for chorded cycles, proving that if G has order

at least 11k + 7 and σ4(G) ≥ 12k − 3, with k ≥ 2, then G contains k vertex-disjoint

chorded cycles. We prove that the degree sum condition in each result is sharp.

Finally, we conjecture generalized degree sum conditions on σt(G) for t ≥ 2 sufficient

to imply that G contains k vertex-disjoint cycles for k ≥ 2 and k vertex-disjoint

chorded cycles for k ≥ 2. This is joint work with Ronald J. Gould and Kazuhide

Hirohata.
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Chapter 1

Introduction

1.1 History

Extremal graph theory studies relationships between graph invariants, like the number

of edges or vertices in a graph, and different graph properties. Often we are interested

in how far we can push certain properties before other properties or substructures

must exist in the graph. For example, we might ask what is the largest number of

edges a graph of a fixed order may contain and still be acyclic. Alternatively, this

tells us how many edges the graph must have to guarantee the existence of a cycle.

Over the years, many different results have been proved regarding cycles in graphs.

Some such results include graph properties that guarantee a graph contains a Hamil-

tonian cycle, a set of cycles with specified graph elements, a large set of many different

cycles, or a large set of many different chorded cycles or doubly chorded cycles.

The degree of a vertex x, d(x), is defined to be the number of edges incident with

x. Let δ(G) denote the minimum degree over all vertices in a graph G. Clearly, if

the minimum degree is large enough relative to the number of vertices in the graph,

the graph will contain a Hamiltonian cycle. In particular, Dirac’s famous result [3]

states that any graph G on n ≥ 3 vertices with minimum degree δ(G) ≥ n/2 contains
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a Hamiltonian cycle (see Figure 1.1).

Figure 1.1. A Hamiltonian cycle in a graph G with n = 6 and δ(G) = 3.

Ore’s Theorem [13] strengthens this result, giving a weaker degree condition suffi-

cient to imply a graph contains a Hamiltonian cycle. It states that, for a graph G on

n vertices, if the degrees of any pair of nonadjacent vertices total at least n, then the

graph G contains a Hamiltonian cycle. This condition allows an individual vertex to

have degree less than n/2; hence it is possible for a graph to satisfy the condition of

Ore’s Theorem while not satisfying the condition of Dirac’s Theorem.

In the same vein as Dirac’s Theorem and Ore’s Theorem for Hamiltonian cycles,

density conditions can be used to force a graph to contain many disjoint cycles or

chorded cycles.

Cycles are called vertex-disjoint if they share no vertices. Let δ(G) denote the

minimum degree of G and

σt(G) = min{
∑
x∈S

dG(x) : S is an independent set of G with |S| = t}.

In 1963, Corrádi and Hajnal [2] first considered a minimum degree condition that

would imply a graph must contain k different vertex-disjoint cycles, proving that if

|G| ≥ 3k and δ(G) ≥ 2k, then G contains k vertex-disjoint cycles. Enomoto [4] and

Wang [15] independently proved a more general result, requiring a weaker condition

on the degree sum of any two independent vertices: if |G| ≥ 3k and σ2(G) ≥ 4k − 1,

then G contains k vertex-disjoint cycles. Fujita et al. [6] proved the most recent

generalization of this result, showing that if k ≥ 2, |G| ≥ 3k+ 2, and σ3(G) ≥ 6k− 2,

then G contains k vertex-disjoint cycles.

In all three theorems, the degree conditions are sharp as illustrated by the graph
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G0 = K2k−1+mK1. The only independent vertices in G0 are the vertices in mK1, each

of which has degree 2k−1. It follows that for any t ≤ m, σt(G0) = t(2k−1) = 2kt−t.

Any cycle in G0 must contain two vertices of K2k−1 since no two vertices of mK1 are

adjacent. But then the graph G0 cannot contain k vertex-disjoint cycles. Thus, none

of the conditions δ(G) = 2k − 1, σ2(G) = 4k − 2, σ3(G) = 6k − 3, and in general for

t ≤ m, σt(G) = t(2k − 1) = 2kt− t is sufficient to imply G contains k vertex-disjoint

cycles.

In Chapter 2, we consider the next value of t; that is, we show that if σ4(G) ≥

8k − 3, then G contains k vertex-disjoint cycles. We also prove that the degree sum

condition is sharp, and we conjecture a sharp degree sum condition on σt(G) for any

fixed t ≥ 2 to imply that a graph contains k vertex-disjoint cycles.

An extension of the study of disjoint cycles is that of disjoint chorded cycles. A

chord of a cycle is an edge between two vertices of the cycle that is not an edge of

the cycle. We say a cycle is chorded if it induces at least once chord and doubly

chorded if it induces at least two chords. In 1960, Pósa [14] asked what conditions

would imply a graph contains a chorded cycle. In answer to the question, Czipzer

(see Lovász [12], problem 10.2) proved in 1963 that if a graph has minimum degree

at least 3, it must contain a chorded cycle. More recently, the relevant literature has

focused on conditions to imply a graph contains many vertex-disjoint chorded cycles.

Finkel [5] extended the work of Corrádi and Hajnal by showing that if |V (G)| ≥ 4k and

δ(G) ≥ 3k, then G contains k vertex-disjoint chorded cycles. Chiba et al. [1] extended

this result, proving that for a graph G of order at least 3r+4s, if σ2(G) ≥ 4r+6s−1,

then G contains r + s vertex-disjoint cycles, with s of them chorded. In [8], doubly

chorded cycles were considered, showing that if σ2(G) ≥ 6k − 1, then G contains k

vertex-disjoint doubly chorded cycles.

In Chapter 3, we consider the degree condition for t = 4. In particular, we show

that if G is a graph of order n ≥ 11k + 7, and if σ4(G) ≥ 12k − 3, then G contains
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k vertex-disjoint chorded cycles. Furthermore, we prove that this degree condition is

sharp, and we conjecture a sharp degree condition on σt(G) for any fixed t ≥ 2 to

imply the graph G contains k vertex-disjoint chorded cycles.

1.2 Definitions and Notation

We consider only simple graphs, without loops or multiedges. Let G = (V (G), E(G))

be a simple graph. Then |G| is the order of G, δ(G) is the minimum degree of G,

comp(G) is the number of components of G, α(G) is the independence number of G.

For a vertex u ∈ V (G), the set of neighbors of u in G is denoted by NG(u), and we

denote the degree of the vertex u by dG(u) = |NG(u)|. Let H be a subgraph of G. For

u ∈ V (G)−V (H), we denote the neighborhood of u in H by NH(u) = NG(u)∩V (H),

and the degree of u in H is given by dH(u) = |NH(u)|. For X ⊆ V (G), let dH(X) =∑
x∈X dH(x). For an integer t ≥ 1, let

σt(G) = min{
∑
v∈X

dG(v) |X is an independent set of G with |X| = t.},

and σt(G) =∞ when α(G) < t. Note that if t = 1, then σ1(G) = δ(G).

For a set S ⊂ V (G), the subgraph of G induced by S is denoted by 〈S〉. If there

is no fear of confusion, then we use the same symbol for a graph and its vertex set.

For graphs G1 and G2 with V (G1)∩V (G2) = ∅, G1∪G2 denotes the union of G1 and

G2, G1 +G2 denotes the join of G1 and G2, and mG denotes the union of m disjoint

copies of G, see [7].

For a path (or a cycle) Q in a graph G, we write Q = x1, x2, . . . , xt (, x1), where

V (Q) = {x1, x2, . . . , xt} and {x1, x2}, {x2, x3}, . . . , {xt−1, xt}(, {xt, x1}) ∈ E(Q). If Q

is a path (or a cycle), say Q = x1, x2, . . . , xt (, x1), then we assume that an orientation

of Q is given from x1 to xt. We say that xi precedes xj, and xj follows xi, on Q if

i < j. If x ∈ V (Q), then x+ denotes the first successor of x on Q and x− denotes
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the first predecessor of x on Q. For x, y ∈ V (Q), we let Q[x, y] denote the path of Q

from x to y (including x and y) in the given direction. The notation Q−[x, y] denotes

the path from y to x in the opposite direction. We also write Q(x, y] = Q[x+, y],

Q[x, y) = Q[x, y−] and Q(x, y) = Q[x+, y−]. For u, v ∈ V (Q), we define the path

Q±[u, v] as follows; if u precedes v on Q, then Q±[u, v] = Q[u, v], and if v precedes u

on Q, then Q±[u, v] = Q−[u, v]. If T is a tree with at least one branch and x, y ∈ V (T ),

where a branch vertex of a tree is a vertex of degree at least three, then we denote

the path from x to y as T [x, y].

For an integer r ≥ 1 and two disjoint subgraphs A,B of G, we denote by

(d1, d2, . . . , dr) a degree sequence from A to B such that dB(vi) ≥ di and vi ∈ V (A)

for each 1 ≤ i ≤ r. Throughout this dissertation, it is sufficient to consider the case of

equality in the above inequality; hence, when we write (d1, d2, . . . , dr), we will assume

that dB(vi) = di for each 1 ≤ i ≤ r. For X, Y ⊆ V (G), E(X, Y ) denote the set of

edges of G joining a vertex in X and a vertex in Y . For vertex-disjoint subgraphs

H1, H2 of G, we simply write E(H1, H2) instead of E(V (H1), V (H2)). A forest is a

graph each of whose components is a tree, and a leaf is a vertex of a forest whose

degree is at most one. A cycle of length ` is called an `-cycle.

Definition 1. Any chorded six-cycle must be one of two types. Either the chord

splits the cycle into a three-cycle and a five-cycle—we call this type 1, or the chord

splits the cycle into two four-cycles—we call this type 2.

(a) Type 1 six-cycle. (b) Type 2 six-cycle.

Figure 1.2. Six-cycle types.

Definition 2. We say a set C = {C1, . . . Cr} of r vertex-disjoint cycles in a graph G

is minimal if |
⋃r

i=1 V (Ci)| is minimal over all such sets of r cycles.
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Definition 3. Let C = v1, . . . , vt, v1 be an oriented cycle with a chord vivj, i ≤ j.

We say a chord vkvl 6= vivj is parallel to vivj if vk, vl ∈ C[vi, vj] or vk, vl ∈ C[vj, vi].

Note that if two chords share an endpoint, they are parallel. We say two chords are

crossing if they are not parallel.

Definition 4. Let viuj and vkul be two edges between two oriented paths P1 = v1,

. . . , vt and P2 = u1, . . . , us. We say viuj and vkul are parallel if either i ≤ k and j ≤ l,

or k ≤ i and l ≤ j. Note that if two edges between P1 and P2 share an endpoint,

they are parallel. We say two edges between two oriented paths are crossing if they

are not parallel.

Definition 5. Let vivj and vkvl be two distinct edges between vertices of a path

P1 = v1, . . . , vt, with i < j and k < l. We say vivj and vkvl are nested if either

i ≤ k < l ≤ j or k ≤ i < j ≤ l.

Definition 6. Let P = v1, . . . , vt be a path. We say a vertex vi on P has a left edge

if there exists an edge vjvi for any j < i− 1. We say vi has a right edge if there exists

an edge vivl for any l > i+ 1.

Definition 7. Let X be a set of vertices in a graph H with |X| > 1. We call a vertex

x of X isolated from the rest of X if it is the only vertex of X in some component Hi

of H.

For terminology and notation not defined here, see [7].
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Chapter 2

Degree Conditions to Imply the

Existence of Vertex-Disjoint Cycles

In this chapter, we prove a result regarding the existence of a large set of vertex-

disjoint cycles in a graph. Let G be a graph such that |G| ≥ 7k+1 and σ4(G) ≥ 8k−3

for integer k ≥ 2. We prove that such a graph contains a set of k vertex-disjoint cycles.

We also conjecture a generalized result for σt(G), and we show that the degree sums

in the result on σ4(G) and the conjecture for σt(G) are sharp.

2.1 Introduction

The study of cycles in graphs is an important and rich area. One of the more interest-

ing questions is to find conditions that insure the existence of k (k ≥ 2) vertex-disjoint

cycles. A number of such results exist. As noted in the introduction, Corrádi and

Hajnal [2] proved that if a graph G has order at least 3k and δ(G) ≥ 2k, then G

contains k disjoint cycles. Justesen [11] proved the same result from the condition

σ2(G) ≥ 4k. Enomoto [4] and Wang [15] independently improved Justesen’s bound

to σ2(G) ≥ 4k − 1. Fujita et al. [6] proved that if |G| ≥ 3k + 2 and σ3(G) ≥ 6k − 2,

then G contains k disjoint cycles. The purpose of this chapter is to further extend
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these results. We also conjecture the following:

Conjecture 2.1 ([10]). Let G be a graph of sufficiently large order. If σt(G) ≥

2kt− (t− 1) for any two integers k ≥ 2 and t ≥ 1, then G contains k disjoint cycles.

The cases for t = 1, 2, 3 have already been shown. We add to the evidence for this

conjecture by showing the following:

Theorem 2.1 ([10]). Let G be a graph of order n ≥ 7k + 1 for an integer k ≥ 2. If

σ4(G) ≥ 8k − 3, then G contains k disjoint cycles.

The degree sum condition conjectured above would be sharp. And in particular,

the degree sum condition of Theorem 2.1 is sharp. Sharpness is given by G = K2k−1+

mK1. The only independent vertices in G are those in mK1. Each of these vertices

has degree 2k − 1. Thus, for any t with 1 ≤ t ≤ m, σt(G) = t(2k − 1) = 2kt − t,

and G fails to contain k disjoint cycles as any such cycle must contain two vertices of

K2k−1.

2.2 Lemmas

In the proof of Theorem 2.1, we make use of the following lemmas. Fujita, Mat-

sumura, Tsugaki and Yamashita proved Lemmas 2.A, 2.B and 2.C in [6]. The proofs

of Lemmas 2.1 and 2.5 appear after the proof of Theorem 2.1, that is, in Section 2.4.

Let C1, . . . , Cr be r disjoint cycles of a graph G. If C ′1, . . . , C
′
r are r disjoint cycles

of G and | ∪ri=1 V (C ′i)| < | ∪ri=1 V (Ci)|, then we call C ′1, . . . , C
′
r a shorter (family of)

cycles than C1, . . . , Cr. We also call {C1, . . . , Cr} a minimal (family of) cycles if G

does not contain shorter r disjoint cycles than C1, . . . , Cr.

Lemma 2.A (Fujita et al. [6]). Let r be a positive integer and C1, . . . , Cr be r minimal

disjoint cycles of a graph G. Then dCi
(x) ≤ 3 for any x ∈ V (G) − ∪r

i=1V (Ci) and
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for any 1 ≤ i ≤ r. Furthermore, dCi
(x) = 3 implies |Ci| = 3, and dCi

(x) = 2 implies

|Ci| ≤ 4.

Lemma 2.B (Fujita et al. [6]). Suppose that F is a forest with at least two components

and C is a triangle. Let x1, x2, x3 be leaves of F from at least two components. If

dC({x1, x2, x3}) ≥ 7, then there exist two disjoint cycles in 〈F ∪ C〉 or there exists a

triangle C ′ in 〈F ∪ C〉 such that comp(〈F ∪ C〉 − C ′) < comp(F ).

Lemma 2.1. Suppose that F is a forest with at least two components and C is

a triangle. Let x1, x2, x3, x4 be leaves of F from at least two components. If

dC({x1, x2, x3, x4}) ≥ 9, then there exist two disjoint cycles in 〈F ∪C〉 or there exists

a triangle C ′ in 〈F ∪ C〉 such that comp(〈F ∪ C〉 − C ′) < comp(F ).

Lemma 2.C (Fujita et al. [6]). Let C be a cycle and T be a tree with three leaves x1,

x2, x3. If dC({x1, x2, x3}) ≥ 7, then there exist two disjoint cycles in 〈C ∪T 〉 or there

exists a cycle C ′ in 〈C ∪ T 〉 such that |C ′| < |C|.

Lemma 2.2. Let C be a cycle and T be a tree with four leaves x1, x2, x3, x4. If

dC({x1, x2, x3, x4}) ≥ 9, then there exist two disjoint cycles in 〈C ∪ T 〉 or there exists

a cycle C ′ in 〈C ∪ T 〉 such that |C ′| < |C|.

Proof. Let X = {x1, x2, x3, x4}. If dC(xi0) ≤ 2 for some 1 ≤ i0 ≤ 4, then dC(X −

{xi0}) ≥ 7, and we apply Lemma 2.C to X − {xi0}. Otherwise, dC(xi) ≥ 3 for each

1 ≤ i ≤ 4, and we apply Lemma 2.C to any three vertices in X.

Lemma 2.3. Let G be a graph satisfying the assumption of Theorem 2.1, and let

{C1, . . . , Ck−1} be a minimal (family of) k − 1 disjoint cycles of G. Suppose that

there exists a tree T with at least four leaves, which is a component of G − ∪k−1
i=1Ci.

Then G contains k disjoint cycles.

Proof. Let C = ∪k−1i=1Ci, and let X = {x1, x2, x3, x4} be a set of leaves of T . Since X

is an independent set, dC (X) ≥ (8k− 3)− 4 = 8(k− 1) + 1. Then there exists a cycle
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Ci for some 1 ≤ i ≤ k − 1 such that dCi
(X) ≥ 9. Since {C1, . . . , Ck−1} is minimal,

there exist two disjoint cycles in 〈Ci ∪ T 〉 by Lemma 2.2. Thus G contains k disjoint

cycles.

Lemma 2.4. Let G be a graph satisfying the assumption of Theorem 2.1, and let C1,

. . . , Ck−1 be k − 1 minimal disjoint cycles of G. Suppose that H = G − ∪k−1
i=1Ci has

at least two components at least one of which is a tree T with at least three leaves.

Then there exist two disjoint cycles in 〈Ci ∪T 〉 for some 1 ≤ i ≤ k− 1 or there exists

a triangle C in 〈H ∪ Ci〉 such that comp(〈H ∪ Ci〉 − C) < comp(H).

Proof. Let C = ∪k−1i=1Ci. Let x1, x2, x3 be three leaves of the tree T , and let x4 be

a leaf from another component, and X = {x1, x2, x3, x4}. Since X is an independent

set, dC (X) ≥ (8k − 3) − 4 = 8(k − 1) + 1. Then there exists a cycle Ci for some

1 ≤ i ≤ k − 1 such that dCi
(X) ≥ 9. If dCi

(x4) ≤ 2, then dC({x1, x2, x3}) ≥ 7. By

Lemma 2.C, there exist two disjoint cycles in 〈Ci ∪ T 〉 or there exists a cycle C in

〈Ci ∪ T 〉 such that |C| < |Ci|. Since {C1, . . . , Ck−1} is minimal, the lemma holds. If

dCi
(x4) ≥ 3, then Ci is a triangle by Lemma 2.A. Thus the lemma holds by Lemma

2.1.

Lemma 2.5. Let C1 and C2 be two disjoint cycles such that |C2| ≥ 6. Suppose that

C2 contains vertices with at least one of the following degree sequences from C2 to C1.

(i) (2, 2, 2, 2, 2)

(ii) (5, 3)

(iii) (3, 1, 1, 1, 1, 1)

(iv) (3, 2, 1, 1)

(v) (3, 3, 1)

Then 〈C1 ∪ C2〉 contains two disjoint cycles C ′1 and C ′2 such that |C ′1| + |C ′2| <

|C1|+ |C2|.

Lemma 2.6. Let H be a graph with two components H1, H2, where H1 = x1, . . . , xs
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(s ≥ 1) is a path and H2 = y1, . . . , yt (t ≥ 3) is a path. Let W = {x1, y1, yi, yt} for

any 2 ≤ i ≤ t− 1, and let C be a triangle. If there exists a degree sequence (3, 3, 2, 0)

or (3, 3, 1, 1) from W to C, then 〈H ∪ C〉 contains two disjoint cycles.

2.3 Proof of Theorem 2.1

For convenience, we restate our main result.

Theorem 2.1. Let G be a graph of order n ≥ 7k + 1 for an integer k ≥ 2. If

σ4(G) ≥ 8k − 3, then G contains k disjoint cycles.

Proof of Theorem 2.1. Suppose that the theorem does not hold. Let G be an edge-

maximal counterexample. If G is a complete graph, then G contains k disjoint cycles.

Thus we may assume that G is not a complete graph. Let xy 6∈ E(G) for some x, y ∈

V (G), and define G′ = G+ xy. Since G′ is not a counterexample by the maximality

of G, G′ contains k disjoint cycles C1, . . . , Ck. Without loss of generality, we may

assume that xy 6∈ ∪k−1i=1E(Ci), that is, G contains k − 1 disjoint cycles C1, . . . , Ck−1.

Let C = ∪k−1i=1Ci and H = G− C . Choose C1, . . . , Ck−1 such that

(1)
∑k−1

i=1 |Ci| is minimal, and

(2) subject to (1), comp(H) is minimal.

Note that any cycle C in C has no chords by (1). Clearly, H is a forest, otherwise,

since H contains a cycle, G contains k disjoint cycles, a contradiction. If H contains

at least two components at least one of which is a tree with at least three leaves, then

by Lemma 2.4, either G contains k disjoint cycles, or we contradict (2). Thus if H

contains at least two components, H must be a collection of paths. If H has only one

component, then it is a tree. If H is a tree with at least four leaves, then the theorem

holds by Lemma 2.3. Thus if H has only one component, then H is a tree with at

most three leaves.
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Now, we consider two cases on |H|.

Case 1. |H| ≤ 7.

Let C be a longest cycle in C . Suppose that |C| ≤ 7. Then |C ′| ≤ 7 for any cycle

C ′ in C , and |C | ≤ 7(k−1). Since |G| ≥ 7k+1, |H| = |G|−|C | ≥ (7k+1)−7(k−1) =

8, contradicting the assumption of this case. Thus |C| ≥ 8. Let |C| = 4t + r, t ≥ 2

and 0 ≤ r ≤ 3. Then there exist at least t disjoint independent sets in V (C) each

of which has four vertices. By (1) and |C| ≥ 8, dC(v) ≤ 1 for any v ∈ V (H). Thus

|E(H,C)| ≤ 7.

Suppose that k = 2. Then C has only one cycle C, and H = G−C. Since |C| ≥ 8,

C contains at least two independent sets each of which has four vertices. Let X1 and

X2 be such sets. Since dC(Xi) = 8 for each i ∈ {1, 2}, dH(Xi) ≥ (8k − 3) − 8 =

8k − 11. Then dH(X1 ∪X2) ≥ 16k − 22 ≥ 10, since k ≥ 2. Thus |E(C,H)| ≥ 10, a

contradiction.

Suppose that k ≥ 3. We claim that |E(C,C ′)| ≥ 8t for some cycle C ′ in C − C.

Note that each of t disjoint independent sets in V (C) sends at least (8k − 3) − 8 =

8k − 11 edges out of C. Since |E(C,H)| ≤ 7 and t ≥ 2, |E(C,C − C)| ≥ t(8k −

11) − 7 > 8t(k − 2). Thus the claim holds. Since |C| = 4t + r ≤ 4t + 3 and

|E(C,C ′)|/|C| ≥ 8t/(4t + 3) > 8t(4t + 4) = 2t/(t + 1) > 1, dC′(v) ≥ 2 for some

v ∈ V (C).

Suppose that max{dC′(v)|v ∈ V (C)} = 2. Let X = {v ∈ V (C)|dC′(v) ≤ 1} and

Y = V (C)−X. Then noting that t ≥ 2 and r ≤ 3,

8t ≤ |E(C,C ′)| ≤ |X|+ 2|Y | = (|C| − |Y |) + 2|Y | = |C|+ |Y |

⇒ |Y | ≥ 8t− |C| = 8t− (4t+ r) = 4t− r

≥ 8− 3 = 5.

Thus we have the degree sequence (2,2,2,2,2) from C to C ′. By Lemma 2.5(i), 〈C∪C ′〉
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contains two shorter disjoint cycles, contradicting (1).

Suppose that h = max{dC′(v)|v ∈ V (C)} ≥ 3. Let dC′(v∗) = h for some v∗ ∈

V (C). Since |C ′| ≤ |C| = 4t + r by the choice of C, dC′(v∗) ≤ |C ′| ≤ 4t + r. Then

since t ≥ 2 and r ≤ 3, |E(C − v∗, C ′)| ≥ 8t− (4t+ r) = 4t− r ≥ 5. This implies that

NC′(C − v∗) 6= ∅. Let Z = {v ∈ V (C)|NC′(v) 6= ∅}. Then |Z| ≥ 2.

Suppose that |Z| = 2. Then dC′(v) ≥ 5 for any v ∈ Z by the above observations.

By Lemma 2.5(ii), 〈C ∪ C ′〉 contains two shorter disjoint cycles, contradicting (1).

Suppose that |Z| ≥ 3. Since |E(C − v∗, C ′)| ≥ 5, we may assume that the

minimum degree sequence S from vertices of C to C ′ is at least one of (h, 4, 1),

(h, 3, 2), (h, 3, 1, 1), (h, 2, 2, 1), (h, 2, 1, 1, 1), or (h, 1, 1, 1, 1, 1), where by the definition

of h, if S = (h, 4, 1), then h ≥ 4, and if S is the other degree sequence, then h ≥ 3. If

S = (h, 4, 1) or (h, 3, 2), then by Lemma 2.5(v), 〈C∪C ′〉 contains two shorter disjoint

cycles. If S = (h, 3, 1, 1), (h, 2, 2, 1) or (h, 2, 1, 1, 1), then by Lemma 2.5(iv), 〈C ∪C ′〉

contains two shorter disjoint cycles. If S = (h, 1, 1, 1, 1, 1), then by Lemma 2.5(iii),

〈C ∪ C ′〉 contains two shorter disjoint cycles.

Case 2. |H| ≥ 8.

Claim 1. H is connected.

Proof. Suppose to the contrary that H is disconnected. Then note that H is a

collection of paths. Suppose that X is an independent set that consists of four leaves

from at least two components inH such that dH(X) ≤ 4. Then dC (X) ≥ (8k−3)−4 =

8(k − 1) + 1, and dCi0
(X) ≥ 9 for some 1 ≤ i0 ≤ k − 1. Thus dCi0

(x) ≥ 3 for some

x ∈ X, and |Ci0| = 3 by Lemma 2.A. By Lemma 2.1 and (2), 〈H ∪Ci0〉 contains two

disjoint cycles, and G contains k disjoint cycles, a contradiction. Thus H does not

contain such an independent set.

Now, we consider three cases on comp(H).

Case 1. comp(H) ≥ 4.
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H1

H2 . . .

x1

y1 y2 y3 yt

Figure 2.1. |H1| = 1

H1

H2 . . .

x1 x2

y1 y2 y3 yt

Figure 2.2. |H1| = 2

We take four leaves x1, x2, x3, x4, one from each component of H. Then X =

{x1, x2, x3, x4} is an independent set such that dH(X) ≤ 4, a contradiction.

Case 2. comp(H) = 3.

We take three leaves x1, x2, x3, one from each component of H. Since |H| ≥ 8,

some component of H, say H1, has order at least 3. Now, we take the other leaf from

H1, call it x4. Then X = {x1, x2, x3, x4} is an independent set such that dH(X) ≤ 4,

a contradiction.

Case 3. comp(H) = 2.

Let H1, H2 be two distinct components in H. Without loss of generality, we may

assume that |H1| ≤ |H2|. Suppose that |H1| ≥ 3. Then we take two leaves from each

component of H, yielding a set X of four independent vertices such that dH(X) = 4,

a contradiction. Suppose that |H1| ∈ {1, 2}. Since |H| ≥ 8, |H2| ≥ 6. Let H1 = x1,

xs (s ∈ {1, 2}); H2 = y1, y2, . . . , yt (t ≥ 6), and let W = {x1, y1, y3, yt} (see Figures

2.1 and 2.2). Since W is an independent set and dH(W ) ≤ 5, dC (W ) ≥ (8k−3)−5 =

8(k − 1). Then there is a cycle C0 in C such that dC0(W ) ≥ 8. By Lemma 2.A,

dC0(u) ≤ 3 for any u ∈ W , and |C0| ≤ 4. Then the minimum possible degree

sequence S from W to C0 is (3,3,2,0), (3,3,1,1), (3,2,2,1) or (2,2,2,2).

Suppose that |C0| = 4. Let C0 = v1, v2, v3, v4, v1. Then dC0(u) ≤ 2 for any

u ∈ W by Lemma 2.A. Thus we must have degree sequence (2,2,2,2). If some u ∈ W

has consecutive neighbors in C0, then u and these two neighbors form a 3-cycle,

contradicting (1). Thus for any u ∈ W , its neighbors in C0 are not consecutive. It

follows that for any u ∈ W , either NC0(u) = {v1, v3} or NC0(u) = {v2, v4}. Without
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loss of generality, we may assume that NC0(x1) = {v1, v3}. If yi0 , yj0 with some i0,

j0 ∈ {1, 3, t} and i0 < j0 do not share neighbors in C0 with x1, then we can easily

find two disjoint cycles, as follows. Since NC0(ym) = {v2, v4} for each m ∈ {i0, j0},

H2[yi0 , yj0 ], v4, yi0 is a cycle, and x1, v3, v2, v1, x1 is the other disjoint cycle (see

Figure 2.3).

. . .

C0

H

x1 y1 y2 y3 yt

v1 v2 v3 v4

Figure 2.3. An example where i0 = 1 and j0 = t.

Thus at most one vertex in {y1, y3, yt} does not share neighbors in C0 with x1.

Suppose that some vertex in {y1, y3, yt} does not share neighbors in C0 with x1. First,

suppose that such a vertex is y1, that is, NC0(y1) = {v2, v4}. Then y1, v4, v3, v2, y1 is

a cycle. Since v1 ∈ NC0(yi) for each i ∈ {3, t}, H2[y3, yt], v1, y3 is the other disjoint

cycle. If NC0(yt) = {v2, v4}, then yt, v4, v3, v2, yt and H2[y1, y3], v1, y1 are two disjoint

cycles. Suppose that NC0(y3) = {v2, v4}. Then we form a 4-cycle C ′0 = y3, v4, v3, v2,

y3. Since v1 ∈ NC0(yi) for each i ∈ {1, t}, 〈H∪C0〉−C ′0 is connected, contradicting (2)

(see Figure 2.4). Thus NC0(x1) = NC0(yi) for each i ∈ {1, 3, t}. Then C ′0 = H2[y1, y3],

v1, y1 is a 4-cycle. Since v3 ∈ NC0(u) for each u ∈ {x1, yt}, 〈H∪C0〉−C ′0 is connected,

contradicting (2). Thus if there exists a 4-cycle in C , we get a contradiction.

. . .

C0

H

x1 y1 y2 y3 yt

v1 v2 v3 v4

Figure 2.4. A new cycle C ′0 such that 〈H ∪ C0〉 − C ′0 is connected.

Suppose that |C0| = 3. Let C0 = v1, v2, v3, v1.
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Subcase 1. S = (3, 3, 2, 0) or S = (3, 3, 1, 1).

By Lemma 2.6, we can find two disjoint cycles in 〈C0 ∪H〉, a contradiction.

Subcase 2. S = (3, 2, 2, 1).

If dC0(y3) = 1, then since {x1, y1, yt} satisfies the conditions of Lemma 2.B, we get

a contradiction. Thus dC0(y3) ∈ {2, 3}.

First, suppose that dC0(x1) = 1. Let v1 ∈ NC0(x1). Note that dC0(yi) ≥ 2 for each

i ∈ {1, 3, t}. If v1 6∈ NC0(yi0) for some i0 ∈ {1, t}, then dC0(yi0) = 2, and C ′0 = yi0 ,

v3, v2, yi0 is a 3-cycle. Since dC0(yi1) = 3 for some i1 ∈ {1, 3, t} − {i0}, v1 ∈ NC0(yi1).

Then 〈C0∪H〉−C ′0 is connected, contradicting (2) (see Figure 2.5). Thus v1 ∈ NC0(yi)

for each i ∈ {1, t}. Since dC0(yi2) = 3 for some i2 ∈ {1, 3, t}, C ′′0 = yi2 , v3, v2, yi2 is a

3-cycle. Then 〈C0 ∪H〉 − C ′′0 is connected, contradicting (2).

. . .

C0

H

x1 y1 y2 y3 yt

v1 v2 v3

Figure 2.5. The case when i0 = 1 and i1 = 3.

Next, suppose that dC0(x1) = 2. Without loss of generality, we may assume that

v1, v2 ∈ NC0(x1). Suppose that dC0(y3) = 2. Since |C0| = 3, we may assume that

v1 ∈ NC0(x1) ∩ NC0(y3). Since dC0(yj0) = 3 for some j0 ∈ {1, t}, C ′0 = yj0 , v3, v2,

yj0 is a 3-cycle. Then 〈C0 ∪ H〉 − C ′0 is connected, contradicting (2). Suppose that

dC0(y3) = 3. If v3 ∈ NC0(ym0) for some m0 ∈ {1, t}, then H±2 [y3, ym0 ], v3, y3 and

x1, v2, v1, x1 are two disjoint cycles. Thus v3 6∈ NC0(ym) for each m ∈ {1, t}, that

is, NC0(ym) ⊆ {v1, v2}. Since one of y1 and yt has the degree 1 and the other has

the degree 2, without loss of generality, we may assume that v1 ∈ NC0(y1) ∩NC0(yt).

Since dC0(y3) = 3, C ′′0 = y3, v3, v2, y3 is a 3-cycle, and 〈C0 ∪H〉 − C ′′0 is connected,

contradicting (2) (see Figure 2.6).
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Finally, suppose that dC0(x1) = 3. Since dC0(yi0) = dC0(yj0) = 2 for some i0,

j0 ∈ {1, 3, t} with i0 < j0, we may assume that v1 ∈ NC0(yi0) ∩ NC0(yj0). Then

H2[yi0 , yj0 ], v1, yi0 is a cycle. Since dC0(x1) = 3, a second disjoint cycle is given by x1,

v3, v2, x1 (see Figure 2.7), a contradiction.

. . .

C0

H

x1 y1 y2 y3 yt

v1 v2 v3

Figure 2.6. The case when v1 ∈ NC0(y1) ∩NC0(yt).

. . .

C0

H

. . .. . .x1 y1 y2 y3 yi0 yt

v1 v2 v3

yj0

Figure 2.7. The case when v1 ∈ NC0(yi0) ∩NC0(yj0).

Subcase 3. S = (2, 2, 2, 2).

Without loss of generality, we may assume that NC0(x1) = {v1, v2}. If v3 ∈

NC0(yi0) ∩ NC0(yj0) for some i0, j0 ∈ {1, 3, t} with i0 < j0, then H2[yi0 , yj0 ], v3, yi0

and x1, v2, v1, x1 are two disjoint cycles. Thus at most one in {y1, y3, yt} can be

adjacent to v3. Suppose that v3 ∈ NC0(yi0) for some i0 ∈ {1, 3, t}. Since dC0(yi0) = 2,

we may assume that v2 ∈ NC0(yi0). Then C ′0 = yi0 , v3, v2, yi0 is a 3-cycle. For

each i ∈ {1, 3, t} − {i0}, NC0(yi) = {v1, v2}. Then 〈C0 ∪ H〉 − C ′0 is connected,

contradicting (2). Thus v3 6∈ NC0(yi) for each i ∈ {1, 3, t}, that is, NC0(yi) = {v1, v2}.

Then C ′′0 = H2[y1, y3], v2, y1 is a 3-cycle, and 〈C0∪H〉−C ′′0 is connected, contradicting

(2). This completes the proof of Claim 1.

Claim 2. H is a path.
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Proof. Suppose that H is not a path. Then recall that H is a tree with one branch

vertex of degree 3 in H. Then H has three leaves, say x1, x2, x3. Removing the

branch vertex in H, there exist three disjoint paths each of which has one vertex

from {x1, x2, x3} as an endpoint. Also, some path has order at least three, say P ,

since there exist at least seven vertices distributed over three paths. Without loss of

generality, we may assume that x1 is one of the endpoints of P , and let the other

endpoint be x4. Let X = {x1, x2, x3, x4} (see Figure 2.8). Then X is an independent

set. Since dH(X) = 5, dC (X) ≥ (8k − 3) − 5 = 8(k − 1). Thus there exists a cycle

Ci0 in C such that dCi0
(X) ≥ 8 for some 1 ≤ i0 ≤ k − 1. Then dCi0

(x) ≥ 2 for some

x ∈ X. By Lemma 2.A, dCi0
(x) ≤ 3 and |Ci0| ≤ 4.

x1

x2

x3
x4

H

Figure 2.8. The graph H and an independent set X = {x1, x2, x3, x4}.

Case 1. |Ci0| = 3.

Let Ci0 = v1, v2, v3, v1. Suppose that dCi0
(x) = 2 for each x ∈ X. Without

loss of generality, let v1, v2 ∈ NCi0
(x1). Since |Ci0 | = 3, NCi0

(x2) ∩ NCi0
(x3) 6=

∅. If v3 ∈ NCi0
(x2) ∩ NCi0

(x3), then H[x2, x3], v3, x2 and x1, v2, v1, x1 are two

disjoint cycles (see Figure 2.9). Thus without loss of generality, we may assume that

v1 ∈ NCi0
(x2) ∩ NCi0

(x3). Then H[x2, x3], v1, x2 is a cycle. Since dCi0
(x4) = 2,

NCi0
−v1(x4) 6= ∅. If v2 ∈ NCi0

(x4), then H[x1, x4], v2, x1 is the other disjoint cycle

(see Figure 2.10), and if v3 ∈ NCi0
(x4), then H[x1, x4], v3, v2, x1 is the other disjoint

cycle. Thus there exists at least one vertex x ∈ X such that dCi0
(x) = 3. Then the

minimum possible degree sequences from X to Ci0 are (3,3,2,0), (3,3,1,1) or (3,2,2,1).

Subclaim 2.1. If there exists a degree sequence at least (3, 3, 1, 0) from X to Ci0,
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then there exist two disjoint cycles in 〈H ∪ Ci0〉.

First, suppose that dCi0
(xj0) = 1 for some 1 ≤ j0 ≤ 3. Let v1 ∈ NCi0

(xj0). If

dCi0
(x4) = 0, then since dCi0

(xm) = 3 for each m ∈ {1, 2, 3} − {j0}, H[xj0 , xm], v1,

xj0 is a cycle. Since dCi0
(xm′) = 3 for m′ ∈ {1, 2, 3} − {j0,m}, it follows that xm′ ,

v3, v2, xm′ forms another cycle, vertex-disjoint from the first (see Figure 2.11). If

dCi0
(x4) = 3, then H[xj0 , x4], v1, xj0 is a cycle, and since dCi0

(xm0) = 3 for some

m0 ∈ {1, 2, 3} − {j0}, the other disjoint cycles is given by xm0 , v3, v2, xm0 . Next,

suppose that dCi0
(x4) = 1. Let v1 ∈ NCi0

(x4). Then dCi0
(xm1) = 3 and dCi0

(xm2) = 3

for some 1 ≤ m1 < m2 ≤ 3, and H[xm1 , x4], v1, xm1 and xm2 , v3, v2, xm2 are two

disjoint cycles, and Subclaim 2.1 holds.

Thus by the claim, we have only to consider the degree sequence (3,2,2,1). If the

degree 3 vertex does not lie on the path in H connecting the degree 2 vertices, then

since the two vertices with degree 2 must have a common neighbor by |Ci0| = 3, we can

easily find two disjoint cycles. Thus the degree 3 vertex does lie on the path connecting

the two vertices with degree 2. This implies that dCi0
(x4) = 3, dCi0

(x1) = 2 (see Figure

2.8), and we may assume that dCi0
(x2) = 1 and dCi0

(x3) = 2. Let v1 ∈ NCi0
(x2). Since

|NCi0
(x1)∩NCi0

(x4)| = 2, there exists vh0 ∈ NCi0
(x1)∩NCi0

(x4) for some h0 ∈ {2, 3}.

Then H[x1, x4], vh0 , x1 is a cycle. Since dCi0
(x3) = 2, there exists vh1 ∈ NCi0

(x3) for

some h1 ∈ {1, 2, 3}− {h0}. If h1 = 1, then H[x2, x3], v1, x2 is the other disjoint cycle

(see Figure 2.12), and if h1 ∈ {2, 3}, then H[x2, x3], vh1 , v1, x2 is the other disjoint

cycle.

Ci0

H . . .

v1 v2 v3

x1 x4

x2 x3

Figure 2.9. The case when v3 ∈ NCi0
(x2) ∩NCi0

(x3).
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Ci0

H . . .

v1 v2 v3

x1 x4

x2 x3

Figure 2.10. The case when v2 ∈ NCi0
(x4).

Ci0

H . . .

v1 v2 v3

x1 x4

x2 x3

Figure 2.11. An example with j0 = 1,m = 2,m′ = 3.

Case 2. |Ci0| = 4.

Let Ci0 = v1, v2, v3, v4, v1. By Lemma 2.A, dCi0
(x) ≤ 2 for each x ∈ X. Since

dCi0
(X) ≥ 8, dCi0

(x) = 2 for each x ∈ X. No vertex in X has consecutive neighbors

in Ci0 , otherwise, we can immediately find a 3-cycle, contradicting (1). Thus for each

x ∈ X, either NCi0
(x) = {v1, v3} or NCi0

(x) = {v2, v4}.

Subcase 1. All four vertices in X have the same two neighbors in Ci0 .

We may assume that NCi0
(X) = {v1, v3}. Then H[x1, x4], v1, x1 and H[x2, x3],

v3, x2 are two disjoint cycles.

Subcase 2. Three vertices in X have the same two neighbors in Ci0 .

Suppose that x1, x4 have the same two neighbors in Ci0 . Then we may assume that

Ci0

H . . .

v1 v2 v3

x1 x4

x2 x3

Figure 2.12. An example with h0 = 2 and h1 = 1.
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Ci0

H . . .

v1 v2 v3

x1 x4

x2 x3

v4

Figure 2.13. An example where v2 ∈ NCi0
(x2) and v4 ∈ NCi0

(x3).

Ci0

H . . .

v1 v2 v3

x1 x4

x2 x3

v4

Figure 2.14. The case when x1 and x4 have the same neighbors in Ci0 .

v1 ∈ NCi0
(x1) ∩NCi0

(x4), and H[x1, x4], v1, x1 is a cycle. Since dCi0
(xj) = 2 for each

j ∈ {2, 3}, NCi0
−v1(xj) 6= ∅. Then 〈H[x2, x3] ∪ (Ci0 − v1)〉 contains the other disjoint

cycle (see Figure 2.13). Suppose that x1, x4 do not have the same two neighbors in

Ci0 . Since x2, x3 have the same two neighbors in Ci0 , we repeat the above arguments,

replacing x1, x4 with x2, x3.

Subcase 3. Two vertices of X have the same two neighbors in Ci0 , and the other two

vertices of X have the same two neighbors, different from the neighbors of the first

two.

Suppose that x1, x4 have the same two neighbors. We may assume that v1 ∈

NCi0
(x1) ∩ NCi0

(x4). Then H[x1, x4], v1, x1 is a cycle. Since x2, x3 have the same

two neighbors, different from the neighbors of x1 and x4, H[x2, x3], v2, x2 is the other

disjoint cycle (see Figure 2.14). Suppose that x1, x4 have different neighbors. We

may assume that v1 ∈ NCi0
(x1) and v2 ∈ NCi0

(x4). Then H[x1, x4], v2, v1, x1 is a

cycle. Since x2, x3 have the neighbors, different from v1, v2, 〈H[x2, x3] ∪ {v3, v4}〉

contains the other disjoint cycle. This completes the proof of Claim 2.

Since H is a path by Claim 2, let H = x1, x2, . . . , xt (t ≥ 8). Let X =
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{x1, x3, x5, xt}. Then X is an independent set with dH(X) = 6, and dC (X) ≥

(8k− 3)− 6 = 8k− 9 ≥ 7(k− 1), since k ≥ 2. Thus either dC0(X) ≥ 8 for some cycle

C0 in C , or dC(X) = 7 for every cycle C in C . If dC(X) ≥ 8 for some cycle C in

C , then we have the minimum possible degree sequences (3,3,2,0), (3,3,1,1), (3,2,2,1)

or (2,2,2,2) from X to C. If dC(X) = 7 for some cycle C in C , then we have the

minimum possible degree sequences (3,3,1,0), (3,2,1,1), (3,2,2,0) or (2,2,2,1) from X

to C.

Claim 3. If there exists a degree sequence at least (3, 3, 1, 0) from X to C, then there

exist two disjoint cycles in 〈H ∪ C〉.

Proof. By Lemma 2.A, |C| = 3. Let C = v1, v2, v3, v1. We may assume that

dC(xi0) = 1 for some i0 ∈ {1, 3}, otherwise, i0 ∈ {5, t}, and we may argue in a similar

manner from the other end of the path H. Let v1 ∈ NC(xi0). First, suppose that

i0 = 1, that is, dC(x1) = 1. Then dC(xj1) = dC(xj2) = 3 for some j1, j2 ∈ {3, 5, t}

with j1 < j2. Thus H[x1, xj1 ], v1, x1 and xj2 , v3, v2, xj2 are two disjoint cycles. Next,

suppose that i0 = 3, that is, dC(x3) = 1. If dC(x1) = 0, then since dC(xj) = 3 for each

j ∈ {5, t}, x3, x4, x5, v1, x3 and xt, v3, v2, xt are two disjoint cycles. If dC(x1) = 3,

then x1, x2, x3, v1, x1 is a cycle, and since dC(xj0) = 3 for some j0 ∈ {5, t}, xj0 , v3,

v2, xj0 is the other disjoint cycle.

Claim 4. If there exists a degree sequence at least (2, 2, 2, 1) from X to C, then there

exist two disjoint cycles in 〈H ∪ C〉.

Proof. By Lemma 2.A, |C| ≤ 4. Let C = v1, v2, . . . , vq, v1, where q = |C|. We

may assume that dC(xi0) = 1 for some i0 ∈ {5, t}, otherwise, i0 ∈ {1, 3}, and we may

argue in a similar manner from the other end of the path H. Let v1 ∈ NC(xi0).

Case 1. NC(x1) ∩NC(x3) 6= ∅.

First, suppose that vj0 ∈ NC−v1(x1) ∩ NC−v1(x3) for some 2 ≤ j0 ≤ q. Then x1,

x2, x3, vj0 , x1 is a cycle. Since dC(xr) = 2 for r ∈ {5, t} − {i0}, NC−vj0 (xr) 6= ∅.
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Then 〈H[x5, xt] ∪ (C − vj0)〉 contains the other disjoint cycle. Next, suppose that

v1 ∈ NC(x1) ∩ NC(x3). Then x1, x2, x3, v1, x1 is a cycle. Since dC(xr) = 2 for

r ∈ {5, t} − {i0}, if v1 6∈ NC(xr), then 〈xr ∪ (C − v1)〉 contains the other disjoint

cycle. Thus we may assume that v1 ∈ NC(xr). Then H[x5, xt], v1, x5 is a cycle. Since

dC(xi) = 2 for each i ∈ {1, 3}, NC−v1(xi) 6= ∅, and 〈H[x1, x3]∪ (C − v1)〉 contains the

other disjoint cycle.

Case 2. NC(x1) ∩NC(x3) = ∅.

In this case, if |C| = 3, then since dC(xi) = 2 for each i ∈ {1, 3}, NC(x1)∩NC(x3) 6=

∅, contradicting our assumption. Thus |C| = 4, and either NC(x1) = {v1, v3} and

NC(x3) = {v2, v4} or NC(x1) = {v2, v4} and NC(x3) = {v1, v3}.

Suppose that NC(x1) = {v1, v3} and NC(x3) = {v2, v4}. Suppose that dC(x5) = 1.

Then x5v1 ∈ E(G) by our earlier assumption, and dC(xt) = 2. If xtv1 ∈ E(G), then

H[x5, xt], v1, x5 is a cycle, and x3, v4, v3, v2, x3 is the other disjoint cycle. Thus

NC(xt) = {v2, v4}. Then H[x3, xt], v4, x3 and x1, v3, v2, v1, x1 are two disjoint cycles.

Suppose that dC(xt) = 1. Then we can find two disjoint cycles in 〈H ∪ C〉 similar to

the case where dC(x5) = 1.

Suppose that NC(x1) = {v2, v4} and NC(x3) = {v1, v3}. Then x1, v4, v3, v2, x1 is

a cycle, and since dC(xi0) = 1 for some i0 ∈ {5, t} and xi0v1 ∈ E(G), H[x3, xi0 ], v1,

x3 is the other disjoint cycle.

By Claims 3 and 4, if dC(X) ≥ 8 for some cycle C in C , noting the minimum

possible degree sequences, then 〈H ∪ C〉 contains two disjoint cycles. Thus we may

assume that dC(X) = 7 for every cycle C in C .

. . .H

X = {x1, x3, x5, xt}, X ′ = {x2, x4, x6, xt}

x1 x2 x3 x4 x5 x6 xt

Figure 2.15. Sets X and X ′.
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Let X ′ = {x2, x4, x6, xt} (see Figure 2.15). Then X ′ is an independent set with

dH(X ′) = 7, and dC (X ′) ≥ (8k − 3)− 7 = 8k − 10 ≥ 6(k − 1), since k ≥ 2. Thus we

can choose some cycle C in C such that dC(X ′) ≥ 6. And we know that dC(X) = 7

, since X sends seven edges into every cycles in C . Since dC(xt) ≤ 3 by Lemma 2.A,

note that dC(X ′−{xt}) ≥ 6−3 = 3. Now, we have only to consider degree sequences

(3,2,1,1) and (3,2,2,0) from X to C by Claims 3 and 4. Since both degree sequences

contain degree 3, |C| = 3 by Lemma 2.A. Let C = v1, v2, v3, v1.

Case 1. The sequence is (3,2,1,1).

Suppose that dC(x1) = 3. By the degree sequence of this case, and since |C| = 3,

there are distinct integers i1, i2 ∈ {3, 5, t} with i1 < i2 such that NC(xi1)∩NC(xi2) 6=

∅. Without loss of generality, we may assume that v1 ∈ NC(xi1) ∩ NC(xi2). Then

H[xi1 , xi2 ], v1, xi1 is a cycle. Since dC(x1) = 3, x1, v3, v2, x1 is the other disjoint

cycle. If dC(xt) = 3, then we can find two disjoint cycles similar to the case where

dC(x1) = 3. Thus we may assume that dC(xi0) = 3 for some i0 ∈ {3, 5}.

H

C

. . .x1 x2 x3 x4 x5 x6 xt

v1 v2 v3

Suppose that dC(x1) = 2. Without loss of generality, we may assume that v1, v2 ∈

NC(x1). First, suppose that dC(x3) = 1. Then dC(x5) = 3. If x3v1 ∈ E(G), then x1,

x2, x3, v1, x1 and x5, v3, v2, x5 are two disjoint cycles. If x3v2 ∈ E(G), then we can

find two disjoint cycles similar to the case where x3v1 ∈ E(G), replacing v1 with v2.

If x3v3 ∈ E(G), then x3, x4, x5, v3, x3 and x1, v2, v1, x1 are two disjoint cycles. Next,

suppose that dC(x3) = 3. If x5v3 ∈ E(G), then x3, x4, x5, v3, x3 and x1, v2, v1, x1

are two disjoint cycles. Thus x5vj0 ∈ E(G) for some j0 ∈ {1, 2}. If j0 = 1, that is,

x5v1 ∈ E(G), then x3, v3, v2, x3 is a 3-cycle, and 〈(H − x3) ∪ v1〉 is connected and
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not a path. Thus we can find two disjoint cycles in 〈H ∪C〉 as in the proof of Claim

2. Similarly, we can prove the case where j0 = 2.

If dC(xt) = 2, then we can find two disjoint cycles similar to the case where

dC(x1) = 2. Thus we may assume that dC(xm0) = 2 for some m0 ∈ {3, 5}.

Then dC(xi) = 1 for each i ∈ {1, t}. Let x1v1 ∈ E(G). Then we may assume that

dC(x3) = 2 and dC(x5) = 3, otherwise, dC(x3) = 3 and dC(x5) = 2, and we may argue

in a similar manner from the other end of the path H. If x3v1 ∈ E(G), then H[x1, x3],

v1, x1 and x5, v3, v2, x5 are two disjoint cycles (see Figure 2.16). Thus x3vi ∈ E(G)

for each i ∈ {2, 3}. If xtv1 ∈ E(G), then H[x5, xt], v1, x5 and x3, v3, v2, x3 are two

disjoint cycles. If xtv2 ∈ E(G), then H[x5, xt], v2, x5 and H[x1, x3], v3, v1, x1 are two

disjoint cycles. If xtv3 ∈ E(G), then H[x5, xt], v3, x5 and H[x1, x3], v2, v1, x1 are two

disjoint cycles.

H

C

. . .x1 x2 x3 x4 x5 x6 xt

v1 v2 v3

Figure 2.16. Two disjoint cycles when x3v1 ∈ E(G).

Case 2. The sequence is (3,2,2,0).

We may assume that dC(xi0) = 0 for some i0 ∈ {1, 3}, otherwise, i0 ∈ {5, t},

and we may argue in a similar manner from the other end of the path H. Let

j0 ∈ {1, 3}−{i0}. Then dC(xj0) ≥ 2. Without loss of generality, we may assume that

v1, v2 ∈ NC(xj0).

Suppose that dC(x5) = 2. If dC(xj0) = 2, then NC(xj0) ∩ NC(x5) 6= ∅; say

v ∈ NC(xj0), and H[xj0 , x5], v, xj0 is a cycle. Since dC(xt) = 3, 〈xt∪ (C−v)〉 contains

the other disjoint cycle. If dC(xj0) = 3, then dC(xj) = 2 for each j ∈ {5, t}. Since

NC(x5) ∩ NC(xt) 6= ∅, say v ∈ NC(x5) ∩ NC(xt), H[x5, xt], v, x5 is a cycle. Since
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dC(xj0) = 3, 〈xj0 ∪ (C − v)〉 contains the other disjoint cycle.

Suppose that dC(x5) = 3. If |NC(xj0)∩NC(xt)| = 1, then let v ∈ NC(xj0)−NC(xt).

Then H[xj0 , x5], v, xj0 is a cycle, and 〈xt∪(C−v)〉 contains the other cycle (see Figure

2.17). Thus xj0 , xt have all the same neighbors in C, say v1, v2. Recall that dC(X ′) ≥

6. It follows that dC(X ′ − {xt}) ≥ 4 and dC(X ′ − {xt} − {x5}) = dC({x4, x6}) ≥ 1.

Suppose that NC(x6) 6= ∅. If NC(x6) ∩ NC(xt) 6= ∅, say v ∈ NC(x6) ∩ NC(xt), then

H[x6, xt], v, x6 is a cycle, and 〈x5 ∪ (C − v)〉 contains the other disjoint cycle. If

NC(x6) ∩ NC(xt) = ∅, then x6v3 ∈ E(G). Thus x5, x6, v3, x5 and xt, v2, v1, xt are

two disjoint cycles.

H

C

. . .x1 x2 x3 x4 x5 x6 xt

v1 v2 v3

Figure 2.17. Two disjoint cycles. Example when v = v3.

Suppose that NC(x4) 6= ∅. Then replacing x6 in the above argument with x4 and

xt with x1, we can prove this case by the same arguments above. Thus NC(xi) = ∅

for each i ∈ {4, 6}. This implies that dC(x2) = 3. Then xj0 , x2, v1, xj0 and x5, v3, v2,

x5 are two disjoint cycles.

2.4 Proofs of Lemmas

2.4.1 Proof of Lemma 2.1

Let F,C, xi (1 ≤ i ≤ 4) be as in Lemma 2.1. Let F1, F2 be two components of F ,

C = v1, v2, v3, v1, and X = {x1, x2, x3, x4}. Now, we consider two cases.

Case 1. At most two vertices of X lie in the same component of F .

Since dC(X) ≥ 9, dC(xi0) ≥ 3 for some 1 ≤ i0 ≤ 4. By |C| = 3, dC(xi) ≤ 3
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for each 1 ≤ i ≤ 4. Thus dC(xi0) = 3. Without loss of generality, we may assume

that i0 = 1, that is, dC(x1) = 3. Then dC({x2, x3, x4}) ≥ 6. Also, we may assume

that dC(x2) ≥ dC(x3) ≥ dC(x4). Now, we claim that dC({x2, x3}) ≥ 4. Otherwise, if

dC({x2, x3}) ≤ 3, then dC(xj0) ≤ 1 for some j0 ∈ {2, 3}. That implies that dC(x4) ≤ 1,

since dC(x4) is the smallest degree in {x2, x3, x4}. Then dC({x2, x3, x4}) ≤ 3+1 = 4, a

contradiction. Thus the claim holds. Noting our assumption of this case, {x1, x2, x3}

is a set of leaves from at least two components of F . Since dC({x1, x2, x3}) ≥ 3+4 = 7,

Lemma 2.B applies, completing this case.

Case 2. Three vertices of X lie in the same component of F .

Without loss of generality, we may assume that x1, x2, x3 ∈ V (F1), x4 ∈ V (F2),

and dC(x1) ≥ dC(x2) ≥ dC(x3). Recall that dC(X) ≥ 9. It follows that the minimum

possible degree sequence S from X to C is (3,3,3,0), (3,3,2,1) or (3,2,2,2).

Subcase 1. S = (3, 3, 3, 0).

If dC(xi0) = 0 for some 1 ≤ i0 ≤ 3, then i0 = 3, that is, dC(x3) = 0. Now, we

take {x1, x2, x4} that is a set of leaves from at least two components of F . Since

dC({x1, x2, x4}) = 9, Lemma 2.B applies. If dC(x4) = 0, then dC(xi) = 3 for each

1 ≤ i ≤ 3. Since all the xis are leaves, x3 does not lie on the path in F1 connecting x1

and x2. Then F1[x1, x2], v1, x1 and x3, v3, v2, x3 are two disjoint cycles in 〈F ∪ C〉.

Subcase 2. S = (3, 3, 2, 1).

Take {x1, x2, x4}. If dC(x4) ∈ {1, 2}, then dC({x1, x2}) ≥ 6. If dC(x4) = 3, then

dC({x1, x2}) ≥ 5. Since dC({x1, x2, x4}) ≥ 7 for all cases, Lemma 2.B applies.

Subcase 3. S = (3, 2, 2, 2).

Take {x1, x2, x4}. If dC(x4) = 2, then dC({x1, x2}) ≥ 5. If dC(x4) = 3, then

dC({x1, x2}) ≥ 4. Since dC({x1, x2, x4}) ≥ 7 for all cases, Lemma 2.B applies.
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2.4.2 Proof of Lemma 2.5

Proof of (i). Let v1, v2, v3, v4, v5 be the vertices such that dC1(vi) = 2 for each

1 ≤ i ≤ 5, appearing in this order on C2. Let w1, w2 ∈ NC1(v1) appear in this order

on C1. The neighbors of v1 partition C1 into two intervals C1(w1, w2] and C1(w2, w1].

We claim that each of v2, v3, v4, v5 has one neighbor in different interval of C1.

First, suppose that vi1 , vi2 , vi3 for some 2 ≤ i1 < i2 < i3 ≤ 5 have both their

neighbors in a common interval of C1, say C1(w1, w2]. We may assume that at least

one of their neighbors is not w2. Let zi1 ∈ NC1(w1,w2)(vi1) and zi2 ∈ NC1(w1,w2)(vi2).

Then C±1 [zi1 , zi2 ], C
−
2 [vi2 , vi1 ], zi1 and C1[w2, w1], v1, w2 form a shorter pair of disjoint

cycles, since vi3 is not used (see Figure 2.18).

C1 C2

vi1

w1

w2

zi1

zi2 vi2

vi3

v1

Figure 2.18. Shorter cycles in 〈C1 ∪ C2〉.

Next, suppose that vi1 , vi2 for some 2 ≤ i1 < i2 ≤ 5 have both their neighbors

in a common interval of C1, say C1(w1, w2]. Then we may assume that i1 = 2 and

i2 = 5, otherwise, we can prove the other pairs of i1 and i2 by the same arguments

above. Let zi1 ∈ NC1(w1,w2)(v2) and zi2 ∈ NC1(w1,w2)(v5). If NC1(w1,w2)(vj0) 6= ∅ for

some j0 ∈ {3, 4}, then there exist shorter two disjoint cycles. Thus NC1(w1,w2)(vj) = ∅

for each j ∈ {3, 4}. Since dC1(vj) = 2 for each j ∈ {3, 4}, NC1(w2,w1](vj) 6= ∅. Let

zi3 ∈ NC1(w2,w1](v3) and zi4 ∈ NC1(w2,w1](v4). Then C±1 [zi3 , zi4 ], C
−
2 [v4, v3], zi3 and

C±1 [zi1 , zi2 ], C2[v5, v2], zi1 are shorter two disjoint cycles, since w2 is not used (see

Figure 2.19).
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C1 C2

v2

w1

zi4

zi1

zi2

v5

v1

v3

v4w2

zi3

Figure 2.19. Shorter cycles in 〈C1 ∪ C2〉.

Finally, suppose that vi0 for some 2 ≤ i0 ≤ 5 has both the neighbors in an interval

of C1, say C1(w1, w2]. Then we have only to consider i0 = 2 or i0 = 3, otherwise,

we take a cycle from v1 in the opposite direction. First, suppose that i0 = 2. Let

x1, x2 ∈ NC1(w1,w2](v2), appearing in this order on C1. If x2 6= w2, then C1[x1, x2],

v2, x1 and C1[w2, w1], v1, w2 are shorter two disjoint cycles, since v3 is not used.

Thus x2 = w2. Let y1, y2 ∈ NC1(v3), appearing in this order on C1. Suppose that

y1 ∈ C1(w1, w2). Then C±1 [x1, y1], C
−
2 [v3, v2], x1 and C1[w2, w1], v1, w2 are shorter two

disjoint cycles, since v4 is not used. Thus y1 6∈ C1(w1, w2), that is, y1 ∈ C1[w2, w1].

Note that y2 ∈ C1(w2, w1]. If y1 6= w2, then C1[x1, w2], v2, x1 and C1[y1, y2], v3, y1

are shorter two disjoint cycles, since v1 is not used. Thus y1 = w2. If y2 6= w1, then

C1[w2, y2], v3, w2 and C1[w1, x1], C
−
2 [v2, v1], w1 are shorter two disjoint cycles, since

v4 is not used. Thus y2 = w1. Let z1, z2 ∈ NC1(v4), appearing in this order on C1.

Suppose that z1 ∈ C1[w1, w2). Then C1[w1, z1], C
−
2 [v4, v3], w1 and C2[v1, v2], w2, v1

are shorter two disjoint cycles, since v5 is not used. Suppose that z1 ∈ C1[w2, w1).

Then C1[w1, x1], C
−
2 [v2, v1], w1 and C1[w2, z1], C

−
2 [v4, v3], w2 are shorter two disjoint

cycles, since v5 is not used. Next, suppose that i0 = 3. Then, by the same arguments

as the case where i0 = 2, we have shorter two disjoint cycles, replacing v2 with v3.
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Thus each of v2, v3, v4, v5 has one neighbor in each interval of C1. Let x ∈

NC1(w1,w2](v2), y ∈ NC1(w1,w2](v3), z ∈ NC1(w2,w1](v4), u ∈ NC1(w2,w1](v5). Then C±1 [x, y],

C−2 [v3, v2], x and C±1 [z, u], C−2 [v5, v4], z are shorter two disjoint cycles, since v1 is not

used.

Proof of (ii). Let v1, v2 ∈ V (C2) such that dC1(v1) = 5 and dC1(v2) = 3, appearing

in this order on C2. Let w1, w2, w3, w4, w5 ∈ NC1(v1), appearing in this order on

C1, and let u1, u2, u3 ∈ NC1(v2), appearing in this order on C1. The neighbors of

v1 partition C1 into five intervals C1(wi, wi+1], 1 ≤ i ≤ 5 (mod 5). Suppose that ui0 ,

uj0 ∈ C1(wm0 , wm0+1] (mod 5) for some 1 ≤ i0 < j0 ≤ 3 and for some 1 ≤ m0 ≤ 5.

Without loss of generality, we may assume that i0 = 1, j0 = 2 and m0 = 1. Then

C1[u1, u2], v2, u1 and C1[w3, w4], v1, w3 are shorter two disjoint cycles, since w1 is

not used. Thus neighbors of v2 are contained in different intervals. Since C1 is

partitioned into five intervals, some two neighbors of v2 lie in neighboring intervals,

say u1 ∈ (w1, w2] and u2 ∈ C1(w2, w3]. Then C1[u1, u2], v2, u1 and C1[w4, w5], v1, w4

are shorter two disjoint cycles, since w1 is not used.

Proof of (iii). Let v1, v2, v3, v4, v5, v6 be the vertices on C2 with the degree

sequence (3,1,1,1,1,1), appearing in this order on C2. Without loss of generality, we

may assume that dC1(v1) = 3 and dC1(vi) = 1 for each 2 ≤ i ≤ 6. Let w1, w2, w3 ∈

NC1(v1), appearing in this order on C1. The neighbors of v1 partition C1 into three

intervals: C1(w1, w2], C1(w2, w3], C1(w3, w1]. Then there exist some integer 1 ≤

i0 ≤ 3 and distinct integers 2 ≤ j1 < j2 ≤ 5 such that NC1(wi0
,wi0+1](vj1) 6= ∅ and

NC1(wi0
,wi0+1](vj2) 6= ∅. Without loss of generality, we may assume that i0 = 1. Let

u1 ∈ NC1(w1,w2](vj1) and u2 ∈ NC1(w1,w2](vj2). Then C±1 [u1, u2], C
−
2 [vj2 , vj1 ], u1 and

C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v6 is not used.

Proof of (iv). Let v1, v2, v3, v4 be the vertices on C2 with the degree sequence
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(3,2,1,1), say dC1(v1) = 3, dC1(v2) = 2 and dC1(vi) = 1 for each i ∈ {3, 4}. Suppose

that v1, v2 are in this order on C2. Let w1, w2, w3 ∈ NC1(v1) be in this order on

C1, and let u1, u2 ∈ NC1(v2) be in this order on C1. Let v3, v4 be in this order on

C2. Let z1 ∈ NC1(v3), and let z2 ∈ NC1(v4). The neighbors of v1 partition C1 into

three intervals: C1(w1, w2], C1(w2, w3], C1(w3, w1]. If v2 has both its neighbors in the

same interval in C1, then we can find shorter two disjoint cycles. If the neighbors of

v2 are into two different intervals of C1 and neither is in {w1, w2, w3}, then we can

also find shorter two disjoint cycles. Thus the neighbors of v2 are into two different

intervals of C1 and at least one of them is at an endpoint of these intervals. Without

loss of generality, we may assume that u1 ∈ C1(w1, w2] and u2 ∈ C1(w2, w3]. Now, we

consider two cases.

Case 1. v3, v4 ∈ C2(v1, v2) or v3, v4 ∈ C2(v2, v1).

Without loss of generality, we may assume that v3, v4 ∈ C2(v1, v2). If z2 ∈

C1(w1, w3), then C±1 [u1, z2], C2[v4, v2], u1 and C1[w3, w1], v1, w3 are shorter two disjoint

cycles, since v3 is not used. If z2 ∈ C1[w3, w1), then C1[u2, z2], C2[v4, v2], u2 and

C1[w1, w2], v1, w1 are shorter two disjoint cycles, since v3 is not used. Thus z2 = w1.

If u2 ∈ C1(w2, w3), then C1[u1, u2], v2, u1 and C2[w3, w1], v1, w3 are shorter two

disjoint cycles, since v3 is not used. Thus u2 = w3.

If z1 ∈ C1(w3, u1), then C±1 [z1, w1], C2[v1, v3], z1 and C1[u1, w3], v2, u1 are shorter

two disjoint cycles, since v4 is not used. Thus z1 ∈ C1[u1, w3].

Suppose that u1 ∈ C1(w1, w2). If z1 ∈ C1[u1, w2), then C1[w1, z1], C2[v3, v4], w1

and C1[w2, w3], v1, w2 are shorter two disjoint cycles, since v2 is not used. If z1 = w2,

then C2[v1, v3], w2, v1 and C1[w1, u1], C
−
2 [v2, v4], w1 are shorter two disjoint cycles,

since w3 is not used. If z1 ∈ C1(w2, w3], then C1[z1, w3], C2[v1, v3], z1 and C1[w1, u1],

C−2 [v2, v4], w1 are shorter two disjoint cycles, since w2 is not used. Thus u1 = w2.

Now, we consider two disjoint cycles C ′ = w1, C2[v1, v4], w1 and C ′′ = C1[w2, w3],

v2, w2. Note that |C2| ≥ 6. If C2(v4, v2) 6= ∅ or C2(v2, v1) 6= ∅, then C ′ and C ′′
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are shorter two disjoint cycles. Thus C2(v4, v2) = ∅ and C2(v2, v1) = ∅. First, sup-

pose that z1 ∈ C1[w2, w3). If C2(v1, v3) 6= ∅, then C1[w3, w1], v1, w3 and C2[v3, v2],

C1[w2, z1], v3 are shorter two disjoint cycles. If C2(v3, v4) 6= ∅, then C1[w2, z1], C
−
2 [v3, v1],

w2 and C1[w3, w1], C2[v4, v2], w3 are shorter two disjoint cycles. Next, suppose that

z1 = w3. If C2(v1, v3) 6= ∅, then C1[w1, w2], v1, w1 and C2[v3, v2], w3, v3 are shorter

two disjoint cycles. If C2(v3, v4) 6= ∅, then C2[v1, v3], w3, v1 and C1[w1, w2], C
−
2 [v2, v4],

w1 are shorter two disjoint cycles.

Case 2. v3 ∈ C2(v1, v2) and v4 ∈ C2(v2, v1).

If z1 ∈ C1(w1, w3), then C±1 [u1, z1], C2[v3, v2], u1 and C1[w3, w1], v1, w3 are shorter

two disjoint cycles, since v4 is not used. If z1 ∈ C1[w3, w1), then C1[u2, z1], C2[v3, v2],

u2 and C1[w1, w2], v1, w1 are shorter two disjoint cycles, since v4 is not used. Thus

z1 = w1. Then C2[v1, v3], w1, v1 and C1[u1, u2], v2, u1 are shorter two disjoint cycles,

since v4 is not used.

Proof of (v). Let v1, v2, v3 be the vertices on C2 with the degree sequence (3,3,1).

Suppose that v1, v2, v3 exist in this order on C2. Without loss of generality, we may

assume that dC1(vi) = 3 each i ∈ {1, 2} and dC1(v3) = 1. Suppose that w1, w2,

w3 ∈ NC1(v1) exist in this order on C1. Let W = {w1, w2, w3}. These neighbors of

v1 partition C1 into three intervals: C1(w1, w2], C1(w2, w3], C1(w3, w1]. Let u1, u2,

u3 ∈ NC1(v2), and suppose that u1, u2, u3 are in this order on C1.

Case 1. Some two neighbors of v2 are in the same interval of C1.

Without loss of generality, we may assume that u1, u2 ∈ C1(w1, w2]. Then

C1[u1, u2], v2, u1 and C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v3 is

not used.

Case 2. No two neighbors of v2 are in the same interval of C1.

Then u1 ∈ C1(w1, w2], u2 ∈ C1(w2, w3], and u3 ∈ C1(w3, w1]. First, suppose that
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ui0 , uj0 6∈ W for some 1 ≤ i0 < j0 ≤ 3. Without loss of generality, we may assume

that i0 = 1 and j0 = 2, that is, u1 ∈ C1(w1, w2) and u2 ∈ C1(w2, w3). Then C1[u1, u2],

v2, u1 and C1[w3, w1], v1, w3 are shorter two disjoint cycles, since v3 is not used.

Next, suppose that ui0 6∈ W for only some 1 ≤ i0 ≤ 3. Without loss of generality,

we may assume that i0 = 1, that is, u1 ∈ C1(w1, w2). Then note that u3 = w1,

C1[w1, u1], v2, w1 and C1[w2, w3], v1, w2 are shorter two disjoint cycles, since v3 is not

used.

Finally, suppose that ui = wi+1 (mod 3) for each 1 ≤ i ≤ 3. Without loss of

generality, we may assume that v3z1 ∈ E(G) for z1 ∈ (w2, w3]. Now, we have two

choices for constructing shorter two disjoint cycles. We may construct C1[w1, w2], v2,

w1 and C1[z1, w3], C
−
2 [v1, v3], z1, or C1[w1, w2], v1, w1 and C1[z1, w3], C2[v2, v3], z1.

Since |C2| ≥ 6, one of these two choices must leave out a vertex of C2, and hence we

may form shorter two disjoint cycles.

2.4.3 Proof of Lemma 2.6

Let C = v1, v2, v3, v1.

Case 1. The sequence is (3,3,2,0).

Suppose that dC(x1) = 0. Then dC(yi0) = 3 for some i0 ∈ {1, i, t}, and we may

assume that i0 = 1, that is, dC(y1) = 3. Since dC(yr) ≥ 2 for each r ∈ {i, t} and

|C| = 3, vm0 ∈ NC(yi) ∩NC(yt) for some 1 ≤ m0 ≤ 3. Without loss of generality, we

may assume that m0 = 1. Then H2[yi, yt], v1, yi and y1, v3, v2, y1 are two disjoint

cycles.

Suppose that dC(x1) = 2. Without loss of generality, we may assume that v1, v2 ∈

NC(x1). Then x1, v2, v1, x1 is a cycle. Since dC(yi0) = dC(yj0) = 3 for some i0, j0 ∈

{1, i, t} with i0 < j0 and |C| = 3, v3 ∈ NC(yi0) ∩NC(yj0). Then H2[yi0 , yj0 ], v3, yi0 is

the other disjoint cycle.
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Suppose that dC(x1) = 3. Since dC(yi0) ≥ 2 and dC(yj0) ≥ 2 for some i0, j0 ∈

{1, i, t} with i0 < j0 and |C| = 3, vm0 ∈ NC(yi0) ∩ NC(yj0) for some 1 ≤ m0 ≤ 3.

Without loss of generality, we may assume that m0 = 1. Then H2[yi0 , yj0 ], v1, yi0 and

x1, v3, v2, x1 are two disjoint cycles.

Case 2. The sequence is (3,3,1,1).

Suppose that dC(x1) = 1. Then dC(yi0) = 3 for some i0 ∈ {1, i, t}, and we may

assume that i0 = 1, that is, dC(y1) = 3. Since one of yi and yt has degree 3 to C and

the other one of them has degree 1 to C, noting that |C| = 3, vm0 ∈ NC(yi)∩NC(yt)

for some 1 ≤ m0 ≤ 3. Without loss of generality, we may assume that m0 = 1. Then

H2[yi, yt], v1, yi and y1, v3, v2, y1 are two disjoint cycles.

Suppose that dC(x1) = 3. Since one of y1, yi, yt has degree 3 to C and the others of

them have degree 1 to C, dC(yi0) = 3 and dC(yj0) = 1 for some distinct i0, j0 ∈ {1, i, t}.

Then note that either i0 < j0 or i0 > j0. Since |C| = 3, vm0 ∈ NC(yi0) ∩NC(yj0) for

some 1 ≤ m0 ≤ 3. Without loss of generality, we may assume that m0 = 1. Then

H±2 [yi0 , yj0 ], v1, yi0 and x1, v3, v2, x1 are two disjoint cycles.
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Chapter 3

Degree Conditions to Imply the

Existence of Vertex-Disjoint

Chorded Cycles

In this chapter, we extend our work on vertex-disjoint cycles to vertex-disjoint chorded

cycles. In particular, we consider the existence of a large set of vertex-disjoint chorded

cycles in a graph. Let G be a graph such that |G| ≥ 11k+ 7 and σ4(G) ≥ 12k− 3 for

integer k ≥ 2. We prove that such a graph contains a set of k vertex-disjoint cycles.

We also conjecture a generalized result for σt(G). And we show that the degree sums

in the result on σ4(G) and the conjecture for σt(G) are sharp.

3.1 Introduction

An extension of the study of disjoint cycles is that of disjoint chorded cycles. A

chord of a cycle is an edge between two vertices of the cycle that is not an edge of

the cycle. We say a cycle is chorded if it induces at least once chord and doubly

chorded if it induces at least two chords. As noted in the introduction, interest in

ensuring a chorded cycle as a subgraph dates back to 1960, when Pósa first asked what
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conditions would imply the existence of a chorded cycle in a graph. In 1963, Czipzer

(see Lovász [12], problem 10.2) provided an answer to the question by proving that if

a graph has minimum degree at least 3, it must contain a chorded cycle. In the years

since, results have focused on guaranteeing the existence of a set of k disjoint chorded

cycles. Finkel [5] proved a Corrádi-Hajnal type result for chorded cycles, showing

that if |V (G)| ≥ 4k and δ(G) ≥ 3k, then G contains k vertex-disjoint chorded cycles.

Chiba et al. [1] extended this result, proving that for a graph G of order at least

3r + 4s, if σ2(G) ≥ 4r + 6s − 1, then G contains r + s vertex-disjoint cycles, with s

of them chorded. The following corollary is a direct consequence of this theorem of

Chiba et al. [1]:

Corollary 1. Suppose that |G| ≥ 4k and σ2(G) ≥ 6k − 1. Then G contains k

vertex-disjoint chorded cycles.

Both Corollary 1 and Finkel’s result are sharp as evidenced by the graph G0 =

K3k−1, n−3k+1. For this graph, δ(G0) = 3k − 1, σ2(G0) = 6k − 2 and σt(G0) =

3kt − t. But G0 cannot contain k vertex-disjoint chorded cycles, as any chorded

cycle must contain 3 vertices from the 3k − 1 partite set. Hence, in general, at least

σt(G) ≥ 3kt− t+ 1 is necessary to imply G contains k vertex-disjoint chorded cycles.

This pattern uncovered in the sharpness example for Corollary 1 and Finkel’s result

motivated Conjecture 3.1.

Conjecture 3.1 ([9]). Let G be a graph of sufficiently large order. If σt(G) ≥ 3kt−

t+ 1 for any two integers k ≥ 2 and t ≥ 1, then G contains k vertex-disjoint chorded

cycles.

Note that the conjectured degree sum condition would be sharp by the same

example. The purpose of this chapter is to further extend the known results on

chorded cycles and to add to the evidence for Conjecture 3.1 by proving the case

when t = 4. We show the following:
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Theorem 3.1 ([9]). If G is a graph of order n ≥ 11k + 7 and if σ4(G) ≥ 12k − 3,

then G contains k vertex-disjoint chorded cycles.

It follows from the graph G0 described above that Theorem 3.1 is sharp with

respect to the degree sum condition σ4(G) ≥ 12k − 3.

The proof of Theorem 3.1 in Section 3.3 proceeds by contradiction using an edge-

maximal counterexample. An edge-maximal counterexample G does not contain k

chorded cycles, but if any edge is added, the resulting graph does contain k chorded

cycles. Thus, G must contain a set C of k − 1 vertex-disjoint chorded cycles. We

let H = G \
⋃k−1

i=1 V (Ci); that is, H is what is left in G after the chorded cycles are

removed. We first prove that the order of H must be large enough. Then we show

that H must contain a large connected component, and in this connected component,

we find a set X of four independent vertices having small degree in H. Finally, we

use the σ4 condition to find many edges between the set X and some cycle C in the

set C . We get a contradiction by constructing two vertex-disjoint chorded cycles in

〈H ∪ C〉.

3.2 Preliminaries

In the proof of Theorem 3.1, we make use of the following Lemmas, as well as Theorem

3.2 due to Czipzer (Lovász [12], problem 10.2), and Theorem 3.3, a direct consequence

of Chiba et al. [1].

Theorem 3.2. (Czipzer (see [12], problem 10.2)) Suppose |G| ≥ 4 and δ(G) ≥ 3.

Then G contains a chorded cycle.

Theorem 3.3. (Chiba, Fujita, Gao, Li [1]) Suppose that |G| ≥ 4k and σ2(G) ≥ 6k−1.

Then G contains k vertex-disjoint chorded cycles.

Lemma 3.1. Let C = {C1, C2, . . . , Cr} be a minimal set of r vertex-disjoint cycles

in a graph G. For any i, 1 ≤ i ≤ r, the cycle Ci cannot have two parallel chords.
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Proof. This follows easily from the minimality of C .

Lemma 3.2. Let C = {C1, C2, . . . , Cr} be a minimal set of r vertex-disjoint cycles

in a graph G. If |Ci| ≥ 7 for some 1 ≤ i ≤ r, then Ci has at most two chords.

Furthermore, if it has two chords, these chords must be crossing.

Proof. Suppose Ci contains at least three chords. By Lemma 3.1, no two of them

can be parallel. Thus they are all mutually crossing. Label the endpoints of three of

these chords v1, v2, . . . v6 in that order. Because the chords are mutually crossing, the

three chords are given by v1v4, v2v5, v3v6. These six endpoints partition the vertex

set of Ci into six path segments: Ci[v1, v2), Ci[v2, v3), . . . , Ci[v6, v1). Since |Ci| ≥ 7,

some segment contains at least one vertex of Ci which is not an endpoint of one of

the three chords. Without loss of generality, say Ci[v1, v2) contains some vertex of Ci

other than v1. Then, v2, Ci[v5, v1], C
−
i [v4, v2] is a smaller chorded cycle. (See Figure

3.1.) Thus, Ci contains at most two chords, and by Lemma 3.1 they must cross.

v6

v1 v3

v4

v2

v5

Figure 3.1. A smaller chorded cycle.

Lemma 3.3. Let r be a positive integer and C = {C1, . . . , Cr} be a set of r minimal

vertex-disjoint chorded cycles of a graph G such that the number of K4s in C is

maximal. And suppose G does not contain r+1 vertex-disjoint chorded cycles. Then,

dCi
(x) ≤ 4 for any x ∈ V (G) − ∪r

j=1V (Cj) and any i, 1 ≤ i ≤ r. Furthermore,

if C ∈ C and x ∈ V (G) − ∪r
j=1V (Cj) such that dC(x) = 4, then C = K4 and if

dC(x) = 3, then |C| ≤ 5 or C is a type 2 chorded six-cycle (see Definition 1).

Proof. Suppose we have a chorded cycle C and a vertex x ∈ V (G)−∪rj=1V (Cj) such

that dC(x) ≥ 4.
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Claim 5. If dC(x) ≥ 4, then cycle C is a 4-cycle, and hence also dC(x) = 4.

Proof. Suppose to the contrary |C| ≥ 5. Consider four neighbors of x on C, say

{v1, v2, v3, v4} = X ⊆ NC(x), in that order. These neighbors define five intervals

C[vi, vi+1) on C, where i = 1, . . . 4, and for i = 4, i + 1 = 1. Since |C| ≥ 5, by the

Pigeonhole Principle, a vertex of C−X lies in one of the intervals C[vi, vi+1). Without

loss of generality, say there is a vertex of C − X in C[v1, v2). Then 〈C[v2, v4] ∪ x〉

induces a shorter chorded cycle in 〈C ∪ x〉, contradicting the minimality of C . Thus,

dC(x) ≥ 4 implies |C| = 4, which in turn implies dC(x) = 4. Hence, for any x ∈

V (G)− ∪r
j=1V (Cj) and for any i, 1 ≤ i ≤ r, we know that dC(x) ≤ 4.

Claim 6. If |C| = 4, then C = K4.

Proof. Suppose C 6= K4. Then, C = K4 − e. Label the vertices of C with v1, v2, v3,

v4, in that order, such that the chord is given by v1v3. Then, 〈{v1, v2, v3} ∪ x〉 = K4.

This contradicts the fact that the number of K4s in C was maximal.

Now suppose dC(x) = 3.

Claim 7. Either |C| ≤ 5 or C is a type 2 chorded six-cycle.

Proof. Let X = {v1, v2, v3} be neighbors of x in C in that order on the cycle. If

|C| ≥ 7, then some interval defined by two consecutive neighbors of x contains at

least two vertices of C − X. Without loss of generality, say C[v1, v2) contains at

least two vertices of C − X. Then 〈C[v2, v1] ∪ x〉 induces a smaller chorded cycle,

contradicting the minimality of C . Thus, |C| < 7.

Suppose C is a type 1 chorded six- cycle. Label the vertices of C with x1, x2, . . . ,

x6 in order such that the three-cycle is given by x1, x2, x3, x1 and the five-cycle is

given by x1, x3, x4, x5, x6, x1.

If x has two neighbors in the three-cycle, then 〈C[x1, x3] ∪ x〉 contains a chorded

four-cycle. On the other hand, if x is adjacent to all three of the vertices outside of
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the three-cycle, that is, x4, x5, x6, we get a chorded four-cycle from 〈C[x4, x6] ∪ x〉.

Thus, x must be adjacent to one vertex in the three-cycle and two vertices outside

the three-cycle. Let x be adjacent to one of {x1, x2, x3} and any two of {x4, x5, x6}.

If x is adjacent to x1, then 〈x ∪ x1 ∪ C[x4, x6]〉 contains a chorded five-cycle if x is

adjacent to x4, or contains a chorded four-cycle if x is not adjacent to x4. A similar

argument applies if x is adjacent to x3. Suppose x is adjacent to x2. Then, if x is

adjacent to x4, 〈x ∪ C[x1, x4]〉 induces a chorded five-cycle x1, x3, x4, x, x2, x1 with

edge x2x3 as a chord. Otherwise, if x is not adjacent to x4, it must be adjacent to

x6, and 〈x ∪ C[x1, x3] ∪ x6〉 induces a chorded five-cycle x1, x3, x2, x, x6, x1 with

edge x1x2 as a chord. In all cases we can find a smaller chorded cycle, contradicting

the minimality of C . Hence, if dC(x) = 3, the cycle C cannot be a type 1 chorded

six-cycle. And since |C| < 7, it follows that either C is a type 2 chorded six-cycle, or

|C| ≤ 5. Thus, the claim holds.

This completes the proof of Lemma 3.3.

Lemma 3.4. Suppose we have three edges either all mutually parallel or all mutually

crossing, connecting two paths, P1, P2. Then there is a chorded cycle in 〈P1 ∪ P2〉

Proof. Say the edges are x1y1, x2y2, x3y3. Without loss of generality, let x1, x2, and

x3 appear in that order in P1. If the edges are mutually crossing, the endpoints y1,

y2, y3 must appear in the order y3, y2, y1 on P2. Else, the edges are all mutually

parallel, and the endpoints y1, y2, y3 must appear in that order in P2. In either case,

P1[x1, x3], y3, P
±
2 (y3, y1], x1 is a chorded cycle with x2y2 as a chord.

Lemma 3.5. Suppose we have at least five edges connecting two paths P1 and P2.

Then we can form a chorded cycle in 〈P1 ∪ P2〉 which leaves out at least one vertex

from P1 or P2.

Proof. Any two edges between P1 and P2 are either parallel or crossing. Since there

are five edges between P1 and P2, by the Pigeonhole Principle there must be either
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three mutually parallel edges or three mutually crossing edges. Then, by Lemma

3.4, we can form a chorded cycle in 〈P1 ∪ P2〉. Suppose this chorded cycle uses every

vertex of P1 and P2. Then the cycle has at least three chords, and by Lemma 3.2, a

shorter chorded cycle exists in 〈P1 ∪ P2〉.

Lemma 3.6. Let x1, x2 be two vertices on a path P1, each having degree two to another

path P2. Then we can form a chorded cycle in 〈P1[x1, x2] ∪ P2〉.

Proof. Let ui, uj, i < j, be x1’s neighbors on P2 = u1, . . . , us. If x2 has a neigh-

bor that lies in P2[uj, us] or P2[u1, ui], then we can easily form a chorded cycle in

〈P1[x1, x2] ∪ P2〉. (See Figure 3.2.)

P2P1

ui

x1

x2

uj

uk

(a) Note that it is possible uj = uk.

P2P1

ui

uk
x1

x2 uj

(b) Note that it is possible uk = ui.

Figure 3.2. A chorded cycle in 〈P1[x1, x2] ∪ P2〉.

Thus, both of x2’s neighbors in P2 must lie in P2(ui, uj), call them uk, ul wtih

k < l. So the neighbors of x1 and x2 lie in the order ui, uk, ul, uj on P2. (See Figure

3.3.) Then, P1[x1, x2], uk, P2(uk, uj], x1 forms a chorded cycle, with chord x2ul.

Lemma 3.7. Let x1, x2, x3 be three vertices which lie either in order x1, x2, x3 or

in order x3, x2, x1 on a path P1, with x1 having degree two and x2, x3 each having

degree 1 to another path P2. Then we can form a chorded cycle in 〈P1[x1, x3] ∪ P2〉.
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P2P1

uj

ui
x1

x2

uk

ul

Figure 3.3. A chorded cycle in 〈P1[x1, x2] ∪ P2〉.

Proof. We may assume x1, x2, x3 lie in that order, else we can reverse the order of

the path. Let w1, w2 be x1’s neighbors in P2. As in the previous lemma, if either x2

or x3 has a neighbor that lies beyond w2 or prior to w1 in P2, then we can easily form

a chorded cycle in 〈P1 ∪ P2〉. Thus, the neighbor of each of x2, x3 lies in P2(w1, w2).

Call x2’s neighbor w3 and x3’s neighbor w4. If w3 appears before w4 in P2(w1, w2),

then we have three parallel edges between P1 and P2, one from each of the wi’s. Else,

w3 appears in P2(w4, w2), and we have three mutually crossing edges between P1 and

P2, one from each of the wi’s. In either case, a chorded cycle exists by Lemma 3.4.

Lemma 3.8. Let H be a graph containing a path P . If there exist nested edges

between vertices of P in E(G)− E(P ), then H contains a chorded cycle.

Proof. The proof is obvious. (See Figure 5.)

P

Figure 3.4. Nested edges in a path.

Lemma 3.9. Let H be a graph containing a path P = v1, v2, · · · , vn and vi, vi+1 be
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neighboring vertices on the path. If vi has a right edge vivj and vi+1 has a left edge

vi+1vk then H contains a chorded cycle.

Proof. Clearly, P [vk, vi], vj, P
−(vj, vi+1], vk is a cycle with edge vivi+1 as a chord.

Lemma 3.10. Let H be a graph containing a path P = v1, v2, · · · , vn and vi, vi+1 be

neighboring vertices on the path. Then vi and vi+1 cannot both have degree at least 4

to P .

Proof. Suppose dP (vi) ≥ 4 and dP (vi+1) ≥ 4. Then vi has two neighbors in P [v1, vi−2]

∪ P [vi+2, vn], and vi+1 has two neighbors in P [v1, vi−1] ∪ P [vi+3, vn]. If vi has a

neighbor in P [vi+2, vn] and vi+1 has a neighbor in P [v1, vi−1], then H contains a

chorded cycle by Lemma 3.9. Thus, either vi must have two neighbors in P [v1, vi−2]

or vi+1 has two neighbors in P [vi+3, vn]. In either case, nested edges exist and H

contains a chorded cycle by Lemma 3.8.

Lemma 3.11. Let H be a graph containing a path P1 = v1, . . . , vt, t ≥ 12, and not

containing a chorded cycle. If vivt ∈ E(H) for any i ≤ t − 2, then dP1(vk) ≤ 3 for

any k > i and dP1(vi+1) = 2. And if v1vj ∈ E(H) for any j ≥ 3, then dP1(vl) ≤ 3 for

any l < j and dP1(vj−1) = 2.

Proof. Suppose vivt ∈ E(H) for some i ≤ t− 2. No vertex vk with k > i has a right

edge, otherwise that edge nests with vivt, and by Lemma 3.8, H contains a chorded

cycle, a contradiction. Thus, dP1(vk) ≤ 3 for any k > i. Furthermore, vertex vi+1

cannot have a left edge by Lemma 3.9. Thus, dP1(vi+1) = 2

By symmetry, the same proof shows that if v1vj ∈ E(H) for some j ≥ 3, then

dP1(vl) ≤ 3 for any l < j and dP1(vj−1) = 2.

Lemma 3.12. Let H be a graph containing a path P1 = v1, . . . , vt, t ≥ 12, and not

containing a chorded cycle. If dP1(v1) = 1, then one of v3, v4, v5 has degree two in

〈P1〉. Or if v1v3 ∈ E(H), then one of v4, v5, v6 has degree two in 〈P1〉.
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Proof. Let either v1v3 ∈ E(H) or dP1(v1) = 1. If v1v3 ∈ E(H), we let i = 4, and

if dP1(v1) = 1, we let i = 3. Vertex vi cannot have a left edge, else in the first case

we get a chorded cycle, and in the second case we have dP1(v1) = 2; hence, we have

a contradiction in either case. If vertex vi has degree 2 in P1, we are done. Thus

vi must have a right edge, say vivj. If j = i + 2, then vertex vi+1 cannot have a

left edge or a right edge and must have degree 2, else we get a chorded cycle. Thus,

j > i + 2. By Lemma 3.9, vi+1 cannot have a left edge. If vi+1 has degree 2 we

are done. Thus, vi+1 has a right edge, say vi+1vk. If k ≤ j, then we have nested

edges and a chorded cycle by Lemma 3.8, a contradiction. Thus, k > j. By the

same argument as for vi+1, vertex vi+2 either has degree 2, or has a right edge vi+1vl

such that l > k. In the later case, edges vivj, vi+1vk, vi+2vl are three parallel edges

between the subpaths vi, vi+1, vi+2 and vj, . . . , vl, and hence a chorded cycle exists by

Lemma 3.4, a contradiction. Thus, vertex vi+2 must have degree 2 in P1, and we are

done.

Lemma 3.13. Let H be a graph containing a path P1 = v1, . . . , vt, t ≥ 12 and not

containing a chorded cycle. If dP1(vt) = 1, then one of vt−4, vt−3, vt−2 has degree two

in 〈P1〉. Or if vtvt−2 ∈ E(H), then one of vt−5, vt−4, vt−3 has degree two in 〈P1〉.

Proof. The lemma follows from the proof of Lemma 3.12 by symmetry.

Lemma 3.14. Let H = 〈P1 ∪ P2〉, where P1 = v1, . . . , vt, P2 = u1, . . . , us, such that

H does not contain a chorded cycle. If a vertex vi ∈ P1 is adjacent to an endpoint of

P2 and a vertex vj ∈ P1 with j ≥ i + 2 is adjacent to an endpoint of P2, then one of

vi+1, vj−1 has degree 2 in 〈P1 ∪ P2〉.

Proof. Let H = 〈P1 ∪ P2〉 such that H does not contain a chorded cycle. Let vertex

vi ∈ P1 be adjacent to an endpoint of P2, without loss of generality say u1, and let

vertex vj ∈ P1 be adjacent an endpoint of P2, for some j ≥ i + 2, without loss of
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generality say ut. (If instead vi, vj are both adjacent to u1 or ut, in the cycles following

replace u1, P2(u1, ut] and ut, P
−
2 (ut, u1] with just u1 or ut as necessary.)

If vertex vi+1 has a left edge, say vi+1vk, with k < i, then P1[vk, vi], u1, P2(u1, ut],

vj, P
−
1 (vj, vi+1], vk forms a chorded cycle with edge vivi+1 as a chord. By symmetry,

vertex vj−1 cannot have a right edge, else a chorded cycle exists with the edge vj−1vj

as a chord.

Thus, either vi+1 or vj−1 has degree 2 in 〈P1 ∪ P2〉 and we are done, or vertex vi+1

has a right edge, and vertex vj−1 has a left edge.

No vertex in P1[vi, vj] can have an edge that does not lie on P1 to some other

vertex in P1[vi, vj], else this edge is a chord of the cycle P1[vi, vj], ut, P
−
2 (ut, u1], vi.

Thus, we have edges vi+1vk, with k > j, and vj−1vl, with l < i. But then, P1[vl, vi],

u1, P2(u1, us], vj, P1(vj, vk], vi+1, P1(vi+1, vj−1], vl forms a chorded cycle with edges

vivi+1 and vj−1vj as chords.

Thus, one of vi+1, vj−1 has degree 2 in H, and hence is also independent from v1,

vt, u1, us.

Lemma 3.15. Let H = 〈P1 ∪ P2〉, where P1 = v1, . . . , vt, P2 = u1, . . . , us, such that

P1, P2 is a maximal pair of paths, with P1 as long as possible. Suppose H does not

contain a chorded cycle or a Hamiltonian path. Finally, suppose dP1({u1, us}) ≥ 1.

If v1 has a neighbor vi in P1[v4, vt], then dH(vi−1) = 2. If vt has a neighbor vj in

P1[v1, vt−3], then dH(vj+1) = 2.

Proof. Suppose v1 is adjacent to a vertex in P1[v4, vt]. If v1 is adjacent to vt, then

H contains a Hamiltonian path, a contradiction. Thus, v1 has a neighbor vi in

P1[v4, vt−1]. Note that vertex vi−1 cannot be adjacent to any vertex in P2, else either

H contains a Hamiltonian path or there exists a maximal pair of paths P ′1, P
′
2 such

that |P ′1| > |P1|, a contradiction. By Lemma 3.11, vi−1 has degree 2 in P1. Hence,

dH(vi−1) = 2.
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By symmetry, a similar argument shows that if vt has a neighbor vj in P1[v1, vt−3],

then dH(vj+1) = 2.

3.3 Proof of Theorem 3.1

For convenience, we restate our main result.

Theorem 3.1. Let k ≥ 2 be a positive integer. If G is a graph of order n ≥ 11k + 7

with σ4(G) ≥ 12k − 3, then G contains k vertex-disjoint chorded cycles.

Proof of Theorem 3.1. Let G be an edge-maximal counterexample. That is, G fails

to have k vertex-disjoint chorded cycles, but for any new edge e, G + e does have k

vertex-disjoint chorded cycles. This implies there exists a collection of k − 1 vertex-

disjoint chorded cycles in G. Over all such collections, choose one, say C , such that:

(1) C is minimal.

(2) Subject to (1), the number of components in H = G− ∪k−1
i=1 V (Ci) is minimal.

(3) Subject to (1) and (2), the number of K4s in C is maximal.

Claim 1. |H| ≥ 18.

Proof. Suppose to the contrary that |H| ≤ 17. First suppose |V (Ci)| ≤ 11 for

all i, 1 ≤ i ≤ k − 1. Since by assumption |G| ≥ 11k + 7, it follows that |H| ≥

(11k + 7)− 11(k − 1) = 18, a contradiction. Thus, |V (Ci)| ≥ 12 for some i.

Let C be a largest cycle in C . By Lemma 3.2, |C| ≥ 12 implies that C contains

at most two chords and these chords must be crossing. Let |C| = 4t+ r where t ≥ 3

and 0 ≤ r ≤ 3.

Subclaim 1.1. The cycle C contains t different sets X1, . . . , Xt of four independent

vertices each, such that dC(X1 ∪X2 ∪ · · · ∪Xt) ≤ 8t+ 4
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Proof. Cycle C has at most two chords, and if it has two chords, they must be

crossing. For any 4t vertices of C, their degree sum in C is at most 4t× 2 + 4, since

C has at most 2 chords. Thus it only remains to show that C contains t sets of four

independent vertices each.

Recall that |C| = 4t+ r ≥ 4t. Start anywhere on C and label the first 4t vertices

of C with labels 1 through t in order, starting over again with 1 after using label t.

If r ≥ 1, label the remaining r vertices of C with the labels t + 1, . . . , t + r. (See

Figure 3.5.) The labeling above yields t sets of 4 vertices each, where all the vertices

labeled with 1 are one set, all the vertices labeled with 2 are another set, and so on.

Given this labeling, since t ≥ 3, any vertex in C has a different label than the vertex

that preceeds it on C and the vertex that succeeds it on C. Let C̃ be cycle C minus

its chords, if it has any. Then, the vertices in each of the sets are independent in C̃.

Thus, the only way vertices in the same set are dependent in C is if the endpoints of

a chord of C were given the same label. Note that any vertex labeled i is distance

at least 3 in C̃ from any other vertex labeled i. Thus, if a vertex and the neighbor

preceeding it on C or the neighbor succeeding it on C have their labels swapped, the

vertices in each of the classes are still independent in C̃.

C

2

1
2

3

1

2

3

13

1

2

3

4

5

Figure 3.5. An example where t = 3 and r = 2.

Case 1.1.1. Suppose no chord of C has endpoints with the same label. Then, we

have found t sets of 4 independent vertices in C, and we are done.
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Case 1.1.2. Suppose one chord of C has endpoints with the same label. Because C

contains at most two chords and those chords must be crossing, each chord has an

endpoint with a neighbor that is not an endpoint of a chord. Pick such an endpoint

of the chord whose endpoints were assigned the same label, and swap the label of this

vertex with its non-endpoint neighbor. The vertices in each of the resulting classes

are still independent in C̃, and now no chord of C has endpoints with the same label.

Thus, we have found t sets of four independent vertices each in C.

Case 1.1.3. Suppose two chords of C each have endpoints with the same label.

Subcase 1. If an endpoint of one chord of C is adjacent to an endpoint of the other

chord, swap the labels of these adjacent endpoints. Then, the vertices in each of the

resulting classes are still independent in C̃, and now no chord of C has endpoints

with the same label. Thus, we have found t sets of four independent vertices each in

C.

Subcase 2. If no endpoint of the first chord in C is adjacent to an endpoint of

the second chord, then swap the labels of an endpoint of the first chord, call it e1

and one of its neighbors in C̃. The vertices in each of the resulting classes are still

independent in C̃. Now pick an endpoint of the second chord that is not adjacent to

a vertex that has had its label swapped, call it e2. Then, pick a neighbor in C̃ of e2

that is of maximal distance in C̃ from e1. This neighbor is not adjacent to any vertex

which has had its color swapped. Thus, we may swap the labels of e2 and its selected

neighbor, and the vertices in each of the resulting classes are still independent in C̃.

Furthermore, now no chord of C has endpoints with the same label, and thus we have

found our sets.

In all cases, we were able to construct t different sets of four independent vertices

each in C. Thus, Subclaim 1.1 holds.



49

Since |C| ≥ 12, dC(v) ≤ 2 for any vertex v ∈ V (H); otherwise, we could form a

chorded cycle shorter than C in 〈C ∪H〉, contradicting (1). Because |H| ≤ 17 and

each vertex of H has at most two neighbors in C, it follows that |E(H,C)| ≤ 34.

Each set of four independent vertices in C has at least 12k − 3 edges in G, since

σ4(G) ≥ 12k − 3. Thus, X1 ∪X2 ∪ · · · ∪Xt has total degree at least t(12k − 3) in G.

Suppose that k = 2. Then C has only one cycle C, and H = G−C. By Subclaim

1.1, C contains t independent sets Xi, 1 ≤ i ≤ t each of which has four vertices and

such that dC(X1 ∪ · · · ∪Xt) ≤ 8t+ 4. Then, dH(X1 ∪ · · · ∪Xt) ≥ t(12k− 3)− (8t+ 4)

= 12kt− 11t− 4 ≥ 24t− 11t− 4 = 13t− 4 ≥ 35, since t ≥ 3. Thus, |E(C,H)| ≥ 35,

a contradiction.

Suppose that k ≥ 3. We bound the order of E(C,C − C) from below.

|E(C,C − C)| ≥ |E(X1 ∪ · · · ∪Xt,C − C)|

Subtracting from dG(X1 ∪ · · · ∪Xt) both dC(X1 ∪ · · · ∪Xt) and dH(C), we get:

|E(X1 ∪ · · · ∪Xt,C − C)| ≥ t(12k − 3)− (8t+ 4)− 34

= 12kt− 3t− 8t− 4− 34

= 12kt− 11t− 38.

And since t ≥ 3,

12kt− 11t− 38 ≥ 12kt− 12t− 35 = 12t(k − 1)− 35

> 12t(k − 1)− 12t = 12t(k − 2).

Thus, |E(C,C ′)| ≥ |E(X1 ∪ · · · ∪Xt, C
′)| ≥ 12t for some cycle C ′ in C −C, since

C −C contains k−2 cycles. Because |C| = 4t+r ≤ 4t+3, it follows that the average
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degree to C ′ of the vertices of X1 ∪ · · · ∪Xt is greater than 2; that is,

|E(X1 ∪ · · · ∪Xt, C
′)|/|C| ≥ 12t

4t+ 3
≥ 3t

t+ 1
> 2.

It follows that dC′(v) ≥ 3 for some vertex v ∈ X1 ∪ · · · ∪Xt.

Let h = max{dC′(v)|v ∈ X1 ∪ · · · ∪ Xt}. Let v∗ be a vertex of C such that

dC′(v∗) = h, and let v∗∗ be a vertex of C−v∗ having maximal degree to C ′. Certainly

dC′(v∗∗) ≤ h. By the maximality of C, we know that |C ′| ≤ |C| = 4t + r. It follows

that h = dC′(v∗) ≤ |C ′| ≤ 4t+ r. Recall that t ≥ 3 and r ≤ 3.

Then, |E((X1 ∪ · · · ∪Xt)− v∗, C ′)| ≥ 12t− dC′(v∗)

≥ 12t− (4t+ r) = 8t− r ≥ 21. (3.4)

Futher, |E((X1 ∪ · · · ∪Xt)− v∗ − v∗∗, C ′)| ≥ 12t− dC′(v∗)− dC′(v∗∗)

≥ 12t− (4t+ r)− (4t+ r) = 4t− 2r ≥ 6.

(3.5)

Case 1.1. Suppose that h = 3.

Then because we have 4t vertices in X1 ∪ · · · ∪ Xt sending a sum of at least 12t

edges to C ′, it follows that every vertex of X1 ∪ · · · ∪Xt sends 3 edges to C ′. Thus,

there are at least 12 vertices in C having degree 3 to C ′.

Let W = {w1, w2, . . . , w12} be a set of 12 vertices of C, each having degree 3 to

C ′. Let v1, v2, v3 be w1’s neighbors in C ′. They partition C ′ into three intervals:

C ′[v1, v2), C
′[v2, v3), C

′[v3, v1). Denote W − {w1} by W ′.

Claim 1.1.1. No three vertices in W ′ all have three neighbors to the same single

interval in C ′.

Proof. Suppose three different vertices in W ′, say wi, wj, wl, 2 ≤ i < j < k ≤ 12, all
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have three neighbors to the same single interval in C ′, without loss of generality say

C ′[v1, v2). Then each of wi, wj, wl has at least two neighbors in C(v1, v2). So there

exist 6 edges between C[wi, wl] and C ′(v1, v2). By Lemma 3.5, a chorded cycle exists in

〈C[wi, wl] ∪ C ′(v1, v2)〉 that leaves out at least one vertex. And 〈w1 ∪ C ′[v2, v1]〉 forms

a second chorded cycle, vertex-disjoint from the first. Thus, we have constructed a

shorter pair of vertex-disjoint chorded cycles in 〈C ∪ C ′〉, contradicting (1). Thus,

the claim holds.

Claim 1.1.2. No vertex wi, 2 ≤ i ≤ 12 has three or more neighbors in a single

interval of C ′.

Proof. Suppose wi has three neighbors in a single interval of C ′, without loss of gen-

erality say C ′[v1, v2). Then by Lemma 3.4, a chorded cycle exists in 〈wi ∪ C ′[v1, v2)〉.

By Claim 1.1.1, at most one other vertex in {w2, . . . , w12}, call it wj, has at least

three neighbors in C ′[v1, v2). Thus, every vertex in {w2, . . . , w12} − {wi, wj} has

edges into C ′[v2, v1). And therefore, by Lemma 3.5, there exists a chorded cycle in

〈C − wi, C
′[v2, v1)〉 which leaves out at least one vertex. Together with the chorded

cycle in 〈wi ∪ C ′[v1, v2)〉, we have a shorter pair of vertex-disjoint chorded cycles in

〈C ∪ C ′〉, contradicting (1). Thus, the claim holds.

Thus, every vertex in W − w1 sends edges into at least 2 intervals.

Note that the set of vertices {w7, . . . , w12} sends 18 edges to C ′. It follows that

some interval in C ′ gets at least 6 edges from {w7, . . . , w12}, say C ′[v1, v2). Then there

exists a chorded cycle in 〈C[w7, w12] ∪ C ′[v1, v2)〉 which leaves out at least one vertex,

by Lemma 3.5. Also, because every vertex sends edges to at least 2 intervals, each of

w2, . . . , w5 has an edge into C ′[v2, v1). This implies that |E(C[w1, w5], C
′[v2, v1))| ≥ 6.

Hence by Lemma 3.5, there exists a chorded cycle in 〈C[w1, w5] ∪ C ′[v2, v1)〉. Thus,

we have formed a shorter pair of vertex-disjoint chorded cycles, contradicting (1).

This completes Case 1.1.
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Case 1.2. Suppose that h ≥ 4.

Recall that |E((X1 ∪ · · · ∪ Xt) − v∗, C ′)| ≥ 21 and |E((X1 ∪ · · · ∪ Xt) − v∗ −

v∗∗, C ′)| ≥ 6, by (3.4) and (3.5). Thus, NC′(C − v∗ − v∗∗) 6= ∅, and letting W = {v ∈

V (C)|NC′(v) 6= ∅}, it follows that |W | ≥ 3; that is, at least three vertices in C have

neighbors in C ′.

Subcase 1. Suppose that |W | = 3. LetW = {w1, w2, w3} where dC′(w1) ≥ dC′(w2) ≥

dC′(w3).

Then, |E({w2, w3}, C ′)| ≥ 21, and |E({w3}, C ′)| ≥ 6. Since dC′(w1) ≥ dC′(w2) ≥

dC′(w3), it follows that dC′(w) ≥ 6 for any w ∈ W . Since |E({w2, w3}, C ′)| ≥ 21 and

dC′(w2) ≥ dC′(w3), it follows that dC′(w2) ≥ 11. Thus, we have degree sequence at

least (11, 11, 6) from W to C ′.

Let v1, v2, . . . , v6 denote w3’s neighbors in C ′, appearing in that order on C ′. The

neighbors of w3 partition C ′ into six intervals, C ′[vi, vi+1), for all 1 ≤ i ≤ 6 (where

i + 1 = 1 for i = 6). Because {w1, w2} sends at least 22 edges total into C ′, some

interval in C ′ receives at least 4 edges from {w1, w2}, without loss of generality say

C ′[v1, v2). And either every interval receives at least one edge from {w1, w2} or some

interval receives at least five edges from {w1, w2}.

If every interval receives at least one edge, then taking the interval with at least 4

edges and a neighboring interval, some pair of neighboring intervals receives at least

five edges total from {w1, w2}, without loss of generality say intervals C ′[v1, v2) and

C ′[v2, v3). There exist five edges between C[w1, w2] and C ′[v1, v3). Thus, by Lemma

3.5, there exists a chorded cycle in 〈C[w1, w2] ∪ C ′[v1, v3)〉 which leaves out at least

one vertex of 〈C[w1, w2] ∪ C ′[v1, v3)〉. And 〈w3 ∪ C ′[v3, v5]〉 forms a second chorded

cycle in 〈C ∪ C ′〉, vertex-disjoint from the first, contradicting (1).

Thus, some interval in C ′ receives at least five edges from {w1, w2}, without loss of

generality say [v1, v2). By Lemma 3.5, there exists a chorded cycle in 〈P1 ∪ C ′[v1, v2)〉

which leaves out at least one vertex of 〈P1 ∪ C ′[v1, v2)〉. And 〈w3 ∪ C ′[v3, v5]〉 forms
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a second chorded cycle in 〈C ∪ C ′〉, vertex-disjoint from the first, contradicting (1).

Subcase 2. Suppose that |W | ≥ 4.

Recall that vertex v∗ has at least four neighbors in C ′. Let v1, v2, v3, v4 be neighbors

of v∗ in C ′. Note that v1, . . . , v4 partition C ′ into four intervals, C ′[vi, vi+1) (where

i + 1 = 1 for i = 4). By (4), there are at least 21 more edges into C ′ from C − v∗.

By the Pigeonhole Principle, some interval C ′[vi, vi+1) contains six of these additional

edges. Without loss of generality, say this interval is C ′[v4, v1). Then by Lemma 3.5,

〈C − v∗ ∪ C ′[v4, v1)〉 contains a chorded cycle which leaves out at least one vertex of

〈C − v∗ ∪ C ′[v4, v1)〉. Note that C1 = v∗, C ′[v1, v3], v
∗ forms a chorded cycle with the

edge v∗v2 as a chord, and it uses no vertices from C ′[v4, v1). Thus we have a pair of

shorter vertex-disjoint chorded cycles in 〈C ∪ C ′〉, contradicting (1)

This completes the proof of Claim 1. Thus, |H| ≥ 18.

Claim 2. Every component Hi of H that has a vertex x with dHi
(x) ≤ 2 either

contains two independent vertices each with degree at most two in Hi, or contains a

vertex with degree at most two in Hi that is not a cut-vertex.

Proof. Suppose not. It follows that Hi fails to contain two independent vertices

each with degree at most two in Hi. Furthermore, Hi contains a vertex v such that

dHi
(v) ≤ 2 and v is a cut-vertex. Since v is a cut-vertex, dHi

(v) = 2. Let a and b

be the neighbors of v in Hi. Let H ′i be the component of Hi − {v} containing a and

H ′′i be the component of Hi − {v} containing b. Either dHi
(a) ≥ 3 or dHi

(b) ≥ 3,

otherwise a, b are two independent vertices in Hi such that their degree sum in Hi is

at most 4. Say dHi
(b) ≥ 3. (See Figure 3.6.)

If |H ′′i | < 4, then there exists a vertex v2 in Hi with degree at most two in Hi

independent from v, a contradiction. Thus, |H ′′i | ≥ 4. Then, Theorem 3.3 implies

that σ2(H
′′
i ) < 5. This implies that there exist two vertices x1, x2 ∈ H ′′i such that

dH′′
i
({x1, x2}) ≤ 4. Thus, either each of x1, x2 has degree in H ′′i at most 2, or one of
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Hi

va bH′
i H′′

i

Figure 3.6. The case when dHi
(b) ≥ 3.

then has degree one in H ′′i . Vertex b has degree at least 2 in H ′′i , so it is possible that

one of these two vertices is b, say b = x1, but then the other vertex, x2, would still

have degree at most 2 in H ′′i . Thus, there must be some vertex in H ′′i , other than

vertex b, having degree at most 2 in H ′′i . But this vertex is independent from v, a

contradiction. Thus, the claim holds.

Claim 3. H is either connected, or H has two components, one of which has order

less than 4.

Proof. Suppose not. Then H is disconnected, and if it has two components, both of

them have order at least 4.

Subclaim 3.1. H contains a set X of four independent vertices from at least two

components of H such that dH(X) ≤ 8.

Proof. The number of components of H, comp(H), is at least 2. Label the compo-

nents of H with H1, H2, . . . , Hcomp(H). We will consider three cases: comp(H) ≥ 4,

comp(H) = 3, comp(H) = 2.

Case 3.1.1. Suppose comp(H) ≥ 4.

Then, there exists xi ∈ Hi for 1 ≤ i ≤ 4 such that dHi
(xi) ≤ 2. Otherwise,

by Theorem 3.2, Hi would contain a chorded cycle, yielding a contradiction. Then

the set X = {x1, x2, x3, x4} is a set of four independent vertices from four different

components in H, and dH(X) ≤ 8.
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Case 3.1.2. Suppose comp(H) = 3.

Then some component of H, say H1, has order at least four, since |H| ≥ 18. Then,

there exist at least two independent vertices in H1. Otherwise, any two vertices in

H1 are adjacent, and hence H1 contains a K4, contradicting the fact that H contains

no chorded cycles. Thus, H1 contains at least two independent vertices. It follows

from Theorem 3.3 that there exist two independent vertices in H1, call them x1, x4,

such that dH1({x1, x4}) ≤ 4. Otherwise, σ2(H1) ≥ 5, and H1 contains a chorded

cycle. As in Case 1, by Theorem 3.2 there must exist x2 ∈ H2 and x3 ∈ H3 such

that dH2(x2) ≤ 2 and dH3(x3) ≤ 2. Then the set X = {x1, x2, x3, x4} is a set of four

independent vertices from two components of H with dH(X) ≤ 8.

Case 3.1.3. Suppose comp(H) = 2.

Since we supposed Claim 3 does not hold, by assumption |H1| ≥ 4 and |H2| ≥ 4.

Then, as in component H1 in Case 2, there must exist x1, x2 ∈ H1 and x3, x4 ∈ H2

such that x1, x2 and x3, x4 are independent and dH1({x1, x2}) ≤ 4, dH2({x3, x4}) ≤ 4.

Otherwise, if one of the components of H does not contain any two independent ver-

tices, it must contain a K4, a contradiction; or if, for any two independent vertices in

the component, their degree sum in the component is at least 5, then by Theorem 3.3,

the component contains a chorded cycle, a contradiction. Thus, X = {x1, x2, x3, x4}

is a set of four independent vertices from two components of H with dH(X) ≤ 8.

Therefore, in all cases, Subclaim 3.1 holds.

In the above construction of X, if comp(H) = 2, then exactly two vertices of X

are from one component of H and exactly two are from the other component of H.

Thus either comp(H) ≥ 3, or no x ∈ X is isolated from the rest of X. Also, according

to the construction of X above, if any xj in Hi is isolated from the rest of X, then

we know dH(xj) = dHi
(xj) ≤ 2. And if xj is a cut-vertex, by Claim 2, there exists a

second vertex xt in Hi, not adjacent to xj, with dHi
(xt) ≤ 2. Thus, we can remove
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from X some other vertex xl which was isolated from the rest of X and add xt to X.

Then dH(X) ≤ 8 still, and xj is no longer isolated from the rest of X. Thus, without

loss of generality, we may assume that if a vertex x is isolated from the rest of X, it

is not a cut-vertex.

Since dH(X) ≤ 8, it follows that dC (X) ≥ 12k − 3 − 8 = 12k − 11 > 12(k − 1).

Thus, there is some cycle C ∈ C such that dC(X) ≥ 13. Note that if we have only

two components, x1 lies in the same component as some other xi.

Also, by Lemma 3.3, for any xi ∈ X, dC(xi) ≤ 4. It follows that the possible degree

sequences are: (4, 4, 4, 1), (4, 4, 3, 2), (4, 3, 3, 3). Hence, by Lemma 3.3, C = K4, since

in all cases there exists xi ∈ X such that dC(xi) = 4. Let C = v1, v2, v3, v4, v1.

We consider two cases based on the number of components of H.

Case 3.1. Suppose comp(H) = 2.

Then each component of H contains two vertices of X. Let x1, x2 be in one

component of H, call it H1 and x3, x4 in the other, call it H2.

Without loss of generality, let x4 be the vertex of X with smallest degree to C. If

we have degree sequence (4, 4, 4, 1) or (4, 4, 3, 2), it immediately follows that either x1

or x2 has degree 4 to C, say x1. If instead we have degree sequence (4, 3, 3, 3), then

we can label x1, . . . , x4 so that x1 has degree 4, x1, x2 are in one component of H,

and x3, x4 are in the other.

Thus, we may assume without loss of generality that x4 is the vertex of X with

smallest degree to C and that x1 has degree 4 to C. It follows that x2, x3 have degree

at least 3 to C.

Let P1 be a path in H1 connecting x1 and x2, and let P2 be a path in H2 connecting

x3 and x4.

Vertices x3 and x4 must share a neighbor in C, say v1. Take a second neighbor

of x3 in C, say v2. Then v1, v2, x3, P2(x3, x4], v1 is a chorded cycle in 〈H ∪ C〉 with

x3v1 as a chord. Since x2 has three neighbors in C, it is adjacent to at least one of



57

the remaining vertices of C, say v3. Vertex x1 is adjacent to v3 and v4. Thus, x2,

v3, v4, x1, P1(x1, x2], v3 is a second chorded cycle in 〈H ∪ C〉 with x1v3 as a chord,

vertex-disjoint from the first. (See Figure 3.7.)

P1 P2

C

H1 H2

v4 v1

v2v3

x1

x2

x3

x4

Figure 3.7. Two vertex-disjoint chorded cycles in 〈H ∪ C〉.

Therefore, if comp(H) = 2, we get two vertex-disjoint chorded cycles in 〈H ∪ C〉,

a contradiction.

Case 3.2. Suppose comp(H) ≥ 3.

Recall that we have one of the following degree sequences from X to C: (4, 4, 4, 1),

(4, 4, 3, 2), (4, 3, 3, 3). Label the vertices of X with xi, 1 ≤ i ≤ 4 such that dC(x1) ≥

dC(x2) ≥ dC(x3) ≥ dC(x4).

Since |C| = 4, for each possible degree sequence, x2, x3, x4 must all have a common

neighbor in C, say v1. And vertex x1 has degree 4 to C. Thus, C ′ = x1, v2, v3, v4, x1

is a chorded cycle in 〈H ∪ C〉 with chord x1v3.

Recall that, by the construction of X in Subclaim 3.1, if comp(H) = 2, no vertex

x ∈ X is isolated from the rest of X. Hence, if x1 is the only vertex of X in its

component Hi of H, then comp(H) ≥ 3, x1 it is not a cut-vertex, and comp(Hi −

{x1}) = 1. Then, replacing C in C by C ′, the remaining H has fewer components, a

contradiction.

Otherwise, some other vertex xj of X is also in Hi. Since dHi
(x1) ≤ 2, comp(Hi−
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{x1}) ≤ 2. Further, the new H formed by replacing C in C with C ′ has fewer

components, since one of the two components of Hi − {x1} contains xj for some 2 ≤

j ≤ 4, and x2, x3, x4 are all connected in the new H. Again we have a contradiction.

(See Figure 3.8.) Thus, in all cases the claim holds.

C

H

v3

v4 v1

v2

x1 x2 x3 x4

Figure 3.8. Fewer components in H.

Now by Claim 1, |H| ≥ 18, and by Claim 3, H is either connected or has only two

components, one of which has order at most 3. Thus, H is either connected or has a

component Hi such that |Hi| ≥ 15. Let H̃ be the largest component of H.

Claim 4. H̃ contains a set X of four independent vertices such that dH̃(X) ≤ 8.

Proof.

Subclaim 4.1. If H̃ contains a Hamiltonian path, we can find the desired set X.

Proof. Suppose H̃ contains a Hamiltonian path. Then H̃ = 〈P1〉, where P1 =

v1, . . . , vt, t ≥ 15. Without loss of generality, let dH̃(v1) ≤ dH(vt), otherwise we

relabel the path.

If v1vt ∈ E(H̃), then every vertex of H̃ has degree two by Lemma 3.11. The set

X = {v1, v3, v5, v7} forms a set of four independent vertices with degree 8 in H̃, and

we are done.

Thus, v1vt /∈ E(H̃). It follows that v1 and vt are independent. Also, dH̃(v1) ≤ 2

and dH̃(vt) ≤ 2 else a chorded cycle exists in H̃, a contradiction.
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Suppose dH̃(v1) = 1 and dH̃(vt) = 1. By Lemma 3.12 one of v3, v4, v5 has degree 2

in H̃, call it vi, and one of vt−4, vt−3, vt−2 has degree 2 in H̃, call it vj. Then, choose

X = {v1, vi, vj, vt}, and we are done.

Suppose dH̃(v1) = 1 and dH̃(vt) = 2 with vtvj ∈ E(H̃). Suppose j ≤ t− 5. Then

vertices vj+1 and vj+3 are independent from vt. By Lemma 3.11, vertex vj+1 has degree

2 in H̃, and vertex vj+3 has degree at most 3 in H. Choose X = {v1, vj+1, vj+3, vt},

and we are done.

So, j > t − 5. By Lemma 3.12, one of v3, v4, v5 has degree 2 in H̃, say vi. If

j ≤ t− 3, then vj+1 is still independent from vt and has degree 2 by Lemma 3.11. So,

X = {v1, vi, vj+1, vt} is the desired set. Thus, j = t− 2. By Lemma 3.13, one of vt−5,

vt−4, vt−3 has degree two in H̃, call it vj. Since t ≥ 15, vi and vj are independent,

and X = {v1, vi, vj, vt} is the desired set.

Thus, dH̃(v1) = 2 and dH̃(vt) = 2.

Suppose we have either v1v3 or vtvt−2 in E(H̃). Without loss of generality, say v1v3.

Then, one of v4, v5, v6 has degree 2 in E(H) by Lemma 3.12, say vi. If vtvt−2 ∈ E(H̃),

then one of vt−5, vt−4, vt−3 has degree two in H̃, call it vj, and X = {v1, vi, vj, vt} is

the desired set.

If vtvt−2 /∈ E(H̃), then vtvs ∈ E(H̃) for some s < t − 2. Hence, vertex vs+1 has

degree 2 by Lemma 3.11 and is independent from vt. Clearly, s ≥ 3, else we have a

chorded cycle. If vs+1 /∈ {vi−1, vi, vi+1}, then X = {v1, vi, vs+1, vt} is the desired set.

Thus, vs+1 ∈ {vi−1, vi, vi+1}. This implies that vs ∈ {vi−2, vi−1, vi}. Clearly,

vs 6= vi, since vsvt ∈ E(H̃), and vertex vi has degree two in E(H̃). So, vs = vi−2 or

vs = vi−1. Since vi ∈ {v4, v5, v6} and s ≥ 3, we know that vs ∈ {v3, v4, v5}. Then,

if one of vs+4 or vs+5 has degree 2, X = {v1, vi, vs+4, vt}, or X = {v1, vi, vs+5, vt},

and we are done. Thus, both vs+4 or vs+5 have degree at least 3 in H̃. Furthermore,

neither vs+4 nor vs+5 has a right edge, else this edge nests with vsvt, and we have a

chorded cycle by Lemma 3.8. Thus, both vs+4 or vs+5 have left edges. It follows that
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vs+4vk, vs+5vl ∈ E(H̃), and k < l < s else we have nested edges and a chorded cycle

by Lemma 3.8. But then, vk, P1, vs, vt, P
−
1 , vs+4, vk is a chorded cycle with edge vlvs+5

as a chord.

Thus, neither v1v3 or vtvt2 is in E(H̃). It follows that v1vi, vtvj ∈ E(H̃) for some

i > 3, j < t − 2. And dH̃(vi−1) = 2, dH̃(vj+1) = 2. Then, X = {v1, vi−1, vj+1, vt},

unless i− 1 ∈ {j, j + 1, j + 2}.

Thus i− 1 ∈ {j, j + 1, j + 2}. And hence, i > j. Claim: dH̃(v3) = 2. We know v3

cannot have a left edge, else we have nested edges. And if v3 has a right edge v3vk with

k ≤ i, we have nested edges and hence a chorded cycle by Lemma 3.8. If v3 has a right

edge v3vk with k > i, since i > j, we again get a chorded cycle, v1, H̃, vj, vt, H̃
−, vi, v1

with edge v3, vk as a chord. Thus, dH̃(v3) = 2. Claim: dH̃(vt−2) = 2. We know

vk−2 cannot have a right edge, else we have nested edges. And if vk−2 has a left edge

vk−2vl with l ≥ j, we have nested edges and hence a chorded cycle by Lemma 3.8.

If vt−2 has a left edge vt−2vl with l < j, since i > j, we again get a chorded cycle,

v1, H̃, vj, vt, H̃
−, vi, v1 with edge vlvt−2 as the chord.

In all cases, Subclaim 4.1 holds.

Thus, we may assume the component H̃ does not contain a Hamiltonian path.

Choose two paths P1 and P2 in H such that:

(A) P1 and P2 are a maximal pair of paths; that is, the sum of the lengths of P1

and P2 is maximal.

(B) Subject to (A), path P1 is as long as possible.

Let P1 = v1, . . . , vt and P2 = u1, . . . , us.

Subclaim 4.2. No endpoint of P1 or P2 has a neighbor in H̃−〈P1 ∪ P2〉. No endpoint

of P1 has a neighbor in P2. Hence, dH̃(v1) = dP1(v1) and dH̃(vt) = dP1(vt). No end-

point p of a path Pi or vertex p in H̃ −〈Pi〉 can have degree dPi
(p) > 2. Furthermore,

dH̃(v1) ≤ 2, dH̃(vt) ≤ 2, and dP1({u1, us}) ≤ 3.
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Proof. Clearly, none of v1, vt, u1, us has a neighbor outside 〈P1 ∪ P2〉, else P1, P2 is

not a maximal pair of paths. Furthermore, neither v1 nor vt can have a neighbor in

P2, else we can choose a maximal pair of paths P ′1, P
′
2 such that P ′1 is longer than P1,

contradicting (2). And no endpoint p of a path Pi or vertex p in H̃ − 〈Pi〉 can have

degree dPi
(p) > 2, else H̃ contains a chorded cycle. So, dH̃(v1) ≤ 2 and dH̃(vt) ≤ 2.

Suppose dP1({u1, us}) ≥ 4. Clearly, dP1(u1) = 2 and dP1(us) = 2, else we have

a chorded cycle. But then by Lemma 3.6, we again have a chorded cycle. Hence,

dP1({u1, us}) ≤ 3.

Subclaim 4.3. If |P2| ≤ 3, then we may assume H̃ = 〈P1 ∪ P2〉.

Proof. Suppose |P2| ≤ 3. Without loss of generality, we may assume dP1(u1) ≤

dP1(us). It follows from Subclaim 4.2 that dP1(u1) ≤ 1 and dH(u1) ≤ 2.

Claim: No vertex of P2 has a neighbor outside 〈P1 ∪ P2〉.

By Subclaim 4.2, no endpoint or P2 has a neighbor in H̃ − 〈P1 ∪ P2〉. Hence, if

|P2| ≤ 2, no vertex of P2 has a neighbor in H̃ − 〈P1 ∪ P2〉. Thus |P2| = 3. Suppose

v1vt ∈ E(H̃). Then any vertex of P1 can be regarded as an endpoint of the path, and

hence by Subclaim 4.2, no vertex of P1 has a neighbor in H̃ − 〈P1〉. Furthermore,

for any i, j with i < j and j 6= i + 1, we know that vivj /∈ E(H̃); otherwise, we have

nested edges in P1, and by Lemma 3.8, a chorded cycle exists in 〈P1〉. Now, since

|H̃| ≥ 15, it follows that |P1| ≥ 12, and X = {v1, v3, v5, v7} forms the desired set.

Thus, we may assume v1vt /∈ E(H̃).

If u1u3 ∈ E(H̃), then no vertex of P2 has a neighbor outside 〈P1 ∪ P2〉, else we can

form a longer path P ′2, contradicting (A). Thus, u1u3 /∈ E(H̃), and hence dP1(u1) ≤ 1,

dP1(u3) ≤ 2 and dH̃(u1) ≤ 2, dH̃(u3) ≤ 3.

Suppose a vertex on P2 has a neighbor w1 in H̃ − 〈P1 ∪ P2〉. By Subclaim 4.2,

clearly u1w1, u3w1 /∈ E(H̃). So u2w1 ∈ E(H̃). If dH̃({u1, u3}) ≤ 4, then X =

{v1, vt, u1, u3} forms the desired set. Thus, we may assume dH̃(u1) = 2 and dH̃(u3) =
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3. Hence, dP1(u1) = 1 and dP1(u3) = 2. Clearly, w1 has no neighbor in H̃−〈P1 ∪ P2〉,

else we can form a longer path P ′2 and hence a longer pair of paths P1, P
′
2, contradicting

(A). If dH̃(w1) ≤ 2, then X = {v1, vt, w1, u1} forms the desired set. Thus, w1 has

two neighbors on P1. Note that the vertices w1 and u3 lie on a path P = w1, u2, u3,

and w1, u3 send two edges each to P1. By Lemma 3.6, there exists a chorded cycle in

〈P1 ∪ P 〉, a contradiction. Thus, we may assume no vertex on P2 has a neighbor in

H̃ − 〈P1 ∪ P2〉, and the claim holds.

Claim: No vertex of P1 has a neighbor in H̃ − 〈P1 ∪ P2〉.

Suppose there exists a vertex vi in P1 with a neighbor w1 in H̃ − 〈P1 ∪ P2〉. If

dH̃(w1) ≤ 2, then X = {v1, vt, u1, w1} forms the desired set and we are done. Thus,

dH̃(w1) ≥ 3. Hence we have one of the following cases:

1. Vertex w1 has 3 neighbors in P1, but then H̃ contains a chorded cycle by Lemma

3.4.

2. Vertex w1 has 2 neighbors in P1 and one neighbor in H̃ − 〈P1 ∪ P2〉.

3. Vertex w1 has 2 neighbors in H̃ − 〈P1 ∪ P2〉 and one neighbor in P1.

Case 4.3.2. Suppose w1 lies in case 2.

Then, vertex w1 has two neighbors in P1, say vi, vj, and one neighbor in H̃ −

〈P1 ∪ P2〉, say w2. If dH̃(w2) ≤ 2, then X = {v1, vt, u1, w2} forms the desired set, and

we are done. Thus, dH̃(w2) ≥ 3, and one of the following cases must occur:

(a) Vertex w2 has 1 neighbor in H̃ − 〈P1 ∪ P2〉 and 2 neighbors in P1.

(b) Vertex w2 has 2 neighbors in H̃ − 〈P1 ∪ P2〉 and 1 neighbor in P1.

(c) Vertex w2 has 3 neighbors in H̃ − 〈P1 ∪ P2〉.

If w2 lies in case (a), we have two vertices on a path w1, w2, each sending two

edges to another path P1, and by Lemma 3.6, a chorded cycle exists, a contradiction.
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If w2 lies in case (b), let w3 be the additional neighbor of w2 in H̃ − 〈P1 ∪ P2〉.

If dH̃(w3) ≤ 2, X = {v1, vt, u1, w3} is the desired set, and we are done. Thus,

dH̃(w3) ≥ 3, and hence w3 sends two edges to P1, else a path P ′2 longer than P2

exists in H̃ − 〈P1 ∪ P2〉, contradicting the maximality of P1, P2. But then the path

w1, w2, w3 sends at least 5 edges to P1, and a chorded cycle exists by Lemma 3.5, a

contradiction.

Thus, w2 lies in case (c). Let w3 and w4 be neighbors of w2 in H̃ − 〈P1 ∪ P2〉.

If either w3 or w4 has degree at most 2 in H̃, we can find the desired set X and we

are done. If either w3 or w4 has another neighbor in H̃ − 〈P1 ∪ P2〉, then we can find

a path P ′2 in H̃ − 〈P1 ∪ P2〉 longer than P2 (since |P2| ≤ 3), a contradiction. Thus,

w3 and w4 must each have two neighbors in P1. But then, by Lemma 3.6, a chorded

cycle exists, a contradiction.

Case 4.3.3. Suppose w1 lies in case 3.

Let w2, w3 be the neighbors of w1 in H̃ −〈P1 ∪ P2〉. If dH̃(w2) = 2 or dH̃(w3) = 2,

then X = {v1, vt, u1, w2} or {v1, vt, u1, w3} is the desired set and we are done. Thus,

dH̃(w2) ≥ 3 and dH̃(w3) ≥ 3. For each of w2 and w3 one of the following cases must

occur:

(a) The vertex has 1 neighbor in H̃ − 〈P1 ∪ P2〉 and 2 neighbors in P1.

(b) The vertex has 2 neighbors in H̃ − 〈P1 ∪ P2〉 and 1 neighbor in P1.

(c) The vertex has 3 neighbors in H̃ − 〈P1 ∪ P2〉.

Suppose either w2 or w3 is in case (c), without loss of generality say w2. Then w2

has a neighbor w4 in H̃ − 〈P1 ∪ P2〉 distinct from w3, and hence w3, w1, w2, w4 forms

a path P ′2 longer than P2 (since |P2| ≤ 3), a contradiction. Thus, each of w2, w3 have

at least one neighbor in P1.
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Suppose either w2 or w3 is in case (b), without loss of generality say w2. Then,

either w2 has a neighbor w4 in H̃ − 〈P1 ∪ P2〉 distinct from w3 and we get a contra-

diction as before, or w2 is adjacent to w3. Let vj be the neighbor of w2 on P1, and let

vl be the neighbor of w3 on P1. Then, vj, P, vl, w3, w1, w2, vj forms a chorded cycle

with the edge w2w3 as a chord.

It follows that both w2 and w3 must lie in case (a). Then, we have five edges

between the paths w2, w1, w3 and P1, and by Lemma 3.5, a chorded cycle exists, a

contradiction.

Thus, if any vertex in P1 or P2 has a neighbor outside 〈P1 ∪ P2〉, then we can either

find the desired set, or we get a contradiction. Hence no vertex in P1 or P2 has a

neighbor in H̃−〈P1 ∪ P2〉. And because H̃ is connected, it follows that H̃ = 〈P1 ∪ P2〉,

and Subclaim 4.3 holds.

Subclaim 4.4. For the endpoints u1, us of P2, we must have dP1({u1, us}) ≥ 1.

Suppose, to the contrary, that dP1({u1, us}) = 0.

If v1vt /∈ E(H) and u1us /∈ E(H), then v1, vt, u1, us are all independent and each

have degree at most 2 in H, hence X = {v1, vt, u1, us} is the desired set and we are

done. Thus, either v1vt ∈ E(H) or u1us ∈ E(H).

Case 4.4.1. Suppose |P2| ≤ 3.

Then, by Subclaim 4.3, H̃ = 〈P1 ∪ P2〉. If v1vt ∈ E(H), then every vertex of P1

can be regarded as an endpoint, and no vertex of P1 has a neighbor in P2. Hence,

every vertex v of P1 has dP1(v) = dH(v) = 2, otherwise we have nested edges and a

chorded cycle by Lemma 3.8. We know |P1| ≥ 8 since 〈P1 ∪ P2〉 = H̃ ≥ 15. Thus, v1,

v3, v5, v7 are all independent, X = {v1, v3, v5, v7} is the desired set, and we are done.

Thus, v1vt /∈ E(H), and hence u1us ∈ E(H). Suppose that at least one of v1, vt

has degree 1 in P1, or that either v1v3 or vt−2vt is in E(H). Then by Lemmas 3.12

and 3.13, one of v2, v3, v4, v5, vt−5, vt−4, vt−3, vt−2 has degree 2 in P1, call it vi,
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and hence is also independent from v1, vt. Thus, X = {v1, vt, u1, vi} is the desired

set, and we are done. So, v1vj ∈ E(H) for some j ≥ 3 and vivt ∈ E(H) for some

i ≤ t − 3. Then the path P1 could be rewritten with vertex vi+1 as an endpoint,

and hence dH(vi+1) = dP1(vi+1). By Lemma 3.11, vertex vi+1 has degree 2 in P1, and

hence X = {v1, vi+1, vt, u1} is the desired set, and we are done.

Case 4.4.2. Suppose |P2| ≥ 4.

Proof. If v1vt ∈ E(H̃) and u1us ∈ E(H̃), then every vertex of P1 and every vertex

of P2 can be regarded as an endpoint, and no vertex of P1 or P2 has a neighbor in

H̃−〈P1 ∪ P2〉. Hence, every vertex v of P1 or vertex u of P2 has dP1(v) = dH(v) = 2 =

dP2(u) = dH̃(u), otherwise we have nested edges and a chorded cycle by Lemma 3.8.

We know |P1| ≥ |P2| ≥ 4. Thus, v1, v3, u1, u3 are all independent, X = {v1, v3, u1, u3}

is the desired set, and we are done.

If v1vt ∈ E(H̃) and u1us /∈ E(H̃), then again for any vertex v ∈ P1, dP1(v) =

dH̃(v) = 2. Also u1, us are independent. And because dP1(u1) = 0 = dP2(us), we

know that dH̃(u1) ≤ 2 and dH̃(us) ≤ 2. Hence, X = {v1, v2, u1, us} is the desired set,

and we are done.

Thus, v1vt /∈ E(H) and u1us ∈ E(H). Suppose that at least one of v1, vt has

degree 1 in P1, or that either v1v3 or vt−2vt is in E(H). Then by Lemmas 3.12 and

3.13, one of v2, v3, v4, v5, vt−5, vt−4, vt−3, vt−2 has degree 2 in P1, call it vi, and hence

is also independent from v1, vt. Thus, X = {v1, vt, u1, vi} is the desired set, and we

are done. So, v1vj ∈ E(H) for some j ≥ 3 and vivt ∈ E(H) for some i ≤ t − 3.

Then the path P1 could be rewritten with vertex vi+1 as an endpoint, and hence

dH(vi+1) = dP1(vi+1). By Lemma 3.11, vertex vi+1 has degree 2 in P1, and hence

X = {v1, vi+1, vt, u1} is the desired set, and we are done.

Thus, dP1({u1, us}) ≥ 1, and Subclaim 4.4 holds.

Case 4.1. Suppose that |P2| = 1.
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Then P2 = u1. By Subclaim 4.3, H̃ = 〈P1 ∪ P2〉. Hence, |P1| ≥ 14. And by

Subclaim 4.2, dH̃(u1) ≤ 2.

Subcase 1. Suppose dH̃(u1) = 2.

Let vi, vj, i < j be u1’s neighbors on P1. If vi, vj are consecutive on P1, then

H̃ contains a Hamiltonian path, and we are done by Subclaim 4.1. Thus, j ≥ i + 2.

Furthermore, neither of vi, vj is an endpoint of P1 by Subclaim 4.2. By Lemma 3.14,

one of vi+1, vj−1 has degree 2 in H̃, say vi+1. Then, X = {v1, vt, u1, vi+1} is the desired

set.

Subcase 2. Suppose dH̃(u1) = 1.

At most one vertex in P1[v3, v12] is adjacent to u1. It follows that there exists in

P1[v3, v12] a group of at least 4 consecutive vertices all nonadjacent to u1 and another

distinct group of at least 5 consecutive vertices all nonadjacent to u1, say vi, . . . , vi+3

and vj, . . . , vj+4, or there exists a group of 6 consecutive vertices all nonadjacent to

u1, say vi, . . . , vi+5. Thus, there exist at least three distinct pairs of two consecu-

tive vertices all nonadjacent to u1: either {vi, vi+1}, {vi+2, vi+3}, and {vj, vj+1}; or

{vi, vi+1}, {vi+2, vi+3}, and {vi+4, vi+5}.

By Lemma 3.10, at least one vertex from each of the three pairs has degree at

most three to P1.

Recall that since v1, vt are endpoints of the path, by Subclaim 4.2, dP1(v1) ≤ 2

and dP1(vt) ≤ 2. Thus, vertex v1 has at most one neighbor in P1[v3, v12] and vertex vt

has at most one neighbor in P1[v3, v12]. Thus, at least one of the three vertices above,

all nonadjacent to u1 and having degree at most three to P1, is also independent from

v1 and vt, call it vk. Then, X = {v1, vt, u1, vk} is the desired set, and we are done.

Case 4.2. Suppose that |P2| = 2.

Recall by Subclaim 4.2, dP1({u1, u2}) ≤ 3 and dP1(u1) ≤ dP1(u2). So, dP1(u1) ≤ 1

and dP1(u2) ≤ 2.
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Subcase 1. Suppose {u1, u2} has 2 or more distinct neighbors on P1.

Say these neighbors are vi and vj with i < j. We know that j must be at least

i+2. Otherwise j = i+1 and we can form either a Hamiltonian path, if each of u1, us

has an endpoint to P1, in which case we are done by Subclaim 4.1, or a maximal pair

of paths P ′1, P
′
2 with |P ′1| > |P1|, a contradiction.

But now, by Lemma 3.14, one of vi+1, vj−1, call it vl has degree 2 in H̃. Hence,

X = {v1, vt, u1, vl} forms the desired set, and we are done.

Subcase 2. Suppose {u1, u2} has one distinct neighbor in P1.

Since dP1(u1) < dP1(u2), either dP1(u1) = 0 or dP1(u1) = 1 = dP1(u2) and u1, u2

have the same neighbor in P1. Thus, dP1(u1) ≤ 1 and dH̃(u1) ≤ 2.

If dH̃(v1) = 1, dH̃(vt) = 1, or either v1v3 or vt−2vt ∈ E(H̃), by Lemmas 3.12 and

3.13, one of v3, v4, v5, v6, vt−5, vt−4, vt−3, or vt−2 has degree two in H̃, call it vl. Then,

X = {v1, vt, u1, vl} forms the desired set, and we are done.

Thus, v1 must have a neighbor vi in P1[v4, vt] and vt must have a neighbor vj in

P1[v1, vt−2]. Then, by Lemma 3.15, dH̃(vi−1) = 2 and dH̃(vj+1) = 2. Thus, X =

{v1, vt, vi−1, vj+2} forms the desired set and we are done. This completes Case 4.2.

Case 4.3. Suppose that |P2| = 3.

We know H̃ = 〈P1 ∪ P2〉 by Subclaim 4.3. Recall, by Subclaim 4.2, that 3 ≥

dP1({u1, u3} ≥ 1. If u1u3 ∈ E(H̃), then there is at most one edge between P1 and P2,

else a chorded cycle exists. It follows that dH̃(u1) ≤ 2. By Lemmas 3.12 and 3.13,

if dH̃(v1) = 1, dH̃(vt) = 1, or either v1v3 or vt−2vt ∈ E(H̃), then one of v3, v4, v5,

v6, vt−5, vt−4, vt−3, or vt−2 has degree two in H̃, call it vl. Then, X = {v1, vt, u1, vl}

forms the desired set, and we are done.

Thus, v1 must have a neighbor in P1[v4, vt] and vt must have a neighbor in

P1[v1, vt−2]. By Lemma 3.15, if v1 has a neighbor vi in P1[v4, vt] or vt has a neighbor
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vj in P1[v1, vt−3], then either X = {v1, vt, vi−1, u1} or X = {v1, vt, vj+1, u1} forms the

desired set, and we are done.

Case 4.4. Suppose that |P2| = s ≥ 4.

Suppose both u1 and us have an edge into P1. Then dP2(u1) = 1 and dP2(us) = 1,

else a chorded cycle exists. Hence, by Subclaim 4.2, dH̃(u1) ≤ 2. Then if dP1(u1) = 1

and dP1(us) = 1, we see that X = {v1, vt, u1, us} is the desired set. Thus, dP1(us) ≥ 2.

Let vi, vj be neighbors of us on P1. Consider vertex us−1; if it has degree at most 2 in

H̃, then {v1, vt, u1, us−1} is the desired set, and we are done. Hence, us−1 must have

degree 3 or more. If us−1 has degree 3 in P2, a chorded cycle exists, a contradiction.

Thus us−1 has a neighbor in P1 or in H̃ − 〈P1 ∪ P2〉. If u1 or us−1 has an edge to

the left or the right of both vi and vj, we have three parallel edges between P1 and

P2 and hence a chorded cycle exists by Lemma 3.4. Thus, the neighbors on P1 of u1

and us−1 must lie in P1[vi, vj]. But then we again get three parallel chords, or three

crossing chords, and hence a chorded cycle by Lemma 3.4. Thus, us−1 must have a

neighbor w1 in H̃ − 〈P1 ∪ P2〉.

If dH̃(w1) ≤ 2, then {v1, vt, u1, w1} is the desired set, and we are done. Thus,

dH̃(w1) ≥ 3. Vertex w1 cannot have a neighbor in H̃ − 〈P1 ∪ P2〉, else we can form a

longer pair of paths P1, P
′
2, a contradiction. Furthermore, vertex w1 cannot have two

neighbors in P1, else by Lemma 4 we have a chorded cycle, since us has two neighbors

in P1. Thus, vertex w1 has two neighbors in P2 and one neighbor in P1.

Let vl be the neighbor of u1 in P1 and vm be the neighbor of w1 in P1. Vertex w1

is not adjacent to u1 or us, hence w1’s second neighbor ui in P2 lies in P2[u2, us−1).

Then w1, P
−
2 [us−1, u1], vi, P

±
1 (vi, vj], vm, w1 forms a chorded cycle with w1ui as a

chord, a contradiction.

Thus, in all cases, Claim 4 holds.

Thus, H̃ is connected with |H̃| ≥ 15, and there exists a set X in H̃ containing
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4 independent vertices such that dH̃(X) = dH(X) ≤ 8. It follows that dC (X) ≥

12k − 3 − 8 = 12k − 11 > 12(k − 1). And hence there exists C ∈ C such that

dC(X) ≥ 13. By Lemma 3.3, for any xi ∈ X, dC(xi) ≤ 4. It follows that the possible

degree sequences are: (4, 4, 4, 1), (4, 4, 3, 2), (4, 3, 3, 3). Hence, by Lemma 3.3, C = K4

since in all cases there exists xi ∈ X such that dC(xi) = 4. Let C = v1, v2, v3, v4, v1.

Case 1. Suppose we have sequence (4, 4, 4, 1).

Let x4 have degree 1 to C and let the vertices x1, x2, x3 have degree 4 to C.

Without loss of generality, say x4 is adjacent to v1.

Since H̃ is connected, there is a path from x4 to some other xi ∈ X disjoint from

X−{x4, xi}. Without loss of generality say there is such a path P connecting x4 and

x3. (See Figure 3.9.)

P

v1 v2

v3v4

x1 x2 x3 x4

Figure 3.9. A path P connecting x3 and x4.

Then, x4, v1, v2, x3, P (x3, x4] is a chorded cycle with v1x3 as a chord, and x1, v3,

x2, v4, x1 is a chorded cycle with v3v4 as a chord. Thus, we have two chorded cycles

in
〈
H̃ ∪ C

〉
, a contradiction.

Case 2. Suppose we have sequence (4, 4, 3, 2).

Label the vertices of X with x1, x2, x3, x4 such that dC(x1) = 4, dC(x2) = 4,

dC(x3) = 3, dC(x4) = 2. Without loss of generality, say x4 is adjacent to v1 and v2.
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Since H̃ is connected, there is a path P from x4 to some other xi ∈ X disjoint

from X − {x4, xi}.

Subcase 1. Suppose path P connects x4 and the vertex of X with degree 3 to C,

that is x3.

Vertices x3 and x4 have a common neighbor in C, say it’s v1. Then v1, v2, P [x4, x3],

v1 forms a chorded cycle with edge v1x4 as a chord. (See Figure 3.10.) Vertices x1

and x2 both have degree 4 to C, hence they are both adjacent to v3 and v4. Then,

x1, v3, x2, v4, x1 forms a second chorded cycle with edge v3v4 as a chord. (See Figure

3.10.) Thus, we have two chorded cycles in
〈
H̃ ∪ C

〉
, a contradiction.

Subcase 2. Suppose path P connects x4 and a vertex of X with degree 4 to C.

Without loss of generality, say P connects x4 and x1.

Vertices x2 and x3 have three common neighbors in C, at least one of which is not

also a neighbor of x4. Say v3 is one of these common neighbors, and call the other

one vi. Then x2, vi, x3, v3, x2 is a chorded cycle with chord viv3. At least one of x4’s

neighbors in C has not yet been used, say v1. Let vj be the last remaining vertex of

C. Vertex x4 may or may not be adjacent to vj, but certainly x1 is adjacent to both

v1 and vj. Thus, x1, P, x4, v1, vj, x1 forms a second chorded cycle with chord v1x1.

(See Figure 3.11.) Again, we have two chorded cycles in
〈
H̃ ∪ C

〉
, a contradiction.

P

v4

v3

v1

v2

x1 x2 x3 x4

Figure 3.10. A chorded cycle.

P

vj

v3

v1

vi

x1 x2 x3 x4

Figure 3.11. A chorded cycle.

Case 3. Suppose we have sequence (4, 3, 3, 3).
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Label the vertices of X with x1, x2, x3, x4 such that that dC(x1) = 4, dC(x2) = 3,

dC(x3) = 3, dC(x4) = 3. Since H̃ is connected, there is a path from x1 to some other

xi ∈ X disjoint from X−{x1, xi}. Without loss of generality, say there is such a path

P connecting x1 and x2. Vertices x3 and x4 share two neighbors in C, say v1, v2. Then

x3, v1, x4, v2, x3 is a chorded cycle with v1v2 as a chord. Vertex x2 has degree 3 to C;

therefore, it has some remaining neighbor in C, say v4. Vertex x1 is adjacent to both

v3 and v4. Then, P [x1, x2], v4, v3, x1 is a second chorded cycle with x1v4 as a chord.

(See Figure 3.12.) Thus, we have two chorded cycles in
〈
H̃ ∪ C

〉
, a contradiction.

P

v4

v3

v1

v2

x1 x2 x3 x4

Figure 3.12. Two chorded cycles in
〈
H̃ ∪ C

〉
.

In all cases we get a contradiction. Thus, there cannot be an edge-maximal coun-

terexample and the proof is complete.
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