Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Date

On Cycles, Chorded Cycles, and Degree Conditions
By
Ariel Keller Doctor of Philosophy

Mathematics

Ronald J. Gould
Advisor
Vojtěch Rödl
Committee Member
Dwight Duffus
Committee Member
Hao Huang
Committee Member
Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

On Cycles, Chorded Cycles, and Degree Conditions

By

Ariel Keller
B.S., University of Tennessee, Chattanooga, 2011
M.Sc., Emory University, 2017

Advisor: Ronald J. Gould, Ph.D.

Abstract

An abstract of A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics

Abstract
On Cycles, Chorded Cycles, and Degree Conditions
By Ariel Keller

Sufficient conditions to imply the existence of certain substructures in a graph are of considerable interest in extremal graph theory, and conditions that guarantee a large set of cycles or chorded cycles are a recurring theme. This dissertation explores different degree sum conditions that are sufficient for finding a large set of vertexdisjoint cycles or a large set of vertex-disjoint chorded cycles in a graph.

For an integer $t \geq 1$, let $\sigma_{t}(G)$ be the smallest sum of degrees of t independent vertices of G. We first prove that if a graph G has order at least $7 k+1$ and degree sum condition $\sigma_{4}(G) \geq 8 k-3$, with $k \geq 2$, then G contains k vertex-disjoint cycles. Then, we consider an equivalent condition for chorded cycles, proving that if G has order at least $11 k+7$ and $\sigma_{4}(G) \geq 12 k-3$, with $k \geq 2$, then G contains k vertex-disjoint chorded cycles. We prove that the degree sum condition in each result is sharp. Finally, we conjecture generalized degree sum conditions on $\sigma_{t}(G)$ for $t \geq 2$ sufficient to imply that G contains k vertex-disjoint cycles for $k \geq 2$ and k vertex-disjoint chorded cycles for $k \geq 2$. This is joint work with Ronald J. Gould and Kazuhide Hirohata.

On Cycles, Chorded Cycles, and Degree Conditions

By

Ariel Keller
B.S., University of Tennessee, Chattanooga, 2011
M.Sc., Emory University, 2017

Advisor: Ronald J. Gould, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Mathematics

Contents

1 Introduction 1
1.1 History 1
1.2 Definitions and Notation 4
2 Degree Conditions to Imply the Existence of Vertex-Disjoint Cycles 7
2.1 Introduction 7
2.2 Lemmas 8
2.3 Proof of Theorem|2.1 11
2.4 Proofs of Lemmas 26
2.4.1 Proof of Lemma|2.1 26
2.4.2 Proof of Lemma|2.5 28
2.4.3 Proof of Lemma|2.6 33
3 Degree Conditions to Imply the Existence of Vertex-Disjoint Chorded
Cycles 35
3.1 Introduction 35
3.2 Preliminaries 37
3.3 Proof of Theorem|3.1 46
Bibliography 72

List of Figures

1.1 A Hamiltonian cycle in a graph G with $n=6$ and $\delta(G)=3$. 2
1.2 Six-cycle types. 5
$2.1 \quad\left|H_{1}\right|=1$ 14
$2.2 \quad\left|H_{1}\right|=2$ 14
2.3 An example where $i_{0}=1$ and $j_{0}=t$. 15
2.4 A new cycle C_{0}^{\prime} such that $\left\langle H \cup C_{0}\right\rangle-C_{0}^{\prime}$ is connected. 15
2.5 The case when $i_{0}=1$ and $i_{1}=3$. 16
2.6 The case when $v_{1} \in N_{C_{0}}\left(y_{1}\right) \cap N_{C_{0}}\left(y_{t}\right)$. 17
2.7 The case when $v_{1} \in N_{C_{0}}\left(y_{i_{0}}\right) \cap N_{C_{0}}\left(y_{j_{0}}\right)$. 17
2.8 The graph H and an independent set $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. 18
2.9 The case when $v_{3} \in N_{C_{i_{0}}}\left(x_{2}\right) \cap N_{C_{i_{0}}}\left(x_{3}\right)$. 19
2.10 The case when $v_{2} \in N_{C_{i_{0}}}\left(x_{4}\right)$. 20
2.11 An example with $j_{0}=1, m=2, m^{\prime}=3$. 20
2.12 An example with $h_{0}=2$ and $h_{1}=1$. 20
2.13 An example where $v_{2} \in N_{C_{i_{0}}}\left(x_{2}\right)$ and $v_{4} \in N_{C_{i_{0}}}\left(x_{3}\right)$. 21
2.14 The case when x_{1} and x_{4} have the same neighbors in $C_{i_{0}}$. 21
2.15 Sets X and X^{\prime}. 23
2.16 Two disjoint cycles when $x_{3} v_{1} \in E(G)$. 25
2.17 Two disjoint cycles. Example when $v=v_{3}$. 26
2.18 Shorter cycles in $\left\langle C_{1} \cup C_{2}\right\rangle$. 28
2.19 Shorter cycles in $\left\langle C_{1} \cup C_{2}\right\rangle$. 29
3.1 A smaller chorded cycle. 38
3.2 A chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{2}\right] \cup P_{2}\right\rangle$. 41
3.3 A chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{2}\right] \cup P_{2}\right\rangle$. 42
3.4 Nested edges in a path. 42
3.5 An example where $t=3$ and $r=2$. 47
3.6 The case when $d_{H_{i}}(b) \geq 3$. 54
3.7 Two vertex-disjoint chorded cycles in $\langle H \cup C\rangle$. 57
3.8 Fewer components in H. 58
3.9 A path P connecting x_{3} and x_{4}. 69
3.10 A chorded cycle. 70
3.11 A chorded cycle. 70
3.12 Two chorded cycles in $\langle\tilde{H} \cup C\rangle$. 71

Chapter 1

Introduction

1.1 History

Extremal graph theory studies relationships between graph invariants, like the number of edges or vertices in a graph, and different graph properties. Often we are interested in how far we can push certain properties before other properties or substructures must exist in the graph. For example, we might ask what is the largest number of edges a graph of a fixed order may contain and still be acyclic. Alternatively, this tells us how many edges the graph must have to guarantee the existence of a cycle.

Over the years, many different results have been proved regarding cycles in graphs. Some such results include graph properties that guarantee a graph contains a Hamiltonian cycle, a set of cycles with specified graph elements, a large set of many different cycles, or a large set of many different chorded cycles or doubly chorded cycles.

The degree of a vertex $x, d(x)$, is defined to be the number of edges incident with x. Let $\delta(G)$ denote the minimum degree over all vertices in a graph G. Clearly, if the minimum degree is large enough relative to the number of vertices in the graph, the graph will contain a Hamiltonian cycle. In particular, Dirac's famous result [3] states that any graph G on $n \geq 3$ vertices with minimum degree $\delta(G) \geq n / 2$ contains
a Hamiltonian cycle (see Figure 1.1).

Figure 1.1. A Hamiltonian cycle in a graph G with $n=6$ and $\delta(G)=3$.

Ore's Theorem [13] strengthens this result, giving a weaker degree condition sufficient to imply a graph contains a Hamiltonian cycle. It states that, for a graph G on n vertices, if the degrees of any pair of nonadjacent vertices total at least n, then the graph G contains a Hamiltonian cycle. This condition allows an individual vertex to have degree less than $n / 2$; hence it is possible for a graph to satisfy the condition of Ore's Theorem while not satisfying the condition of Dirac's Theorem.

In the same vein as Dirac's Theorem and Ore's Theorem for Hamiltonian cycles, density conditions can be used to force a graph to contain many disjoint cycles or chorded cycles.

Cycles are called vertex-disjoint if they share no vertices. Let $\delta(G)$ denote the minimum degree of G and

$$
\sigma_{t}(G)=\min \left\{\sum_{x \in S} d_{G}(x): S \text { is an independent set of } G \text { with }|S|=t\right\}
$$

In 1963, Corrádi and Hajnal [2] first considered a minimum degree condition that would imply a graph must contain k different vertex-disjoint cycles, proving that if $|G| \geq 3 k$ and $\delta(G) \geq 2 k$, then G contains k vertex-disjoint cycles. Enomoto [4] and Wang [15] independently proved a more general result, requiring a weaker condition on the degree sum of any two independent vertices: if $|G| \geq 3 k$ and $\sigma_{2}(G) \geq 4 k-1$, then G contains k vertex-disjoint cycles. Fujita et al. [6] proved the most recent generalization of this result, showing that if $k \geq 2,|G| \geq 3 k+2$, and $\sigma_{3}(G) \geq 6 k-2$, then G contains k vertex-disjoint cycles.

In all three theorems, the degree conditions are sharp as illustrated by the graph
$G_{0}=K_{2 k-1}+m K_{1}$. The only independent vertices in G_{0} are the vertices in $m K_{1}$, each of which has degree $2 k-1$. It follows that for any $t \leq m, \sigma_{t}\left(G_{0}\right)=t(2 k-1)=2 k t-t$. Any cycle in G_{0} must contain two vertices of $K_{2 k-1}$ since no two vertices of $m K_{1}$ are adjacent. But then the graph G_{0} cannot contain k vertex-disjoint cycles. Thus, none of the conditions $\delta(G)=2 k-1, \sigma_{2}(G)=4 k-2, \sigma_{3}(G)=6 k-3$, and in general for $t \leq m, \sigma_{t}(G)=t(2 k-1)=2 k t-t$ is sufficient to imply G contains k vertex-disjoint cycles.

In Chapter 2, we consider the next value of t; that is, we show that if $\sigma_{4}(G) \geq$ $8 k-3$, then G contains k vertex-disjoint cycles. We also prove that the degree sum condition is sharp, and we conjecture a sharp degree sum condition on $\sigma_{t}(G)$ for any fixed $t \geq 2$ to imply that a graph contains k vertex-disjoint cycles.

An extension of the study of disjoint cycles is that of disjoint chorded cycles. A chord of a cycle is an edge between two vertices of the cycle that is not an edge of the cycle. We say a cycle is chorded if it induces at least once chord and doubly chorded if it induces at least two chords. In 1960, Pósa [14 asked what conditions would imply a graph contains a chorded cycle. In answer to the question, Czipzer (see Lovász [12], problem 10.2) proved in 1963 that if a graph has minimum degree at least 3, it must contain a chorded cycle. More recently, the relevant literature has focused on conditions to imply a graph contains many vertex-disjoint chorded cycles. Finkel [5] extended the work of Corrádi and Hajnal by showing that if $|V(G)| \geq 4 k$ and $\delta(G) \geq 3 k$, then G contains k vertex-disjoint chorded cycles. Chiba et al. [1] extended this result, proving that for a graph G of order at least $3 r+4 s$, if $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ vertex-disjoint cycles, with s of them chorded. In [8], doubly chorded cycles were considered, showing that if $\sigma_{2}(G) \geq 6 k-1$, then G contains k vertex-disjoint doubly chorded cycles.

In Chapter 3, we consider the degree condition for $t=4$. In particular, we show that if G is a graph of order $n \geq 11 k+7$, and if $\sigma_{4}(G) \geq 12 k-3$, then G contains
k vertex-disjoint chorded cycles. Furthermore, we prove that this degree condition is sharp, and we conjecture a sharp degree condition on $\sigma_{t}(G)$ for any fixed $t \geq 2$ to imply the graph G contains k vertex-disjoint chorded cycles.

1.2 Definitions and Notation

We consider only simple graphs, without loops or multiedges. Let $G=(V(G), E(G))$ be a simple graph. Then $|G|$ is the order of $G, \delta(G)$ is the minimum degree of G, $\operatorname{comp}(G)$ is the number of components of $G, \alpha(G)$ is the independence number of G. For a vertex $u \in V(G)$, the set of neighbors of u in G is denoted by $N_{G}(u)$, and we denote the degree of the vertex u by $d_{G}(u)=\left|N_{G}(u)\right|$. Let H be a subgraph of G. For $u \in V(G)-V(H)$, we denote the neighborhood of u in H by $N_{H}(u)=N_{G}(u) \cap V(H)$, and the degree of u in H is given by $d_{H}(u)=\left|N_{H}(u)\right|$. For $X \subseteq V(G)$, let $d_{H}(X)=$ $\sum_{x \in X} d_{H}(x)$. For an integer $t \geq 1$, let

$$
\sigma_{t}(G)=\min \left\{\sum_{v \in X} d_{G}(v) \mid X \text { is an independent set of } G \text { with }|X|=t .\right\},
$$

and $\sigma_{t}(G)=\infty$ when $\alpha(G)<t$. Note that if $t=1$, then $\sigma_{1}(G)=\delta(G)$.
For a set $S \subset V(G)$, the subgraph of G induced by S is denoted by $\langle S\rangle$. If there is no fear of confusion, then we use the same symbol for a graph and its vertex set. For graphs G_{1} and G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset, G_{1} \cup G_{2}$ denotes the union of G_{1} and $G_{2}, G_{1}+G_{2}$ denotes the join of G_{1} and G_{2}, and $m G$ denotes the union of m disjoint copies of G, see [7].

For a path (or a cycle) Q in a graph G, we write $Q=x_{1}, x_{2}, \ldots, x_{t}\left(, x_{1}\right)$, where $V(Q)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ and $\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}, \ldots,\left\{x_{t-1}, x_{t}\right\}\left(,\left\{x_{t}, x_{1}\right\}\right) \in E(Q)$. If Q is a path (or a cycle), say $Q=x_{1}, x_{2}, \ldots, x_{t}\left(, x_{1}\right)$, then we assume that an orientation of Q is given from x_{1} to x_{t}. We say that x_{i} precedes x_{j}, and x_{j} follows x_{i}, on Q if $i<j$. If $x \in V(Q)$, then x^{+}denotes the first successor of x on Q and x^{-}denotes
the first predecessor of x on Q. For $x, y \in V(Q)$, we let $Q[x, y]$ denote the path of Q from x to y (including x and y) in the given direction. The notation $Q^{-}[x, y]$ denotes the path from y to x in the opposite direction. We also write $Q(x, y]=Q\left[x^{+}, y\right]$, $Q[x, y)=Q\left[x, y^{-}\right]$and $Q(x, y)=Q\left[x^{+}, y^{-}\right]$. For $u, v \in V(Q)$, we define the path $Q^{ \pm}[u, v]$ as follows; if u precedes v on Q, then $Q^{ \pm}[u, v]=Q[u, v]$, and if v precedes u on Q, then $Q^{ \pm}[u, v]=Q^{-}[u, v]$. If T is a tree with at least one branch and $x, y \in V(T)$, where a branch vertex of a tree is a vertex of degree at least three, then we denote the path from x to y as $T[x, y]$.

For an integer $r \geq 1$ and two disjoint subgraphs A, B of G, we denote by $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ a degree sequence from A to B such that $d_{B}\left(v_{i}\right) \geq d_{i}$ and $v_{i} \in V(A)$ for each $1 \leq i \leq r$. Throughout this dissertation, it is sufficient to consider the case of equality in the above inequality; hence, when we write $\left(d_{1}, d_{2}, \ldots, d_{r}\right)$, we will assume that $d_{B}\left(v_{i}\right)=d_{i}$ for each $1 \leq i \leq r$. For $X, Y \subseteq V(G), E(X, Y)$ denote the set of edges of G joining a vertex in X and a vertex in Y. For vertex-disjoint subgraphs H_{1}, H_{2} of G, we simply write $E\left(H_{1}, H_{2}\right)$ instead of $E\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$. A forest is a graph each of whose components is a tree, and a leaf is a vertex of a forest whose degree is at most one. A cycle of length ℓ is called an ℓ-cycle.

Definition 1. Any chorded six-cycle must be one of two types. Either the chord splits the cycle into a three-cycle and a five-cycle - we call this type 1 , or the chord splits the cycle into two four-cycles-we call this type 2.

(a) Type 1 six-cycle.

(b) Type 2 six-cycle.

Figure 1.2. Six-cycle types.

Definition 2. We say a set $\mathscr{C}=\left\{C_{1}, \ldots C_{r}\right\}$ of r vertex-disjoint cycles in a graph G is minimal if $\| \bigcup_{i=1}^{r} V\left(C_{i}\right) \mid$ is minimal over all such sets of r cycles.

Definition 3. Let $C=v_{1}, \ldots, v_{t}, v_{1}$ be an oriented cycle with a chord $v_{i} v_{j}, i \leq j$. We say a chord $v_{k} v_{l} \neq v_{i} v_{j}$ is parallel to $v_{i} v_{j}$ if $v_{k}, v_{l} \in C\left[v_{i}, v_{j}\right]$ or $v_{k}, v_{l} \in C\left[v_{j}, v_{i}\right]$. Note that if two chords share an endpoint, they are parallel. We say two chords are crossing if they are not parallel.

Definition 4. Let $v_{i} u_{j}$ and $v_{k} u_{l}$ be two edges between two oriented paths $P_{1}=v_{1}$, \ldots, v_{t} and $P_{2}=u_{1}, \ldots, u_{s}$. We say $v_{i} u_{j}$ and $v_{k} u_{l}$ are parallel if either $i \leq k$ and $j \leq l$, or $k \leq i$ and $l \leq j$. Note that if two edges between P_{1} and P_{2} share an endpoint, they are parallel. We say two edges between two oriented paths are crossing if they are not parallel.

Definition 5. Let $v_{i} v_{j}$ and $v_{k} v_{l}$ be two distinct edges between vertices of a path $P_{1}=v_{1}, \ldots, v_{t}$, with $i<j$ and $k<l$. We say $v_{i} v_{j}$ and $v_{k} v_{l}$ are nested if either $i \leq k<l \leq j$ or $k \leq i<j \leq l$.

Definition 6. Let $P=v_{1}, \ldots, v_{t}$ be a path. We say a vertex v_{i} on P has a left edge if there exists an edge $v_{j} v_{i}$ for any $j<i-1$. We say v_{i} has a right edge if there exists an edge $v_{i} v_{l}$ for any $l>i+1$.

Definition 7. Let X be a set of vertices in a graph H with $|X|>1$. We call a vertex x of X isolated from the rest of X if it is the only vertex of X in some component H_{i} of H.

For terminology and notation not defined here, see (7].

Chapter 2

Degree Conditions to Imply the Existence of Vertex-Disjoint Cycles

In this chapter, we prove a result regarding the existence of a large set of vertexdisjoint cycles in a graph. Let G be a graph such that $|G| \geq 7 k+1$ and $\sigma_{4}(G) \geq 8 k-3$ for integer $k \geq 2$. We prove that such a graph contains a set of k vertex-disjoint cycles. We also conjecture a generalized result for $\sigma_{t}(G)$, and we show that the degree sums in the result on $\sigma_{4}(G)$ and the conjecture for $\sigma_{t}(G)$ are sharp.

2.1 Introduction

The study of cycles in graphs is an important and rich area. One of the more interesting questions is to find conditions that insure the existence of $k(k \geq 2)$ vertex-disjoint cycles. A number of such results exist. As noted in the introduction, Corrádi and Hajnal [2] proved that if a graph G has order at least $3 k$ and $\delta(G) \geq 2 k$, then G contains k disjoint cycles. Justesen [11] proved the same result from the condition $\sigma_{2}(G) \geq 4 k$. Enomoto [4] and Wang [15] independently improved Justesen's bound to $\sigma_{2}(G) \geq 4 k-1$. Fujita et al. [6] proved that if $|G| \geq 3 k+2$ and $\sigma_{3}(G) \geq 6 k-2$, then G contains k disjoint cycles. The purpose of this chapter is to further extend
these results. We also conjecture the following:

Conjecture $2.1(\boxed{10})$. Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq$ $2 k t-(t-1)$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

The cases for $t=1,2,3$ have already been shown. We add to the evidence for this conjecture by showing the following:

Theorem $2.1(\boxed{10]})$. Let G be a graph of order $n \geq 7 k+1$ for an integer $k \geq 2$. If $\sigma_{4}(G) \geq 8 k-3$, then G contains k disjoint cycles.

The degree sum condition conjectured above would be sharp. And in particular, the degree sum condition of Theorem 2.1 is sharp. Sharpness is given by $G=K_{2 k-1}+$ $m K_{1}$. The only independent vertices in G are those in $m K_{1}$. Each of these vertices has degree $2 k-1$. Thus, for any t with $1 \leq t \leq m, \sigma_{t}(G)=t(2 k-1)=2 k t-t$, and G fails to contain k disjoint cycles as any such cycle must contain two vertices of $K_{2 k-1}$ 。

2.2 Lemmas

In the proof of Theorem 2.1, we make use of the following lemmas. Fujita, Matsumura, Tsugaki and Yamashita proved Lemmas 2.A, 2.B and 2.C in [6]. The proofs of Lemmas 2.1 and 2.5 appear after the proof of Theorem 2.1, that is, in Section 2.4.

Let C_{1}, \ldots, C_{r} be r disjoint cycles of a graph G. If $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ are r disjoint cycles of G and $\left|\cup_{i=1}^{r} V\left(C_{i}^{\prime}\right)\right|<\left|\cup_{i=1}^{r} V\left(C_{i}\right)\right|$, then we call $C_{1}^{\prime}, \ldots, C_{r}^{\prime}$ a shorter (family of) cycles than C_{1}, \ldots, C_{r}. We also call $\left\{C_{1}, \ldots, C_{r}\right\}$ a minimal (family of) cycles if G does not contain shorter r disjoint cycles than C_{1}, \ldots, C_{r}.

Lemma 2.A (Fujita et al. [6]). Let r be a positive integer and C_{1}, \ldots, C_{r} be r minimal disjoint cycles of a graph G. Then $d_{C_{i}}(x) \leq 3$ for any $x \in V(G)-\cup_{i=1}^{r} V\left(C_{i}\right)$ and
for any $1 \leq i \leq r$. Furthermore, $d_{C_{i}}(x)=3$ implies $\left|C_{i}\right|=3$, and $d_{C_{i}}(x)=2$ implies $\left|C_{i}\right| \leq 4$.

Lemma 2.B (Fujita et al. [6]). Suppose that F is a forest with at least two components and C is a triangle. Let x_{1}, x_{2}, x_{3} be leaves of F from at least two components. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 7$, then there exist two disjoint cycles in $\langle F \cup C\rangle$ or there exists a triangle C^{\prime} in $\langle F \cup C\rangle$ such that $\operatorname{comp}\left(\langle F \cup C\rangle-C^{\prime}\right)<\operatorname{comp}(F)$.

Lemma 2.1. Suppose that F is a forest with at least two components and C is a triangle. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be leaves of F from at least two components. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right) \geq 9$, then there exist two disjoint cycles in $\langle F \cup C\rangle$ or there exists a triangle C^{\prime} in $\langle F \cup C\rangle$ such that $\operatorname{comp}\left(\langle F \cup C\rangle-C^{\prime}\right)<\operatorname{comp}(F)$.

Lemma 2.C (Fujita et al. [6]). Let C be a cycle and T be a tree with three leaves x_{1}, x_{2}, x_{3}. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 7$, then there exist two disjoint cycles in $\langle C \cup T\rangle$ or there exists a cycle C^{\prime} in $\langle C \cup T\rangle$ such that $\left|C^{\prime}\right|<|C|$.

Lemma 2.2. Let C be a cycle and T be a tree with four leaves $x_{1}, x_{2}, x_{3}, x_{4}$. If $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right) \geq 9$, then there exist two disjoint cycles in $\langle C \cup T\rangle$ or there exists a cycle C^{\prime} in $\langle C \cup T\rangle$ such that $\left|C^{\prime}\right|<|C|$.

Proof. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If $d_{C}\left(x_{i_{0}}\right) \leq 2$ for some $1 \leq i_{0} \leq 4$, then $d_{C}(X-$ $\left.\left\{x_{i_{0}}\right\}\right) \geq 7$, and we apply Lemma 2.C to $X-\left\{x_{i_{0}}\right\}$. Otherwise, $d_{C}\left(x_{i}\right) \geq 3$ for each $1 \leq i \leq 4$, and we apply Lemma 2.C to any three vertices in X.

Lemma 2.3. Let G be a graph satisfying the assumption of Theorem 2.1, and let $\left\{C_{1}, \ldots, C_{k-1}\right\}$ be a minimal (family of) $k-1$ disjoint cycles of G. Suppose that there exists a tree T with at least four leaves, which is a component of $G-\cup_{i=1}^{k-1} C_{i}$. Then G contains k disjoint cycles.

Proof. Let $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$, and let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a set of leaves of T. Since X is an independent set, $d_{\mathscr{C}}(X) \geq(8 k-3)-4=8(k-1)+1$. Then there exists a cycle
C_{i} for some $1 \leq i \leq k-1$ such that $d_{C_{i}}(X) \geq 9$. Since $\left\{C_{1}, \ldots, C_{k-1}\right\}$ is minimal, there exist two disjoint cycles in $\left\langle C_{i} \cup T\right\rangle$ by Lemma 2.2. Thus G contains k disjoint cycles.

Lemma 2.4. Let G be a graph satisfying the assumption of Theorem 2.1, and let C_{1}, \ldots, C_{k-1} be $k-1$ minimal disjoint cycles of G. Suppose that $H=G-\cup_{i=1}^{k-1} C_{i}$ has at least two components at least one of which is a tree T with at least three leaves. Then there exist two disjoint cycles in $\left\langle C_{i} \cup T\right\rangle$ for some $1 \leq i \leq k-1$ or there exists a triangle C in $\left\langle H \cup C_{i}\right\rangle$ such that $\operatorname{comp}\left(\left\langle H \cup C_{i}\right\rangle-C\right)<\operatorname{comp}(H)$.

Proof. Let $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$. Let x_{1}, x_{2}, x_{3} be three leaves of the tree T, and let x_{4} be a leaf from another component, and $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Since X is an independent set, $d_{\mathscr{C}}(X) \geq(8 k-3)-4=8(k-1)+1$. Then there exists a cycle C_{i} for some $1 \leq i \leq k-1$ such that $d_{C_{i}}(X) \geq 9$. If $d_{C_{i}}\left(x_{4}\right) \leq 2$, then $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 7$. By Lemma 2.C, there exist two disjoint cycles in $\left\langle C_{i} \cup T\right\rangle$ or there exists a cycle C in $\left\langle C_{i} \cup T\right\rangle$ such that $|C|<\left|C_{i}\right|$. Since $\left\{C_{1}, \ldots, C_{k-1}\right\}$ is minimal, the lemma holds. If $d_{C_{i}}\left(x_{4}\right) \geq 3$, then C_{i} is a triangle by Lemma 2.A. Thus the lemma holds by Lemma 2.1 .

Lemma 2.5. Let C_{1} and C_{2} be two disjoint cycles such that $\left|C_{2}\right| \geq 6$. Suppose that C_{2} contains vertices with at least one of the following degree sequences from C_{2} to C_{1}.
(i) $(2,2,2,2,2)$
(ii) $(5,3)$
(iii) $(3,1,1,1,1,1)$
(iv) $(3,2,1,1)$
(v) $(3,3,1)$

Then $\left\langle C_{1} \cup C_{2}\right\rangle$ contains two disjoint cycles C_{1}^{\prime} and C_{2}^{\prime} such that $\left|C_{1}^{\prime}\right|+\left|C_{2}^{\prime}\right|<$ $\left|C_{1}\right|+\left|C_{2}\right|$.

Lemma 2.6. Let H be a graph with two components H_{1}, H_{2}, where $H_{1}=x_{1}, \ldots, x_{s}$
$(s \geq 1)$ is a path and $H_{2}=y_{1}, \ldots, y_{t}(t \geq 3)$ is a path. Let $W=\left\{x_{1}, y_{1}, y_{i}, y_{t}\right\}$ for any $2 \leq i \leq t-1$, and let C be a triangle. If there exists a degree sequence ($3,3,2,0$) or $(3,3,1,1)$ from W to C, then $\langle H \cup C\rangle$ contains two disjoint cycles.

2.3 Proof of Theorem 2.1

For convenience, we restate our main result.

Theorem 2.1. Let G be a graph of order $n \geq 7 k+1$ for an integer $k \geq 2$. If $\sigma_{4}(G) \geq 8 k-3$, then G contains k disjoint cycles.

Proof of Theorem 2.1. Suppose that the theorem does not hold. Let G be an edgemaximal counterexample. If G is a complete graph, then G contains k disjoint cycles. Thus we may assume that G is not a complete graph. Let $x y \notin E(G)$ for some $x, y \in$ $V(G)$, and define $G^{\prime}=G+x y$. Since G^{\prime} is not a counterexample by the maximality of G, G^{\prime} contains k disjoint cycles C_{1}, \ldots, C_{k}. Without loss of generality, we may assume that $x y \notin \cup_{i=1}^{k-1} E\left(C_{i}\right)$, that is, G contains $k-1$ disjoint cycles C_{1}, \ldots, C_{k-1}. Let $\mathscr{C}=\cup_{i=1}^{k-1} C_{i}$ and $H=G-\mathscr{C}$. Choose C_{1}, \ldots, C_{k-1} such that
(1) $\sum_{i=1}^{k-1}\left|C_{i}\right|$ is minimal, and
(2) subject to (1), $\operatorname{comp}(H)$ is minimal.

Note that any cycle C in \mathscr{C} has no chords by (1). Clearly, H is a forest, otherwise, since H contains a cycle, G contains k disjoint cycles, a contradiction. If H contains at least two components at least one of which is a tree with at least three leaves, then by Lemma 2.4, either G contains k disjoint cycles, or we contradict (2). Thus if H contains at least two components, H must be a collection of paths. If H has only one component, then it is a tree. If H is a tree with at least four leaves, then the theorem holds by Lemma 2.3. Thus if H has only one component, then H is a tree with at most three leaves.

Now, we consider two cases on $|H|$.

Case 1. $|H| \leq 7$.
Let C be a longest cycle in \mathscr{C}. Suppose that $|C| \leq 7$. Then $\left|C^{\prime}\right| \leq 7$ for any cycle C^{\prime} in \mathscr{C}, and $|\mathscr{C}| \leq 7(k-1)$. Since $|G| \geq 7 k+1,|H|=|G|-|\mathscr{C}| \geq(7 k+1)-7(k-1)=$ 8, contradicting the assumption of this case. Thus $|C| \geq 8$. Let $|C|=4 t+r, t \geq 2$ and $0 \leq r \leq 3$. Then there exist at least t disjoint independent sets in $V(C)$ each of which has four vertices. By (1) and $|C| \geq 8, d_{C}(v) \leq 1$ for any $v \in V(H)$. Thus $|E(H, C)| \leq 7$.

Suppose that $k=2$. Then \mathscr{C} has only one cycle C, and $H=G-C$. Since $|C| \geq 8$, C contains at least two independent sets each of which has four vertices. Let X_{1} and X_{2} be such sets. Since $d_{C}\left(X_{i}\right)=8$ for each $i \in\{1,2\}, d_{H}\left(X_{i}\right) \geq(8 k-3)-8=$ $8 k-11$. Then $d_{H}\left(X_{1} \cup X_{2}\right) \geq 16 k-22 \geq 10$, since $k \geq 2$. Thus $|E(C, H)| \geq 10$, a contradiction.

Suppose that $k \geq 3$. We claim that $\left|E\left(C, C^{\prime}\right)\right| \geq 8 t$ for some cycle C^{\prime} in $\mathscr{C}-C$. Note that each of t disjoint independent sets in $V(C)$ sends at least $(8 k-3)-8=$ $8 k-11$ edges out of C. Since $|E(C, H)| \leq 7$ and $t \geq 2,|E(C, \mathscr{C}-C)| \geq t(8 k-$ 11) $-7>8 t(k-2)$. Thus the claim holds. Since $|C|=4 t+r \leq 4 t+3$ and $\left|E\left(C, C^{\prime}\right)\right| /|C| \geq 8 t /(4 t+3)>8 t(4 t+4)=2 t /(t+1)>1, d_{C^{\prime}}(v) \geq 2$ for some $v \in V(C)$.

Suppose that $\max \left\{d_{C^{\prime}}(v) \mid v \in V(C)\right\}=2$. Let $X=\left\{v \in V(C) \mid d_{C^{\prime}}(v) \leq 1\right\}$ and $Y=V(C)-X$. Then noting that $t \geq 2$ and $r \leq 3$,

$$
\begin{aligned}
8 t \leq\left|E\left(C, C^{\prime}\right)\right| & \leq|X|+2|Y|=(|C|-|Y|)+2|Y|=|C|+|Y| \\
\Rightarrow|Y| & \geq 8 t-|C|=8 t-(4 t+r)=4 t-r \\
& \geq 8-3=5 .
\end{aligned}
$$

Thus we have the degree sequence $(2,2,2,2,2)$ from C to C^{\prime}. By Lemma $2.5(\mathrm{i}),\left\langle C \cup C^{\prime}\right\rangle$
contains two shorter disjoint cycles, contradicting (1).
Suppose that $h=\max \left\{d_{C^{\prime}}(v) \mid v \in V(C)\right\} \geq 3$. Let $d_{C^{\prime}}\left(v^{*}\right)=h$ for some $v^{*} \in$ $V(C)$. Since $\left|C^{\prime}\right| \leq|C|=4 t+r$ by the choice of $C, d_{C^{\prime}}\left(v^{*}\right) \leq\left|C^{\prime}\right| \leq 4 t+r$. Then since $t \geq 2$ and $r \leq 3,\left|E\left(C-v^{*}, C^{\prime}\right)\right| \geq 8 t-(4 t+r)=4 t-r \geq 5$. This implies that $N_{C^{\prime}}\left(C-v^{*}\right) \neq \emptyset$. Let $Z=\left\{v \in V(C) \mid N_{C^{\prime}}(v) \neq \emptyset\right\}$. Then $|Z| \geq 2$.

Suppose that $|Z|=2$. Then $d_{C^{\prime}}(v) \geq 5$ for any $v \in Z$ by the above observations. By Lemma 2.5(ii), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles, contradicting (1).

Suppose that $|Z| \geq 3$. Since $\left|E\left(C-v^{*}, C^{\prime}\right)\right| \geq 5$, we may assume that the minimum degree sequence S from vertices of C to C^{\prime} is at least one of $(h, 4,1)$, $(h, 3,2),(h, 3,1,1),(h, 2,2,1),(h, 2,1,1,1)$, or $(h, 1,1,1,1,1)$, where by the definition of h, if $S=(h, 4,1)$, then $h \geq 4$, and if S is the other degree sequence, then $h \geq 3$. If $S=(h, 4,1)$ or $(h, 3,2)$, then by Lemma 2.5 (v), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles. If $S=(h, 3,1,1),(h, 2,2,1)$ or $(h, 2,1,1,1)$, then by Lemma 2.5(iv), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles. If $S=(h, 1,1,1,1,1)$, then by Lemma 2.5(iii), $\left\langle C \cup C^{\prime}\right\rangle$ contains two shorter disjoint cycles.

Case 2. $|H| \geq 8$.
Claim 1. H is connected.
Proof. Suppose to the contrary that H is disconnected. Then note that H is a collection of paths. Suppose that X is an independent set that consists of four leaves from at least two components in H such that $d_{H}(X) \leq 4$. Then $d_{\mathscr{C}}(X) \geq(8 k-3)-4=$ $8(k-1)+1$, and $d_{C_{i_{0}}}(X) \geq 9$ for some $1 \leq i_{0} \leq k-1$. Thus $d_{C_{i_{0}}}(x) \geq 3$ for some $x \in X$, and $\left|C_{i_{0}}\right|=3$ by Lemma 2.A. By Lemma 2.1 and (2), $\left\langle H \cup C_{i_{0}}\right\rangle$ contains two disjoint cycles, and G contains k disjoint cycles, a contradiction. Thus H does not contain such an independent set.

Now, we consider three cases on $\operatorname{comp}(H)$.

Case 1. $\operatorname{comp}(H) \geq 4$.

Figure 2.1. $\left|H_{1}\right|=1$

Figure 2.2. $\left|H_{1}\right|=2$

We take four leaves $x_{1}, x_{2}, x_{3}, x_{4}$, one from each component of H. Then $X=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set such that $d_{H}(X) \leq 4$, a contradiction.

Case 2. $\operatorname{comp}(H)=3$.
We take three leaves x_{1}, x_{2}, x_{3}, one from each component of H. Since $|H| \geq 8$, some component of H, say H_{1}, has order at least 3 . Now, we take the other leaf from H_{1}, call it x_{4}. Then $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is an independent set such that $d_{H}(X) \leq 4$, a contradiction.

Case 3. $\operatorname{comp}(H)=2$.
Let H_{1}, H_{2} be two distinct components in H. Without loss of generality, we may assume that $\left|H_{1}\right| \leq\left|H_{2}\right|$. Suppose that $\left|H_{1}\right| \geq 3$. Then we take two leaves from each component of H, yielding a set X of four independent vertices such that $d_{H}(X)=4$, a contradiction. Suppose that $\left|H_{1}\right| \in\{1,2\}$. Since $|H| \geq 8,\left|H_{2}\right| \geq 6$. Let $H_{1}=x_{1}$, $x_{s}(s \in\{1,2\}) ; H_{2}=y_{1}, y_{2}, \ldots, y_{t}(t \geq 6)$, and let $W=\left\{x_{1}, y_{1}, y_{3}, y_{t}\right\}$ (see Figures 2.1 and 2.2). Since W is an independent set and $d_{H}(W) \leq 5, d_{\mathscr{C}}(W) \geq(8 k-3)-5=$ $8(k-1)$. Then there is a cycle C_{0} in \mathscr{C} such that $d_{C_{0}}(W) \geq 8$. By Lemma 2.A, $d_{C_{0}}(u) \leq 3$ for any $u \in W$, and $\left|C_{0}\right| \leq 4$. Then the minimum possible degree sequence S from W to C_{0} is $(3,3,2,0),(3,3,1,1),(3,2,2,1)$ or $(2,2,2,2)$.

Suppose that $\left|C_{0}\right|=4$. Let $C_{0}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Then $d_{C_{0}}(u) \leq 2$ for any $u \in W$ by Lemma 2.A. Thus we must have degree sequence $(2,2,2,2)$. If some $u \in W$ has consecutive neighbors in C_{0}, then u and these two neighbors form a 3-cycle, contradicting (1). Thus for any $u \in W$, its neighbors in C_{0} are not consecutive. It follows that for any $u \in W$, either $N_{C_{0}}(u)=\left\{v_{1}, v_{3}\right\}$ or $N_{C_{0}}(u)=\left\{v_{2}, v_{4}\right\}$. Without
loss of generality, we may assume that $N_{C_{0}}\left(x_{1}\right)=\left\{v_{1}, v_{3}\right\}$. If $y_{i_{0}}, y_{j_{0}}$ with some i_{0}, $j_{0} \in\{1,3, t\}$ and $i_{0}<j_{0}$ do not share neighbors in C_{0} with x_{1}, then we can easily find two disjoint cycles, as follows. Since $N_{C_{0}}\left(y_{m}\right)=\left\{v_{2}, v_{4}\right\}$ for each $m \in\left\{i_{0}, j_{0}\right\}$, $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{4}, y_{i_{0}}$ is a cycle, and $x_{1}, v_{3}, v_{2}, v_{1}, x_{1}$ is the other disjoint cycle (see Figure 2.3).

Figure 2.3. An example where $i_{0}=1$ and $j_{0}=t$.

Thus at most one vertex in $\left\{y_{1}, y_{3}, y_{t}\right\}$ does not share neighbors in C_{0} with x_{1}. Suppose that some vertex in $\left\{y_{1}, y_{3}, y_{t}\right\}$ does not share neighbors in C_{0} with x_{1}. First, suppose that such a vertex is y_{1}, that is, $N_{C_{0}}\left(y_{1}\right)=\left\{v_{2}, v_{4}\right\}$. Then $y_{1}, v_{4}, v_{3}, v_{2}, y_{1}$ is a cycle. Since $v_{1} \in N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{3, t\}, H_{2}\left[y_{3}, y_{t}\right], v_{1}, y_{3}$ is the other disjoint cycle. If $N_{C_{0}}\left(y_{t}\right)=\left\{v_{2}, v_{4}\right\}$, then $y_{t}, v_{4}, v_{3}, v_{2}, y_{t}$ and $H_{2}\left[y_{1}, y_{3}\right], v_{1}, y_{1}$ are two disjoint cycles. Suppose that $N_{C_{0}}\left(y_{3}\right)=\left\{v_{2}, v_{4}\right\}$. Then we form a 4 -cycle $C_{0}^{\prime}=y_{3}, v_{4}, v_{3}, v_{2}$, y_{3}. Since $v_{1} \in N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1, t\},\left\langle H \cup C_{0}\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2) (see Figure 2.4). Thus $N_{C_{0}}\left(x_{1}\right)=N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1,3, t\}$. Then $C_{0}^{\prime}=H_{2}\left[y_{1}, y_{3}\right]$, v_{1}, y_{1} is a 4-cycle. Since $v_{3} \in N_{C_{0}}(u)$ for each $u \in\left\{x_{1}, y_{t}\right\},\left\langle H \cup C_{0}\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Thus if there exists a 4 -cycle in \mathscr{C}, we get a contradiction.

Figure 2.4. A new cycle C_{0}^{\prime} such that $\left\langle H \cup C_{0}\right\rangle-C_{0}^{\prime}$ is connected.

Suppose that $\left|C_{0}\right|=3$. Let $C_{0}=v_{1}, v_{2}, v_{3}, v_{1}$.

Subcase 1. $S=(3,3,2,0)$ or $S=(3,3,1,1)$.
By Lemma 2.6, we can find two disjoint cycles in $\left\langle C_{0} \cup H\right\rangle$, a contradiction.
Subcase 2. $S=(3,2,2,1)$.
If $d_{C_{0}}\left(y_{3}\right)=1$, then since $\left\{x_{1}, y_{1}, y_{t}\right\}$ satisfies the conditions of Lemma 2.B, we get a contradiction. Thus $d_{C_{0}}\left(y_{3}\right) \in\{2,3\}$.

First, suppose that $d_{C_{0}}\left(x_{1}\right)=1$. Let $v_{1} \in N_{C_{0}}\left(x_{1}\right)$. Note that $d_{C_{0}}\left(y_{i}\right) \geq 2$ for each $i \in\{1,3, t\}$. If $v_{1} \notin N_{C_{0}}\left(y_{i_{0}}\right)$ for some $i_{0} \in\{1, t\}$, then $d_{C_{0}}\left(y_{i_{0}}\right)=2$, and $C_{0}^{\prime}=y_{i_{0}}$, $v_{3}, v_{2}, y_{i_{0}}$ is a 3 -cycle. Since $d_{C_{0}}\left(y_{i_{1}}\right)=3$ for some $i_{1} \in\{1,3, t\}-\left\{i_{0}\right\}, v_{1} \in N_{C_{0}}\left(y_{i_{1}}\right)$. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2) (see Figure 2.5). Thus $v_{1} \in N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1, t\}$. Since $d_{C_{0}}\left(y_{i_{2}}\right)=3$ for some $i_{2} \in\{1,3, t\}, C_{0}^{\prime \prime}=y_{i_{2}}, v_{3}, v_{2}, y_{i_{2}}$ is a 3-cycle. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime \prime}$ is connected, contradicting (2).

Figure 2.5. The case when $i_{0}=1$ and $i_{1}=3$.

Next, suppose that $d_{C_{0}}\left(x_{1}\right)=2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in N_{C_{0}}\left(x_{1}\right)$. Suppose that $d_{C_{0}}\left(y_{3}\right)=2$. Since $\left|C_{0}\right|=3$, we may assume that $v_{1} \in N_{C_{0}}\left(x_{1}\right) \cap N_{C_{0}}\left(y_{3}\right)$. Since $d_{C_{0}}\left(y_{j_{0}}\right)=3$ for some $j_{0} \in\{1, t\}, C_{0}^{\prime}=y_{j_{0}}, v_{3}, v_{2}$, $y_{j_{0}}$ is a 3 -cycle. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Suppose that $d_{C_{0}}\left(y_{3}\right)=3$. If $v_{3} \in N_{C_{0}}\left(y_{m_{0}}\right)$ for some $m_{0} \in\{1, t\}$, then $H_{2}^{ \pm}\left[y_{3}, y_{m_{0}}\right], v_{3}, y_{3}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus $v_{3} \notin N_{C_{0}}\left(y_{m}\right)$ for each $m \in\{1, t\}$, that is, $N_{C_{0}}\left(y_{m}\right) \subseteq\left\{v_{1}, v_{2}\right\}$. Since one of y_{1} and y_{t} has the degree 1 and the other has the degree 2, without loss of generality, we may assume that $v_{1} \in N_{C_{0}}\left(y_{1}\right) \cap N_{C_{0}}\left(y_{t}\right)$. Since $d_{C_{0}}\left(y_{3}\right)=3, C_{0}^{\prime \prime}=y_{3}, v_{3}, v_{2}, y_{3}$ is a 3-cycle, and $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime \prime}$ is connected, contradicting (2) (see Figure 2.6).

Finally, suppose that $d_{C_{0}}\left(x_{1}\right)=3$. Since $d_{C_{0}}\left(y_{i_{0}}\right)=d_{C_{0}}\left(y_{j_{0}}\right)=2$ for some i_{0}, $j_{0} \in\{1,3, t\}$ with $i_{0}<j_{0}$, we may assume that $v_{1} \in N_{C_{0}}\left(y_{i_{0}}\right) \cap N_{C_{0}}\left(y_{j_{0}}\right)$. Then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{1}, y_{i_{0}}$ is a cycle. Since $d_{C_{0}}\left(x_{1}\right)=3$, a second disjoint cycle is given by x_{1}, v_{3}, v_{2}, x_{1} (see Figure 2.7), a contradiction.

Figure 2.6. The case when $v_{1} \in N_{C_{0}}\left(y_{1}\right) \cap N_{C_{0}}\left(y_{t}\right)$.

Figure 2.7. The case when $v_{1} \in N_{C_{0}}\left(y_{i_{0}}\right) \cap N_{C_{0}}\left(y_{j_{0}}\right)$.

Subcase 3. $S=(2,2,2,2)$.
Without loss of generality, we may assume that $N_{C_{0}}\left(x_{1}\right)=\left\{v_{1}, v_{2}\right\}$. If $v_{3} \in$ $N_{C_{0}}\left(y_{i_{0}}\right) \cap N_{C_{0}}\left(y_{j_{0}}\right)$ for some $i_{0}, j_{0} \in\{1,3, t\}$ with $i_{0}<j_{0}$, then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{3}, y_{i_{0}}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus at most one in $\left\{y_{1}, y_{3}, y_{t}\right\}$ can be adjacent to v_{3}. Suppose that $v_{3} \in N_{C_{0}}\left(y_{i_{0}}\right)$ for some $i_{0} \in\{1,3, t\}$. Since $d_{C_{0}}\left(y_{i_{0}}\right)=2$, we may assume that $v_{2} \in N_{C_{0}}\left(y_{i_{0}}\right)$. Then $C_{0}^{\prime}=y_{i_{0}}, v_{3}, v_{2}, y_{i_{0}}$ is a 3 -cycle. For each $i \in\{1,3, t\}-\left\{i_{0}\right\}, N_{C_{0}}\left(y_{i}\right)=\left\{v_{1}, v_{2}\right\}$. Then $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime}$ is connected, contradicting (2). Thus $v_{3} \notin N_{C_{0}}\left(y_{i}\right)$ for each $i \in\{1,3, t\}$, that is, $N_{C_{0}}\left(y_{i}\right)=\left\{v_{1}, v_{2}\right\}$. Then $C_{0}^{\prime \prime}=H_{2}\left[y_{1}, y_{3}\right], v_{2}, y_{1}$ is a 3 -cycle, and $\left\langle C_{0} \cup H\right\rangle-C_{0}^{\prime \prime}$ is connected, contradicting (2). This completes the proof of Claim 1.

Claim 2. H is a path.

Proof. Suppose that H is not a path. Then recall that H is a tree with one branch vertex of degree 3 in H. Then H has three leaves, say x_{1}, x_{2}, x_{3}. Removing the branch vertex in H, there exist three disjoint paths each of which has one vertex from $\left\{x_{1}, x_{2}, x_{3}\right\}$ as an endpoint. Also, some path has order at least three, say P, since there exist at least seven vertices distributed over three paths. Without loss of generality, we may assume that x_{1} is one of the endpoints of P, and let the other endpoint be x_{4}. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ (see Figure 2.8). Then X is an independent set. Since $d_{H}(X)=5, d_{\mathscr{C}}(X) \geq(8 k-3)-5=8(k-1)$. Thus there exists a cycle $C_{i_{0}}$ in \mathscr{C} such that $d_{C_{i_{0}}}(X) \geq 8$ for some $1 \leq i_{0} \leq k-1$. Then $d_{C_{i_{0}}}(x) \geq 2$ for some $x \in X$. By Lemma 2.A, $d_{C_{i_{0}}}(x) \leq 3$ and $\left|C_{i_{0}}\right| \leq 4$.

Figure 2.8. The graph H and an independent set $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Case 1. $\left|C_{i_{0}}\right|=3$.
Let $C_{i_{0}}=v_{1}, v_{2}, v_{3}, v_{1}$. Suppose that $d_{C_{i_{0}}}(x)=2$ for each $x \in X$. Without loss of generality, let $v_{1}, v_{2} \in N_{C_{i_{0}}}\left(x_{1}\right)$. Since $\left|C_{i_{0}}\right|=3, N_{C_{i_{0}}}\left(x_{2}\right) \cap N_{C_{i_{0}}}\left(x_{3}\right) \neq$ \emptyset. If $v_{3} \in N_{C_{i_{0}}}\left(x_{2}\right) \cap N_{C_{i_{0}}}\left(x_{3}\right)$, then $H\left[x_{2}, x_{3}\right], v_{3}, x_{2}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles (see Figure 2.9). Thus without loss of generality, we may assume that $v_{1} \in N_{C_{i_{0}}}\left(x_{2}\right) \cap N_{C_{i_{0}}}\left(x_{3}\right)$. Then $H\left[x_{2}, x_{3}\right], v_{1}, x_{2}$ is a cycle. Since $d_{C_{i_{0}}}\left(x_{4}\right)=2$, $N_{C_{i_{0}}-v_{1}}\left(x_{4}\right) \neq \emptyset$. If $v_{2} \in N_{C_{i_{0}}}\left(x_{4}\right)$, then $H\left[x_{1}, x_{4}\right], v_{2}, x_{1}$ is the other disjoint cycle (see Figure 2.10), and if $v_{3} \in N_{C_{i_{0}}}\left(x_{4}\right)$, then $H\left[x_{1}, x_{4}\right], v_{3}, v_{2}, x_{1}$ is the other disjoint cycle. Thus there exists at least one vertex $x \in X$ such that $d_{C_{i_{0}}}(x)=3$. Then the minimum possible degree sequences from X to $C_{i_{0}}$ are $(3,3,2,0),(3,3,1,1)$ or $(3,2,2,1)$.

Subclaim 2.1. If there exists a degree sequence at least $(3,3,1,0)$ from X to $C_{i_{0}}$,
then there exist two disjoint cycles in $\left\langle H \cup C_{i_{0}}\right\rangle$.
First, suppose that $d_{C_{i_{0}}}\left(x_{j_{0}}\right)=1$ for some $1 \leq j_{0} \leq 3$. Let $v_{1} \in N_{C_{i_{0}}}\left(x_{j_{0}}\right)$. If $d_{C_{i_{0}}}\left(x_{4}\right)=0$, then since $d_{C_{i_{0}}}\left(x_{m}\right)=3$ for each $m \in\{1,2,3\}-\left\{j_{0}\right\}, H\left[x_{j_{0}}, x_{m}\right], v_{1}$, $x_{j_{0}}$ is a cycle. Since $d_{C_{i_{0}}}\left(x_{m^{\prime}}\right)=3$ for $m^{\prime} \in\{1,2,3\}-\left\{j_{0}, m\right\}$, it follows that $x_{m^{\prime}}$, $v_{3}, v_{2}, x_{m^{\prime}}$ forms another cycle, vertex-disjoint from the first (see Figure 2.11). If $d_{C_{i_{0}}}\left(x_{4}\right)=3$, then $H\left[x_{j_{0}}, x_{4}\right], v_{1}, x_{j_{0}}$ is a cycle, and since $d_{C_{i_{0}}}\left(x_{m_{0}}\right)=3$ for some $m_{0} \in\{1,2,3\}-\left\{j_{0}\right\}$, the other disjoint cycles is given by $x_{m_{0}}, v_{3}, v_{2}, x_{m_{0}}$. Next, suppose that $d_{C_{i_{0}}}\left(x_{4}\right)=1$. Let $v_{1} \in N_{C_{i_{0}}}\left(x_{4}\right)$. Then $d_{C_{i_{0}}}\left(x_{m_{1}}\right)=3$ and $d_{C_{i_{0}}}\left(x_{m_{2}}\right)=3$ for some $1 \leq m_{1}<m_{2} \leq 3$, and $H\left[x_{m_{1}}, x_{4}\right], v_{1}, x_{m_{1}}$ and $x_{m_{2}}, v_{3}, v_{2}, x_{m_{2}}$ are two disjoint cycles, and Subclaim 2.1 holds.

Thus by the claim, we have only to consider the degree sequence $(3,2,2,1)$. If the degree 3 vertex does not lie on the path in H connecting the degree 2 vertices, then since the two vertices with degree 2 must have a common neighbor by $\left|C_{i_{0}}\right|=3$, we can easily find two disjoint cycles. Thus the degree 3 vertex does lie on the path connecting the two vertices with degree 2. This implies that $d_{C_{i_{0}}}\left(x_{4}\right)=3, d_{C_{i_{0}}}\left(x_{1}\right)=2$ (see Figure 2.8), and we may assume that $d_{C_{i_{0}}}\left(x_{2}\right)=1$ and $d_{C_{i_{0}}}\left(x_{3}\right)=2$. Let $v_{1} \in N_{C_{i_{0}}}\left(x_{2}\right)$. Since $\left|N_{C_{i_{0}}}\left(x_{1}\right) \cap N_{C_{i_{0}}}\left(x_{4}\right)\right|=2$, there exists $v_{h_{0}} \in N_{C_{i_{0}}}\left(x_{1}\right) \cap N_{C_{i_{0}}}\left(x_{4}\right)$ for some $h_{0} \in\{2,3\}$. Then $H\left[x_{1}, x_{4}\right], v_{h_{0}}, x_{1}$ is a cycle. Since $d_{C_{i_{0}}}\left(x_{3}\right)=2$, there exists $v_{h_{1}} \in N_{C_{i_{0}}}\left(x_{3}\right)$ for some $h_{1} \in\{1,2,3\}-\left\{h_{0}\right\}$. If $h_{1}=1$, then $H\left[x_{2}, x_{3}\right], v_{1}, x_{2}$ is the other disjoint cycle (see Figure 2.12), and if $h_{1} \in\{2,3\}$, then $H\left[x_{2}, x_{3}\right], v_{h_{1}}, v_{1}, x_{2}$ is the other disjoint cycle.

Figure 2.9. The case when $v_{3} \in N_{C_{i_{0}}}\left(x_{2}\right) \cap N_{C_{i_{0}}}\left(x_{3}\right)$.

Figure 2.10. The case when $v_{2} \in N_{C_{i_{0}}}\left(x_{4}\right)$.

Figure 2.11. An example with $j_{0}=1, m=2, m^{\prime}=3$.

Case 2. $\left|C_{i_{0}}\right|=4$.
Let $C_{i_{0}}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. By Lemma 2.A, $d_{C_{i_{0}}}(x) \leq 2$ for each $x \in X$. Since $d_{C_{i_{0}}}(X) \geq 8, d_{C_{i_{0}}}(x)=2$ for each $x \in X$. No vertex in X has consecutive neighbors in $C_{i_{0}}$, otherwise, we can immediately find a 3-cycle, contradicting (1). Thus for each $x \in X$, either $N_{C_{i_{0}}}(x)=\left\{v_{1}, v_{3}\right\}$ or $N_{C_{i_{0}}}(x)=\left\{v_{2}, v_{4}\right\}$.

Subcase 1. All four vertices in X have the same two neighbors in $C_{i_{0}}$.
We may assume that $N_{C_{i_{0}}}(X)=\left\{v_{1}, v_{3}\right\}$. Then $H\left[x_{1}, x_{4}\right], v_{1}, x_{1}$ and $H\left[x_{2}, x_{3}\right]$, v_{3}, x_{2} are two disjoint cycles.

Subcase 2. Three vertices in X have the same two neighbors in $C_{i_{0}}$.
Suppose that x_{1}, x_{4} have the same two neighbors in $C_{i_{0}}$. Then we may assume that

Figure 2.12. An example with $h_{0}=2$ and $h_{1}=1$.

Figure 2.13. An example where $v_{2} \in N_{C_{i_{0}}}\left(x_{2}\right)$ and $v_{4} \in N_{C_{i_{0}}}\left(x_{3}\right)$.

Figure 2.14. The case when x_{1} and x_{4} have the same neighbors in $C_{i_{0}}$.
$v_{1} \in N_{C_{i_{0}}}\left(x_{1}\right) \cap N_{C_{i_{0}}}\left(x_{4}\right)$, and $H\left[x_{1}, x_{4}\right], v_{1}, x_{1}$ is a cycle. Since $d_{C_{i_{0}}}\left(x_{j}\right)=2$ for each $j \in\{2,3\}, N_{C_{i_{0}}-v_{1}}\left(x_{j}\right) \neq \emptyset$. Then $\left\langle H\left[x_{2}, x_{3}\right] \cup\left(C_{i_{0}}-v_{1}\right)\right\rangle$ contains the other disjoint cycle (see Figure 2.13). Suppose that x_{1}, x_{4} do not have the same two neighbors in $C_{i_{0}}$. Since x_{2}, x_{3} have the same two neighbors in $C_{i_{0}}$, we repeat the above arguments, replacing x_{1}, x_{4} with x_{2}, x_{3}.

Subcase 3. Two vertices of X have the same two neighbors in $C_{i_{0}}$, and the other two vertices of X have the same two neighbors, different from the neighbors of the first two.

Suppose that x_{1}, x_{4} have the same two neighbors. We may assume that $v_{1} \in$ $N_{C_{i_{0}}}\left(x_{1}\right) \cap N_{C_{i_{0}}}\left(x_{4}\right)$. Then $H\left[x_{1}, x_{4}\right], v_{1}, x_{1}$ is a cycle. Since x_{2}, x_{3} have the same two neighbors, different from the neighbors of x_{1} and $x_{4}, H\left[x_{2}, x_{3}\right], v_{2}, x_{2}$ is the other disjoint cycle (see Figure 2.14). Suppose that x_{1}, x_{4} have different neighbors. We may assume that $v_{1} \in N_{C_{i_{0}}}\left(x_{1}\right)$ and $v_{2} \in N_{C_{i_{0}}}\left(x_{4}\right)$. Then $H\left[x_{1}, x_{4}\right], v_{2}, v_{1}, x_{1}$ is a cycle. Since x_{2}, x_{3} have the neighbors, different from $v_{1}, v_{2},\left\langle H\left[x_{2}, x_{3}\right] \cup\left\{v_{3}, v_{4}\right\}\right\rangle$ contains the other disjoint cycle. This completes the proof of Claim 2.

Since H is a path by Claim 2, let $H=x_{1}, x_{2}, \ldots, x_{t}(t \geq 8)$. Let $X=$
$\left\{x_{1}, x_{3}, x_{5}, x_{t}\right\}$. Then X is an independent set with $d_{H}(X)=6$, and $d_{\mathscr{C}}(X) \geq$ $(8 k-3)-6=8 k-9 \geq 7(k-1)$, since $k \geq 2$. Thus either $d_{C_{0}}(X) \geq 8$ for some cycle C_{0} in \mathscr{C}, or $d_{C}(X)=7$ for every cycle C in \mathscr{C}. If $d_{C}(X) \geq 8$ for some cycle C in \mathscr{C}, then we have the minimum possible degree sequences $(3,3,2,0),(3,3,1,1),(3,2,2,1)$ or $(2,2,2,2)$ from X to C. If $d_{C}(X)=7$ for some cycle C in \mathscr{C}, then we have the minimum possible degree sequences $(3,3,1,0),(3,2,1,1),(3,2,2,0)$ or $(2,2,2,1)$ from X to C.

Claim 3. If there exists a degree sequence at least $(3,3,1,0)$ from X to C, then there exist two disjoint cycles in $\langle H \cup C\rangle$.

Proof. By Lemma 2.A, $|C|=3$. Let $C=v_{1}, v_{2}, v_{3}, v_{1}$. We may assume that $d_{C}\left(x_{i_{0}}\right)=1$ for some $i_{0} \in\{1,3\}$, otherwise, $i_{0} \in\{5, t\}$, and we may argue in a similar manner from the other end of the path H. Let $v_{1} \in N_{C}\left(x_{i_{0}}\right)$. First, suppose that $i_{0}=1$, that is, $d_{C}\left(x_{1}\right)=1$. Then $d_{C}\left(x_{j_{1}}\right)=d_{C}\left(x_{j_{2}}\right)=3$ for some $j_{1}, j_{2} \in\{3,5, t\}$ with $j_{1}<j_{2}$. Thus $H\left[x_{1}, x_{j_{1}}\right], v_{1}, x_{1}$ and $x_{j_{2}}, v_{3}, v_{2}, x_{j_{2}}$ are two disjoint cycles. Next, suppose that $i_{0}=3$, that is, $d_{C}\left(x_{3}\right)=1$. If $d_{C}\left(x_{1}\right)=0$, then since $d_{C}\left(x_{j}\right)=3$ for each $j \in\{5, t\}, x_{3}, x_{4}, x_{5}, v_{1}, x_{3}$ and $x_{t}, v_{3}, v_{2}, x_{t}$ are two disjoint cycles. If $d_{C}\left(x_{1}\right)=3$, then $x_{1}, x_{2}, x_{3}, v_{1}, x_{1}$ is a cycle, and since $d_{C}\left(x_{j_{0}}\right)=3$ for some $j_{0} \in\{5, t\}, x_{j_{0}}, v_{3}$, $v_{2}, x_{j_{0}}$ is the other disjoint cycle.

Claim 4. If there exists a degree sequence at least $(2,2,2,1)$ from X to C, then there exist two disjoint cycles in $\langle H \cup C\rangle$.

Proof. By Lemma 2.A, $|C| \leq 4$. Let $C=v_{1}, v_{2}, \ldots, v_{q}, v_{1}$, where $q=|C|$. We may assume that $d_{C}\left(x_{i_{0}}\right)=1$ for some $i_{0} \in\{5, t\}$, otherwise, $i_{0} \in\{1,3\}$, and we may argue in a similar manner from the other end of the path H. Let $v_{1} \in N_{C}\left(x_{i_{0}}\right)$.

Case 1. $N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right) \neq \emptyset$.
First, suppose that $v_{j_{0}} \in N_{C-v_{1}}\left(x_{1}\right) \cap N_{C-v_{1}}\left(x_{3}\right)$ for some $2 \leq j_{0} \leq q$. Then x_{1}, $x_{2}, x_{3}, v_{j_{0}}, x_{1}$ is a cycle. Since $d_{C}\left(x_{r}\right)=2$ for $r \in\{5, t\}-\left\{i_{0}\right\}, N_{C-v_{j_{0}}}\left(x_{r}\right) \neq \emptyset$.

Then $\left\langle H\left[x_{5}, x_{t}\right] \cup\left(C-v_{j_{0}}\right)\right\rangle$ contains the other disjoint cycle. Next, suppose that $v_{1} \in N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right)$. Then $x_{1}, x_{2}, x_{3}, v_{1}, x_{1}$ is a cycle. Since $d_{C}\left(x_{r}\right)=2$ for $r \in\{5, t\}-\left\{i_{0}\right\}$, if $v_{1} \notin N_{C}\left(x_{r}\right)$, then $\left\langle x_{r} \cup\left(C-v_{1}\right)\right\rangle$ contains the other disjoint cycle. Thus we may assume that $v_{1} \in N_{C}\left(x_{r}\right)$. Then $H\left[x_{5}, x_{t}\right], v_{1}, x_{5}$ is a cycle. Since $d_{C}\left(x_{i}\right)=2$ for each $i \in\{1,3\}, N_{C-v_{1}}\left(x_{i}\right) \neq \emptyset$, and $\left\langle H\left[x_{1}, x_{3}\right] \cup\left(C-v_{1}\right)\right\rangle$ contains the other disjoint cycle.

Case 2. $N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right)=\emptyset$.
In this case, if $|C|=3$, then since $d_{C}\left(x_{i}\right)=2$ for each $i \in\{1,3\}, N_{C}\left(x_{1}\right) \cap N_{C}\left(x_{3}\right) \neq$ \emptyset, contradicting our assumption. Thus $|C|=4$, and either $N_{C}\left(x_{1}\right)=\left\{v_{1}, v_{3}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{2}, v_{4}\right\}$ or $N_{C}\left(x_{1}\right)=\left\{v_{2}, v_{4}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{1}, v_{3}\right\}$.

Suppose that $N_{C}\left(x_{1}\right)=\left\{v_{1}, v_{3}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{2}, v_{4}\right\}$. Suppose that $d_{C}\left(x_{5}\right)=1$. Then $x_{5} v_{1} \in E(G)$ by our earlier assumption, and $d_{C}\left(x_{t}\right)=2$. If $x_{t} v_{1} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{1}, x_{5}$ is a cycle, and $x_{3}, v_{4}, v_{3}, v_{2}, x_{3}$ is the other disjoint cycle. Thus $N_{C}\left(x_{t}\right)=\left\{v_{2}, v_{4}\right\}$. Then $H\left[x_{3}, x_{t}\right], v_{4}, x_{3}$ and $x_{1}, v_{3}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Suppose that $d_{C}\left(x_{t}\right)=1$. Then we can find two disjoint cycles in $\langle H \cup C\rangle$ similar to the case where $d_{C}\left(x_{5}\right)=1$.

Suppose that $N_{C}\left(x_{1}\right)=\left\{v_{2}, v_{4}\right\}$ and $N_{C}\left(x_{3}\right)=\left\{v_{1}, v_{3}\right\}$. Then $x_{1}, v_{4}, v_{3}, v_{2}, x_{1}$ is a cycle, and since $d_{C}\left(x_{i_{0}}\right)=1$ for some $i_{0} \in\{5, t\}$ and $x_{i_{0}} v_{1} \in E(G), H\left[x_{3}, x_{i_{0}}\right], v_{1}$, x_{3} is the other disjoint cycle.

By Claims 3 and 4, if $d_{C}(X) \geq 8$ for some cycle C in \mathscr{C}, noting the minimum possible degree sequences, then $\langle H \cup C\rangle$ contains two disjoint cycles. Thus we may assume that $d_{C}(X)=7$ for every cycle C in \mathscr{C}.

Figure 2.15. Sets X and X^{\prime}.

Let $X^{\prime}=\left\{x_{2}, x_{4}, x_{6}, x_{t}\right\}$ (see Figure 2.15). Then X^{\prime} is an independent set with $d_{H}\left(X^{\prime}\right)=7$, and $d_{\mathscr{C}}\left(X^{\prime}\right) \geq(8 k-3)-7=8 k-10 \geq 6(k-1)$, since $k \geq 2$. Thus we can choose some cycle C in \mathscr{C} such that $d_{C}\left(X^{\prime}\right) \geq 6$. And we know that $d_{C}(X)=7$, since X sends seven edges into every cycles in \mathscr{C}. Since $d_{C}\left(x_{t}\right) \leq 3$ by Lemma 2.A. note that $d_{C}\left(X^{\prime}-\left\{x_{t}\right\}\right) \geq 6-3=3$. Now, we have only to consider degree sequences $(3,2,1,1)$ and $(3,2,2,0)$ from X to C by Claims 3 and 4 . Since both degree sequences contain degree $3,|C|=3$ by Lemma 2.A. Let $C=v_{1}, v_{2}, v_{3}, v_{1}$.

Case 1. The sequence is $(3,2,1,1)$.
Suppose that $d_{C}\left(x_{1}\right)=3$. By the degree sequence of this case, and since $|C|=3$, there are distinct integers $i_{1}, i_{2} \in\{3,5, t\}$ with $i_{1}<i_{2}$ such that $N_{C}\left(x_{i_{1}}\right) \cap N_{C}\left(x_{i_{2}}\right) \neq$ \emptyset. Without loss of generality, we may assume that $v_{1} \in N_{C}\left(x_{i_{1}}\right) \cap N_{C}\left(x_{i_{2}}\right)$. Then $H\left[x_{i_{1}}, x_{i_{2}}\right], v_{1}, x_{i_{1}}$ is a cycle. Since $d_{C}\left(x_{1}\right)=3, x_{1}, v_{3}, v_{2}, x_{1}$ is the other disjoint cycle. If $d_{C}\left(x_{t}\right)=3$, then we can find two disjoint cycles similar to the case where $d_{C}\left(x_{1}\right)=3$. Thus we may assume that $d_{C}\left(x_{i_{0}}\right)=3$ for some $i_{0} \in\{3,5\}$.

Suppose that $d_{C}\left(x_{1}\right)=2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in$ $N_{C}\left(x_{1}\right)$. First, suppose that $d_{C}\left(x_{3}\right)=1$. Then $d_{C}\left(x_{5}\right)=3$. If $x_{3} v_{1} \in E(G)$, then x_{1}, $x_{2}, x_{3}, v_{1}, x_{1}$ and $x_{5}, v_{3}, v_{2}, x_{5}$ are two disjoint cycles. If $x_{3} v_{2} \in E(G)$, then we can find two disjoint cycles similar to the case where $x_{3} v_{1} \in E(G)$, replacing v_{1} with v_{2}. If $x_{3} v_{3} \in E(G)$, then $x_{3}, x_{4}, x_{5}, v_{3}, x_{3}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Next, suppose that $d_{C}\left(x_{3}\right)=3$. If $x_{5} v_{3} \in E(G)$, then $x_{3}, x_{4}, x_{5}, v_{3}, x_{3}$ and $x_{1}, v_{2}, v_{1}, x_{1}$ are two disjoint cycles. Thus $x_{5} v_{j_{0}} \in E(G)$ for some $j_{0} \in\{1,2\}$. If $j_{0}=1$, that is, $x_{5} v_{1} \in E(G)$, then $x_{3}, v_{3}, v_{2}, x_{3}$ is a 3 -cycle, and $\left\langle\left(H-x_{3}\right) \cup v_{1}\right\rangle$ is connected and
not a path. Thus we can find two disjoint cycles in $\langle H \cup C\rangle$ as in the proof of Claim 2. Similarly, we can prove the case where $j_{0}=2$.

If $d_{C}\left(x_{t}\right)=2$, then we can find two disjoint cycles similar to the case where $d_{C}\left(x_{1}\right)=2$. Thus we may assume that $d_{C}\left(x_{m_{0}}\right)=2$ for some $m_{0} \in\{3,5\}$.

Then $d_{C}\left(x_{i}\right)=1$ for each $i \in\{1, t\}$. Let $x_{1} v_{1} \in E(G)$. Then we may assume that $d_{C}\left(x_{3}\right)=2$ and $d_{C}\left(x_{5}\right)=3$, otherwise, $d_{C}\left(x_{3}\right)=3$ and $d_{C}\left(x_{5}\right)=2$, and we may argue in a similar manner from the other end of the path H. If $x_{3} v_{1} \in E(G)$, then $H\left[x_{1}, x_{3}\right]$, v_{1}, x_{1} and $x_{5}, v_{3}, v_{2}, x_{5}$ are two disjoint cycles (see Figure 2.16). Thus $x_{3} v_{i} \in E(G)$ for each $i \in\{2,3\}$. If $x_{t} v_{1} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{1}, x_{5}$ and $x_{3}, v_{3}, v_{2}, x_{3}$ are two disjoint cycles. If $x_{t} v_{2} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{2}, x_{5}$ and $H\left[x_{1}, x_{3}\right], v_{3}, v_{1}, x_{1}$ are two disjoint cycles. If $x_{t} v_{3} \in E(G)$, then $H\left[x_{5}, x_{t}\right], v_{3}, x_{5}$ and $H\left[x_{1}, x_{3}\right], v_{2}, v_{1}, x_{1}$ are two disjoint cycles.

Figure 2.16. Two disjoint cycles when $x_{3} v_{1} \in E(G)$.

Case 2. The sequence is $(3,2,2,0)$.
We may assume that $d_{C}\left(x_{i_{0}}\right)=0$ for some $i_{0} \in\{1,3\}$, otherwise, $i_{0} \in\{5, t\}$, and we may argue in a similar manner from the other end of the path H. Let $j_{0} \in\{1,3\}-\left\{i_{0}\right\}$. Then $d_{C}\left(x_{j_{0}}\right) \geq 2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in N_{C}\left(x_{j_{0}}\right)$.

Suppose that $d_{C}\left(x_{5}\right)=2$. If $d_{C}\left(x_{j_{0}}\right)=2$, then $N_{C}\left(x_{j_{0}}\right) \cap N_{C}\left(x_{5}\right) \neq \emptyset$; say $v \in N_{C}\left(x_{j_{0}}\right)$, and $H\left[x_{j_{0}}, x_{5}\right], v, x_{j_{0}}$ is a cycle. Since $d_{C}\left(x_{t}\right)=3,\left\langle x_{t} \cup(C-v)\right\rangle$ contains the other disjoint cycle. If $d_{C}\left(x_{j_{0}}\right)=3$, then $d_{C}\left(x_{j}\right)=2$ for each $j \in\{5, t\}$. Since $N_{C}\left(x_{5}\right) \cap N_{C}\left(x_{t}\right) \neq \emptyset$, say $v \in N_{C}\left(x_{5}\right) \cap N_{C}\left(x_{t}\right), H\left[x_{5}, x_{t}\right], v, x_{5}$ is a cycle. Since
$d_{C}\left(x_{j_{0}}\right)=3,\left\langle x_{j_{0}} \cup(C-v)\right\rangle$ contains the other disjoint cycle.
Suppose that $d_{C}\left(x_{5}\right)=3$. If $\left|N_{C}\left(x_{j_{0}}\right) \cap N_{C}\left(x_{t}\right)\right|=1$, then let $v \in N_{C}\left(x_{j_{0}}\right)-N_{C}\left(x_{t}\right)$. Then $H\left[x_{j_{0}}, x_{5}\right], v, x_{j_{0}}$ is a cycle, and $\left\langle x_{t} \cup(C-v)\right\rangle$ contains the other cycle (see Figure 2.17). Thus $x_{j_{0}}, x_{t}$ have all the same neighbors in C, say v_{1}, v_{2}. Recall that $d_{C}\left(X^{\prime}\right) \geq$ 6. It follows that $d_{C}\left(X^{\prime}-\left\{x_{t}\right\}\right) \geq 4$ and $d_{C}\left(X^{\prime}-\left\{x_{t}\right\}-\left\{x_{5}\right\}\right)=d_{C}\left(\left\{x_{4}, x_{6}\right\}\right) \geq 1$. Suppose that $N_{C}\left(x_{6}\right) \neq \emptyset$. If $N_{C}\left(x_{6}\right) \cap N_{C}\left(x_{t}\right) \neq \emptyset$, say $v \in N_{C}\left(x_{6}\right) \cap N_{C}\left(x_{t}\right)$, then $H\left[x_{6}, x_{t}\right], v, x_{6}$ is a cycle, and $\left\langle x_{5} \cup(C-v)\right\rangle$ contains the other disjoint cycle. If $N_{C}\left(x_{6}\right) \cap N_{C}\left(x_{t}\right)=\emptyset$, then $x_{6} v_{3} \in E(G)$. Thus $x_{5}, x_{6}, v_{3}, x_{5}$ and $x_{t}, v_{2}, v_{1}, x_{t}$ are two disjoint cycles.

Figure 2.17. Two disjoint cycles. Example when $v=v_{3}$.

Suppose that $N_{C}\left(x_{4}\right) \neq \emptyset$. Then replacing x_{6} in the above argument with x_{4} and x_{t} with x_{1}, we can prove this case by the same arguments above. Thus $N_{C}\left(x_{i}\right)=\emptyset$ for each $i \in\{4,6\}$. This implies that $d_{C}\left(x_{2}\right)=3$. Then $x_{j_{0}}, x_{2}, v_{1}, x_{j_{0}}$ and x_{5}, v_{3}, v_{2}, x_{5} are two disjoint cycles.

2.4 Proofs of Lemmas

2.4.1 Proof of Lemma 2.1

Let $F, C, x_{i}(1 \leq i \leq 4)$ be as in Lemma 2.1. Let F_{1}, F_{2} be two components of F, $C=v_{1}, v_{2}, v_{3}, v_{1}$, and $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Now, we consider two cases.

Case 1. At most two vertices of X lie in the same component of F.
Since $d_{C}(X) \geq 9, d_{C}\left(x_{i_{0}}\right) \geq 3$ for some $1 \leq i_{0} \leq 4$. By $|C|=3, d_{C}\left(x_{i}\right) \leq 3$
for each $1 \leq i \leq 4$. Thus $d_{C}\left(x_{i_{0}}\right)=3$. Without loss of generality, we may assume that $i_{0}=1$, that is, $d_{C}\left(x_{1}\right)=3$. Then $d_{C}\left(\left\{x_{2}, x_{3}, x_{4}\right\}\right) \geq 6$. Also, we may assume that $d_{C}\left(x_{2}\right) \geq d_{C}\left(x_{3}\right) \geq d_{C}\left(x_{4}\right)$. Now, we claim that $d_{C}\left(\left\{x_{2}, x_{3}\right\}\right) \geq 4$. Otherwise, if $d_{C}\left(\left\{x_{2}, x_{3}\right\}\right) \leq 3$, then $d_{C}\left(x_{j_{0}}\right) \leq 1$ for some $j_{0} \in\{2,3\}$. That implies that $d_{C}\left(x_{4}\right) \leq 1$, since $d_{C}\left(x_{4}\right)$ is the smallest degree in $\left\{x_{2}, x_{3}, x_{4}\right\}$. Then $d_{C}\left(\left\{x_{2}, x_{3}, x_{4}\right\}\right) \leq 3+1=4$, a contradiction. Thus the claim holds. Noting our assumption of this case, $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a set of leaves from at least two components of F. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \geq 3+4=7$, Lemma 2.B applies, completing this case.

Case 2. Three vertices of X lie in the same component of F.

Without loss of generality, we may assume that $x_{1}, x_{2}, x_{3} \in V\left(F_{1}\right), x_{4} \in V\left(F_{2}\right)$, and $d_{C}\left(x_{1}\right) \geq d_{C}\left(x_{2}\right) \geq d_{C}\left(x_{3}\right)$. Recall that $d_{C}(X) \geq 9$. It follows that the minimum possible degree sequence S from X to C is $(3,3,3,0),(3,3,2,1)$ or $(3,2,2,2)$.

Subcase 1. $S=(3,3,3,0)$.
If $d_{C}\left(x_{i_{0}}\right)=0$ for some $1 \leq i_{0} \leq 3$, then $i_{0}=3$, that is, $d_{C}\left(x_{3}\right)=0$. Now, we take $\left\{x_{1}, x_{2}, x_{4}\right\}$ that is a set of leaves from at least two components of F. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{4}\right\}\right)=9$, Lemma 2.B applies. If $d_{C}\left(x_{4}\right)=0$, then $d_{C}\left(x_{i}\right)=3$ for each $1 \leq i \leq 3$. Since all the x_{i} s are leaves, x_{3} does not lie on the path in F_{1} connecting x_{1} and x_{2}. Then $F_{1}\left[x_{1}, x_{2}\right], v_{1}, x_{1}$ and $x_{3}, v_{3}, v_{2}, x_{3}$ are two disjoint cycles in $\langle F \cup C\rangle$.

Subcase 2. $S=(3,3,2,1)$.
Take $\left\{x_{1}, x_{2}, x_{4}\right\}$. If $d_{C}\left(x_{4}\right) \in\{1,2\}$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 6$. If $d_{C}\left(x_{4}\right)=3$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 5$. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{4}\right\}\right) \geq 7$ for all cases, Lemma 2.B applies.

Subcase 3. $S=(3,2,2,2)$.
Take $\left\{x_{1}, x_{2}, x_{4}\right\}$. If $d_{C}\left(x_{4}\right)=2$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 5$. If $d_{C}\left(x_{4}\right)=3$, then $d_{C}\left(\left\{x_{1}, x_{2}\right\}\right) \geq 4$. Since $d_{C}\left(\left\{x_{1}, x_{2}, x_{4}\right\}\right) \geq 7$ for all cases, Lemma 2.B applies.

2.4.2 Proof of Lemma 2.5

Proof of (i). Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the vertices such that $d_{C_{1}}\left(v_{i}\right)=2$ for each $1 \leq i \leq 5$, appearing in this order on C_{2}. Let $w_{1}, w_{2} \in N_{C_{1}}\left(v_{1}\right)$ appear in this order on C_{1}. The neighbors of v_{1} partition C_{1} into two intervals $C_{1}\left(w_{1}, w_{2}\right]$ and $C_{1}\left(w_{2}, w_{1}\right]$. We claim that each of $v_{2}, v_{3}, v_{4}, v_{5}$ has one neighbor in different interval of C_{1}.

First, suppose that $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}$ for some $2 \leq i_{1}<i_{2}<i_{3} \leq 5$ have both their neighbors in a common interval of C_{1}, say $C_{1}\left(w_{1}, w_{2}\right]$. We may assume that at least one of their neighbors is not w_{2}. Let $z_{i_{1}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{i_{1}}\right)$ and $z_{i_{2}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{i_{2}}\right)$. Then $C_{1}^{ \pm}\left[z_{i_{1}}, z_{i_{2}}\right], C_{2}^{-}\left[v_{i_{2}}, v_{i_{1}}\right], z_{i_{1}}$ and $C_{1}\left[w_{2}, w_{1}\right], v_{1}, w_{2}$ form a shorter pair of disjoint cycles, since $v_{i_{3}}$ is not used (see Figure 2.18).

Figure 2.18. Shorter cycles in $\left\langle C_{1} \cup C_{2}\right\rangle$.

Next, suppose that $v_{i_{1}}, v_{i_{2}}$ for some $2 \leq i_{1}<i_{2} \leq 5$ have both their neighbors in a common interval of C_{1}, say $C_{1}\left(w_{1}, w_{2}\right]$. Then we may assume that $i_{1}=2$ and $i_{2}=5$, otherwise, we can prove the other pairs of i_{1} and i_{2} by the same arguments above. Let $z_{i_{1}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{2}\right)$ and $z_{i_{2}} \in N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{5}\right)$. If $N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{j_{0}}\right) \neq \emptyset$ for some $j_{0} \in\{3,4\}$, then there exist shorter two disjoint cycles. Thus $N_{C_{1}\left(w_{1}, w_{2}\right)}\left(v_{j}\right)=\emptyset$ for each $j \in\{3,4\}$. Since $d_{C_{1}}\left(v_{j}\right)=2$ for each $j \in\{3,4\}, N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{j}\right) \neq \emptyset$. Let $z_{i_{3}} \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{3}\right)$ and $z_{i_{4}} \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{4}\right)$. Then $C_{1}^{ \pm}\left[z_{i_{3}}, z_{i_{4}}\right], C_{2}^{-}\left[v_{4}, v_{3}\right], z_{i_{3}}$ and $C_{1}^{ \pm}\left[z_{i_{1}}, z_{i_{2}}\right], C_{2}\left[v_{5}, v_{2}\right], z_{i_{1}}$ are shorter two disjoint cycles, since w_{2} is not used (see Figure 2.19.

Figure 2.19. Shorter cycles in $\left\langle C_{1} \cup C_{2}\right\rangle$.

Finally, suppose that $v_{i_{0}}$ for some $2 \leq i_{0} \leq 5$ has both the neighbors in an interval of C_{1}, say $C_{1}\left(w_{1}, w_{2}\right]$. Then we have only to consider $i_{0}=2$ or $i_{0}=3$, otherwise, we take a cycle from v_{1} in the opposite direction. First, suppose that $i_{0}=2$. Let $x_{1}, x_{2} \in N_{C_{1}\left(w_{1}, w_{2}\right]}\left(v_{2}\right)$, appearing in this order on C_{1}. If $x_{2} \neq w_{2}$, then $C_{1}\left[x_{1}, x_{2}\right]$, v_{2}, x_{1} and $C_{1}\left[w_{2}, w_{1}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{3} is not used. Thus $x_{2}=w_{2}$. Let $y_{1}, y_{2} \in N_{C_{1}}\left(v_{3}\right)$, appearing in this order on C_{1}. Suppose that $y_{1} \in C_{1}\left(w_{1}, w_{2}\right)$. Then $C_{1}^{ \pm}\left[x_{1}, y_{1}\right], C_{2}^{-}\left[v_{3}, v_{2}\right], x_{1}$ and $C_{1}\left[w_{2}, w_{1}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $y_{1} \notin C_{1}\left(w_{1}, w_{2}\right)$, that is, $y_{1} \in C_{1}\left[w_{2}, w_{1}\right]$. Note that $y_{2} \in C_{1}\left(w_{2}, w_{1}\right]$. If $y_{1} \neq w_{2}$, then $C_{1}\left[x_{1}, w_{2}\right], v_{2}, x_{1}$ and $C_{1}\left[y_{1}, y_{2}\right], v_{3}, y_{1}$ are shorter two disjoint cycles, since v_{1} is not used. Thus $y_{1}=w_{2}$. If $y_{2} \neq w_{1}$, then $C_{1}\left[w_{2}, y_{2}\right], v_{3}, w_{2}$ and $C_{1}\left[w_{1}, x_{1}\right], C_{2}^{-}\left[v_{2}, v_{1}\right], w_{1}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $y_{2}=w_{1}$. Let $z_{1}, z_{2} \in N_{C_{1}}\left(v_{4}\right)$, appearing in this order on C_{1}. Suppose that $z_{1} \in C_{1}\left[w_{1}, w_{2}\right)$. Then $C_{1}\left[w_{1}, z_{1}\right], C_{2}^{-}\left[v_{4}, v_{3}\right], w_{1}$ and $C_{2}\left[v_{1}, v_{2}\right], w_{2}, v_{1}$ are shorter two disjoint cycles, since v_{5} is not used. Suppose that $z_{1} \in C_{1}\left[w_{2}, w_{1}\right)$. Then $C_{1}\left[w_{1}, x_{1}\right], C_{2}^{-}\left[v_{2}, v_{1}\right], w_{1}$ and $C_{1}\left[w_{2}, z_{1}\right], C_{2}^{-}\left[v_{4}, v_{3}\right], w_{2}$ are shorter two disjoint cycles, since v_{5} is not used. Next, suppose that $i_{0}=3$. Then, by the same arguments as the case where $i_{0}=2$, we have shorter two disjoint cycles, replacing v_{2} with v_{3}.

Thus each of $v_{2}, v_{3}, v_{4}, v_{5}$ has one neighbor in each interval of C_{1}. Let $x \in$ $N_{C_{1}\left(w_{1}, w_{2}\right]}\left(v_{2}\right), y \in N_{C_{1}\left(w_{1}, w_{2}\right]}\left(v_{3}\right), z \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{4}\right), u \in N_{C_{1}\left(w_{2}, w_{1}\right]}\left(v_{5}\right)$. Then $C_{1}^{ \pm}[x, y]$, $C_{2}^{-}\left[v_{3}, v_{2}\right], x$ and $C_{1}^{ \pm}[z, u], C_{2}^{-}\left[v_{5}, v_{4}\right], z$ are shorter two disjoint cycles, since v_{1} is not used.

Proof of (ii). Let $v_{1}, v_{2} \in V\left(C_{2}\right)$ such that $d_{C_{1}}\left(v_{1}\right)=5$ and $d_{C_{1}}\left(v_{2}\right)=3$, appearing in this order on C_{2}. Let $w_{1}, w_{2}, w_{3}, w_{4}, w_{5} \in N_{C_{1}}\left(v_{1}\right)$, appearing in this order on C_{1}, and let $u_{1}, u_{2}, u_{3} \in N_{C_{1}}\left(v_{2}\right)$, appearing in this order on C_{1}. The neighbors of v_{1} partition C_{1} into five intervals $C_{1}\left(w_{i}, w_{i+1}\right], 1 \leq i \leq 5(\bmod 5)$. Suppose that $u_{i_{0}}$, $u_{j_{0}} \in C_{1}\left(w_{m_{0}}, w_{m_{0}+1}\right](\bmod 5)$ for some $1 \leq i_{0}<j_{0} \leq 3$ and for some $1 \leq m_{0} \leq 5$. Without loss of generality, we may assume that $i_{0}=1, j_{0}=2$ and $m_{0}=1$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{3}, w_{4}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since w_{1} is not used. Thus neighbors of v_{2} are contained in different intervals. Since C_{1} is partitioned into five intervals, some two neighbors of v_{2} lie in neighboring intervals, say $u_{1} \in\left(w_{1}, w_{2}\right]$ and $u_{2} \in C_{1}\left(w_{2}, w_{3}\right]$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{4}, w_{5}\right], v_{1}, w_{4}$ are shorter two disjoint cycles, since w_{1} is not used.

Proof of (iii). Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ be the vertices on C_{2} with the degree sequence ($3,1,1,1,1,1$), appearing in this order on C_{2}. Without loss of generality, we may assume that $d_{C_{1}}\left(v_{1}\right)=3$ and $d_{C_{1}}\left(v_{i}\right)=1$ for each $2 \leq i \leq 6$. Let $w_{1}, w_{2}, w_{3} \in$ $N_{C_{1}}\left(v_{1}\right)$, appearing in this order on C_{1}. The neighbors of v_{1} partition C_{1} into three intervals: $C_{1}\left(w_{1}, w_{2}\right], C_{1}\left(w_{2}, w_{3}\right], C_{1}\left(w_{3}, w_{1}\right]$. Then there exist some integer $1 \leq$ $i_{0} \leq 3$ and distinct integers $2 \leq j_{1}<j_{2} \leq 5$ such that $N_{C_{1}\left(w_{i_{0}}, w_{\left.i_{0}+1\right]}\right]}\left(v_{j_{1}}\right) \neq \emptyset$ and $N_{C_{1}\left(w_{i_{0}}, w_{\left.i_{0}+1\right]}\right]}\left(v_{j_{2}}\right) \neq \emptyset$. Without loss of generality, we may assume that $i_{0}=1$. Let $u_{1} \in N_{C_{1}\left(w_{1}, w_{2}\right]}\left(v_{j_{1}}\right)$ and $u_{2} \in N_{C_{1}\left(w_{1}, w_{2}\right]}\left(v_{j_{2}}\right)$. Then $C_{1}^{ \pm}\left[u_{1}, u_{2}\right], C_{2}^{-}\left[v_{j_{2}}, v_{j_{1}}\right], u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{6} is not used.

Proof of (iv). Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices on C_{2} with the degree sequence
$(3,2,1,1)$, say $d_{C_{1}}\left(v_{1}\right)=3, d_{C_{1}}\left(v_{2}\right)=2$ and $d_{C_{1}}\left(v_{i}\right)=1$ for each $i \in\{3,4\}$. Suppose that v_{1}, v_{2} are in this order on C_{2}. Let $w_{1}, w_{2}, w_{3} \in N_{C_{1}}\left(v_{1}\right)$ be in this order on C_{1}, and let $u_{1}, u_{2} \in N_{C_{1}}\left(v_{2}\right)$ be in this order on C_{1}. Let v_{3}, v_{4} be in this order on C_{2}. Let $z_{1} \in N_{C_{1}}\left(v_{3}\right)$, and let $z_{2} \in N_{C_{1}}\left(v_{4}\right)$. The neighbors of v_{1} partition C_{1} into three intervals: $C_{1}\left(w_{1}, w_{2}\right], C_{1}\left(w_{2}, w_{3}\right], C_{1}\left(w_{3}, w_{1}\right]$. If v_{2} has both its neighbors in the same interval in C_{1}, then we can find shorter two disjoint cycles. If the neighbors of v_{2} are into two different intervals of C_{1} and neither is in $\left\{w_{1}, w_{2}, w_{3}\right\}$, then we can also find shorter two disjoint cycles. Thus the neighbors of v_{2} are into two different intervals of C_{1} and at least one of them is at an endpoint of these intervals. Without loss of generality, we may assume that $u_{1} \in C_{1}\left(w_{1}, w_{2}\right]$ and $u_{2} \in C_{1}\left(w_{2}, w_{3}\right]$. Now, we consider two cases.

Case 1. $v_{3}, v_{4} \in C_{2}\left(v_{1}, v_{2}\right)$ or $v_{3}, v_{4} \in C_{2}\left(v_{2}, v_{1}\right)$.

Without loss of generality, we may assume that $v_{3}, v_{4} \in C_{2}\left(v_{1}, v_{2}\right)$. If $z_{2} \in$ $C_{1}\left(w_{1}, w_{3}\right)$, then $C_{1}^{ \pm}\left[u_{1}, z_{2}\right], C_{2}\left[v_{4}, v_{2}\right], u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used. If $z_{2} \in C_{1}\left[w_{3}, w_{1}\right)$, then $C_{1}\left[u_{2}, z_{2}\right], C_{2}\left[v_{4}, v_{2}\right], u_{2}$ and $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ are shorter two disjoint cycles, since v_{3} is not used. Thus $z_{2}=w_{1}$.

If $u_{2} \in C_{1}\left(w_{2}, w_{3}\right)$, then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{2}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used. Thus $u_{2}=w_{3}$.

If $z_{1} \in C_{1}\left(w_{3}, u_{1}\right)$, then $C_{1}^{ \pm}\left[z_{1}, w_{1}\right], C_{2}\left[v_{1}, v_{3}\right], z_{1}$ and $C_{1}\left[u_{1}, w_{3}\right], v_{2}, u_{1}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $z_{1} \in C_{1}\left[u_{1}, w_{3}\right]$.

Suppose that $u_{1} \in C_{1}\left(w_{1}, w_{2}\right)$. If $z_{1} \in C_{1}\left[u_{1}, w_{2}\right)$, then $C_{1}\left[w_{1}, z_{1}\right], C_{2}\left[v_{3}, v_{4}\right], w_{1}$ and $C_{1}\left[w_{2}, w_{3}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{2} is not used. If $z_{1}=w_{2}$, then $C_{2}\left[v_{1}, v_{3}\right], w_{2}, v_{1}$ and $C_{1}\left[w_{1}, u_{1}\right], C_{2}^{-}\left[v_{2}, v_{4}\right], w_{1}$ are shorter two disjoint cycles, since w_{3} is not used. If $z_{1} \in C_{1}\left(w_{2}, w_{3}\right]$, then $C_{1}\left[z_{1}, w_{3}\right], C_{2}\left[v_{1}, v_{3}\right], z_{1}$ and $C_{1}\left[w_{1}, u_{1}\right]$, $C_{2}^{-}\left[v_{2}, v_{4}\right], w_{1}$ are shorter two disjoint cycles, since w_{2} is not used. Thus $u_{1}=w_{2}$.

Now, we consider two disjoint cycles $C^{\prime}=w_{1}, C_{2}\left[v_{1}, v_{4}\right]$, w_{1} and $C^{\prime \prime}=C_{1}\left[w_{2}, w_{3}\right]$, v_{2}, w_{2}. Note that $\left|C_{2}\right| \geq 6$. If $C_{2}\left(v_{4}, v_{2}\right) \neq \emptyset$ or $C_{2}\left(v_{2}, v_{1}\right) \neq \emptyset$, then C^{\prime} and $C^{\prime \prime}$
are shorter two disjoint cycles. Thus $C_{2}\left(v_{4}, v_{2}\right)=\emptyset$ and $C_{2}\left(v_{2}, v_{1}\right)=\emptyset$. First, suppose that $z_{1} \in C_{1}\left[w_{2}, w_{3}\right)$. If $C_{2}\left(v_{1}, v_{3}\right) \neq \emptyset$, then $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ and $C_{2}\left[v_{3}, v_{2}\right]$, $C_{1}\left[w_{2}, z_{1}\right], v_{3}$ are shorter two disjoint cycles. If $C_{2}\left(v_{3}, v_{4}\right) \neq \emptyset$, then $C_{1}\left[w_{2}, z_{1}\right], C_{2}^{-}\left[v_{3}, v_{1}\right]$, w_{2} and $C_{1}\left[w_{3}, w_{1}\right], C_{2}\left[v_{4}, v_{2}\right], w_{3}$ are shorter two disjoint cycles. Next, suppose that $z_{1}=w_{3}$. If $C_{2}\left(v_{1}, v_{3}\right) \neq \emptyset$, then $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ and $C_{2}\left[v_{3}, v_{2}\right], w_{3}, v_{3}$ are shorter two disjoint cycles. If $C_{2}\left(v_{3}, v_{4}\right) \neq \emptyset$, then $C_{2}\left[v_{1}, v_{3}\right], w_{3}, v_{1}$ and $C_{1}\left[w_{1}, w_{2}\right], C_{2}^{-}\left[v_{2}, v_{4}\right]$, w_{1} are shorter two disjoint cycles.

Case 2. $v_{3} \in C_{2}\left(v_{1}, v_{2}\right)$ and $v_{4} \in C_{2}\left(v_{2}, v_{1}\right)$.
If $z_{1} \in C_{1}\left(w_{1}, w_{3}\right)$, then $C_{1}^{ \pm}\left[u_{1}, z_{1}\right], C_{2}\left[v_{3}, v_{2}\right], u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{4} is not used. If $z_{1} \in C_{1}\left[w_{3}, w_{1}\right)$, then $C_{1}\left[u_{2}, z_{1}\right], C_{2}\left[v_{3}, v_{2}\right]$, u_{2} and $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ are shorter two disjoint cycles, since v_{4} is not used. Thus $z_{1}=w_{1}$. Then $C_{2}\left[v_{1}, v_{3}\right], w_{1}, v_{1}$ and $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ are shorter two disjoint cycles, since v_{4} is not used.

Proof of ($\mathbf{v} \mathbf{)}$. Let v_{1}, v_{2}, v_{3} be the vertices on C_{2} with the degree sequence (3,3,1). Suppose that v_{1}, v_{2}, v_{3} exist in this order on C_{2}. Without loss of generality, we may assume that $d_{C_{1}}\left(v_{i}\right)=3$ each $i \in\{1,2\}$ and $d_{C_{1}}\left(v_{3}\right)=1$. Suppose that w_{1}, w_{2}, $w_{3} \in N_{C_{1}}\left(v_{1}\right)$ exist in this order on C_{1}. Let $W=\left\{w_{1}, w_{2}, w_{3}\right\}$. These neighbors of v_{1} partition C_{1} into three intervals: $C_{1}\left(w_{1}, w_{2}\right], C_{1}\left(w_{2}, w_{3}\right], C_{1}\left(w_{3}, w_{1}\right]$. Let u_{1}, u_{2}, $u_{3} \in N_{C_{1}}\left(v_{2}\right)$, and suppose that u_{1}, u_{2}, u_{3} are in this order on C_{1}.

Case 1. Some two neighbors of v_{2} are in the same interval of C_{1}.
Without loss of generality, we may assume that $u_{1}, u_{2} \in C_{1}\left(w_{1}, w_{2}\right]$. Then $C_{1}\left[u_{1}, u_{2}\right], v_{2}, u_{1}$ and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used.

Case 2. No two neighbors of v_{2} are in the same interval of C_{1}.
Then $u_{1} \in C_{1}\left(w_{1}, w_{2}\right], u_{2} \in C_{1}\left(w_{2}, w_{3}\right]$, and $u_{3} \in C_{1}\left(w_{3}, w_{1}\right]$. First, suppose that
$u_{i_{0}}, u_{j_{0}} \notin W$ for some $1 \leq i_{0}<j_{0} \leq 3$. Without loss of generality, we may assume that $i_{0}=1$ and $j_{0}=2$, that is, $u_{1} \in C_{1}\left(w_{1}, w_{2}\right)$ and $u_{2} \in C_{1}\left(w_{2}, w_{3}\right)$. Then $C_{1}\left[u_{1}, u_{2}\right]$, v_{2}, u_{1} and $C_{1}\left[w_{3}, w_{1}\right], v_{1}, w_{3}$ are shorter two disjoint cycles, since v_{3} is not used.

Next, suppose that $u_{i_{0}} \notin W$ for only some $1 \leq i_{0} \leq 3$. Without loss of generality, we may assume that $i_{0}=1$, that is, $u_{1} \in C_{1}\left(w_{1}, w_{2}\right)$. Then note that $u_{3}=w_{1}$, $C_{1}\left[w_{1}, u_{1}\right], v_{2}, w_{1}$ and $C_{1}\left[w_{2}, w_{3}\right], v_{1}, w_{2}$ are shorter two disjoint cycles, since v_{3} is not used.

Finally, suppose that $u_{i}=w_{i+1}(\bmod 3)$ for each $1 \leq i \leq 3$. Without loss of generality, we may assume that $v_{3} z_{1} \in E(G)$ for $z_{1} \in\left(w_{2}, w_{3}\right]$. Now, we have two choices for constructing shorter two disjoint cycles. We may construct $C_{1}\left[w_{1}, w_{2}\right], v_{2}$, w_{1} and $C_{1}\left[z_{1}, w_{3}\right], C_{2}^{-}\left[v_{1}, v_{3}\right], z_{1}$, or $C_{1}\left[w_{1}, w_{2}\right], v_{1}, w_{1}$ and $C_{1}\left[z_{1}, w_{3}\right], C_{2}\left[v_{2}, v_{3}\right], z_{1}$. Since $\left|C_{2}\right| \geq 6$, one of these two choices must leave out a vertex of C_{2}, and hence we may form shorter two disjoint cycles.

2.4.3 Proof of Lemma 2.6

Let $C=v_{1}, v_{2}, v_{3}, v_{1}$.
Case 1. The sequence is $(3,3,2,0)$.
Suppose that $d_{C}\left(x_{1}\right)=0$. Then $d_{C}\left(y_{i_{0}}\right)=3$ for some $i_{0} \in\{1, i, t\}$, and we may assume that $i_{0}=1$, that is, $d_{C}\left(y_{1}\right)=3$. Since $d_{C}\left(y_{r}\right) \geq 2$ for each $r \in\{i, t\}$ and $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i}\right) \cap N_{C}\left(y_{t}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}\left[y_{i}, y_{t}\right], v_{1}, y_{i}$ and $y_{1}, v_{3}, v_{2}, y_{1}$ are two disjoint cycles.

Suppose that $d_{C}\left(x_{1}\right)=2$. Without loss of generality, we may assume that $v_{1}, v_{2} \in$ $N_{C}\left(x_{1}\right)$. Then $x_{1}, v_{2}, v_{1}, x_{1}$ is a cycle. Since $d_{C}\left(y_{i_{0}}\right)=d_{C}\left(y_{j_{0}}\right)=3$ for some $i_{0}, j_{0} \in$ $\{1, i, t\}$ with $i_{0}<j_{0}$ and $|C|=3, v_{3} \in N_{C}\left(y_{i_{0}}\right) \cap N_{C}\left(y_{j_{0}}\right)$. Then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{3}, y_{i_{0}}$ is the other disjoint cycle.

Suppose that $d_{C}\left(x_{1}\right)=3$. Since $d_{C}\left(y_{i_{0}}\right) \geq 2$ and $d_{C}\left(y_{j_{0}}\right) \geq 2$ for some $i_{0}, j_{0} \in$ $\{1, i, t\}$ with $i_{0}<j_{0}$ and $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i_{0}}\right) \cap N_{C}\left(y_{j_{0}}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}\left[y_{i_{0}}, y_{j_{0}}\right], v_{1}, y_{i_{0}}$ and $x_{1}, v_{3}, v_{2}, x_{1}$ are two disjoint cycles.

Case 2. The sequence is $(3,3,1,1)$.

Suppose that $d_{C}\left(x_{1}\right)=1$. Then $d_{C}\left(y_{i_{0}}\right)=3$ for some $i_{0} \in\{1, i, t\}$, and we may assume that $i_{0}=1$, that is, $d_{C}\left(y_{1}\right)=3$. Since one of y_{i} and y_{t} has degree 3 to C and the other one of them has degree 1 to C, noting that $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i}\right) \cap N_{C}\left(y_{t}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}\left[y_{i}, y_{t}\right], v_{1}, y_{i}$ and $y_{1}, v_{3}, v_{2}, y_{1}$ are two disjoint cycles.

Suppose that $d_{C}\left(x_{1}\right)=3$. Since one of y_{1}, y_{i}, y_{t} has degree 3 to C and the others of them have degree 1 to $C, d_{C}\left(y_{i_{0}}\right)=3$ and $d_{C}\left(y_{j_{0}}\right)=1$ for some distinct $i_{0}, j_{0} \in\{1, i, t\}$. Then note that either $i_{0}<j_{0}$ or $i_{0}>j_{0}$. Since $|C|=3, v_{m_{0}} \in N_{C}\left(y_{i_{0}}\right) \cap N_{C}\left(y_{j_{0}}\right)$ for some $1 \leq m_{0} \leq 3$. Without loss of generality, we may assume that $m_{0}=1$. Then $H_{2}^{ \pm}\left[y_{i_{0}}, y_{j_{0}}\right], v_{1}, y_{i_{0}}$ and $x_{1}, v_{3}, v_{2}, x_{1}$ are two disjoint cycles.

Chapter 3

Degree Conditions to Imply the Existence of Vertex-Disjoint
 Chorded Cycles

In this chapter, we extend our work on vertex-disjoint cycles to vertex-disjoint chorded cycles. In particular, we consider the existence of a large set of vertex-disjoint chorded cycles in a graph. Let G be a graph such that $|G| \geq 11 k+7$ and $\sigma_{4}(G) \geq 12 k-3$ for integer $k \geq 2$. We prove that such a graph contains a set of k vertex-disjoint cycles. We also conjecture a generalized result for $\sigma_{t}(G)$. And we show that the degree sums in the result on $\sigma_{4}(G)$ and the conjecture for $\sigma_{t}(G)$ are sharp.

3.1 Introduction

An extension of the study of disjoint cycles is that of disjoint chorded cycles. A chord of a cycle is an edge between two vertices of the cycle that is not an edge of the cycle. We say a cycle is chorded if it induces at least once chord and doubly chorded if it induces at least two chords. As noted in the introduction, interest in ensuring a chorded cycle as a subgraph dates back to 1960, when Pósa first asked what
conditions would imply the existence of a chorded cycle in a graph. In 1963, Czipzer (see Lovász [12], problem 10.2) provided an answer to the question by proving that if a graph has minimum degree at least 3 , it must contain a chorded cycle. In the years since, results have focused on guaranteeing the existence of a set of k disjoint chorded cycles. Finkel [5] proved a Corrádi-Hajnal type result for chorded cycles, showing that if $|V(G)| \geq 4 k$ and $\delta(G) \geq 3 k$, then G contains k vertex-disjoint chorded cycles. Chiba et al. [1] extended this result, proving that for a graph G of order at least $3 r+4 s$, if $\sigma_{2}(G) \geq 4 r+6 s-1$, then G contains $r+s$ vertex-disjoint cycles, with s of them chorded. The following corollary is a direct consequence of this theorem of Chiba et al. [1]:

Corollary 1. Suppose that $|G| \geq 4 k$ and $\sigma_{2}(G) \geq 6 k-1$. Then G contains k vertex-disjoint chorded cycles.

Both Corollary 1 and Finkel's result are sharp as evidenced by the graph $G_{0}=$ $K_{3 k-1, n-3 k+1}$. For this graph, $\delta\left(G_{0}\right)=3 k-1, \sigma_{2}\left(G_{0}\right)=6 k-2$ and $\sigma_{t}\left(G_{0}\right)=$ $3 k t-t$. But G_{0} cannot contain k vertex-disjoint chorded cycles, as any chorded cycle must contain 3 vertices from the $3 k-1$ partite set. Hence, in general, at least $\sigma_{t}(G) \geq 3 k t-t+1$ is necessary to imply G contains k vertex-disjoint chorded cycles. This pattern uncovered in the sharpness example for Corollary 1 and Finkel's result motivated Conjecture 3.1 .

Conjecture $3.1(\boxed{9 \mid})$. Let G be a graph of sufficiently large order. If $\sigma_{t}(G) \geq 3 k t-$ $t+1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k vertex-disjoint chorded cycles.

Note that the conjectured degree sum condition would be sharp by the same example. The purpose of this chapter is to further extend the known results on chorded cycles and to add to the evidence for Conjecture 3.1 by proving the case when $t=4$. We show the following:

Theorem 3.1 ([9]). If G is a graph of order $n \geq 11 k+7$ and if $\sigma_{4}(G) \geq 12 k-3$, then G contains k vertex-disjoint chorded cycles.

It follows from the graph G_{0} described above that Theorem 3.1 is sharp with respect to the degree sum condition $\sigma_{4}(G) \geq 12 k-3$.

The proof of Theorem 3.1 in Section 3.3 proceeds by contradiction using an edgemaximal counterexample. An edge-maximal counterexample G does not contain k chorded cycles, but if any edge is added, the resulting graph does contain k chorded cycles. Thus, G must contain a set \mathscr{C} of $k-1$ vertex-disjoint chorded cycles. We let $H=G \backslash \bigcup_{i=1}^{k-1} V\left(C_{i}\right)$; that is, H is what is left in G after the chorded cycles are removed. We first prove that the order of H must be large enough. Then we show that H must contain a large connected component, and in this connected component, we find a set X of four independent vertices having small degree in H. Finally, we use the σ_{4} condition to find many edges between the set X and some cycle C in the set \mathscr{C}. We get a contradiction by constructing two vertex-disjoint chorded cycles in $\langle H \cup C\rangle$.

3.2 Preliminaries

In the proof of Theorem 3.1, we make use of the following Lemmas, as well as Theorem 3.2 due to Czipzer (Lovász [12], problem 10.2), and Theorem 3.3, a direct consequence of Chiba et al. [1].

Theorem 3.2. (Czipzer (see [12], problem 10.2)) Suppose $|G| \geq 4$ and $\delta(G) \geq 3$. Then G contains a chorded cycle.

Theorem 3.3. (Chiba, Fujita, Gao, Li [1]) Suppose that $|G| \geq 4 k$ and $\sigma_{2}(G) \geq 6 k-1$. Then G contains k vertex-disjoint chorded cycles.

Lemma 3.1. Let $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ be a minimal set of r vertex-disjoint cycles in a graph G. For any $i, 1 \leq i \leq r$, the cycle C_{i} cannot have two parallel chords.

Proof. This follows easily from the minimality of \mathscr{C}.

Lemma 3.2. Let $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ be a minimal set of r vertex-disjoint cycles in a graph G. If $\left|C_{i}\right| \geq 7$ for some $1 \leq i \leq r$, then C_{i} has at most two chords. Furthermore, if it has two chords, these chords must be crossing.

Proof. Suppose C_{i} contains at least three chords. By Lemma 3.1, no two of them can be parallel. Thus they are all mutually crossing. Label the endpoints of three of these chords $v_{1}, v_{2}, \ldots v_{6}$ in that order. Because the chords are mutually crossing, the three chords are given by $v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}$. These six endpoints partition the vertex set of C_{i} into six path segments: $C_{i}\left[v_{1}, v_{2}\right), C_{i}\left[v_{2}, v_{3}\right), \ldots, C_{i}\left[v_{6}, v_{1}\right)$. Since $\left|C_{i}\right| \geq 7$, some segment contains at least one vertex of C_{i} which is not an endpoint of one of the three chords. Without loss of generality, say $C_{i}\left[v_{1}, v_{2}\right)$ contains some vertex of C_{i} other than v_{1}. Then, $v_{2}, C_{i}\left[v_{5}, v_{1}\right], C_{i}^{-}\left[v_{4}, v_{2}\right]$ is a smaller chorded cycle. (See Figure 3.1.) Thus, C_{i} contains at most two chords, and by Lemma 3.1 they must cross.

Figure 3.1. A smaller chorded cycle.

Lemma 3.3. Let r be a positive integer and $\mathscr{C}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a set of r minimal vertex-disjoint chorded cycles of a graph G such that the number of $K_{4} s$ in \mathscr{C} is maximal. And suppose G does not contain $r+1$ vertex-disjoint chorded cycles. Then, $d_{C_{i}}(x) \leq 4$ for any $x \in V(G)-\cup_{j=1}^{r} V\left(C_{j}\right)$ and any $i, 1 \leq i \leq r$. Furthermore, if $C \in \mathscr{C}$ and $x \in V(G)-\cup_{j=1}^{r} V\left(C_{j}\right)$ such that $d_{C}(x)=4$, then $C=K_{4}$ and if $d_{C}(x)=3$, then $|C| \leq 5$ or C is a type 2 chorded six-cycle (see Definition 1).

Proof. Suppose we have a chorded cycle C and a vertex $x \in V(G)-\cup_{j=1}^{r} V\left(C_{j}\right)$ such that $d_{C}(x) \geq 4$.

Claim 5. If $d_{C}(x) \geq 4$, then cycle C is a 4-cycle, and hence also $d_{C}(x)=4$.

Proof. Suppose to the contrary $|C| \geq 5$. Consider four neighbors of x on C, say $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=X \subseteq N_{C}(x)$, in that order. These neighbors define five intervals $C\left[v_{i}, v_{i+1}\right)$ on C, where $i=1, \ldots 4$, and for $i=4, i+1=1$. Since $|C| \geq 5$, by the Pigeonhole Principle, a vertex of $C-X$ lies in one of the intervals $C\left[v_{i}, v_{i+1}\right)$. Without loss of generality, say there is a vertex of $C-X$ in $C\left[v_{1}, v_{2}\right)$. Then $\left\langle C\left[v_{2}, v_{4}\right] \cup x\right\rangle$ induces a shorter chorded cycle in $\langle C \cup x\rangle$, contradicting the minimality of \mathscr{C}. Thus, $d_{C}(x) \geq 4$ implies $|C|=4$, which in turn implies $d_{C}(x)=4$. Hence, for any $x \in$ $V(G)-\cup_{j=1}^{r} V\left(C_{j}\right)$ and for any $i, 1 \leq i \leq r$, we know that $d_{C}(x) \leq 4$.

Claim 6. If $|C|=4$, then $C=K_{4}$.

Proof. Suppose $C \neq K_{4}$. Then, $C=K_{4}-e$. Label the vertices of C with v_{1}, v_{2}, v_{3}, v_{4}, in that order, such that the chord is given by $v_{1} v_{3}$. Then, $\left\langle\left\{v_{1}, v_{2}, v_{3}\right\} \cup x\right\rangle=K_{4}$. This contradicts the fact that the number of $K_{4} \mathrm{~S}$ in \mathscr{C} was maximal.

Now suppose $d_{C}(x)=3$.
Claim 7. Either $|C| \leq 5$ or C is a type 2 chorded six-cycle.

Proof. Let $X=\left\{v_{1}, v_{2}, v_{3}\right\}$ be neighbors of x in C in that order on the cycle. If $|C| \geq 7$, then some interval defined by two consecutive neighbors of x contains at least two vertices of $C-X$. Without loss of generality, say $C\left[v_{1}, v_{2}\right)$ contains at least two vertices of $C-X$. Then $\left\langle C\left[v_{2}, v_{1}\right] \cup x\right\rangle$ induces a smaller chorded cycle, contradicting the minimality of \mathscr{C}. Thus, $|C|<7$.

Suppose C is a type 1 chorded six- cycle. Label the vertices of C with x_{1}, x_{2}, \ldots, x_{6} in order such that the three-cycle is given by $x_{1}, x_{2}, x_{3}, x_{1}$ and the five-cycle is given by $x_{1}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}$.

If x has two neighbors in the three-cycle, then $\left\langle C\left[x_{1}, x_{3}\right] \cup x\right\rangle$ contains a chorded four-cycle. On the other hand, if x is adjacent to all three of the vertices outside of
the three-cycle, that is, x_{4}, x_{5}, x_{6}, we get a chorded four-cycle from $\left\langle C\left[x_{4}, x_{6}\right] \cup x\right\rangle$. Thus, x must be adjacent to one vertex in the three-cycle and two vertices outside the three-cycle. Let x be adjacent to one of $\left\{x_{1}, x_{2}, x_{3}\right\}$ and any two of $\left\{x_{4}, x_{5}, x_{6}\right\}$. If x is adjacent to x_{1}, then $\left\langle x \cup x_{1} \cup C\left[x_{4}, x_{6}\right]\right\rangle$ contains a chorded five-cycle if x is adjacent to x_{4}, or contains a chorded four-cycle if x is not adjacent to x_{4}. A similar argument applies if x is adjacent to x_{3}. Suppose x is adjacent to x_{2}. Then, if x is adjacent to $x_{4},\left\langle x \cup C\left[x_{1}, x_{4}\right]\right\rangle$ induces a chorded five-cycle $x_{1}, x_{3}, x_{4}, x, x_{2}, x_{1}$ with edge $x_{2} x_{3}$ as a chord. Otherwise, if x is not adjacent to x_{4}, it must be adjacent to x_{6}, and $\left\langle x \cup C\left[x_{1}, x_{3}\right] \cup x_{6}\right\rangle$ induces a chorded five-cycle $x_{1}, x_{3}, x_{2}, x, x_{6}, x_{1}$ with edge $x_{1} x_{2}$ as a chord. In all cases we can find a smaller chorded cycle, contradicting the minimality of \mathscr{C}. Hence, if $d_{C}(x)=3$, the cycle C cannot be a type 1 chorded six-cycle. And since $|C|<7$, it follows that either C is a type 2 chorded six-cycle, or $|C| \leq 5$. Thus, the claim holds.

This completes the proof of Lemma 3.3.

Lemma 3.4. Suppose we have three edges either all mutually parallel or all mutually crossing, connecting two paths, P_{1}, P_{2}. Then there is a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$

Proof. Say the edges are $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}$. Without loss of generality, let x_{1}, x_{2}, and x_{3} appear in that order in P_{1}. If the edges are mutually crossing, the endpoints y_{1}, y_{2}, y_{3} must appear in the order y_{3}, y_{2}, y_{1} on P_{2}. Else, the edges are all mutually parallel, and the endpoints y_{1}, y_{2}, y_{3} must appear in that order in P_{2}. In either case, $P_{1}\left[x_{1}, x_{3}\right], y_{3}, P_{2}^{ \pm}\left(y_{3}, y_{1}\right], x_{1}$ is a chorded cycle with $x_{2} y_{2}$ as a chord.

Lemma 3.5. Suppose we have at least five edges connecting two paths P_{1} and P_{2}. Then we can form a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$ which leaves out at least one vertex from P_{1} or P_{2}.

Proof. Any two edges between P_{1} and P_{2} are either parallel or crossing. Since there are five edges between P_{1} and P_{2}, by the Pigeonhole Principle there must be either
three mutually parallel edges or three mutually crossing edges. Then, by Lemma 3.4, we can form a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$. Suppose this chorded cycle uses every vertex of P_{1} and P_{2}. Then the cycle has at least three chords, and by Lemma 3.2, a shorter chorded cycle exists in $\left\langle P_{1} \cup P_{2}\right\rangle$.

Lemma 3.6. Let x_{1}, x_{2} be two vertices on a path P_{1}, each having degree two to another path P_{2}. Then we can form a chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{2}\right] \cup P_{2}\right\rangle$.

Proof. Let $u_{i}, u_{j}, i<j$, be x_{1} 's neighbors on $P_{2}=u_{1}, \ldots, u_{s}$. If x_{2} has a neighbor that lies in $P_{2}\left[u_{j}, u_{s}\right]$ or $P_{2}\left[u_{1}, u_{i}\right]$, then we can easily form a chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{2}\right] \cup P_{2}\right\rangle$. (See Figure 3.2.)

(a) Note that it is possible $u_{j}=u_{k} \quad$ (b) Note that it is possible $u_{k}=u_{i}$.

Figure 3.2. A chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{2}\right] \cup P_{2}\right\rangle$.

Thus, both of x_{2} 's neighbors in P_{2} must lie in $P_{2}\left(u_{i}, u_{j}\right)$, call them u_{k}, u_{l} wtih $k<l$. So the neighbors of x_{1} and x_{2} lie in the order $u_{i}, u_{k}, u_{l}, u_{j}$ on P_{2}. (See Figure 3.3.) Then, $P_{1}\left[x_{1}, x_{2}\right], u_{k}, P_{2}\left(u_{k}, u_{j}\right], x_{1}$ forms a chorded cycle, with chord $x_{2} u_{l}$.

Lemma 3.7. Let x_{1}, x_{2}, x_{3} be three vertices which lie either in order x_{1}, x_{2}, x_{3} or in order x_{3}, x_{2}, x_{1} on a path P_{1}, with x_{1} having degree two and x_{2}, x_{3} each having degree 1 to another path P_{2}. Then we can form a chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{3}\right] \cup P_{2}\right\rangle$.

Figure 3.3. A chorded cycle in $\left\langle P_{1}\left[x_{1}, x_{2}\right] \cup P_{2}\right\rangle$.

Proof. We may assume x_{1}, x_{2}, x_{3} lie in that order, else we can reverse the order of the path. Let w_{1}, w_{2} be x_{1} 's neighbors in P_{2}. As in the previous lemma, if either x_{2} or x_{3} has a neighbor that lies beyond w_{2} or prior to w_{1} in P_{2}, then we can easily form a chorded cycle in $\left\langle P_{1} \cup P_{2}\right\rangle$. Thus, the neighbor of each of x_{2}, x_{3} lies in $P_{2}\left(w_{1}, w_{2}\right)$. Call x_{2} 's neighbor w_{3} and x_{3} 's neighbor w_{4}. If w_{3} appears before w_{4} in $P_{2}\left(w_{1}, w_{2}\right)$, then we have three parallel edges between P_{1} and P_{2}, one from each of the w_{i} 's. Else, w_{3} appears in $P_{2}\left(w_{4}, w_{2}\right)$, and we have three mutually crossing edges between P_{1} and P_{2}, one from each of the w_{i} 's. In either case, a chorded cycle exists by Lemma 3.4.

Lemma 3.8. Let H be a graph containing a path P. If there exist nested edges between vertices of P in $E(G)-E(P)$, then H contains a chorded cycle.

Proof. The proof is obvious. (See Figure 5.)

Figure 3.4. Nested edges in a path.

Lemma 3.9. Let H be a graph containing a path $P=v_{1}, v_{2}, \cdots, v_{n}$ and v_{i}, v_{i+1} be
neighboring vertices on the path. If v_{i} has a right edge $v_{i} v_{j}$ and v_{i+1} has a left edge $v_{i+1} v_{k}$ then H contains a chorded cycle.

Proof. Clearly, $P\left[v_{k}, v_{i}\right], v_{j}, P^{-}\left(v_{j}, v_{i+1}\right], v_{k}$ is a cycle with edge $v_{i} v_{i+1}$ as a chord.

Lemma 3.10. Let H be a graph containing a path $P=v_{1}, v_{2}, \cdots, v_{n}$ and v_{i}, v_{i+1} be neighboring vertices on the path. Then v_{i} and v_{i+1} cannot both have degree at least 4 to P.

Proof. Suppose $d_{P}\left(v_{i}\right) \geq 4$ and $d_{P}\left(v_{i+1}\right) \geq 4$. Then v_{i} has two neighbors in $P\left[v_{1}, v_{i-2}\right]$ $\cup P\left[v_{i+2}, v_{n}\right]$, and v_{i+1} has two neighbors in $P\left[v_{1}, v_{i-1}\right] \cup P\left[v_{i+3}, v_{n}\right]$. If v_{i} has a neighbor in $P\left[v_{i+2}, v_{n}\right]$ and v_{i+1} has a neighbor in $P\left[v_{1}, v_{i-1}\right]$, then H contains a chorded cycle by Lemma 3.9. Thus, either v_{i} must have two neighbors in $P\left[v_{1}, v_{i-2}\right]$ or v_{i+1} has two neighbors in $P\left[v_{i+3}, v_{n}\right]$. In either case, nested edges exist and H contains a chorded cycle by Lemma 3.8.

Lemma 3.11. Let H be a graph containing a path $P_{1}=v_{1}, \ldots, v_{t}, t \geq 12$, and not containing a chorded cycle. If $v_{i} v_{t} \in E(H)$ for any $i \leq t-2$, then $d_{P_{1}}\left(v_{k}\right) \leq 3$ for any $k>i$ and $d_{P_{1}}\left(v_{i+1}\right)=2$. And if $v_{1} v_{j} \in E(H)$ for any $j \geq 3$, then $d_{P_{1}}\left(v_{l}\right) \leq 3$ for any $l<j$ and $d_{P_{1}}\left(v_{j-1}\right)=2$.

Proof. Suppose $v_{i} v_{t} \in E(H)$ for some $i \leq t-2$. No vertex v_{k} with $k>i$ has a right edge, otherwise that edge nests with $v_{i} v_{t}$, and by Lemma 3.8, H contains a chorded cycle, a contradiction. Thus, $d_{P_{1}}\left(v_{k}\right) \leq 3$ for any $k>i$. Furthermore, vertex v_{i+1} cannot have a left edge by Lemma 3.9. Thus, $d_{P_{1}}\left(v_{i+1}\right)=2$

By symmetry, the same proof shows that if $v_{1} v_{j} \in E(H)$ for some $j \geq 3$, then $d_{P_{1}}\left(v_{l}\right) \leq 3$ for any $l<j$ and $d_{P_{1}}\left(v_{j-1}\right)=2$.

Lemma 3.12. Let H be a graph containing a path $P_{1}=v_{1}, \ldots, v_{t}, t \geq 12$, and not containing a chorded cycle. If $d_{P_{1}}\left(v_{1}\right)=1$, then one of v_{3}, v_{4}, v_{5} has degree two in $\left\langle P_{1}\right\rangle$. Or if $v_{1} v_{3} \in E(H)$, then one of v_{4}, v_{5}, v_{6} has degree two in $\left\langle P_{1}\right\rangle$.

Proof. Let either $v_{1} v_{3} \in E(H)$ or $d_{P_{1}}\left(v_{1}\right)=1$. If $v_{1} v_{3} \in E(H)$, we let $i=4$, and if $d_{P_{1}}\left(v_{1}\right)=1$, we let $i=3$. Vertex v_{i} cannot have a left edge, else in the first case we get a chorded cycle, and in the second case we have $d_{P_{1}}\left(v_{1}\right)=2$; hence, we have a contradiction in either case. If vertex v_{i} has degree 2 in P_{1}, we are done. Thus v_{i} must have a right edge, say $v_{i} v_{j}$. If $j=i+2$, then vertex v_{i+1} cannot have a left edge or a right edge and must have degree 2, else we get a chorded cycle. Thus, $j>i+2$. By Lemma 3.9, v_{i+1} cannot have a left edge. If v_{i+1} has degree 2 we are done. Thus, v_{i+1} has a right edge, say $v_{i+1} v_{k}$. If $k \leq j$, then we have nested edges and a chorded cycle by Lemma 3.8 , a contradiction. Thus, $k>j$. By the same argument as for v_{i+1}, vertex v_{i+2} either has degree 2, or has a right edge $v_{i+1} v_{l}$ such that $l>k$. In the later case, edges $v_{i} v_{j}, v_{i+1} v_{k}, v_{i+2} v_{l}$ are three parallel edges between the subpaths v_{i}, v_{i+1}, v_{i+2} and v_{j}, \ldots, v_{l}, and hence a chorded cycle exists by Lemma 3.4, a contradiction. Thus, vertex v_{i+2} must have degree 2 in P_{1}, and we are done.

Lemma 3.13. Let H be a graph containing a path $P_{1}=v_{1}, \ldots, v_{t}, t \geq 12$ and not containing a chorded cycle. If $d_{P_{1}}\left(v_{t}\right)=1$, then one of $v_{t-4}, v_{t-3}, v_{t-2}$ has degree two in $\left\langle P_{1}\right\rangle$. Or if $v_{t} v_{t-2} \in E(H)$, then one of $v_{t-5}, v_{t-4}, v_{t-3}$ has degree two in $\left\langle P_{1}\right\rangle$.

Proof. The lemma follows from the proof of Lemma 3.12 by symmetry.

Lemma 3.14. Let $H=\left\langle P_{1} \cup P_{2}\right\rangle$, where $P_{1}=v_{1}, \ldots, v_{t}, P_{2}=u_{1}, \ldots$, u_{s}, such that H does not contain a chorded cycle. If a vertex $v_{i} \in P_{1}$ is adjacent to an endpoint of P_{2} and a vertex $v_{j} \in P_{1}$ with $j \geq i+2$ is adjacent to an endpoint of P_{2}, then one of v_{i+1}, v_{j-1} has degree 2 in $\left\langle P_{1} \cup P_{2}\right\rangle$.

Proof. Let $H=\left\langle P_{1} \cup P_{2}\right\rangle$ such that H does not contain a chorded cycle. Let vertex $v_{i} \in P_{1}$ be adjacent to an endpoint of P_{2}, without loss of generality say u_{1}, and let vertex $v_{j} \in P_{1}$ be adjacent an endpoint of P_{2}, for some $j \geq i+2$, without loss of
generality say u_{t}. (If instead v_{i}, v_{j} are both adjacent to u_{1} or u_{t}, in the cycles following replace $u_{1}, P_{2}\left(u_{1}, u_{t}\right]$ and $u_{t}, P_{2}^{-}\left(u_{t}, u_{1}\right]$ with just u_{1} or u_{t} as necessary.)

If vertex v_{i+1} has a left edge, say $v_{i+1} v_{k}$, with $k<i$, then $P_{1}\left[v_{k}, v_{i}\right], u_{1}, P_{2}\left(u_{1}, u_{t}\right]$, $v_{j}, P_{1}^{-}\left(v_{j}, v_{i+1}\right], v_{k}$ forms a chorded cycle with edge $v_{i} v_{i+1}$ as a chord. By symmetry, vertex v_{j-1} cannot have a right edge, else a chorded cycle exists with the edge $v_{j-1} v_{j}$ as a chord.

Thus, either v_{i+1} or v_{j-1} has degree 2 in $\left\langle P_{1} \cup P_{2}\right\rangle$ and we are done, or vertex v_{i+1} has a right edge, and vertex v_{j-1} has a left edge.

No vertex in $P_{1}\left[v_{i}, v_{j}\right]$ can have an edge that does not lie on P_{1} to some other vertex in $P_{1}\left[v_{i}, v_{j}\right]$, else this edge is a chord of the cycle $P_{1}\left[v_{i}, v_{j}\right], u_{t}, P_{2}^{-}\left(u_{t}, u_{1}\right], v_{i}$.

Thus, we have edges $v_{i+1} v_{k}$, with $k>j$, and $v_{j-1} v_{l}$, with $l<i$. But then, $P_{1}\left[v_{l}, v_{i}\right]$, $u_{1}, P_{2}\left(u_{1}, u_{s}\right], v_{j}, P_{1}\left(v_{j}, v_{k}\right], v_{i+1}, P_{1}\left(v_{i+1}, v_{j-1}\right], v_{l}$ forms a chorded cycle with edges $v_{i} v_{i+1}$ and $v_{j-1} v_{j}$ as chords.

Thus, one of v_{i+1}, v_{j-1} has degree 2 in H, and hence is also independent from v_{1}, v_{t}, u_{1}, u_{s}.

Lemma 3.15. Let $H=\left\langle P_{1} \cup P_{2}\right\rangle$, where $P_{1}=v_{1}, \ldots, v_{t}, P_{2}=u_{1}, \ldots, u_{s}$, such that P_{1}, P_{2} is a maximal pair of paths, with P_{1} as long as possible. Suppose H does not contain a chorded cycle or a Hamiltonian path. Finally, suppose $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right) \geq 1$. If v_{1} has a neighbor v_{i} in $P_{1}\left[v_{4}, v_{t}\right]$, then $d_{H}\left(v_{i-1}\right)=2$. If v_{t} has a neighbor v_{j} in $P_{1}\left[v_{1}, v_{t-3}\right]$, then $d_{H}\left(v_{j+1}\right)=2$.

Proof. Suppose v_{1} is adjacent to a vertex in $P_{1}\left[v_{4}, v_{t}\right]$. If v_{1} is adjacent to v_{t}, then H contains a Hamiltonian path, a contradiction. Thus, v_{1} has a neighbor v_{i} in $P_{1}\left[v_{4}, v_{t-1}\right]$. Note that vertex v_{i-1} cannot be adjacent to any vertex in P_{2}, else either H contains a Hamiltonian path or there exists a maximal pair of paths $P_{1}^{\prime}, P_{2}^{\prime}$ such that $\left|P_{1}^{\prime}\right|>\left|P_{1}\right|$, a contradiction. By Lemma 3.11, v_{i-1} has degree 2 in P_{1}. Hence, $d_{H}\left(v_{i-1}\right)=2$.

By symmetry, a similar argument shows that if v_{t} has a neighbor v_{j} in $P_{1}\left[v_{1}, v_{t-3}\right]$, then $d_{H}\left(v_{j+1}\right)=2$.

3.3 Proof of Theorem 3.1

For convenience, we restate our main result.

Theorem 3.1. Let $k \geq 2$ be a positive integer. If G is a graph of order $n \geq 11 k+7$ with $\sigma_{4}(G) \geq 12 k-3$, then G contains k vertex-disjoint chorded cycles.

Proof of Theorem 3.1. Let G be an edge-maximal counterexample. That is, G fails to have k vertex-disjoint chorded cycles, but for any new edge $e, G+e$ does have k vertex-disjoint chorded cycles. This implies there exists a collection of $k-1$ vertexdisjoint chorded cycles in G. Over all such collections, choose one, say \mathscr{C}, such that:
(1) \mathscr{C} is minimal.
(2) Subject to (1), the number of components in $H=G-\cup_{i=1}^{k-1} V\left(C_{i}\right)$ is minimal.
(3) Subject to (1) and (2), the number of $K_{4} \mathrm{~S}$ in \mathscr{C} is maximal.

Claim 1. $|H| \geq 18$.

Proof. Suppose to the contrary that $|H| \leq 17$. First suppose $\left|V\left(C_{i}\right)\right| \leq 11$ for all $i, 1 \leq i \leq k-1$. Since by assumption $|G| \geq 11 k+7$, it follows that $|H| \geq$ $(11 k+7)-11(k-1)=18$, a contradiction. Thus, $\left|V\left(C_{i}\right)\right| \geq 12$ for some i.

Let C be a largest cycle in \mathscr{C}. By Lemma 3.2, $|C| \geq 12$ implies that C contains at most two chords and these chords must be crossing. Let $|C|=4 t+r$ where $t \geq 3$ and $0 \leq r \leq 3$.

Subclaim 1.1. The cycle C contains t different sets X_{1}, \ldots, X_{t} of four independent vertices each, such that $d_{C}\left(X_{1} \cup X_{2} \cup \cdots \cup X_{t}\right) \leq 8 t+4$

Proof. Cycle C has at most two chords, and if it has two chords, they must be crossing. For any $4 t$ vertices of C, their degree sum in C is at most $4 t \times 2+4$, since C has at most 2 chords. Thus it only remains to show that C contains t sets of four independent vertices each.

Recall that $|C|=4 t+r \geq 4 t$. Start anywhere on C and label the first $4 t$ vertices of C with labels 1 through t in order, starting over again with 1 after using label t. If $r \geq 1$, label the remaining r vertices of C with the labels $t+1, \ldots, t+r$. (See Figure 3.5.) The labeling above yields t sets of 4 vertices each, where all the vertices labeled with 1 are one set, all the vertices labeled with 2 are another set, and so on. Given this labeling, since $t \geq 3$, any vertex in C has a different label than the vertex that preceeds it on C and the vertex that succeeds it on C. Let \tilde{C} be cycle C minus its chords, if it has any. Then, the vertices in each of the sets are independent in \tilde{C}. Thus, the only way vertices in the same set are dependent in C is if the endpoints of a chord of C were given the same label. Note that any vertex labeled i is distance at least 3 in \tilde{C} from any other vertex labeled i. Thus, if a vertex and the neighbor preceeding it on C or the neighbor succeeding it on C have their labels swapped, the vertices in each of the classes are still independent in \tilde{C}.

Figure 3.5. An example where $t=3$ and $r=2$.

Case 1.1.1. Suppose no chord of C has endpoints with the same label. Then, we have found t sets of 4 independent vertices in C, and we are done.

Case 1.1.2. Suppose one chord of C has endpoints with the same label. Because C contains at most two chords and those chords must be crossing, each chord has an endpoint with a neighbor that is not an endpoint of a chord. Pick such an endpoint of the chord whose endpoints were assigned the same label, and swap the label of this vertex with its non-endpoint neighbor. The vertices in each of the resulting classes are still independent in \tilde{C}, and now no chord of C has endpoints with the same label. Thus, we have found t sets of four independent vertices each in C.

Case 1.1.3. Suppose two chords of C each have endpoints with the same label.
Subcase 1. If an endpoint of one chord of C is adjacent to an endpoint of the other chord, swap the labels of these adjacent endpoints. Then, the vertices in each of the resulting classes are still independent in \tilde{C}, and now no chord of C has endpoints with the same label. Thus, we have found t sets of four independent vertices each in C.

Subcase 2. If no endpoint of the first chord in C is adjacent to an endpoint of the second chord, then swap the labels of an endpoint of the first chord, call it e_{1} and one of its neighbors in \tilde{C}. The vertices in each of the resulting classes are still independent in \tilde{C}. Now pick an endpoint of the second chord that is not adjacent to a vertex that has had its label swapped, call it e_{2}. Then, pick a neighbor in \tilde{C} of e_{2} that is of maximal distance in \tilde{C} from e_{1}. This neighbor is not adjacent to any vertex which has had its color swapped. Thus, we may swap the labels of e_{2} and its selected neighbor, and the vertices in each of the resulting classes are still independent in \tilde{C}. Furthermore, now no chord of C has endpoints with the same label, and thus we have found our sets.

In all cases, we were able to construct t different sets of four independent vertices each in C. Thus, Subclaim 1.1 holds.

Since $|C| \geq 12, d_{C}(v) \leq 2$ for any vertex $v \in V(H)$; otherwise, we could form a chorded cycle shorter than C in $\langle C \cup H\rangle$, contradicting (1). Because $|H| \leq 17$ and each vertex of H has at most two neighbors in C, it follows that $|E(H, C)| \leq 34$.

Each set of four independent vertices in C has at least $12 k-3$ edges in G, since $\sigma_{4}(G) \geq 12 k-3$. Thus, $X_{1} \cup X_{2} \cup \cdots \cup X_{t}$ has total degree at least $t(12 k-3)$ in G.

Suppose that $k=2$. Then \mathscr{C} has only one cycle C, and $H=G-C$. By Subclaim 1.1, C contains t independent sets $X_{i}, 1 \leq i \leq t$ each of which has four vertices and such that $d_{C}\left(X_{1} \cup \cdots \cup X_{t}\right) \leq 8 t+4$. Then, $d_{H}\left(X_{1} \cup \cdots \cup X_{t}\right) \geq t(12 k-3)-(8 t+4)$ $=12 k t-11 t-4 \geq 24 t-11 t-4=13 t-4 \geq 35$, since $t \geq 3$. Thus, $|E(C, H)| \geq 35$, a contradiction.

Suppose that $k \geq 3$. We bound the order of $E(C, \mathscr{C}-C)$ from below.

$$
|E(C, \mathscr{C}-C)| \geq\left|E\left(X_{1} \cup \cdots \cup X_{t}, \mathscr{C}-C\right)\right|
$$

Subtracting from $d_{G}\left(X_{1} \cup \cdots \cup X_{t}\right)$ both $d_{C}\left(X_{1} \cup \cdots \cup X_{t}\right)$ and $d_{H}(C)$, we get:

$$
\begin{aligned}
\left|E\left(X_{1} \cup \cdots \cup X_{t}, \mathscr{C}-C\right)\right| & \geq t(12 k-3)-(8 t+4)-34 \\
& =12 k t-3 t-8 t-4-34 \\
& =12 k t-11 t-38 .
\end{aligned}
$$

And since $t \geq 3$,

$$
\begin{aligned}
12 k t-11 t-38 & \geq 12 k t-12 t-35=12 t(k-1)-35 \\
& >12 t(k-1)-12 t=12 t(k-2) .
\end{aligned}
$$

Thus, $\left|E\left(C, C^{\prime}\right)\right| \geq\left|E\left(X_{1} \cup \cdots \cup X_{t}, C^{\prime}\right)\right| \geq 12 t$ for some cycle C^{\prime} in $\mathscr{C}-C$, since $\mathscr{C}-C$ contains $k-2$ cycles. Because $|C|=4 t+r \leq 4 t+3$, it follows that the average
degree to C^{\prime} of the vertices of $X_{1} \cup \cdots \cup X_{t}$ is greater than 2 ; that is,

$$
\left|E\left(X_{1} \cup \cdots \cup X_{t}, C^{\prime}\right)\right| /|C| \geq \frac{12 t}{4 t+3} \geq \frac{3 t}{t+1}>2
$$

It follows that $d_{C^{\prime}}(v) \geq 3$ for some vertex $v \in X_{1} \cup \cdots \cup X_{t}$.
Let $h=\max \left\{d_{C^{\prime}}(v) \mid v \in X_{1} \cup \cdots \cup X_{t}\right\}$. Let v^{*} be a vertex of C such that $d_{C^{\prime}}\left(v^{*}\right)=h$, and let $v^{* *}$ be a vertex of $C-v^{*}$ having maximal degree to C^{\prime}. Certainly $d_{C^{\prime}}\left(v^{* *}\right) \leq h$. By the maximality of C, we know that $\left|C^{\prime}\right| \leq|C|=4 t+r$. It follows that $h=d_{C^{\prime}}\left(v^{*}\right) \leq\left|C^{\prime}\right| \leq 4 t+r$. Recall that $t \geq 3$ and $r \leq 3$.

Then, $\left|E\left(\left(X_{1} \cup \cdots \cup X_{t}\right)-v^{*}, C^{\prime}\right)\right| \geq 12 t-d_{C^{\prime}}\left(v^{*}\right)$

$$
\begin{equation*}
\geq 12 t-(4 t+r)=8 t-r \geq 21 \tag{3.4}
\end{equation*}
$$

Futher, $\left|E\left(\left(X_{1} \cup \cdots \cup X_{t}\right)-v^{*}-v^{* *}, C^{\prime}\right)\right| \geq 12 t-d_{C^{\prime}}\left(v^{*}\right)-d_{C^{\prime}}\left(v^{* *}\right)$

$$
\begin{equation*}
\geq 12 t-(4 t+r)-(4 t+r)=4 t-2 r \geq 6 \tag{3.5}
\end{equation*}
$$

Case 1.1. Suppose that $h=3$.
Then because we have $4 t$ vertices in $X_{1} \cup \cdots \cup X_{t}$ sending a sum of at least $12 t$ edges to C^{\prime}, it follows that every vertex of $X_{1} \cup \cdots \cup X_{t}$ sends 3 edges to C^{\prime}. Thus, there are at least 12 vertices in C having degree 3 to C^{\prime}.

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{12}\right\}$ be a set of 12 vertices of C, each having degree 3 to C^{\prime}. Let v_{1}, v_{2}, v_{3} be w_{1} 's neighbors in C^{\prime}. They partition C^{\prime} into three intervals: $C^{\prime}\left[v_{1}, v_{2}\right), C^{\prime}\left[v_{2}, v_{3}\right), C^{\prime}\left[v_{3}, v_{1}\right)$. Denote $W-\left\{w_{1}\right\}$ by W^{\prime}.

Claim 1.1.1. No three vertices in W^{\prime} all have three neighbors to the same single interval in C^{\prime}.

Proof. Suppose three different vertices in W^{\prime}, say $w_{i}, w_{j}, w_{l}, 2 \leq i<j<k \leq 12$, all
have three neighbors to the same single interval in C^{\prime}, without loss of generality say $C^{\prime}\left[v_{1}, v_{2}\right)$. Then each of w_{i}, w_{j}, w_{l} has at least two neighbors in $C\left(v_{1}, v_{2}\right)$. So there exist 6 edges between $C\left[w_{i}, w_{l}\right]$ and $C^{\prime}\left(v_{1}, v_{2}\right)$. By Lemma3.5, a chorded cycle exists in $\left\langle C\left[w_{i}, w_{l}\right] \cup C^{\prime}\left(v_{1}, v_{2}\right)\right\rangle$ that leaves out at least one vertex. And $\left\langle w_{1} \cup C^{\prime}\left[v_{2}, v_{1}\right]\right\rangle$ forms a second chorded cycle, vertex-disjoint from the first. Thus, we have constructed a shorter pair of vertex-disjoint chorded cycles in $\left\langle C \cup C^{\prime}\right\rangle$, contradicting (1). Thus, the claim holds.

Claim 1.1.2. No vertex $w_{i}, 2 \leq i \leq 12$ has three or more neighbors in a single interval of C^{\prime}.

Proof. Suppose w_{i} has three neighbors in a single interval of C^{\prime}, without loss of generality say $C^{\prime}\left[v_{1}, v_{2}\right)$. Then by Lemma 3.4, a chorded cycle exists in $\left\langle w_{i} \cup C^{\prime}\left[v_{1}, v_{2}\right)\right\rangle$. By Claim 1.1.1, at most one other vertex in $\left\{w_{2}, \ldots, w_{12}\right\}$, call it w_{j}, has at least three neighbors in $C^{\prime}\left[v_{1}, v_{2}\right)$. Thus, every vertex in $\left\{w_{2}, \ldots, w_{12}\right\}-\left\{w_{i}, w_{j}\right\}$ has edges into $C^{\prime}\left[v_{2}, v_{1}\right)$. And therefore, by Lemma 3.5, there exists a chorded cycle in $\left\langle C-w_{i}, C^{\prime}\left[v_{2}, v_{1}\right)\right\rangle$ which leaves out at least one vertex. Together with the chorded cycle in $\left\langle w_{i} \cup C^{\prime}\left[v_{1}, v_{2}\right)\right\rangle$, we have a shorter pair of vertex-disjoint chorded cycles in $\left\langle C \cup C^{\prime}\right\rangle$, contradicting (1). Thus, the claim holds.

Thus, every vertex in $W-w_{1}$ sends edges into at least 2 intervals.
Note that the set of vertices $\left\{w_{7}, \ldots, w_{12}\right\}$ sends 18 edges to C^{\prime}. It follows that some interval in C^{\prime} gets at least 6 edges from $\left\{w_{7}, \ldots, w_{12}\right\}$, say $C^{\prime}\left[v_{1}, v_{2}\right)$. Then there exists a chorded cycle in $\left\langle C\left[w_{7}, w_{12}\right] \cup C^{\prime}\left[v_{1}, v_{2}\right)\right\rangle$ which leaves out at least one vertex, by Lemma 3.5. Also, because every vertex sends edges to at least 2 intervals, each of w_{2}, \ldots, w_{5} has an edge into $C^{\prime}\left[v_{2}, v_{1}\right)$. This implies that $\left|E\left(C\left[w_{1}, w_{5}\right], C^{\prime}\left[v_{2}, v_{1}\right)\right)\right| \geq 6$. Hence by Lemma 3.5, there exists a chorded cycle in $\left\langle C\left[w_{1}, w_{5}\right] \cup C^{\prime}\left[v_{2}, v_{1}\right)\right\rangle$. Thus, we have formed a shorter pair of vertex-disjoint chorded cycles, contradicting (1). This completes Case 1.1.

Case 1.2. Suppose that $h \geq 4$.
Recall that $\left|E\left(\left(X_{1} \cup \cdots \cup X_{t}\right)-v^{*}, C^{\prime}\right)\right| \geq 21$ and $\mid E\left(\left(X_{1} \cup \cdots \cup X_{t}\right)-v^{*}-\right.$ $\left.v^{* *}, C^{\prime}\right) \mid \geq 6$, by (3.4) and (3.5). Thus, $N_{C^{\prime}}\left(C-v^{*}-v^{* *}\right) \neq \emptyset$, and letting $W=\{v \in$ $\left.V(C) \mid N_{C^{\prime}}(v) \neq \emptyset\right\}$, it follows that $|W| \geq 3$; that is, at least three vertices in C have neighbors in C^{\prime}.

Subcase 1. Suppose that $|W|=3$. Let $W=\left\{w_{1}, w_{2}, w_{3}\right\}$ where $d_{C^{\prime}}\left(w_{1}\right) \geq d_{C^{\prime}}\left(w_{2}\right) \geq$ $d_{C^{\prime}}\left(w_{3}\right)$.

Then, $\left|E\left(\left\{w_{2}, w_{3}\right\}, C^{\prime}\right)\right| \geq 21$, and $\left|E\left(\left\{w_{3}\right\}, C^{\prime}\right)\right| \geq 6$. Since $d_{C^{\prime}}\left(w_{1}\right) \geq d_{C^{\prime}}\left(w_{2}\right) \geq$ $d_{C^{\prime}}\left(w_{3}\right)$, it follows that $d_{C^{\prime}}(w) \geq 6$ for any $w \in W$. Since $\left|E\left(\left\{w_{2}, w_{3}\right\}, C^{\prime}\right)\right| \geq 21$ and $d_{C^{\prime}}\left(w_{2}\right) \geq d_{C^{\prime}}\left(w_{3}\right)$, it follows that $d_{C^{\prime}}\left(w_{2}\right) \geq 11$. Thus, we have degree sequence at least $(11,11,6)$ from W to C^{\prime}.

Let $v_{1}, v_{2}, \ldots, v_{6}$ denote w_{3} 's neighbors in C^{\prime}, appearing in that order on C^{\prime}. The neighbors of w_{3} partition C^{\prime} into six intervals, $C^{\prime}\left[v_{i}, v_{i+1}\right.$), for all $1 \leq i \leq 6$ (where $i+1=1$ for $i=6$). Because $\left\{w_{1}, w_{2}\right\}$ sends at least 22 edges total into C^{\prime}, some interval in C^{\prime} receives at least 4 edges from $\left\{w_{1}, w_{2}\right\}$, without loss of generality say $C^{\prime}\left[v_{1}, v_{2}\right)$. And either every interval receives at least one edge from $\left\{w_{1}, w_{2}\right\}$ or some interval receives at least five edges from $\left\{w_{1}, w_{2}\right\}$.

If every interval receives at least one edge, then taking the interval with at least 4 edges and a neighboring interval, some pair of neighboring intervals receives at least five edges total from $\left\{w_{1}, w_{2}\right\}$, without loss of generality say intervals $C^{\prime}\left[v_{1}, v_{2}\right)$ and $C^{\prime}\left[v_{2}, v_{3}\right)$. There exist five edges between $C\left[w_{1}, w_{2}\right]$ and $C^{\prime}\left[v_{1}, v_{3}\right)$. Thus, by Lemma 3.5. there exists a chorded cycle in $\left\langle C\left[w_{1}, w_{2}\right] \cup C^{\prime}\left[v_{1}, v_{3}\right)\right\rangle$ which leaves out at least one vertex of $\left\langle C\left[w_{1}, w_{2}\right] \cup C^{\prime}\left[v_{1}, v_{3}\right)\right\rangle$. And $\left\langle w_{3} \cup C^{\prime}\left[v_{3}, v_{5}\right]\right\rangle$ forms a second chorded cycle in $\left\langle C \cup C^{\prime}\right\rangle$, vertex-disjoint from the first, contradicting (1).

Thus, some interval in C^{\prime} receives at least five edges from $\left\{w_{1}, w_{2}\right\}$, without loss of generality say $\left[v_{1}, v_{2}\right)$. By Lemma 3.5, there exists a chorded cycle in $\left\langle P_{1} \cup C^{\prime}\left[v_{1}, v_{2}\right)\right\rangle$ which leaves out at least one vertex of $\left\langle P_{1} \cup C^{\prime}\left[v_{1}, v_{2}\right)\right\rangle$. And $\left\langle w_{3} \cup C^{\prime}\left[v_{3}, v_{5}\right]\right\rangle$ forms
a second chorded cycle in $\left\langle C \cup C^{\prime}\right\rangle$, vertex-disjoint from the first, contradicting (1).

Subcase 2. Suppose that $|W| \geq 4$.
Recall that vertex v^{*} has at least four neighbors in C^{\prime}. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be neighbors of v^{*} in C^{\prime}. Note that v_{1}, \ldots, v_{4} partition C^{\prime} into four intervals, $C^{\prime}\left[v_{i}, v_{i+1}\right.$) (where $i+1=1$ for $i=4$). By (4), there are at least 21 more edges into C^{\prime} from $C-v^{*}$. By the Pigeonhole Principle, some interval $C^{\prime}\left[v_{i}, v_{i+1}\right)$ contains six of these additional edges. Without loss of generality, say this interval is $C^{\prime}\left[v_{4}, v_{1}\right)$. Then by Lemma 3.5, $\left\langle C-v^{*} \cup C^{\prime}\left[v_{4}, v_{1}\right)\right\rangle$ contains a chorded cycle which leaves out at least one vertex of $\left\langle C-v^{*} \cup C^{\prime}\left[v_{4}, v_{1}\right)\right\rangle$. Note that $C_{1}=v^{*}, C^{\prime}\left[v_{1}, v_{3}\right], v^{*}$ forms a chorded cycle with the edge $v^{*} v_{2}$ as a chord, and it uses no vertices from $C^{\prime}\left[v_{4}, v_{1}\right)$. Thus we have a pair of shorter vertex-disjoint chorded cycles in $\left\langle C \cup C^{\prime}\right\rangle$, contradicting (1)

This completes the proof of Claim 1. Thus, $|H| \geq 18$.
Claim 2. Every component H_{i} of H that has a vertex x with $d_{H_{i}}(x) \leq 2$ either contains two independent vertices each with degree at most two in H_{i}, or contains a vertex with degree at most two in H_{i} that is not a cut-vertex.

Proof. Suppose not. It follows that H_{i} fails to contain two independent vertices each with degree at most two in H_{i}. Furthermore, H_{i} contains a vertex v such that $d_{H_{i}}(v) \leq 2$ and v is a cut-vertex. Since v is a cut-vertex, $d_{H_{i}}(v)=2$. Let a and b be the neighbors of v in H_{i}. Let H_{i}^{\prime} be the component of $H_{i}-\{v\}$ containing a and $H_{i}^{\prime \prime}$ be the component of $H_{i}-\{v\}$ containing b. Either $d_{H_{i}}(a) \geq 3$ or $d_{H_{i}}(b) \geq 3$, otherwise a, b are two independent vertices in H_{i} such that their degree sum in H_{i} is at most 4. Say $d_{H_{i}}(b) \geq 3$. (See Figure 3.6.)

If $\left|H_{i}^{\prime \prime}\right|<4$, then there exists a vertex v_{2} in H_{i} with degree at most two in H_{i} independent from v, a contradiction. Thus, $\left|H_{i}^{\prime \prime}\right| \geq 4$. Then, Theorem 3.3 implies that $\sigma_{2}\left(H_{i}^{\prime \prime}\right)<5$. This implies that there exist two vertices $x_{1}, x_{2} \in H_{i}^{\prime \prime}$ such that $d_{H_{i}^{\prime \prime}}\left(\left\{x_{1}, x_{2}\right\}\right) \leq 4$. Thus, either each of x_{1}, x_{2} has degree in $H_{i}^{\prime \prime}$ at most 2 , or one of

Figure 3.6. The case when $d_{H_{i}}(b) \geq 3$.
then has degree one in $H_{i}^{\prime \prime}$. Vertex b has degree at least 2 in $H_{i}^{\prime \prime}$, so it is possible that one of these two vertices is b, say $b=x_{1}$, but then the other vertex, x_{2}, would still have degree at most 2 in $H_{i}^{\prime \prime}$. Thus, there must be some vertex in $H_{i}^{\prime \prime}$, other than vertex b, having degree at most 2 in $H_{i}^{\prime \prime}$. But this vertex is independent from v, a contradiction. Thus, the claim holds.

Claim 3. H is either connected, or H has two components, one of which has order less than 4.

Proof. Suppose not. Then H is disconnected, and if it has two components, both of them have order at least 4.

Subclaim 3.1. H contains a set X of four independent vertices from at least two components of H such that $d_{H}(X) \leq 8$.

Proof. The number of components of $H, \operatorname{comp}(H)$, is at least 2. Label the components of H with $H_{1}, H_{2}, \ldots, H_{\operatorname{comp}(H)}$. We will consider three cases: $\operatorname{comp}(H) \geq 4$, $\operatorname{comp}(H)=3, \operatorname{comp}(H)=2$.

Case 3.1.1. Suppose $\operatorname{comp}(H) \geq 4$.

Then, there exists $x_{i} \in H_{i}$ for $1 \leq i \leq 4$ such that $d_{H_{i}}\left(x_{i}\right) \leq 2$. Otherwise, by Theorem 3.2, H_{i} would contain a chorded cycle, yielding a contradiction. Then the set $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a set of four independent vertices from four different components in H, and $d_{H}(X) \leq 8$.

Case 3.1.2. Suppose $\operatorname{comp}(H)=3$.

Then some component of H, say H_{1}, has order at least four, since $|H| \geq 18$. Then, there exist at least two independent vertices in H_{1}. Otherwise, any two vertices in H_{1} are adjacent, and hence H_{1} contains a K_{4}, contradicting the fact that H contains no chorded cycles. Thus, H_{1} contains at least two independent vertices. It follows from Theorem 3.3 that there exist two independent vertices in H_{1}, call them x_{1}, x_{4}, such that $d_{H_{1}}\left(\left\{x_{1}, x_{4}\right\}\right) \leq 4$. Otherwise, $\sigma_{2}\left(H_{1}\right) \geq 5$, and H_{1} contains a chorded cycle. As in Case 1, by Theorem 3.2 there must exist $x_{2} \in H_{2}$ and $x_{3} \in H_{3}$ such that $d_{H_{2}}\left(x_{2}\right) \leq 2$ and $d_{H_{3}}\left(x_{3}\right) \leq 2$. Then the set $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a set of four independent vertices from two components of H with $d_{H}(X) \leq 8$.

Case 3.1.3. Suppose $\operatorname{comp}(H)=2$.

Since we supposed Claim 3 does not hold, by assumption $\left|H_{1}\right| \geq 4$ and $\left|H_{2}\right| \geq 4$. Then, as in component H_{1} in Case 2, there must exist $x_{1}, x_{2} \in H_{1}$ and $x_{3}, x_{4} \in H_{2}$ such that x_{1}, x_{2} and x_{3}, x_{4} are independent and $d_{H_{1}}\left(\left\{x_{1}, x_{2}\right\}\right) \leq 4, d_{H_{2}}\left(\left\{x_{3}, x_{4}\right\}\right) \leq 4$. Otherwise, if one of the components of H does not contain any two independent vertices, it must contain a K_{4}, a contradiction; or if, for any two independent vertices in the component, their degree sum in the component is at least 5 , then by Theorem 3.3 , the component contains a chorded cycle, a contradiction. Thus, $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a set of four independent vertices from two components of H with $d_{H}(X) \leq 8$.

Therefore, in all cases, Subclaim 3.1 holds.

In the above construction of X, if $\operatorname{comp}(H)=2$, then exactly two vertices of X are from one component of H and exactly two are from the other component of H. Thus either $\operatorname{comp}(H) \geq 3$, or no $x \in X$ is isolated from the rest of X. Also, according to the construction of X above, if any x_{j} in H_{i} is isolated from the rest of X, then we know $d_{H}\left(x_{j}\right)=d_{H_{i}}\left(x_{j}\right) \leq 2$. And if x_{j} is a cut-vertex, by Claim 2, there exists a second vertex x_{t} in H_{i}, not adjacent to x_{j}, with $d_{H_{i}}\left(x_{t}\right) \leq 2$. Thus, we can remove
from X some other vertex x_{l} which was isolated from the rest of X and add x_{t} to X. Then $d_{H}(X) \leq 8$ still, and x_{j} is no longer isolated from the rest of X. Thus, without loss of generality, we may assume that if a vertex x is isolated from the rest of X, it is not a cut-vertex.

Since $d_{H}(X) \leq 8$, it follows that $d_{\mathscr{C}}(X) \geq 12 k-3-8=12 k-11>12(k-1)$. Thus, there is some cycle $C \in \mathscr{C}$ such that $d_{C}(X) \geq 13$. Note that if we have only two components, x_{1} lies in the same component as some other x_{i}.

Also, by Lemma 3.3, for any $x_{i} \in X, d_{C}\left(x_{i}\right) \leq 4$. It follows that the possible degree sequences are: $(4,4,4,1),(4,4,3,2),(4,3,3,3)$. Hence, by Lemma 3.3, $C=K_{4}$, since in all cases there exists $x_{i} \in X$ such that $d_{C}\left(x_{i}\right)=4$. Let $C=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$.

We consider two cases based on the number of components of H.
Case 3.1. Suppose $\operatorname{comp}(H)=2$.
Then each component of H contains two vertices of X. Let x_{1}, x_{2} be in one component of H, call it H_{1} and x_{3}, x_{4} in the other, call it H_{2}.

Without loss of generality, let x_{4} be the vertex of X with smallest degree to C. If we have degree sequence $(4,4,4,1)$ or $(4,4,3,2)$, it immediately follows that either x_{1} or x_{2} has degree 4 to C, say x_{1}. If instead we have degree sequence $(4,3,3,3)$, then we can label x_{1}, \ldots, x_{4} so that x_{1} has degree $4, x_{1}, x_{2}$ are in one component of H, and x_{3}, x_{4} are in the other.

Thus, we may assume without loss of generality that x_{4} is the vertex of X with smallest degree to C and that x_{1} has degree 4 to C. It follows that x_{2}, x_{3} have degree at least 3 to C.

Let P_{1} be a path in H_{1} connecting x_{1} and x_{2}, and let P_{2} be a path in H_{2} connecting x_{3} and x_{4}.

Vertices x_{3} and x_{4} must share a neighbor in C, say v_{1}. Take a second neighbor of x_{3} in C, say v_{2}. Then $v_{1}, v_{2}, x_{3}, P_{2}\left(x_{3}, x_{4}\right], v_{1}$ is a chorded cycle in $\langle H \cup C\rangle$ with $x_{3} v_{1}$ as a chord. Since x_{2} has three neighbors in C, it is adjacent to at least one of
the remaining vertices of C, say v_{3}. Vertex x_{1} is adjacent to v_{3} and v_{4}. Thus, x_{2}, $v_{3}, v_{4}, x_{1}, P_{1}\left(x_{1}, x_{2}\right], v_{3}$ is a second chorded cycle in $\langle H \cup C\rangle$ with $x_{1} v_{3}$ as a chord, vertex-disjoint from the first. (See Figure 3.7.)

Figure 3.7. Two vertex-disjoint chorded cycles in $\langle H \cup C\rangle$.

Therefore, if $\operatorname{comp}(H)=2$, we get two vertex-disjoint chorded cycles in $\langle H \cup C\rangle$, a contradiction.

Case 3.2. Suppose $\operatorname{comp}(H) \geq 3$.

Recall that we have one of the following degree sequences from X to $C:(4,4,4,1)$, $(4,4,3,2),(4,3,3,3)$. Label the vertices of X with $x_{i}, 1 \leq i \leq 4$ such that $d_{C}\left(x_{1}\right) \geq$ $d_{C}\left(x_{2}\right) \geq d_{C}\left(x_{3}\right) \geq d_{C}\left(x_{4}\right)$.

Since $|C|=4$, for each possible degree sequence, x_{2}, x_{3}, x_{4} must all have a common neighbor in C, say v_{1}. And vertex x_{1} has degree 4 to C. Thus, $C^{\prime}=x_{1}, v_{2}, v_{3}, v_{4}, x_{1}$ is a chorded cycle in $\langle H \cup C\rangle$ with chord $x_{1} v_{3}$.

Recall that, by the construction of X in $\operatorname{Subclaim3.1,~if~} \operatorname{comp}(H)=2$, no vertex $x \in X$ is isolated from the rest of X. Hence, if x_{1} is the only vertex of X in its component H_{i} of H, then $\operatorname{comp}(H) \geq 3, x_{1}$ it is not a cut-vertex, and $\operatorname{comp}\left(H_{i}-\right.$ $\left.\left\{x_{1}\right\}\right)=1$. Then, replacing C in \mathscr{C} by C^{\prime}, the remaining H has fewer components, a contradiction.

Otherwise, some other vertex x_{j} of X is also in H_{i}. Since $d_{H_{i}}\left(x_{1}\right) \leq 2, \operatorname{comp}\left(H_{i}-\right.$
$\left.\left\{x_{1}\right\}\right) \leq 2$. Further, the new H formed by replacing C in \mathscr{C} with C^{\prime} has fewer components, since one of the two components of $H_{i}-\left\{x_{1}\right\}$ contains x_{j} for some $2 \leq$ $j \leq 4$, and x_{2}, x_{3}, x_{4} are all connected in the new H. Again we have a contradiction. (See Figure 3.8.) Thus, in all cases the claim holds.

Figure 3.8. Fewer components in H.

Now by Claim 1, $|H| \geq 18$, and by Claim 3, H is either connected or has only two components, one of which has order at most 3 . Thus, H is either connected or has a component H_{i} such that $\left|H_{i}\right| \geq 15$. Let \tilde{H} be the largest component of H.

Claim 4. \tilde{H} contains a set X of four independent vertices such that $d_{\tilde{H}}(X) \leq 8$.

Proof.

Subclaim 4.1. If \tilde{H} contains a Hamiltonian path, we can find the desired set X.
Proof. Suppose \tilde{H} contains a Hamiltonian path. Then $\tilde{H}=\left\langle P_{1}\right\rangle$, where $P_{1}=$ $v_{1}, \ldots, v_{t}, t \geq 15$. Without loss of generality, let $d_{\tilde{H}}\left(v_{1}\right) \leq d_{H}\left(v_{t}\right)$, otherwise we relabel the path.

If $v_{1} v_{t} \in E(\tilde{H})$, then every vertex of \tilde{H} has degree two by Lemma 3.11. The set $X=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ forms a set of four independent vertices with degree 8 in \tilde{H}, and we are done.

Thus, $v_{1} v_{t} \notin E(\tilde{H})$. It follows that v_{1} and v_{t} are independent. Also, $d_{\tilde{H}}\left(v_{1}\right) \leq 2$ and $d_{\tilde{H}}\left(v_{t}\right) \leq 2$ else a chorded cycle exists in \tilde{H}, a contradiction.

Suppose $d_{\tilde{H}}\left(v_{1}\right)=1$ and $d_{\tilde{H}}\left(v_{t}\right)=1$. By Lemma 3.12 one of v_{3}, v_{4}, v_{5} has degree 2 in \tilde{H}, call it v_{i}, and one of $v_{t-4}, v_{t-3}, v_{t-2}$ has degree 2 in \tilde{H}, call it v_{j}. Then, choose $X=\left\{v_{1}, v_{i}, v_{j}, v_{t}\right\}$, and we are done.

Suppose $d_{\tilde{H}}\left(v_{1}\right)=1$ and $d_{\tilde{H}}\left(v_{t}\right)=2$ with $v_{t} v_{j} \in E(\tilde{H})$. Suppose $j \leq t-5$. Then vertices v_{j+1} and v_{j+3} are independent from v_{t}. By Lemma 3.11, vertex v_{j+1} has degree 2 in \tilde{H}, and vertex v_{j+3} has degree at most 3 in H. Choose $X=\left\{v_{1}, v_{j+1}, v_{j+3}, v_{t}\right\}$, and we are done.

So, $j>t-5$. By Lemma 3.12, one of v_{3}, v_{4}, v_{5} has degree 2 in \tilde{H}, say v_{i}. If $j \leq t-3$, then v_{j+1} is still independent from v_{t} and has degree 2 by Lemma 3.11. So, $X=\left\{v_{1}, v_{i}, v_{j+1}, v_{t}\right\}$ is the desired set. Thus, $j=t-2$. By Lemma 3.13, one of v_{t-5}, v_{t-4}, v_{t-3} has degree two in \tilde{H}, call it v_{j}. Since $t \geq 15, v_{i}$ and v_{j} are independent, and $X=\left\{v_{1}, v_{i}, v_{j}, v_{t}\right\}$ is the desired set.

Thus, $d_{\tilde{H}}\left(v_{1}\right)=2$ and $d_{\tilde{H}}\left(v_{t}\right)=2$.
Suppose we have either $v_{1} v_{3}$ or $v_{t} v_{t-2}$ in $E(\tilde{H})$. Without loss of generality, say $v_{1} v_{3}$. Then, one of v_{4}, v_{5}, v_{6} has degree 2 in $E(H)$ by Lemma 3.12, say v_{i}. If $v_{t} v_{t-2} \in E(\tilde{H})$, then one of $v_{t-5}, v_{t-4}, v_{t-3}$ has degree two in \tilde{H}, call it v_{j}, and $X=\left\{v_{1}, v_{i}, v_{j}, v_{t}\right\}$ is the desired set.

If $v_{t} v_{t-2} \notin E(\tilde{H})$, then $v_{t} v_{s} \in E(\tilde{H})$ for some $s<t-2$. Hence, vertex v_{s+1} has degree 2 by Lemma 3.11 and is independent from v_{t}. Clearly, $s \geq 3$, else we have a chorded cycle. If $v_{s+1} \notin\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$, then $X=\left\{v_{1}, v_{i}, v_{s+1}, v_{t}\right\}$ is the desired set.

Thus, $v_{s+1} \in\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$. This implies that $v_{s} \in\left\{v_{i-2}, v_{i-1}, v_{i}\right\}$. Clearly, $v_{s} \neq v_{i}$, since $v_{s} v_{t} \in E(\tilde{H})$, and vertex v_{i} has degree two in $E(\tilde{H})$. So, $v_{s}=v_{i-2}$ or $v_{s}=v_{i-1}$. Since $v_{i} \in\left\{v_{4}, v_{5}, v_{6}\right\}$ and $s \geq 3$, we know that $v_{s} \in\left\{v_{3}, v_{4}, v_{5}\right\}$. Then, if one of v_{s+4} or v_{s+5} has degree $2, X=\left\{v_{1}, v_{i}, v_{s+4}, v_{t}\right\}$, or $X=\left\{v_{1}, v_{i}, v_{s+5}, v_{t}\right\}$, and we are done. Thus, both v_{s+4} or v_{s+5} have degree at least 3 in \tilde{H}. Furthermore, neither v_{s+4} nor v_{s+5} has a right edge, else this edge nests with $v_{s} v_{t}$, and we have a chorded cycle by Lemma 3.8. Thus, both v_{s+4} or v_{s+5} have left edges. It follows that
$v_{s+4} v_{k}, v_{s+5} v_{l} \in E(\tilde{H})$, and $k<l<s$ else we have nested edges and a chorded cycle by Lemma 3.8. But then, $v_{k}, P_{1}, v_{s}, v_{t}, P_{1}^{-}, v_{s+4}, v_{k}$ is a chorded cycle with edge $v_{l} v_{s+5}$ as a chord.

Thus, neither $v_{1} v_{3}$ or $v_{t} v_{t_{2}}$ is in $E(\tilde{H})$. It follows that $v_{1} v_{i}, v_{t} v_{j} \in E(\tilde{H})$ for some $i>3, j<t-2$. And $d_{\tilde{H}}\left(v_{i-1}\right)=2, d_{\tilde{H}}\left(v_{j+1}\right)=2$. Then, $X=\left\{v_{1}, v_{i-1}, v_{j+1}, v_{t}\right\}$, unless $i-1 \in\{j, j+1, j+2\}$.

Thus $i-1 \in\{j, j+1, j+2\}$. And hence, $i>j$. Claim: $d_{\tilde{H}}\left(v_{3}\right)=2$. We know v_{3} cannot have a left edge, else we have nested edges. And if v_{3} has a right edge $v_{3} v_{k}$ with $k \leq i$, we have nested edges and hence a chorded cycle by Lemma 3.8. If v_{3} has a right edge $v_{3} v_{k}$ with $k>i$, since $i>j$, we again get a chorded cycle, $v_{1}, \tilde{H}, v_{j}, v_{t}, \tilde{H}^{-}, v_{i}, v_{1}$ with edge v_{3}, v_{k} as a chord. Thus, $d_{\tilde{H}}\left(v_{3}\right)=2$. Claim: $d_{\tilde{H}}\left(v_{t-2}\right)=2$. We know v_{k-2} cannot have a right edge, else we have nested edges. And if v_{k-2} has a left edge $v_{k-2} v_{l}$ with $l \geq j$, we have nested edges and hence a chorded cycle by Lemma 3.8. If v_{t-2} has a left edge $v_{t-2} v_{l}$ with $l<j$, since $i>j$, we again get a chorded cycle, $v_{1}, \tilde{H}, v_{j}, v_{t}, \tilde{H}^{-}, v_{i}, v_{1}$ with edge $v_{l} v_{t-2}$ as the chord.

In all cases, Subclaim 4.1 holds.
Thus, we may assume the component \tilde{H} does not contain a Hamiltonian path. Choose two paths P_{1} and P_{2} in H such that:
(A) P_{1} and P_{2} are a maximal pair of paths; that is, the sum of the lengths of P_{1} and P_{2} is maximal.
(B) Subject to (A), path P_{1} is as long as possible.

Let $P_{1}=v_{1}, \ldots, v_{t}$ and $P_{2}=u_{1}, \ldots, u_{s}$.
Subclaim 4.2. No endpoint of P_{1} or P_{2} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. No endpoint of P_{1} has a neighbor in P_{2}. Hence, $d_{\tilde{H}}\left(v_{1}\right)=d_{P_{1}}\left(v_{1}\right)$ and $d_{\tilde{H}}\left(v_{t}\right)=d_{P_{1}}\left(v_{t}\right)$. No endpoint p of a path P_{i} or vertex p in $\tilde{H}-\left\langle P_{i}\right\rangle$ can have degree $d_{P_{i}}(p)>2$. Furthermore, $d_{\tilde{H}}\left(v_{1}\right) \leq 2, d_{\tilde{H}}\left(v_{t}\right) \leq 2$, and $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right) \leq 3$.

Proof. Clearly, none of $v_{1}, v_{t}, u_{1}, u_{s}$ has a neighbor outside $\left\langle P_{1} \cup P_{2}\right\rangle$, else P_{1}, P_{2} is not a maximal pair of paths. Furthermore, neither v_{1} nor v_{t} can have a neighbor in P_{2}, else we can choose a maximal pair of paths $P_{1}^{\prime}, P_{2}^{\prime}$ such that P_{1}^{\prime} is longer than P_{1}, contradicting (2). And no endpoint p of a path P_{i} or vertex p in $\tilde{H}-\left\langle P_{i}\right\rangle$ can have degree $d_{P_{i}}(p)>2$, else \tilde{H} contains a chorded cycle. So, $d_{\tilde{H}}\left(v_{1}\right) \leq 2$ and $d_{\tilde{H}}\left(v_{t}\right) \leq 2$.

Suppose $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right) \geq 4$. Clearly, $d_{P_{1}}\left(u_{1}\right)=2$ and $d_{P_{1}}\left(u_{s}\right)=2$, else we have a chorded cycle. But then by Lemma 3.6, we again have a chorded cycle. Hence, $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right) \leq 3$.

Subclaim 4.3. If $\left|P_{2}\right| \leq 3$, then we may assume $\tilde{H}=\left\langle P_{1} \cup P_{2}\right\rangle$.

Proof. Suppose $\left|P_{2}\right| \leq 3$. Without loss of generality, we may assume $d_{P_{1}}\left(u_{1}\right) \leq$ $d_{P_{1}}\left(u_{s}\right)$. It follows from Subclaim 4.2 that $d_{P_{1}}\left(u_{1}\right) \leq 1$ and $d_{H}\left(u_{1}\right) \leq 2$.

Claim: No vertex of P_{2} has a neighbor outside $\left\langle P_{1} \cup P_{2}\right\rangle$.
By Subclaim 4.2, no endpoint or P_{2} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. Hence, if $\left|P_{2}\right| \leq 2$, no vertex of P_{2} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. Thus $\left|P_{2}\right|=3$. Suppose $v_{1} v_{t} \in E(\tilde{H})$. Then any vertex of P_{1} can be regarded as an endpoint of the path, and hence by Subclaim 4.2, no vertex of P_{1} has a neighbor in $\tilde{H}-\left\langle P_{1}\right\rangle$. Furthermore, for any i, j with $i<j$ and $j \neq i+1$, we know that $v_{i} v_{j} \notin E(\tilde{H})$; otherwise, we have nested edges in P_{1}, and by Lemma 3.8, a chorded cycle exists in $\left\langle P_{1}\right\rangle$. Now, since $|\tilde{H}| \geq 15$, it follows that $\left|P_{1}\right| \geq 12$, and $X=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ forms the desired set. Thus, we may assume $v_{1} v_{t} \notin E(\tilde{H})$.

If $u_{1} u_{3} \in E(\tilde{H})$, then no vertex of P_{2} has a neighbor outside $\left\langle P_{1} \cup P_{2}\right\rangle$, else we can form a longer path P_{2}^{\prime}, contradicting (A). Thus, $u_{1} u_{3} \notin E(\tilde{H})$, and hence $d_{P_{1}}\left(u_{1}\right) \leq 1$, $d_{P_{1}}\left(u_{3}\right) \leq 2$ and $d_{\tilde{H}}\left(u_{1}\right) \leq 2, d_{\tilde{H}}\left(u_{3}\right) \leq 3$.

Suppose a vertex on P_{2} has a neighbor w_{1} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. By Subclaim 4.2, clearly $u_{1} w_{1}, u_{3} w_{1} \notin E(\tilde{H})$. So $u_{2} w_{1} \in E(\tilde{H})$. If $d_{\tilde{H}}\left(\left\{u_{1}, u_{3}\right\}\right) \leq 4$, then $X=$ $\left\{v_{1}, v_{t}, u_{1}, u_{3}\right\}$ forms the desired set. Thus, we may assume $d_{\tilde{H}}\left(u_{1}\right)=2$ and $d_{\tilde{H}}\left(u_{3}\right)=$
3. Hence, $d_{P_{1}}\left(u_{1}\right)=1$ and $d_{P_{1}}\left(u_{3}\right)=2$. Clearly, w_{1} has no neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$, else we can form a longer path P_{2}^{\prime} and hence a longer pair of paths P_{1}, P_{2}^{\prime}, contradicting (A). If $d_{\tilde{H}}\left(w_{1}\right) \leq 2$, then $X=\left\{v_{1}, v_{t}, w_{1}, u_{1}\right\}$ forms the desired set. Thus, w_{1} has two neighbors on P_{1}. Note that the vertices w_{1} and u_{3} lie on a path $P=w_{1}, u_{2}, u_{3}$, and w_{1}, u_{3} send two edges each to P_{1}. By Lemma 3.6, there exists a chorded cycle in $\left\langle P_{1} \cup P\right\rangle$, a contradiction. Thus, we may assume no vertex on P_{2} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$, and the claim holds.

Claim: No vertex of P_{1} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$.
Suppose there exists a vertex v_{i} in P_{1} with a neighbor w_{1} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. If $d_{\tilde{H}}\left(w_{1}\right) \leq 2$, then $X=\left\{v_{1}, v_{t}, u_{1}, w_{1}\right\}$ forms the desired set and we are done. Thus, $d_{\tilde{H}}\left(w_{1}\right) \geq 3$. Hence we have one of the following cases:

1. Vertex w_{1} has 3 neighbors in P_{1}, but then \tilde{H} contains a chorded cycle by Lemma 3.4 .
2. Vertex w_{1} has 2 neighbors in P_{1} and one neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$.
3. Vertex w_{1} has 2 neighbors in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ and one neighbor in P_{1}.

Case 4.3.2. Suppose w_{1} lies in case 2 .
Then, vertex w_{1} has two neighbors in P_{1}, say v_{i}, v_{j}, and one neighbor in $\tilde{H}-$ $\left\langle P_{1} \cup P_{2}\right\rangle$, say w_{2}. If $d_{\tilde{H}}\left(w_{2}\right) \leq 2$, then $X=\left\{v_{1}, v_{t}, u_{1}, w_{2}\right\}$ forms the desired set, and we are done. Thus, $d_{\tilde{H}}\left(w_{2}\right) \geq 3$, and one of the following cases must occur:
(a) Vertex w_{2} has 1 neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ and 2 neighbors in P_{1}.
(b) Vertex w_{2} has 2 neighbors in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ and 1 neighbor in P_{1}.
(c) Vertex w_{2} has 3 neighbors in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$.

If w_{2} lies in case (a), we have two vertices on a path w_{1}, w_{2}, each sending two edges to another path P_{1}, and by Lemma 3.6, a chorded cycle exists, a contradiction.

If w_{2} lies in case (b), let w_{3} be the additional neighbor of w_{2} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. If $d_{\tilde{H}}\left(w_{3}\right) \leq 2, X=\left\{v_{1}, v_{t}, u_{1}, w_{3}\right\}$ is the desired set, and we are done. Thus, $d_{\tilde{H}}\left(w_{3}\right) \geq 3$, and hence w_{3} sends two edges to P_{1}, else a path P_{2}^{\prime} longer than P_{2} exists in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$, contradicting the maximality of P_{1}, P_{2}. But then the path w_{1}, w_{2}, w_{3} sends at least 5 edges to P_{1}, and a chorded cycle exists by Lemma 3.5, a contradiction.

Thus, w_{2} lies in case (c). Let w_{3} and w_{4} be neighbors of w_{2} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. If either w_{3} or w_{4} has degree at most 2 in \tilde{H}, we can find the desired set X and we are done. If either w_{3} or w_{4} has another neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$, then we can find a path P_{2}^{\prime} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ longer than P_{2} (since $\left|P_{2}\right| \leq 3$), a contradiction. Thus, w_{3} and w_{4} must each have two neighbors in P_{1}. But then, by Lemma 3.6, a chorded cycle exists, a contradiction.

Case 4.3.3. Suppose w_{1} lies in case 3 .

Let w_{2}, w_{3} be the neighbors of w_{1} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. If $d_{\tilde{H}}\left(w_{2}\right)=2$ or $d_{\tilde{H}}\left(w_{3}\right)=2$, then $X=\left\{v_{1}, v_{t}, u_{1}, w_{2}\right\}$ or $\left\{v_{1}, v_{t}, u_{1}, w_{3}\right\}$ is the desired set and we are done. Thus, $d_{\tilde{H}}\left(w_{2}\right) \geq 3$ and $d_{\tilde{H}}\left(w_{3}\right) \geq 3$. For each of w_{2} and w_{3} one of the following cases must occur:
(a) The vertex has 1 neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ and 2 neighbors in P_{1}.
(b) The vertex has 2 neighbors in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ and 1 neighbor in P_{1}.
(c) The vertex has 3 neighbors in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$.

Suppose either w_{2} or w_{3} is in case (c), without loss of generality say w_{2}. Then w_{2} has a neighbor w_{4} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ distinct from w_{3}, and hence $w_{3}, w_{1}, w_{2}, w_{4}$ forms a path P_{2}^{\prime} longer than P_{2} (since $\left|P_{2}\right| \leq 3$), a contradiction. Thus, each of w_{2}, w_{3} have at least one neighbor in P_{1}.

Suppose either w_{2} or w_{3} is in case (b), without loss of generality say w_{2}. Then, either w_{2} has a neighbor w_{4} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$ distinct from w_{3} and we get a contradiction as before, or w_{2} is adjacent to w_{3}. Let v_{j} be the neighbor of w_{2} on P_{1}, and let v_{l} be the neighbor of w_{3} on P_{1}. Then, $v_{j}, P, v_{l}, w_{3}, w_{1}, w_{2}, v_{j}$ forms a chorded cycle with the edge $w_{2} w_{3}$ as a chord.

It follows that both w_{2} and w_{3} must lie in case (a). Then, we have five edges between the paths w_{2}, w_{1}, w_{3} and P_{1}, and by Lemma 3.5, a chorded cycle exists, a contradiction.

Thus, if any vertex in P_{1} or P_{2} has a neighbor outside $\left\langle P_{1} \cup P_{2}\right\rangle$, then we can either find the desired set, or we get a contradiction. Hence no vertex in P_{1} or P_{2} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. And because \tilde{H} is connected, it follows that $\tilde{H}=\left\langle P_{1} \cup P_{2}\right\rangle$, and Subclaim 4.3 holds.

Subclaim 4.4. For the endpoints u_{1}, u_{s} of P_{2}, we must have $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right) \geq 1$.
Suppose, to the contrary, that $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right)=0$.
If $v_{1} v_{t} \notin E(H)$ and $u_{1} u_{s} \notin E(H)$, then $v_{1}, v_{t}, u_{1}, u_{s}$ are all independent and each have degree at most 2 in H, hence $X=\left\{v_{1}, v_{t}, u_{1}, u_{s}\right\}$ is the desired set and we are done. Thus, either $v_{1} v_{t} \in E(H)$ or $u_{1} u_{s} \in E(H)$.

Case 4.4.1. Suppose $\left|P_{2}\right| \leq 3$.

Then, by Subclaim 4.3. $\tilde{H}=\left\langle P_{1} \cup P_{2}\right\rangle$. If $v_{1} v_{t} \in E(H)$, then every vertex of P_{1} can be regarded as an endpoint, and no vertex of P_{1} has a neighbor in P_{2}. Hence, every vertex v of P_{1} has $d_{P_{1}}(v)=d_{H}(v)=2$, otherwise we have nested edges and a chorded cycle by Lemma 3.8. We know $\left|P_{1}\right| \geq 8$ since $\left\langle P_{1} \cup P_{2}\right\rangle=\tilde{H} \geq 15$. Thus, v_{1}, v_{3}, v_{5}, v_{7} are all independent, $X=\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$ is the desired set, and we are done.

Thus, $v_{1} v_{t} \notin E(H)$, and hence $u_{1} u_{s} \in E(H)$. Suppose that at least one of v_{1}, v_{t} has degree 1 in P_{1}, or that either $v_{1} v_{3}$ or $v_{t-2} v_{t}$ is in $E(H)$. Then by Lemmas 3.12 and 3.13. one of $v_{2}, v_{3}, v_{4}, v_{5}, v_{t-5}, v_{t-4}, v_{t-3}, v_{t-2}$ has degree 2 in P_{1}, call it v_{i},
and hence is also independent from v_{1}, v_{t}. Thus, $X=\left\{v_{1}, v_{t}, u_{1}, v_{i}\right\}$ is the desired set, and we are done. So, $v_{1} v_{j} \in E(H)$ for some $j \geq 3$ and $v_{i} v_{t} \in E(H)$ for some $i \leq t-3$. Then the path P_{1} could be rewritten with vertex v_{i+1} as an endpoint, and hence $d_{H}\left(v_{i+1}\right)=d_{P_{1}}\left(v_{i+1}\right)$. By Lemma 3.11, vertex v_{i+1} has degree 2 in P_{1}, and hence $X=\left\{v_{1}, v_{i+1}, v_{t}, u_{1}\right\}$ is the desired set, and we are done.

Case 4.4.2. Suppose $\left|P_{2}\right| \geq 4$.

Proof. If $v_{1} v_{t} \in E(\tilde{H})$ and $u_{1} u_{s} \in E(\tilde{H})$, then every vertex of P_{1} and every vertex of P_{2} can be regarded as an endpoint, and no vertex of P_{1} or P_{2} has a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. Hence, every vertex v of P_{1} or vertex u of P_{2} has $d_{P_{1}}(v)=d_{H}(v)=2=$ $d_{P_{2}}(u)=d_{\tilde{H}}(u)$, otherwise we have nested edges and a chorded cycle by Lemma 3.8. We know $\left|P_{1}\right| \geq\left|P_{2}\right| \geq 4$. Thus, $v_{1}, v_{3}, u_{1}, u_{3}$ are all independent, $X=\left\{v_{1}, v_{3}, u_{1}, u_{3}\right\}$ is the desired set, and we are done.

If $v_{1} v_{t} \in E(\tilde{H})$ and $u_{1} u_{s} \notin E(\tilde{H})$, then again for any vertex $v \in P_{1}, d_{P_{1}}(v)=$ $d_{\tilde{H}}(v)=2$. Also u_{1}, u_{s} are independent. And because $d_{P_{1}}\left(u_{1}\right)=0=d_{P_{2}}\left(u_{s}\right)$, we know that $d_{\tilde{H}}\left(u_{1}\right) \leq 2$ and $d_{\tilde{H}}\left(u_{s}\right) \leq 2$. Hence, $X=\left\{v_{1}, v_{2}, u_{1}, u_{s}\right\}$ is the desired set, and we are done.

Thus, $v_{1} v_{t} \notin E(H)$ and $u_{1} u_{s} \in E(H)$. Suppose that at least one of v_{1}, v_{t} has degree 1 in P_{1}, or that either $v_{1} v_{3}$ or $v_{t-2} v_{t}$ is in $E(H)$. Then by Lemmas 3.12 and 3.13, one of $v_{2}, v_{3}, v_{4}, v_{5}, v_{t-5}, v_{t-4}, v_{t-3}, v_{t-2}$ has degree 2 in P_{1}, call it v_{i}, and hence is also independent from v_{1}, v_{t}. Thus, $X=\left\{v_{1}, v_{t}, u_{1}, v_{i}\right\}$ is the desired set, and we are done. So, $v_{1} v_{j} \in E(H)$ for some $j \geq 3$ and $v_{i} v_{t} \in E(H)$ for some $i \leq t-3$. Then the path P_{1} could be rewritten with vertex v_{i+1} as an endpoint, and hence $d_{H}\left(v_{i+1}\right)=d_{P_{1}}\left(v_{i+1}\right)$. By Lemma 3.11, vertex v_{i+1} has degree 2 in P_{1}, and hence $X=\left\{v_{1}, v_{i+1}, v_{t}, u_{1}\right\}$ is the desired set, and we are done.

Thus, $d_{P_{1}}\left(\left\{u_{1}, u_{s}\right\}\right) \geq 1$, and Subclaim 4.4 holds.
Case 4.1. Suppose that $\left|P_{2}\right|=1$.

Then $P_{2}=u_{1}$. By Subclaim 4.3, $\tilde{H}=\left\langle P_{1} \cup P_{2}\right\rangle$. Hence, $\left|P_{1}\right| \geq 14$. And by Subclaim 4.2, $d_{\tilde{H}}\left(u_{1}\right) \leq 2$.

Subcase 1. Suppose $d_{\tilde{H}}\left(u_{1}\right)=2$.
Let $v_{i}, v_{j}, i<j$ be u_{1} 's neighbors on P_{1}. If v_{i}, v_{j} are consecutive on P_{1}, then \tilde{H} contains a Hamiltonian path, and we are done by Subclaim 4.1. Thus, $j \geq i+2$. Furthermore, neither of v_{i}, v_{j} is an endpoint of P_{1} by Subclaim 4.2. By Lemma 3.14, one of v_{i+1}, v_{j-1} has degree 2 in \tilde{H}, say v_{i+1}. Then, $X=\left\{v_{1}, v_{t}, u_{1}, v_{i+1}\right\}$ is the desired set.

Subcase 2. Suppose $d_{\tilde{H}}\left(u_{1}\right)=1$.
At most one vertex in $P_{1}\left[v_{3}, v_{12}\right]$ is adjacent to u_{1}. It follows that there exists in $P_{1}\left[v_{3}, v_{12}\right]$ a group of at least 4 consecutive vertices all nonadjacent to u_{1} and another distinct group of at least 5 consecutive vertices all nonadjacent to u_{1}, say v_{i}, \ldots, v_{i+3} and v_{j}, \ldots, v_{j+4}, or there exists a group of 6 consecutive vertices all nonadjacent to u_{1}, say v_{i}, \ldots, v_{i+5}. Thus, there exist at least three distinct pairs of two consecutive vertices all nonadjacent to u_{1} : either $\left\{v_{i}, v_{i+1}\right\},\left\{v_{i+2}, v_{i+3}\right\}$, and $\left\{v_{j}, v_{j+1}\right\}$; or $\left\{v_{i}, v_{i+1}\right\},\left\{v_{i+2}, v_{i+3}\right\}$, and $\left\{v_{i+4}, v_{i+5}\right\}$.

By Lemma 3.10, at least one vertex from each of the three pairs has degree at most three to P_{1}.

Recall that since v_{1}, v_{t} are endpoints of the path, by Subclaim 4.2, $d_{P_{1}}\left(v_{1}\right) \leq 2$ and $d_{P_{1}}\left(v_{t}\right) \leq 2$. Thus, vertex v_{1} has at most one neighbor in $P_{1}\left[v_{3}, v_{12}\right]$ and vertex v_{t} has at most one neighbor in $P_{1}\left[v_{3}, v_{12}\right]$. Thus, at least one of the three vertices above, all nonadjacent to u_{1} and having degree at most three to P_{1}, is also independent from v_{1} and v_{t}, call it v_{k}. Then, $X=\left\{v_{1}, v_{t}, u_{1}, v_{k}\right\}$ is the desired set, and we are done.

Case 4.2. Suppose that $\left|P_{2}\right|=2$.
Recall by Subclaim 4.2, $d_{P_{1}}\left(\left\{u_{1}, u_{2}\right\}\right) \leq 3$ and $d_{P_{1}}\left(u_{1}\right) \leq d_{P_{1}}\left(u_{2}\right)$. So, $d_{P_{1}}\left(u_{1}\right) \leq 1$ and $d_{P_{1}}\left(u_{2}\right) \leq 2$.

Subcase 1. Suppose $\left\{u_{1}, u_{2}\right\}$ has 2 or more distinct neighbors on P_{1}.

Say these neighbors are v_{i} and v_{j} with $i<j$. We know that j must be at least $i+2$. Otherwise $j=i+1$ and we can form either a Hamiltonian path, if each of u_{1}, u_{s} has an endpoint to P_{1}, in which case we are done by Subclaim4.1, or a maximal pair of paths $P_{1}^{\prime}, P_{2}^{\prime}$ with $\left|P_{1}^{\prime}\right|>\left|P_{1}\right|$, a contradiction.

But now, by Lemma 3.14, one of v_{i+1}, v_{j-1}, call it v_{l} has degree 2 in \tilde{H}. Hence, $X=\left\{v_{1}, v_{t}, u_{1}, v_{l}\right\}$ forms the desired set, and we are done.

Subcase 2. Suppose $\left\{u_{1}, u_{2}\right\}$ has one distinct neighbor in P_{1}.
Since $d_{P_{1}}\left(u_{1}\right)<d_{P_{1}}\left(u_{2}\right)$, either $d_{P_{1}}\left(u_{1}\right)=0$ or $d_{P_{1}}\left(u_{1}\right)=1=d_{P_{1}}\left(u_{2}\right)$ and u_{1}, u_{2} have the same neighbor in P_{1}. Thus, $d_{P_{1}}\left(u_{1}\right) \leq 1$ and $d_{\tilde{H}}\left(u_{1}\right) \leq 2$.

If $d_{\tilde{H}}\left(v_{1}\right)=1, d_{\tilde{H}}\left(v_{t}\right)=1$, or either $v_{1} v_{3}$ or $v_{t-2} v_{t} \in E(\tilde{H})$, by Lemmas 3.12 and 3.13, one of $v_{3}, v_{4}, v_{5}, v_{6}, v_{t-5}, v_{t-4}, v_{t-3}$, or v_{t-2} has degree two in \tilde{H}, call it v_{l}. Then, $X=\left\{v_{1}, v_{t}, u_{1}, v_{l}\right\}$ forms the desired set, and we are done.

Thus, v_{1} must have a neighbor v_{i} in $P_{1}\left[v_{4}, v_{t}\right]$ and v_{t} must have a neighbor v_{j} in $P_{1}\left[v_{1}, v_{t-2}\right]$. Then, by Lemma 3.15, $d_{\tilde{H}}\left(v_{i-1}\right)=2$ and $d_{\tilde{H}}\left(v_{j+1}\right)=2$. Thus, $X=$ $\left\{v_{1}, v_{t}, v_{i-1}, v_{j+2}\right\}$ forms the desired set and we are done. This completes Case 4.2.

Case 4.3. Suppose that $\left|P_{2}\right|=3$.
We know $\tilde{H}=\left\langle P_{1} \cup P_{2}\right\rangle$ by Subclaim 4.3. Recall, by Subclaim 4.2, that $3 \geq$ $d_{P_{1}}\left(\left\{u_{1}, u_{3}\right\} \geq 1\right.$. If $u_{1} u_{3} \in E(\tilde{H})$, then there is at most one edge between P_{1} and P_{2}, else a chorded cycle exists. It follows that $d_{\tilde{H}}\left(u_{1}\right) \leq 2$. By Lemmas 3.12 and 3.13 , if $d_{\tilde{H}}\left(v_{1}\right)=1, d_{\tilde{H}}\left(v_{t}\right)=1$, or either $v_{1} v_{3}$ or $v_{t-2} v_{t} \in E(\tilde{H})$, then one of v_{3}, v_{4}, v_{5}, $v_{6}, v_{t-5}, v_{t-4}, v_{t-3}$, or v_{t-2} has degree two in \tilde{H}, call it v_{l}. Then, $X=\left\{v_{1}, v_{t}, u_{1}, v_{l}\right\}$ forms the desired set, and we are done.

Thus, v_{1} must have a neighbor in $P_{1}\left[v_{4}, v_{t}\right]$ and v_{t} must have a neighbor in $P_{1}\left[v_{1}, v_{t-2}\right]$. By Lemma 3.15, if v_{1} has a neighbor v_{i} in $P_{1}\left[v_{4}, v_{t}\right]$ or v_{t} has a neighbor
v_{j} in $P_{1}\left[v_{1}, v_{t-3}\right]$, then either $X=\left\{v_{1}, v_{t}, v_{i-1}, u_{1}\right\}$ or $X=\left\{v_{1}, v_{t}, v_{j+1}, u_{1}\right\}$ forms the desired set, and we are done.

Case 4.4. Suppose that $\left|P_{2}\right|=s \geq 4$.

Suppose both u_{1} and u_{s} have an edge into P_{1}. Then $d_{P_{2}}\left(u_{1}\right)=1$ and $d_{P_{2}}\left(u_{s}\right)=1$, else a chorded cycle exists. Hence, by Subclaim 4.2, $d_{\tilde{H}}\left(u_{1}\right) \leq 2$. Then if $d_{P_{1}}\left(u_{1}\right)=1$ and $d_{P_{1}}\left(u_{s}\right)=1$, we see that $X=\left\{v_{1}, v_{t}, u_{1}, u_{s}\right\}$ is the desired set. Thus, $d_{P_{1}}\left(u_{s}\right) \geq 2$. Let v_{i}, v_{j} be neighbors of u_{s} on P_{1}. Consider vertex u_{s-1}; if it has degree at most 2 in \tilde{H}, then $\left\{v_{1}, v_{t}, u_{1}, u_{s-1}\right\}$ is the desired set, and we are done. Hence, u_{s-1} must have degree 3 or more. If u_{s-1} has degree 3 in P_{2}, a chorded cycle exists, a contradiction. Thus u_{s-1} has a neighbor in P_{1} or in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$. If u_{1} or u_{s-1} has an edge to the left or the right of both v_{i} and v_{j}, we have three parallel edges between P_{1} and P_{2} and hence a chorded cycle exists by Lemma 3.4. Thus, the neighbors on P_{1} of u_{1} and u_{s-1} must lie in $P_{1}\left[v_{i}, v_{j}\right]$. But then we again get three parallel chords, or three crossing chords, and hence a chorded cycle by Lemma 3.4. Thus, u_{s-1} must have a neighbor w_{1} in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$.

If $d_{\tilde{H}}\left(w_{1}\right) \leq 2$, then $\left\{v_{1}, v_{t}, u_{1}, w_{1}\right\}$ is the desired set, and we are done. Thus, $d_{\tilde{H}}\left(w_{1}\right) \geq 3$. Vertex w_{1} cannot have a neighbor in $\tilde{H}-\left\langle P_{1} \cup P_{2}\right\rangle$, else we can form a longer pair of paths P_{1}, P_{2}^{\prime}, a contradiction. Furthermore, vertex w_{1} cannot have two neighbors in P_{1}, else by Lemma 4 we have a chorded cycle, since u_{s} has two neighbors in P_{1}. Thus, vertex w_{1} has two neighbors in P_{2} and one neighbor in P_{1}.

Let v_{l} be the neighbor of u_{1} in P_{1} and v_{m} be the neighbor of w_{1} in P_{1}. Vertex w_{1} is not adjacent to u_{1} or u_{s}, hence w_{1} 's second neighbor u_{i} in P_{2} lies in $P_{2}\left[u_{2}, u_{s-1}\right)$. Then $w_{1}, P_{2}^{-}\left[u_{s-1}, u_{1}\right], v_{i}, P_{1}^{ \pm}\left(v_{i}, v_{j}\right], v_{m}, w_{1}$ forms a chorded cycle with $w_{1} u_{i}$ as a chord, a contradiction.

Thus, in all cases, Claim 4 holds.

Thus, \tilde{H} is connected with $|\tilde{H}| \geq 15$, and there exists a set X in \tilde{H} containing

4 independent vertices such that $d_{\tilde{H}}(X)=d_{H}(X) \leq 8$. It follows that $d_{\mathscr{C}}(X) \geq$ $12 k-3-8=12 k-11>12(k-1)$. And hence there exists $C \in \mathscr{C}$ such that $d_{C}(X) \geq 13$. By Lemma 3.3, for any $x_{i} \in X, d_{C}\left(x_{i}\right) \leq 4$. It follows that the possible degree sequences are: $(4,4,4,1),(4,4,3,2),(4,3,3,3)$. Hence, by Lemma 3.3, $C=K_{4}$ since in all cases there exists $x_{i} \in X$ such that $d_{C}\left(x_{i}\right)=4$. Let $C=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$.

Case 1. Suppose we have sequence $(4,4,4,1)$.

Let x_{4} have degree 1 to C and let the vertices x_{1}, x_{2}, x_{3} have degree 4 to C. Without loss of generality, say x_{4} is adjacent to v_{1}.

Since \tilde{H} is connected, there is a path from x_{4} to some other $x_{i} \in X$ disjoint from $X-\left\{x_{4}, x_{i}\right\}$. Without loss of generality say there is such a path P connecting x_{4} and x_{3}. (See Figure 3.9.)

Figure 3.9. A path P connecting x_{3} and x_{4}.

Then, $x_{4}, v_{1}, v_{2}, x_{3}, P\left(x_{3}, x_{4}\right]$ is a chorded cycle with $v_{1} x_{3}$ as a chord, and x_{1}, v_{3}, x_{2}, v_{4}, x_{1} is a chorded cycle with $v_{3} v_{4}$ as a chord. Thus, we have two chorded cycles in $\langle\tilde{H} \cup C\rangle$, a contradiction.

Case 2. Suppose we have sequence $(4,4,3,2)$.

Label the vertices of X with $x_{1}, x_{2}, x_{3}, x_{4}$ such that $d_{C}\left(x_{1}\right)=4, d_{C}\left(x_{2}\right)=4$, $d_{C}\left(x_{3}\right)=3, d_{C}\left(x_{4}\right)=2$. Without loss of generality, say x_{4} is adjacent to v_{1} and v_{2}.

Since \tilde{H} is connected, there is a path P from x_{4} to some other $x_{i} \in X$ disjoint from $X-\left\{x_{4}, x_{i}\right\}$.

Subcase 1. Suppose path P connects x_{4} and the vertex of X with degree 3 to C, that is x_{3}.

Vertices x_{3} and x_{4} have a common neighbor in C, say it's v_{1}. Then $v_{1}, v_{2}, P\left[x_{4}, x_{3}\right]$, v_{1} forms a chorded cycle with edge $v_{1} x_{4}$ as a chord. (See Figure 3.10.) Vertices x_{1} and x_{2} both have degree 4 to C, hence they are both adjacent to v_{3} and v_{4}. Then, $x_{1}, v_{3}, x_{2}, v_{4}, x_{1}$ forms a second chorded cycle with edge $v_{3} v_{4}$ as a chord. (See Figure 3.10.) Thus, we have two chorded cycles in $\langle\tilde{H} \cup C\rangle$, a contradiction.

Subcase 2. Suppose path P connects x_{4} and a vertex of X with degree 4 to C. Without loss of generality, say P connects x_{4} and x_{1}.

Vertices x_{2} and x_{3} have three common neighbors in C, at least one of which is not also a neighbor of x_{4}. Say v_{3} is one of these common neighbors, and call the other one v_{i}. Then $x_{2}, v_{i}, x_{3}, v_{3}, x_{2}$ is a chorded cycle with chord $v_{i} v_{3}$. At least one of x_{4} 's neighbors in C has not yet been used, say v_{1}. Let v_{j} be the last remaining vertex of C. Vertex x_{4} may or may not be adjacent to v_{j}, but certainly x_{1} is adjacent to both v_{1} and v_{j}. Thus, $x_{1}, P, x_{4}, v_{1}, v_{j}, x_{1}$ forms a second chorded cycle with chord $v_{1} x_{1}$. (See Figure 3.11.) Again, we have two chorded cycles in $\langle\tilde{H} \cup C\rangle$, a contradiction.

Figure 3.10. A chorded cycle.

Figure 3.11. A chorded cycle.

Case 3. Suppose we have sequence $(4,3,3,3)$.

Label the vertices of X with $x_{1}, x_{2}, x_{3}, x_{4}$ such that that $d_{C}\left(x_{1}\right)=4, d_{C}\left(x_{2}\right)=3$, $d_{C}\left(x_{3}\right)=3, d_{C}\left(x_{4}\right)=3$. Since \tilde{H} is connected, there is a path from x_{1} to some other $x_{i} \in X$ disjoint from $X-\left\{x_{1}, x_{i}\right\}$. Without loss of generality, say there is such a path P connecting x_{1} and x_{2}. Vertices x_{3} and x_{4} share two neighbors in C, say v_{1}, v_{2}. Then $x_{3}, v_{1}, x_{4}, v_{2}, x_{3}$ is a chorded cycle with $v_{1} v_{2}$ as a chord. Vertex x_{2} has degree 3 to C; therefore, it has some remaining neighbor in C, say v_{4}. Vertex x_{1} is adjacent to both v_{3} and v_{4}. Then, $P\left[x_{1}, x_{2}\right], v_{4}, v_{3}, x_{1}$ is a second chorded cycle with $x_{1} v_{4}$ as a chord. (See Figure 3.12.) Thus, we have two chorded cycles in $\langle\tilde{H} \cup C\rangle$, a contradiction.

Figure 3.12. Two chorded cycles in $\langle\tilde{H} \cup C\rangle$.

In all cases we get a contradiction. Thus, there cannot be an edge-maximal counterexample and the proof is complete.

Bibliography

[1] S. Chiba, S. Fujita, Y. Gao, and G. Li. On a sharp degree sum condition for disjoint chorded cycles. Graphs and Combinatorics, 26:173-186, 2010.
[2] K. Corradi and A. Hajnal. On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar., 14:423-439, 1963.
[3] G.A. Dirac. Some theorems on abstract graphs. Proc. Lond. Math. Soc., 2:6981, 1952.
[4] H. Enomoto. On the existence of disjoint cycles in a graph. Combinatorica, 18:487-492, 1998.
[5] D. Finkel. On the number of independent chorded cycles in a graph. Discrete Mathematics, 308:5265-5268, 2008.
[6] S. Fujita, H. Matsumura, M. Tsugaki, and H. Yamashita. Degree sum conditions and vertex disjoint cycles in a graph. Australasian Journal of Combinatorics, 35:237-251, 2006.
[7] R.J. Gould. Graph Theory. Dover Pub. Inc., 2012.
[8] R.J. Gould, K. Hirohata, and P. Horn. On independent doubly chorded cycles. Discrete Mathematics, 338:2051-2071, 2015.
[9] R.J. Gould, K. Hirohata, and A. Keller. On chorded cycles and degree sum conditions. Preprint.
[10] R.J. Gould, K. Hirohata, and A. Keller. On vertex disjoint cycles and degree sum conditions. Discrete Mathematics, 341:203-212, 2018.
[11] P. Justesen. On independent circuits in finite graphs and a conjecture of erdos and posa. Annals of Discrete Math., 41, 1989.
[12] L. Lovász. Combinatorial Problems and Exercises. North Holland Publishing Company, 1993.
[13] O. Ore. A note on hamiltonian circuits. Amer. Math. Monthly, 67:55, 1960.
[14] L. Pósa. Problem no. 127 (in hungarian). Mat. Lapok, 12:254, 1961.
[15] H. Wang. On the maximum number of independent cycles in a graph. Discrete Mathematics, 205:183-190, 1999.

