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Abstract

Statistical Methods for Biomedical Network Data

By

Qingpo Cai

There are tens of thousands of units in a biological system. Network representa-
tions have been used to describe interactions between these units. Studying biological
networks is a key to understand complex biological activities. In this dissertation, we
develop statistical methods for analyzing biological network data, aiming to find sub-
network or network marker strongly associated with the clinical outcome of interest.

Selecting informative nodes over large-scale networks becomes increasingly im-
portant in many research areas. Most existing methods focus on the local network
structure and incur heavy computational costs for the large-scale problem. In the
first project, we propose a novel prior model for Bayesian network marker selection
in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian
Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize
the conditional dependence between neighboring markers accounting for the global
network structure. Under mild conditions, we show the proposed model enjoys the
posterior consistency with a diverging number of edges and nodes in the network. We
also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior
computation, which is scalable to large-scale networks. We illustrate the superiorities
of the proposed method compared with existing alternatives via extensive simulation
studies and an analysis of the breast cancer gene expression dataset in the Cancer
Genome Atlas (TCGA).

Untargeted metabolomics using high-resolution liquid chromatography - mass
spectrometry (LC-MS) is becoming one of the major areas of high-throughput bi-
ology. Functional analysis, i.e. analyzing the data based on metabolic pathways or
the genome-scale metabolic network, is critical in feature selection and interpreta-
tion of metabolomics data. One of the main challenges in the functional analyses
is the lack of the feature identity in the LC-MS data itself. By matching mass-to-
charge ratio (m/z) values of the features to theoretical values derived from known
metabolites, some features can be matched to one or more known metabolites. When
multiple matching occurs, in most cases only one of the matchings can be true. At
the same time, some known metabolites are missing in the measurements. Current
network/pathway analysis methods ignore the uncertainty in metabolite identification
and the missing observations, which could lead to errors in the selection of signifi-
cant subnetworks/pathways. In the second project, we propose a flexible network
feature selection framework that combines metabolomics data with the genome-scale
metabolic network. The method adopts a sequential feature screening procedure and



machine learning-based criteria to select important sub-networks and identify the op-
timal feature matching simultaneously. Simulation studies show that the proposed
method has a much higher sensitivity than the commonly used maximal matching
approach. For demonstration, we apply the method on a cohort of healthy subjects
to detect subnetworks associated with the Body Mass Index (BMI). The method
identifies several subnetworks that are supported by the current literature, as well as
detect some subnetworks with plausible new functional implications.

Mediation analysis is a modelling framework to study the relationship between
the independent variable (exposure) and the dependent variable (outcome) via in-
cluding the mediator variable. Traditionally, mediation analysis is developed under
regression and causal inference framework, which focuses on measuring or testing the
mediation effect. Alternative to existing mediation analysis framework, we propose
a new mediation analysis framework focusing on predictive modeling in the third
project. We propose new definitions for predictive exposure, predictive mediator
and predictive network mediator. An estimation procedure is proposed to identify
predictive exposure and predictive mediator and simulation studies are conducted to
illustrate the performance of the proposed estimation procedure. Two greedy algo-
rithms are proposed to identify network mediator for single and multiple exposure
variable and are applied on a dataset from Emory-Georgia Tech Predictive Health
Initiative Cohort of the Center for Health Discovery and Well Being.
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1.1 Overview

There are tens of thousands of units in a biological system. Network representations

have been used to describe interactions between these units. There are various kinds

of network in biomedical studies, i.e. protein-protein interaction network (Figure

1.1) (a)), gene regulatory network (Figure 1.1) (b)), Metabolomic network (Figure

1.1) (c)), functional brain network (Figure 1.1) (d)). Studying biological networks is

a key to understand complex biological activities (Barabási et al., 2011; Chan and

Loscalzo, 2012a; Yu et al., 2013). In this dissertation, we develop statistical methods

for analyzing biological network data, aiming to find subnetwork or network marker

strongly associated with the clinical outcome of interest.

(a) Protein-protein interaction network (b) Gene regulatory network

(c) Metabolomic network (d) Functional brain network

Figure 1.1: Examples of different kinds of biomedical networks. (a) Protein-
protein interaction network (Rual et al., 2005); (b) Gene regulatory network (Zhou
et al., 2007); (c) Metabolomic network (Kyoto Encyclopedia of Genes and Genomes,
KEGG); (d) Functional brain network (Schäfer et al., 2014).
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1.2 Variable selection methods for genomic net-

work data

In biomedical research, complex biological systems are often modeled or represented

as biological networks. High-throughput technology such as next generation sequenc-

ing, mass spectrometry and medical imaging has generated massive datasets related

to those biological networks. For example, in omics studies, a biological network

may represent the interactions or dependences among a large set of genes/protein-

s/metabolites; and the expression data are a number of observations at each node

of the network. In neuroimaging studies, a biological network may refer to the func-

tional connectivity among many brain regions or voxels; and the neural activity can

be measured at each node of the network. In many biomedical studies, one important

research question is to select informative nodes from tens of thousands of candidate

nodes that are strongly associated with the disease risk or other clinical outcomes.

We refer to these informative nodes as network markers and the selection procedure

as network marker selection. One promising solution is to perform network marker

selection under regression framework where the response variable is the clinical out-

come and predictors are nodes in the network. The classical variable selection in the

regression model can be considered as a special case of the network marker selection,

where the variable refers to the nodes in the network that has no edges.

For variable selection in regression models, many regularization methods have been

investigated for various penalty terms, including the least absolute shrinkage and se-

lection operator or the L1 penalty (Tibshirani, 1996; Zou, 2006, LASSO), elastic-net or

the L1 plus L2 penalty (Zou and Hastie, 2005), the Smoothly Clipped Absolute Devi-

ation penalty (Fan and Li, 2001, SCAD), the minimax concave penalty (Zhang, 2010,

MCP) and so on. Several network constrained regularized regression approaches have

been developed to improve the selection accuracy and increase the prediction power.
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One pioneering work is the graph-constrained estimation (Li and Li, 2008, Grace),

which adopts the normalized graph Laplacian matrix to incorporate the network de-

pendent structure between connected nodes. As an extension of Grace, the adaptive

Grace (Li and Li, 2010, aGrace) makes constraints on the absolute values of weighted

coefficients between connected nodes. Alternatively, an Lγ norm group penalty (Pan

et al., 2010) and a fused LASSO type penalty (Luo et al., 2012) have been proposed

to penalize the difference of absolute values of coefficients between neighboring nodes.

Instead of imposing constraints on coefficients between neighboring nodes, an L0 loss

to penalize their selection indicators (Kim et al., 2013) has been proposed, leading to

a non-convex optimization problem for parameter estimation, which can be solved by

approximating the non-continuous L0 loss using the truncated lasso penalty (TLP).

In addition to the frequentist approaches, Bayesian variable selection methods

have received much attention recently with many successful applications. The Bayesian

methods are natural to incorporate the prior knowledge and make posterior inference

on uncertainty of variable selection. A variety of prior models have been studied,

such as the spike and slab prior (George and McCulloch, 1993), the LASSO prior

(Park and Casella, 2008), the Horseshoe prior (Polson and Scott, 2012), the non-local

prior (Johnson and Rossell, 2012) , the Dirichlet Laplace prior (Bhattacharya et al.,

2015) and more. To incorporate the known network information, Stingo et al. (2011)

proposed Markov Random Field to capture network dependence and to joint select

pathways and genes and Chekouo et al. (2016) adopted a similar approach for imag-

ing genetics analysis. Zhou and Zheng (2013) proposed rGrace, a Bayesian random

graph-constrained model to combine network information with empirical evidence for

pathway analysis. A partial least squares (PLS) g-prior was developed in Peng et al.

(2013) to incorporate prior knowledge on gene-gene interactions or functional rela-

tionship for identifying genes and pathways. Chang et al. (2016) proposed a Bayesian

shrinkage prior which smoothed shrinkage parameters of connected nodes to a similar
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degree for structural variable selection. Another commonly used Bayesian structural

variable selection method is the Ising model, which has been adopted as a prior model

for latent selection indicators that lay on an undirected graph characterizing the local

network structure. They are especially successful for variable selection over the grid

network motivated by some applications, for example, the motif finding problem (Li

and Zhang, 2010) and the imaging data analysis (Goldsmith et al., 2014; Li et al.,

2015). However, it is very challenging for fully Bayesian inference on the Ising model

over the large-scale network due to at least two reasons: 1) The posterior inference is

quite sensitive to the hyperparameter specifications in the Ising priors based on em-

pirical Bayes estimates or subjective prior elicitation in some applications. However,

fully Bayesian inference on those parameters is difficult due to the intractable normal-

izing constant in the model. 2) Most posterior computation algorithms, such as the

single-site Gibbs sampler and the Swendsen-Wang algorithm, incur heavy computa-

tional costs for updating the massive binary indicators over large-scale networks with

complex structures. In addition, Dobra (2009); Kundu et al. (2015); Liu et al. (2014)

and Peterson et al. (2016) also proposed Bayesian variable selection approaches for

predictors with unknown network structure.

1.3 Metabolomic network data

Metabolomics is the comprehensive analysis of metabolites, i.e. low molecular weight

components, in a biological system (Issaq et al., 2009). In recent years, metabolomics

has become one of the major areas of interest in high-throughput biology (Zhou

et al., 2012; Johnson et al., 2015). There are two general categories of metabolomics:

targeted and untargeted. While targeted metabolomics seeks to accurately quantify

a limited number of metabolites, untargeted metabolomics seeks to profile the entire

metabolome in an unbiased manner (Jones et al., 2012; Sumner et al., 2007). It
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helps to discover biomarkers, unravel disease etiology, evaluate systematic response

to drugs, and detect environmental chemicals in humans (Nicholson et al., 2008; Zhou

et al., 2012).

Untargeted metabolomics is largely made possible by the advances of high-resolution

mass spectrometry platforms, which generate highly accurate mass-to-charge ratio

(m/z) measurements, greatly facilitating metabolite identification (Patti et al., 2012).

Complex preprocessing routines are necessary to ensure high-quality peak detection,

quantification, and alignment across profiles (Zhou et al., 2012; Want and Masson,

2011). After alignment, an aligned peak across the LC-MS profiles is referred to as

a feature. In the downstream data analysis, a major aspect is functional analysis,

i.e. finding pathways or subnetworks that are associated with the clinical outcome

(Johnson et al., 2015).

Unlike other omics technologies, metabolomic profiling by LC-MS does not directly

provide a critical piece of information - the molecular identities of the features. A

single metabolite can produce one or more ion species, due to the presence of various

adduct ions, multiple charge states, and isotopic peaks (Kind and Fiehn, 2010). One

way to tackle this issue is to first reduce the data by grouping and annotating features

derived from the same metabolite (Silva et al., 2014; Kuhl et al., 2012). However this

can be difficult for metabolites that exist in low abundance in the biological sample.

Hence a common practice in biomarker selection and functional analysis is to match

features individually to known metabolites based on mass-to-charge ratio (m/z) (Li

et al., 2013a). Retention time can also be used to improve the matching when such

information is available on known metabolites, and it can help to determine whether

two features are likely to be derived from the same metabolite.

Often a feature can be matched to more than one known metabolite, and a metabo-

lite can be matched to multiple features. This is due to several reasons including (1)

some metabolites have the same molecular weight, (2) some features have extremely
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close m/z values, and (3) various adduct ions and isotopic peaks are possible. At

the same time, due to the sensitivity limits of the technology, some metabolites are

not detected in the data. Figure 1.2 displays a sub-network with potentially matched

features, which is derived from real data. Several features have been matched to

multiple metabolites, and some metabolites have been matched to multiple features.

feature_545

feature_310

C00164

feature_352

feature_630

C00430feature_437

R02084/2.8.3.13

C00332

C00091
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C00042

feature_809
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Figure 1.2: An example sub-network presented as a bi-partite network, with po-
tentially matched LC-MS features linked to the metabolites (dotted lines). The
cyan nodes represent metabolites, the yellow nodes represent reaction, and dark blue
nodes represent LC-MS data features. Four adduct ions are considered: [M + H]+,
[M +Na]+, [M +K]+, and [M +NH4]+, and the m/z tolerance is 10 ppm.

So far, metabolic pathway analyses are conducted without addressing the match-

ing uncertainty problem (Xia and Wishart, 2010; Kessler et al., 2013; Aggio et al.,

2010; Li et al., 2013a; Barupal et al., 2012), i.e. one feature can be matched to more

than one metabolite, with only one of the matching being true. In addition, analyzing

the biological network directly, without dissecting the overall network artificially into

pathways, has been shown to be a very promising approach in other areas of omics
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(Chan and Loscalzo, 2012b). Currently for metabolic network analysis, there are few

dedicated network analysis methods available (Li et al., 2013a). Although methods

can be borrowed from the gene expression field, such methods are not designed to

take into account the the matching uncertainty issue.

1.4 Mediation analysis

Mediation analysis is a modelling framework to study the relationship between the

independent variable (exposure) and the dependent variable (outcome) via including

a third variable, which is defined as the mediator variable. In mediation analysis

framework, besides a direct effect between the exposure and the outcome, it’s assumed

that the exposure has an effect on the mediator, which in turn has an effect on the

outcome. Figure 1.3 depicts the typical setting in mediation analysis.

Figure 1.3: A typical setting in mediation analysis

An early approach for mediation analysis was proposed in Baron and Kenny

(1986), which is a still quite commonly used approach in behavior sciences and psycho-

logical studies (VanderWeele and Vansteelandt, 2009). In Baron and Kenny (1986),

three linear regression models need to be estimated for testing mediation effect. See

Equation (1)-(3) for details. Equation (1) is regressing the outcome on the exposure.

Equation (2) is regressing the mediator on the exposure. Equation (3) is regressing

the outcome on both the mediator and the exposure. Several conditions need to be

satisfied to establish mediation effect. First, β11 in Equation (1) is significant, which



9

requires the exposure must have an effect on the outcome. Second, β21 in Equation

(2) is significant, which requires the exposure must have an effect on the mediator.

Third, β32 in Equation (3) is significant and β31 in Equation (3) is smaller than β11 in

Equation (1), which requires that the mediator must have an effect on the outcome

and that part of the effect of the exposure on the outcome is mediated through the

mediator. Perfect mediation occurs if β31 in Equation (3) is not significant. Within

this regression mediation analysis framework, Sobel’s test (Sobel, 1982) is a widely

used approach to test mediation effect.

Y = β10 + β11X + ε1 (1.1)

M = β20 + β21X + ε2 (1.2)

Y = β30 + β31X + β32M + ε2 (1.3)

The above mentioned regression based mediation analysis has been widely uti-

lized in social science and psychology studies, which usually does not imply causal

relationship between the exposure and the outcome. Recent advances in mediation

analysis has adopted the potential outcome or counterfactual outcome framework in

causal inference (Rubin, 1978; Robins and Greenland, 1992; Pearl, 2001) and has been

widely used for researchers in biostatistics, epidemiology, causal inference field (Van-

derWeele, 2016). Consider an exposure X, a mediator M and an outcome Y (Figure

1.3). Variables like Y (x) is defined as the ’potential outcome’ or ’counterfactual out-

come’ (Robins and Greenland, 1992; Pearl, 2001), which denotes the outcome value if

exposure X were set to x. Similarly, M(x), Y (x,m), Y (x,M(x′)) denote the mediator

value if exposure X were set to x, the outcome value if exposure X were set to x and
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mediator were set to m, the outcome value if exposure X were set to x and medi-

ator were set to M(x′). Given this potential outcome framework, researchers have

proposed the following definitions for direct effect, indirect effect and total effect.

• Direct effect: E[Y (x,M(x))− Y (x∗,M(x))]

• Indirect effect: E[Y (x∗,M(x))− Y (x∗,M(x∗))]

• Total effect: E[Y (x,M(x))− Y (x∗,M(x∗))] =

E[Y (x,M(x))− Y (x∗,M(x))]︸ ︷︷ ︸
direct

+E[Y (x∗,M(x))− Y (x∗,M(x∗))]︸ ︷︷ ︸
indirect

Here direct effect measures the effect of the exposure on the outcome while controlling

the mediator and indirect effect measures the effect of the mediator on the outcome

while controlling for the exposure. Total effect is the sum of direct effect and in-

direct effect. This causal inference framework for mediation analysis with only one

single mediator has been applied in biostatistics (Albert and Nelson, 2011; Zheng

and van der Laan, 2012), epidemiology (Albert, 2012), social sciences (Imai and Ya-

mamoto, 2013) and so on. Built upon this framework for single mediator analysis,

researchers have proposed various approaches to extend the causal inference frame-

work that allows multiple mediators by including the interaction effect between the

exposure and the mediator and the interaction between the mediators (VanderWeele

and Vansteelandt, 2009; Imai et al., 2010; Tchetgen and Shpitser, 2012; van der Laan

and Petersen, 2008; VanderWeele and Vansteelandt, 2014; Daniel et al., 2015; Huang

et al., 2014).

1.5 Outline

In this dissertation, we propose several novel statistical methods to analyze biomedical

network data. In chapter 2, we introduce the thresholded graph Laplacian Gaussian

(TGLG) prior and propose a model for variable selection with incorporating network
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structure under the GLM framework. In chapter 3, we propose a framework for

subnetwork selection and addressing the multiple matching issue with application to

metabolomics data. In chapter 4, we propose a new mediation analysis framework

focusing on predictive modeling. We end this dissertation with a brief discussion and

future work in chapter 5.
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Chapter 2

Bayesian network marker selection

via the thresholded graph

Laplacian Gaussian prior
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2.1 Introduction

In this chapter, we propose a new prior model: the thresholded graph Laplacian

Gaussian (TGLG) prior, to perform network marker selection over the large-scale

network by thresholding a latent continuous variable that is attached to each node.

The joint distribution of all the latent variables is a multivariate Gaussian distribution

with mean zero and covariance matrix constructed by the normalized graph Laplacian

matrix to model the selection dependence over the network. The effect size of each

node is modeled through an independent Gaussian distribution.

Threshold priors have been proposed for Bayesian modeling of sparsity in various

applications. Motivated by the analysis of financial time series data, Nakajima and

West (2013a) and Nakajima and West (2013b) proposed a latent threshold approach

to imposing dynamic sparsity in the simultaneous autoregressive models (SAR). Naka-

jima et al. (2017) further extended this type of models for the analysis of EEG data.

To analyze neuroimaging data, Shi and Kang (2015) proposed a hard-thresholded

Gaussian process prior for image-on-scalar regression; and Kang et al. (2018) intro-

duced a soft-thresholded Gaussian process for scalar-on-image regression. To con-

struct the directed graphs in genomics applications, Ni et al. (2017) adopted a hard

threshold Gaussian prior in a structural equation model. However, all the existing

threshold prior models do not incorporate the useful network structural information,

and thus are not directly applicable to the network marker selection problem.

In this work, we propose to build the threshold priors using the graph Laplacian

matrix, which has been used to capture the structure dependence between neigh-

boring nodes (Li and Li, 2008; Zhe et al., 2013; Li and Li, 2010). Most of those

frequents methods directly specify the graph Laplacian matrix from the existing bi-

ological network. Liu et al. (2014) has proposed a Bayesian regularization graph

Laplacian (BRGL) approach which utilizes the graph Laplacian matrix to specify a

priori precision matrix of regression coefficients. However, BRGL is fundamentally



14

different from our method in that it is one type of continuous shrinkage priors for

regression coefficients which have quite different prior supports compared with our

TGLG priors. BRGL were developed only for linear regression and its computational

cost can be extremely heavy for large-scale networks. In addition, there is lack of

theoretical justifications for BRGL for large-scale networks with a diverging number

of edges and nodes.

Our method is a compelling Bayesian approach to network marker selection over

large-scale networks. The TGLG prior has at least four markable features: 1) Fully

Bayesian inference for large-scale networks is feasible in that the TGLG prior does not

involve any intractable normalizing constants. 2) Posterior computation can be more

efficient, since the TGLG-based inference avoids updating the latent binary selection

indicators and instead updates the latent continuous variables, to which many ex-

isting approximation techniques can be potentially applied. 3) The graph Laplacian

matrix (Chung, 1997; Li and Li, 2008; Zhe et al., 2013) based prior can incorpo-

rate the topological structure of the network which has been adopted in genomics.

4) The TGLG prior enjoys the large support for Bayesian network marker selection

over large-scale networks, leading to posterior consistency of model inference with

a diverging number of nodes and edges under the generalized linear model (GLM)

framework.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

the TGLG prior and propose our model for network marker selection under the GLM

framework. In Section 2.3, we study the theoretical properties for the TGLG prior

and show the posterior consistency of model inference. In Section 2.4, we discuss

the hyper prior specifications and the efficient posterior computation algorithm. We

illustrate the performance of our approach via simulation studies and an application

on the breast cancer gene expression dataset from The Cancer Genome Atlas (TCGA)

in Section 2.5. We conclude our paper with a brief discussion in Section 2.6.
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2.2 The model

Suppose the observed dataset includes a network with pn nodes, one response variable

and q confounding variables. For each node, we have n observations. For observation

i, i = 1, . . . , n, let yi be the response variable, xi = (xi1, · · · , xipn)T be the vector

of nodes and zi = (zi1, · · · , ziq)T be the vector of confounding variables. Denote by

Dn = {zi,xi, yi}ni=1 the dataset. We write the number of nodes as pn to emphasize

on the diverging number of nodes in our asymptotical theory. Drop subscript i to

have generic notation for a response variable y, a vector of nodes x and a vector

of confounders z. Generalized linear model (GLM) is a flexible regression model to

relate a response variable to a vector of nodes and confounding variables. The GLM

density function for (y,x, z) with one natural parameter is:

f ∗(y, h∗) = exp{a(h∗)y + b(h∗) + c(y)}, (2.1)

where h∗ = zTω∗ + xTβ∗ is the linear parameter in the model, ω∗ and β∗ are true

coefficients that generate data, a(h) and b(h) are continuous differentiable functions.

The true mean function is

µ∗ = E(y | z,x) = −b′(h∗)/a′(h∗) ≡ g−1(zTω∗ + xTβ∗),

where g−1(·) is an inverse link function, which can be chosen according to the specific

type of the response variable. For example, one can choose the identity link for the

continuous response and the logit link for the binary response.

In (2.1), coefficient vector ω is a nuisance parameter to adjust for the confounder

effects, for which we assign a Gaussian prior with mean zero and independent co-

variance, i.e. ω ∼ N(0, σ2
ωIq) for σ2

ω > 0. Here Id represents an identity matrix of

dimension d for any d > 0. Coefficient vector β represents the effects of nodes on the
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response variable. Here we perform network marker selection by imposing sparsity on

β. To achieve this goal, we develop a new prior model for β: the thresholded graph

Laplacian Gaussian (TGLG) prior. Suppose the observed network can be represented

by a graph G, with each vertex corresponding to one node in the network. Let j ∼ k

indicate there exists an edge between vertices j and k in G. Let dj represent the

degree of vertex j, i.e., the number of nodes that are connected to vertex j in G.

Denote by L = (Ljk) a pn × pn normalized graph Laplacian matrix, where Ljk = 1 if

j = k and deg(vj) 6= 0, Ljk = −1/
√
djdk if j ∼ k, and Ljk = 0 otherwise. For any

d > 0, denote by 0d an all zero vector of dimension d. For any λ, ε, σ2
α, σ

2
γ > 0, we

consider an element-wise decomposition of β for the prior specifications:

β = α ◦ tλ(γ), γ ∼ N{0pn , σ2
γ(L + εIpn)−1}, α ∼ N(0pn , σ

2
αIpn). (2.2)

Here α = (α1, . . . , αpn)T represents the effect size of nodes. The operator ”◦” is

the element-wise product. The vector thresholding function is tλ(γ) = {I(|γ1| >

λ), . . . , I(|γpn| > λ)}T, where I(A) is the event indicator with I(A) = 1 if A occurs

and I(A) = 0 otherwise. The latent continuous vector γ = (γ1, . . . , γpn)T controls

the sparsity over graph G. We refer to (2.2) as the TGLG prior for β, denoted as

β ∼ TGLG(λ, ε, σ2
γ, σ

2
α). The TGLG prior implies that for any two nodes j and k, γj

and γk are conditionally dependent given others if and only if j ∼ k over the graph

G. In this case, their absolute values are more likely to be smaller or larger than a

threshold value λ together. This further implies that nodes j and k are more likely

to be selected as network marker or not selected together if j ∼ k. Figure 2.1 shows

an example of a graph and the corresponding correlation matrix of γ for ε = 10−2,

where the γ’s of connected vertices are highly correlated.

There are four hyperparameters in the TGLG prior model. The threshold λ

controls a priori the sparsity. When λ→ 0, all the nodes tend to be selected. When
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(a) network (b) correlation

Figure 2.1: An example of the graph and the corresponding correlation matrix of γ
that was constructed from the inverse graph Laplacian matrix

λ → ∞, none of them will be selected. The parameter ε determines the impact

of the network on the sparsity. When ε → ∞, γ’s of connected vertices tend to

be independent while they tend to be perfectly correlated when ε → 0. The two

variance parameters σ2
γ and σ2

α control the prior variability of the latent vectors γ

and α respectively.

Now we discuss how to specify the hyperparameters. For variance terms σ2
γ and

σ2
α, we use the conjugate prior model by assigning the Inverse-Gamma distribution

IG(aγ, bγ) and IG(aα, bα) respectively. We fix σ2
ω as a large value. We assign the

uniform prior to the threshold parameter λ, i.e. λ ∼ Unif(0, λu) with upper bound

λu > 0. We choose a wide range by set λu = 10 in the following content. For

parameter ε, we can either assign an log-normal prior (logε ∼ N(µε, σ
2
ε)) or set as a

fixed small value.

2.3 Theoretical Properties

In this section, we examine the theoretical properties of TGLG prior based network

marker selection under the GLM framework. In particular, we establish the posterior

consistency with a diverging number of nodes in the large-scale networks.

Let ξ ⊂ {1, 2, · · · , pn} denote the set of selected node indices, i.e. I(|γj| > λ) = 1,
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if j ∈ ξ, I(|γj| > λ) = 0, otherwise. The number of nodes in ξ is denoted as |ξ|. For

a model ξ = (i1, · · · , i|ξ|), denote by βξ = (βi1 , · · · , βi|ξ|)T the coefficient of interest,

respectively. Let π(ξ, dβξ, dω) represent the joint prior probability measure for model

ξ, parameters βξ and confounding coefficients ω. Their joint posterior probability

measure conditional on dataset Dn is:

π(ξ, dβξ, dω | Dn) =

∏n
i=1 f(yi, hi)π(ξ, dβξ, dω)∑

ξ′

∫
βξ′

∏n
i=1 f(yi, hi)π(ξ′, dβ′ξ, dω)

,

where hi = zT
i ω+xT

i β. We examine the asymptotic properties of posterior density

function regarding to the Hellinger distance (Jiang, 2007; Song and Liang, 2015)

under appropriate regularity conditions. The Hellinger distance d(f1, f2) between

two density functions f1(x, y) and f2(x, y) is defined as

d(f1, f2) =

[∫ ∫
{f 1/2

1 (x, y)− f 1/2
2 (x, y)}dxdy

]1/2

.

We list all the regularity conditions in the Appendix. We show that the TGLG prior

enjoys the following properties:

Theorem 1. (Large Support for Network Marker Selection) Assume a sequence εn ∈

(0, 1] with nε2n → ∞ and a sequence of nonempty models ξn. Assume conditions

(C1)–(C3) and (C7) hold. Given σ2
α and σ2

γ, for any sufficiently small η > 0, there

exists Nη such that for all n > Nη, we have

π(ξ = ξn) ≥ e−nε
2
n/128 and (2.3)

π(βξ ∈ B(ξn, η) | ξ = ξn) ≥ e−nε
2
n/128 with B(ξn, η) = {β∗j ± ηε2n/|ξn|}j∈ξn . (2.4)

There exists Cn > 0, such that for all sufficiently large n and for any j ∈ ξn:

π(|βj| > Cn | ξn) ≤ e−nε
2
n/4. (2.5)
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This theorem shows that the TGLG prior has a large support for the network marker

selection. Particularly, (2.3) states that the TGLG prior can select the true network

marker with a positive prior probability bounded away from zero, (2.4) ensures that

the prior probability of the coefficients falling within an arbitrarily small neighborhood

of the true coefficients with probability bounded away from zero, and (2.5) indicates

a sufficiently small tail probability of the TGLG prior.

Theorem 2. (Posterior Consistency for Network Marker Selection) For the GLM

with bounded covariates, i.e. |xj| ≤ M for all j = 1, · · · , pn and |zk| ≤ M for all

k = 1, · · · , q, suppose the true node regression coefficients satisfy

lim
n→∞

pn∑
j=1

|β∗j | <∞.

Let εn ∈ (0, 1] be a sequence such that nε2n →∞. Assume conditions (C1)–(C7) hold.

Then we have the following results:

(i) limn→∞ P{π[d(f, f ∗) ≤ εn|Dn] ≥ 1− 2e−nε
2
n/64} = 1.

(ii) For all sufficiently large n: P{π[d(f, f ∗) > εn|Dn] ≥ 2e−nε
2
n/64} ≤ 2e−nε

2
n/64.

(iii) For all sufficiently large n: E{π[d(f, f ∗) > εn|Dn]} ≤ 4e−nε
2
n/32, where d(f, f ∗)

is the Hellinger distance between the true density f ∗ and the density function

f simulated from posterior. Probability measure P and expectation E are both

with respect to data Dn.

This theorem shows that as sample size n goes to infinity, density f sampled from

the posterior converges to true density f ∗ with regarding to Hellinger distance. Please

refer to the Appendix for proofs for both Theorems.
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2.4 Posterior Computation

For the nuisance parameter ω, it can be estimated by its posterior expectation E(ω).

Our interest is to estimate the regression coefficients for nodes β. According to the

model specification, it is straightforward to see that βj = 0 for {j : |γj| ≤ λ}. For

{j : |γj| > λ}, we estimate βj by posterior expectation E(βj||γj| > λ).

We adopt an efficient Metropolis-adjusted Langevin algorithm (MALA) (Roberts

and Rosenthal, 1998) for posterior computation. We introduce a smooth approxima-

tion for the thresholding function:

I(|γj| > λ) ' 1

2

{
1 +

2

π
arctan(

γ2
j − λ2

ε0

)

}
for ε0 → 0,

leading to the analytically tractable first derivative:

∂βj
∂γj

= αj
2γj/ε0

π(1 + (γ2
j − λ2)2/ε2

0)
.

We choose ε0 = 10−8 in the simulation studies and real data application in this article.

Denote by f(yi | ω,α,γ, λ) the likelihood function for all the parameters of inter-

ests for observation i. Let φ(x | µ,Σ) denote the density function of a multivariate

normal distribution with mean µ and covariance matrix Σ and φ+(x | µ, µl, µu, σ2)

denote the density of a truncated normal distribution N+(µ, µl, µu, σ
2) density with

mean µ, variance σ2 and interval [µl, µu]. Let Vω = σ2
ωIq be the variance of the prior

distribution for ω. Let Λγ = (L+εIpn)−1. The key steps in our posterior computation

algorithm include:

• Update ω (Random Walk): Given current ω, Draw ωnew ∼ N(ω, τ 2
ωIq). Set

ω ←− ωnew with probability min
{

1,
φ(ωnew|0,Vω)

∏
i f(yi|ωnew,•)

φ(ω|0,Vω)
∏
i f(yi|ω,•)

}
.

• Update γ (MALA): Given current γ, draw γnew ∼ N{µ(γ), τ 2
γ Ip}, where

µ(γ) = γ +
τ2
γ

2
(∂logf
∂γ
− 1

2
σ2
γΛγγ) with ∂logf

∂γj
=
∑n

i=1(a′(zT
i ω + xT

i β) + b′(zT
i ω +
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xT
i β))xij

∂βj
∂γj

. Set γ ←− γnew with probability min{
1,

φ(γ|µ(γnew),τ2
γ Ip)φ(γnew|0,σ2

γΛγ)
∏
i f(yi|γnew,•)

φ(γnew|µ(γ),τ2
γ Ip)φ(γ|0,σ2

γΛγ)
∏
i f(yi|γ,•)

}
.

• Update ξ: Given γ and λ, update ξ = {j : γj > λ}.

• Update α (MALA): For j /∈ ξ, sample αj ∼ N(0, σ2
α). Draw αnewξ ∼

N
{
µ(αξ), τ

2
αI|ξ|

}
, where µ(αξ) = αξ+

τ2
α

2
(∂logf
∂αξ
−1

2
Σξαξ) with ∂logf

∂αj
=
∑n

i=1(a′(zT
i ω+

xT
i β) + b′(zT

i ω+ xT
i β))xij for j ∈ ξ and Σξ = σ2

αI|ξ|. Update αξ ←− αnewξ with

probability

min
{

1,
φ(αξ|µ(αnewξ ),τ2

αI|ξ|)φ(αnewξ |0,Σξ)
∏
i f(yi|αnewξ ,•)

φ(αnewξ |µ(αξ),τ2
αI|ξ|)φ(αξ|0,Σξ)

∏
i f(yi|αξ,•)

}
.

• Update σ2
γ: Draw σ2

γ ∼ IG(aγ, bγ) where aγ = aγ + p
2

and bγ = bγ +
γTΛ−1

γ γ

2
.

• Update σ2
α: Draw σ2

α ∼ IG(aα, bα) where aα = aα + p
2

and bα = bα +
∑
j α

2
j

2
.

• Update ε (Random Walk, optional) Draw εnew ∼ N(ε, τ 2
ε ). Update ε←− εnew

with probability min

{
1,
|L+εnewIpn |

1
2 1
εnew

exp(− ε
newγT γ

2σ2
γ
− (logεnew−µε)2

2σ2
ε

)

|L+εIpn |
1
2 1
ε

exp(− εγT γ

2σ2
γ
− (logε−µε)2

2σ2
ε

)

}
.

• Update λ: Given λ, draw λnew ∼ N+(λ, λl, λu, σ
2
l ). Set λ ←− λnew with

probability min
{

1,
φ+(λ|λnew,λl,λu,σ2

l )
∏
i f(yi|λnew,•)

φ+(λnew|λ,λl,λu,σ2
l )

∏
i f(yi|λ,•)

}
.

The proposal variances τ 2
γ , τ 2

α and τ 2
ω are all adaptively chosen by tuning accep-

tance rates to 30% for random walk and 50% for MALA (Roberts and Rosenthal,

1998).

Denote by γ(i),α(i), λ(i)(i = 1, · · · , N) the MCMC samples obtained after burn-in.

We estimate the posterior inclusion probability for node j(j = 1, · · · , pn) by

P̂r(βj 6= 0 | Dn) =
1

N

N∑
i=1

I{|γ(i)
j | > λ(i)}.

According to Barbieri et al. (2004), we select the informative nodes with at least 50%

inclusion probability, denote by M̂ = {j : P̂r(βj 6= 0 | Dn) > 0.5} the indices of all
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the informative nodes. To estimate regression coefficients of informative nodes, we

choose the estimated conditional expectation of βj given βj 6= 0 by

Ê{βj | βj 6= 0, Dn} =

∑N
i=1 α

(i)
j I(|γ(i)

j | > λ(i))∑N
i=1 I{|γ

(i)
j | > λ(i)}

, for j ∈ M̂.

2.5 Numerical Studies

2.5.1 Simulation studies

We conducte simulation studies to evaluate performance of the proposed methods

compared with existing methods for many different scenarios.

To generate the networks and observations on nodes, we follow the simulation

settings in Li and Li (2008), Zhe et al. (2013) and Kim et al. (2013). See Figure

2.2 for network structure. We simulate gene networks consisting of m subnetworks

where each subnetwork contains one transcription factor (TF) gene and ten target

genes that are connected to the TF gene. The TF gene expression levels, denoted by

XTF, is generated from the standard normal distribution. Given the XTF, the target

gene expression data, denoted by Xtg, are independently sampled from a normal

distribution with mean 0.5XTF and variance 0.75. This implies that the marginal

correlation between XTF and Xtg is 0.5. Two types of the true network markers

are considered in Simulation 1. Type 1 network markers include one TF gene and its

connected targets; see Figure 2.2(a); Type 2 network markers have one TF gene along

with only part of its connected target genes, see Figure 2.2(b). In Type 1 network,

the model assumptions are satisfied since if one TF gene has signal, all its connected

neighbors also have signal. In Type 2 network, when one TF gene has signal, only part

of its connected neighbors have signal. For Simulation 1, we consider two numbers

of subnetworks: m = 3 and m = 10. The coefficients are random generated from

Unif(1, 3) and then randomly assigned as positive or negative.
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TF

(a) Simulation 1 Type 1

TF

(b) Simulation 1 Type 2

Figure 2.2: Network settings in simulation studies Case 1. Red means network mark-
ers in the true subnetwork. (a) and (b) shows the structure of a subnetwork.

To generate the response variable given the true network markers, we consider bi-

nary and continuous cases, where the continuous response variable are generated from

linear regression, i.e. y ∼ N(Xβ,
∑

i β
2
i /3); and the binary response are generated

from logistic regression, i.e. Pr(y = 1) = 1/{1 + exp(−Xβ)}.

We generate 50 datasets for each scenario. For linear regression, each dataset con-

tains 100 training samples and 100 test samples; for logistic regression, each dataset

contains 200 training samples and 200 test samples.

We compare the proposed TGLG approach with the following existing methods:

Lasso (Tibshirani, 1996), Elastic-net (Zou and Hastie, 2005), Grace (Li and Li, 2008),

aGrace (Li and Li, 2010), L∞ and aL∞ (Luo et al., 2012), TTLP and LTLP (Kim

et al., 2013), BRGL (Liu et al., 2014) and Ising model (Goldsmith et al., 2014; Li et al.,

2015). For the hyper priors in the TGLG approach, we assign weakly informative

priors: σ2
γ ∼ IG(0.01, 0.01), σ2

α ∼ IG(0.01, 0.01). For all the regularized approaches,

we adopt 3-fold cross validations to choose tuning parameters. For the Ising prior

model, we specify the priors as

p(γ) = φ(a, b) exp

[
a
∑
i

γi +
∑
i

{
∑
j∈Ni

bI(γi = γj)}

]
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and βi|γi = 1 ∼ N(0, σ2
β), where Ni denotes the neighbor nodes set of node i. For

hyper prior specifications in Ising model, we fix a = −2 and choose b from 2, 5, 7 and

10 based on model performance. We implement a single-site Gibbs sampler for Ising

model. For the parameter ε(γ ∼ N{0pn , σ2
γ(L + εIpn)−1}) in TGLG, we consider to

fix ε = 10−5 and to update ε with a prior logε ∼ N(−5, 9). To check the influence of

including the known network information, we also consider an i.i.d prior for selection

variable as γ ∼ N{0p, σ2
γIp), which means network information is not included. For

the posterior computation of the Ising model and TGLG, we ran 30, 000 MCMC

iterations with the first 20, 000 as burn-in. For BRGL by Liu et al. (2014), the

network markers are selected when the posterior probability P(|βj| >
√

Var(βj)|Dn)

exceeds 0.5. For different methods, we compare true positives, false positives and AUC

for true network markers recovery, prediction mean squared error (PMSE) for linear

regression and classification error (CE) for logistic regression regarding to outcome.

We report the mean and standard error over 50 datasets for each metric we choose

to compare in the result table.

Table 2.1 summarizes the results for linear regression under different settings. As

we can see, in most cases, the TGLG approach with incorporating network structure

has smallest PMSE, smallest number of false positives with a comparable amount of

true positives compared with existing regularized approaches and Bayesian methods

BRGL and Ising prior model. For the Ising model, we only report the results in the

case of b = 7 since it has an overall best performance among all choices of b values. In

fact, the performance of the Ising model varies greatly for different choices of values

for b and it may perform vary bad with an inappropriate value of b. Table 2.3 shows

the mean computation time over 50 datasets for Ising model and TGLG. It shows

that our method is much more computationally efficient than Ising model, especially

for the large-scale networks. As for the three cases of adopting TGLG approaches,

TGLG with updating ε has the best overall performance regarding to PMSE and false
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positives. TGLG with fixed ε = 10−5 tends to have a larger false positive than TGLG

updating ε and TGLG with i.i.d prior since selection variable for connected nodes are

highly dependent when fixed ε = 10−5. However, TGLG with fixed ε = 10−5 still has

a smaller PMSE than TGLG with i.i.d prior. Compared with TGLG with i.i.d prior,

TGLG with updating ε has a smaller FP and PMSE in most cases. These facts show

that incorporating network structure can improve model prediction performance in

linear regression.

Table 2.2 summarizes the results for the logistic regression under different sim-

ulation settings. Here the TGLG is only compared with Lasso, Elastic-net and the

Ising model. The Ising model has smaller number of false positives in Simulation 1

Type 1 setting than TGLG under all three settings. However, the Ising model has a

larger prediction error and a smaller number of true positives. In all other scenarios,

TGLG outperforms the Ising model. Table 2.3 demonstrates the TGLG approach is

much more computational efficient than the Ising model in Logistic regression. In ad-

dition, TGLG with fixed ε = 10−5 and TGLG with updating ε have a smaller number

of false positives and classification error than TGLG with i.i.d prior in most cases,

which indicates that including network structure could improve model performance

in logistic regression.

2.5.2 scalefree network

To further evaluate the performance of our proposed method, we conduct another

more complicated simulation study. In this simulation study, we generate 50 datasets

with sample size 200 for scalefree network with dimension 1,000. In this simulation,

we consider different network structure and different coefficients for each dataset.

For each dataset, we randomly generate a scalefree network with dimension 1,000.

CovariatesX are generated from a multivariate Gaussian distributionX ∼ N(0, 0.3D),

where D is the shortest path distance matrix between nodes in the generated scalefree
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Table 2.1: Simulation results for linear regression. PMSE: prediction mean squared
error. TP: true positives, FP: false positives. Numbers of true network markers in
Type 1 and Type 2 are 22 and 12, respectively.

Method PMSE TP FP AUC PMSE TP FP AUC

Simulation 1 Type 1 p = 33 Simulation 1 Type 1 p = 110

Lasso 52.3(1.6) 20.6(0.2) 7.3(0.3) 0.861(0.007) 71.6(1.9) 17.2(0.3) 19.6(1.2) 0.847(0.005)

Elastic-net 50.9(1.4) 21.8(0.1) 10.4(0.2) 0.847(0.007) 73.7(1.8) 19.6(0.3) 46.6(2.9) 0.871(0.004)

Grace 56.8(1.5) 21.6(0.1) 10.1(0.2) 0.864(0.007) 87.5(2.0) 17.9(0.4) 37.5(2.5) 0.897(0.004)

aGrace 53.7(1.5) 22.0(0.0) 10.7(0.1) 0.875(0.007) 76.4(2.1) 20.6(0.3) 65.9(3.6) 0.899(0.005)

L∞ 51.4(1.5) 21.8(0.1) 8.9(0.4) 0.970(0.006) 66.5(1.7) 21.5(0.2) 22.7(1.5) 0.973(0.005)

aL∞ 54.2(1.3) 21.8(0.1) 8.2(0.6) 0.669(0.034) 63.5(1.5) 21.5(0.2) 19.6(1.4) 0.946(0.010)

TTLP 54.3(1.6) 21.9(0.0) 10.1(0.4) 0.834(0.019) 72.6(2.0) 20.9(0.4) 44.2(4.6) 0.920(0.004)

LTLP 51.3(1.2) 22.0(0.0) 8.8(0.6) 0.933(0.005) 67.1(1.7) 21.5(0.2) 57.6(2.7) 0.897(0.009)

BRGL 51.0(1.3) 19.5(0.2) 4.1(0.3) 0.883(0.008) 79.7(1.8) 17.9(0.2) 22.1(0.9) 0.867(0.006)

Ising(b=7) 54.9(3.0) 19.7(0.7) 2.9(0.7) 0.925(0.017) 94.9(5.9) 15.1(0.9) 33.9(2.4) 0.786(0.023)

TGLG (γ ∼ N{0pn , σ
2
γIp)) 50.1(1.3) 21.9(0.1) 10.7(0.2) 0.863(0.010) 81.4(2.1) 14.8(0.5) 22.6(2.6) 0.779(0.009)

TGLG (ε = 10−5) 45.2(1.2) 22.0(0.0) 2.2(0.6) 0.912(0.032) 63.9(2.8) 19.7(0.4) 17.8(2.9) 0.899(0.016)

TGLG (logε ∼ N(−5, 9)) 46.0(1.3) 21.9(0.1) 1.7(0.5) 0.968(0.016) 74.1(2.4) 17.1(0.5) 19.3(2.7) 0.847(0.013)

Simulation 1 Type 2 p = 33 Simulation 1 Type 2 p = 110

Lasso 23.1(0.6) 11.7(0.1) 11.8(0.6) 0.904(0.007) 30.6(0.8) 9.5(0.2) 19.1(1.1) 0.874(0.007)

Elastic-net 23.4(0.6) 11.8(0.1) 15.4(0.6) 0.809(0.006) 31.4(0.9) 10.6(0.2) 34.0(2.1) 0.842(0.006)

Grace 25.8(0.6) 11.4(0.1) 14.7(0.6) 0.813(0.005) 35.2(0.8) 9.1(0.2) 25.8(1.9) 0.855(0.005)

aGrace 25.9(0.7) 12.0(0.0) 20.3(0.3) 0.868(0.006) 32.8(0.8) 11.6(0.1) 73.0(3.5) 0.895(0.007)

L∞ 23.8(0.6) 11.9(0.1) 17.2(0.6) 0.812(0.005) 30.3(0.7) 11.3(0.2) 28.9(1.9) 0.928(0.005)

aL∞ 26.1(0.7) 11.9(0.1) 16.9(0.6) 0.643(0.018) 30.6(0.6) 11.3(0.2) 27.1(1.7) 0.893(0.009)

TTLP 25.9(0.8) 12.0(0.0) 20.0(0.5) 0.801(0.008) 32.2(0.8) 11.6(0.2) 64.3(5.2) 0.923(0.004)

LTLP 24.7(0.7) 12.0(0.0) 20.4(0.4) 0.825(0.008) 30.6(0.7) 11.7(0.2) 75.1(3.6) 0.864(0.006)

BRGL 23.7(0.6) 11.4(0.1) 7.3(0.4) 0.938(0.007) 37.7(0.9) 9.9(0.1) 23.8(1.1) 0.876(0.008)

Ising(b=7) 27.8(1.5) 9.9(0.5) 11.6(0.8) 0.855(0.024) 45.8(2.6) 7.6(0.6) 44.5(2.0) 0.709(0.032)

TGLG (γ ∼ N{0pn , σ
2
γIp)) 23.7(0.6) 10.8(0.2) 8.0(0.9) 0.918(0.006) 33.9(0.9) 7.2(0.3) 7.6(1.5) 0.829(0.011)

TTGLG (ε = 10−5) 22.8(0.6) 11.4(0.1) 10.2(0.7) 0.901(0.015) 28.7(1.1) 10.5(0.3) 14.2(2.1) 0.922(0.012)

TGLG (logε ∼ N(−5, 9)) 22.3(0.6) 11.6(0.1) 8.9(0.6) 0.930(0.008) 28.8(0.9) 8.8(0.3) 6.4(1.1) 0.908(0.011)

Table 2.2: Simulation results for logistic regression with sample size is 200. CE:
classification error, number of wrong prediction classification. TP: true positive, FP:
False Postive. Number of true network markers in setup 1 and setup 2 are 22 and 12,
respectively.

Method CE TP FP AUC CE TP FP AUC

Simulation 1 Type 1 p = 33 Simulation 1 Type 1 p = 110

Lasso 20.8(0.7) 21.2(0.1) 6.9(0.4) 0.915(0.006) 30.8(1.1) 19.1(0.4) 25.1(1.7) 0.907(0.004)

Elastic-net 21.0(0.8) 21.4(0.1) 8.4(0.4) 0.920(0.005) 32.6(0.8) 19.9(0.2) 29.4(2.1) 0.916(0.004)

Ising(b=5) 39.2(3.0) 15.2(1.2) 0.0(0.0) 0.937(0.011) 47.6(4.1) 13.5(1.1) 10.2(2.9) 0.826(0.031)

TGLG (γ ∼ N{0pn , σ
2
γIp)) 19.2(0.6) 21.9(0.1) 10.0(0.2) 0.877(0.011) 30.5(0.9) 17.1(0.3) 16.0(1.4) 0.851(0.008)

TGLG (ε = 10−5) 19.4(0.7) 21.8(0.1) 8.0(0.5) 0.858(0.021) 30.8(1.1) 17.6(0.4) 13.0(1.1) 0.870(0.007)

TGLG (logε ∼ N(−5, 9)) 18.7(0.7) 21.8(0.1) 7.5(0.5) 0.875(0.018) 30.4(1.0) 17.3(0.3) 13.4(1.1) 0.858(0.008)

Simulation 1 Type 2 p = 33 Simulation 1 Type 2 p = 110

Lasso 25.2(0.9) 11.7(0.1) 10.1(0.7) 0.934(0.005) 32.7(1.0) 10.6(0.2) 22.7(2.2) 0.941(0.005)

Elastic-net 26.1(0.8) 11.9(0.0) 13.2(0.7) 0.876(0.004) 36.6(1.2) 10.5(0.3) 25.9(2.5) 0.915(0.004)

Ising(b=5) 27.4(1.4) 9.5(0.4) 7.2(0.4) 0.899(0.016) 37.7(2.8) 7.4(0.5) 9.0(1.7) 0.820(0.025)

TGLG (γ ∼ N{0pn , σ
2
γIp)) 22.6(0.8) 11.4(0.1) 4.8(0.6) 0.961(0.007) 29.4(1.2) 9.7(0.3) 6.9(0.9) 0.897(0.0012)

TGLG (ε = 10−5) 23.2(0.8) 11.5(0.1) 6.3(0.6) 0.941(0.010) 29.3(1.0) 9.9(0.3) 6.7(0.6) 0.903(0.010)

TGLG (logε ∼ N(−5, 9)) 22.1(0.8) 11.6(0.1) 5.8(0.7) 0.959(0.005) 28.6(1.0) 10.1(0.2) 6.2(0.8) 0.921(0.009)

Table 2.3: Average computing time with standard deviation in seconds for Ising
model and TGLG based network marker selection. All the calculations are executed
on a desktop computer with 3.40 GHz i7 CPU and 16 GB memory

Linear regression Logistic regression

Ising TGLG Ising TGLG

Simulation 1 Type 1 p = 33 140.1(0.5) 21.5(0.2) 230.1(7.6) 26.7(0.3)

Simulation 1 Type 2 p = 33 140.1(0.5) 21.0(0.3) 229.9(7.6) 26.4(0.2)

Simulation 1 Type 1 p = 110 1191.4(7.1) 31.7(0.2) 1210.1(10.1) 37.7(1.0)

Simulation 1 Type 2 p = 110 1153.4(8.5) 30.6(0.1) 1203.6(8.4) 36.5(0.9)
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network. Coefficients β are randomly generated from Unif(1, 3) and are randomly

assigned as positive or negative for each dataset. Response variable Y is generated

using Y ∼ N(Xβ,
∑
β2
i /3) for linear regression and Pr(Y = 1) = 1/{1 + exp(−Xβ)}

for logistic regression. As for the true signal nodes settings, we consider two cases: 1,

random select 10 connected nodes; 2, random select 10 disconnected nodes. In this

way, we could see the robustness for our proposed method when the model assumption

are violated in case 2 true signal nodes setting. Another concern for TGLG is that

TGLG prior construction depends on the correctly specified network structure. So in

this simulation, we also adopt TGLG with a misspecified network structure, where

20% of the nodes are randomly permuted.

Table 2.4 summarizes the results for scale free network under different simulation

settings. As we can see, when true signal nodes are connected, TGLG with updating

ε has the overall best performance regarding to PMSE or CE, and number of FP.

When true signal nodes are disconnected, TGLG with updating ε still has the best

performance in linear regression, but is slightly worse than TGLG with i.i.d prior in

logistic regression. This fact indicates that our model is robust to true signal settings.

In both true signal nodes settings, TGLG with misspecified network performs worse

than TGLG with correctly misspecified network, but still better than Lasso and

Elastic-net. This fact indicates that prior network specification has an impact on the

performance of TGLG and TGLG is robust to network specification to some extent.

2.5.3 Application to breast cancer data from the Cancer Genome

Atlas

In the real data application, we use the High-quality INTeractomes (HINT) database

for the biological network (Das and Yu, 2012). We apply our method to the TCGA

breast cancer (BRCA) RNA-seq gene expression dataset with 762 subjects and 10, 792

genes in the network. The response variable we consider here is ER status - whether
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Table 2.4: Simulation results for scale free network. True TP is 10. Sample size is
200 and dimension is 1,000.

Method PMSE TP FP AUC CE TP FP AUC

Linear regression Logistic regression

true signal nodes are connected

Lasso 21.7(0.6) 9.5(0.1) 54.4(3.8) 0.982(0.004) 43.3(1.6) 8.4(0.2) 29.6(3.4) 0.954(0.007)

Elastic-net 23.2(0.7) 9.6(0.1) 69.0(3.9) 0.975(0.005) 57.9(2.4) 7.7(0.2) 22.4(3.2) 0.961(0.006)

TGLG (γ ∼ N{0pn , σ
2
γIp)) 21.7(0.8) 9.1(0.1) 13.5(1.9) 0.950(0.007) 37.2(1.3) 7.7(0.2) 8.9(0.9) 0.892(0.011)

TGLG (ε = 10−5) 21.8(0.9) 9.3(0.1) 14.6(1.5) 0.968(0.006) 35.2(1.3) 8.0(0.2) 7.8(0.9) 0.902(0.011)

TGLG (logε ∼ N(−5, 9)) 20.7(0.7) 9.1(0.1) 10.1(1.5) 0.957(0.006) 35.4(1.4) 7.9(0.3) 8.3(1.0) 0.893(0.011)

TGLG (logε ∼ N(−5, 9)) misspecified 21.2(0.8) 9.1(0.1) 11.3(1.5) 0.952(0.007) 37.1(1.3) 7.8(0.2) 9.3(1.1) 0.892(0.012)

True signal nodes are disconnected

Lasso 20.8(0.6) 9.8(0.1) 55.0(3.7) 0.989(0.003) 43.4(1.2) 8.9(0.2) 26.8(3.0) 0.979(0.004)

Elastic-net 22.2(0.7) 9.8(0.1) 68.6(3.9) 0.988(0.003) 55.7(1.9) 8.4(0.2) 27.3(4.0) 0.981(0.003)

TGLG (γ ∼ N{0pn , σ
2
γIp)) 21.4(0.9) 9.4(0.1) 13.4(2.0) 0.974(0.006) 35.4(1.3) 8.6(0.2) 7.9(0.8) 0.931(0.009)

TGLG (ε = 10−5) 21.7(0.8) 9.4(0.1) 16.7(1.9) 0.971(0.006) 35.5(1.4) 8.4(0.2) 7.8(0.9) 0.922(0.010)

TGLG (logε ∼ N(−5, 9)) 20.6(0.8) 9.6(0.1) 11.6(2.1) 0.980(0.004) 36.9(1.5) 8.5(0.2) 9.4(1.1) 0.925(0.009)

TGLG (logε ∼ N(−5, 9)) misspecified 21.3(0.9) 9.4(0.1) 11.4(1.7) 0.969(0.005) 35.3(1.2) 8.5(0.2) 8.4(0.9) 0.928(0.008)

the cancer cells grow in response to the estrogen. The ER status is a molecular char-

acteristic of the cancer which has important implications in prognosis. The purpose

here is not focused on prediction. Rather we intend to find genes and functional

modules that are associated with ER status, through which biological mechanisms

differentiating the two subgroups of cancer can be further elucidated.

We code ER-positive as 1 and ER-negative as 0. We remove subjects with un-

known ER status. In total, there are 707 subjects with 544 ER-positive and 163

ER-negative. We remove 348 gene nodes with low count number, which leaves us

with 10,444 nodes. To apply our methods, we first standardize the gene nodes and

then apply a logistic regression model for network marker selection. For prior settings,

we use σ2
γ ∼ IG(0.01, 0.01), σ2

α ∼ IG(0.01, 0.01) and σ2
ω = 50. We fix λ at different

grid values and choose λ = 0.004 by maximizing the likelihood values. The MCMC

algorithms runs 100,000 iterations with first 90,000 as burn-in and thin by 10. We

run the chain with 3 different initial values and the Gelman-Rubin diagnostic statistic

is [1.07,1.15], which shows convergence of the chain.

A total of 470 genes are selected as network marker by our approach. To facilitate

data interpretation, we conduct the community detection on the network containing

the selected network markers and their one-step neighbors (Clauset et al., 2004).

There is a total of eight modules that contain 10 or more selected genes. The modules
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and their over-represented biological process are identified using the ‘GOstats’ package

(Falcon and Gentleman, 2007)

Figure 2.3 shows two example network modules. The first example (Figure 2.3(a))

contains 95 selected gene network markers, including 14 that are connected with

other network markers. The top 5 biological processes associated with these 95

genes are listed in Table 2.5. The most significant biological process that is over-

represented by the selected genes in this module is regulation of cellular response to

stress (p=0.00016), with 14 of the selected genes involved in this biological process.

Besides the general connection between stress response and breast cancer, ER sta-

tus has some specific interplay with various stress response processes. For example,

breast cancer cells up-regulate hypoxia-inducible factors, which cause higher risk of

metastasis (Gilkes and Semenza, 2013). Hypoxia inducible factors can influence the

expression of estrogen receptor (Wolff et al., 2017). In addition, estrogen changes the

DNA damage response by regulating proteins including ATM, ATR, CHK1, BRCA1,

and p53 (Caldon, 2014). Thus it is expected that DNA damage response is closely

related to ER status.

Five other genes in this module are involved in the pathway of regulation of anion

transport, which include the famous mTOR gene, which is implicated in multiple

cancers (Le Rhun et al., 2017). The PI3K/AKT/mTOR pathway is an anticancer

target in ER+ breast cancer (Ciruelos Gil, 2014). The other four genes, ABCB1 (Jin

and Song, 2017), SNCA (Li et al., 2018), IRS2 (Yin et al., 2017) and NCOR1 (Lopez

et al., 2016) are all involved in some other types of cancer.

In ER- breast cancer cells, the lack of ER signaling triggers the epigenetic silenc-

ing of downstream targets (Leu et al., 2004), which explains the significance of the

biological process ”negative regulation of gene silencing”. Many genes in the ”cardiac

muscle cell development” processes are also part of the growth factor receptor path-

way, which has a close interplay with estrogen signaling (Osborne et al., 2005). Four
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of the genes fall into the process ”regulation of B cell proliferation”. Among them,

AHR has been identified as a potential tumor suppressor (Formosa et al., 2017). ERα

is recruited in AhR signaling (Matthews and Gustafsson, 2006). IRS2 responds to

interleukin 4 treatment, and its polymorphism is associated with colorectal cancer

risk (Yin et al., 2017). CLCF1 signal tranduction was found to play a critical role

in the growth of malignant plasma cells (Burger et al., 2003). It appears that these

genes are found due to their functionality in signal transduction, rather than specific

functions in B cell proliferation.

(a) (b)

Figure 2.3: Two example modules of selected genes.

The second example is a much smaller module including 14 selected genes. Six

of the 14 genes are involved in both hemopoiesis and immune system development

(Table 2.5). They are all signal transducers. Among them, AGER is a member of

the immunoglobulin superfamily of cell surface receptors, which also acts as a tu-

mor suppressor (Wu et al., 2018). CD27 is a tumor necrosis factor (TNF) receptor.

Treatment with the estrogen E2 modulates the expression of CD27 in the bone mar-

row and spleen cells (Stubelius et al., 2014). TNFSF18 is a cytokine that belongs to

the tumor necrosis factor (TNF) ligand family. Although its relation with estrogen

and breast cancer is unclear, its receptor GITR shows increased expression in tumor-
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Table 2.5: Selected goterm results for the two selected modules shown in Figure
2.3. The upper part is the Goterm results for Figure 2.3(a) and the lower part is the
Goterm results for Figure 2.3(b).

GOBPID Pvalue Term

GO:0080135 0.0001618 regulation of cellular response to stress

GO:0044070 0.000381 regulation of anion transport

GO:0060969 0.0004409 negative regulation of gene silencing

GO:0055013 0.000757 cardiac muscle cell development

GO:0030888 0.0009629 regulation of B cell proliferation

GOBPID Pvalue Term

GO:0030097 0.00006398 hemopoiesis

GO:1902533 0.0003036 positive regulation of intracellular signal transduction

GO:0002250 0.0004063 adaptive immune response

GO:0032467 0.0004452 positive regulation of cytokinesis

GO:0070229 0.0005767 negative regulation of lymphocyte apoptotic process

positive lymph nodes from advanced breast cancer patients (Krausz et al., 2012),

and is targeted by some anti-cancer immunotherapy (Schaer et al., 2012). UBD is a

ubiquitin-like protein, which promotes tumor proliferation by stabilizing the transla-

tion elongation factor eEF1A1 (Liu et al., 2016).

Interestingly, three of the other top biological processes are also immune pro-

cesses. In normal immune cells, estrogen receptors regulate innate immune signaling

pathways (Kovats, 2015). In addition, some of the selected genes in these pathways

have been found to associate with cancer. Examples include AURKB, which belongs

to the family of serine/threonine kinases, and contributes to chemo-resistance and

poor prognosis in breast cancer (Zhang et al., 2015), and SVIL, which mediates the

suppression of p53 protein and enhances cell survival (Fang and Luna, 2013).

Overall, genes selected by TGLG are easy to interpret. Many known links exist

between these genes and ER status, or breast cancer in general. Still many of the

selected genes are not reported so far to be linked to ER status or breast cancer. Our

results indicate they may play important roles.
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2.6 Discussion

In summary, we propose a new prior model: TGLG prior for Bayesian network marker

selection over large-scale networks. We show the proposed prior model enjoys large

prior support for network marker selection over large-scale networks, leading to the

posterior consistency. We also develop an efficient Metropolis-adjusted Langevin al-

gorithm (MALA) for posterior computation. The simulation studies show that our

method performs better than existing regularized regression approaches with regard

to the selection and prediction accuracy. Also, the analysis of TCGA breast cancer

data indicates that our method can provide biologically meaningful results.
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Chapter 3

Network Marker Selection for

Untargeted LC-MS Metabolomics

Data
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3.1 Introduction

In this chapter, we propose a unified framework for network feature selection from

the metabolic network along with optimal matching detection. First, we adopt the

ego-network concept for easy delineation of subnetworks from a large-scale biologi-

cal network (Yang et al., 2014); Next, we develop a sequential optimizing procedure

which conducts feature selection of subnetworks based on their predictive power of the

clinical outcome, and detects the optimal matching between features and metabolites.

To the best of our knowledge, we are the first to address the matching uncertainty

issue in metabolomic network analysis. Our proposed framework provides a very flex-

ible sequential optimization procedure that can incorporate various machine learning

algorithms to identify the most important subnetworks while finding optimal match-

ing, including the Naive Bayes method which is in concept close to the common

enrichment-based methods.

In actual application the user can choose what adduct ions and isotope peaks

should be allowed. There is clearly a trade-off. The more adduct ions and iso-

tope peaks allowed, the more potential matching between features and metabolites.

However at the same time, more false matchings are included in the computation,

because there are features derived from pure noise in untargeted metabolomics data.

In this study we choose to use a conservative approach, allowing only four common

adduct ions and the most abundant isotopes: [M +H]+, [M +Na]+, [M +K]+, and

[M +NH4]+. We evaluate the performance of our proposed method using simulation

studies, and illustrate the proposed framework on a metabolome-wide association

study (MWAS) of body mass index (BMI) in a healthy cohort.
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3.2 Method

3.2.1 The setup of the problem

Suppose the dataset contains n samples with p features. For i = 1, · · · , n and

j = 1, · · · , p, denoted by xij observation i for feature j and by yi an outcome

variable, which could be continuous or categorical. Write xj = (x1j, · · · , xnj)T ,

X = (x1, · · · , xp) and y = (y1, · · · , yn)T . A network of q metabolites is also given.

Let D = {Dkl}q×q denote the distance matrix of the metabolic network, where

Dkl ∈ {1, 2, · · · } indicates the distance between metabolites k, l. The distance here

is defined as the shortest path between two nodes in a graph. In the rest of paper

we will not distinguish metabolite and node. Given the allowed adduct ions and m/z

difference tolerance level, let mk denote the number of features that could possibly

match to metabolite k in the network and fk = {fk1, · · · , fkmk} be the collection

of those features, where fkh ∈ {1, · · · , p}, h ∈ {1, · · · ,mk}. The uniqueness of this

problem lies in the fact that fk ∩ fl 6= ∅, for some k 6= l. This indicates that one

feature may be matched to multiple metabolites.

Let tj denote the number of possible metabolites that could match with feature

j in the network and uj = {uj1, · · · , ujtj} be the collection of those metabolites,

where ujg ∈ {1, · · · , q}, for g = 1, · · · , tj. In addition to the metabolomics data,

suppose r demographic covariates are collected, denoted by zi = (zi1, · · · , zir)T . Write

Z = (z1, · · · , zn)T . The goal of this paper is to develop a framework to simultaneously

select important network markers and identify the optimal matching of features to

the metabolites on the network, while adjusting for demographic covariates.

3.2.2 Metabolic ego networks

In this study, we adopt the ego-network approach to delineate the sub-network struc-

ture, which is a well-defined notation in social network studies (Borgatti et al., 2009),
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Table 3.1: Notation Definition

Notation Definition

Z demographic covariates

D largest ego-radius

vsk nodes with distance ≤ s to node k

F s
k feature set of nodes vsk
esk predictive error for F s

k and Z

Ek Ego-network for node k

T number of iterations for optimal matching

Fk feature sets in Ek
]{Fk} number of unique features in Fk
Nk node sets in Ek
ek predictive error of Ek
M predefined largest predictive error

F̃k selected feature from {Fk, Z}
Q set for ego node id

and previously applied in the genomics setting (Yang et al., 2014). An ego-network

consists of a centroid node, referred as ego-node, and its neighborhood defined as

a set of nodes within certain distance to the ego-node over the network. We refer

to this distance as the ego-radius. An ego-network can be grown by increasing the

corresponding ego-radius and including more nodes. Let D be the upper bound of

the ego-radius for all the possible ego-networks in the network. We fix D = 2 in the

following content. Given an ego-radius, we can obtain all the nodes and potentially

matched features of the ego network. Furthermore, we can evaluate the performance

of the ego network based on a criterion, i.e., capability of the matched features to

predict the clinical outcome in cross-validation, based on which we can rank all the

ego-networks. Our framework is general such that any machine learning or statistical

predictive model can be used, as long as they are capable of variable selection.

Table 3.1 provides a summary of all the notations and their definitions used in the

general workflow (Figure 3.1). Specifically, let vsk be a set of metabolites with distance

smaller than or equal to s to metabolite k. Denote by F s
k the matched feature set
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of metabolites vsk and by esk the predictive error of ego-network for metabolite k with

ego-radius s, which is calculated using some machine learning algorithms based on

outcome y and covariates {Z, F s
k}. The left box of Figure 3.1 is the proposed algorithm

to determine the ego-network for each node in the network without considering the

multiple matching issue.

3.2.3 Optimal matching

Next we address the multiple matching issue for network feature selection. The

proposed method uses a sequential feature screening procedure to select important

sub-networks and identifies the optimal matching. Let Ek denote the ego-network for

node k and ek is the predictive error of Ek. In addition, Fk and Nk are the set of

features and nodes of Ek. F̃k is the set of feature selected from {Fk, Z} of optimal

matching, besides demographic variables. Let T (T ≤ q) be the number of top ego-

networks that we select and conduct the optimal matching. T is pre-specified and

fixed in the algorithm. The algorithm for ego-network selection and optimal matching

is described in Figure 3.1.

Our main idea for developing this algorithm lies in that for features that can match

to multiple metabolites, the true matching more likely corresponds to the one where

it yields the lowest predictive error, together with neighboring metabolites. In each

iteration, we first select the ego-network with the lowest predictive error and conduct

a statistical feature selection procedure within the ego network. Based on the feature

selection results, we assign each selected feature to the ego-network, and most likely

to a specific metabolite when no two metabolites share molecular weight in the ego

network. This can bring changes to the matching between features and metabolites

in some other ego-networks. Then we keep the selected ego-network fixed and re-

fit predictive models for all other ego-networks affected by the change of matching.

Repeat the procedures for ego-network selection and feature/matching selection until
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start iter =1

iter ≤ T?

Given current matching, cal-
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]{Fk} > 1?
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Figure 3.1: The general workflow of the method.
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enumerating all ego-networks or a predefined number of iterations is met.

In many applications, it is desirable to consider demographic variables, e.g. age,

gender, ethnicity etc. Our framework easily accommodates this need by forcing all the

demographic variables to be used in predictive model fitting, regardless of the feature

selection results. In rare occasions, features with the same m/z value but different

retention time are matched to the same metabolite. However, only one matching can

be true. In this case, the matching with the lowest predictive error is retained.

3.3 Simulation

Simulation studies are conducted to evaluate the performance of our proposed method.

Here we directly adopt the KEGG human metabolic network (Kanehisa et al., 2016),

as well as a real metabolomics dataset. The KEGG network was downloaded and

extracted using R packages KEGGREST (Tenenbaum, 2016) and igraph (Csardi and

Nepusz, 2006). For the real data, demographic covariates are omitted in simulation.

In total, 1074 features are matched to 944 unique metabolites in the network, with

another 1306 metabolites not matched by any feature. Of all these features, 685 have

only one matched metabolite and 389 have been matched to multiple metabolites. For

the purpose of simulation, a random matching for these 389 features with multiple

matched nodes is set as the true matching.

Given some features have zero readings from some samples, which can be caused by

either true non-presence or non-detection due to low signal strength, we use features

with less than 20% 0’s to generate the response variable and use features with less

than 50% 0’s to calculate the predictive error of an ego-network. For each simulation,

we randomly choose a sub-network as the ground truth ego-network and randomly

sample more than two features with less than 20% 0’s from the selected sub-network
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to generate response variable using a logistic regression model, i.e. for i = 1, . . . , n,

Pr(yi = 1) =
1

1 + exp(−xTi β)
,

where the response variable yi ∈ {0, 1}. The sample size is 499, and the number of

true predictors is between 2 and 11.

We generate 100 datasets in this simulation study. The mean and median number

of features in the true ego-network are 3.61 and 3, respectively. In this simulation,

we only make changes to the top 20 ego-networks ranked by classification accuracy

(T = 20). Four methods are considered here for comparisons: logistic regression

(LR), naive Bayes classifier (NBC), random forest (RF) (Breiman, 2001) and support

vector machine (SVM) (Cortes and Vapnik, 1995). We calculate the predictive error

using a 5-fold cross validation. Recursive Feature Elimination (RFE) (Kuhn, 2008)

procedure implemented in R package “caret” is adopted for feature selection. For com-

parison, we also conduct the simulation without considering the multiple matching

issue - every ego-network uses all the features possibly matched to the ego-network,

which we refer to as “maximum matching” in the following discussion. Note that all

currently existing methods implicitly use the maximum matching method as they do

not consider the multiple matching issue. Also, the naive Bayes (NB) approach paired

with the maximum match is in essence similar to the predominant enrichment-based

analysis, such as Mummichog etc (Li et al., 2013a).

Figure 3.2(a) presents a summary of the network marker selection accuracy for

our proposed optimal matching method and the maximum matching method. We

first compare the sensitivity and specificity of selecting the correct features from

all features. Because most features are in the negative class, we use the precision-

recall curve to summarize the results from each simulated dataset, and compute the

Area Under Curve (AUC). We then use boxplots to compare the AUC values of the
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methods (Figure 3.2a). It is clear that the optimal matching produced better AUC

than maximum matching. Among the four prediction methods, logistic regression

performed the best, which is no surprise given the data is simulated from a logistic

regression model. Among the more flexible machine learning methods, Random Forest

achieved the best performance.

We then focus on the true ego networks that are used to generate the y value,

and compare the selection accuracy of the features in the true ego network. Figure

3.2(b-e) display the precision (true positive divided by all selected) of the features,

where the optimal matching approach produces a better precision (red) compared to

the maximum matching approach (blue) in most cases.

Figure 3.2(f) compares the recovery of the predictive features in the true ego net-

work. Four categories for the selection results are considered here: features in selected

ego-network are exactly the same as all the true features (Same); features in selected

ego-network contain all the true features and some false positive features (Large);

features in selected ego-network are a subset of the true features (Small); features in

selected ego-network and true features partially overlap (Mixed). Computational time

for different methods are also compared. Computation time is the average CPU time

in seconds per simulation across 100 simulations. All the simulations are executed on

a desktop computer with 3.40 GHz i7 CPU and 16 GB memory.

In addition to the frequency in all categories, the size ratios are also calculated

(Figure 3.2(g)) except for the ”Same” category. In a ”Large” or ”Small” selected ego-

network, the size ratio is defined as the ratio of the number of selected features over the

number of true features. For a ”Mixed” selected ego-network, the size ratio is defined

as the ratio of the number of the shared features over the number of true features.

Of note, a ”Large” selected ego-network with a smaller size ratio has a more accurate

selection. On the other hand, a ”Small” selected ego-network or a ”Mixed” selected

ego-network with a larger size ratio indicates a better selection result. Overall, the
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(a) Feature level precision-recall curve AUC (b) Logistic Regression

(c) Naive Bayes Classifier (d) Random Forest (e) Support Vector Ma-
chine

(f) Recovery of the predictive features in the true ego network

(g) Selection ratio of the true ego network (closer to 1 is better)

Figure 3.2: A comparison of sensitivities between the proposed optimal matching
and the maximum matching method. (a) Boxplots of area under the curve (AUC)
of feature-level precision-recall (PR) curve. (b) to (e) Comparison of precision in the
true ego network for individual simulated datasets. Red: optimal matching; blue:
maximum matching. (f) Feature selection accuracy for the true ego network. Ratios
of the four categories are followed by 95% confidence interval. Computing time (last
column) is followed by standard deviation. (g) Selection ratios of the methods.
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optimal matching approach (Figure 3.2(b), orange bars) produces better size ratios.

3.4 Application

3.4.1 Dataset

We test our network marker selection framework in the Emory-Georgia Tech Predic-

tive Health Initiative Cohort of the Center for Health Discovery and Well Being. This

is an ongoing, cohort of generally healthy university employees, ages 18 and older, re-

cruited between January 2008 and February 2013 (http: //predictivehealth.emory.edu)

(Brigham, 2010). All participants are free of any acute illness, uncontrolled or unsta-

ble chronic disease, hospitalizations within the year prior to study entry, substance

or drug abuse within the past year, or active malignant neoplasm or history of malig-

nancy other than basal cell skin cancer within the previous 5 years. Subjects undergo

an extensive medical and metabolic assessment annually. The study is approved by

the Emory Institutional Review Board, and all participants provide informed con-

sent prior to any testing. For this study, only subjects with available high-resolution

plasma metabolomics data are assessed (N = 371). For metabolic network, we use

the KEGG human metabolic network (Kanehisa et al., 2016), and removed all nodes

with degrees of 20 or higher. Such highly connected nodes are involved in too many

reactions for their concentration level to be informative. In addition, the subnetwork

surrounding such a node may be too diverse to carry a clear biological theme. From a

network analysis point of view, the presence of such nodes makes the distance between

most node pairs very small, making it difficult to select meaningful subnetworks. We

conducted a systematic study of network characteristics versus the cutoff value, and

determine 20 is a good cutoff value.
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3.4.2 Results

We choose to use BMI as the outcome variable to assess our proposed framework

because of the vast literature, including metabolomics studies Ho et al. (2016); Boulet

et al. (2015); Newgard et al. (2009); Bogl et al. (2016); Moore et al. (2014), linking

BMI, obesity, and adiposity to major metabolic pathways. This would allow us to

evaluate the biological plausibility of our models. We compute the classification

accuracy based on the four methods: logistic regression (LR) , naive Bayes classifier

(NBC), random forest (RF), and support vector machine (SVM). All methods result

in some degree of biological plausibility with regard to ego-network links to BMI.

However, the random forest method, in additional to being one of the best-performing

methods in the simulation study (above), provide the most consistent ego-networks

in terms of the resultant ego-nodes and selected metabolites fitting within a specific

metabolic pathway or common unifying metabolite. Given the nature of ego-networks,

some of the selected ego-networks are partially overlapping, as their ego nodes are

neighbors in the KEGG network. Some metabolic pathways are represented by several

of the selected ego-networks. We select the top 30 ego-networks generated using the

random forest method, excluding those supported by a single feature. They are

metabolically connected to several pathways or specific metabolites, all of which have

been biologically linked to BMI.

Several of the ego-networks are related to the tricarboxylic acid cycle (TCA) cycle.

The TCA cycle is an essential mitochondrial component of the metabolism of car-

bohydrates, fats, and proteins for the production of energy. Impaired mitochondrial

activity has long been implicated in the development in obesity and its metabolic se-

quelae given the role of the mitochondria in energy expenditure and lipid storage and

mobilization (Christe et al., 2013). It is, therefore, expected that BMI would be linked

to such a key pathway, in addition to several metabolites that function as substrates

for the TCA cycle (pyruvate, lactate, alanine, cysteine, glutamate, phenylalanine, and
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Figure 3.3: Some example ego-networks selected by Random Forest. Red dotted line means the

matching between feature and node is eliminated by our algorithm.
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tryptophan). Specific intermediates of the TCA cycle identified as either ego-nodes or

metabolites within the ego-networks include citrate, oxalosuccinate, and cis-aconitate

(Figure 3.3(a))(Akram, 2014; Bender DA, 2015). Obesity has been shown to impair

the rate-limiting enzyme of the TCA cycle, citrate synthase, which catalyzes the

production of citrate (Christe et al., 2013).

Our data are also supported by a recent metabolomics study showing a relationship

between BMI and several intermediates of the TCA cycle, including cis-aconitate

(Figure 3.3(a)), as well as lactate and several amino acids and their intermediates,

including alanine (Figure 3.3(b)), tryptophan (Figure 3.3(b), non-ego node), cysteine

(Figure 3.3(c)), and phenylalanine (a non-ego node among top 30 ego networks) Ho

et al. (2016). Interestingly, the tryptophan intermediates within our ego-networks,

anthranilate, 3-hydroxyanthranilate, and 3-hydroxy-L-kynurenine are consistent with

studies indicating that obesity induces the increase of indoleamine 2, 3-dioxygenase

through a pro-inflammatory pathway (Wolowczuk et al., 2012; Favennec et al., 2015).

Additional metabolomics and amino acid studies confirm relationships between BMI

or other indicators of adiposity and the circulating amino acids related to our selected

ego-networks (Boulet et al., 2015; Newgard et al., 2009; Bogl et al., 2016; Moore et al.,

2014; Felig et al., 1969).

Intermediates in the metabolism of sulfur-containing amino acids, cysteine and

glutathione, are prominent among our BMI-associated ego-networks (Figure 3.3(c)).

Cysteine has been implicated in the promotion of obesity through various epidemi-

ological and experimental studies (Elshorbagy et al., 2012). Glutathione, the major

intracellular antioxidant, is decreased in circulation in obesity (Di Renzo et al., 2010),

consistent with the oxidative environment associated with excess adiposity (Marseglia

et al., 2015). Hydrogen sulfide is identified as an ego-node in our study. This metabo-

lite has been shown to suppress oxidative stress by promoting the transport of cysteine

towards glutathione production (Kimura et al., 2009), and circulating hydrogen sul-
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fide is inversely associated with obesity (Whiteman et al., 2010).

Prostaglandin H2 is an ego-node that is associated with BMI (Figure 3.3(d)).

Prostaglandins are eicosanoids derived from arachidonic acid that play important

roles in pro-inflammatory responses (Ricciotti and FitzGerald, 2011). Prostaglandins,

in various biological sources, correlate positively with BMI and/or obesity (Martinez

et al., 1999; Morris et al., 2013; Sinaiko et al., 2005; Subbaramaiah et al., 2012).

Metabolites within this ego-network included arachidonate and its other derivative

lipid mediators, thromboxane A2 and leukotriene A4, as well as related intermedi-

ates. Arachidonic acid, thromboxanes, and leukotrienes also correlate with adiposity

(Back et al., 2014; Giouleka et al., 2011; Kaplon-Cieslicka et al., 2014; Savva et al.,

2004). The link between BMI and the arachidonic acid pathway may reflect dietary

differences in polyunsaturated fatty acid intakes (Ailhaud et al., 2008).

3.5 Discussion and Conclusion

Functional analysis, including network analysis and pathway analysis, is important

for data interpretation and feature selection in metabolomics data. For untargeted

metabolomics, the issue of multiple matching has existed for a long time and has

been overlooked, which can lead to erroneous results. In this paper, we propose a

flexible sequential optimizing procedure that can incorporate various machine learn-

ing algorithms to address this multiple matching issue in metabolomics data, along

with identifying sub-networks which are highly relevant to the clinical outcome. The

method ranks ego networks. The number of top ego-networks to study is a user-

defined parameter. In practice, one can also choose the parameter based on predictive

accuracy, i.e. stopping the program when the prediction accuracy is smaller than a

threshold.

Simulation studies show that our method greatly improve the selection accuracy
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compared with the existing maximum matching approach. Application to a real

dataset also proves that our method can detect important sub-networks associated

with the outcome variable. The same idea can be easily adapted to pathway analysis,

where pre-determined pathways, rather than ego-networks, are used. We note that the

method is based on matching of m/z values to theoretical values of known metabolites,

which can only indicate, but not confirm the identities of features. Experimental

approaches, such as chemical spike-in and LC-MS/MS, should be used to confirm the

identities of features found to be relevant.
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Chapter 4

A new framework for predictive

network mediator analysis
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4.1 Introduction

In this chapter, our work is motivated by a dataset from Emory-Georgia Tech Predic-

tive Health Initiative Cohort of the Center for Health Discovery and Well Being. The

dataset contains demographic variables, nutrition variables, metabolomics variables

and BMI value for 179 subjects. Network structure between the metabolomics vari-

ables is also known. Here we consider nutrition variables as the exposure, metabolomics

variables as the mediator and binary overweight status based on BMI as the outcome.

Our goal is to find the combination of metabolomic variable and single or multiple

nutrition variable with incorporating the dependence between the exposure and the

mediator and the dependence between mediators that has high predictive performance

about the outcome of interest. However, the goal of traditional mediation analysis is

to measure or test the mediation effect. Thus, we could not directly apply the existing

mediation analysis framework to achieve our goal. So we proposed a new framework

for predictive mediation analysis with incorporating the dependence structure in this

paper.

The remainder of the paper is organized as follows. In section 4.2, we introduce

the definitions of predictive exposure, predictive mediator and predictive mediator

network. An estimation procedure is also introduced in section 4.2 to identify the

above definitions. In section 4.3, we conduct simulation studies to illustrate the

performance of the proposed estimation procedure. We apply the proposed predictive

mediation analysis framework on the motivated dataset in Section 4.4. We conclude

our paper with a brief summary and discussion on future work in Section 4.5.

4.2 A predictive mediation analysis framework

Suppose there are m exposure variables Xi, i = 1, · · · ,m and v mediator variable

Mj, j = 1, · · · , v and a binary outcome variable Y . The network structure between the
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mediator variables is also known. Our goal is to build a mediation analysis framework

focusing on predictive modeling. Thus, we need to choose a evaluation metric first

for evaluating predictive performance. The receiver operating characteristic (ROC)

curve is a plot to show the diagnostic ability of a binary classifier and has been widely

used in fields such as machine learning, biomedical, psychology (Hanley and McNeil,

1982; Hand and Till, 2001; Lasko et al., 2005; Krzanowski and Hand, 2009; Gonçalves

et al., 2014) and so on. The area under the curve (AUC) is a commonly used summary

measure of the diagnostic ability of the ROC curve (de Carvalho et al., 2013; Bamber,

1975). Thus, we adopt the AUC as the evaluation metric in this paper.

4.2.1 The area under the curve (AUC)

We show the definition for the area under the curve (AUC) in this section. Let D

denote a dichotomous variable which takes value 1 for positive subjects and value 0 for

negative subjects. Let X and B denote the diagnostic test values for positive subjects

and negative subjects. F1 and F0 are the cumulative distribution functions (cdf) for

X and B respectively, i.e. X ∼ F1, B ∼ F0. Given an cut-off value c, a subject

has a positive test result if its diagnostic test value is larger than c and negative

otherwise. The ROC curve is defined as the plot of the true positive rate against the

false positive rate, where true positive rate (TPR) is defined as as the probability that

a positive subject has a positive test result and false positive rate (FPR) is defined as

the probability of a negative subject has a positive test result. Given a cut-off value

c, we have that TPR(c) = 1 − F1(c) and FPR(c) = 1 − F0(c). Thus, ROC curve is

the plot of {(FPR(c), TPR(c)),−∞ < c < ∞} or {(t, ROC(t)), 0 ≤ t ≤ 1} where

ROC(t) = 1− F0(F−1
1 (1− t)) (Gonçalves et al., 2014). The AUC is defined as:

AUC =

∫ 1

0

ROC(u)du.



52

AUC denotes the probability that, in a randomly selected pair of positive and negative

subjects, the diagnostic test value for positive subject is higher, i.e. P (X > B)

(Gonçalves et al., 2014). AUC has been shown to have a strong connection with

the popular nonparametric Mann−Whitney test (Bamber, 1975; Faraggi and Reiser,

2002). There are several methods for empirical estimation of AUC. See Gonçalves

et al. (2014) for details.

4.2.2 Predictive mediation analysis framework

We propose several new definitions for building a predictive mediation analysis frame-

work in this section. We use AUC(Xi) and AUC(Xi,Mj) to denote the AUC for

classifier that only uses feature Xi and uses features Xi,Mj respectively. In the defi-

nitions proposed for predictive mediation analysis, we also need to state whether the

evaluation metric AUC has predictive power or not. We consider this as a subjective

statement to say whether a certain AUC value can be considered as predictive or not.

Thus we set up a predefined threshold value T as an user input here, i.e. T = 0.6.

An AUC value is considered as predictive if it’s larger than threshold value T .

4.2.2.1 Predictive exposure

An exposure variable Xi is a predictive exposure about the outcome Y if AUC(Xi) >

T . This definition can be used as a screening procedure to find predictive exposures.

4.2.2.2 Predictive mediator

Predictive mediator is defined for a given exposure. Mj is a predictive mediator of

exposure Xi if the following conditions hold:

• Xi,Mj are significantly correlated

• AUC (Xi,Mj) > T
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• AUC (Xi,Mj) > AUC (Xi)

• AUC (Xi,Mj) > AUC (Mj)

Note here Xi does not need to be a predictive exposure. The first condition requires

that Xi and Mj are significantly correlated. If they are uncorrelated, there is nothing

to mediate. The other three conditions require that the AUC of the combination of

exposure and mediator should be larger than the AUC of exposure or mediator alone.

4.2.2.3 Building network

Our goal is to find the combination of metabolomic variable and single or multiple

nutrition variable with incorporating the dependence structure that has high predic-

tive performance about the outcome of interest. In this paper, we use network to

denote the dependence structure. There are two kinds of dependence structure here.

One is the dependence between the exposure and the mediator, which is established

using the definition of predictive mediator. The other is the dependence between me-

diators, which is given by the network denote the functional link between mediators.

We define that a mediation link between an exposure Xi and a mediator Mj exists

if Mj is a predictive mediator of Xi. Using this definition for mediation link, we can

build a network between all exposures and their predictive mediators. Then we can

combine the given the functional network between mediators and the network built

on mediation link between exposure and mediator to a combined network G. Given

network G, we can adopt machine learning algorithms to find subnetwork combined

with exposures and mediators that are not only highly predictive about the outcome,

but also easy to interpret from a biological perspective.

4.2.2.4 Predictive network mediator for single exposure

Given the networkG defined in Section 2.2.3, we can now define the predictive network

mediator for a single exposure. This definition is motivated by the fact that sometimes
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researchers might have an exposure of particular interest and they would like to see

which mediators combined with this exposure of interest are highly predictive about

the outcome. Given an exposure X and a set of mediator nodes M = {Mi1 , · · · ,Mik}

from the combined network G, M is predictive network mediator of exposure X if

the following three conditions hold:

• at least one mediator in M is a predictive mediator of X

• remove one mediator from M will decrease AUC(X,M)

• add one mediator to M will not increase AUC(X,M)

The first condition requires that exposure X is connected to at least one mediator

in M . The other two conditions requires that predictive performance of exposure X

and mediator set M is optimal.

4.2.3 Estimation procedure and algorithm

In section 2.2, we proposed definitions for predictive exposure, predictive mediator

and predictive network mediator. In this section, we propose estimation procedure

and algorithm for those above mentioned definitions.

4.2.3.1 Estimation for predictive exposure

Predictive exposure is defined as an exposure variable Xi that satisfies AUC(Xi) > T .

This AUC is for evaluating predictive performance and should be evaluated on test

data. In this paper, we adopt cross-validation to estimate AUC value. We propose an

estimation procedure to identify predictive exposure using a repeated cross-validation.

We use the mean of all the repeated cross-validation AUC as the final estimation for

AUC. See below for details of the estimation procedure for predictive exposure:

• Given a repeated number of R, for r = 1, · · ·R, calculate ÂUCr(Xi)
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• Check
∑

r[ÂUCr(Xi) > T ] > H

We can declare an exposure as a predictive exposure about the outcome if
∑

r[ÂUCr(Xi) >

T ] > H, where threshold value is also an user input value. A higher value for H re-

sults in a low TPR and FPR and a lower value for H results in a high TPR and FPR.

Estimation for AUC(Xi) is ÂUC(Xi) = 1
R

∑
r ÂUCr(Xi).

4.2.3.2 Estimation for predictive mediator

Assume a given exposure Xi and a given mediator Mj. First we need to check whether

Xi and Mj are significantly correlated. There are several correlation metrics that

are commonly used in statistics to measure the dependence, i.e. Pearson correlation,

Kendall rank correlation, Brownian distance correlation (Székely et al., 2009). Among

all those choices, Brownian distance correlation can measure the dependence between

two random vectors with arbitrary dimensions. Thus, we adopt the Brownian distance

correlation in the following content to measure the dependence between exposure and

mediator. A statistical hypothesis testing procedure for is provided in Székely et al.

(2007); Székely and Rizzo (2013) to test the significance of the Brownian distance

correlation.

Given Xi and Mj are significantly correlated, we propose an estimation proce-

dure for predictive mediator similar to the estimation procedure given in predictive

exposure. See below for details:

• Given a repeated number of R, for r = 1, · · ·R, calculate

ÂUCr(Xi), ÂUCr(Mj), ÂUCr(Xi,Mj)

• Check
∑

r[ÂUCr(Xi,Mj) > T ] > H

• Check
∑

r[ÂUCr(Xi,Mj) > ÂUCr(Xi)] > H

• Check
∑

r[ÂUCr(Xi,Mj) > ÂUCr(Mj)] > H

If all three inequalities hold, Mj is a predictive mediator of Xi.
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4.2.3.3 Greedy algorithms for predictive network mediator

In this section, we first propose a greedy algorithms (Algorithm 1) for finding pre-

dictive network mediator for a single exposure of interest. However, in some cases,

researchers might doesn’t have a particular exposure of interest and only want to find

the combination of mediator and exposure from network G that are highly predictive

about the outcome. To address this need, we propose another greedy algorithm (Al-

gorithm 2). Algorithm 2 can be used as a screening procedure to find subnetwork of

exposure and mediator from network G that are highly predictive about the outcome.

Algorithm 1 Greedy algorithm for single exposure

1: Input: exposure Xi, network G

2: Step 1: select Mj = argmaxMj
ÂUC(Xi,Mj), where Mj is unvisited mediator

neighbor nodes of Xi.
3: If Mj exists
4: mark Mj as visited and denote C = {Xi,Mj}
5: Else
6: Stop. Procedure is finished
7: Step 2: find all unvisited mediator neighbor nodes Ne for C
8: For each Nei ∈ Ne
9: adopt estimation procedure for AUC(C,Nei) > AUC(C)

10: calculate ÂUC(C,Nei)
11: If there exists Nei that survives the estimation procedure

12: Set C = {C,Nei} where Nei = argmaxNeiÂUC(C,Nei) for Nei ∈ Ne.
13: Mark Nei as visited. Go to Step 2
14: Else
15: Store result C. Go to Step 1

4.3 Simulation

Simulation studies are conducted to evaluate the performance of the proposed es-

timation procedure for identifying predictive exposure and predictive mediator. We

consider two network settings for generating value for exposure and mediator, a simple

network and a complex scalefree network. See Figure 4.3 for details. Exposure and
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Algorithm 2 Greedy algorithm for multiple exposure

1: Input: network G

2: Step 1: select unvisited pair (Xi,Mj) = argmaxXi,Mj
ÂUC(Xi,Mj) among all

unvisited mediators
3: If Mj exists
4: mark Mj as visited and denote C = {Xi,Mj}
5: Else
6: Stop. Procedure is finished
7: Step 2: find all unvisited neighbor nodes Ne for C
8: For each Nei ∈ Ne
9: adopt estimation procedure for AUC(C,Nei) > AUC(C)

10: calculate ÂUC(C,Nei)
11: If there exists Nei that survives the estimation procedure

12: Set C = {C,Nei} where Nei = argmaxNeiÂUC(C,Nei) for Nei ∈ Ne.
13: Mark Nei as visited if Nei is a mediator. Go to Step 2
14: Else
15: Store result C. Go to Step 1

mediator values are generated using multivariate Gaussian distribution with mean

0 and covariance matrix Σ = 0.3D, where D is the distance matrix between nodes

in the graph. Here in generating data, a link between two nodes means there exists

functional linking between connected nodes.

(a) case1 (b) scalefree

Figure 4.1: Network structure for exposure and mediator that are used to generating
data. Triangle denotes mediator and circle denotes exposure. Nodes with orange
color are used to generate Y .

We use a logistic regression model to generate the outcome Y . We also consider

both linear and nonlinear relation between logit(Y ) and (X,M). We also multiply

a coefficient value ’a’ to adjust for signal to noise ratio (SNR). A larger value for ’a’
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corresponds to a larger SNR. To be specific, in linear case, Y is generated as follows:

• Case 1: logit(P (y = 1)) = a ∗ [X1 −X2 +M1 −M5].

• Scalefree: logit(P (y = 1)) = a ∗ [X3 −X5 +M3 −M7 +M48 −M75]

In nonlinear case, Y is generated using:

• Case 1: logit(P (y = 1)) = a∗{X1 ∗ [1+sin(M1)+cos(M5)]−X2 ∗ [1+sin(M1)+

cos(M5)]}

• Scalefree: logit(P (y = 1)) = a ∗ {X3 ∗ [1 + sin(M48) − cos(M75)] − X5 ∗ [1 −

sin(M3) + cos(M7)− sin(M75)]}

Coefficient value ’a’ is set as 1, 2, 5, 20 to denote an increasing SNR. Sample size

100 and 500 are both considered in simulation studies. Brownian distance correlation

is adopted here to measure the dependence between exposure and mediator. In the

proposed estimation procedure, repeated number R is set as R = 20 and 5-fold cross

validation is adopted to calculate AUC. Two threshold values are set as T = 0.6 and

H = 14. Logistic regression (LR)and random forest (Breiman, 2001, RF) are the

classifiers used to calculate AUC.

To summarize the simulation results, we report the true positive rate (TPR)

and the false positive rate (FPR), which is the fraction of true positives that are

diagnosed as positive and the fraction of true negatives that are diagnosed as positive

respectively. To report simulation results, we are interested in whether this estimation

procedure identifies predictive exposure, predictive mediator and predictive mediator

to its exposure correctly. Thus, we report TPR and FPR for exposure, mediator and

pair of exposure and mediator (edge in result table).

Table 1 and Table 2 summarizes the simulation results for linear case for both

case 1 network and scalefree network. When looking at each row, the results show

that TPR increases as SNR increases. Increasing sample size results in both a higher
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TPR and a higher FPR. In the simple case 1 network setting, LR has a higher TPR

on exposure, mediator and edge than RF in most SNR settings when sample size is

100. When sample size increases to 500, TPR on exposure, mediator and edge of

LR is 1 and TPR on mediator and edge is close or equal to 1 for RF. When sample

size is 500, LR still performs better than RF regarding to have a higher TPR on

exposure, mediator and edge in most settings. Also, FRP on mediator and edge is

much higher of RF than that of LR, especially for high SNR settings. In the more

complex scalefree network setting, the performance of LR and RF on TPR is not

as good as the simple network setting. When sample size is 500, TPR on exposure,

mediator and edge of LR is 1 and TPR on mediator and edge is close or equal to 1

for RF. Overall, in linear case setting, LR performs better than RF regarding to TPR

and FPR on exposure, mediator and edge. The results in Table 1 and Table 2 also

show that the proposed estimation procedure is pretty accurate in linear case setting.

Table 3 and Table 4 summarizes the simulation results for nonlinear case for both

case 1 network and scalefree network. The effect of SNR and sample size on TPR

and FPR shows a similar pattern to that in linear case. In the simple case 1 network

setting, TPR on exposure, mediator and edge are both very high for LR and RF.

However, RF still has a much higher FPR on mediator and edge than LR for both

sample size. In the scalefree network setting, TPR on mediator and edge is pretty

high for RF, which is much better than that for LR. Overall, RF performs better

than RF regarding to TPR on exposure, mediator and edge in most cases.

4.4 Real data application

This paper is motivated by a dataset from Emory-Georgia Tech Predictive Health

Initiative Cohort of the Center for Health Discovery and Well Being. There are totally

179 subjects in this dataset. For each subject, the dataset contains demographic
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Table 4.1: Simulation results linear case for case 1 network

a 1 2 5 20

Size 100

LR

exposure TPR 0.6(0.348) 0.8(0.299) 1(0) 0.925(0.183)

mediator TPR 0.9(0.205) 0.975(0.112) 0.925(0.183) 1(0)

FPR 0.1(0.137) 0.05(0.078) 0.133(0.139) 0.108(0.112)

edge TPR 0.5(0.181) 0.688(0.179) 0.762(0.263) 0.825(0.143)

FPR 0.1(0.137) 0.05(0.078) 0.133(0.139) 0.125(0.142)

RF

exposure TPR 0.175(0.294) 0.4(0.348) 0.5(0.397) 0.5(0.281)

mediator TPR 0.675(0.294) 0.925(0.183) 0.9(0.205) 0.975(0.112)

FPR 0.175(0.175) 0.2(0.149) 0.225(0.146) 0.225(0.249)

edge TPR 0.412(0.247) 0.675(0.164) 0.662(0.284) 0.725(0.197)

FPR 0.175(0.175) 0.208(0.161) 0.233(0.157) 0.242(0.289)

Size 500

LR

exposure TPR 1(0) 1(0) 1(0) 1(0)

mediator TPR 1(0) 1(0) 1(0) 1(0)

FPR 0.208(0.186) 0.225(0.182) 0.167(0.108) 0.083(0.115)

edge TPR 1(0) 1(0) 1(0) 1(0)

FPR 0.208(0.186) 0.25(0.199) 0.167(0.108) 0.083(0.115)

RF

exposure TPR 0.2(0.251) 0.4(0.262) 0.55(0.32) 0.75(0.344)

mediator TPR 1(0) 1(0) 1(0) 1(0)

FPR 0.217(0.196) 0.492(0.268) 0.6(0.198) 0.758(0.245)

edge TPR 0.812(0.179) 0.975(0.077) 0.988(0.056) 1(0)

FPR 0.217(0.196) 0.533(0.323) 0.658(0.245) 0.767(0.232)
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Table 4.2: Simulation results linear case for scalefree network

a 1 2 5 20

Size 100

LR

exposure TPR 0.6(0.308) 0.7(0.299) 0.7(0.377) 0.85(0.235)

FPR 0.017(0.075) 0.017(0.075) 0.017(0.075) 0(0)

mediator TPR 0.588(0.233) 0.712(0.219) 0.75(0.256) 0.725(0.213)

FPR 0.03(0.017) 0.036(0.026) 0.038(0.021) 0.023(0.016)

edge TPR 0.52(0.219) 0.66(0.185) 0.62(0.267) 0.65(0.193)

FPR 0.031(0.017) 0.04(0.03) 0.041(0.024) 0.026(0.016)

RF

exposure TPR 0.175(0.294) 0.225(0.302) 0.2(0.251) 0.35(0.286)

FPR 0.033(0.103) 0.067(0.137) 0(0) 0.033(0.149)

mediator TPR 0.425(0.282) 0.65(0.274) 0.638(0.222) 0.612(0.236)

FPR 0.061(0.052) 0.057(0.042) 0.076(0.052) 0.078(0.051)

edge TPR 0.34(0.252) 0.55(0.25) 0.53(0.227) 0.52(0.238)

FPR 0.065(0.053) 0.062(0.045) 0.08(0.051) 0.082(0.053)

Size 500

LR

exposure TPR 0.875(0.222) 0.975(0.112) 0.975(0.112) 1(0)

FPR 0(0) 0(0) 0(0) 0(0)

mediator TPR 0.975(0.077) 1(0) 1(0) 1(0)

FPR 0.069(0.026) 0.071(0.029) 0.073(0.027) 0.073(0.032)

edge TPR 0.98(0.062) 1(0) 1(0) 1(0)

FPR 0.072(0.028) 0.074(0.028) 0.077(0.025) 0.079(0.033)

RF

exposure TPR 0.125(0.222) 0.3(0.299) 0.45(0.359) 0.45(0.224)

FPR 0(0) 0(0) 0(0) 0(0)

mediator TPR 0.888(0.151) 0.975(0.077) 0.988(0.056) 0.962(0.092)

FPR 0.107(0.074) 0.164(0.09) 0.216(0.071) 0.201(0.068)

edge TPR 0.81(0.165) 0.97(0.073) 0.97(0.073) 0.95(0.089)

FPR 0.112(0.078) 0.172(0.09) 0.225(0.074) 0.207(0.069)
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Table 4.3: Simulation results nonlinear case for case 1 network

a 1 2 5 20

Size 100

LR

exposure TPR 0.95(0.154) 1(0) 1(0) 1(0)

mediator TPR 0.575(0.373) 0.625(0.358) 0.725(0.255) 0.85(0.235)

FPR 0.1(0.126) 0.075(0.101) 0.142(0.124) 0.117(0.122)

edge TPR 0.3(0.192) 0.375(0.236) 0.462(0.247) 0.575(0.245)

FPR 0.1(0.126) 0.075(0.101) 0.142(0.124) 0.133(0.139)

RF

exposure TPR 0.625(0.393) 0.8(0.34) 0.95(0.154) 0.95(0.154)

mediator TPR 0.5(0.397) 0.7(0.34) 0.775(0.302) 0.875(0.275)

FPR 0.267(0.244) 0.325(0.239) 0.383(0.217) 0.4(0.183)

edge TPR 0.375(0.358) 0.512(0.309) 0.55(0.288) 0.638(0.25)

FPR 0.283(0.271) 0.333(0.259) 0.408(0.226) 0.45(0.265)

Size 500

LR

exposure TPR 1(0) 1(0) 1(0) 1(0)

mediator TPR 1(0) 1(0) 1(0) 1(0)

FPR 0.167(0.132) 0.192(0.135) 0.175(0.157) 0.192(0.156)

edg TPR 0.8(0.208) 0.975(0.077) 0.975(0.077) 1(0)

FPR 0.167(0.132) 0.208(0.161) 0.217(0.196) 0.242(0.232)

RF

exposure TPR 0.55(0.359) 0.95(0.154) 1(0) 1(0)

mediator TPR 0.975(0.112) 1(0) 1(0) 1(0)

FPR 0.717(0.254) 0.833(0.195) 0.85(0.194) 0.808(0.218)

edge TPR 0.888(0.172) 0.9(0.17) 0.975(0.077) 1(0)

FPR 0.8(0.34) 0.933(0.267) 0.967(0.268) 0.925(0.273)
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Table 4.4: Simulation results nonlinear case for scalefree network

a 1 2 5 20

Size 100

LR

exposure TPR 0.5(0.162) 0.575(0.183) 0.55(0.154) 0.575(0.183)

FPR 0(0) 0(0) 0.033(0.103) 0.017(0.075)

mediator TPR 0.138(0.172) 0.162(0.147) 0.125(0.128) 0.062(0.111)

FPR 0.015(0.013) 0.022(0.021) 0.018(0.011) 0.019(0.016)

edge TPR 0.11(0.137) 0.13(0.117) 0.1(0.103) 0.05(0.089)

FPR 0.014(0.013) 0.021(0.02) 0.018(0.011) 0.019(0.016)

RF

exposure TPR 0.35(0.235) 0.5(0.162) 0.55(0.154) 0.625(0.222)

FPR 0.017(0.075) 0.017(0.075) 0.033(0.149) 0.033(0.149)

mediator TPR 0.388(0.319) 0.512(0.25) 0.5(0.181) 0.575(0.245)

FPR 0.078(0.051) 0.106(0.064) 0.096(0.045) 0.111(0.053)

edge TPR 0.33(0.27) 0.4(0.195) 0.43(0.163) 0.48(0.199)

FPR 0.077(0.052) 0.106(0.065) 0.099(0.05) 0.112(0.054)

Size 500

LR

exposure TPR 0.5(0) 0.525(0.112) 0.525(0.112) 0.6(0.205)

FPR 0(0) 0(0) 0(0) 0(0)

mediator TPR 0.2(0.208) 0.275(0.18) 0.275(0.228) 0.388(0.172)

FPR 0.029(0.018) 0.034(0.02) 0.028(0.016) 0.036(0.031)

edge TPR 0.13(0.117) 0.2(0.13) 0.21(0.165) 0.23(0.073)

FPR 0.029(0.017) 0.035(0.021) 0.03(0.017) 0.04(0.029)

RF

exposure TPR 0.5(0) 0.5(0) 0.5(0) 0.5(0)

FPR 0(0) 0(0) 0(0) 0(0)

mediator TPR 0.75(0.199) 0.825(0.143) 0.888(0.128) 0.938(0.111)

FPR 0.197(0.043) 0.209(0.047) 0.212(0.042) 0.234(0.034)

edge TPR 0.57(0.149) 0.66(0.114) 0.7(0.103) 0.79(0.165)

FPR 0.192(0.042) 0.206(0.045) 0.209(0.042) 0.232(0.032)
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variables such as age, gender, nutrition variables, metabolomics variables and BMI

value. There are 142 nutrition variables that are transformed from a food intake

questionnaire for each subject. There are 2, 321 metabolomics feature that could

be matched to metabolites for each subject. A network between the metabolites is

also known. To analyze the data, we consider nutrition variables as the exposure,

metabolomics variables as the mediator and binary overweight status based on BMI

as the outcome (BMI¿24.9). Then we apply the two greedy algorithms on this dataset

to find combination of metabolomics features and single or multiple nutrition variable

that are highly predictive about overweight status. To facilitate the interpretation

for the selected metabolomics features in each subnetwork, we conduct a Mummichog

analysis (Li et al., 2013b) to find significant pathways for those metabolites.

Figure 4.2 shows the network mediator for single nutrition variable ’cholesterol’.

One significant pathway from Mummichog analysis is Bile acid biosynthesis, which

has been reported to be related to human obesity in Haeusler et al. (2016); Tomkin

and Owens (2016); Ma and Patti (2014); Haeusler et al. (2016). Another significant

pathway from Mummichog analysis is Arginine and Proline Metabolism, which also

has been report to have an impact on BMI in the literature (Wu et al., 2009; Martin-

Lorenzo et al., 2015).

Figure 4.3 shows a selected subnetwork combination with multiple nutrition vari-

able and multiple metabolomics variable that are highly predictive about the over-

weight status. One significant pathway from Mummichog analysis is Vitamin D3

(cholecalciferol) metabolism, which has been reported to BMI in Araghi et al. (2015);

Bikle (2014); Cipriani et al. (2014).

Overall, we find easily find biological interpretation for the pathways identified in

predictive network mediator for single and multiple nutrition variable.
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Figure 4.2: Predictive network mediator for single nutrition variable. Triangle denote
nutrition variable and circle denote metabolites. The value on each circle is the mz
value for metabolite.

Figure 4.3: Predictive network mediator for multiple nutrition variables. Triangle
denote nutrition variable and circle denote metabolites. The value on each circle is
the mz value for metabolite.
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4.5 Discussion

In this paper, we propose a new mediation analysis framework focusing on predictive

modeling. We propose new definitions for predictive exposure, predictive mediator

and predictive network mediator. Estimation procedure is also proposed to identify

predictive exposure and predictive mediator. Following the definition of predictive

mediator, we propose to build a network that combines the mediation dependence

between mediator and exposure and the functional dependence between mediators.

Then we propose two greedy algorithms that can incorporate various machine learn-

ing algorithms to find subnetwork of exposures and mediators from this combined

network that are highly predictive about the outcome. Simulation studies show that

the estimation procedure can identify predictive exposure and predictive mediator

accurately. Application to a real dataset also proves that our proposed greedy algo-

rithm can detect subnetwork that are not only highly predictive about the outcome,

but also have meaningful biological interpretation.
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Chapter 5

Future work
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In this dissertation, we propose several new statistical methods to analyze biomed-

ical network data. In the first project, we propose a novel prior, the thresholded

graph Laplacian Gaussian (TGLG) prior, to perform network marker selection over

the large-scale network under the GLM framework. In the second project, we propose

a unified framework for network feature selection from the metabolic network along

with optimal matching detection. In the third project, we propose a new mediation

analysis framework for biomedical network data focusing on predictive modeling. In

the end, we identify several directions for future work.

For the first project, first we can apply the TGLG prior for network marker selec-

tion under other modeling framework such as the survival model and the generalized

mixed effects model. Second, the current posterior computation can be further im-

proved by utilizing the parallel computing techniques within each iteration of the

MCMC algorithm, for updating the massive latent variables simultaneously. Third,

another promising direction is to use the integrated nested laplace approximations

(INLA) for Bayesian approximating computation taking advantages of the TGLG

prior involving high-dimensional Gaussian latent variables.

For the second project, metabolomics data is very complex, which brings lots of

interesting and difficult statistical issues. As we mentioned above, many features

have lots of 0’s, either because the metabolite is truly non-present in the samples, or

because the low peaks cannot be differentiated form noise using current technology.

Imputing these missing data in features could improve the power for statistical infer-

ence in analyzing metabolomics data. This could be seen as a possible extension of

our paper. Another possible extension is to develop a systematic Bayesian modeling

framework for feature selection over the network and while addressing the multiple

matching issue.



69

Appendix A

Appendix for Chapter 2

A.0.1 Regularity conditions

First, we introduction the following notations. We define a pre-specified upper bound

r̄n for model size: |ξ| ≤ r̄n. For two sequences an and bn, let an = o(bn) denote

limn→∞ an/bn = 0. Denote by a ∨ b the max number between a and b. Define

4(rn) = infξ:|ξ|=rn
∑

j:j /∈ξ |β∗j | and D(R) = 1 +R× sup|h|≤R |a′(h)| × sup|h|≤R |g−1(h)|.

We consider the following conditions: (C1) r̄n log(1/ε2n) = o(nε2n); (C2) r̄n log pn =

o(nε2n); (C3) rn = o(pn); (C4) 4(rn) = o(ε2n); (C5) (r̄n + q) logD((r̄n + q)(nε2n(σ2
α ∨

σ2
ω)/2)1/2) = o(nε2n); (C6) 1 ≤ rn ≤ r̄n < pn; and (C7) inf{σ2

j}rnj=1 > 0, where

the sequence of σ2
1, . . . , σ

2
rn are defined as follows: Let Λγ = (L + εIp)

−1. After a

permutation for rows and columns, Λγ can be decomposed as Λ̃γ =

Λ̃11 Λ̃12

Λ̃21 Λ̃22

,

where Λ̃11 is a numerical value and Λ̃21 and Λ̃22 are the corresponding pn − 1 vector

and (pn − 1)× (pn − 1) submatrix of Λ̃γ. Set σ2
1 = Λ̃R

γ = Λ̃11 − Λ̃12Λ̃−1
22 Λ̃21. Consider

the same procedure for Λ̃22 and we can get σ2
2 = Λ̃R

22. Repeat the above procedure,

then a sequence {σ2
1, σ

2
2, · · · , σ2

rn} can be obtained.

Condition (C7) is not a strong condition and we conduct an empirical study to

show the correctness of condition (C7). We generate scale free network and random
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network with different edge probability using R package igraph. The number of nodes

we consider ranges from 500 to 5,000. We set rn =
√
pn and fix ε = 10−5. Figure A.1

shows the value of inf{σ2
j}rnj=1 > 0 defined in condition (C7) with different number of

nodes. As we can see, all infimum values are bounded away from 0.

Figure A.1: An illustration example for condition (C7)

A.0.2 Lemmas

Given Theorem 1, the proof of Theorem 2 directly follows proof of Theorem 4 in Jiang

(2007) and Theorem 1 in Song and Liang (2015). To prove Thoerem 1, we need to

first introduce the following two lemmas.

Lemma 1. For a one dimension Gaussian random Y ∼ N(0, σ2) with σ2 > 0, denote

Pσ2(C) = P (Y ∈ C) for set C ∈ R. We have (i) Pσ2(C) ≤ Pσ2(C − z) for C = {Y |

|Y | > λ} and z ∈ R; (ii) σ2
1 ≤ σ2

2 ⇒ Pσ2
1
(C) ≤ Pσ2

2
(C).

Proof. (i) First, without loss of generality, we assume z > 0. Let φ(y) denote the
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density for Y ∼ N(0, σ2). Then we have

Pσ2(C)− Pσ2(C − z) =

∫ ∞
λ

φ(y)dy +

∫ −λ
−∞

φ(y)dy −
∫ ∞
λ−z

φ(y)dy −
∫ −λ−z
−∞

φ(y)dy

=

∫ −λ
−λ−z

φ(y)dy −
∫ λ

λ−z
φ(y)dy =

∫ λ+z

λ

φ(y)dy −
∫ λ

λ−z
φ(y)dy ≤ 0.

The inequality holds since φ(y) is symmetric around 0 and φ(y) is smaller in [λ, λ+z]

than [λ− z, λ] since λ > 0.

(ii) Assume Y1 ∼ N(0, σ2
1) and Y2 ∼ N(0, σ2

2). We can have Y2
d
= Y1 + Z with

Z ∼ N(0, σ2
2 − σ2

1) and Y1, Z are independent.

Pσ2
2
(C) = E{Pσ2

1
[Y1 ∈ C − Z | Z]} ≥ E{Pσ2

1
[Y1 ∈ C]} = Pσ2

1
(C).

Lemma 2. Suppose a p−dimension multivariate Gaussian variable Y ∼ N(0p,Σ).

We partition Y as Y1

Y2

 ∼
σ11 σ12

σ21 Σ22

 ,

where Y1 is of dimension one and Y2 is of dimension p− 1. σ11, σ12, σ21 and Σ22 are

the corresponding value, vector and sub-matrix from Σ. For C1 = {y | |y| > λ} and

C2 ∈ Rp−1, We have:

P(Y1 ∈ C1, Y2 ∈ C2) ≥ Pσ11.2(C1)PΣ22(C2),

where σ11.2 = σ11 − σ12Σ−1
22 σ21.

Proof. Note V = Y1 − σ12Σ−1
22 Y2 ∼ N(0, σ11.2) and Y2 ∼ N(0,Σ22). V, Y2 are indepen-
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dent.

P(Y1 ∈ C1, Y2 ∈ C2) = E{P[V ∈ C1 − σ12Σ−1
22 Y2, Y2 ∈ C2|Y2]}

= E{P[V ∈ C1 − σ12Σ−1
22 Y2|Y2]IC2(Y2)}

≥ E{P[V ∈ C1|Y2]IC2(Y2)} = Pσ11.2(C1)PΣ22(C2).

A.0.3 Proof for Thoerem 1

Now we are in a good position to prove Theorem 1.

Proof. We have γ ∼ N(0, σ2
γΛγ). Set γξn = {γj, j ∈ ξn} as a vector of length |ξn| and

γ−ξn = {γj, j /∈ ξn}. Write the thresholding parameter as λn to denote that λn might

increase as n increases. Let C = C1

⋃
C2 = {

⋃
j∈ξn{|γj| > λn}}

⋃
{
⋃
j /∈ξn{|γj| ≤ λn}}.

π(ξ = ξn) = π(γξn ∈ C1,γ−ξn ∈ C2).

Denote ξn = (i1, · · · , i|ξn|). Set Ci1 = {|γi1| > λn}, C−i1 = C\C1. Let σi1 = σ11 −

σ12Σ−1
22 σ21 for  γi1

γ−i1

 ∼
σ11 σ12

σ21 Σ22

 .

According to Lemma 2, we have :

π(ξ = ξn) = π(γξn ∈ C1,γ−ξn ∈ C2) = π(γi1 ∈ Ci1 ,γ−i1 ∈ C−i1)

≥ πσi1 (γi1 ∈ Ci1)πΣ22(γ−i1 ∈ C−i1).

Similarly, we can apply the same procedure to πΣ22(γ−i1 ∈ C−i1) until we have gone
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through all the elements in ξn. Then we have

π(ξ = ξn) ≥ {Πj∈ξnπσj(|γj| > λn)} × πΣ−ξn
(γ−ξn ∈ C2),

where Σ−ξn = σ2
γΛγ(i, j)i,j /∈ξn . By (C7), we have σ2

1 = infj∈ξnσj > 0. According to

Lemma 1, πσj(|γj| > λn) ≥ πσ2
1
(|γj| > λn), for all j ∈ ξn.

According to Anderson (1955), for a p dimension multivariate Gaussian random

variable Y ∼ Np(0,Σ), we have Σ1 ≤ Σ2 ⇒ PΣ1(C) ≥ PΣ2(C) for every centrally

symmetric convex set C. In our case, C2 is a centrally symmetric convex set. According

to Chung (1997), the eigenvalue for a p dimension Graph Laplacian matrix L is : 0 =

λ1 ≤ λ2 ≤ · · · ≤ λp. So the maximum eigenvalue for Σ−ξn is smaller than σ2
γ/ε since

the maximum eigenvalue for Λγ is smaller than 1/ε . Then we could have πΣ−ξn
(γ−ξn ∈

C2) ≥ πσ2
γ/εIpn−|ξn|

(γ−ξn ∈ C2) = (π(|Y | ≤ λn))pn−|ξn| where Y ∼ N(0, σ2
γ/ε). Note

that π(ξ = ξn) ≥ (πσ2
1
(|γj| > λn))|ξn|(πσ2

γ/ε
(|γj| ≤ λn))pn−|ξn|. Take λn such that

min{πσ2
1
(|γj| > λn), πσ2

γ/ε
(|γj| > λn)} = |ξn|/pn. Then we have − log π(ξ = ξn) ≤

−|ξn| log(|ξn|/pn) − (pn − |ξn|) log(1 − |ξn|/pn) ≤ |ξn| log pn + |ξn| = o(nε2n) , since

|ξn| = o(pn) and |ξn| log pn ≤ r̄n log pn = o(nε2n).

Given ξn and σ2
α, we have αj

i.i.d∼ N(0, σ2
α) and βj = αj for j ∈ ξn. For j ∈ ξn, denote

φ the infimum of the density for N(0, σ2
α) for all {β∗j ± ηε2n/|ξn|}j∈ξn . So − log π(βξ ∈

B(ξn, η)|ξ = ξn) ≤ −|ξn| log(2φηε2n/|ξn|) ≤ |ξn| log |ξn| + C|ξn| + |ξn| log(1/ε2n) =

o(nε2n) where C is some constant, since |ξn| log(1/ε2n) ≤ r̄n log(1/ε2n) = o(nε2n) and

|ξn| log |ξn| ≤ r̄n log pn = o(nε2n).

By Mill’s ratio, for all j ∈ ξn, we have π(|βj| > Cn) ≤ 2e−C
2
n/(2σ

2
α)/
√

2πC2
n/σ

2
α

with βj ∼ N(0, σ2
α). Choose Cn =

√
nε2nσ

2
α/2. Then we have π(|βj| > Cn) ≤ e−nε

2
n/4

for large enough n. This completes the proof for Theorem 1.
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A.0.4 Proof for Thoerem 2

Next, we show the proof for Theorem 2.

Assume Pn is a sequence of sets of probability densities and εn is a sequence

of positive number. Denote N(εn,Pn) as the minimal number of Hellinger balls of

radius εn that are needed to cover Pn. Denote d0(f, f ∗) =
∫
f ∗ln(f ∗/f) as the

Kullback-Leibler divergence between two densities f and f ∗ and define dt(f, f
∗) =

t−1(
∫
f ∗(f ∗/f)t−1) for any t > 0. It’s easy to see that dt decrease to d0 as t decrease

to 0. Define π̂(ε) = π[d(p, p∗) ≥ ε|Dn], for any ε > 0.

Following from Theorem 6 of Jiang (2005) and Proposition 1 of Jiang (2007), we

have the Following Lemma 3.

Lemma 3 Assume there is a sequence εn ∈ (0, 1] such that nε2n →∞. If for all

large enough n, the following conditions hold:

(a) lnN(εn/4,Pn) ≤ nε2n/16;

(b) π(Pcn) ≤ e−nε
2
n/8;

(c) π[p : dt(p, p
∗) ≤ ε2n/64] ≥ e−nε

2
n/64 for some t > 0.

Then under (a), (b), (c), we have:

(i) P{π̂(εn) ≥ 2e−nε
2
nmin{1/32,t/64}} ≤ 2e−nε

2
nmin{1/32,t/64};

(ii)Eπ̂(εn) ≤ 4e−nε
2
nmin{1/16,t/32}

Next, we prove Theorem 2 by checking that our model settings satisfy conditions

(a), (b), (c) in Lemma 3.

Proof. Check condition (c):

Consider the case for t = 1. The GLM density is f(y, h) = exp{a(h)y+b(h)+c(y)}.

Let p∗ = f(y, h∗) with h∗ = xTβ∗ + zTω∗ and pξn = f(y, hξn) with hξn = zTω +

xTξnβξn = zTω +
∑

j∈ξn xjβj. As shown in the proof of Theorem 4 of Jiang (2007),

when h∗ and hξn are close enough, d1(pξn , p
∗) can be put in the form as d1(pξn , p

∗) =

Exg(h̃)(h∗ − hξn), where g is a continuous derivative function in a neighborhood of
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h∗ and h̃ is an intermediate point between h∗ and hξn .

Denote rn as the model size for ξn (|ξn| = rn) and Q = {1, · · · , q}. We have

|h̃ − h∗| ≤ |h∗ − hξn| ≤ |
∑

k∈Q zk(ωk − ω∗k)| + |
∑

j∈ξn xj(βj − β
∗
j )| + |

∑
j /∈ξn xjβ

∗
j | ≤

qMmaxk∈Q{|ωk − ω∗k|} + rnMmaxj∈ξn{|βj − β∗j |} + M∆(rn). If there exists small

enough δ1 and δ2 such that βj ∈ (β∗j ± δ1) for all j ∈ ξn and ωk ∈ (ω∗k ± δ2) for all

k ∈ Q, we could have that |h̃ − h∗| ≤ |h∗ − hξn | ≤ M∆(rn) + Mrnδ1 + Mqδ2. Here

we have ∆(rn) = o(ε2n) by condition (C4).

For sufficiently small δ1, δ2, |g(h̃)| is bounded since |h̃| ≤ |h∗| + |h̃ − h∗| ≤ B0 +

M∆(rn) +Mrnδ1 +Mqδ2 is bounded, where B0 = limn→∞
∑pn

j=1 |β∗j |. Then we could

have d1(pξn , p
∗) ≤ C(M∆(rn)+Mrnδ1+Mqδ2) for some constant C and small enough

δ1, δ2. Take δ1 = η1ε
2
n/(Mrn) and δ2 = η2ε

2
n/(Mq) for small enough η1, η2. Then we

could have d1(pξn , p
∗) ≤ ε2n/64 for large enough n and small enough η1, η2. So we can

conclude that {ξ = ξn, βj ∈ (β∗j ± η1ε
2
n/(Mrn)), j ∈ ξn, ωk ∈ (ω∗k ± η2ε

2
n/(Mq)), k ∈

Q} ⊂ {p : d1(pξn , p
∗) ≤ ε2n/64}.

As shown in the proof of Theorem 1, we have −lnπ(ξ = ξn) = o(nε2n) and

−lnπ(βξ ∈ {β∗j ± η1ε
2
n/(M |ξn|)}j∈ξn|ξ = ξn) = o(nε2n). Similarly, it’s easy to show

−lnπ(ω ∈ {ω∗k ± η2ε
2
n/(Mq)}k∈Q) = o(nε2n). Then we can have −lnπ{p : d1(pξn , p

∗) ≤

ε2n/64} = o(nε2n).

Check condition (a): Let Pn = {f(y; ξ, βξ,ω) : |ξ| ≤ r̄n, |βj|j∈ξ ≤ Cn, |ωk|k∈Q ≤

Cn}, for some Cn > 0. For each model ξ in Pn, there are |ξ| + q nonzero elements,

with each element bounded by [−Cn, Cn]. It takes at most [Cn/δ + 1]|ξ|+q balls with

radius δ(δ > 0) to cover the parameter space of model ξ. For each model ξ with

size |ξ| = r, there are at most prn models for r = 0, 1, · · · , r̄n. Then we could have

that the number of radius-δ balls N(δ) needed to cover the parameter space in Pn

is at most
∑r̄n

r=0 p
r
n[Cn/δ + 1]r+q, which is bounded by (r̄n + 1)pr̄nn [Cn/δ + 1]r̄n+q.

This means that for any density in Pn that can be represented by a set of regression

parameters {ωuk}
q
1, {uj}

pn
1 , it must fall in these N(δ) balls with center {ωvk}

q
k=1, {vj}

pn
j=1,
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i.e. {ωvk±δ}
q
k=1, {vj±δ}

pn
j=1, where uj and vj are zero for the same model ξ and |ξ| ≤ r̄n.

Consider the corresponding GLM densities fu = exp{a(hu)y + b(hu) + c(y)} and

fv = exp{a(hv)y + b(hv) + c(y)} with hu =
∑q

k=1 zkω
u
k +

∑pn
j=1 xjuj and hv =∑q

k=1 zkω
v
k +

∑pn
j=1 xjvj. It’s easy to show that the Hellinger distance between fu

and fv is smaller than the square root KL divergence, d(fu, fv) ≤
√
d0(fu, fv). The

KL divergence is d0(fu, fv) = Ez,x

∫
fv(lnfv − lnfu)νy(dy). Integrate out y and apply

a Taylor expansion. We can show that d0(fu, fv) ≤ Ez,x(a′(h̃)ψ(hv) + b′(h̃))(hv−hu),

where ψ = −b′/a and h̃ is an intermediate point between hv and hu. By defini-

tion, we could have hu, hv, h̃ are all bounded by (r̄n + q)Cn. Note that |hu − hv| =

|
∑

k∈Q zk(ω
u
k − ωvk)| + |

∑
j∈ξ xj(uj − vj)| ≤ M(r̄n + q)δ since |uj − vj| ≤ δ and

|ωuk − ωvk| ≤ δ. Therefore,

d0(fu, fv) ≤ 2 sup
|h|≤(r̄n+q)Cn

|a′(h)| × sup
|h|≤(r̄n+q)Cn

|ψ(h)|M(r̄n + q)δ

and

d(fu, fv) ≤ {2 sup
|h|≤(r̄n+q)Cn

|a′(h)| × sup
|h|≤(r̄n+q)Cn

|ψ(h)|M(r̄n + q)δ}1/2

Let δ = ε2n/{32 sup|h|≤(r̄n+q)Cn |a′(h)| × sup|h|≤(r̄n+q)Cn |ψ(h)|M(r̄n + q)} and we

have d(fu, fv) ≤ εn/4. So we have the Hotelling covering number:

lnN(εn/4,Pn) ≤ lnN(δ)

≤ ln(r̄n + 1) + r̄nlnpn + r̄nln(32ε−2
n sup
|h|≤r̄nCn

|a′(h)| × sup
|h|≤r̄nCn

|ψ(h)|+ 1)

≤ ln(r̄n + 1) + r̄nlnpn + (r̄n + q)lnD((r̄n + q)Cn) + r̄nln32

Since r̄nlnpn = o(nε2n) and (r̄n+q)lnD((r̄n+q)Cn) = o(nε2n) with Cn =
√
nε2n(σ2

α ∨ σ2
ω)/2,

we have lnN(εn/4,Pn) = o(nε2n)

Check condition (b): Pn = {f(y; ξ, βξ) : |ξ| ≤ r̄n, |βj|j∈ξ ≤ Cn, |ωk|k∈Q ≤ Cn},

for some Cn > 0. By the definition of r̄n, we have π(|ξ| > r̄n) = 0. So we could
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get π(Pcn) ≤ maxξ:|ξ|≤r̄nπ(ξ)π(∪j∈ξ[|βj| > Cn] | ξ) + π(∪k∈Q[|ωk| > Cn]). By Mill’s

ratio, we have π(|βj| > Cn) ≤ 2e−C
2
n/(2σ

2
α)/
√

2πC2
n/σ

2
α for βj ∼ N(0, σ2

α) and j ∈ ξ.

Similarly, π(|ωk| > Cn) ≤ 2e−C
2
n/(2σ

2
ω)/
√

2πC2
n/σ

2
ω for ωk ∼ N(0, σ2

ω) and k ∈ Q.

Choose Cn =
√
nε2n(σ2

α ∨ σ2
ω)/2. Then we have π(|βj| > Cn) ≤ e−nε

2
n/4 and π(|ωk| >

Cn) ≤ e−nε
2
n/4 for large enough n. So π(Pcn) ≤ (2 + r̄n + q)e−nε

2
n/4 ≤ e−nε

2
n/8 for large

enough n, since ln(2 + r̄n + q) ≤ r̄nlnpn = o(nε2n).

This completes the proof for Theorem 2.
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