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Abstract 
Motivation: 
High-throughput RNA sequencing (RNA-seq) is a technology to quantify the gene expression. It 
has been widely used in various areas of biological and clinical studies. Traditional RNA-seq 
(“bulk” RNA-seq) operates on the mRNA from a large number of cells, thus the measurement is 
an averaged expression levels of the input cells. For heterogeneous samples, the bulk RNA-seq 
fails to provide more detailed information for gene expression variation. Single cell RNA-seq 
(scRNA-seq) has recently emerged with the technological developments. It profiles the expression 
for each single cell, thus provide information for understanding the transcriptomic regulation and 
variation at cellular level. There are a number of data analysis challenges in analyzing the scRNA-
seq data, among them the cell clustering is an important one.  
 
Methods: 
In this work, we aim to study the possibility of using DNA sequence content (the k-mer counts) 
instead of gene expression values in cell clustering. We first discussed the relationship between 
gene counts, UMI RNA-seq transcript counts and k-mer counts by giving out the mathematics 
expression of gene/k-mer counts related to transcript counts. Then we performed simulation to 
demonstrate the difficulty of scRNA-seq with low expression counts in particular from unique 
molecular identifier (UMI), potential advantage of using gene/k-mer count instead of transcript 
counts and comparison of clustering results between gene counts matrix and k-mer counts matrix.  
 
Results: 
We showed that gene/k-mer counts matrix is a transformation of UMI scRNA-seq transcript counts 
matrix. It can enlarge the value in expression matrix but may lose alternative splicing information 
stored in transcript counts. By comparing the performance of gene count matrix and k-mer count 
matrix with different signal noise ratios (SNR). We found long k-mer (k = 8, 9, 10) performs better 
than short (k = 5, 6, 7) k-mer. However, under same SNR scenario, gene count matrix still performs 
better in most scenarios.  
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Introduction 

1. Genome and transcriptome 

A genome is the complete set of genetic information in an organism, which is a store 

of all the biological information the organism requires to function [1]. In most of living 

organism, the genome is made of long molecules of DNA called chromosomes. Genes are 

small sections of DNA distributed on chromosomes. They are codes for the RNA and 

protein molecules required for all kinds of biological activities in organism. Different 

species have their own distinctive genomes. Even within same specie, genomes of different 

individuals are different.  

Although a genome contains all the genetic information, on its own it cannot deliver 

the information to the cell. Utilization of the genetic information requires participation of 

enzymes and other types of proteins, which consists of complex biochemical reactions 

called genome expression.  

There are two types of product generated by genome expression. The initial one is 

transcriptome defined as the full range of RNA molecules expressed by a genome. 

Sometimes the concept of transcriptome is confined to the collection of RNA molecules 

derived from protein-coding genes. The final product of genome expression is the 

proteome–full assortment of proteins. The proteome is synthesized under the direct of 

transcriptome and specifies the nature of the biochemical reactions that the cell is able to 

carry out [2]. 

In order to find the relationship between the genome and the cell function, researchers 

tried to study the proteins as well as expressed RNA. Proteomics is the area of studying the 
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quantity and diversity of proteins in a certain cell or tissue. However only studying 

proteome cannot have the whole picture of the biological activities. Also due to the 

changeability of proteins, it’s hard to capture their status at best. What’s more, the post-

transcriptional modification and the amplification of proteins are still main barriers for 

scientists to characterize the proteins. Luckily, researchers can still go on studying the 

biological activity by measuring the transcripts of messenger RNA (mRNA) [3]. It is an 

intermediate step between genes and proteins that bridges the gap between the genome and 

the functional molecules in cells. 

In multicellular organisms almost all the cells share the same genome, so that they 

have the same genes. However, the genes are not expressed at the same time in different 

cells. For each gene they may even have more than one type of mRNA, due to the 

alternative splicing, RNA editing or alternative transcription termination sites. Actually, for 

different cells there are different expression patterns of these genes. The variation of the 

transcriptomes can be related to different physical, biochemical, as well as developmental 

conditions. It also may lead to the difference between status of health and disease [3].  

Thus, by comparing the content of transcriptome between different cells or tissues, 

researchers can have a deeper understanding what variation of transcription activity may 

lead to the transformation from normality to disease. It is also possible to know what 

content of transcriptome contributes to the specificity of certain cells or tissues and the 

genes driving the development of cells at different stages. 

 

2. High-throughput technology to measure gene expression 

 Characterizing the gene expression is an important method to know the molecular 
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composition and status of cells or tissues as well as the feedback to the stimulation of 

environment. Traditional quantitative analyses of RNA by Northern blots or quantitative 

PCR are limited to studying individual transcripts at a time. Although these methods can 

provide expression information of specific interested genes, they cannot meet the demand 

of having a global view of gene expression changes in a biological system. The 

development of high-throughput technologies (Microarray and RNA-seq) for 

transcriptome study brings light to the systematics analysis of gene expression. 

 The earliest microarray method was raised in 1981 [4] and now microarrays have 

been applied for various kinds of biological studies because they can provide a cheap and 

efficient method to evaluate the mRNA levels for thousands of genes at once. The principle 

of microarray technology is that mRNAs samples labeled with fluorescent dyes are 

hybridized in parallel to a large amount of DNA sequences probes immobilized on a solid 

surface. Then the fluorescent dye is stimulated by laser light and gives out fluorescent 

emission, which represents the hybridization intensity. Finally the relative amounts of the 

different transcripts can be estimated based on the strength of fluorescent emission [5]. 

Furthermore, mRNAs from two different samples can be detected with the combination of 

two different fluorophores in one array [6]. 

 With the application of microarrays, biologists can identify individual gene, whose 

regulated expression may explain specific biological phenomena. For example, with usage 

of microarrays in analysis of cancers, scientists can easily identify specific abnormal 

expressed genes in tumor cells [7]. Scientists can also analyze cell functions based on the 

global scope of genes expression patterns. 

 However, microarrays can only detect known sequences, which limits its 
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application to detect unknown sequences. Another limitation is the inaccurate 

measurement of microarray that gene expression estimates may be interfered by the 

background hybridization and probe saturation [8]. Although microarray had been used in 

various researches, the appearance of RNA-seq almost completely supplanted it.  

 In contrast to the microarray methods, RNA-seq can determine the cDNA 

sequences directly. RNA-seq uses the developed deep-sequencing technologies. The 

workflow of RNA-seq starts with the conversion of pre-treated RNAs to a library of cDNA 

fragments with adaptors attached to one or both ends. After amplification of these 

molecules, short sequences from one end or both ends are obtained by sequencing in a 

high-throughput manner. Generally, the sequences are 30 – 400bp, which depends on the 

platform used and the types of RNAs [9].  

 RNA-seq can be used to detect different types of RNA, such as mRNAs, 

microRNAs, long-noncoding RNAs, both qualitatively and quantitatively. It has several 

advantages compared to microarray method. First, RNA-seq can be used to detect unknown 

sequences. Second, because of the DNA sequences can be mapped to unique regions of 

genome, the background noise is very low for RNA-seq. Third, RNA-seq does not have an 

upper limit for quantification, which is correlated with the number of sequences obtained 

[9]. Taking these advantages, RNA-seq has been used to analysis of RNA isoforms to study 

the alternative splicing. It can also be applied to assemble de novo transcriptomes for 

organisms without sequenced genomes.  

 Even though RNA-seq has so many advantages, there are still several challenges 

for it. For instance, in upstream samples preparation, the fragmentation step during the 

library construction can lead to the bias of outcome. Also the complex downstream data 
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analysis requires robust algorithm for normalization, differential expression testing as well 

as isoform expression estimation [8].  

 

3. Single cell sequencing 

 Single cell is the fundamental unit of organism [10]. Since the first observation of 

multicellular structure by Robert Hooke in 1665, Biologists have devoted themselves to 

study the form and function of cells aiming to give accurate cell classification. It is known 

that unique transcriptome signatures can characterize cell identity and function [11]. Not 

only different tissues have distinct gene expression patterns, but also cells in consecutive 

development process may have significant difference in transcriptome. Most of the RNA-

seq studies mentioned above have focused on analyzing bulk tissue samples composed of 

millions of cells, which are sufficient to do analysis at organism level. However, there may 

be different subtypes of cells within the same sample, then the resulting expression values 

for each gene is an average of its expression levels across a large population of different 

input cells. So, such bulk RNA-seq is not sufficient to depict the details of the cells diversity 

for many biological questions. For instance, there are many distinct cell types that are 

difficult to dissect in samples of brain tissue. Then bulk measurements confound changes 

due to gene regulation with those due to shifts in cell type composition. Another example 

is for time series studies of gene expression. It is known that transitions from one status 

into another status of differentiating cells don’t start at the same time. Surely sampling a 

population of them at any time point will contain cells staying at different stages. Tracking 

the averaged expression of a gene at certain moments may lead to incorrect cell 

differentiation pattern. So traditional bulk RNA-seq application is constrained by averaging. 
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The scRNA-seq is required for more detailed study at cell level. 

 With the more detailed, higher resolution information provided by scRNA-seq, 

scientists can extend their work in different areas. For instance, single cell RNA-seq can 

be used in resolving microbial genomes and delineate cell-to-cell diversity within diverse 

population for microbiology study. The method has also been applied in classifying 

neurons based on transcriptional profiles instead of morphological features for 

neurobiology studies. Furthermore, when doing cancer research, scRNA-seq can provide 

powerful new tools for delineating clonal diversity and understanding the role of rare cells 

during cancer progression. There are also many other fields where scRNA-seq has proved 

its unique value, including germline transmission, embryogenesis, tissue mosaicism, 

organogenesis, immunology and clinical applications [12]. 

 The general scRNA-seq protocol begins with isolating individual cells by laser-

capture microdissection (LCM), fluorescence-activated cell sorting (FACS) or 

microfluidics techniques. Then after lysing the cell, cDNA is obtained by reverse 

transcription of polyadenylated fraction of mRNA. Finally, sequencing is applied after 

having enough material by amplifying the cDNA. In order to facilitate quantitative 

comparisons of the expression level of each gene between cells, usage of extrinsic spike-

in molecules is recommended for all scRNA-seq experiments. The most widely used one 

is the External RNA Control Consortium (ERCC) set of 92 synthetic spikes based on 

bacterial sequences [13]. In sequencing step, it is possible that reads from 3’ or 5’ end of 

the amplified transcripts are much easier sequenced than fragments from other positions. 

So unique molecular identifiers (UMIs) have been used to mark individual molecules [14] 

to avoid the biases of amplification–the major source of technical variability.  
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Compared with the bulk RNA-seq, the differences not only exist in the pipeline of 

scRNA-seq but also with the data characteristics. First, for traditional bulk RNA-seq data, 

the sample number is low, which is much smaller than the gene number. However for 

scRNA-seq, the sample number can reach to 100,000 with the appearance of droplet-based 

platform [15]. Second one is that due to the low RNA input, the number of transcripts 

detected is much lower compared to bulk RNA-seq [16]. Some genes even can’t be 

detected although they are expressed in cells – the so-called “dropout” phenomena.  

Clustering is a key analysis step in studying cell differentiation. In recent years a large 

amount of algorithms have been designed to deal with the scRNA-seq data for clustering, 

such as Monocle [17], Waterfall [18], Wanderlust [19], TSCAN [20]. The ideas of these 

methods are similar: (1) select informative genes; (2) dimension reduction of GE; (3) 

cluster the cells based on reduce data; (4) construct a minimum spanning tree (MST) from 

the clustering results; (5) map cells to the MST. In 2016 Ntranos et al. reported a novel 

clustering method based on transcript-compatibility-counts [21] and in 2017 Zhe Sun et al. 

raised a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data 

[22].  

 

4. K-mer 

 In genomics k-mer is referred as all the substrings of length k that obtained from a 

DNA string. When defining the length of a string is L, the amount of k-mer is L-k+1. If for 

each position, there are n possibilities then the number of possible k-mers is 𝑛" . For 

example, there are 4 types of nuclear acids, A, T, C and G. Then the number of 3-mer types 

is 4$= 64 (AAA, AAT, AAC, … TTT). It is obvious that longer k-mer is more unique that 
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fewer sequences (transcripts in RNA-seq) can contain it, while shorter k-mer can be shared 

by multiple different sequences (transcripts in RNA-seq).   

 K-mer has been applied in different kinds of bioinformatics analysis. It can be used 

for de novo sequence assembly [23], separating different species in a mixture of genetic 

material [24], alignment-free sequence analysis [25] and so on. 

 
5. Relationship between gene counts, transcript counts and k-mer counts 

5.1 Gene counts and k-mer counts – transformation of transcript counts 

In UMI scRNA-seq, one gene in a single cell may have different transcripts sequenced 

due to the alternative splicing as well as TSS fusion. The transcripts here are sequences got 

in scRNA-seq. So, each gene may have several different transcripts as the ‘MGene’ matrix 

shown below.  

𝑀𝐺𝑒𝑛𝑒 =

⎣
⎢
⎢
⎢
⎡
𝑎-- … 𝑎-/ … 𝑎-0
⋮ ⋱ ⋮ ⋱ ⋮
𝑎3- … 𝑎3/ … 𝑎30
⋮ ⋱ ⋮ ⋱ ⋮

𝑎4- … 𝑎4/ … 𝑎40⎦
⎥
⎥
⎥
⎤
, 𝑚	𝑔𝑒𝑛𝑒𝑠	(𝑟𝑜𝑤) 	× 	𝑛	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠	(𝑐𝑜𝑙) 

Suppose there were totally m different genes and n different transcripts in a sample. The 

rows represent m different genes while the columns represent n different transcripts. The 

value of element in ‘MGene’, 𝑎3/, could be [0, 1], representing the probability/proportion 

of Transcripts ‘t’ comes from Gene ‘g’ if Transcripts ‘t’ were sequenced in scRNA-seq:  

If 𝑎3/ = 0, it means Transcript ‘t’ is from Gene ‘g’.  

If 𝑎3/ = 1, it means all the Transcripts ‘t’ are uniquely from Gene ‘g’.  

If 𝑎3/ 	∈ 	 (0, 1), then it means proportion of Transcript ‘t’ derived from Gene ‘g’ while (1-

𝑎3/) represents the proportion of Transcript ‘t’ from other genes.  
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Suppose there are l cells being sequenced and the count of Transcript ‘t’ in Cell ‘c’ is 

𝑑/L . If Transcript ‘t’ is not captured in Cell ‘c’ during sequencing, then 𝑑/L 	= 	0. We can 

use matrix ‘MTranscript’ to represent the transcripts sequenced in different cells. It is a 

matrix with rows representing different transcripts and columns representing different cells 

in a sample as shown below: 

𝑀𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 =

⎣
⎢
⎢
⎢
⎡
𝑑-- … 𝑑-L … 𝑑-O
⋮ ⋱ ⋮ ⋱ ⋮
𝑑/- … 𝑑/L … 𝑑/O
⋮ ⋱ ⋮ ⋱ ⋮
𝑑0- … 𝑑0L … 𝑑0O⎦

⎥
⎥
⎥
⎤
, 𝑛	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠	(𝑟𝑜𝑤)	× 	𝑙	𝑐𝑒𝑙𝑙𝑠	(𝑐𝑜𝑙) 

Since a gene count of a single cell in UMI scRNA-seq is defined as the sum of counts of 

transcripts with different UMIs from different locations of the gene [14], we can get the 

matrix of genes’ counts in each cell (‘M_Gene_Cell’) by multiplying matrix ‘MGene’ and 

‘MTranscript’ as below: 

𝑀_𝐺𝑒𝑛𝑒_𝐶𝑒𝑙𝑙 =

⎣
⎢
⎢
⎢
⎡
𝐶𝐺-- … 𝐶𝐺-L … 𝐶𝐺-O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐺3- … 𝐶𝐺3L … 𝐶𝐺3O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐺4- … 𝐶𝐺4L … 𝐶𝐺4O⎦
⎥
⎥
⎥
⎤

, 𝑚	𝑔𝑒𝑛𝑒𝑠	(𝑟𝑜𝑤)	× 	𝑙	𝑐𝑒𝑙𝑙𝑠	(𝑐𝑜𝑙) 

𝑀_𝐺𝑒𝑛𝑒_𝐶𝑒𝑙𝑙 = 𝑀𝐺𝑒𝑛𝑒 ∙ 𝑀𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 

⎣
⎢
⎢
⎢
⎡
𝐶𝐺-- … 𝐶𝐺-L … 𝐶𝐺-O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐺3- … 𝐶𝐺3L … 𝐶𝐺3O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐺4- … 𝐶𝐺4L … 𝐶𝐺4O⎦
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
𝑎-- … 𝑎-/ … 𝑎-0
⋮ ⋱ ⋮ ⋱ ⋮
𝑎3- … 𝑎3/ … 𝑎30
⋮ ⋱ ⋮ ⋱ ⋮

𝑎4- … 𝑎4/ … 𝑎40⎦
⎥
⎥
⎥
⎤
∙

⎣
⎢
⎢
⎢
⎡
𝑑-- … 𝑑-L … 𝑑-O
⋮ ⋱ ⋮ ⋱ ⋮
𝑑/- … 𝑑/L … 𝑑/O
⋮ ⋱ ⋮ ⋱ ⋮
𝑑0- … 𝑑0L … 𝑑0O⎦

⎥
⎥
⎥
⎤
			 

In Matrix ‘M_Gene_Cell’, rows represent different genes and columns represent difference 

cells. It has m rows (genes) and l columns (cells). Specifically, the Gene ‘g’ expression in 

Cell ‘c’ is 𝐶𝐺3L 	= 	∑ 𝑎3/𝑑/L/T4
/T- .  

With the definition of k-mer, we can cut each transcript into small pieces – k-mers. So, 

there is a transformation relationship between k-mers and different transcripts sequenced 
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in scRNA-seq. For example, for transcript ‘AT’, then the corresponding 1-mer vector is (1, 

1, 0, 0) for ‘A’=1, ‘T’=1, ‘C’=0 and ‘G’=0. Then for the n different transcripts assumed 

above, we can have a transformation matrix ‘MKmer’ to describe the k-mer content in each 

transcript. The matrix is as below: 

𝑀𝐾𝑚𝑒𝑟 =

⎣
⎢
⎢
⎢
⎡
𝑏-- … 𝑏-/ … 𝑏-0
⋮ ⋱ ⋮ ⋱ ⋮
𝑏"- … 𝑏"/ … 𝑏"0
⋮ ⋱ ⋮ ⋱ ⋮
𝑏W- … 𝑏W/ … 𝑎W0⎦

⎥
⎥
⎥
⎤

, 𝑝	𝑘 − 𝑚𝑒𝑟𝑠		(𝑟𝑜𝑤)	× 	𝑛	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠	(𝑐𝑜𝑙) 

‘MKmer’ is a matrix with p rows (k-mer) and n columns (transcript). Due to the 

characteristics of DNA string, which is consisted of four types of nucleotides, we have 𝑝	 =

	4". The element in ‘MKmer’, 𝑏"/, represents number of k-mer ‘k’ contained in Transcript 

‘t’. The value of 𝑏"/ is integer: 

If 𝑏"/ = 0, it means k-mer ‘k’ is not part of Transcript ‘t’.  

If 𝑏"/ = 1, 2, 3, … it means there are 𝑏"/ k-mer ‘k’s can be cut out from Transcripts ‘t’.  

Similar to the ‘M_Gene_Cell’ matrix above, we can easily get the k-mer counts 

information for each gene in different cells, if we know the transcripts expression 

information in cells. By multiplying the ‘MKmer’ and ‘MTranscript’ matrixes, we can have 

the matrix ‘M_Kmer_Cell’: 

𝑀_𝐾𝑚𝑒𝑟_𝐶𝑒𝑙𝑙 =

⎣
⎢
⎢
⎢
⎡
𝐶𝐾-- … 𝐶𝐾-L … 𝐶𝐾-O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐾"- … 𝐶𝐾"L … 𝐶𝐾"O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐾W- … 𝐶𝐾WL … 𝐶𝐾WO⎦
⎥
⎥
⎥
⎤

, 𝑝	𝑘 −𝑚𝑒𝑟𝑠	(𝑟𝑜𝑤)	× 	𝑙	𝑐𝑒𝑙𝑙𝑠	(𝑐𝑜𝑙) 

	𝑀_𝐾𝑚𝑒𝑟_𝐶𝑒𝑙𝑙 = 𝑀𝐾𝑚𝑒𝑟 ∙ 𝑀𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 

⎣
⎢
⎢
⎢
⎡
𝐶𝐾-- … 𝐶𝐾-L … 𝐶𝐾-O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐾"- … 𝐶𝐾"L … 𝐶𝐾"O
⋮ ⋱ ⋮ ⋱ ⋮

𝐶𝐾W- … 𝐶𝐾WL … 𝐶𝐾WO⎦
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎡
𝑏-- … 𝑏-/ … 𝑏-0
⋮ ⋱ ⋮ ⋱ ⋮
𝑏"- … 𝑏"/ … 𝑏"0
⋮ ⋱ ⋮ ⋱ ⋮
𝑏W- … 𝑏W/ … 𝑏W0⎦

⎥
⎥
⎥
⎤

∙

⎣
⎢
⎢
⎢
⎡
𝑑-- … 𝑑-L … 𝑑-O
⋮ ⋱ ⋮ ⋱ ⋮
𝑑/- … 𝑑/L … 𝑑/O
⋮ ⋱ ⋮ ⋱ ⋮
𝑑0- … 𝑑0L … 𝑑0O⎦

⎥
⎥
⎥
⎤
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We have that 𝐶𝐾"L = ∑ 𝑏"/𝑑/L/T0
/T- , which means in Cell ‘c’ the count of K-mer ‘k’ is 𝐶𝐾"L. 

By comparing 𝐶𝐺3L 	= 	∑ 𝑎3/𝑑/L/T4
/T-  and 𝐶𝐾"L = ∑ 𝑏"/𝑑/L/T0

/T- , we can see that both 

the gene count value and k-mer count value are transformation of transcripts expression 

counts in a single cell. The difference is determined by two transformation vectors 

[𝑎3- … 𝑎3/ … 𝑎30] and [𝑏"- … 𝑏"/ … 𝑏"0]. 

𝐶𝐺3L = [𝑎3- … 𝑎3/ … 𝑎30] ∙

⎣
⎢
⎢
⎢
⎡
𝑑-L
⋮
𝑑/L
⋮
𝑑0L⎦

⎥
⎥
⎥
⎤
				 

𝐶𝐾"L = [𝑏"- … 𝑏"/ … 𝑏"0] ∙

⎣
⎢
⎢
⎢
⎡
𝑑-L
⋮
𝑑/L
⋮
𝑑0L⎦

⎥
⎥
⎥
⎤
				 

 

5.2 Disadvantage and potential advantage of gene/k-mer count    

 𝐶𝐺3L /𝐶𝐾"L is sum of transcripts counts weighted by transformation vector. Due to 

alternative splicing is a common phenomenon in cell and when length of k-mer is short, 

different transcript sequences can contain same k-mer, these gene/k-mer counts actually 

are the combination of different transcripts expression levels, indicating that it mixes 

expression information from different transcripts. The disadvantage and potential 

advantage of such transformation can be shown by the following examples. 

The disadvantage of using gene/k-mer counts is that while the two transcripts have 

opposite expression pattern in different cells, then the sum of transcripts counts may 

mitigate the difference of transcripts between two cells. Suppose two transcripts had 

different expression patterns in two difference cells. As shown in below 2 by 2 matrix: 
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\10 0
0 10], 2 transcripts A, B (row) × 2 cells 1, 2 (col) 

In cell 1 transcript A has 10 counts (row 1, column 1) and transcript B has 0 count (row 2, 

column 1) and in cell 2 transcript B has 10 counts (row 2, column 2) while transcript A has 

0 count (row 1, column 2). [1 1]  is the transformation vector. By multiplying the 

transformation vector [1 1] and transcript expression matrix \10 0
0 10], we have gene/k-

mer count expression in two cells as following: 

[1 1] ∙ \10 0
0 10] =

[10 10] 

We can see the gene/k-mer counts for two different cells are the same that both of them are 

10. 

It’s easy to distinguish two cells with transcripts expression \10 0
0 10]  while after 

transformation the expression pattern difference is eliminated as [10 10].  

The potential advantage is that while the two transcripts have same expression pattern 

in different cells, then the gene/k-mer counts may increase the difference of original 

transcripts expression counts between two cells. Suppose the two transcripts have the same 

expression pattern in two different cells. As shown in below 2 by 2 matrix: 

\6 4
6 4] , 2	transcripts	A, B	(row)	× 	2	cells	1, 2	(col) 

In cell 1 both transcript A and transcript B have 6 counts and in cell 2 they both have 4 

counts, indicating that transcript A and B are higher expressed in cell 1. Similar to above, 

[1 1] is the transformation vector. By multiplying the transformation vector [1 1] and 

transcript expression matrix \6 4
6 4], we have gene/k-mer count expression in two cells as 

following: 
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[1 1] ∙ \6 4
6 4] =

[12 8] 

We can clearly see that the difference between cell 1 and cell 2 for both transcripts A and 

B is |6 - 4| = 2. However, after transformation the difference is |12 - 8|=4, which is larger 

than original transcript difference. The enlarged difference may lead to better clustering, 

especially for the situation that transcripts difference between different cells is too small. 

However, this is only the simplest model. In real data analysis, summing counts of two 

different transcripts sharing same expression pattern in different cells may not improve the 

clustering accuracy even though it can enlarge the count difference between different cells. 

Because the clustering result is also affected by the variance of expression counts, 

sometimes the variance of gene/k-mer count is increased when summing different 

transcripts counts to increase the expression counts. Furthermore, due to the variability in 

gene expression, we can’t get the exact transcripts expression variability and cell types 

information in advance. That's why emphasize ‘potential’ for advantage here. 

Not considering the variance change, if we want to enlarge instead of mitigating the 

original transcripts difference signal, we hope transformation vector can include count 

information for transcripts sharing same expression pattern. Thus, the criteria to judge 

whether the transformation is better for clustering is that whether the transformation can 

make the difference of certain gene/k-mer expression between two different types of cells 

larger than any difference of transcript expression between two types of cells. That is 

between two types of cells C1 and C2: 

1. For Gene: 

			|𝐶𝐺3L- − 𝐶𝐺3Lp| 	> 𝑚𝑎𝑥(	|𝑑-L- − 𝑑-Lp| ∗ 𝐼(𝑎3- > 0),…	|𝑑0L- − 𝑑0Lp| ∗ 𝐼(𝑎30 > 0)) 

      For K-mer: 
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|𝐶𝐾"L- − 𝐶𝐾"Lp| 	> 𝑚𝑎𝑥(	|𝑑-L- − 𝑑-Lp| ∗ 𝐼(𝑏"- > 0),…	|𝑑0L- − 𝑑0Lp| ∗ 𝐼(𝑏"0 > 0)) 

2. a. The criteria 1 can work for transcripts with larger difference between different types 

of cells. 

b. The criteria 1 can work in different genes/k-mers as many as possible. 

 

5.3 Characteristics of gene/k-mer count transformation  

After giving out the criteria, the next question is whether transformation from 

transcript counts to gene/k-mer counts can meet the two criteria above based on the 

characteristics of their own transformation matrix. 

For gene, the transformation matrix ‘MGene’ is fixed. Because the element value is 

determined by whether a gene has the specific transcript. So, the exact value of 𝑎3/ 

(probability/proportion of transcript ‘t’ derived from gene ‘g’) is determined by the genome 

content of the cell. Also, the dimension of the ‘MGene’ (number of genes and number of 

different transcripts) is fixed because it is also determined by a genome. In transformation 

vector [𝑎3- … 𝑎3/ … 𝑎30] elements have values not equal to 0 is confined to the 

corresponding alternative transcripts for the specific gene. Because we know alternative 

splicing always happen in cells, so it is sure that using gene count instead of transcript 

count will lose alternative splicing information. But whether gene count can enlarge the 

transcript expression difference between different types of cells depends on whether the 

alternative transcripts sharing the same expression pattern in certain type of cells. 

For k-mer, although the transformation matrix ‘MKmer’ is fixed after the length of k-

mer is determined due to the fixed content of sequences, which is similar to ‘MGene’ matrix. 

However, the choice of length of k-mer is determined artificially and different length of k-
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mer can have different dimension of the ‘MKmer’ and different element values in ‘MKmer’. 

K-mer with longer length means that the k-mer is more unique for some specific transcripts. 

For instance, suppose the length of a sequence got from UMI scRNA-seq is 50nt, and k-

mer is also 50nt. Then the transformation matrix ‘MKmer’ is an identity matrix and the k-

mer counts in cells matrix ‘M_Kmer_Cell’ is totally the same as transcript counts in cells 

matrix ‘MTranscript’. This makes no contribution to increase expression counts values for 

improving clustering accuracy. However long length k-mer can be used to reduce influence 

of sequencing error often appears at the end of sequences, because it not only can keep the 

uniqueness of transcript but also can remove the error-sequenced nucleotide at the same 

time. We can also consider applying k-mer counts for clustering. When the length of k-mer 

is very short then the probability that many transcripts have it increases. Considering the 

extreme situation of 1-mer. We are sure that almost all the transcripts contain single 

nucleotides A, T, C and G. So, for each 1-mer, its expression count in a single cell is 

influenced by all the expressed counts of transcripts and their ‘A, T, C, G’ contents. 

Obviously, the expression information of 1-mer count is too messy to improve the 

clustering accuracy. Based on the examples of two extreme situations, it’s clear that in order 

to applying k-mer count to increase the expression counts difference requires us to choose 

appropriate length of k-mer, which is neither too short that messing transcript counts 

information nor too long that making no contributions to enlarging the expression 

difference between different cell types. 
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6. Purpose and content of this work 

6.1 Purpose 

Clustering the single cell RNA-seq data is the principle step to study the development 

process of cells and identify subtypes of cells. However, with the small amount of 

transcriptome in a single cell and low capture, reverse transcription efficiencies, the number 

of detected transcripts is much lower than bulk RNA-seq. The situation is more sever when 

UMIs are applied to avoid the amplification bias for getting the original mRNA content in 

a single cell. So, the resulting UMI counts matrix of single cell RNA-seq is very sparse, 

which raises more difficult challenge to get accurate clustering results. 

 Different clustering methods have been reported recent years as described above, 

but these methods use gene counts directly or the transcript-compatibility counts, so the 

clustering results can still be affected by the general low gene expression levels. Under the 

same condition, lower reads number means lower signal. Furthermore, all of these methods 

require the step of alignment to genome or pesudoalignment, which may be time 

consuming [15-20]. 

Audoux et al reported that biological variation of RNA-seq data could be captured by 

k-mer [21]. By comparing the 31-mer got from raw RNA sequencing data of different 

samples, they found that the k-mers not only can represent the tissue specificity but also 

can identify various types of biological events, including differential splicing, differential 

polyadenylation, intron retention and so on.  

Based on the above discussed relationship between k-mer counts, gene counts and 

transcripts counts in UMI scRNA-seq and findings of Audoux et al that k-mer in RNA-seq 

can show tissue specificity, we planned to explore the possibility of using k-mer counts 
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instead of gene counts to do clustering for scRNA-seq data, which aiming at saving the 

step of alignment while increasing the abundance of expression values in matrix by cutting 

sequences into small pieces. Also, during the process, we also planned to show the 

influence of low expression counts to clustering results as well as the influence of summing 

up expression counts with same/opposite expression patterns in different cells to clustering 

results. 

 

6.2 Contents 

In the following content we are going to describe the data material and methods of data 

preparation as well as simulation methods in section Methods. In section Results, we are 

going to show the simulation results for checking relationship between clustering accuracy 

and low expression counts as well as the influence of summing up expression counts with 

same/opposite expression patterns in different cells to clustering results. Finally, we are 

going to show the comparison results of clustering accuracy with k-mer counts and gene 

counts. In the discussion part we are going to summary all the work has been done and 

drawbacks in our work. 

 

Methods 

1. General pipeline 

The whole simulation work mainly has three parts shown as Figure 1. 

The first part is material preparation including UMI scRNA-seq download from online 

database and software packages download from Bioconductor sources. 
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The second part is simulation data preparation, which includes dealing with raw UMI 

scRNA-seq data, generating gene count matrix, estimating sequences distribution on each 

gene, generating k-mer count matrix as well as genes sampling.   

The third part is simulation for three purposes. First one is to show the influence of low 

expression level to clustering accuracy. The second one is to show the influence of 

summing up expression counts with same/opposite expression patterns in different cells to 

clustering results. The last one is comparing the performance for clustering between k-mer 

count matrix and gene count matrix. 

 

2. Materials and software 

2.1. Materials  

10 Fastq data of UMI scRNA-seq data for mouse embryonic stem cells from dataset 

GSE46980 on Gene Expression Omnibus:  

(SRR1548085, SRR1548086, SRR1548087, SRR1548088, SRR1548089, SRR1548090, 

SRR1548091, SRR1548092, SRR1548093, SRR1548094) 

Mus musculus genome information from UCSC—mm10 

 

2.2. Software and packages 

Software: R, Python, bowtie; 

Packages: ‘AnnotationHub’, ‘BSgenome’, ‘AnnotationDbi’, ‘combinat’, ‘Mus.musculus’, 

‘GenomicRanges’, ‘Biostrings’, ‘GenomicRanges’, 

‘BSgenome.Mmusculus.UCSC.mm10’. 
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3. Simulation data preparation 

3.1 Generation of gene expression matrix 

3.1.1 Determination of gene number and cell number in simulation 

In reality, there may be multiple subtypes of cells in one experiment. However, in order 

to simplify the simulation, we only do the clustering with two groups of cells, in each there 

are 100 cells.  

Islam et al reported that usually there are approximately 10,000 genes expressed in a 

single cell and the cDNA molecules capture efficiency is about 48% (s.d. = 5%) [14]. So, 

in our simulation the gene number is defined as 5000. Thus, the dimension of gene 

expression matrix is 5000×200.  

 

3.1.2 Gene expression model 

Different from the microarray results, the value of UMI scRNA-seq result is gene 

counts, which is discrete. So, in order to describe the gene expression, we should choose 

Poisson distribution or Negative Binomial distribution. Islam et al reported that in their 

UMI scRNA-seq experiments, the distribution of the number of counted molecules for each 

gene approaches the theoretically optimal Poisson distribution [14]. However, we all know 

the variance of Poisson distribution is always equal to the mean of Poisson distribution, so 

that we choose the Negative Binomial distribution to take care of the potential ‘over-

dispersion’ situation. 

Parameter Definition: 

c: Cell group, in this simulation there are two cell groups c=1 and c=2 

i: Gene index, range of ‘i’ is 1- 5,000 
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j: Cell index, in each group, range of ‘j’ is 1-100 

𝑋vwL : Gene i expression of cell j in cell group c 

𝜇vL : The mean expression of gene i for cells in group c 

𝜙v: Biological variance of gene ‘i’ expression for cell group 1 and cell group 2 

𝜆L: Distribution parameter of exponential distribution. 1/𝜆L is the mean value of mean 

gene expression in cell group c 

𝑓𝑐v: The fold change of mean expression of gene ‘i’ between cell group 1 and cell group 

2, 𝑓𝑐v =
|}~
|}� 

𝑠𝑑:	The standard deviation of logarithmic fold change for each gene expression in 

different cells 

𝑚: The log-mean of log normal distribution for 𝜙v, it is set as -1 for simulation 

𝜏p: The log-variance of log normal distribution for 𝜙v, it is set 1 for simulation 

The relationship between the parameters above: 

⎩
⎨

⎧
𝑋vwL	~	𝑁𝐵(𝜇vL , 𝜙v)											
𝜇vL 			~	𝑒𝑥𝑝(𝜆L)																		
log(𝑓𝑐v) ~𝑁(0, 𝑠𝑑)													
𝜙v~log − 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚, 𝜏p)

 

If the fold change 𝑓𝑐v is fixed then by adjusting the value of 𝜆L, we can control the gene 

expression level of both cell groups. Greater 𝜆L value represents lower gene expression 

level. By changing the value of sd, we can control the difference of gene ‘i’ mean 

expression between two cell groups. Higher value of sd means greater difference (higher 

signal noise ratio), thus easier to cluster. 

For our study, we set 𝜆L = 0.1, 1, 2 and sd = 0.05, 0.10, 0.15. Then we totally have 

3×3=9 scenarios by combing the two sets of parameter values. Under each scenario we 
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generate 6 gene expression matrixes to mitigate the random sampling effect. So, in our 

simulation there are totally 54 matrixes with 9 different parameters combinations. 

 

3.2 Estimation of sequences distribution on each gene 

As stated in introduction, although the sequences are randomly fragmented, sequences 

derived from 3’ or 5’ end of mRNA are easier been sequenced than sequences from other 

positions. For UMI scRNA-seq, sequences from one gene may come from different TSSs 

in a single cell due to the alternative splicing. Even though sequences are from the same 

TSS, because of the TSS fusion they may have sequences with 1-20nt difference [14]. 

Considering the situation that we can’t know the exact sequences distribution on different 

genes in scRNA-seq, we assumed that the counts of sequences from different positions of 

a certain gene is a Multinomial distribution. So, we counted the frequencies of sequences 

from different positions in each gene. Then used the percentage as the estimation of the 

probability the gene sequenced at corresponding position.  

That is, assuming there are M cells (𝐶𝑒𝑙𝑙-, 𝐶𝑒𝑙𝑙p, … 𝐶𝑒𝑙𝑙4) and for gene i sequences 

are sequenced from totally n different positions (𝑃-, 𝑃p, … 𝑃0). In Cell k the counts are 

(𝐶"-, 𝐶"p, … 𝐶"0). Then the probability sequence derived from 𝑃v is: 

Prob (𝑃v) = ∑ ��}�
~

∑ ��~�
~ �∑ ����

~ �	…	�	∑ ����
~

 

In this simulation we calculated our estimation based on 10 Fastq data from dataset 

GSE46980 on Gene Expression Omnibus. This is UMI scRNA-seq data for mouse 

embryonic stem cells. Finally, we got the sequences distribution for 14115 genes and 

among them 11540 genes have multiple positions. The mean number of positions for a 

gene is about 10 and the maximum number of positions for a gene is 605. 
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3.3 Selection of k-mer length 

As described in introduction, if we are aiming at increasing the expression count 

difference then we should choose the length of k-mer carefully – neither too large nor too 

small. Here we give a simple definition of coverage to help us to select the appropriate 

length of k-mer. Assuming in a sample there are totally T different transcripts and the length 

of transcripts is L, the length of k-mer is K and ‘unique ()’ is a function calculating number 

of different values of given variable just as same expression function in R. 

𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆	 = 	
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓		𝑘 −𝑚𝑒𝑟𝑠	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑎𝑙𝑙	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡		𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑘 − 𝑚𝑒𝑟𝑠	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑎𝑙𝑙	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠

=
𝑇 × (𝐿 − 𝐾 + 1)

𝑢𝑛𝑖𝑞𝑢𝑒(𝑇 × (𝐿 − 𝐾 + 1)) 

We can see when K is very small, and then coverage will be super large. For example, 

K=1, L=50 and T=10,000, then we have 𝑢𝑛𝑖𝑞𝑢𝑒	(𝑇 × (𝐿 − 𝐾 + 1))=4. The coverage for 

1-mer is 125,000. However, with the same value of L and T, assuming K=L=50. We can 

know that due to the uniqueness of long length k-mer that 𝑢𝑛𝑖𝑞𝑢𝑒(𝑇 × (𝐿 − 𝐾 + 1)) =

	𝑇 × (𝐿 − 𝐾 + 1). So, coverage is equal to 1. 

In conclusion if coverage value is close to 1 then it means no contribution to increase 

the expression count values. If the coverage value is too large, it means the k-mer count 

information is too messy to use. By calculating the coverage of the 14115 genes in our 

genes pool for both transcript length equal to 50 and 1000, we have the Table 1 shown in 

appendix. Finally, we choose K=5, 6, 7, 8, 9, 10 for both transcript length equal to 50 and 

100 to do the simulation.  
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3.4 Generation of k-mer expression matrix 

For each gene expression matrix, we need to generate a corresponding k-mer counts 

matrix. The first step is sample 5,000 genes from the 14115 genes pool generated above. 

Then based on the specific gene count and corresponding sequence distribution of the gene, 

we random sampled the sequences with length L out and cut them into small pieces – k-

mers. At last get the count of each type of k-mer in each cell then combine them into a 

matrix called k-mer counts matrix.  

However, different genes have different sequences and multiple positions to generate 

the k-mers, which may affect the cluster results. In order to reduce the influence of the 

process of sampling 5,000 genes from 14115 genes and sampling different positions for 

generating sequences in a certain gene, we got five samples of genes then applied them for 

each gene expression matrix. 

 

3.5 Clustering results comparison 

After getting the gene count matrix and corresponding k-mer count matrix, we first 

normalized the expression counts then applied Principle Component Analysis (PCA) to 

reduce the dimensions. Finally, clustering was done with the selected first K principle 

components by K-means method. Here the K value is determined based on the method 

reported in TSCAN [20].   

Since we have known the classes of the 200 cells, the accuracy is defined by comparing 

the clustering result with the original class. Suppose 100 cells are in C1 group and 100 cells 

are in C2 groups. The clustering result is A C1 group cells and B group C2 cells are 

clustered into one group. Then the accuracy here is: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	
𝑚𝑎𝑥(𝐴 + 100	 − 	𝐵, 𝐵	 + 	100	 − 	𝐴)

200  

Because K-means uses randomly generated seed to determine the staring centroids of 

the cluster, so for each matrix we do 10,000 times K-means clustering to select the highest 

accuracy as the result. 

 

4. Simulation methods description 

4.1 Influence of low expression count to clustering results 

As described in section of gene expression model, we have gene count 

𝑋vwL	~	𝑁𝐵(𝜇vL, 𝜙v), 𝜇vL	~	𝑒𝑥𝑝	(𝜆L) as well as 𝑓𝑐v =
|}~
|}�. By controlling the value of 𝜆L and 

fixing the fold-change 𝑓𝑐v, we can change the mean expression level of genes in cells. 

Larger 𝜆L means lower expression level of genes in cells. By changing the value of 𝜆L and 

keeping other parameters consistent, we checked the clustering accuracy and the average 

gene count in a single cell with different 𝜆L values. The values of 𝜆L are 0.05, 0.10, 0.15, … 

4,95, 5.00. There are totally 100 different 𝜆L values and under each value we repeated 50 

times to generate gene count matrix and do clustering. Finally, we reported the mean value 

and median value of clustering results with different 𝜆L values as well as the corresponding 

averaged gene count in a single cell with specific 𝜆L value. 

S0: set 𝜆L=0 

S1: Set 𝜆L = 𝜆L + 0.05 and n=1, if 𝜆L > 5.00 then S6, else then S2 

S2: Generate a gene count matrix with specific parameter 𝜆L and set n=n+1 

S3: Record the averaged gene count per cell 

S4: Record the clustering result 
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S5: If n> 50 then S1 else then S2 

S6: End the loop and report the averaged clustering results and averaged gene count per 

cell for each 𝜆L value 

 

4.2 Influence of summing up expression counts with same/opposite expression 

patterns in different cells to clustering results 

In introduction part, we discussed the potential advantage and disadvantage of 

summing up expression counts. However, because we did not provide detailed mathematics 

proof, we tried to use simulation to show the potential regularity. In our simulation we have 

gene count 𝑋vwL	~	𝑁𝐵	(𝜇vL , 𝜙v) and 𝜇vL  representing the mean expression level of gene ‘i’ 

in group c. After generating a gene count matrix with certain parameters, we divided 5000 

genes into different two parts – up regulated genes and down regulated genes, by 

comparing the 𝜇v-  and 𝜇vp . If 𝜇v- > 𝜇vp  then gene ‘i’ is up regulated gene (in cell 1), 

otherwise we thought it is down regulated gene (in cell 1). We calculated the difference 

between 𝜇v- and 𝜇vp. And resort the gene count matrix rows based on the value of 𝜇v- −

	𝜇vp. After resorting the matrix, we only kept the first 2000 rows (having largest values of 

𝜇v- −	𝜇vp) and the last 2000 rows (having largest values of 𝜇vp −	𝜇v-) of the matrix. We 

called the matrix ‘Original’. Then we got matrix called ‘Same’, which is generated by 

summing up the counts of genes that are sharing the same expression pattern and near to 

each other. For example, the counts of Row 1 in ‘Same’ matrix are generated by adding 

counts of Row 1 and Row2 in matrix ‘Original’. The matrix having counts by adding up 

counts of genes having opposite expression pattern (up regulated gene count + down 

regulated gene count) is called ‘Opposite’. For example, the counts in Row 1 in ‘Opposite’ 
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are sum of counts in Row 1 and Row 4000 of ‘Original’.  

The ‘Same’ matrix counts are sum of ‘Original’ matrix counts of genes, which are all 

up regulated or down regulated in same cell. The ‘Opposite’ matrix counts are sum of 

‘Original’ matrix counts of genes, which having opposite expression pattern in same cells. 

The dimensions of them are 2000×200, while the dimension of ‘Original’ is 4000×200. 

After getting the three types of matrix, we compared clustering results of them under 

scenarios with different parameters. 

As discussed above the clustering results are also influenced by the variance of 

expression counts. It is known that gene count has negative binomial distribution that 

𝑋vwL	~	𝑁𝐵	(𝜇vL, 𝜙v). So we changed the 𝜙v , which represents the biological variance in 

gene expression, to see the clustering accuracy difference between three types of matrixes.  

The first simulation is simply setting 𝜙v  as constant for all genes. We did the 

simulation with four 𝜙v  values that 𝜙v =	0.1, 0.5, 1 and 2. The second simulation is 

assuming 𝜙v~𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙	(𝑚, 𝜏p), setting 𝜙v  into four log-normal distributions with 

different parameters. One is 𝜙v~𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙	(1, 0.3), of which the median of 𝜙v is 2.73. 

One is 𝜙v~𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙	(0, 0.3),  of which the median of 𝜙v  values is 1.0. One is 

𝜙v~𝑙𝑜𝑔 − 𝑛𝑜𝑟𝑚𝑎𝑙	(−1, 0.3) and its median 𝜙v	value is 0.37. The other one is 𝜙v~𝑙𝑜𝑔 −

𝑛𝑜𝑟𝑚𝑎𝑙	(−2, 0.3), which has smallest median 𝜙v  value 0.14. Actually, they represent 

different levels of variance from large to small. 

S1: Set 𝜙v value 

S2: Generate gene count matrix 

S3: Divide genes (rows) into two groups by comparing 𝜇v-	𝑎𝑛𝑑	𝜇vp, if 𝜇v- > 𝜇vp gene ‘i’ is 

up regulated and otherwise it is down regulated 
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S4: Resort the gene count matrix by rows based on the 𝜇v- − 𝜇vp value and only keep the 

first 2000 rows and last 2000 rows of the resorted matrix. Then call the matrix ‘Original’ 

S5: Get ‘Same’ matrix by adding up counts of two rows near each other. That is Row N in 

‘Same’ is sum of Row 2N-1and Row 2N of ‘Original’ matrix 

S6: Get ‘Opposite’ matrix by adding up counts of two rows with different expression 

pattern in same cell type. That is Row N in ‘Opposite’ is sum of Row N and Row 4001-N 

of ‘Original’ matrix 

S7: Get the clustering results of the three matrixes 

S8: Repeat S2 to S7 50 times and then go back to S1 set 𝜙v with different parameters  

 

4.3 Clustering results comparison with different parameters 

From the gene expression model, we know that 𝜆L  can control the general gene 

expression level and 𝑠𝑑 can control the gene expression difference between two cell groups 

(greater 𝜆L  means lower gene expression level and greater 𝑠𝑑  means larger gene 

expression difference between groups). In order to test the performance of k-mer counts 

matrix in different situations, we designed three different levels for gene expression (𝜆L =

0.1, 1, 2) and three different levels for between groups difference (𝑠𝑑 = 0.05, 0.1, 0.15) by 

change the 𝜆L and 𝑠𝑑.   

In order to mitigate the random sampling influence on final results, we repeated the 

above three main steps 6 times (6 matrixes) for each combination of gene expression level 

and between-groups difference level and also for each matrix we repeated sampling genes 

5 times to reduce the influence of different genes content. 

S1: Generate the gene expression matrix (5000 genes, 2 groups with 100 cells in each group) 
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by adjusting the parameters of assumption model (Negative Binomial Distribution) 

S2: Generate k-mer counts matrix (k=5, 6, 7, 8, 9, 10) by combing the gene counts 

information from first step and sequence distribution on genes information  

S3: Compare the clustering results on the two matrixes generated above 

 

Results 

1. Influence of low expression count to clustering results 

In Figure 2 and Table 2 we can see that when 𝜆L = 0.05, the average gene count is 

around 19.98 and corresponding clustering accuracy is about 0.90. However, with the 

increase of 𝜆L both the clustering accuracy and average gene count per cell decrease. When 

the 𝜆L = 5.00, the average gene count decreased close to 0.19 and the clustering accuracy 

is also decreased to about 0.585. So, when gene expression is low, it’s harder to do 

clustering with such expression matrix, which indicates that we need to raise novel methods 

to solve this dilemma. 

 

2. Influence of summing up expression counts with same/opposite expression 

patterns in different cells to clustering results 

In Figure 3 and Table 3, we can see that the ‘Opposite’ matrix always performs worse 

than ‘Same’ matrix and ‘Original’ matrix (exact accuracy information is in table 3), which 

proves the disadvantage discussed above that by combing expression counts of genes with 

different expression patterns may mitigate the difference of original transcripts between 

different cell groups. When constant variance equals to 0.1 and 0.5, we can see that the 
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‘Same’ matrix performs better than ‘Original’ matrix (median: 0.985 vs. 0.98, 0.728 vs. 

0.71), which indicating the potential advantage discussed in introduction. Adding up 

expression counts of genes sharing same expression pattern may improve the clustering 

accuracy by enlarging the difference of original transcripts counts in different cell groups. 

However, when constant variance increases to 1 and 2, the clustering accuracy of ‘Same’ 

matrix is worse than ‘Original’ matrix (median: 0.63 vs. 0.64, 0.6 vs. 0.605). This indicates 

that the process of summing up two gene counts may also increase the variance, which may 

have influence on clustering results. 

In Figure 4 and Table 4, we set the biological variance 𝜙v log normal distributed with 

four sets of parameters. The log standard deviation is consistent in four plots with log-sd 

equals to 0.3. However, the log-means are different with -2, -1,0 and 1. The corresponding 

variance medians are 0.14, 0.37, 1.00 and 2.73. The four plots represent different variance 

levels separately. We can see that when variance is small (log-mean = -2), ‘Same’ matrix 

has the better performance in clustering accuracy than ‘Original’ matrix (median: 0.97 vs. 

0.96) while ‘Opposite’ matrix shows the worst accuracy. And with the increase of variance 

the performance of ‘Same’ matrix and ‘Original’ matrix becomes worse. Furthermore, the 

‘Same’ matrix clustering accuracy is close to or a little lower than ‘Original’ matrix (log-

mean = 0, median: 0.622 vs. 0.64; log-mean=1, median: 0.597 vs. 0.595). Again, the result 

shows that when the variance is small, adding expression counts of genes with the same 

expression pattern in cells can improve the clustering results. However, when the variance 

is large, the ‘potential’ advantage disappears. 

In conclusion, disadvantage of adding expression counts of genes with different 

expression patterns is obvious while advantage of adding expression counts of genes 
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sharing similar expression pattern can only appear when variance is small. So, if we want 

to use k-mer count to improve clustering accuracy we need to make sure the adding up 

should appear between transcripts with same expression pattern and also the variance 

cannot be too large. 

 

3. Clustering results comparison with different parameters 

As described in the methods part, parameter 𝜆L	controls the gene expression level. 

Higher 𝜆L means that the value in the matrix is larger. For 𝜆L equals to 0.1, there are about 

50,000 gene counts in a cell. For 𝜆L	equals to 1, there are about 5,000 gene counts in a cell. 

And for 𝜆L  equals to 2, there are only about 2,500 gene counts expressed in a cell. 

Parameter sd controls the difference of gene expression between two cells. With larger sd, 

the gene expression difference between two cells are more significant.  

From Figure 5 and Table 5, the change tendency of clustering results due to different 

parameter combinations is consistent with what we described above. With same sd value, 

the clustering accuracy decreases when 𝜆L  increases. With same 𝜆L  value, clustering 

accuracy improves with larger sd values. 

We can see that in all scenarios, longer length of k-mer (k= 8, 9, 10) has better accuracy 

than shorter length of k-mer (k=5, 6, 7). But in some scenarios, 10-mer clustering 

performance is not as good as 8-mer or 9-mer. No matter in which scenario, gene count 

matrix performs better than k-mer count matrix. When length of k-mer is 5, 6, 7 and 8, 

shorter sequence length (50nt) is better than longer sequence length (100nt). The reason 

may be that when length of k-mer is shorter, more transcripts may share the specific k-mer, 

then the k-mer count mixed counts of more transcripts. So longer length sequence can 
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generate more k-mers, which may make the k-mer count information messier.  

In conclusion, although with the length increase of k-mers, clustering results are 

improved, the performance of k-mer still cannot be compared with performance of gene 

counts in all scenarios. 

 

Discussion 

Through these work, we showed that it is true low expression values for UMI scRNA-

seq is hard to get a good clustering result. We need to raise some method to solve it. After 

showing the k-mer/gene count matrix is transformation of transcript count matrix, we 

showed that if we want to improve the clustering results by increasing matrix count values 

with k-mer, then we should make sure most of the k-mer count is summing of transcript 

counts sharing same expression pattern and the variance should be small. This is really 

hard for k-mer count because its transformation matrix is determined by the genome 

content when k is fixed. Finally, we found that under different scenarios, gene count matrix 

always performs better than k-mer count matrix. 

 In our work there are still many aspects can be improved. First, although we 

estimated the sequences distribution on each gene through real data, the sample size is 10, 

which is too small to get an accurate estimation. Second, we only studied the clustering 

performance with k=5, 6, 7, 8, 9, 10. Actually, in order to get an integrative understanding 

of the k-mer count performance in clustering, we should continue to study other k values. 

Third, the transformation matrix for k-mer count is determined by genome contents, we 

should also need to study the k-mer performance for other species due to genomes of 

different species are different. Fourth, in the second results part, the difference between 
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‘Same’ and ‘Original’ matrix is very small, in order to make sure the difference truly exists, 

we should increase the cell numbers for clustering (sample size). Also, we need to repeat 

the experiments more times to get an accurate estimation and perform suitable statistics 

test to test whether the difference is significant. 
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Appendix 

 
Figure 1. Pipeline of Simulation 
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Figure 2. Plot of clustering accuracy and average gene count per cell with different 
lambda value 
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Figure 3. Comparison of clustering results between ‘Same’, ‘Opposite’ and ‘Original’ 
matrix with different variance (variance is constant) 
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Figure 4. Comparison of clustering results between ‘Same’, ‘Opposite’ and ‘Original’ 
matrix with different variance (variance is log-normal distributed) 
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Figure 5. Comparison of clustering results (averaged) of k-mer count matrix and gene 
count matrix with different expression level and expression difference between cells 
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Table 1. Coverage for different length of k-mer and different length of transcripts 
 

Lseq=50 
K Coverage 

Lseq=100 
K Coverage 

5 6488.2 5 13540.59 
6 1586.79 6 3349.89 
7 387.88 7 828.66 
8 94.85 8 204.98 
9 23.92 9 51.15 
10 7.19 10 14.12 
11 3.03 11 4.99 
12 1.97 12 2.61 
13 1.67 13 1.96 
14 1.57 14 1.76 
15 1.53 15 1.69 
20 1.46 16 1.66 
25 1.4 17 1.64 
30 1.35 18 1.62 
35 1.3 19 1.61 
40 1.24 20 1.6 
45 1.17 30 1.51 
50 1.05 40 1.43 

  50 1.38 

  60 1.33 

  70 1.28 

  80 1.22 

  90 1.15 

  100 1.02 
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Table 2. Summary of clustering accuracy and average gene count with different 
expression level  
 

lambda 
value 

accuracy 
median 

accuracy 
mean accuracy sd 

gene count 
median 

gene count 
mean gene count sd 

0.05 0.9 0.8971 0.030490715 19.9653865 19.98339652 0.270321694 
0.1 0.805 0.8035 0.043533356 9.981506 9.98549806 0.12171501 

0.15 0.7525 0.7511 0.044587566 6.677881 6.6907731 0.087727086 
0.2 0.71 0.7101 0.03674915 4.983323 4.99604326 0.073537711 

0.25 0.7 0.7021 0.036268415 3.998325 3.9973941 0.059939084 
0.3 0.6875 0.6839 0.030359916 3.327595 3.32130218 0.045581769 

0.35 0.67 0.6743 0.035123833 2.8580445 2.85609458 0.041364652 
0.4 0.6575 0.6559 0.033725936 2.505014 2.50826502 0.027717485 

0.45 0.6375 0.6447 0.034588101 2.2116945 2.21172298 0.024359214 
0.5 0.65 0.6517 0.025686692 1.998522 1.99996344 0.030332105 

0.55 0.645 0.6485 0.035674978 1.8197525 1.81837088 0.029343133 
0.6 0.64 0.6445 0.027109942 1.663597 1.66506928 0.026964379 

0.65 0.635 0.637 0.026878411 1.5362875 1.53639002 0.026464577 
0.7 0.6375 0.6375 0.029141632 1.429675 1.43246998 0.019683082 

0.75 0.6275 0.6309 0.026490083 1.329854 1.3308301 0.019239516 
0.8 0.63 0.6315 0.027147556 1.2498975 1.24993366 0.014214455 

0.85 0.625 0.6303 0.03046259 1.179402 1.17669872 0.015631277 
0.9 0.625 0.6252 0.028819636 1.112522 1.11265594 0.014118954 

0.95 0.62 0.624 0.023079278 1.052729 1.05366952 0.012780239 
1 0.615 0.6206 0.028867042 1.0036075 1.00168664 0.013417995 

1.05 0.62 0.6209 0.023919295 0.953709 0.9543666 0.013557758 
1.1 0.6125 0.6138 0.022667967 0.9110545 0.91106968 0.01335906 

1.15 0.61 0.6146 0.021424762 0.8696775 0.87045146 0.011133928 
1.2 0.62 0.6207 0.019430935 0.835152 0.83392318 0.011405145 

1.25 0.625 0.6204 0.023858426 0.798608 0.79712528 0.012573076 
1.3 0.6075 0.6138 0.024001701 0.769141 0.76968222 0.009087563 

1.35 0.6075 0.6117 0.020913085 0.7389905 0.73850434 0.011735581 
1.4 0.605 0.609 0.020898198 0.7158615 0.71646248 0.010526849 

1.45 0.6075 0.609 0.027404752 0.689807 0.68878058 0.009686217 
1.5 0.615 0.608 0.018626293 0.666145 0.66650798 0.00894512 

1.55 0.595 0.6033 0.021656172 0.645047 0.6458635 0.009086695 
1.6 0.6 0.6047 0.021485876 0.6269095 0.62622406 0.009668941 

1.65 0.6075 0.6105 0.021905409 0.6047005 0.60603034 0.008401762 
1.7 0.61 0.6075 0.019039433 0.5924175 0.59228974 0.010515641 

1.75 0.605 0.603 0.022131333 0.5721125 0.57161606 0.007704895 
1.8 0.605 0.6037 0.021590105 0.555842 0.55587478 0.008564423 

1.85 0.6 0.6051 0.020012496 0.540695 0.5413057 0.0079613 
1.9 0.605 0.6039 0.016972066 0.52546 0.52512248 0.0074126 
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1.95 0.6 0.5984 0.020786573 0.515187 0.5154657 0.00691855 
2 0.605 0.6047 0.018472539 0.5004085 0.50109672 0.007108147 

2.05 0.6 0.6048 0.024368766 0.487067 0.48676872 0.007016729 
2.1 0.595 0.5984 0.019728773 0.476845 0.47711378 0.00701251 

2.15 0.6 0.6028 0.024746882 0.4662135 0.4664127 0.006273036 
2.2 0.6 0.5998 0.018843068 0.4537495 0.4531879 0.006268748 

2.25 0.6 0.6041 0.025186853 0.4434775 0.44376212 0.006074309 
2.3 0.605 0.6004 0.022942697 0.4326245 0.43327716 0.006417873 

2.35 0.595 0.5979 0.020431318 0.424858 0.42454802 0.006047635 
2.4 0.6 0.6029 0.023301266 0.4162585 0.41730122 0.005920011 

2.45 0.6 0.6013 0.021184563 0.406215 0.40718324 0.006583929 
2.5 0.5975 0.5991 0.019077982 0.398787 0.39892342 0.006062358 

2.55 0.595 0.5959 0.020245685 0.3916415 0.39176888 0.005302709 
2.6 0.595 0.5977 0.020707142 0.3845765 0.38464888 0.00503346 

2.65 0.595 0.5989 0.020807426 0.3752055 0.37678808 0.005369188 
2.7 0.6 0.5975 0.017821393 0.3692825 0.36954762 0.004297734 

2.75 0.595 0.5977 0.019954284 0.3647425 0.36473386 0.005891487 
2.8 0.605 0.6048 0.020848335 0.3573235 0.35704192 0.005842278 

2.85 0.5975 0.5987 0.021184563 0.350276 0.3511381 0.005316771 
2.9 0.595 0.5976 0.020183849 0.345305 0.34551778 0.00386511 

2.95 0.6 0.6008 0.019122591 0.339179 0.33972932 0.005489921 
3 0.595 0.593 0.015452363 0.3336125 0.33373314 0.005228715 

3.05 0.6 0.5973 0.020005356 0.3284375 0.32823308 0.003647645 
3.1 0.59 0.5903 0.019908208 0.3226035 0.322838 0.00445121 

3.15 0.6 0.6009 0.019237771 0.3190595 0.31864994 0.004664771 
3.2 0.595 0.5992 0.023611654 0.312256 0.3130834 0.004491101 

3.25 0.595 0.6002 0.025494297 0.307312 0.30739284 0.004002414 
3.3 0.595 0.5954 0.019028443 0.3027185 0.3029393 0.003947413 

3.35 0.6 0.5974 0.019903851 0.299303 0.29965018 0.004767728 
3.4 0.59 0.5923 0.019645065 0.2926285 0.29343596 0.003319429 

3.45 0.59 0.5912 0.014623157 0.290073 0.29025086 0.003571345 
3.5 0.6 0.6001 0.0176268 0.2879275 0.28710464 0.004941792 

3.55 0.595 0.5969 0.020351252 0.2822565 0.28183536 0.003836211 
3.6 0.59 0.5924 0.020209111 0.278297 0.27777158 0.004042873 

3.65 0.595 0.5924 0.019980603 0.2746145 0.27423622 0.003930398 
3.7 0.6 0.598 0.021641796 0.270459 0.27070264 0.003142847 

3.75 0.595 0.5959 0.020743575 0.2666775 0.26737832 0.004741994 
3.8 0.59 0.5896 0.018893904 0.2642285 0.26385438 0.004301197 

3.85 0.595 0.5924 0.019065944 0.260214 0.26033538 0.003797247 
3.9 0.59 0.5897 0.019702118 0.2561725 0.256064 0.002928717 

3.95 0.59 0.5913 0.01778012 0.2531435 0.25284034 0.00316157 
4 0.59 0.5918 0.018537331 0.250398 0.25037772 0.003212545 

4.05 0.5925 0.5933 0.022397385 0.2471905 0.24783858 0.004030631 
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4.1 0.59 0.5891 0.02027087 0.244432 0.24450282 0.004283382 
4.15 0.5925 0.5947 0.020464255 0.2404315 0.241239 0.003470231 
4.2 0.5925 0.5942 0.019596959 0.2394415 0.23908678 0.00286894 

4.25 0.59 0.5907 0.017143155 0.2352615 0.23495878 0.003718157 
4.3 0.5875 0.5913 0.019081191 0.2320275 0.23241528 0.003859979 

4.35 0.595 0.5939 0.019359383 0.230787 0.23032458 0.004019207 
4.4 0.585 0.5899 0.016490257 0.227816 0.22828844 0.003911673 

4.45 0.59 0.5925 0.017963966 0.2240585 0.22415898 0.003351642 
4.5 0.59 0.5919 0.019056575 0.222823 0.22259248 0.004063777 

4.55 0.59 0.5932 0.013951812 0.2197795 0.21994322 0.003144291 
4.6 0.59 0.5922 0.021716165 0.2173895 0.21750274 0.0034098 

4.65 0.595 0.5919 0.017551382 0.215727 0.2155433 0.002789587 
4.7 0.585 0.5875 0.019749709 0.2132655 0.212669 0.003424901 

4.75 0.585 0.5917 0.018833589 0.210976 0.21076776 0.002626351 
4.8 0.585 0.5892 0.018608754 0.2084515 0.20868458 0.00313844 

4.85 0.585 0.588 0.018789923 0.205913 0.20598642 0.003137052 
4.9 0.585 0.5859 0.019657527 0.2037335 0.20375214 0.002984158 

4.95 0.59 0.5925 0.024416664 0.2021095 0.20199728 0.002907537 
5 0.585 0.5885 0.017120521 0.199271 0.1997669 0.002577266 
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Table 3. Clustering results comparison between ‘Same’, ‘Opposite’, ’Origin’ matrix 
with different variance values (Constant variance) 
 

Variance Type 
Accuracy 
median 

Accuracy 
mean Accuracy sd 

0.1 Same 0.985 0.984 0.009 

 Opposite 0.585 0.588 0.018 

 Origin 0.98 0.978 0.011 

0.5 Same 0.728 0.725 0.039 

 Opposite 0.585 0.587 0.017 

 Origin 0.71 0.715 0.046 
1 Same 0.63 0.628 0.032 

 Opposite 0.585 0.584 0.02 

 Origin 0.64 0.638 0.035 

2 Same 0.6 0.604 0.022 

 Opposite 0.585 0.587 0.021 

 Origin 0.605 0.604 0.021 
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Table 4. Clustering results comparison between ‘Same’, ‘Opposite’, ’Origin’ matrix 
with different variance values (variance is log-normal distributed) 
 

Log-mean Type 
Accuracy 
median 

Accuracy 
mean Accuracy sd 

-2 Same 0.97 0.968 0.014 

 Opposite 0.585 0.588 0.017 

 Origin 0.96 0.96 0.016 

-1 Same 0.795 0.789 0.038 

 Opposite 0.587 0.589 0.018 

 Origin 0.795 0.798 0.044 
0 Same 0.622 0.632 0.037 

 Opposite 0.59 0.591 0.017 

 Origin 0.64 0.636 0.034 

1 Same 0.597 0.600 0.023 

 Opposite 0.85 0.586 0.019 

 Origin 0.595 0.600 0.017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 46 

 
Table 5. Summary of clustering results for k-mer and gene count matrix in different 
expression level and expression difference scenarios  
 

  Mgene  Sequence length = 100 Sequence length = 50 

lambda sd mean sd k-mer mean sd mean sd 
0.1 0.05 0.849 0.052 5 0.515 0.013 0.523 0.014 

    6 0.526 0.015 0.56 0.025 

    7 0.606 0.025 0.626 0.018 

    8 0.657 0.021 0.678 0.034 

    9 0.702 0.038 0.711 0.036 

    10 0.722 0.033 0.717 0.047 
0.1 0.1 0.999 0.002 5 0.575 0.027 0.578 0.026 

    6 0.585 0.024 0.61 0.028 

    7 0.71 0.039 0.834 0.048 

    8 0.96 0.015 0.975 0.01 

    9 0.991 0.007 0.988 0.009 

    10 0.993 0.005 0.987 0.008 

0.1 0.15 1 0 5 0.646 0.052 0.649 0.053 

    6 0.662 0.056 0.737 0.058 

    7 0.934 0.051 0.991 0.011 

    8 1 0 1 0 

    9 1 0 1 0 

    10 1 0 1 0 

1 0.05 0.671 0.014 5 0.532 0.022 0.534 0.025 

    6 0.536 0.025 0.566 0.025 

    7 0.569 0.027 0.614 0.024 

    8 0.63 0.024 0.648 0.016 

    9 0.653 0.019 0.648 0.019 

    10 0.646 0.018 0.647 0.023 

1 0.1 0.892 0.031 5 0.55 0.031 0.552 0.031 

    6 0.557 0.03 0.579 0.034 

    7 0.603 0.034 0.689 0.043 

    8 0.756 0.044 0.762 0.033 

    9 0.803 0.031 0.788 0.033 

    10 0.79 0.033 0.746 0.028 

1 0.15 0.993 0.003 5 0.632 0.05 0.632 0.051 

    6 0.644 0.057 0.674 0.046 

    7 0.731 0.055 0.87 0.041 

    8 0.949 0.018 0.958 0.018 

    9 0.977 0.011 0.971 0.013 

    10 0.975 0.015 0.962 0.015 

2 0.05 0.651 0.02 5 0.551 0.029 0.554 0.03 
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    6 0.552 0.029 0.572 0.019 

    7 0.58 0.021 0.616 0.017 

    8 0.637 0.018 0.639 0.021 

    9 0.644 0.017 0.637 0.016 

    10 0.634 0.016 0.633 0.019 

2 0.1 0.777 0.027 5 0.542 0.021 0.547 0.023 

    6 0.546 0.024 0.584 0.024 

    7 0.597 0.032 0.662 0.028 

    8 0.697 0.034 0.702 0.031 

    9 0.718 0.029 0.696 0.029 

    10 0.708 0.026 0.682 0.024 

2 0.15 0.964 0.007 5 0.579 0.031 0.576 0.031 

    6 0.589 0.029 0.614 0.023 

    7 0.631 0.027 0.743 0.03 

    8 0.842 0.036 0.855 0.028 

    9 0.896 0.023 0.859 0.027 

    10 0.872 0.033 0.81 0.035 
 
 
 
 
 


