
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter now, including display on the World Wide Web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain
the right to use in future works (such as articles or books) all or part of this thesis.

Signature:

Yizhou Chen April 01, 2024

Fast Mixed Precision Algorithms for Toeplitz Least Squares Problems

By

Yizhou Chen

James G. Nagy, Ph.D.
Advisor

Department of Mathematics

James G. Nagy, Ph.D.
Advisor

Julianne Chung, Ph.D.
Committee Member

Michael Rogers, Ph.D.
Committee Member

2024

Fast Mixed Precision Algorithms for Toeplitz Least Squares Problems

By

Yizhou Chen

James G. Nagy, Ph.D.
Advisor

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences of

Emory University in partial fulfillment
of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2024

Abstract

Fast Mixed Precision Algorithms for Toeplitz Least Squares Problems
By Yizhou Chen

This thesis presents a fast mixed precision algorithm to solve least squares prob-
lems min ∥Ax − b∥22 + α2∥x∥22 when A is a Teoplitz matrix (α could be zero for
general problems), which arise in many applications like signal deblurring. This algo-
rithm utilizes the special structure of the Toeplitz matrix to construct the Cholesky
factorization of matrix A⊤A in lower precision to solve for x and executes GMRES
iterative refinement in higher precision to improve the accuracy of the solution. It is
found that the precision used for the computation of the Cholesky factorization does
not affect the accuracy of the result in cases when b is corrupted by noise. Using
double precision in both refinement and calculating the residual is the most efficient,
requiring only 1 refinement iteration. However, using single precision for refinement
and double for calculating the residual can reach the same level of accuracy with one
or two refinement iteration(s).

Fast Mixed Precision Algorithms for Toeplitz Least Squares Problems

By

Yizhou Chen

James G. Nagy, Ph.D.
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements of the degree of
Bachelor of Science with Honors

Department of Mathematics

2024

Acknowledgments

I’m extremely grateful to my amazing advisor Dr. James Nagy. This thesis would

not have been possible without his support and guidance. I would like to extend my

sincere thanks to my family and friends, who encouraged me when I felt stuck. At

last, I want to thank Dr. Julianne Chung and Dr. Michael Rogers, who provided

valuable advice on my thesis.

i

Contents

1 Introduction 1

2 Deconvolution 4

3 Least Squares Problems 10

3.1 Methods to solve least squares problems 10

3.2 Rank-1 updating . 13

3.3 Rank-1 downdating . 15

3.4 Iterative refinement . 18

4 Approaches for Toeplitz Systems 20

4.1 The Cholesky factorization for Toeplitz least squares problem 20

4.2 The Cholesky factorization for regularized Toeplitz least squares problem 23

4.3 The inverse Cholesky factorization for Toeplitz least squares problem 24

4.4 Refinement for regularized Toeplitz least squares problem with precon-

ditioner . 28

5 Numerical Experiments 32

6 Concluding Remarks 38

Bibliography 40

ii

List of Figures

2.1 Signal and Measurements . 7

2.2 Solution of backslash on true b . 8

2.3 Solution of backslash on noisy b . 8

2.4 Solution of backslash after regularization 9

5.1 x calculated by the fast algorithm . 35

iii

List of Tables

5.1 Relative errors for 0% noise level. 33

5.2 Relative errors for 0.1% noise level. 34

5.3 Relative errors for 1% noise level. 34

5.4 Relative errors for 10% noise level. 35

1

Chapter 1

Introduction

In this thesis we consider least squares problems

min ∥b−Ax∥22 (1.1)

and

min ∥Ax− b∥22 + α2∥x∥22 = min

∥∥∥∥∥∥∥
 b

0

−

 A

αI

x

∥∥∥∥∥∥∥
2

2

(1.2)

where b ∈ Rm, x ∈ Rn, α is a scalar, I ∈ Rn×n is the identity matrix, and A ∈ Rm×n

(m ≥ n) is a Toeplitz matrix; that is, a matrix with the following structure

A =



a0 a−1 · · · a−(n−1)

a1 a0
. . .

...

...
. a−1

...
. . . a0

... a1

...
...

am−1 · · · · · · am−n



.

2

Throughout this thesis we refer to equation (1.1) as a Toeplitz least squares problem,

and equation (1.2) as a regularized Toeplitz least squares problem. The regularized

version arises in applications where A is ill-conditioned and there are unknown errors

or noise in the entries of b. The scalar α is added to balance the residual norm

and the x norm, with larger α favoring small x norm solutions and small α favoring

small residual norm solutions. Least squares problems involving Toeplitz matrices

arise in many applications, including signal or image deblurring [8], [11], and seismic

tomography [3].

There are many efficient algorithms to solve Toeplitz least squares problems, in-

cluding approaches to compute QR factorizations of A, and preconditioned iterative

algorithms [3]. Others [2] have done mixed precision iterative refinement to further

improve the accuracy for least squares problem with well-conditioned matrices, but

no work, at least to our knowledge, is done for ill-conditioned problems that arise

from discretization of inverse problems. Moreover, the mixed precision refinement

method has not been explored for structured linear systems. In this thesis we de-

velop new efficient mixed precisions algorithms, exploiting the Toeplitz structure and

low-precision computations to compute a partial QR factorization, and iterative re-

finement in high-precision to ensure accuracy.

This thesis is structured as follows. In Chapter 2 we describe a motivational

example: the discretization of deconvolution into a least squares problem and reasons

why regularization is needed. Chapter 3 introduces least squares problems in detail

and approaches to solve them. We also discuss techniques used in a later Chapter

to solve Toeplitz least squares problems, like Givens rotations, and the standard

refinement process to improve the solution accuracy. Chapter 4 discusses the methods

for solving Toeplitz least squares specifically, i.e. constructing Cholesky factorization

of A⊤A and also presented some challenges of the method. Chapter 5 presents the

results of some numerical experiments for the algorithm for solving Toeplitz least

3

squares problems, and Chapter 6 present concluding remarks.

4

Chapter 2

Deconvolution

In this chapter we describe the important application of deconvolution to motivate

the need to develop efficient algorithms for Toeplitz least squares problems, and why

regularization may be needed in some applications. The convolution of two functions

a and x is written as

b(t) =

∫ ∞

−∞
a(s− t)x(s)ds . (2.1)

In many cases the kernel function a(s− t) decays to zero on its tail ends (e.g., like a

Gaussian function), in which case one can consider a finite interval of integration,

b(t) =

∫ d

c

a(s− t)x(s)ds . (2.2)

For the problem of convolution we are given functions a and x, and we want to find

the function b. Deconvolution is an inverse problem, where we are given a and b, and

we want to find x. Deconvolution is much more difficult than convolution. In most

practical situations we cannot compute x using analytical procedures, and we need

to rely on numerical approximations.

5

Generally, we use a quadrature rule to approximate the integration,

∫ d

c

a(s− t)x(s)ds ≈
n∑

j=1

wja(sj − t)x(sj) , (2.3)

where sj ∈ [c, d] are nodes of the division for the area and wj are the corresponding

weights [9]. Note that we also cannot represent x(sj) exactly, which leads to the

approximation
n∑

j=1

wja(sj − t)x(sj) ≈ b(t). (2.4)

In the interval [c, d], there are n sub-intervals and here we assume each sub-interval

has equal length. Therefore, each sub-interval has length d−c
n
. If, more specifically, the

mid-point rule is applied to discretize equation (2.2), we will have the set of points:

s1 =
1
2
d−c
n

s2 =
1
2
d−c
n

+ d−c
n

...

sj =
1
2
d−c
n

+ (j − 1)d−c
n

...

sn = 1
2
d−c
n

+ (n− 1)d−c
n

.

Equation (2.4) then becomes:

b(t) ≈
n∑

j=1

d− c

n
a(sj − t)x(sj) . (2.5)

We can also discretize equation (2.2) in terms of t in the same way, where a set

of points t1, t2, · · · , tm is obtained with ti =
1
2
d−c
n

+(i− 1)d−c
n
. Therefore, a system of

6

linear equations can be achieved:

d− c

n

(
a(s1 − t1)x(s1) + a(s2 − t1)x(s2) + · · ·+ a(sn − t1)x(sn)

)
= b(t1)

d− c

n

(
a(s1 − t2)x(s1) + a(s2 − t2)x(s2) + · · ·+ a(sn − t2)x(sn)

)
= b(t2)

...

d− c

n

(
a(s1 − tm)x(s1) + a(s2 − tm)x(s2) + · · ·+ a(sn − tm)x(sn)

)
= b(tm) .

This can be written into a matrix-vector multiplication as

d− c

n



a(s1 − t1) a(s2 − t1) · · · a(sn − t1)

a(s1 − t2) a(s2 − t2) · · · a(sn − t2)

...

a(s1 − tm) a(s2 − tm) · · · a(sn − tm)





x(s1)

x(s2)

...

x(sn)


=



b(t1)

b(t2)

...

b(tm)


, (2.6)

which is the linear system b = Ax, with

aij = (d−c
n
)a(sj − ti) = (d−c

n
)a
(
(j − i)d−c

n

)
xi = x(sj)

bi = b(ti)

, i ∈ [1, 2, · · · ,m] , j ∈ [1, 2, · · · , n] .

A ∈ Rm×n, x ∈ Rn, and b ∈ Rm.

Since the deconvolution problem can be approximated by a set of linear equations,

one only needs to solve the system b = Ax for x, after computing matrix A from

the kernel function.

A simple example of such a problem is shown, which is also used for testing

the new mixed precision algorithms. The problem is similar to a signal deblurring

problem, where the goal is to reconstruct the sharp image from a blurred one. In this

7

example, the blur is caused by atmospheric turbulence and the kernel is described as

a Gaussian function

k = exp

(
−1

2

(
X

s1

)2

− 1

2

(
Y

s2

)2
)

, (2.7)

where s1 is the standard deviation of the Gaussian along the horizontal direction and

s2 is the standard deviation of the Gaussian along the vertical direction [8]. The

true solution x is constructed, and the kernel function is evaluated at various points

depending on the size of x. Then, the Toeplitz matrix A is built using the kernel

function. At last, b without any noise is computed by multiplying the A with the

true solution x.

A Matlab built-in function \ can be used to solve the system of equations, x =

A\b. A one dimensional example of signal deblurring problem is used here as an

illustration. Figure 2.1 shows the true signal xtrue, the true right-hand-side b, and

the right-hand-side with 0.1% noise. If no noise is introduced in b, the relative error

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True x

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True b

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
Blurred b

(a) (b) (c)

Figure 2.1: (a)The true signal; (b) True right-hand-side; (c) Blurred Measurements.

between the computed solution and true solution:

∥xcom − xtrue∥22
∥xtrue∥22

, (2.8)

is approximately 3.96∗10−9. Figure 2.2 shows the true signal and the solution acquired

8

using \ on true b, where they largely overlap.

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16

Figure 2.2: The solution acquired using backslash on true b.

However, if additive noise is included in b, even it is small, the built-in function

performs badly. That is, if we attempt to solve Ax = b̂, where b̂ = b + e with

∥e∥2
∥b∥2 = 0.001, (i.e. 0.1% noise), then the relative forward error becomes 4.90 ∗ 103.

Figure 2.3 shows the true signal and the solution acquired by \ on noisy b.

0 10 20 30 40 50 60 70
-3

-2

-1

0

1

2

3
10

4 True solution and solution of A\b

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True solution and solution of A\b (zoom in)

(a) (b)

Figure 2.3: (a)The solution using \ on noisy b ; (b) Zoomed in version of the solution
using \ on noisy b.

9

If there is unknown noise in b, regularization can be used to mitigate the influ-

ence caused by the noise. Specifically, A is amended to

 A

αI

, where α is the

regularization parameter, and b is padded with zeros to correct the dimension. With

regularization and α = 0.001, the relative forward error is reduced to 0.1396. Figure

2.4 shows the true signal and the solution acquired by \ after regularization.

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True solution and solution of A\b with regularization

Figure 2.4: The solution acquired using \ on noisy b after regularization, with α =
0.001.

However, since matrix A is a Toepltiz matrix, more efficient algorithms can be

implemented utilizing its special structure, like computing QR factorization and

Cholesky factorization. Therefore, in Chapter 3, the general idea of the efficient

algorithm is explained and illustrated.

10

Chapter 3

Least Squares Problems

For the linear system Ax = b acquired from deconvolution, most of the time, matrix

A is rectangular, meaning that the number of equations is different from the number

of unknowns. Therefore, b may not in the column space of A, showing that the

linear system does not have a solution. Thus, the goal is to find x that minimizes the

distance between Ax and b, i.e. the residual r = b−Ax, and this type of problem

is called the least squares problem. The objective function is equation (1.1).

In this chapter, we review techniques to solve least squares problems, with a

particular focus on Givens rotations. We also discuss rank-1 updating and downdating

problems, and iterative refinement, which will be needed in Chapter 4.

3.1 Methods to solve least squares problems

There exist many techniques to solve the least squares problem: using normal equa-

tions, using the QR decomposition, and using the Singular Value Decomposition

(SVD) factorization. In this thesis, we focus on using normal equations. Equation

(1.1) can be written as:

f(x) = ∥b−Ax∥22 = (b−Ax)⊤(b−Ax) . (3.1)

11

To find the minimum point of function f , we find the x that sets the gradient of the

function, ▽f , to 0.

▽f(x) = A⊤b−A⊤Ax = 0 . (3.2)

Therefore, we need to solve the equation

A⊤b = A⊤Ax , (3.3)

which can be easily solved using the QR factorization of A.

The QR factorization is defined in such way that for A ∈ Rm×n, there exist an

orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n such that

[15]

A = QR. (3.4)

From equation (3.4), we can compute the Cholesky factorization of A⊤A:

A⊤A = R⊤Q⊤QR = R⊤R . (3.5)

Since R is an upper triangular matrix, solving equation (3.3) becomes very cheap,

involving one forward substitution, solving R⊤v = A⊤b for v and one backward

substitution, solving Rx = v for x. The total cost of solving least squares using

normal equations and finding QR factorization of A is approximately mn2 + 1
3
n3

floating point operations (flops) [15].

There are many ways to compute the QR factorization of A, for example Gram-

Schmidt orthogonalization [1], modified Gram-Schmidt [10], Householder reflections

[6, Ch. 5], and Givens rotations [5]. Givens rotations are often used when matrix A

is sparse and structured.

A Givens rotation rotates a vector x ∈ R2 so that one component is zeroed out

but the length is preserved, meaning the norm of x remains the same. A Givens

12

rotation in 2-dimension is denoted as the following:

G(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 =

 c −s

s c

 . (3.6)

It is easy to verify that G(θ) is an orthogonal matrix: that is, G(θ)⊤G(θ) =

G(θ)G(θ)⊤ = I. Given x ∈ R2, the angle θ, or equivalently the scalars s and c, are

chosen so that  c −s

s c


 x1

x2

 =

 √x2
1 + x2

2

0

 , (3.7)

because of the length preservation. Equation (3.7) along with the orthogonality of G

provide two easy expressions for c and s to construction G.

c =
x1√

x2
1 + x2

2

,

s =
−x2√
x2
1 + x2

2

.

(3.8)

A Givens rotation can be generalized to higher dimensions with the same idea as

in 2-dimensional case. In the m-dimensional case, matrix G becomes:

G(i, j, θ) =



1 0 · · · · · · · · · · · ·

0
. . .

... c · · · −s

...
. . .

... s · · · c

...
. . .


. (3.9)

It is an identity matrix, except that entry (i, i) is c, entry (i, j) is −s, entry (j, i)

is s, and entry (j, j) is c. Then, G(i, j, θ)A only modifies row i and row j, and

AG(i, j, θ) only modifies column i and column j. If applied selectively through left

13

multiplication, Givens rotations can be used to reduce a matrix to upper triangular

form. Specifically, we use

Gk · · ·G2G1A = R

⇒ A = G⊤
1 G

⊤
2 · · ·G⊤

k R

A = QR ,

(3.10)

where

Gj = G(j, n) · · ·G(j, j + 2)G(j, j + 1) ,

R is upper triangular, and Q = G⊤
1 G

⊤
2 · · ·G⊤

k . Here, we omitted θ in the expression

because we do not need to compute it explicitly. Notice that here Q is not explicitly

constructed, but stored as the values of c and s in each elimination step.

3.2 Rank-1 updating

In Chapter 4, we describe a fast algorithm for computing the Cholesky factorization of

A⊤A, when A is a Toeplitz matrix. The scheme requires recursively computing rows

of the Cholesky factorization through a sequence of rank-1 updating and downdating

problems. In this section we describe how Givens rotations can be used to solve the

rank-1 updating problem.

Consider a known upper triangular matrix U , where U ∈ Rm×m, and a row vector

z⊤, where z ∈ Rm. Givens rotations can be used to efficiently compute the Cholesky

of U⊤U + zz⊤, which is called the rank-1 updating problem.

The rank-1 updating problem is the same as finding the QR factorization of

matrix C ∈ R(m+1)×m such that C =

 U

z⊤

 . The reasoning is that C⊤C =

14

[
U⊤ z

] U

z⊤

 = U⊤U + zz⊤ = R̂⊤R̂ . Here, R̂ =

 Û

0⊤

.
Then, matrix C will have the following structure

C =



∗ ∗ ∗ · · · ∗

0 ∗ ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · ∗

∗ ∗ ∗ · · · ∗


.

To find the R̂ for the QR factorization of C, we only need to zero out the last row

of C. The first row is used to zero out C(m + 1, 1), and equation (3.8) is used with

C(1, 1) and C(m+ 1, 1) to find the corresponding Givens rotation elements c and s.

Then, c and s will be applied to the entire first and last rows as shown in equation

(3.11), with i = 1.

C(i, i : n) = c ∗C(i, i : n)− s ∗C(m+ 1, i : n) ,

C(m+ 1, i : n) = s ∗C(i, i : n) + c ∗C(m+ 1, i : n) .

(3.11)

Here, the colon is a Matlab notation, denoting that it is from the beginning to the

end. Thus, C(i, i : n) means [ci,i, ci,i+1, · · · , ci,n].

15

Afterwards, C becomes

C =



∗ ∗ ∗ · · · ∗

0 ∗ ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · ∗

0 ∗ ∗ · · · ∗


. (3.12)

The second row is used to zero out C(m + 1, 2). C(2, 2) and C(m + 1, 2) are

plugged in as x1 and x2 respectively in equation (3.8) to find c and s. Then, c and

s are applied to the second and last rows from entry 2 to n as equation (3.11) with

i = 2.

Then, C becomes

C =



∗ ∗ ∗ · · · ∗

0 ∗ ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · ∗

0 0 ∗ · · · ∗


.

Following the same logic, R̂ is easily found with Givens rotations.

3.3 Rank-1 downdating

Besides the rank-1 updating problem, there is a rank-1 downdating problem, where

the goal is to find the Cholesky factorization, R̃⊤R̃, for matrix U⊤U −ww⊤. Here,

U ∈ Rm×m and w ∈ Rm. Hyperbolic rotations are used to efficiently compute R̃, see

page 16.

16

Define a matrix S such that

S =

 Im 0

0⊤ −1

 .

Therefore, we can break U⊤U −ww⊤ into the multiplication of three matrices:

U⊤U −ww⊤ =

 U

w⊤


⊤

S

 U

w⊤

 .

Following the same logic as Givens rotations, the product of a set of hyperbolic

rotations is denoted as matrixH , whereH ∈ R(m+1)×(m+1). It satisfies two properties

[6]

HSH⊤ = S , (3.13)

H⊤

 U

w⊤

 =

 Ũ

0

 = R̃ . (3.14)

In this way,

 U

w⊤


⊤

S

 U

w⊤

 =

 U

w⊤


⊤

HSH⊤

 U

w⊤



=

H⊤

 U

w⊤




⊤

S

H⊤

 U

w⊤




=

 R̃

0


⊤

S

 R̃

0


= R̃⊤R̃

. (3.15)

17

The general form of H is

H(i, j, θ) ==



1 0 · · · · · · · · · · · ·

0
. . .

... c · · · −s

...
. . .

... −s · · · c

...
. . .


, (3.16)

where c = cosh(θ) and s = sinh(θ). It is also an identity matrix, with the exception

that entry (i, i) is c, entry (i, j) is −s, entry (j, i) is −s, and entry (j, j) is c.

If we consider a 2-dimensional hyperbolic rotation, we want to find c and s to

satisfy.

 c −s

−s c


 x1

x2

 =

 √x2
1 − x2

2

0


c2 − s2 = 0

. (3.17)

Using equation (3.17), c and s can be easily calculated [6].

c =
x1√

x2
1 − x2

2

s =
x2√

x2
1 − x2

2

(3.18)

Then, following the same logic as applying Givens rotations, we focus on the two

entries, where one is used to zero out the other one. We use the two entries to

find corresponding c and s as in equation (3.17). Then, we apply them to the two

corresponding rows and move to the next entry that needs to be zeroed out. At last,

we would get R̃ =

 Ũ

0⊤

 efficiently.

18

3.4 Iterative refinement

The Cholesky factorization of A⊤A acquired using Givens rotation can help us solve

the normal equations, and thus solve the least squares problem. However, the result

may be insufficiently accurate because of rounding errors, whose effect is magnified by

the ill-conditioning of matrix A. Thus, iterative refinement can be used to improve

accuracy and stability [2].

One approach for iterative refinement is stated as follows [2]. The initial approx-

imation for the solution x0 is needed.

1. At ith iteration, we compute residual ri = A⊤b−A⊤Axi.

2. We solve A⊤Adi = ri.

3. At last, the solution is updated as xi+1 = xi + di.

Many techniques can be used to solve the linear system in step 2, and Gener-

alized Residual (GMRES) algorithm [13] is used here. Moreover, we could utilize

a preconditioner to accelerate convergence of the GMRES algorithm. A left pre-

conditioner is used here, where instead of solving A⊤Adi = ri directly, we con-

struct a preconditioner M , using the knowledge we have about A⊤A, and solve

M−1A⊤Adi = M−1ri. GMRES with left preconditioner can help achieve relatively

good accuracy of the solution for the correction equation [2]. One way to construct

M is that we compute the Cholesky decomposition of A⊤A and using forward and

backward substitution to solve for the solution.

To further accelerate the speed of the refinement process, three different precision

levels are used. We could choose one precision for computing the preconditioner, (e.g.

half,or 16 bit), one for solving step 2 iteratively, (e.g. single,or 32 bit), and at last,

one for computing the residual in each iteration, (e.g. double,or 64 bit),.

In the next chapter, we provide more details of how to efficiently solve the Toeplitz

least squares problem. Specifically, utilizing its special structure, algorithms to find

19

the Cholesky factorization of A⊤A is described, as well as the algorithms to directly

find the inverse of the Cholesky factorization, i.e. R−⊤. We also present a new

approach for iterative refinement for Toeplitz systems, as well as some challenges in

the process.

20

Chapter 4

Approaches for Toeplitz Systems

4.1 The Cholesky factorization for Toeplitz least

squares problem

In this thesis we are considering Toeplitz least squares problems, meaning matrix A

has the structure that each descending diagonal from left to right is constant, as shown

in Chapter 1. This type of problem can be easily solved if we could find the Cholesky

factorization of A⊤A, as discussed in Chapter 3. Due to the special structure of A,

efficient algorithms are developed to find the matrix R, where R⊤R = A⊤A, and

this chapter will review the two algorithms from paper [12].

A ∈ Rm×n, can be partitioned in the following two ways:

A =

 a0 u⊤

v A0

 =

 A0 ũ

ṽ⊤ am−n

 , (4.1)

where a0 and am−n are two scalars, u, ṽ ∈ Rn−1 and v, ũ ∈ Rm−1. Note we have A0

for both partitions, which is only due to the Toeplitz structure of A. Similarly, we

21

can partition R in two ways:

R =

 r11 z⊤

0 Rb

 =

 Rt z̃

0⊤ rnn

 , (4.2)

where r11 and rnn are two scalars, and z, z̃ ∈ Rn−1. Plugging these partitions into

equation (3.5) will result two equations,

 r211 r11z
⊤

r11z zz⊤ +R⊤
b Rb

 =

 a20 + v⊤v a0u
⊤ + v⊤A0

a0u+A⊤
0 v uu⊤ +A⊤

0 A0

 , (4.3)

and  R⊤
t Rt R⊤

t z̃

z̃⊤Rt z̃⊤z̃ + r2nn

 =

 A⊤
0 A0 + ṽṽ⊤ A⊤

0 ũ
⊤ + am−nṽ

ũ⊤A0 + am−nṽ
⊤ ũ⊤ũ+ a2m−n

 . (4.4)

From the last entry of equation (4.3) and the first entry of equation (4.4), we have:

zz⊤ +R⊤
b Rb = uu⊤ +A⊤

0 A0

R⊤
t Rt = A⊤

0 A0 + ṽṽ⊤ .

Therefore, we have

R⊤
b Rb = R⊤

t Rt + uu⊤ − ṽṽ⊤ − zz⊤ . (4.5)

u, ṽ, and z are known, and our goal is to find R, or equivalently Rb and Rt. This is

done recursively, one row at a time.

22

Notice that using equation (4.3), we can easily calculate

r211 = a20 + v⊤v (4.6)

z⊤ =
a0
r11

u⊤ +
1

r11
v⊤A0 . (4.7)

Thus, we would be able to know the first row of Rt, and hence the first row of R.

Then, plugging this first row of Rt into the first part of the equation (4.5), we can

use the updating techniques discussed in Chapter 3 to get the first row of R1 (see

section 3.2, where:

R⊤
1 R1 = R⊤

t Rt + uu⊤ . (4.8)

After we get first row of R1, we plug it into the second part of equation (4.5). We

can perform a downdating step (see section 3.3) and get the first row of R2, where:

R⊤
2 R2 = R⊤

1 R1 − ṽṽ⊤ . (4.9)

Similarly, we plug the first row of R2 into the last part of equation (4.5), and

perform another downdating step get the first row of Rb, where:

R⊤
b Rb = R⊤

1 R1 − zz⊤ . (4.10)

From the two partitions of R shown in equation (4.2), we know that the first row

of Rb is the second row of Rt. Then we plug it into equations (4.8-4.10) to get the

second row of Rb, which is the third row of Rt, and the process goes on until the

complete R is generated.

Notice here solving equation (4.8) is the rank-1 updating problem and solving

equations (4.9) and (4.10) are two rank-1 downdating problems. Therefore, these can

be solved efficiently using Givens rotations and hyperbolic rotations introduced in

Chapter 3. To solve equation (4.8), we only need to find a series of Givens rotations

23

Q = Gn−1Gn−2 · · ·G1, such that

Q

 Rt

u⊤

 =

 R1

0⊤

 . (4.11)

To solve equations (4.9) and (4.10), we need to find two series of hyperbolic rotations

Y 1 and Y 2 such that

Y 1

 R1

ṽ⊤

 =

 R2

0⊤

 . (4.12)

Y 2

 R2

z⊤

 =

 Rb

0⊤

 . (4.13)

4.2 The Cholesky factorization for regularized Toeplitz

least squares problem

This thesis considers regularized Toeplitz least squares problem, following equation

(1.2). Therefore, the normal equation is:

(A⊤A+ α2I)x = A⊤b , (4.14)

where I is an identity matrix.

Therefore, we want to compute the Cholesky for matrix A⊤A + α2I instead.

Notice that this matrix only modifies the diagonal elements of A⊤A. Therefore,

equations (4.3-4.4) become

 r211 r11z
⊤

r11z zz⊤ +R⊤
b Rb

 =

 a20 + v⊤v + α2 a0u
⊤ + v⊤A0

a0u+A⊤
0 v uu⊤ +A⊤

0 A0 + α2I

 , (4.15)

24

and R⊤
t Rt R⊤

t z̃

z̃⊤Rt z̃⊤z̃ + r2nn

 =

 A⊤
0 A0 + ṽṽ⊤ + α2I A⊤

0 ũ
⊤ + am−nṽ

ũ⊤A0 + am−nṽ
⊤ ũ⊤ũ+ a2m−n + α2

 . (4.16)

Therefore,

r211 = a20 + v⊤v + α2 . (4.17)

The formula for z is unchanged as stated in equation (4.7). From the last entry

of equation (4.15) and first entry of equation (4.16), we have the relation:

zz⊤ +R⊤
b Rb = uu⊤ +A⊤

0 A0 + α2I

R⊤
t Rt = A⊤

0 A0 + ṽṽ⊤ + α2I .

The α2I term cancels out, resulting in the same relation as equation 4.5. Thus, the

algorithm for computing Cholesky factorization of regularized Toeplitz least squares

problem is generally the same as the one with no regularization, with minor modifi-

cation of r11. The pesudo-code is shown in Alg 1, modified from [12].

4.3 The inverse Cholesky factorization for Toeplitz

least squares problem

Instead of computing the Cholesky factorization for A⊤A, it would be faster to solve

the normal equation, if we can directly compute the inverse of Cholesky factorization

R−⊤. In this way, it only needs matrix-vector multiplications to solve for x, instead

of forward and backward substitutions.

x = (R−1R−⊤)A⊤b . (4.18)

25

Algorithm 1 The Cholesky factorization R for regularized Toeplitz least squares
problem

Let A ∈ Rm×n be a Toeplitz matrix, α be the regularization parameter, and u,
v, and ṽ be defined as in equation (4.1). This algorithm computes the Cholesky
factor, R, of A⊤A+ α2I.
R(1, 1) = r11 =

√
a20 + v⊤v + α2

z = (a0u+A⊤
0 v)/r11

R(1, 2 : n) = z⊤

for k = 1, 2, · · · , n− 1 do
rt(k : n− 1) = R(k, k : n− 1)
[c, s] = givens(rt(k),u(k))[

r⊤
1

u⊤

]
=

[
c −s
s c

][
r⊤
t

u⊤

]
[c, s] = hyp(r1(k), ṽ(k))[

r⊤
2

ṽ⊤

]
=

[
c −s
−s c

][
r⊤
1

ṽ⊤

]
[c, s] = hyp(r2(k), z(k))[

r⊤
b

z⊤

]
=

[
c −s
−s c

][
r⊤
2

z⊤

]
R(k + 1, k + 1 : n) = rb(k : n− 1)

end for

26

Nagy [12] describes such an algorithm that directly computes R−⊤.

Consider an orthogonal matrix Q, which comes from Givens rotations, and sup-

pose it satisfies the following:

Q

 R0 0

g⊤ 1

 =

 R̃0 q

0⊤ κ

 . (4.19)

Here R0, R̃0 ∈ R(n−1)×(n−1), g ∈ Rn−1, and κ is a non-zero scalar. Moreover, both

R0 and R̃0 are upper triangular, and R0 is non-singular. If we transpose both sides

of equation (4.19), we would have:

 R⊤
0 g

0⊤ 1

Q⊤ =

 R̃⊤
0 0

q⊤ κ

 . (4.20)

Inverting both sides of equation (4.20) will result

Q

 R−⊤
0 −R−⊤

0 g

0⊤ 1

 =

 R̃−⊤
0 0

−q⊤R̃−⊤
0

κ
1
κ

 . (4.21)

From the last column of equation (4.21), we acquire the relationship

Q

 −R−⊤
0 g

1

 =

 0

1
κ

 , (4.22)

where Q can be found by a series of Givens rotations: Q = Gn−1Gn−2 · · ·G1.

Then, if we have a hyperbolic rotation matrix Y such that:

Y

 R0 0

g⊤ 1

 =

 R̃0 q

0⊤ κ

 . (4.23)

27

Then if we take inverses and then transpose on both sides of equation (4.23), we

obtain:

Y −⊤


 R0 0

g⊤ 1




−⊤

=


 R̃0 q

0⊤ κ




−⊤

. (4.24)

From Chapter 3, we know that the hyperbolic rotation matrix satisfies equation

(3.13). Also, note that S−1 = S and S⊤ = S. If we take the inverse and transpose

on both sides of equation (3.13):

S = (Y SY ⊤)−⊤ = Y −⊤SY −1 . (4.25)

Therefore,

Y −⊤ = SY S . (4.26)

Plugging equation (4.26) into equation (4.24), we have:

Y S


 R0 0

g⊤ 1




−⊤

= S


 R̃0 q

0⊤ κ




−⊤

. (4.27)

After computing the transpose inverse of the two matrices, plug them in to equa-

tion (4.27) and multiply with S to obtain:

Y

 R−⊤
0 −R−⊤

0 g

0⊤ −1

 =

 R̃−⊤
0 0

q⊤R̃−⊤
0

κ
− 1

κ

 . (4.28)

Focusing on the last column of equation (4.28), we have:

Y

 −R−⊤
0 g

−1

 =

 0

− 1
κ

→ Y

 R−⊤
0 g

1

 =

 0

1
κ

 , (4.29)

28

where Y can be found by the product of a series of hyperbolic rotations Y =

Hn−1 · · ·H1. Following the same logic of solving recursive updating and downdating

problems, as equations (4.11-4.13), we have:

Q

 R−⊤
t

0⊤

 =

 R−⊤
1

h⊤
1

 . (4.30)

Y 1

 R−⊤
1

0⊤

 =

 R−⊤
2

h⊤
2

 . (4.31)

Y 2

 R−⊤
2

0⊤

 =

 R−⊤
b

h⊤
3

 . (4.32)

The relationship between rows of R−⊤, R−⊤
t , and R−⊤

b is acquired from equation

(4.2):

R−⊤ =

 1
r11

0⊤

−R−⊤
b z

r11
R−⊤

b

 =

 R−⊤
t 0

−z̃⊤R−⊤
t

rnn

1
rnn

 . (4.33)

Following the same logic of Section 4.2, the regularization only changes the ex-

pression of r11. Thus, the algorithm for computing the inverse Cholesky factor of

regularized Toeplitz least squares problem is generally the same as that with no reg-

ularization as shown in paper [12]. The pseudo-code is shown in Alg 2.

4.4 Refinement for regularized Toeplitz least squares

problem with preconditioner

After finding the Cholesky factorization R or R−⊤, we could utilize it in the refine-

ment process, as preconditioners. Carson, Higham, and Pranesh [2] describes such a

process, where they aimed to solve the second step of refinement A⊤Adi = ri, by

29

Algorithm 2 The inverse Cholesky factorization for regularized Toeplitz least squares
problem

Let A ∈ Rm×n be a Toeplitz matrix, α be the regularization parameter, and u, v,
and ṽ be defined as in equation (4.1). This algorithm computes L = R−⊤, where
R is the Cholesky factor of A⊤A+ α2I.
r11 =

√
a20 + v⊤v + α2

z = (a0u+A⊤
0 v)/r11, L(1, 1) = 1/r11

δ = γ1 = γ2 = 1, h⊤
1 = h⊤

2 = h⊤
3 = 0⊤

for k = 1, 2, · · · , n− 1 do
lt(1 : k) = L(k, 1 : k)
ρ = l⊤t u(1 : k)
[c, s] = givens(δ,−ρ)
δ = sρ+ cδ[

l⊤1
h⊤

1

]
=

[
c s
−s c

][
l⊤t
h⊤

1

]
β = l⊤1 ṽ(1 : k)
[c, s] = hyp(γ1, β)
γ1 = −sβ + cγ1[

l⊤2
h⊤

2

]
=

[
c −s
−s c

][
l⊤1
h⊤

2

]
β = l⊤2 z(1 : k)
[c, s] = hyp(γ2, β)
γ2 = −sβ + cγ2[

l⊤b
h⊤

3

]
=

[
c −s
−s c

][
l⊤2
h⊤

3

]
L(k + 1, 1 : k + 1) = [−l⊤b z/r11 , l

⊤
b]

end for

30

solving the preconditioned system: M−1A⊤Adi = M−1ri using GMRES. With regu-

larization, the main ideal is essentially the same. We aim to solve (A⊤A+α2I)di = ri,

by solving the preconditioned system: M−1(A⊤A+α2I)di = M−1ri using GMRES.

If we use R⊤R as M , we only need one forward substitution and one backward

substitution to get c. If we use R−1R−⊤ as M−1, only two matrix-vector multipli-

cations are needed, which accelerates the refinement process.

The pseudo-code for the Cholesky-based iterative refinement method using three

precision levels is modified from Carson, Higham, and Pranesh [2] to solve regular-

ized Toeplitz least squares problems, as shown in Alg 3. Here, we denote that the

Cholesky factorization is computed in precision pr1, (e.g. half), the working precision

for refinement is pr2, (e.g. single), and the residual precision is pr3, (e.g.double). The

convergence is determined by monitoring the relative residual norm in pr2.

Algorithm 3 Cholesky-based GMRES iterative refinement for the regularized
Toeplitz least squares

Let A ∈ Rm×n, the regularization parameter α, and b ∈ Rm. This algorithm solves
the least squares problem as equation (1.2) using Cholesky-based GMRES.
Cast A, b, and α into precision pr1
Compute Cholesky factorization R⊤R = A⊤A+ α2I in precision pr1
Solve R⊤Rx0 = A⊤b
for i = 0 : imax − 1 do
Compute ri = A⊤b− (A⊤A+ α2I)xi at precision pr3 and cast the ri to pr2
Solve M−1(A⊤A + α2I)di = M−1ri by GMRES at pr2, where M = R⊤R.
Note the matrix-vector multiplications with A⊤A is done in precision pr3, and
the solution of the system is casted into pr2
xi+1 = xi + di at precision pr2
if converge then
return xi+1

end if
end for

The inverse Cholesky-based iterative refinement is very similar to Alg 3, where

M 1 can be directly found by R−⊤.

We implemented the algorithm using both the Cholesky and inverse Cholesky fac-

torizations as preconditioners for refinement on 1-D image deblurring problems using

31

a MATLAB package named PRblur. However, some challenges emerged. When

implementing the inverse Cholesky for refinement in lower precision, we needed to

execute inner products in lower precision several times in each iteration as shown in

Alg 2, which caused large round-off errors. Though there are occurrences of inner

products in the Cholesky then refinement algorithm, the number of them is relatively

small, producing reasonable relative errors.

To avoid the problem, we tried to find other techniques to solve the rank-1 down-

dating problem than hyperbolic rotation, hoping we could avoid the use of lower-

precision inner products. Stewart and Stewart [14] introduced the hyperbolic House-

holder transformation, where instead of Y , a vector h∗ was computed such that

(I + Sh∗h∗⊤/µ)

 x1

y1

 =

 σ

0

 ,

where σ and µ are certain scalars found by methods in Stewart and Stewart [14]. Here

x1 and y1 are two scalar entries, since we focused on each individual entry at a time

to eliminate the lower one. However, in order for the Householder transformation to

work as expected, y1 needs to be smaller than x1. Otherwise, the scalar ρ will be

a complex number. When running the 1-D image deblurring problem using House-

holder transformation, y1 was not always smaller than x1. Therefore, we focused on

computing Cholesky factorization and using refinement only, instead of the approach

of computing the inverse of Cholesky factorization for the rest of the research.

32

Chapter 5

Numerical Experiments

We applied the algorithm of computing the Cholesky factorization and GMRES re-

finement on some test cases that are similar to image deblurring problems. They

are small-scale, i.e. A ∈ R64×64 and 1-dimensional, and we chose a Gaussian signal

blur. This means the kernel function introduced in Chapter 2 is a Gaussian function.

However, A is very ill-conditioned; its condition number is approximately 1.46× 108.

Therefore, Tikhonov regularization is needed, and A is augmented as shown in equa-

tion (1.2).

There exists many ways to generate the regularization parameter α, for example,

General Cross Validation (GCV) [7], Weighted GCV [4], the Discrepancy Principle,

and so on. Here, we chose the Optimal Regularization Parameter method, since the

true solution is known to us. The goal of the Optimal Regularization Parameter

method is: min ∥x− xtrue∥22, where x satisfies the normal equations:

(A⊤A+ α2I)x = A⊤b , (5.1)

and xtrue is the true solution for the deblurring test problem. Therefore, the Opti-

mal Regularization Parameter method enables us to assess the maximum potential

performance of the algorithm. However, note that in reality, since the true solution

33

Table 5.1: Relative errors for 0% noise level.
Iteration relEhdd relEhsd relEsdd relEssd

0 3.923× 101 3.923× 101 3.975× 100 3.975× 100

1 1.787× 10−1 1.848× 10−1 4.742× 10−3 3.797× 10−1

2 1.787× 10−1 1.787× 10−1 4.240× 10−3 7.257× 10−1

3 - 1.787× 10−1 4.275× 10−3 3.536× 10−1

4 - 1.787× 10−1 - 2.758× 10−1

5 - 1.787× 10−1 - 1.876× 10−1

6 - 1.787× 10−1 - 1.423× 10−1

7 - 1.787× 10−1 - 1.289× 10−1

8 - 1.787× 10−1 - 1.044× 10−1

9 - 1.787× 10−1 - 9.898× 10−2

is unknown, one needs to adopt other methods to find the regularization parameter.

For the test problems, we investigated different noise levels of b and different

precision levels for the algorithm. Most computers use double precision, where each

floating number is represented using 64 bits. However, computing with lower precision

like single precision (32 bits) and half precision (16 bits) has attracted the interest of

many researchers because of its advantage to decrease the computational time. We

wanted to investigate the performance of the algorithm in different precision levels,

so we used a MATLAB function named chop presented by Higham and Pranesh to

simulate lower precision arithmetic.

For each test problem, we calculated the relative error following equation (2.8) of

each refinement step, and Table 5.1 shows the relative errors for test cases with no

noise. Then, relEhdd means that it is the relative errors when the Cholesky factor-

ization is computed in half precision, the refinement process in double precision, and

the residuals calculated in double precision. Other relative error symbols follow the

same logic.

Here, iteration 0 means it is the initial solution using Cholesky factorization for the

Toeplitz least squares problem without any refinement step. Then iteration 1 means

we carried out the refinement once. relEhdd has only 3 entries, meaning the algorithm

34

Table 5.2: Relative errors for 0.1% noise level.
Iteration relEhdd relEhsd relEsdd relEssd

0 3.760× 101 3.760× 101 1.569× 10−1 1.569× 10−1

1 1.824× 10−1 1.946× 10−1 1.521× 10−1 1.521× 10−1

2 1.824× 10−1 1.824× 10−1 - 1.521× 10−1

3 - 1.824× 10−1 - 1.521× 10−1

4 - 1.824× 10−1 - 1.521× 10−1

5 - 1.824× 10−1 - 1.521× 10−1

6 - 1.824× 10−1 - 1.521× 10−1

7 - 1.824× 10−1 - 1.521× 10−1

8 - 1.824× 10−1 - 1.521× 10−1

9 - 1.824× 10−1 - 1.521× 10−1

Table 5.3: Relative errors for 1% noise level.
Iteration relEhdd relEhsd relEsdd relEssd

0 2.306× 101 2.306× 101 2.424× 10−1 2.424× 10−1

1 2.422× 10−1 2.425× 10−1 2.422× 10−1 2.422× 10−1

2 2.422× 10−1 2.422× 10−1 - 2.422× 10−1

3 - 2.422× 10−1 - 2.422× 10−1

4 - 2.422× 10−1 - 2.422× 10−1

5 - 2.422× 10−1 - 2.422× 10−1

6 - 2.422× 10−1 - 2.422× 10−1

7 - 2.422× 10−1 - 2.422× 10−1

8 - 2.422× 10−1 - 2.422× 10−1

9 - 2.422× 10−1 - 2.422× 10−1

stopped after carrying out refinement twice. The Table 5.2 shows the relative errors

for test cases with noise level 0.1%. The Table 5.3 shows the relative errors for test

cases with noise level 1%. At last, the Table 5.4 shows the relative errors for test

cases with noise level 10%.

To better visualize the results, we plotted the true signal xtrue and signal acquired

from half-single-double. Figure 5.1 shows the three signals with 0% noise, 0.1% noise,

1% noise, and 10% noise respectively.

We chose the higher precision for refinement than computing Cholesky factoriza-

tion because we wanted to improve the accuracy result, so that we could representing

each floating number more accurately. Based on the relative errors, the precision

35

Table 5.4: Relative errors for 10% noise level.
Iteration relEhdd relEhsd relEsdd relEssd

0 5.786× 10−1 5.786× 10−1 4.773× 10−1 4.773× 10−1

1 4.773× 10−1 4.773× 10−1 4.773× 10−1 4.773× 10−1

2 - 4.773× 10−1 - 4.773× 10−1

3 - 4.773× 10−1 - 4.773× 10−1

4 - 4.773× 10−1 - 4.773× 10−1

5 - 4.773× 10−1 - 4.773× 10−1

6 - 4.773× 10−1 - 4.773× 10−1

7 - 4.773× 10−1 - 4.773× 10−1

8 - 4.773× 10−1 - 4.773× 10−1

9 - 4.773× 10−1 - 4.773× 10−1

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True x and x of the Alg for h-s-d (0% noise)

True x

x for of the Alg for h-s-d

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True x and x of the Alg for h-s-d (0.1% noise)

True x

x for of the Alg for h-s-d

(a) (b)

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True x and x of the Alg for h-s-d (1% noise)

True x

x for of the Alg for h-s-d

10 20 30 40 50 60

0

2

4

6

8

10

12

14

16
True x and x of the Alg for h-s-d (10% noise)

True x

x for of the Alg for h-s-d

(c) (d)

Figure 5.1: The result calculated by the fast algorithm using half-single-double for b
(a) with 0% noise; (b) 0.1% noise; (c) 1% noise; (d) 10% noise.

36

which the computation of the Cholesky factorization is in does not affect the ac-

curacy of the algorithm when the noise level is higher, comparing relErrhdd and

relErrsdd, relErrhsd and relErrssd for both 1% and 10% noise. Therefore, choosing

half is more reasonable, as it can decrease computational cost with fewer digits stored

for larger noise. Moreover, from the relative errors, if we executed the refinement in

double and then computed residuals in double, the algorithm is highly efficient, with

only one or two iteration(s) of GMRES refinement needed, regardless the precision

used for Cholesky factorization.

For the test cases, A ∈ Rn×n is a square matrix. Therefore, using the efficient ap-

proach described in Chapter 4, computing the Cholesky factorization requires O(n2)

operations [12]. Before entering the refinement process, one matrix-vector multipli-

cation is needed, which can be done efficiently with fast Fourier transforms because

of its Toeplitz structure. Thus, the work unit of one matrix-vector multiplication

is O(n log n). It also requires two triangular solves (one backward and one forward

substitution), whose total work unit is 2O(n2). Therefore, before any refinement, the

total work unit is 3O(n2) +O(n log n).

For refinement process, if both work precision and residual precision are in double,

one refinement iteration requires 2 matrix-vector multiplications and 2 triangular

solves, following Alg 3. If the working precision is single while the residual precision

is double, one refinement iteration requires 2 matrix-vector multiplications in double

precision and 2 triangular solves in single precision.

Table 5.3 is used as an example, since they reach approximately the same accuracy

level in the end. Each half-precision arithmetic computation is a quarter of the cost of

double-precision arithmetic, and each single-precision arithmetic computation is half

of double-precision arithmetic. Therefore, for half-double-double case, the total work

unit is 19
4
O(n2)+ 17

4
O(n log n), with two refinement iterations. For half-single-double

case, the total work unit is 39
4
O(n2)+ 73

4
O(n log n), with 9 refinement iterations. Here

37

the maximum iteration is set to be 9 iterations, but half-single-double case reaches the

same level of accuracy as half-double-double after 1 refinement iteration. Thus, if we

could find a more efficient stopping criteria for half-single-double, where it would stop

after 1 iteration, the cost for it will be smaller than half-double-double, yet reaches

approximately the same accuracy.

38

Chapter 6

Concluding Remarks

The Toeplitz least squares problem is common in signal/image deblurring, as well as

other applications. However, due to the ill-conditioning of the Toeplitz matrix A,

any noise in the observation b will be magnified, causing significant relative errors.

Therefore, regularization is often added to balance the residual and the magnitude of

the solution, mitigating the effect of the noise and the ill-conditioning of A. Cholesky

factorization ofA⊤A is a useful tool to solve least squares efficiently, and by exploiting

the special structure of the Toeplitz matrix, an efficient algorithm is developed to

compute the Cholesky factorization.

To further improve the accuracy of the solution for the least squares problem,

GMRES refinement is implemented. The Choleky factorization of A⊤A is then re-

utilized as a preconditioner for that process to accelerate the algorithm. Furthermore,

three different precisions are used for computing Cholesky, running refinement, and

calculating the residuals to speed up the process, by using fewer digits to represent

each floating point number. At last, small 1-D signal deblurring problems are used

as test cases for the algorithm. It is shown that for small noise levels, computing

Cholesky factorization in single precision generates better results than computing that

in half precision. However, for larger noise, the precision in which the computation of

39

Cholesky factorization is has no effect on the final accuracy. Also, using half-double-

double is highly efficient, usually requiring 1 or 2 refinement steps.

Half-single-double or single-single-double can also be efficient, only requiring 1

refinement, if a good stopping criteria is found. Thus, one future step is to investigate

the stopping criteria so that the algorithm is terminated when the relative errors

stop changing, which is also applicable to other problems when the true solution is

unknown. Moreover, further research can be done on extending the algorithm to 2-D

signal deblurring problems with larger sizes, using Kronecker products, as well as on

methods to choose suitable regularization parameters.

40

Bibliography

[1] Åke Björck. Solving linear least squares problems by Gram-Schmidt orthogonal-

ization. BIT Numerical Mathematics, 7(1):1–21, 1967.

[2] Erin Carson, Nicholas J Higham, and Srikara Pranesh. Three-precision GMRES-

based iterative refinement for least squares problems. SIAM Journal on Scientific

Computing, 42(6):A4063–A4083, 2020.

[3] Raymond H Chan, James G Nagy, and Robert J Plemmons. FFT-based precon-

ditioners for Toeplitz-block least squares problems. SIAM journal on numerical

analysis, 30(6):1740–1768, 1993.

[4] Julianne Chung, James G Nagy, Dianne P O’Leary, et al. A weighted GCV

method for Lanczos hybrid regularization. Electronic Transactions on Numerical

Analysis, 28(149-167):2008, 2008.

[5] Alan George and Michael T Heath. Solution of sparse linear least squares prob-

lems using Givens rotations. Linear Algebra and its Applications, 34:69–83, 1980.

[6] Gene H Golub and Charles F Van Loan. Matrix Computations. JHU press, 2013.

[7] Per Christian Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM,

2010.

[8] Per Christian Hansen, James G Nagy, and Dianne P O’Leary. Deblurring Images:

Matrices, Spectra, and Filtering. SIAM, 2006.

41

[9] Per Cristian Hansen. Numerical aspects of deconvolution. Lecture Notes of the

Department of Informatics and Mathematical Modelling of the Technical Univer-

sity of Denmark, 2000.

[10] Steven J Leon, Åke Björck, and Walter Gander. Gram-Schmidt orthogonal-

ization: 100 years and more. Numerical Linear Algebra with Applications,

20(3):492–532, 2013.

[11] Nicola Mastronardi, Phillip Lemmerling, Anoop Kalsi, DP O’Leary, and Sabine

Van Huffel. Implementation of the regularized structured total least squares algo-

rithms for blind image deblurring. Linear algebra and its applications, 391:203–

221, 2004.

[12] James G Nagy. Fast inverse QR factorization for Toeplitz matrices. SIAM

Journal on Scientific Computing, 14(5):1174–1193, 1993.

[13] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific

and statistical computing, 7(3):856–869, 1986.

[14] Michael Stewart and GW Stewart. On hyperbolic triangularization: Stability

and pivoting. SIAM Journal on Matrix Analysis and Applications, 19(4):847–

860, 1998.

[15] Lloyd N Trefethen and David Bau. Numerical Linear Algebra, volume 181. SIAM,

2022.

	Introduction
	Deconvolution
	Least Squares Problems
	Methods to solve least squares problems
	Rank-1 updating
	Rank-1 downdating
	Iterative refinement

	Approaches for Toeplitz Systems
	The Cholesky factorization for Toeplitz least squares problem
	The Cholesky factorization for regularized Toeplitz least squares problem
	The inverse Cholesky factorization for Toeplitz least squares problem
	Refinement for regularized Toeplitz least squares problem with preconditioner

	Numerical Experiments
	Concluding Remarks
	Bibliography

