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Abstract 

 

Disease Risk annotation of Genomic and Epigenomic Variants using Machine Learning 

Approaches 

By Yanting Huang 
 

 

There has been a tremendous quantity of omics data produced by high-throughput genomics 

technologies nowadays. Understanding the impact of genomic variations and epigenomic 

modifications is important for discovering the mechanism of complex diseases. Over the last two 

decades, thousands of genome-wide association studies (GWASs) and epigenome-wide 

association studies (EWASs) have identified tens of thousands of disease-susceptibility loci that 

are associated with certain diseases. In addition to the association studies, current progress of 

machine learning and deep learning studies have pushed the edge and provided great 

opportunities to integrate omics data to uncover complicated relationships of features from 

different aspects of regulatory factors for the disease risk annotations of genomic and 

epigenomic variants. By utilizing comprehensive omics data from the The Encyclopedia of DNA 

Elements (ENCODE) and the Roadmap Epigenomics Mapping Consortium (REMC) projects, I 

proposed several machine learning predictive models with different focuses on genomic and 

epigenomic variants annotations, which includes 1) EWASplus, an ensemble learning based 

framework for the risk prediction of DNA methylation loci associated with Alzheimer’s Disease, 

2) CASAVA (Disease Category-specific Annotation of Variants), a disease category specific risk 

annotation for the whole genome wide SNPs (single nucleotide polymorphism), 3) DRAFT 

(Disease Risk Annotation with Few shoTs learning), an end-to-end deep learning based approach 

that incorporates contrastive learning to tackle the lack of risk variants that hinder the application 

of traditional deep learning models to this research field.  

 
 
 
 
 
  



  

 

            
 
 

 
 

 
 
 

Disease Risk annotation of Genomic and Epigenomic Variants using Machine Learning 

Approaches 

 

 

 

 

By 

 

Yanting Huang 

B.S., Southeast University, 2016 

 

 

 

 

 

Advisor: Zhaohui Qin, Ph.D. 

 

 

 

 

 

 

 

 

 

 

 

A dissertation submitted to the Faculty of the 

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in Computer Science and Informatics 

2022 

 
 
 
  



  

 

            
 
 

 
 

 

Acknowledgements 

 

 

First and foremost, I would like to thank my PhD advisor, Dr. Steve Qin for his selfless 

guidance and help throughout the past six years. He is my go-to person whenever I encounter 

challenges or receive good news. As a result of his passion for academics and trustworthiness in 

life, he has shed light on my life while at Emory. I will remember the time we spent discussing 

project ideas, the time we spent working on the manuscript and revisions, and the help you 

provided me when I was searching for a job. I have had the great honor to be your student, and 

you are my lifetime role model in every aspect of my life. 

Next, I would like to thank all the senior PIs and professors who have helped me during my 

PhD for their thoughtful comments and considerate guidance, Dr. Peng Jin, Dr. Hao Wu, Dr. 

Matthew Reyna, Dr. Thomas Wingo, and Dr. Tianwei Yu. I have gained a great deal of 

experience in the field of research as a result of your valuable comments and insightful 

suggestions. Furthermore, I would like to thank all of my collaborators, especially Dr. Shihua 

Zhang and Dr. Zhen Cao, who had been working with me on the CASAVA project. I will 

remember the helpful meeting we had, the inspiring communications we had and how we 

overcame the time lag between the US and China until the project was successfully completed. 

Also, I would like to express gratitude to all my friends at Emory. I am extremely lucky to 

meet you, get to know you and be able to accompany you on this journey through life. It is 

impossible for me to make this journey without your continued support. My sincere thanks go to 

Huan He, Jing Zhang, Qingyang Zhu, Shaojun Yu, Ziwei Dong, Hongwen Song, Wenkai Zheng, 

Wenjing Ma, Jiaying Lu and Feng Zhu among others. 

Finally, I must express my very profound gratitude to my parents and to my girlfriend, Tianyu 

Lan, for providing me with love, unfailing support and continuous encouragement throughout 

my years of study. This accomplishment would not have been possible without them.  
 
 
 
 
 
  



  

 

            
 
 

 
 

 

Table of Contents 

Chapter 1 Introduction ........................................................................................................... 1 

1.1 Background .......................................................................................................................1 

1.2 Outline of the dissertation .................................................................................................2 

Chapter 2 EWASplus: An ensemble learning approach for the risk prediction of Alzheimer’s 
Disease associated CpGs ........................................................................................................ 4 

2.1 Introduction .............................................................................................................................4 

2.2 Background ..............................................................................................................................4 

2.3 Results .....................................................................................................................................6 
2.3.1 EWASplus overview ..................................................................................................................................... 6 
2.3.2 EWASplus performance compared to methylation array ........................................................................... 8 
2.3.3 EWASPlus performance for off-array CpGs ............................................................................................... 10 
2.3.4 Comparison with a competing method ..................................................................................................... 13 
2.3.5 Experimental validation of EWASplus predictions .................................................................................... 15 
2.3.6 EWASplus performance on multiple cohorts ............................................................................................ 16 
2.3.7 Biological insights into AD ......................................................................................................................... 18 

2.4 Methods ................................................................................................................................ 20 
2.4.1 Cohorts ...................................................................................................................................................... 20 
2.4.2 Sample preparation and differential DNAm CpGs identification .............................................................. 20 
2.4.3 Training sets selection ............................................................................................................................... 22 
2.4.4 Base classifiers ........................................................................................................................................... 22 
2.4.5 Feature selection ....................................................................................................................................... 23 
2.4.6 Hyperparameter tuning and ensemble model .......................................................................................... 24 
2.4.7 Performance evaluation metrics ............................................................................................................... 24 
2.4.8 Binomial test for enrichment of protein kinases....................................................................................... 25 
2.4.9 Log-scale rank score (LRS) for prioritizing AD-associated loci ................................................................... 25 
2.4.10 Loci selection for targeted bisulfite sequencing ..................................................................................... 25 
2.4.11 Adaption of Zhang et al. for comparison with EWASplus ....................................................................... 26 
2.4.12 Targeted bisulfite sequencing ................................................................................................................. 27 
2.4.13 Protein-protein interaction and pathway analyses ................................................................................. 27 

2.5 Discussion .............................................................................................................................. 27 

Chapter 3 CASAVA: A disease category-specific annotation of variants using an ensemble 
learning framework ............................................................................................................. 32 

3.1 Introduction ........................................................................................................................... 32 

3.2 Methods ................................................................................................................................ 33 
3.2.1 Risk variants for diseases and disease categories ..................................................................................... 34 
3.2.2 Constructing control sets of benign variants ............................................................................................ 34 
3.2.3 Processing sequencing features ................................................................................................................ 34 
3.2.4 Ensemble learning for class imbalance problem ....................................................................................... 35 
3.2.5 Genomic properties of CASAVA score ....................................................................................................... 36 
3.2.6 Applying CASAVA to disease-specific risk prediction ................................................................................ 37 
3.2.7 Applying transfer learning to disease-specific risk prediction .................................................................. 37 
3.2.8 Comparison with commonly used scoring methods ................................................................................. 38 



  

 

            
 
 

 
 

3.2.9 Performance evaluation ............................................................................................................................ 38 
3.2.10 Case study for immune system diseases ................................................................................................. 39 
3.2.11 Exploring informative features in CASAVA .............................................................................................. 39 

3.3 Results ................................................................................................................................... 40 
3.3.1 Overview of CASAVA ................................................................................................................................. 40 
3.3.2 Disease categories ..................................................................................................................................... 43 
3.3.3 Predicting disease category-specific risk variants ..................................................................................... 44 
3.3.4 Disease category-specificity in CASAVA scores ......................................................................................... 47 
3.3.5 Benefits of using various ensemble learning techniques .......................................................................... 47 
3.3.6 Contributions from different group of features ........................................................................................ 48 
3.3.7 Genome-wide pattern of CASAVA scores.................................................................................................. 50 
3.3.8 Results on testing sets ............................................................................................................................... 51 
3.3.9 Utility of CASAVA scores on disease-specific risk prediction .................................................................... 51 
3.3.10 Applying transfer learning to improve disease-specific risk prediction .................................................. 54 
3.3.11 Case study: MHC2TA and IKZF1 for immune system diseases ................................................................ 56 
3.3.12 Informative features in CASAVA .............................................................................................................. 58 

3.4 Discussion .............................................................................................................................. 60 

Chapter 4 DRAFT: Disease Risk Annotation with Few shoTs learning ..................................... 68 

4.1 Introduction ........................................................................................................................... 68 

4.2 Methods ................................................................................................................................ 69 
4.2.1 Data collection and preprocessing ............................................................................................................ 69 
4.2.2 Triplet Loss and Lifted Structured Loss...................................................................................................... 71 
4.2.3 Implementation details ............................................................................................................................. 72 

4.3 Results ................................................................................................................................... 72 
4.3.1 Evaluation and performance comparison ................................................................................................. 72 
4.3.2 Conclusion ................................................................................................................................................. 76 

Chapter 5 Future Works ....................................................................................................... 77 

Bibliography ........................................................................................................................ 79 
 

 

  



  

 

            
 
 

 
 

 

List of Figures 
 

Figure 2-1 Comparison of methylation coverage between Illumina 450K methylation array and 
EWASplus. ....................................................................................................................................... 6 
Figure 2-2 Overview of EWASplus approach. ................................................................................. 7 
Figure 2-3 Summary EWASplus results. .......................................................................................... 9 
Figure 2-4 Genome-wide prediction results. ................................................................................ 13 
Figure 2-5 Performance comparison between EWASplus and adapted Zhang et al. methylation 
level imputation method. ............................................................................................................. 14 
Figure 2-6 Manhattan plot of neurofibrillary tangles EWAS at the HoxA locus on chromosome 7.
....................................................................................................................................................... 18 
Figure 2-7 Selected protein-protein interaction (PPI) networks and communities among known 
AD GWAS genes (n=28) and top AD EWASplus genes (n=123). ................................................... 19 
Figure 3-1 Working pipeline of CASAVA. ...................................................................................... 43 
Figure 3-2 Performance evaluation for disease category-specific risk prediction. ...................... 46 
Figure 3-3 Performance evaluation for disease-category risk prediction using different machine 
learning methods. ......................................................................................................................... 48 
Figure 3-4 Performance evaluation for disease-specific risk prediction. ..................................... 54 
Figure 3-5 Performance of TrCASAVA for disease-specific risk prediction................................... 56 
Figure 3-6 CASAVA identifies MHC2TA as an immune disease-related gene............................... 58 
Figure 3-7 Informative features in CASAVA. ................................................................................. 60 
Figure 3-8  Clear trend of increasing enrichment of regulatory chromatin states (TSS and 
enhancers) in the aorta tissue type with higher CASAVA scores of "cardiovascular diseases, 
especially for enhancers. .............................................................................................................. 65 
Figure 4-1 Workflow of DRAFT with triplet loss. .......................................................................... 69 
Figure 4-2 Performance comparison box plot of Siamese based methods, baseline classification-

based method and 12 other existing genomic annotation tools across 89 diseases for GWAS 

dataset ........................................................................................................................................... 75 
Figure 4-3 cv-AUC heatmap of 14 methods for each of 89 diseases. ........................................... 75 
 

  



  

 

            
 
 

 
 

List of Tables 
 
Table 2-1 Summary of performance evaluation of all six AD related traits. ................................ 10 
Table 2-2 Top ten CpG loci for six AD-relevant traits. Genes within 50 Kbp of the region are 
provided. Genes with prior evidence of being associated with AD given in bold. ....................... 12 
Table 2-3 Demographic information of the sequenced samples and un-sequenced samples from 
original EWAS ROS/MAP cohort. .................................................................................................. 16 
Table 2-4 Comparison of number and proportion of differentially methylated CpGs in various 
categories of CpGs. Methylation level is measured by Targeted Bisulfite Sequencing Experiment.
....................................................................................................................................................... 16 
Table 2-5 Cohort Characteristics. .................................................................................................. 17 
Table 2-6 Summary of performance evaluation on three additional cohorts of samples: London, 
Mount Sinai and Arizona. .............................................................................................................. 17 
Table 3-1 Disease categories of CASAVA. ..................................................................................... 44 
Table 3-2 Performance evaluation of using different groups of histone modification features. 50 
Table 4-1 Number of features of each experiment assay. ........................................................... 70 
Table 4-2(GWAS dataset) Mean cv-AUC of 14 methods across 89 diseases dataset. .................. 74 
Table 4-3 (EWAS dataset) Mean cv-AUC of Siamese-based methods and the baseline method for 
6 AD related EWAS datasets. ........................................................................................................ 76 

  



          

 

                                                                                                                                                                              
1 
            

 
 

 
 

Chapter 1 Introduction 
 

 

1.1 Background 

 

 
In recent years, with the development of next generation sequencing (NGS), an enormous amount of 

omics data has been generated daily to provide a better understanding of the human genome. Through the 

enormous advances in sequencing technology, we can now identify genetic variants and epigenetic 

modifications more easily and more cheaply. Population based association studies, such as genome-wide 

association studies (GWAS) and epigenome-wide association studies (EWAS), provides a reliable and 

effective way to mine the relationship between diseases and variants based on a statistical test framework. 

However, these approaches have a few limitations: 1) low coverage for the detection of potential risk 

variants due to the array design, for example, The Illumina Infinium HumanMethylation450 (450K) array 

only tests the methylation levels of approximately 480K representative CpGs. This represents a coverage 

of around 2% CpGs in the whole human genome; 2) in the case of variants with low minor allele 

frequencies (MAF), association tests are limited in terms of their discovery power. Accordingly, 

extending the discovery power of association tests by combining current findings from association tests 

and genome profiles from sequencing becomes an important research focus. 

Combining omics data from different data sources (e.g., different databases or projects) and types 

(e.g., different experiment assays) offers the opportunity to analyze multiple datasets simultaneously for 

the purpose of discovering novel biological insights, which cannot be accomplished using a single 

dataset. The main features used in my thesis are obtained and processed from two large public databases 

at the national level: The NIH Roadmap Epigenomics Mapping Consortium (REMC)1 and The 

Encyclopedia of DNA Elements (ENCODE)2. These databases contain omics profiles across multiple 

experiment assays, such as, formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-

seq)3, DNase I hypersensitive sites sequencing (DNase-seq)4, Histone Modification Chromatin 

immunoprecipitation sequencing (ChIP-seq)5, Transcription Factor (TF) ChIP-seq ChIP-seq5, PolyA 
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RNA-seq6, Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq)7, 

which facilitate the detection of inherent correlations between various features. Different experiment 

assays or sequencing techniques provide different insights. For example, DNase-seq and FAIRE-seq can 

help identify the accessible DNA regions in the genome. RNA-seq quantifies the abundance of RNA to 

measure the activity of transcription. ATAC-seq helps to assess genome-wide chromatin accessibility. 

Also, the omics profiles in these databases are derived from various cell types and tissues, adding another 

dimension to understanding how genome activity affects human health. 

Machine learning is a method of learning from the pattern and forming the generalized rule for 

decision making in future applications.  It is more and more widely applied in the area of life science, 

especially for the functional annotation of genetic and epigenetic variants. Some of them are designed for 

the prediction of general functionality or general pathogenicity of variants, for example, logistic 

regression was used in CADD8 that prioritized functional, deleterious, and pathogenic variants. Random 

forests were used in GWAVA9 to distinguish disease-implicated variants from benign variants. Some of 

them are designed in a more disease specific way, for example, a hybrid two-stage model with support 

vector machine, random forests, logistic regression, the Lasso10 and elastic net was used in BioMM11 to 

identify epigenetic signatures of schizophrenia. Tree based ensemble model was used in DIVAN12 to 

identify specific disease associated single nucleotide polymorphisms (SNPs) for approximately 50 

individual diseases. The collection of more extensive features and the development of more powerful 

machine learning approaches have pushed the potential for more accurate variant annotation to its limit. 

 

1.2 Outline of the dissertation 

 

 
There are three chapters in my thesis and three machine learning predictive models are proposed for 

tackling different disease risk annotation problems. 

EWASplus is tool that aims to extend the current coverage of The Illumina Infinium 

HumanMethylation450 (450K) to the whole human genome. It learns from the array-based EWAS results 
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generated using 450K array with multiple base classifiers for ensemble learning and then generates risk 

scores by applying the prediction model genome-wide. EWASplus has been tested on EWAS studies 

conducted on Alzheimer’s disease (AD), a progressive neurodegenerative disease. The original EWAS 

results are obtained from various brain tissues (prefrontal cortex, middle temporal gyrus, etc.) and 

different brain data cohorts (ROS/MAP. London, Arizona, Mount Sinai). Ideally, EWASplus can be 

applied to any EWASs as long as the original EWAS summary statistics are available such as significance 

p-values. 

CASAVA (Disease Category-specific Annotation of Variants) aims to provide a middle ground 

between disease-neutral annotation and disease-specific annotation. It pools risk variants from related 

diseases belong to the same category together to overcome the problem of lack of positive training 

samples. As a result, CASAVA is able to provides predictions for 24 major disease categories at 200-bp 

resolution for the entire genome. 

DRAFT (Disease Risk Annotation with Few shoTs learning) is an end-to-end deep learning-based 

approach that incorporates contrastive learning to tackle the lack of risk variants that hinder the 

application of traditional deep learning models to this research field. In addition, it leverages the recent 

development of powerful deep learning models and mitigate the problem of lacking sufficient number of 

high-quality positive training samples.  
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Chapter 2  EWASplus: An ensemble learning approach for the risk prediction 

of Alzheimer’s Disease associated CpGs 
 

 

2.1 Introduction 
 

Alzheimer’s disease (AD) is influenced by both genetic and environmental factors; thus, brain 

epigenomic alterations may provide insights into AD pathogenesis. Multiple array-based Epigenome-

Wide Association Studies (EWASs) have identified robust brain methylation changes in AD; however, 

array-based assays only test about 2% of all CpG sites in the genome. Here, we develop EWASplus, a 

computational method that uses a supervised machine learning strategy to extend EWAS coverage to the 

entire genome. Application to six AD-related traits predicts hundreds of new significant brain CpGs 

associated with AD, some of which are further validated experimentally. EWASplus also performs well 

on data collected from independent cohorts and different brain regions. Genes found near top EWASplus 

loci are enriched for kinases and for genes with evidence for physical interactions with known AD genes. 

In this work, we show that EWASplus implicates additional epigenetic loci for AD that are not found 

using array-based AD EWASs. 

 

2.2 Background 

 
Alzheimer’s disease (AD) is an age-dependent, neurodegenerative disorder, the leading cause of 

dementia, and a major public health concern world-wide13. AD is a complex illness due to environmental 

and genetic factors with a heritability of ~70%14, 15. Compared to genome-wide association studies 

(GWASs), there are relatively fewer studies examining AD-associated epigenetic changes in the human 

brain. Yet, understanding epigenetic changes in the brain is important because they will likely illuminate 

both heritable and environmental aspects of AD pathogenesis. One of the most well described epigenetic 

changes, DNA methylation (DNAm), is strongly linked with transcription regulation16, is heritable17, and 
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notably changes in response to environmental exposure18-20, such as smoking21, 22. Important for AD and 

other age-dependent illnesses, it is also known to change with age23.  

Epigenome-wide association studies (EWASs) use array-based assays to test whether DNAm at 

particular CpG sites (abbreviated CpGs hereafter) is associated with a disease24-27. Multiple AD EWASs 

have identified differential DNAm associated with AD in different regions of the human brain, including 

prefrontal cortex (PFC)28, entorhinal cortex (EC), superior temporal gyrus (STG), cerebellum (CER)29, 

temporal pole region, temporal cortex, glia, neuron nuclei, non-neuronal nuclei30, and superior temporal 

gyrus31. These works revealed AD-associated differential DNAm such as those near ANK28, 31 and 

CDH2328, 29, which are distinct from AD GWAS signals. Although these studies have identified new AD-

associated genes, array-based methods are limited because they only test about 2–3% of all CpGs in the 

human genome and have known technical limitations32. To overcome these challenges, we tested whether 

a machine learning approach could be used to identify additional AD-associated CpGs on a genome-wide 

scale. 

In this work, we construct a supervised machine learning (ML) binary classifier named EWASplus to 

identify CpGs associated with AD. Given that epigenetic features and DNAm status are interconnected, 

we hypothesize that we can identify AD associated CpGs using genomic and epigenetic features. Training 

data are derived from array-based EWASs, and features include relevant genomic and epigenomic 

profiling data (e.g., chromatin accessibility, histone modifications). After model training, we apply the 

trained model to the entire genome to identify additional AD-associated CpGs. Finally, we perform 

targeted bisulfite sequencing experiments to validate our in-silico predictions. We find the highest rate of 

AD association for regions harboring putative CpGs predicted by EWASplus (65.8%; 25 out of 38), 

follow by CpGs known to associate with AD by methylation arrays (60.0%; 6 out of 10). Experimental 

validation shows predicted CpGs are 2.2 times more likely to be associated with AD (1.00 × 10−9) than 

negative control CpGs. These results suggest EWASplus is capable of providing credible information to 

identify additional AD-associated CpGs. 
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2.3 Results 

 

2.3.1 EWASplus overview 

 
The goal of EWASplus is to identify additional disease associated CpGs that are not included on the 

methylation arrays. Currently, the most popular methylation arrays only represent 2–3% of all CpGs in 

the human genome. EWASplus aims to increase the number of CpGs tested in EWASs to a genome-wide 

scale. A comparison of CpG coverage between the 450K methylation array and EWASplus is shown in 

Figure 2-1. Standard EWAS operates under a testing framework, but EWASplus frames the problem as a 

supervised learning (i.e., classification) framework. The EWASplus approach (Figure 2-2) is to (1) use 

summary statistics from array-based EWASs to classify all CpGs on the array into either trait-associated 

(positive) or neutral (negative) group; (2) perform feature selection to identify the most informative 

features from a collection of 2256 genomic and epigenomic annotations; (3) train an ensemble learning 

model capable of identifying CpGs for trait association; and (4) score all CpGs in the entire genome to 

identify additional trait-associated CpGs not present on the array. 

 

Figure 2-1 Comparison of methylation coverage between Illumina 450K methylation array and EWASplus. 

a. The density of CpGs covered by Illumina 450K methylation array. b. The density of CpGs covered by 

EWASplus. The figure legend for both subplots have the same color bar scale. The darker red indicates a higher 

CpG density and the darker green means a lower CpG density. 
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Figure 2-2 Overview of EWASplus approach. 

The EWASplus procedure is composed of four major steps: (1) Training data collection from existing EWASs; (2) 

External feature (from sources such as ENCODE and Roadmap Epigenome consortia) selection; (3) Ensemble 

learning; and (4) Genome-wide CpGs risk prediction, in which trained ensemble learning model is applied genome-

wide to score all CpGs. 
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To prepare the training set, EWASplus gathers the most significant CpGs identified from array-based 

EWAS to form a positive training set. To reflect the fact that there are far fewer significant trait-

associated CpGs in the genome than the trait-neutral ones, EWASplus selects a matching negative 

training set with similar genomic context that is ten times larger than the positive training set. 

EWASplus employs an ensemble learning strategy and four different methods were chosen as the base 

learner: regularized logistic regression (RLR), support vector machine (SVM) classifier, random forest 

(RF), and gradient boosting decision trees (GBDT). To identify the best ensemble model, we tested all 

possible combinations of these base learners and found that the combination of RLR and GBDT gives the 

best performance overall, and hence was selected to be the ensemble model in this study. RLR has the 

best recall but relatively low precision, while GBDT has the best precision but relatively low recall. When 

these two models are ensembled, the underfitting property of RLR can effectively offset the overfitting 

from GBDT while keeping enough model complexity. More detailed description can be found in “2.4.7 

Performance evaluation metrics” in the Methods section. 

EWASplus can be applied to any array-based EWAS to extend its coverage. In this study, we tested 

EWASplus on data collected from four different cohorts: ROS/MAP (sample size 717), London (sample 

size 113), Mount Sinai (sample size 146), and Arizona (sample size 302). All original EWASs were 

performed using the Illumina 450K methylation array. 

 

2.3.2 EWASplus performance compared to methylation array 
 

To evaluate the performance of EWASplus, we first considered its performance on CpGs present on 

the Illumina 450K methylation array (henceforth referred to as the “array”). Given the large sample size 

(n = 717), we choose data from the ROS/MAP cohort as the main dataset for performance evaluation. 

Methylation is measured on DNA derived from post-mortem PFC. Standard EWAS were conducted on 

six different AD-related traits: beta-amyloid density, Braak staging, the Consortium to Establish a 
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Registry for Alzheimer’s Disease (CERAD) score, cognitive trajectory, global AD pathology, and 

neurofibrillary tangle density. We trained a separate classifier for each of the six traits. 

EWASplus results are summarized in Table 2-1 (see section 2.4.6 Hyperparameter tuning and 

ensemble model for detailed description of the approach of evaluation). The area under the receiver 

operator characteristic (ROC) curve (AUC) values from the six traits range from 0.831 (cognitive 

trajectory) to 0.962 (neurofibrillary tangles) (Figure 2-3a). The area under the precision-recall curve 

(PRC) (AUPRC) values from the six traits range from 0.502 (CERAD) to 0.858 (neurofibrillary tangles) 

(Figure 2-3b). These results indicate that EWASplus works well to predict significant AD-associated 

CpGs for methylation measured by the array. Among the six traits, we observe the best performance for 

neurofibrillary tangles. 

 

Figure 2-3 Summary EWASplus results.  

a ROC curves of the predictive performance of EWASplus on the six traits in the ROS/MAP cohort. b Precision-

recall curves of the predictive performance of EWASplus on the six traits in the ROS/MAP cohort. 
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Outcome Outcome Type AUC AUPR F1 Precision Recall 

Beta-amyloid Pathologic, IHC 0.850 0.539 0.492 0.423 0.589 

Braak Staging Pathologic, Silver 

Stain 

0.860 0.599 0.530 0.487 0.581 

CERAD Pathologic, Silver 

Stain 

0.833 0.502 0.508 0.457 0.571 

Cognitive 

Trajectory 

Clinical 0.831 0.591 0.516 0.451 0.604 

Global Pathology Pathologic, Silver 

Stain 

0.882 0.622 0.577 0.507 0.671 

Neurofibrillary 

Tangles 

Pathologic, IHC 0.962 0.858 0.754 0.677 0.852 

Table 2-1 Summary of performance evaluation of all six AD related traits. 

 
To further evaluate EWASplus, we asked whether the EWASplus prediction score is capable of 

distinguishing CpGs with differential DNAm between AD case and control status. To answer this 

question, we selected four groups of CpGs that differ with respect to differential DNAm association with 

AD: (a) AD-associated CpGs in the positive training set (i.e., p-value less than the EWAS threshold); (b) 

CpGs suggestively associated with AD (i.e., p-value slightly greater than the EWAS threshold); (c) CpG 

not associated with AD but not in negative training set; and (d) CpGs not associated with AD and in the 

negative CpG training set (i.e., p-value greater than the EWAS threshold and in negative training set). On 

average, we find a significant difference for EWASplus prediction scores between suggestively positive 

and negative CpGs that are not in the training sets (Wilcoxon rank-sum test; 𝑝 <  3.64 × 10−16) for all 

six traits. Scores for CpGs in group b are similar to those in group a (positive training set), albeit with 

higher variation, whereas scores in group c have almost the same scores as group d (negative training set). 

As expected, our results demonstrated excellent capability of EWASplus in distinguishing CpGs that 

show AD association or not. 

 

2.3.3 EWASPlus performance for off-array CpGs  

 
We applied the six classifiers trained on the six AD traits using EWASplus to the entire human 

genome to obtain a prediction score for every CpG (Figure 2-4a). The top ten CpGs with the highest 



          

 

                                                                                                                                                                              
11 
            

 
 

 
 

composite scores are listed in Table 2-2. The total number of CpGs with a prediction score is about 78 

times the number of CpGs present on the Illumina 450K methylation array. The prediction scores for all 

CpGs are provided at the EWASplus Github site.  

Ch

r  

Position 

(bp)  

Beta-

Amyloi

d  

Braak 

Stagin

g  

CERA

D  

Cognitiv

e 

Decline  

Global 

Patholog

y  

Neurofibrilla

ry Tangles  

Genes 

within 50 

kb of 

associated 

CpG  

7  27148225  5.605  5.037  3.799  4.495  4.612  7.424  HOTAIRM

1, HOXA-

AS2, 

HOXA-

AS3, 

HOXA1, 

HOXA2, 

HOXA3, 

HOXA4, 

HOXA5, 

HOXA6, 

HOXA7  

5  17217560

6  

4.679  4.662  5.009  4.658  6.248  3.720  DUSP1  

7  47367933  4.008  4.736  5.251  4.254  5.278  5.210  TNS3  

19  46270392  4.462  4.447  6.311  4.362  4.937  3.727  FBXO46, 

SIX5, 

DMPK, 

DMWD, 

RSPH6A, 

SYMPK  

6  35286078  5.141  5.947  4.497  3.731  3.762  5.072  ZNF76, 
DEF6, 

PPARD  

19  10736075  4.130  5.977  3.387  4.047  4.400  5.845  AP1M2, 
SLC44A2, 

ILF3, ILF3-
AS1  

9  11622598

6  

3.408  4.977  4.253  3.630  5.307  5.893  C9orf43, 

RGS3  

1  59280358  3.065  6.248  3.973  5.179  5.130  3.755  LINC01135

, JUN  

19  15563592  6.579  4.549  3.132  3.849  4.009  5.215  MIR1470, 

AKAP8L, 

WIZ, 

RASAL3, 

PGLYRP2  

7  15143327

1  

3.577  4.432  4.265  4.739  4.743  4.814  PRKAG2  
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Table 2-2 Top ten CpG loci for six AD-relevant traits. Genes within 50 Kbp of the region are provided. Genes with 

prior evidence of being associated with AD given in bold. 

 

For the off-array CpGs, we examined the distribution of prediction scores for different types of 

genomic regions. We hypothesized that top CpGs with the highest prediction scores would be located in 

functional regions such as enhancers and promoters, and we find this to be the case (Figure 2-4b). The 

normalized proportion for enhancers ranges from 15.73 to 43.19% and exons range from 4.69 to 23.99%, 

which are both significantly higher than the expected occurrence of these regions in the high prediction 

score percentile intervals (binomial test for the highest prediction score quantile interval: 𝑝 <

 1.00 ×  10−99 for both enhancers and exons). To better understand the properties and context of top-

ranked CpGs predicted by EWASplus, we selected the top 10k CpGs with the highest overall EWASplus 

prediction scores and analyzed their chromatin states (15-state model) defined in dorsolateral prefrontal 

cortex. We calculated the enrichment (or depletion) of the 15 chromatin states in the top 10k CpGs. As a 

result, we found that all six AD-related traits are enriched for sites annotated as flanking active 

transcription start site (TSS) (binomial test; 𝑝 <  1.00 ×  10−99 for all traits), active TSS (binomial test; 

𝑝 <  1.00 ×  10−99 for all traits), enhancers (binomial test; 𝑝 <  1.22 × 10−9 for all traits), and 

repressed PolyComb (binomial test; 𝑝 <  1.00 ×  10−99 for all traits), and under-represented for sites 

within quiescent regions (binomial test; 𝑝 <  1.00 × 10−99 for all traits) (Figure 2-4c). There is no 

significant difference in the enrichment patterns across the six AD traits. These results support the 

conclusion that top CpGs associated with AD tend to be located in functional regions.  
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Figure 2-4 Genome-wide prediction results. 

a Manhattan plots for neurofibrillary tangles: the top panel is for on-450K CpGs with EWAS p-values and the 

bottom panel is for whole-genome CpGs with imputed LRS by EWASplus. The y-axis is the log-scale rank scores. 

The top-ranked CpG has the LRS of 7.42 (about empirical p-value of 3.8 × 10−8); the top 100th ranked CpG has the 

LRS of 5.42 (about empirical p-value of 3.8 × 10−6) and the top 10,000th ranked CpG (about empirical p-value of 

3.8 × 10−4) has the LRS of 3.42. b Raw and normalized stacked-proportion histograms for different genomic 

annotation types. Source data are provided as a Source data file. c The difference of observed and expected 

chromatin states proportion for the top 10,000 loci across the six AD-related traits: Beta-amyloid, Braak staging, 

CERAD, cognitive trajectory, global pathology, and neurofibrillary tangles. Source data are provided as a Source 

data file. The annotated chromatin states are from Roadmap Epigenetics Project, and we used the core 15-state 

model chromatin states for the dorsolateral prefrontal cortex tissue type. To minimize ambiguity, we require only a 

single annotation type is assigned for each CpG site. if a CpG has multiple annotations, we only record the most 

“significant” annotation with the following order: enhancer > promoter > exon > intron > near gene (1–5 kb to the 

TSS) > intergenic. We do not list 5′ UTR and 3′ UTR since these two types are within the first and last exon of each 

gene according to the UCSC annotation system. 

 

2.3.4 Comparison with a competing method  
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In a recent work, using array-measured methylation levels, Zhang et al.33 develop a computational 

algorithm to impute the methylation levels on CpG sites genome-wide including those not on the Illumina 

450K array. Their approach employed about 125 genomic and epigenomic features (the number varies 

when including different sets of individual-level features) mainly composed of regulatory marks from 

ENCODE project. Although not designed for trait association prediction, one could apply this method to 

impute methylation levels for every individual sample and on every CpG site. Subsequently, association 

test can be conducted on these imputed methylation measures to identify CpGs significantly associated 

with a trait of interest.  

To compare such a strategy with EWASplus, we applied Zhang et al.’s method and used the imputed 

methylation values to conduct an association test. We found that the AUC for EWASplus is between 

0.178 and 0.329 higher compared to the adapted Zhang et al. approach; AUPR for EWASplus is 0.219 to 

0.364 higher than adapted Zhang et al. approach across six AD- related traits (Figure 2-5).  

 

Figure 2-5 Performance comparison between EWASplus and adapted Zhang et al. methylation level imputation 

method. 

a. Receiver Operating Characteristic curves of the predictive performance of EWASplus versus adapted Zhang et al. 

method. b. Precision-Recall curves of the predictive performance of EWASplus versus adapted Zhang et al. method. 

Source data are provided as a Source Data file. 
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2.3.5 Experimental validation of EWASplus predictions  

 
To experimentally test the validity of the prediction scores reported by EWASplus, we performed 

targeted bisulfite sequencing to measure the methylation level at 559 selected CpGs from 150 randomly 

selected participants from the Religious Orders Study (ROS) or Memory and Aging Project (MAP) 

cohorts who are representative of both studies and have available brain tissue for bisulfite sequencing 

(Table 2-3). CpGs were selected for independent validation from the top EWASplus predicted sites using 

a stepwise selection process that prioritized regions with the highest predicted scores that were physically 

separated by at least 500 bp. For comparison purposes, we also randomly selected CpGs from regions 

with predicted scores in the lower half but similar physical characteristics (e.g., GC content). In addition, 

we targeted CpGs on the array that could serve as positive controls. After quality control, 319 CpGs were 

analyzed including 31 CpGs on the 450K array identified as AD-associated34, 260 off-array CpGs 

predicted to be AD-associated based on EWASplus, and 28 off-array CpGs predicted to not be AD-

associated. These 319 CpGs can be grouped into 58 independent clusters (referred to as CpG cluster 

hereafter) on the genome that belongs to three groups: 38 off-array predicted AD-associated, 10 on-array 

AD-associated, and 10 off-array predicted not AD-associated. For performance comparison, we combined 

test results from the six individual traits. Due to the limited sample size, we call a CpG cluster AD-

associated if at least one of the CpGs at the locus achieves unadjusted p-value for differential DNAm <

0.05 for any of the six traits. Similar to our results from individual traits, we found that positive CpG 

clusters predicted by EWASplus have the highest rate of association with at least one AD trait (65.8%, or 

25 of 38), followed by CpG clusters identified by array-based EWAS (60.0%, or 6 of 10). In contrast, the 

negative control CpG clusters predicted by EWASplus have the lowest (30.0%, 3 of 10) (Table 2-4). 

Thus, CpGs with top EWASplus scores are about 2.2 times more likely to be associated with an AD trait 

(Binomial test, 𝑝 < 1.00 × 10−9).  
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  Sequenced (N=150) Un-sequenced (N=589) 

Male 46 223 

Female 104 366 

Age of death 87.569 (6.408) 88.096 (6.738) 

Education 16.080 (3.639) 16.487 (3.566) 

Amyloid 3.372 (3.992) 3.498 (3.619) 

Braak Staging 3.433 (1.297) 3.414 (1.258) 

CERAD 2.407 (1.193) 2.299 (1.148) 

Cognitive Decline Trajectory -0.026 (0.107) -0.030 (0.107) 

Global Pathology 0.693 (0.660) 0.705 (0.615) 

Neurofibrillary Tangles 7.481 (9.637) 6.102 (7.599) 

Table 2-3 Demographic information of the sequenced samples and un-sequenced samples from original EWAS 

ROS/MAP cohort. 

 

 # of positives in 

EWASplus predicted 

positives (%)  

total = 38 

# of positive in on- 

array positives (%) 

total = 10 

# of positives in 

EWASplus predicted 

negatives 

(%) total = 10 

Any Trait 25 (65.8) 6 (60.0) 3 (10.0) 

Beta-Amyloid 17 (44.7) 1 (10.0) 2 (20.0) 

Braak Staging 11 (28.9) 2 (20.0) 1 (10.0) 

CERAD 17 (44.7) 2 (20.0) 3 (30.0) 

Cognitive Trajectory 7 (18.4) 3 (30.0) 0 (0.0) 

Global Pathology  13 (34.2) 2 (20.0) 3 (30.0) 

Neurofibrillary Tangles 16 (42.1) 5 (50.0) 1 (10.0) 
Table 2-4 Comparison of number and proportion of differentially methylated CpGs in various categories of CpGs. 

Methylation level is measured by Targeted Bisulfite Sequencing Experiment. 

 

2.3.6 EWASplus performance on multiple cohorts 

 
To further test EWASplus, we examined its performance using data from three additional cohorts: 

London cohort29 (prefrontal cortex, N = 113), Mount Sinai cohort35 (prefrontal cortex, N = 146), and 

Arizona cohort36 (middle temporal gyrus, N = 302). In all three studies, Braak staging (treated as a 

continuous variable) is used as the trait in the EWAS studies, as described in Smith et al.35. Detailed 

information about these cohorts is summarized in Table 2-5.  
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Braak Stage N Gender 

(M/F) 

Age of death 

London (N=113) 0-II 29 13/16 77.6(12.8) 

III-IV 18 7/11 88.5(5.2) 

V-VI 66 26/40 85.4(8.1) 

Mount Sinai (N=146) 0-II 60 32/28 82(7.6) 

III-IV 42 12/30 88.8(6.6) 

V-VI 44 12/32 88.0(7.5) 

Arizona (N=302) 0-II 61 40/21 80.3(8.2) 

III-IV 97 50/47 86.9(6.9) 

V-VI 144 63/81 82.3(8.5) 

ROS/MAP (N=739) 0-II 151 75/76 83.6(7.2) 

III-IV 423 148/275 88.8(6.3) 

V-VI 165 46/119 89.8(5.2) 

Table 2-5 Cohort Characteristics. 

We found that EWASplus performed well in all three datasets. The AUC values range from 0.697 

(London 1) to 0.863 (Mount Sinai). The AUPRC values range from 0.233 (Arizona) to 0.604 (Mount 

Sinai). The complete results including all evaluation metrics can be found in Table 2-6.  

Cohort Brain Tissue AUC AUPR F1 Precision Recall 

London Prefrontal Cortex 0.697 0.272 0.325 0.248 0.471 

Mount Sinai Prefrontal Cortex 0.863 0.604 0.481 0.364 0.708 

Arizona Middle temporal 

gyrus  

0.699 0.233 0.275 0.196 0.461 

Table 2-6 Summary of performance evaluation on three additional cohorts of samples: London, Mount Sinai and 

Arizona. 

To understand the most relevant factors influencing EWASplus performance among the different 

datasets, we treated the performance measurement testing AUC as the response variable and tested 

numerous independent variables using the linear regression model. We found that when choosing the 

positive EWAS threshold (negative logarithm transformed p-values) as the independent variable, simple 

linear regression achieved 𝑅2 of 0.588 using other performance measures such as AUPRC and F1 values 

produced similar results. These results suggest that perhaps the most relevant factor that influences 

EWASplus performance is the quality and power of the original EWAS, which depends on the effect and 

sample sizes.  
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2.3.7 Biological insights into AD 

 
To glean biological insights from the EWASplus results, we examined genes surrounding some of the 

highest EWASplus scoring CpGs. Interestingly, we found that the highest scoring CpG is located inside 

the HOXA gene cluster, which has been identified by three independent array-based EWASs of cortical 

brain tissue associated with Braak staging, a measure of neurofibrillary tangles29, 35, 37. In contrast to prior 

analyses that identified individual HOX genes, EWASplus results identify a 40 kb region on chromosome 

7 that includes multiple homeobox genes, e.g., HOXA2, HOXA3, HOXA4, HOXA5, and HOXA6, that 

are associated with AD (Figure 2-6).  

 

Figure 2-6 Manhattan plot of neurofibrillary tangles EWAS at the HoxA locus on chromosome 7. 

a. Array-based EWAS p-values. The most significant CpG identified by De Jager et al. are shown with an arrow. b. 

EWASplus predicted LRS. c. The landscape of the HoxA cluster genes. 
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In addition, of the top 10 detached EWASplus scoring CpGs, seven were not previously implicated in 

any EWAS of AD. Here detached means any two CpGs on this list are at least 10 kb away from each 

other. Gene set enrichment analysis by GeNets38 using all genes located within 5 kb of the top 100 

EWASplus scoring CpGs (123 genes) revealed a significant enrichment of protein kinases (𝑝 = 0.044) —

ALPK3, DMPK, MAP3K11, MAP4K1, and TAOK328. Identification of kinases within AD is of 

particular interest given that neurofibrillary tangles, a hallmark neuropathology of AD, result from 

hyperphosphorylation of microtubule-associated protein tau (MAPT)39. In addition, we found that genes 

within the top EWASplus regions have evidence of physical interaction with known AD genes or AD 

GWAS loci (e.g., PRKAG2 and TNS3 interact with APOE, CLU, APP, PSEN1/2, and RIN2 and RIN3 

interact with BIN1). These analyses support the idea that EWASplus is able to identify interesting 

underlying biological relationships in AD.  

 

Figure 2-7 Selected protein-protein interaction (PPI) networks and communities among known AD GWAS genes 

(n=28) and top AD EWASplus genes (n=123). 

The lines represent physical PPIs between proteins. The thickness of the lines is proportional to the evidence for the 

PPI. The black asterisk indicates genes that are known kinases. 
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2.4 Methods 

 

 

2.4.1 Cohorts 

 
The main dataset used in this study comes from the ROS/MAP cohorts. ROS and MAP are 

longitudinal cohort studies of aging and AD led by investigators at the Rush Alzheimer’s Disease 

Center40, 41. Participants give written informed consent for annual assessments, signed an Anatomic Gift 

Act, and a repository consent to allow their data and biospecimens to be repurposed. Each year, 

participants undergo a detailed medical, neurological, and neuropsychiatric assessment. After death, each 

participant undergoes a detailed brain autopsy with neuropathologic examination. Both ROS and MAP 

were approved by the Institutional Review Board of Rush University Medical Center. They share a large 

common core of data at the item level to allow efficient merging of datasets. ROS/MAP resources can be 

requested at https://www.radc.rush.edu.  

In addition, we also obtained data from three separate cohorts: London, Mount Sinai, and Arizona. 

The “London” cohort refers to prefrontal cortex tissue obtained from 113 individuals archived in the 

MRC London Neurodegenerative Disease Brain Bank. The details of the cohort are described in Lunnon 

et al.29. The “Mount Sinai” cohort refers to prefrontal cortex tissue obtained from 146 individuals 

archived in the Mount Sinai Alzheimer’s Disease and Schizophrenia Brain Bank. Details of this cohort is 

described in Smith and colleagues42. The “Arizona” cohort refers to 302 middle temporal gyrus samples 

from The Sun Health Research Institute Brain Donation Program36. The details of this cohort are 

described in Brokaw et al.43.  

 

2.4.2 Sample preparation and differential DNAm CpGs identification 

 
DNAm data were generated from dorsolateral PFC (Broadman area44) of post-mortem samples 

obtained from individuals in the ROS/MAP cohorts.  

DNAm profiling was performed with the Illumina HumanMethylation450 Beadchip array28. After 

excluding non-Caucasian subjects, 717 ROS/MAP participants with array DNAm data remained for 

https://www.radc.rush.edu/
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analysis. We obtained raw IDAT files from the Synapse website (Synapse ID: syn7357283) and removed 

probes annotated to multiple chromosomes or the X and Y chromosomes by Illumina, probes that cross-

hybridize with other probes due to sequence similarity (identified by Chen et al.45), probes with a 

detection 𝑝 >  0.01 in any sample, probes without a CpG, and probes that overlap with a common SNP 

(identified by Barfield et al.46). After this filtering, a total of 334,465 autosomal CpGs remained for 

analysis.  

For the EWAS analyses, each probe was normalized using the BMIQ algorithm from the Watermelon 

R package, and adjusted for batch effects using the ComBat function from the sva R package47. We used 

the CpGassoc48 R package to test if the methylation level of each array CpG is associated with the trait of 

interest via regression methods. All models were adjusted for proportion of neurons, age at death, sex, 

post-mortem interval, plate, study, and years of education. Neurons were added as a covariate to avoid 

potential confounding due to differences in the cellular composition of the tissue samples. The proportion 

of neurons in each sample was estimated using the CETS R package and reference methylation data from 

isolated neuronal nuclei49.  

We performed EWASs for the following six AD-related traits: (1) beta-amyloid load which is the 

percent area of beta-amyloid based on image analysis; (2) neurofibrillary tangle density by stereology; (3) 

CERAD score; (4) Braak stage; (5) global AD pathology burden; (6) cognitive trajectory based on the 

average z-score of 17 cognitive function tests. Beta-amyloid and neurofibrillary tangle were measured in 

the cortex using immunohistochemistry with antibodies specific to beta-amyloid and phosphorylated-tau, 

as described41. We used square-root- transformed values for both traits to improve their normality. 

CERAD score and Braak stage are semi-quantitative measures that reflect both a neuropathologist’s 

opinion of AD diagnosis and the distribution and amount of silver-stain-identified neuritic and diffuse 

plaque and neurofibrillary tangle pathologies, respectively50-52. CERAD scores can take on values from 

one to four indicating definite AD, probable AD, possible AD, and no AD, respectively. CERAD was 

treated as a continuous trait. Braak stages can take on values from one to six, indicating the increasing 

spread of neurofibrillary tangle pathology in the brain, and Braak was coded as a binary trait with stages 
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one to three as controls and stages four to six as affected. Global AD pathology burden is a summary 

measure of silver-stain- identified neuritic plaque, diffuse plaque, and neurofibrillary tangle pathologies41. 

As global AD pathology burden has a skewed distribution, we used square-root-transformed values. 

Cognitive trajectory, or the rate of change in cognition over time, was estimated for each ROS/MAP 

participant using a linear mixed model34. For each person, cognitive trajectory was estimated as the 

person-specific random slope of a linear mixed model that included global cognitive function as the 

longitudinal outcome53, follow-up year as the independent variable, and sex, age at enrollment, and years 

of education as covariates.  

For the London, Mount Sinai, and Arizona cohorts, we directly used the processed EWAS results 

reported in Smith et al.42. Details of the sample preparation and differential DNAm CpGs identification 

have been described in previous studies29, 36, 43.  

 

2.4.3 Training sets selection 

 
For each trait, positive CpGs in the training set were selected based on association test p-values 

(threshold ranges from 1.00 × 10−7 to 1.00 × 10−5). For each positive CpG, ten matching negative 

CpGs were selected from the Illumina 450K array such that they have similar β-values as the positive 

CpG, but none is considered significant in any of the EWASs conducted on the six traits. We used a 

conservative threshold (𝑝 > 0.40) for being not-significant, and β-values were calculated as the mean 

values of methylation intensity over 717 ROS/ MAP samples for each CpG on the Illumina 450K array.  

 

2.4.4 Base classifiers 

 
We used four different methods as base classifiers with varying model complexity. The goal of this 

approach was to select the model with the least error to achieve an optimal overall performance. We used 

four models that included: (1) RLR with L2-penalty, which alleviates overfitting and feature collinearity; 

(2) SVM classifier54, which performs well with linearly non-separable classification, a common feature 
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for real-world problems; (3) RF55, which is a bagging method with decision tree as base learner; (4) 

GBDT56, which differs from RF in that a new tree is added to model to gradually optimize the objective 

function that was set as log loss. EWASplus uses an accurate and efficient implementation of GBDT from 

package XGBoost57.  

 

2.4.5 Feature selection 

 
We assembled a comprehensive collection of 2,256 genomic/epigenomic profiles as well as multiple 

functional annotation scores as features to be used in the model. Omics profiles include TF and histone 

ChIP-seq, open chromatin, total RNA-seq, and WGBS. Functional annotation scores include CADD8, 

GenoCanyon58, and Eigen/EigenPC59.  

The moderate size of the training sets (between 1,706 and 3,181) may result in overfitting if all 

features are included in the training. Thus, we used a dimension reduction/feature selection step before 

the model training. For each trait, we performed feature selection for each of the four base classifiers: 

RLR, SVM, RF, and GBDT, respectively. For each base classifier, we selected the top 100 most 

informative features using the training data. In RLR and SVM, features were ranked based on the weights 

of the fitted model. For RF, features were ranked based on the Gini impurity measure. For GBDT, 

features were ranked by the gain metric when fitting the model, or, in other words, the improvement in 

accuracy brought by a feature to the branches it is on.  

Next, we ranked the features by the number of times that this feature was selected by the four base 

learners as informative. We selected the top 60 features (testing on the number of top features ranges 30–

100, 60 was selected because it gave the best performance overall). Features were ranked by the number 

of methods that select the feature as informative. To break a tie, we introduced a secondary sorting 

method. For each feature, we conducted the Wilcoxon rank-sum test comparing feature values between 

positive and negative CpGs, and features were ranked from the most significant to the least significant.  
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2.4.6 Hyperparameter tuning and ensemble model 

 
We used the Tree-of-Parzan Estimators (TPE) implemented in Hyperopt60 to adaptively search the 

hyper-parameter space of each component model (base learner) for the best hyperparameter settings. This 

model-based hyperparameter tuning method is thought to achieve better performance than random search 

in terms of both accuracy and efficiency.  

The hyperparameter tuning for each component model is conducted separately. In the training dataset, 

we uniformly up-sample the positive CpGs to match the number of negative CpGs to alleviate the 

imbalance problem. In the outer CV, the whole dataset of positive and negative CpGs were split into 

training and testing sets in a nine-to-one ratio in each round. Within each round, the nine folds were 

further split into threefold to conduct the inner 3-fold CV for hyperparameter searching. The best set of 

hyperparameters was decided by the highest F1 score and it was then used for the remaining onefold in 

the outer 10-fold CV. Each one of the ten folds in the outer CV layer is used once as the testing set in a 

round-robin way so that out-sample predictions cover the whole dataset. We evaluate our model with the 

out-of-bag estimates for testing error and report the evaluation results in Table 2-1 for the ROS/MAP 

cohort and Table 2-6 for other additional cohorts.  

After the outer 10-fold CV, we then built the ensemble model by selecting the best combination of 

component models. The out-sample predictions of each base learner from the outer 10-fold CV were 

aggregated in a soft-voting manner to give the ensemble prediction probabilities in different combinations 

of component models. Due to the problem of class imbalance, we evaluated the performance of the 

ensemble models using AUC, AUPR, precision, recall, and F1 score.  

 

2.4.7 Performance evaluation metrics 

 
To assess the performance of EWASplus, we used three classes of evaluation metrics: precision and 

accuracy, AUC and AUPRC, as well as F1 score. Precision measures the true positive rate of a classifier. 

Accuracy measures the percentage that a classifier correctly labels test samples. For imbalanced datasets 
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where positive samples are of more interest, precision is preferred over accuracy. PRC is preferred over 

ROC. The F1 score is another widely used performance measure for imbalanced datasets. It takes into 

consideration both accuracy and precision by assigning each an equal weight in the following calculation 

formula: 𝐹1 = 2 × (
𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
). The focus of F1 score is on the positive samples which is usually 

under-represented. 

 

2.4.8 Binomial test for enrichment of protein kinases 

 
We selected the top 100 CpGs with the highest EWASplus prediction scores across six AD-related 

traits in a stepwise forward manner such that any two CpGs in the top 100 list are at least 10 kb away 

from each other. Next, we searched through the 5 kb neighborhood of these 100 CpGs to retrieve all 

genes that overlapped, for a total of 123 genes. Among these genes, five are known protein kinases. Given 

a complete list of human kinases (492 from the autosomes) from Kinase.com 

(http://kinase.com/human/kinome) and a complete list of human genes (31,684 from the autosomes) from 

Ensembl (http://grch37.ensembl.org), we conducted an enrichment test using binomial distribution which 

returned an enrichment p-value of 0.044.  

 

2.4.9 Log-scale rank score (LRS) for prioritizing AD-associated loci 

 
In order to better present the whole-genome prediction result, we sorted the prediction scores of each 

trait and calculated the log-scale rank score (LRS) for each CpG (𝐿𝑅𝑆 =

− log10
𝑟𝑎𝑛𝑘

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝐶𝑝𝐺𝑠
; 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝐶𝑝𝐺𝑠 = 26,573,858). The LRS is similar to a log-transformed 

empirical p-value. A higher LRS means the CpG is more likely to be associated with the trait.  

 

2.4.10 Loci selection for targeted bisulfite sequencing 

 

http://kinase.com/human/kinome
http://grch37.ensembl.org/


          

 

                                                                                                                                                                              
26 
            

 
 

 
 

Targeted bisulfite sequencing was conducted on selected CpGs (with neighboring CpGs profiled 

unintentionally, as well) for 150 randomly selected samples from the ROS/MAP cohort. Since most 

features used in model training having only one value in every 200 bp bin, CpGs within a 200 bp bin tend 

to have similar prediction scores. In order to select a more representative (less clustered) set of loci for 

experimental validation, we required any pair of selected CpGs must be at least 500 bp apart. The forward 

selection process is performed in the stepwise manner, starting from the CpG with the highest total LRS 

score. Due to the limitation of sequencing primer design, not all loci on the candidate list were selected 

for bisulfite sequencing. The selection process was stopped when a pre-determined sequencing capacity is 

reached. For comparison, we selected 38 off-array CpG clusters with high prediction scores, 10 clusters of 

on-array CpGs listed in de Jager et al.28 and 10 clusters of off-target negative control CpGs.  

 

2.4.11 Adaption of Zhang et al. for comparison with EWASplus 

 
For the purpose of fair comparison, we selected 1000 CpGs that are not from the training set used by 

EWASplus. Instead, we selected 500 “near positive” CpGs with p-values just above the threshold and 500 

negative CpGs with p-values > 0.40 but not in the negative training set used by EWASplus. Comparison 

is performed in two steps: (1) predict methylation levels for the 1000 CpGs across the 717 samples used 

to train EWASplus following instruction in Zhang et al., and (2) perform association test with R package 

CpGassoc48 to test for differential methylated based on the predicted methylation level from the first step.  

Association testing was performed using the same approach as the array-based methylation with 

CpGassoc58 with modifications. The methylation levels were modeled as logit transformation of β values 

(log(β/1 − β)) to stabilize the variance61. Next, we grouped adjacent CpGs into clusters and conducted the 

test for differential DNAm. Due to the limited sample size of the study, we call a CpG cluster differential 

DNAm if the lowest p-value from the Differential DNAm test is less than an unadjusted p-value 0.05 

among all CpGs in the CpG cluster. We adjusted for the following covariates: age of death, sex, years of 
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formal education, post-mortem interval, study, and cell type proportion, which was estimated using the 

CETS R package49.  

 

2.4.12 Targeted bisulfite sequencing 

 
Multiplex primers were designed to amplify the identified regions using MPD software62. The 200–

500 ng purified genomic DNA was used for bisulfite conversion (EpiTect Bisulfite Kit (Qiagen)). The 

treated DNA were used for PCR amplification and PCR amplicons were further purified and pooled 

together in equal molar. Mixed amplicons were then purified for libraries preparation and deep 

sequencing (100× or above) using a MiSeq following standard procedures recommended by Illumina. 

Image analysis and base calling were performed using standard Illumina pipelines. Quality control was 

performed in the same fashion for the array-based genotyping, except the missingness threshold was 

raised to 50%.  

 

2.4.13 Protein-protein interaction and pathway analyses 

 
To identify potential cross-talk among known AD genes and genes suggested by EWASplus, we used 

web platform GeNets38 (https://apps.broadinstitute.org/genets) to query a combined list of 28 known AD-

associated genes and 123 genes near the top 100 detached CpGs ranked by EWASplus prediction scores. 

 

2.5 Discussion 

 
EWAS has been shown to be a powerful and effective approach to derive associations between 

methylation changes and phenotypes. EWAS studies of human brain have elucidated additional genes 

involved in AD28-31. To expand our understanding of potential AD-relevant regions in the genome, we 

developed EWASplus to explore the 97% of CpGs that are not included on the methylation arrays. 

EWASplus uses an ensemble learning-based computational pipeline to learn relevant features from a 

large set of potential omics features.  

https://apps.broadinstitute.org/genets
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EWASplus is a powerful machine learning method based on disease-specific EWAS results and has 

some parallels with genotyping imputation strategy used in genetics studies63. The fundamental difference 

is that genomic imputation relies on linkage disequilibrium64, but DNAm does not share the same degree 

of physical correlation33. In fact, the correlation of methylation levels between two adjacent CpGs decays 

rapidly with distance65, 66. Thus, EWASplus takes an alternative approach by inferring whether a CpG is 

trait-associated. This is achieved under a supervised classification framework.  

EWASplus can effectively identify AD-associated differentially methylated CpGs according to 

multiple experiments conducted to evaluate its performance. First, using only CpGs on the methylation 

array, in silico cross-validation revealed high AUC and AUPRC for all six traits. Second, we observed 

good separation of EWASplus prediction scores between near positive CpGs versus negative CpGs not in 

the training set (Wilcoxon rank-sum test p-value ranges from 2.82 × 10−99 to 3.64 × 10−16) in 

EWASplus prediction scores. For sites not assayed by the methylation array, we found significant 

enrichment of high-scoring CpGs in genomic regions of functional annotations such as TSS regions and 

enhancers. Finally, and most importantly, we performed experimental validation using targeted bisulfite 

sequencing on CpGs not included on the methylation arrays.  

Our EWASplus results are notable, in general, for two reasons. First, high-scoring EWASplus CpGs 

are more likely to be located in regions with functional annotations such as enhancers or promoters. Both 

of these results are consistent with other work showing that gene regulation is a key facet of many 

diseases67. Second, EWASplus results illustrate how epigenetic “fine mapping” may illuminate disease 

pathophysiology. For example, in the HOXA locus EWASplus results suggest that epigenetic changes are 

occurring across the gene cluster in AD rather than one gene-family member.  

A key idea of EWASplus is that it bypasses inferring the individual-level DNAm level directly. A 

similar approach has been used to predict additional trait-associated genetic variants using GWAS and 

machine learning12. Since our goal is to identify disease-associated DNAm CpGs rather than methylation 

status directly our approach avoids much complexity associated with accounting for the many factors that 

can influence DNAm CpG status (e.g., age, cell type proportion). This is illustrated by the performance of 
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EWASplus compared to the modification of Zhang et al.’s method to address disease-association, which it 

was not originally designed to do, admittedly.  

EWASplus results for AD reveal several interesting biological insights. First, we identified a 40 kb 

region in the homeobox A cluster of genes that are associated with AD, which expands upon the 

previously described association with individual genes within that cluster (e.g., HOXA3) and AD. Since 

these are known transcription factors, these findings may suggest important transcriptional regulation 

occurs in AD or its progression. Second, we find enrichment of kinases—ALPK3, DMPK, MAP3K11, 

MAP4K1, and TAOK3—in the top EWASplus loci. This finding is particularly relevant for AD given 

that the pathologic hyper-phosphorylation of tau is a hallmark neuropathologic feature of AD (i.e., 

neurofibrillary tangles). Of these kinases, only ALPK3 and MAP4K1 were previously suggested to 

associate with AD35, 68-70. DMPK is notable for causing myotonic dystrophy type 1 due to a repeat 

expansion within an intronic region in carriers that leads to altered gene expression of genes within that 

region71. Interestingly, differential DNAm of MAP4K1 has been associated with AD in human 

hippocampus70 and Braak staging (a measure of neurofibrillary tangle pathology)35 in independent human 

brain datasets. TAOKs (thousand and one amino acid kinases, also referred to as prostate-derived STE20-

like kinases [PSKs]) have been extensively investigated for their ability to phosphorylate MAPT and 

regulate microtubule assembly72; yet, to our knowledge, methylation of TAOK3 has not been previously 

associated with AD. Finally, from the top 10 EWASplus results (Table 2-2) we found four genes that 

have intriguing connections with AD or cognitive decline from approaches other than methylation. These 

genes include DUSP1, PPARD, JUN, and PRKAG2. For example, a PPARD null mouse model shows 

cognitive impairment73, and PPARD is highly expressed in the brain74 and implicated in type 2 diabetes 

and obesity75, which are risk factors for AD. In addition, there is experimental evidence to suggest that 

JUN and PRKAG2 regulate or interact with APP44, 76, which is of interest in AD given APP is cleaved to 

beta-amyloid. Thus, these findings from the literature provide complementary support that EWASplus 

identifies disease-relevant findings and is likely to provide fresh insight into AD.  
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DNA methylation is tissue-specific. Most of the tests done in this study are conducted on the PFC 

region of the brain. We focused on PFC for several reasons. First, epigenetic marks are correlated across 

neocortical regions77. Second, cell loss in PFC is relatively less even in people with high 

neuropathological burden from AD compared to other cortical regions. Third, the majority of available 

reference human brain transcriptomes and proteomes are from the PFC allowing future work to test 

predictions of EWASplus using existing data. Despite focusing on PFC, EWASplus performs well on the 

middle temporal gyrus. Thus, we expect EWASplus to perform well for other tissues because the 

genome-wide features used are from many different tissue types. From all the tests we performed, we 

found that the number and level of significant CpGs seem to have a strong impact on the EWASplus 

performance. Therefore, we are confident that EWASplus will be able to successfully extend the coverage 

of high quality, well-powered array-based EWAS studies.  

Although the EWASplus methodology is general and can be applied to any tissue type, the 

methylation profiles are tissue-specific, may change with age/environment and demographics. This 

implies that the trained EWASplus model is only valid for the specific tissue type collected from samples 

with certain age/environmental profile and demographics. One should exercise caution when trying to 

extrapolate the results to other tissue types such as blood, or subjects with different age or environmental 

and demographic profiles. Since the major utility of EWASplus is to expand the coverage of EWAS 

beyond the array within a specific experimental dataset, this limitation will not hamper the utility of 

EWASplus.  

A potential limitation of EWASplus is the limited number of underlying training datasets and the 

focus on subjects of recent European descent. Thus, it is of particular importance to expand the number 

and diversity of additional EWAS data in future work. The underlying methylation data were also from 

PFC, which is affected relatively late in AD; however, the findings may not generalize to other 

neocortical regions. Thus, training data from additional relevant brain regions would improve EWASplus 

models. Likewise, while we started with a large number of potential features, many were from non-

neuronal sources, which may limit generalizability to brain tissue. However, as those data are generated, 
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our approach can be easily retrained with those data for improved specificity for brain-cell types from 

different regions. A strength of this work is that the underlying methylation data were derived from 

participants enrolled in a population-based study of aging, and there is a wide range of neuropathology 

findings that reflects the general population rather than a clinic-based ascertainment78. We also show a 

high degree of experimental validation and note that future work could employ targeted bisulfite 

sequencing79 or a custom array platform80 to profile candidate CpGs in a cost-effective and high-

throughput manner.  

EWASplus does not provide a significant cut-off threshold since it is a supervised classification 

approach, not a testing-based method. In practice, one can select the threshold empirically by checking 

whether top CpGs identified by array-based EWAS made the cutoff. Deciding on the number of 

significant EWAS CpGs to include in training is a tradeoff between the quantity and quality of the 

training set in EWASplus. Thus, the significance threshold for each EWAS should be decided based on 

the effect size and sample size of the EWAS. Future work should examine the utility of including 

different thresholds and use cross-validation to select the desired significance cutoff. For a CpG, no 

matter how highly ranked by EWASplus, should only be considered as “putative” in terms of trait 

association unless it can be validated using experimental approaches.  

In conclusion, we present EWASplus, a powerful machine learning approach to identify disease-

associated CpGs with high reliability. Application of EWASplus to AD highlights important regions and 

genes that likely contribute to AD pathogenesis, which a valuable addition to the investigation of the 

epigenetic landscape of AD. In addition, EWASplus is a general approach that may be applied to extend 

any existing EWAS results obtained using array-based technology, regardless of the trait or phenotypes 

being studied. We anticipate more exciting findings from its future applications.  
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Chapter 3 CASAVA: A disease category-specific annotation of variants using 

an ensemble learning framework 
 

3.1 Introduction 

 

 
Understanding the role of genetic variants in causing complex diseases is a fundamental problem in 

genetics81, 82. Investigators have conducted thousands of genome-wide association studies (GWASs) and 

identified tens of thousands of loci implicated in human traits and diseases over the past decade83. Most of 

the disease-associated genetic variants lie in the non-coding regions, and many of them are even far away 

from the nearest protein-coding genes84. Thus, delineating the functional implications of these non-coding 

genetic variants is a significant challenge, requires strategies different from the ones developed to assess 

coding variants. A possible assumption is that variants in the non-coding regions affect the risk of 

complex diseases by altering the gene regulation rather than directly affecting protein functions85. 

Currently, some large-scale functional genome projects such as ENCODE and Roadmap Epigenome 

Mapping Consortium (REMC) have collected massive amounts of sequencing data and thus provided 

excellent opportunities for annotating non-coding variants1, 2. This sequencing-based genome-wide 

profiling data yields diverse, large-scale genomic or epigenomic features, such as chromatin accessibility, 

histone modification, transcription factor binding, and gene expression. These features play important 

roles and could affect the gene regulation process. Many of them have already been utilized as essential 

sources for functional annotation of non-coding variants86.  

Machine learning has been successfully applied to predict the pathogenicity of genetic variants; 

however, these methods may not be suitable for prioritizing disease-implicated risk variants due to 

diverse pathogenicity of complex human diseases and traits. Therefore, it is desirable to develop diverse 

models to identify disease-specific risk variants. In a recent study, Chen et al. considered the specificities 

of diseases and presented DIVAN, a method that aims to identify disease-specific risk variants12.  

Although Chen et al. demonstrates the feasibility of using machine learning methods to predict 

variants in a disease-specific manner, the success of such a strategy hinge upon the availability of 
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sufficient and high-quality training data. But in reality, the number of training risk variants for a specific 

disease is usually very small, which may lead to inaccurate and unstable models. At this stage, only a few 

well-studied diseases, such as type 2 diabetes and Coronary Artery disease, have a sufficient number of 

known disease-associated variants. Hence the applicability of disease-specific variant prediction is very 

limited. On the other hand, many diseases are related—for example, Alzheimer’s disease (AD) and mild 

cognitive impairment (MCI)—and one disease may be a subtype of another—for example, Late Onset 

Alzheimer’s disease (LOAD) and AD. And many related diseases belong to certain disease categories 

such as neurodegenerative diseases and autoimmune diseases. These relationships may be explored to 

help us overcome the problem of insufficient positive training data. In this work, we explore an 

alternative strategy of finding a middle ground between disease-specific prediction and disease-agnostic 

prediction. The CASAVA method, or disease CAtegory-Specific Assessment of VAriants, uses disease 

category information to pool related dis- eases into groups in order to significantly boost the size of the 

positive training set. CASAVA presents a promising new way to provide both comprehensive and 

disease-related prediction to sequence variant. Another unique feature of CASAVA is that in order to 

mitigate computation cost, CASAVA scores are calculated at a 200-bp resolution. That is, genome-wide 

disease category-specific scores are calculated for every 200-bp bin throughout the human genome. The 

CASAVA scores for a variant are then taken from the CASAVA scores of the bin that contains the 

variant. In other words, variants located inside the same 200-bp bin share the same set of CASAVA 

scores. Despite the reduced resolution, we show that the CASAVA scores provide competitive prediction 

of disease category-specific risk. The discriminating ability of CASAVA comes from leveraging rich 

sequencing features and ensemble learning skills effectively. Furthermore, the CASAVA risk scores can 

be applied to prioritize risk variants in the context of specific diseases and traits.  

 

3.2 Methods 
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3.2.1 Risk variants for diseases and disease categories 

 
We collected risk variants for specific diseases using the PheGenI database [24]. In order to study the 

function of variants in non-coding regions, we only retained variants with functional context ‘Intron’ or 

‘Intergenic.’ For each individual disease, after removing duplications, we sorted them according to P-

value and then assigned them to training sets and testing sets in a ratio of 4:1 sequentially from top to 

bottom in an ordered way.  

According to the Medical Subject Headings87 and PheGenI88, we used 24 representative disease 

categories. Each category covers multiple diseases, and one disease may belong to more than one 

category. Thus, for each category, we combined all training sets of individual diseases belonging to this 

category in order to constitute the training set for a given disease category. We did the same to obtain the 

testing set for the disease category and excluded any risk variants in the testing set that are located within 

1 kb of any training risk variant.  

 

3.2.2 Constructing control sets of benign variants 

 
Given a set of risk variants, we constructed a corresponding control set of benign variants using a 

similar strategy as in GWAVA-TSS and DIVAN. We started by downloading all non-coding variants in 

the 1000 Genomes Project phase 1 release89. To minimize the chance that a benign variant would be 

disease-implicated, we excluded all variants found within 1 kb of any of the variants found in the 

PheGenI database88. Next, we exclude variants with minor allele frequency less than 1% to match the 

allele frequency range of the risk variants. Finally, we sampled ten times more benign variants than risk 

variants and required the benign variants to have roughly the same distances to the nearest transcription 

start sites (TSS) with risk variants (the two empirical distributions of the distances are almost identical). 

For testing variants, we repeated the sampling procedure ten times.  

 

3.2.3 Processing sequencing features 

 



          

 

                                                                                                                                                                              
35 
            

 
 

 
 

We adopted the following procedure to process data produced from sequencing-based assays 

(including the assay for transposase-accessible chromatin using sequencing ATAC-seq, total RNA-seq, 

and whole genome bisulfite sequencing WGBS) into features to be used in our machine learning models. 

We first downloaded mapped reads from the ENCODE and the ROADMAP project1, 86. For mapped reads 

using hg38 assembly, we applied genomic coordinates conversion from hg38 to hg19. Most of the 

experiments in ENCODE contained biological replicates, and we merged read counts from different 

technical replicates into a single feature. After processing, we got 66, 243 and 255 features of ATAC-seq, 

RNA-seq and WGBS, respectively. We also downloaded 355 processed datasets of gene expression (in 

transcript per million (TPM) formats). For each genetic variant, we calculated the expression of its nearest 

gene in different tissues / cell-lines. Additionally, we inherited the 1806 features used in DIVAN. In total, 

we amassed 2,725 genome-wide features, which can be roughly divided into five groups: open chromatin, 

histone modification, TF binding, gene expression and DNA methylation.  

To simplify the calculation, we divided the entire genome into 200-bp bins and calculated the 

normalized mapped read counts for each bin. We stored the resulting features in a 15,685,849 by 2,725 

matrix. For this matrix, each row represents a 200-bp bin, and each column represents a feature. For a 

genetic variant, we first found which bin the variant fell into, then retrieved the corresponding feature 

values.  

 

3.2.4 Ensemble learning for class imbalance problem 

 
To train CASAVA models, we adopted an ensemble learning strategy by combining the gradient 

boosting regression tree and a bagging technique57, 90. The input data are labeled training data (risk 

variants and benign variants along with their weights). Each variant is represented by 2,725 features. For 

CASAVA, the weight of each variant was set as default value 1. For each training round, we took all risk 

variants and randomly sampled a subset of benign variants such that risk and benign variants had an 

approximately equal sum of weights90. Based on XGBoost, we trained a gradient boosting regression tree 
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classifier using these selected variants57. We repeated the under-sampling and training process a number 

of times (e.g., 100 times) and took their average as our final model. We trained a total of 24 models for 

disease categories (CASAVA models).  

To achieve the best performance, we made several adjustments to the algorithm adopted by DIVAN12 

and GWAVA91. First, adaptively using boosting trees (instead of a single tree like GWAVA) provided 

enough model capacity to deal with different complex diseases. Second, to prevent the boosting trees 

from overfitting, we used under-sampling 100 times in CASAVA, rather than just 20 in DIVAN. And this 

specific bagging technique relieved the class imbalance problem in our data and alleviated the need for 

parameter-tuning.  

 

3.2.5 Genomic properties of CASAVA score 

 
We downloaded all the genetic variants from the 1000 Genomes Phase 3 release89 and predicted these 

variants using CASAVA scores. According to the Ensemble Variant Effect Predictor92, we assigned each 

variant to one of the following genomic contexts: ‘promoter,’ ‘exon,’ ‘intron,’ ‘intergenic’ and ‘1 to 5 kb.’ 

The term ‘1 to 5 kb’ indicates the regions located 1000-bp to 5000-bp upstream of the transcription start 

sites (TSS). To emphasize the importance of the enhancer region, we assigned the genomic context of a 

variant the label ‘enhancer’ if it located in the FANTOM enhancer region93. Please note we used these 

annotated enhancers for the purposes of illustrations without considering the cell-type specificity. To 

further clarify, ‘intergenic’ indicates intergenic regions excluding the enhancer regions.  

Next, we binned the variants according to the quantiles of CASAVA scores. Within each bin, we 

calculated the proportion of variants with different genomic contexts. Given a disease category, variants 

with the top 10% CASAVA scores were denoted by high-score variants. Next, we performed chi-square 

test (a two-by-two table) to see whether variants with a specific genomic context (e.g., enhancer regions) 

were over- or under-represented among these high-score variants. We also made a normalized version to 

better reflect the relative composition of these genomic components. We calculated the proportion of 
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variants with a specific genomic context after normalizing by the total number of variants located in 

regions with the genomic context.  

 

3.2.6 Applying CASAVA to disease-specific risk prediction 

 
We leveraged CASAVA to predict disease-specific risk variants. Given a specific disease, we first 

identified its corresponding disease category/categories using MeSH and took the average of its category 

scores as an approximation of the disease-specific score. For example, the Hodgkin disease belongs to 

three different disease categories: hemic and lymphatic disease, immune system disease, and neoplasm. 

We took the average CASAVA scores of hemic and lymphatic diseases, immune system diseases and 

neoplasms as an approximation of the score of the Hodgkin disease.  

We tested the CASAVA’s ability to predict disease-specific risk for variants. Some variants are 

associated with multiple diseases. In order to best maintain independence between the training set and the 

testing set, we excluded risk variants in the testing set that are located within 1 kb of any training risk 

variant. We benchmarked the results on 89 diseases which had more than 50 known disease-associated 

variants in its training set and at least 10 risk variants in its testing set. Besides, the trained CASAVA 

models also used risk-training variants of these diseases. Thus, we merely evaluated the success of this 

approach on diseases that the training set had seen before. We did a simulation study to mimic a scenario 

in which there is no training data at the disease-level. Given a specific disease among the 89 diseases, we 

used all its associated variants as testing variants. We excluded the corresponding training variants, 

retrained the CASAVA models, and reevaluated the approximation approach.  

 

3.2.7 Applying transfer learning to disease-specific risk prediction 

 
We leveraged information from related-diseases to boost the performance of disease-specific 

prediction using the transfer learning technique94. For a specific disease, we denoted its training variants 

by ‘disease-specific training variants’ and used the training variants belonging to other diseases in this 
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disease category as ‘disease category-specific training variants’. In order not to over-estimate the model 

performance, we excluded disease category-specific training variants which overlap with any disease-

specific training variant or testing variant. After giving more weight to disease-specific training variants 

(e.g., weight=5), we combined them with disease category-specific training variants, and trained transfer 

learning models using the previous ensemble learning method.  

 

3.2.8 Comparison with commonly used scoring methods 

 
We compared CASAVA with ten existing functional impact prediction methods: CADD8, DANN95, 

GWAVA9, FATHMM-MKL91, GenoCanyon58, deltaSVM96, Eigen97, DIVAN12, LINSIGHT98 and 

PAFA99. Though these methods utilized different hypotheses and techniques, they are all reported to be 

informative of risks of complex diseases. For each method, we downloaded their pre-computed scores and 

scored the testing variants. For GWAVA, we used the unmatched, TSS-matched, and region-matched 

scores. Due to the problem setting, we only considered non-coding scores of FATHMM-MKL. For 

deltaSVM, we downloaded the saved model, which was trained from GM12878 DNA hypersensitivity 

sites and scored the variants. For DIVAN, to make a fair comparison, we used the same training pipeline 

as in the original study and retrained it on the specific diseases we tested.  

 

3.2.9 Performance evaluation 

 
The receiver operating characteristics curve (ROC) is a typical graphical plot that illustrates the 

classification ability of a binary classifier system100. We also considered the precision-recall curve due to 

the imbalance between risk and benign variants101. We used both the area under the ROC (AUC) and area 

under the precision-recall curve (AUPR) to assess the prediction performance for each task, and 

calculated the AUC and AUPR values using the ROCR package102. We first evaluated the performance of 

each method by five-fold cross-validation on training variants. Then, we estimated the performance of 

each method using independent testing variants. To eliminate bias, we repeated the sampling procedure 
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ten times, given a set of risk variants for testing. Each time, we used a different set of benign variants, and 

calculated the average AUC and AUPR values across these ten repetitions.  

 

3.2.10 Case study for immune system diseases 

 
We downloaded all the genetic variants from the 1000 Genomes Phase 3 release. We predicted each 

variant with 24 CASAVA scores. First, we selected variants whose immune system disease scores are the 

highest among the 24 scores. We excluded variants located within 10 kb of any training variant. For each 

variant, among its 24 CASAVA scores, we calculated the ratio of its second highest score divided by its 

highest score. Next, we sorted the variants according to the ratio in ascending order, as a lower ratio 

shows better specificity in terms of disease category classification. We applied the threshold of 0.7 to 

select variants for further validation. For all candidate loci, we performed batch query in SNPnexus103 for 

their known disease-phenotype association. SNPnexus is an interface of a collection of SNP functional 

annotation databases that can be used for querying the validated disease information of the submitted 

SNPs in GAD104, COSMIC105, and CinVar106 databases; to fit the aims of our ensemble classifier, we 

focused on the query results of the GAD database104 since the annotation of each association contains 

both disease class and disease name. We found a few validated variant-disease associations with 

annotated category ‘IMMUNE’ in the GAD database, along with the nearest genes of the variants. For the 

purposes of illustration, we took two genes, MHC2TA and IKZF1, to show the usefulness of CASAVA 

scores.  

 

3.2.11 Exploring informative features in CASAVA 

 
For a gradient boosting regression tree model, the ‘relative importance’ of a feature is in percentage 

format, indicating how much the feature contributes to constructing the model. We computed the relative 

importance of each feature using the XGBoost57 R package and used the average relative importance of 

the 100 base models as the value for the CASAVA model. Given a group of features, we used the sum of 
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their relative importance (of each feature) as the relative importance of this group. Then we calculated the 

relative importance of feature groups related to histone modifications, open chromatin, TF binding, gene 

expression, and DNA methylation.  

Next, we combined all risk and benign variants from 24 CASAVA training sets and removed 

duplications. Given a sequencing feature, we extracted the counts from upstream 4000 bp to downstream 

4000 bp of each genetic variant and formulated the count in 200-bp bin format. For each variant, we got 

8200 / 200=41 numbers in order and transferred the counts into log2 scale. At each of the 41 relative 

positions of variants, we calculated the average counts for all risk/benign variants and drew line plots. For 

the purposes of illustration, we used DNase, H3K9me3, H3K4me1 and H3K27ac of A549 cell line.  

 

3.3 Results 

 

3.3.1 Overview of CASAVA 

 
The goal of CASAVA is to provide a comprehensive prediction of disease risk in 24 disease categories 

for any non-coding variant in the genome. The result is a 24-component vector: each component is a 

continuous score ranging from 0 (minimum risk) to 1 (maximum risk) to indicate risk of predisposing to 

diseases in one of the 24 disease categories (Figure 3-1). To achieve this, we designed an ensemble 

machine learning strategy and implemented a two-step procedure. First, we calculate a set of CASAVA 

scores for every 200-bp bin throughout the genome using the trained models. Next, we assign the 

CASAVA scores for the bin to all the variants located inside the bin. In other words, the resolution of the 

CASAVA scores is 200 bp.  

In the present study, we focus on variants located in the non-coding part of the genome. Given a 

disease category, we first collect relevant non-coding risk variants (located in intron or intergenic only) 

from PheGenI88 using significance level threshold of 10−4 (Figure 3-1a). We next select corresponding 

control sets of benign variants from the 1000 Genomes project for each disease category. In the 

meantime, we collect, curate, and process a large set (2,725) of genome-wide profiles to be used as 
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features in the classification model (Figure 3-1b). For many complex diseases, there may exist multiple 

distinct routes in disease pathogenicity. For example, many diseases have subtypes. For each of these 

subtypes, a unique biological mechanism may be involved. And the omics profiles of these subtypes may 

be different. Hence, for a single disease, there may exist multiple omics patterns around its risk variants. 

We are hoping that each of these patterns can be captured by one or few of the base learners in the 

ensemble model. To account for the heterogeneity in the disease pathology, we opt for an ensemble 

learning strategy, which is capable of recognizing multiple omics profiles in making the prediction. For 

base learners, we choose boosting trees with the bagging technique (Figure 3-1c).  

In the end, CASAVA trains an ensemble classifier for each of the 24 broad disease categories (Figure 

3-1d) and applies the trained model genome-wide to calculate disease category- specific scores. These 

scores can be used to assess disease risks in the most common disease categories. To make CASAVA 

easily accessible, we build a web portal to allow easy browsing and querying of CASAVA scores along 

with visualization (http://zhanglabtools.org/CASAVA).  

http://zhanglabtools.org/CASAVA
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Figure 3-1 Working pipeline of CASAVA. 

(a) For each disease category, CASAVA collects known risk variants from existing genome-wide association studies 

(GWASs) as training data. (b) CASAVA uses genome- wide genomics and epigenomics profiling data as features in 

its machine learning models. (c) CASAVA applies bagging and boosting techniques to build a classification model 

for each disease category. (d) CASAVA produces disease category-specific risk prediction for non-coding genetic 

variants. 

 

3.3.2 Disease categories 

 
For disease categories, we use those defined by the Medical Subject Headings (MeSH) related to 

‘diseases’ or ‘psychiatry and psychology’. The same definition was also used by PheGenI88. Next, we 

exclude the parasitic disease category due to an insufficient number of variants (less than 100) associated 

with its member diseases. We also exclude five disease categories that are unlikely to have a strong 

genetics component: animal diseases, chemically-induced disorders, disorders of environmental origin, 

occupational diseases, and wounds and injuries. For the remaining 24 categories, using the 

aforementioned significance threshold, the numbers of their associated non-coding risk variants cataloged 

by PheGenI range from 137 to 8,065 with a median of 1,337 (Table 3-1). The total number of non-

coding variants for the 24 disease categories is 29,233. According to PheGenI, these variants are 

associated with 484 individual diseases. The number of associated variants of these diseases ranges from 

1 to 2,995, with a median of 15. 
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Ind

ex 

Disease category Abbreviation in 

paper 

# Risk 

variants 

(train) 

# Risk 

variants 

(test) 

1 Bacterial Infections and Mycoses Bacterial and 

Mycoses 

172 35 

2 Behavior and Behavior Mechanisms Behavior 

Mechanisms 

2232 468 

3 Behavioral Disciplines and Activities Behavior 

Disciplines 

591 133 

4 Cardiovascular Diseases Cardiovascular 3802 810 

5 Congenital, Hereditary, and Neonatal 

Diseases and Abnormalities 

Congenital and 

Hereditary 

671 115 

6 Digestive System Diseases Digestive 

System 

1452 240 

7 Endocrine System Diseases Endocrine 

System 

1237 252 

8 Eye diseases Eye 766 152 

9 Female Urogenital Diseases and 

Pregnancy Complications 

Female 

Urogenital 

651 125 

10 Hemic and Lymphatic Diseases Hemic and 

Lymphatic 

370 72 

11 Immune System Diseases Immune System 1915 386 

12 Male Urogenital Diseases Male Urogenital 947 197 

13 Mental Disorders Mental 

Disorders 

6574 1405 

14 Musculoskeletal Diseases Musculoskeletal 622 125 

15 Neoplasms Neoplasms 2819 562 

16 Nervous System Diseases Nervous System 2640 593 

17 Nutritional and Metabolic Diseases Nutritional and 

Metabolic 

1730 389 

18 Otorhinolaryngologic Diseases Otorhinolaryngo

logic 

114 23 

19 Pathological Conditions, Signs and 

Symptoms 

Pathological 

Symptoms 

1944 408 

20 Psychological Phenomena Psychological 

Phenomena 

881 197 

21 Respiratory Tract Diseases Respiratory 

Tract 

1575 316 

22 Skin and Connective Tissue Diseases Skin and 

Connective 

1695 304 

23 Stomatognathic Diseases Stomatognathic 551 92 

24 Virus Diseases Virus 120 23 

Table 3-1 Disease categories of CASAVA. 

 

3.3.3 Predicting disease category-specific risk variants 

 



          

 

                                                                                                                                                                              
45 
            

 
 

 
 

To evaluate the performance of CASAVA in terms of predicting disease category risk, we first 

conducted a five-fold cross-validation study, comparing CASAVA with nine scoring methods that 

provide prediction scores genome-wide: CADD8, DANN 95, GWAVA9, GenoCanyon58, FATHMM-

MKL107, deltaSVM96, Eigen97, LINSIGHT98 and PAFA99. We found that overall CASAVA performed the 

best, followed by PAFA and GWAVA in terms of AUC. We next conducted a follow up study using 

independent testing sets; CASAVA again achieved the best performance among all methods in terms of 

AUC and AUPR. Compared to scores from commonly used methods, CASAVA improved the AUC by at 

least 0.05 for 17 out of the 24 (70.8%) categories and lifted the AUPR by at least 0.05 for 11 out of the 24 

(45.8%) categories. Yet, the performance varied tremendously across different tasks. For all of the 24 

disease categories, the AUC from CASAVA falls in the range of 0.62–0.78 with a median of 0.68, and the 

AUPR from CASAVA falls in the range of 0.12– 0.37 with a median of 0.18. For some categories, such 

as eye diseases, even for its closest competitors, CASAVA’s advantage is rather significant (AUC: 0.78 

versus 0.62 (Figure 3-2b); AUPR: 0.35 versus 0.14 (Figure 3-2c)). Overall, CASAVA performs the best 

among all methods we compared in terms of AUC and AUPR value.  
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Figure 3-2 Performance evaluation for disease category-specific risk prediction.  

(a) Heatmap of AUCs of different methods for 24 disease categories. (b) ROC of different scoring methods for eye 

diseases. (c) PRC of different scoring methods for eye diseases. (d) Side-by-side boxplots of CASAVA scores 

comparing three groups of variants namely ‘variants associated with diseases belong to the specific disease 

category,’ ‘variants associated with diseases belong to other diseases categories’ and ‘benign variants’. P-value was 

calculated using the one-tailed Wilcoxon rank-sum test. ∗ 1 ×  10−8 <  𝑃 ≤  5 ×  10−2; ∗∗ 1 ×  10−16 <  𝑃 ≤
 1 ×  10−8 ; ∗∗∗ 𝑃 ≤  1 ×  10−16. All boxplot whiskers show 95th/5th percentile. (e) Boxplots of 24 AUC values 

(one for each disease category) showing difference across various ensemble learning techniques. (f) Side-by-side 

boxplots of 24 AUC values (one for each disease category) illustrating different level of informativeness across five 

types of features. ‘All features’ refers to using all five groups of features. (g) Proportion of local genomic annotation 

types (e.g., promoters, enhancers) for each CASAVA score bin, after first normalizing by the total number of 

variants observed in that genomic annotation types. Here we use CASAVA scores for the eye diseases category as 

an example. 
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3.3.4 Disease category-specificity in CASAVA scores 

 
All existing methods, except for DIVAN, produce a single score for each variant to represent its 

pathogenicity. As expected, when comparing known (identified by GWASs) disease-associated variants 

with benign variants, these methods return higher scores (indicating pathogenicity) for the former (Figure 

3-2a). In contrast, CASAVA generates 24 scores for each variant, one for each disease category. For any 

given disease- associated variant, we want to answer the following two questions: first, does its disease 

category-matching CASAVA score tend to be higher than that of benign variants? Second, does its 

disease category-matching CASAVA score tends to be higher than the other 23 unmatching CASAVA 

scores? For the first question, we found that specific CASAVA scores (from the corresponding disease) of 

risk variants are significantly higher (one-tailed Wilcox rank-sum test, 𝑝 < 0.05) than those of benign 

variants (Figure 3-2d) in all 24 disease categories. For the second question, we found in 17 out of the 24 

categories (70.8%) that the CASAVA scores of risk variants from the matching disease category are 

significantly higher (one-tailed Wilcox rank-sum test, 𝑝 < 0.05) than their CASAVA scores from the 

other 23 disease categories combined (Figure 3-2d). These results demonstrated the disease-category 

specificity in CASAVA score.  

 

3.3.5 Benefits of using various ensemble learning techniques 

 
The superior performance of CASAVA can be traced back to the key techniques we adopted, 

including the use of tree-based ensemble models, bagging, and boosting trees. We have showed that 

applying these techniques indeed made a difference for classification and found that training a single 

decision tree without ensemble learning produced rather poor results (Figure 3-2e; average AUC = 

0.615). Incorporating boosting trees lifted average AUC to 0.637 (one-tailed paired t-test, 𝑝 =

 8 × 10−9 ). With down-sampling, bagging a series of decision trees further lifted average AUC to 0.683 

(one-tailed paired t-test, 𝑃 =  2 ×  10−11). Compared to a single decision tree, using boosting trees with 
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bagging technique improved the AUC values by 0.08 on average (from 0.615 to 0.697), a remarkable 

performance boost (one-tailed paired t-test, 𝑝 =  5 × 10−13). Besides, for predicting the risk of disease 

categories, the ensemble learning algorithm achieved higher AUC and AUPR than traditional machine 

learning methods like random forest and logistic regression (Figure 3-3). 

 

Figure 3-3 Performance evaluation for disease-category risk prediction using different machine learning methods. 

a) Side-by-side boxplots of 24 AUC values (one for each disease category) using different machine learning 

methods. b) Side-by-side boxplots of 24 AUPR values using different machine learning methods. 

 

3.3.6 Contributions from different group of features 

 
The current version of CASAVA utilized 2,725 features. These features can be divided into five 

groups: open chromatin, transcription factor (TF) binding, histone modification, DNA methylation and 

gene expression. A natural question is whether every feature group contributes to the success of 

CASAVA. To answer this question, we did the following experiment. For each of the 24 disease 

categories, we took turns to only use features from a single feature group (such as the histone 

modification or TF binding group) to train a classification model and test its performance using 

independent testing sets. All models achieved significantly higher AUC and AUPR values than random 

guess, indicating the usefulness of every single group of features (Figure 3-2f).  
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Features related to histone modification can be divided into two subsets: active (or open) chromatin 

such as H3K4me3 and H3K27ac, and repressive (or closed) chromatin such as H3K9me3 and H3K27me3 

(Table 3-2). Most of the existing variant prediction methods only focus on the uses of open chromatin 

marks. But we found that for all 24 disease categories, only using features with active or repressive 

effects leads to average AUC 0.644 and 0.638, respectively. When combined together, we got an average 

AUC of 0.650, which confirms the usefulness of both subgroups of features. Taken together, our results 

indicated that closed chromatin marks contributed almost the same as open chromatin marks. And the 

performance of CASAVA is slightly better when combined both types of histone marks.  
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AUC AUPR 

Disease category Histone 

modificati

on 

Open 

chroma

tin 

Close 

chroma

tin 

Histone 

modificati

on 

Open 

chroma

tin 

Close 

chroma

tin 

Bacterial Infections and 

Mycoses 

0.69  0.71  0.66  0.31  0.32  0.23  

Behavior and Behavior 

Mechanisms 

0.62  0.62  0.61  0.12  0.12  0.12  

Behavioral Disciplines and 

Activities 

0.66  0.64  0.61  0.15  0.15  0.13  

Cardiovascular Diseases 0.67  0.66  0.64  0.14  0.14  0.14  

Congenital, Hereditary, and 

Neonatal Diseases and 

Abnormalities 

0.65  0.62  0.64  0.16  0.16  0.16  

Digestive System Diseases 0.70  0.70  0.69  0.22  0.23  0.19  

Endocrine System Diseases 0.65  0.64  0.64  0.16  0.15  0.15  

Eye diseases 0.69  0.69  0.66  0.19  0.19  0.17  

Female Urogenital Diseases and 

Pregnancy Complications 

0.63  0.62  0.63  0.15  0.14  0.14  

Hemic and Lymphatic Diseases 0.65  0.66  0.64  0.19  0.20  0.16  

Immune System Diseases 0.70  0.70  0.70  0.24  0.23  0.21  

Male Urogenital Diseases 0.62  0.60  0.61  0.13  0.11  0.13  

Mental Disorders 0.63  0.63  0.62  0.13  0.13  0.12  

Musculoskeletal Diseases 0.63  0.63  0.64  0.16  0.16  0.15  

Neoplasms 0.66  0.66  0.65  0.15  0.15  0.15  

Nervous System Diseases 0.63  0.63  0.63  0.14  0.13  0.13  

Nutritional and Metabolic 

Diseases 

0.67  0.67  0.64  0.15  0.15  0.13  

Otorhinolaryngologic Diseases 0.57  0.56  0.65  0.14  0.12  0.15  

Pathological Conditions, Signs 

and Symptoms 

0.64  0.64  0.62  0.13  0.14  0.12  

Psychological Phenomena and 

Processes 

0.63  0.63  0.59  0.13  0.13  0.11  

Respiratory Tract Diseases 0.62  0.62  0.62  0.13  0.13  0.13  

Skin and Connective Tissue 

Diseases 

0.71  0.71  0.68  0.26  0.26  0.22  

Stomatognathic Diseases 0.66  0.65  0.63  0.19  0.17  0.16  

Virus Diseases 0.64  0.60  0.61  0.14  0.14  0.13  

Table 3-2 Performance evaluation of using different groups of histone modification features. 

 

3.3.7 Genome-wide pattern of CASAVA scores 

 
Once all CASAVA scores are derived, it is of interest to explore the distribution of these scores, 

especially those top scores for each disease category. This may shed light on how genetic variants 

contribute to disease pathogenesis. For example, we found that for genomic regions with high CASAVA 
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scores for eye diseases, the enhancer regions are significantly over-represented (Figure 3-2g, Chi-

squared test, 𝑝 < 2.2 × 10−16). In contrast, intergenic regions (not in enhancer regions) are depleted 

(chi-squared test, 𝑝 < 2.2 × 10−16).). Such a pattern is observed for almost all the 24 disease categories. 

Our finding is consistent with the notion that most GWAS variants are likely disruptive of transcription 

regulation of genes critical for the pathogenesis of the disease108.  

 

3.3.8 Results on testing sets 

 
To mimic the scenario of different testing sets, we performed the following three experiments to 

compare performance of CASAVA with commonly used scoring methods.  

In the first experiment, since all the risk variants stored in PheGenI came from two databases—

NHGRI GWAS catalog (NHGRI)83 and dbGaP109, we treat risk variants from one source as the training 

set and risk variants from the other source as the testing set and vice versa. In the second experiment, we 

divide all the risk variants into two separate groups according to which chromosome they belong. One 

group consist of all the odd number chromosomes plus chromosome X, and another group consist of all 

the even number chromosomes and vice versa. In the third experiment, we split the risk variants 

according to the magnitude of statistical significance. Variants with association P-value lower than a 

threshold are assigned to the training set and the rest are assigned to the testing set and vice versa. In all 

three experiments, we found that CASAVA achieves the best performance overall.  

 

3.3.9 Utility of CASAVA scores on disease-specific risk prediction 

 
The goal of CASAVA is to provide disease category-level prediction. Having achieved that, an 

interesting follow up question is whether the CASAVA scores can also be leveraged for prediction at the 

individual disease level. Unlike DIVAN, which relies on disease-specific training data, CASAVA scores 

are trained by aggregating variants from all diseases belonging to the same disease category. Therefore, 

we hypothesized that CASAVA scores may be particularly informative when disease-specific variants 
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needed for training are scarce or not available at all, which is the case for the majority of complex 

diseases. We believe using CASAVA scores (for disease category) as surrogate to predict the risk of 

individual disease is feasible, because, for many disease categories, the same genomic variants have been 

found to be associated with multiple diseases (Figure 3-4a)110, 111. In spirit, our strategy is reminiscent of 

the transfer learning idea that has proved surprisingly effective in many machine learning applications.  

The 24 disease categories include 484 individual diseases with at least one associated non-coding risk 

variants. The numbers of such variants range from 1 to 2,995 with a median of 15. To get relatively robust 

results, we used 89 diseases to evaluate the performance of CASAVA at the individual disease-level 

(Methods); that is, we used CASAVA disease category-specific scores to predict disease-specific risk. We 

again found that overall CASAVA still achieve the best performance, with an average AUC of 0.692, 

compared to average AUC of 0.647 for DIVAN and average AUC of 0.607 for PAFA (Figure 3-4b). In 

terms of AUC, CASAVA achieved the best performance in 59 out of the 89 diseases (66.3%). 

Furthermore, CASAVA improved the AUC by at least 0.05 in 21 diseases (23.6%) and lifted the AUPR 

by at least 0.05 in 21 diseases. Yet the prediction performance varied substantially across different 

diseases. For all 89 diseases, CASAVA produces AUC values in the range of 0.52–0.90 with a median of 

0.68, and the AUPR values resulting from CASAVA fall in the range of 0.10–0.58 with a median of 0.17. 

For comparison, we also trained disease- specific models for these 89 diseases using our ensemble 

learning framework. CASAVA presented results that are comparable to disease-specific models on the 89 

diseases in terms of AUC (Figure 3-4c, Pearson correlation = 0.79).  

In the above result, we saw that the performance of CASAVA is still better than DIVAN. This is 

because that DIVAN designed for disease-specific risk prediction limits its application to only diseases 

with large number of known disease-specific variants (needed for training). CASAVA overcomes this 

limitation by focusing instead on the 24 major disease category which gives much larger training set. In 

addition to disease category-specific risk prediction, a secondary, and admittedly suboptimal application 

of CASAVA is to predict disease-specific risk, simply by borrowing disease category-specific CASAVA 
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scores from the disease category that contains the particular disease. For the majority of diseases where 

only a small number (less than 20) of known disease-associated variants in known, CASAVA have 

distinct advantage.  

Next, we conducted a simulation study to mimic a scenario in which there is no training data available 

at the individual disease level. Given a disease, we treat all its known variants associated with it as testing 

data. We removed these variants from training sets, re-trained CASAVA, and evaluated its performance. 

Surprisingly, this seemingly simple-minded approach again achieved remarkably better results than 

existing methods in terms of AUC and AUPR (Figure 3-4d). Using the same 89 diseases, in terms of 

AUC, CASAVA achieved the best performance in 81 out of the 89 diseases (91.0%). Moreover, 

CASAVA improved the AUC by at least 0.05 in 47 diseases (52.8%) and lifted the AUPR by at least 0.05 

for 17 diseases (19.1%).  
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Figure 3-4 Performance evaluation for disease-specific risk prediction. 

(a) Venn’s diagram for known risk variants that belong to two digestive system diseases. (b) Side-by-side boxplots 

of 89 AUC values (one for each disease) comparing performance between CASAVA and ten different variant 

prediction methods. Some methods have multiple scores, and we only use the score with the highest average AUC 

values. GWAVA score is in fact GWAVA TSS-matched score, and Eigen score is actually Eigen- PC score. (c) 

Scatter plot comparing AUC values obtained using two different methods: regular (disease category-specific) 

CASAVA and the disease-specific version of CASAVA (apply the same ensemble learning framework to each of 

the 89 diseases). Each point represents one of the 89 diseases. We use Pearson’s correlation coefficients as the 

correlation measure. Purple and blue represent the condition where one method outperforms the other one. (d) Side-

by-side boxplots of 89 AUC values (one for each disease) comparing performance between CASAVA and nine 

different variant prediction methods, assuming no disease-specific training data is available. Here disease-specific 

training variants were excluded when training each of the CASAVA models. 

 

3.3.10 Applying transfer learning to improve disease-specific risk prediction 

 
Previously, we demonstrated the utility of directly using CASAVA scores designed to predict disease-

category risk for diseases belonging to the disease category. Despite the decent results of this strategy, we 

felt that a better approach would be to use both variants associated with the specific disease and variants 
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associated with similar diseases in the same disease category. This strategy is particularly important when 

disease-specific variants are scarce.  

To accomplish this, we designed an instance-based transfer learning approach named TrCASAVA, 

which includes both individual disease level variants as well as disease category-level variants in the 

training set. TrCASAVA applies higher weights to disease-specific variants to prioritize variants at the 

individual disease level.  

Compared to the disease-specific models, our results showed that TrCASAVA improves performance 

in 64 out of the 89 diseases (71.9%) in terms of AUC (Figure 3-5a). On average, TrCASAVA lifted the 

AUC value by 0.013 (Figure 3-5b, one-tailed paired t-test, 𝑝 = 4 × 10−4) and the AUPR value by 0.015 

(one-tailed paired t-test, 𝑝 =  6 ×  10−4 ). Compared to CASAVA, TrCASAVA also achieved higher 

AUC values on 54 out of the 89 diseases (60.7%), which was possibly due to utilizing disease 

specificities (Figure 3-5c). On average, TrCASAVA lifted the AUC value by 0.005 (Figure 3-5d, one-

tailed paired t-test, 𝑝 =  0.04) and the AUPR value by 0.009 (one-tailed paired t-test, 𝑝 =  0.02).  

We also did an ablation study assuming that only a small number of disease-specific training variants 

were available and performed experiments on 57 diseases with more than 100 disease-associated variants 

in the training set. Chen et al. showed that the performance of a disease-specific variant prediction model 

is highly dependent on the size of the training set. Using few disease-specific training variants led to 

rather poor results (Figure 3-5e). Under the scenario of an extremely small training set, TrCASAVA is 

likely to significantly improve the prediction results (Figure 3-5e). For example, if we only included 1/8 

of the disease-specific variants for training, we got an average AUC value 0.64 while TrCASAVA lifted 

the average AUC value by 0.05 (one-tailed paired t-test, 𝑃 = 4 × 10−14). Put together, we concluded 

that the predictions of TrCASAVA are more robust than those of the disease-specific models trained on a 

small number of variants.  
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Figure 3-5 Performance of TrCASAVA for disease-specific risk prediction. 

(a) Scatter plots comparing AUC values obtained using two different methods: TrCASAVA and the disease-specific 

version of CASAVA (apply the same ensemble learning framework to each of the 89 diseases). Each point 

represents one of the 89 diseases. P-value is calculated using the one-tailed paired t-test. Purple and blue represent 

the condition where one method outperforms the other one. (b) Histogram of AUC differences between TrCASAVA 

and the disease-specific version of CASAVA (apply the same ensemble learning framework to each of the 89 

diseases). (c) Scatter plot comparing AUC values obtained using TrCASAVA and CASAVA. (d) Histogram of AUC 

differences between TrCASAVA and CASAVA. (e) Side-by-side boxplots of 57 AUCs (one for each disease) 

comparing performance of TrCASAVA and the disease-specific version of CASAVA with varying fraction of 

disease-specific variants in the training set. All boxplot whiskers show 95th/5th percentile. 

 

3.3.11 Case study: MHC2TA and IKZF1 for immune system diseases  

 
The relationship between MHC2TA and immune system diseases has long been noticed and 

documented in the literature112. As reported, polymorphisms in and around the MHC2TA gene lead to 
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differential MHC molecule expression and are associated with susceptibility to diseases with 

inflammatory components113. For example, the variant rs3087456, located in the promoter region of 

MHC2TA gene, has been shown to increase susceptibility to rheumatoid arthritis and multiple 

sclerosis113. The CASAVA scores seem to agree with this fact. In the gene body region of MHC2TA, the 

average score of immune system diseases is the highest among all 24 disease categories (Figure 3-6a, 

Figure 3-6b). We further explored the CASAVA scores of 2144 variants located within the gene body as 

well as 5-kb flanking regions of MHC2TA. The scores of immune system diseases achieved the highest 

and the second highest in 1012 (48%) and 861 (41%) out of the 2144 variants, respectively (Figure 

3-6c). And for 89 variants out of the 1012 (10.2%), the CASAVA scores corresponding to the immune 

system diseases not only rank the highest, but they are also at least 10% higher than the second highest 

among the 24 disease categories. All these observations confirmed the relationship between MHC2TA 

and immune system diseases.  

A recent study reported that the polymorphisms inside the IKZF1 gene are associated with systemic 

lupus erythematosus in the Chinese Han population (e.g., rs4917014, 𝑝 =  3 ×  10−6 )114. In the gene 

body region of IKZF1, we found that the average score of immune system diseases ranks the highest 

among all disease categories. Also, for over 86% of variants found in the gene body or the 5 kb flanking 

regions of the IKZF1 gene, their CASAVA scores corresponding to the immune system disease rank 

either the highest or the second highest. And for 65 variants, the CASAVA scores corresponding to the 

immune system diseases not only rank the highest, but they are also at least 10% higher than the second 

highest among the 24 disease categories. In summary, we conclude that both the absolute CASAVA 

scores and the relative ranks among all the disease categories shed light on the level of disease risk 

conditioned by a given variant.  
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Figure 3-6 CASAVA identifies MHC2TA as an immune disease-related gene. 

(a) Bar plots of average CASAVA scores inside the gene body region of MHC2TA. (b) CASAVA scores inside the 

gene body region of MHC2TA. The CASAVA scores are smoothed using the loess function in R. For 

representation, only the 1st, 6th, 11th, 16th and 21st highest CSAVA disease category scores in panel (a) are shown. 

(c) Numbers of variants in the gene body and flanking 5 kb regions of MHC2TA with its immune system CASAVA 

scores ranked in the top five among 24 categories. 

 

3.3.12 Informative features in CASAVA 

 
CASAVA has the potential to illuminate disease pathogenesis by ranking cell type-specific genomic 

or epigenomic features in terms of their relevance for predicting disease category-specific risk. Overall, 

we found that features related to histone marks, open chromatin and TF binding contributed more than 

other types of features (Figure 3-7a). This result makes sense because these features characterize the 

chromatin microenvironment around the variants of interest. For example, the DNase-read counts at loci 

containing risk variants were significantly higher than those of benign variants (Figure 3-7b, one-tailed t-

test, 𝑝 <  2.2 × 10−16 ). Similarly, H3K4me1 and H3K27ac counts of risk variants were significantly 

higher than those of benign variants (one-tailed t-test,  𝑝 <  2.2 × 10−16 and 𝑝 =  5 ×
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 10−15correspondingly). In contrast, the pattern is reversed for marks of heterochromatin, such as 

H3K9me3 (one-tailed t-test, 𝑝 =  7 × 10−8), suggesting that the risk variants were more likely to be 

found in open chromatin regions such as active enhancer and promoter regions.  

We also found that the top CASAVA features often show close connections to corresponding disease 

categories. For example, the open chromatin features of immune-related cells such as B cell, CD4, CD8 

and CD19 cells, dominate the top features in the immune disease category model (Figure 3-7c). 

Furthermore, risk variants associated with hemic and lymphatic diseases show depletion of open 

chromatin regions in blood-related cell lines such as GM12891, GM12892 and GM19239 (Figure 3-7d), 

indicating the tissue specificity of the hemic disease category. We also noticed that open chromatin 

marks—H3K4me1 and H3K27ac in the CD19 cells— are frequently selected as important features, 

implying that the CD19 cell type might play a key role in hemic or lymphatic traits. As shown in the 

literature, CD19-related therapy has been widely used to treat leukemia, which is a major disease in this 

hemic or lymphatic disease category115. Regarding bacterial infection and mycoses, we found that the 

closed chromatin mark H3K27me3 features in multiple cells; such cells show more depletion around risk 

variants than around benign variants (Figure 3-7e).  
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Figure 3-7 Informative features in CASAVA. 

(a) Proportions of contribution by different groups of features in the 24-disease category-specific CASAVA models. 

(b) Selected top-ranked features of the A549 cell line for all risk and benign variants. The line plots show the 

average read counts (log2 scale) averaged over all risk or benign variants in the training sets. Bar charts for selected 

top-ranked features in models of (c) immune system diseases, (d) hemic and lymphatic diseases, (e) bacterial 

infection and mycoses The colors scheme is the same as the one used in panel a. P-value is calculated using the 

Mann–Whitney U-test between risk and benign variants. ∗ 1 ×  10−8 <  𝑃 ≤  5 ×  10−2; ∗∗ 1 ×  10−16 <  𝑃 ≤
 1 ×  10−8 ; ∗∗∗ 𝑃 ≤  1 ×  10−16. 

 

3.4 Discussion 

 
In this paper, we presented CASAVA, an ensemble learning framework for disease category-specific 

prediction of risk variants in non-coding regions of the genome. Building on features derived from 

genome-wide profiling experiments, CASAVA returns risk scores for 24 disease categories for each 
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genetic variant. Compared to existing methods, CASAVA provides more accurate prediction at the 

disease category level. Additionally, we found that CASAVA scores can also be used for disease-specific 

risk prediction; for some diseases, its performance is even better than disease-specific prediction, 

implying the wide-ranging applicability of CASAVA. To further improve performance for disease-

specific risk prediction, we developed a transfer learning version of CASAVA, named TrCASAVA, by 

taking advantage of both disease specific training data as well as larger, but less specific, training data 

from related diseases belonging to the same disease category.  

To demonstrate the utility of CASAVA, we surveyed CASAVA scores across the genome and 

identified genes harboring multiple variants with distinctly high CASAVA scores in a particular disease 

category. Among our findings, MHC2TA and IKZF1 stand out as likely to be associated with immune 

diseases. This connection is supported by present scientific literature. In addition to predicting scores, 

CASAVA also has the ability to further explore the informative features CASAVA selected during the 

feature selection step for each disease category. For example, a TF in a specific cell type, or a histone 

mark in a specific tissue type, could potentially illuminate possible disease pathogenesis or etiology.  

The motivation for developing CASAVA is to find a compromise between general pathogenicity 

(disease-neutral) prediction and disease-specific prediction. Using a single score such as CADD score is 

appealing due to its simplicity, but insufficient to describe pathogenicity of diverse diseases due to their 

heterogeneous and complex nature. And the disease-specific approach like DIVAN is often limited by the 

small number of known disease-associated risk variants which is required to set up the training set. In this 

work, we describe CASAVA and TrCASAVA, which achieve a trade-off between generality and 

specificity of different diseases.  

Currently, CASAVA considers 2,725 features. They belong to five broad categories: open chromatin, 

histone modification, TF binding, gene expression, and DNA methylation. In the future, we will include 

single-cell RNA-seq or ATAC-seq data as additional features as they become increasingly available, 

which may be used to describe the chromatin environment at the single-cell level116, 117. We may also use 

Hi-C data to capture chromatin conformation118.  
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We studied the effects of different benign variants for testing. Besides TSS-matched benign variants, 

we also performed testing using unmatched or region-matched benign variants. In both cases, CASAVA 

worked better than others, followed by PAFA and GWAVA. It is worth noting that all methods perform 

significantly worse when tested on region-matched benign variants. The similar chromatin landscape 

between risk and benign variants poses more difficulties in this situation. Perhaps improving the 

resolution (from 200-bp bin to 100-bp or 50-bp bin) of the features will alleviate the problem.  

We also explored the heterogeneity of risk variants: for example, the majority of risk variants located 

in the intron or intergenic regions. We first performed a separate evaluation by only using risk variants in 

the intron or intergenic regions. In both cases, CASAVA worked better than others. However, some 

methods, such as LINSIGHT or GWAVA TSS-matched score, might only be able to deal with either 

intron or intergenic variants. All these results pointed to the difference between the chromatin landscapes 

of risk variants in the intron regions and those in the intergenic regions. Hence, considering the 

differences between intron and intergenic regions may give better results.  

There are many potential applications for CASAVA scores. Here we describe two potential 

applications: (1) identifying disease-associated genes and (2) exploring connections among various 

diseases or traits. 

What is the best way to identify variants that are likely to be associated with one or more disease 

categories using CASAVA, especially in the case of rare variants? Or how can one identify loci that 

harbor risk variants for certain categories of diseases? As shown above, CASAVA provides information 

from different aspects. First, the higher the CASAVA score of the variant, the more elevated is the risk 

(presumably) associated with that disease category. In particular, the disease category with the highest 

score among the 24 categories is, perhaps, most worth following up on, especially because it is 

significantly higher than the scores from all the other categories.  

CASAVA scores may also be exploited to explore relationships among different disease categories. To 

this end, we collected CASAVA scores for all disease categories and for all variants in chromosome 1 (as 

cataloged by the 1000 genomes project phase 3), which we considered as representatives of genome-wide 
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variants; we then calculated the Pearson correlation between the vectors of scores from every pair of the 

24 disease categories. We found for example, that CASAVA scores for male and female urogenital 

diseases are quite similar, indicating the commonalities between urogenital diseases. We also found that 

the bacterial infection and mycoses categories are very different from other categories. Generally, 

similarities between CASAVA scores of different categories are high, indicating that risk variants for 

different diseases indeed share some common chromatin signatures.  

The overarching goal of CASAVA is to provide an alternative way to evaluate the impact of non-

coding variants in terms of disease category-specific risk. Population-based approaches like GWAS, 

although effective and reliable for identifying disease-associated variants, their discovery power is limited 

by important factors such as minor allele frequencies. It has been showed that pathogenic SNVs have a 

wide spectrum of minor allele frequencies. For example, some SNVs are common with low penetrance, 

whereas other SNVs are quite rare but show high penetrance. SNVs in the later categories may not be 

identified by GWAS even with all the populations in the world.  

CASAVA aims to provide an alternative approach to predict and potentially identify SNVs that 

associated with various categories of human diseases and traits that traditional GWASs are unable to 

achieve. CASAVA is able to accomplish this by bring in molecular features that are not used in classical 

GWAS. We think this is important because all human diseases develop with certain biological 

mechanisms. Such information can be found in molecular level, genome-wide profiling assays such as 

ChIP-seq, ATAC-seq data.  

In personal sequencing studies, we may discover an ultra-rare SNV that has never been implicated by 

any genetic study. However, from its local genomic and epigenomic profiles, we may be able to predict 

that it is capable of conveying significant risk to one or more disease categories. We believe such 

information can be important in translational research. And the information obtained from CASAVA is 

complimentary to what GWAS can provide us.  

We acknowledge that the accuracy and specificity of CASAVA still have much room for improvement 

at the moment. But we believe that our results showed that the strategy works in principal and performs 
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better than other competitors. In many machine learning applications, the quality of the training data and 

features play important roles in its performance.  

Training data used in CASAVA are collected from PheGenI, despite complications such as not all 

GWAS SNVs are reproducible and the top-ranked index SNP in a locus may not be the causal one, we 

believe the proportion of bona fide disease-associated variants is much higher than that in the control set. 

To make the training set more reliable, we also change the p-value threshold from 10−3 (used by the 

PheGenI database) to 10−4.  

As of features, it is important to recognize that new and high-quality data are being continuously 

generated and made publicly available. With the fast-evolving technologies like single cell technologies. 

More diverse and informative features will become available, and they will help improve the performance 

of CASAVA.  

An interesting question is whether CASAVA can help with fine mapping. Due to the limited 

resolution of most features used, and the fact that training sets are based on GWAS results which are 

limited by linkage disequilibrium (LD), CASAVA is not suitable to do fine mapping. However, since 

typically LD extends much longer than genomic or epigenomic signals (limited by the experimental 

assays, such as the fragment size), hence using CASAVA scores, we should be able to narrow the 

association locus to a genomic interval much smaller than the LD block containing the GWAS variants.  

CASAVA score is assigned to the locus of the genetic variant at a 200-bp resolution, not the variant 

per se. CASAVA assigns a risk score for every 200-bp bin in the genome, using the local genomic and 

epigenomic profiles of the position. There are multiple existing methods to segment and annotate the 

genome119-124, yet CASAVA is the first to provide disease category-specific risk prediction. An interesting 

question is whether there is any connection between CASAVA scores and these annotations. To explore 

we tested enrichment of various chromatin states of relevant tissues in selected disease categories and 

indeed, we found significant enrichment of enhancers and TSS proximal chromatin states (Figure 3-8). 
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Additionally, one could also test for enrichment of disease-related transcription factor binding motifs or 

genes belong to disease-related pathways or gene sets using existing tools125-127.  

 

Figure 3-8  Clear trend of increasing enrichment of regulatory chromatin states (TSS and enhancers) in the aorta 

tissue type with higher CASAVA scores of "cardiovascular diseases, especially for enhancers. 

In Figure 3-7a, we notice that variation in the contribution of the five feature types among the 24 

disease categories. For example, it seems that gene expression plays an important role in respiratory tract 

whereas open chromatin is less important than histone modification for bacterial and mycoses. The order 

of overall importance among the five categories of features is as follows: histone modification, open 
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chromatin, TF binding, gene expression and DNA methylation. The overall pattern can be partially 

explained by the fact that the number of features is following roughly the same order. Additionally, two 

feature types: DNA methylation and TF binding are relatively stable, and the three other feature types 

vary substantially. An interesting phenomenon is that the gene expression features, and open chromatin 

features sum up roughly the same. We hypothesize that the gene expression features are important for 

SNVs near gene, and open chromatin features are important for SNVs farther away from genes.  

Admittedly, there will be information loss in the process of assigning diseases to disease categories 

due to our incomplete understanding of the disease processes. Despite this, we believe it is beneficial to 

use disease category-level annotation. This is because, first, there are too many diseases, it is cumbersome 

to annotate risk for every single disease. Second, annotation based on ML strategy is not possible for most 

diseases because there is insufficient training data. Adopting disease category annotation, a vector of 24 

scores is sufficient. And at the disease category-level, there are much more training data available for 

each category. For future work, we will work on fine-tuning disease category definition. A useful 

resource is disease ontology (DO)128. We will also explore how to combine related diseases or disease 

categories based on DO for reasonable and sufficient data utilization129.  

To make CASAVA more accessible and easier to use, we built a web server 

(http://zhanglabtools.org/CASAVA), along with visualization tools, for retrieving CASAVA scores. 

Additionally, we provided pre-computed whole-genome CASAVA scores and an easy-to-use R script for 

scoring a large number of variants.  

In summary, this study presents a novel ensemble learning framework, CASAVA, for predicting 

disease category-specific risk variants in non-coding regions of the genome. Compared to ten different 

scoring methods, CASAVA demonstrates the best overall results in terms of both disease category-

specific and disease-specific prediction. Additionally, better results can be achieved when additional 

known risk variants from related diseases are added under a transfer learning framework. The new 

algorithm, TrCASAVA, further demonstrates the advantage of pooling together risk variants from similar 

diseases to boost the performance. Using MHC2TA and IKZF1 genes as examples, CASAVA shows the 

http://zhanglabtools.org/CASAVA
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potential of identifying novel disease- associated variants or genes. In order to make CASAVA easily 

accessible, we built a web portal to allow easy browsing and querying of CASAVA scores 

(http://zhanglabtools.org/CASAVA).  

 

  

http://zhanglabtools.org/CASAVA
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Chapter 4 DRAFT: Disease Risk Annotation with Few shoTs learning  
 

 

4.1 Introduction 

 
Few shots learning (FSL) models have been successfully utilized in various computer vision ap- 

plications, including signature verification130 and face recognition131. More recently, FSL applications 

have emerged as competitive machine learning tools in broader fields of studies; however, the use of FSL 

in life sciences is still rare. Here, we propose to apply Siamese neural networks, an FSL technique, to 

learn a distance function which is capable of mapping risk variant of interest into low dimensional 

embedded space, such that a pair of risk variants are closer to each other in the embedded space than a 

risk and a benign variant. We implemented the strategy into a computational tool named DRAFT (Disease 

Risk Annotation with Few shoTs learning), an end-to-end package applicable to both genetic and 

epigenetic variant annotation. Test on real-data demonstrated superior performance over deep-learning-

based classification approaches.  

Identifying disease-susceptible variants is important for delineating the mechanism of complex 

diseases. Over the last two decades, thousands of genome-wide association sties(GWASs)132 and 

epigenome-wide association studies(EWASs)133 have identified tens of thousands of genetic and 

epigenetic variants that are associated with hundreds of complex diseases. Despite extensive findings, 

more remains to be discovered. A key to recognize more such variants is to understand what makes a 

variant to be disease-associated. This can be framed as a supervised learning problem. Indeed, many 

machine learning approaches have already been developed to predict the pathogenicity of genetic variants 

and epigenetic modifications9, 12, 59, 91, 95, 98, 134. Existing variant annotation methods dichotomize all 

variants into pathogenic or benign. A caveat of such an over-simplified strategy is that quantitative 

information associated with variants, such as p-value or effect size, is being overlooked. In this study, we 

propose an alternative strategy for variant annotation by reframing the problem as a distance metric 
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learning problem135, such that quantitative information such as p-values or effect sizes can be utilized to 

better characterize the disease risk of these variants. Achieving top performance using sophisticated 

machine learning algorithms such as deep learning requires a large number of high-quality training 

samples. This is not possible for disease-specific risk evaluation12, 136 for most diseases. A key advantage 

of metric learning is that these methods can return decent performance with limited training data137, which 

is why these methods are also referred to as few-shot learning methods. Supervised learning with limited 

training data is important for many bioinformatics applications because experimentally validated training 

data is often scarce.  

 

Figure 4-1 Workflow of DRAFT with triplet loss. 

 

4.2 Methods 

 

 

4.2.1 Data collection and preprocessing 

 
Like existing variant annotation methods, we use genomic and epigenomic profiles as features. To be 

specific, we first downloaded mapped reads from the ENCODE2 and the REMC1 project. Read counts 

from biological replicates were merged into a single feature. In total, we assembled 2,496 genome-wide 
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features, which can be roughly divided into five groups: open chromatin, histone modification, TF 

binding, gene expression and DNA methylation. The detailed number of features can be found in Table 

4-1. 

To simplify the calculation, we divided the entire genome into 200-bp bins and calculated the 

normalized mapped read counts for each bin. We stored the resulting features in a 15,685,849 by 2,496 

matrix. For this matrix, each row represents a 200-bp bin, and each column represents a genomics or 

epigenomics feature. For a biomarker of interest, we first find which bin the biomarker falls into, then 

retrieve the corresponding feature vectors. 

  

Assay Type Number of features 

Histone ChIP-seq 1,002 

Transcription Factor (TF) ChIP-seq 571 

RNA polymerase binding ChIP-seq 49 

DNase-seq 153 

FAIRE-seq 31 

Total RNA-seq 243 

ATAC-seq 66 

WGBS 381 

Total 2,496 
Table 4-1 Number of features of each experiment assay. 

 
We test the metric learning strategy on both genetic variants and epigenetic variants. For genetic 

variants, we collected GWAS-identified risk variants of 89 diseases from PheGenI88 datasets spanning a 

wide range of complex diseases and traits. The same set of diseases are studied in Cao et al.138 . For 

control sets consist of benign variants, we used a similar strategy as in the GWAVA-TSS method9. We 

first downloaded all non-coding variants in the 1000 Genomes Project89 phase 1 release. To minimize the 

chance that a benign variant would be disease-implicated, we excluded all variants found within 1kb of 

any of variants found in the PheGenI88 database. Next, we excluded variants with minor allele frequency 

(MAF) less than 1% to match the allele frequency range of the risk variants. Finally, we sampled ten 

times more benign variants than risk variants and required the benign variants to have roughly the same 

distances to the nearest transcription start sites (TSS) with risk variants. 
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For epigenetic variants, following Huang et al.136, we used the raw beta values and phenotype of 

information of 717 patients from the ROS/MAP cohort41 from De Jager et al.28 and then performed 

EWAS on six Alzheimer’s Disease (AD) related traits, including: beta-amyloid density, Braak staging, 

the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) score, cognitive trajectory, 

global AD pathology, and neurofibrillary tangle density. To construct the control set, we firstly selected 

CpGs with significance level of greater than 0.4 from differential methylation test. We then selected ten 

benign CpGs that have most similar methylation levels for each risk CpG. 

 

4.2.2 Triplet Loss and Lifted Structured Loss  

 
Triplet loss was originally proposed in the FaceNet131 paper. Each training triplet is formed by an 

anchor variant, a positive(risk) variant and a negative(benign) variant. The training objective is to 

maximize the distance between the anchor and the negative variant (𝑑(𝑟𝑎 , 𝑟𝑛)) by at least m units more 

than the distance between the anchor and the positive variant (𝑑(𝑟𝑎 , 𝑟𝑝)). Mathematically, the triplet loss 

can be calculated as follows:  

𝐿(𝑟𝑎 , 𝑟𝑝, 𝑟𝑛) = max (0, 𝑚 + 𝑑(𝑟𝑎 , 𝑟𝑝) − 𝑑(𝑟𝑎 , 𝑟𝑛)) 

𝑟𝑎 , 𝑟𝑝, 𝑟𝑛 denotes the low-dimensional representation of the anchor, the risk and benign biomarker, 𝑚 is 

the margin. It is crucial to select benign samples that are hard to distinguish from risk variants, otherwise 

no gradients would be generated for backpropagation. During training, hard triplets and semi-hard are 

chosen for each training batch. Hard triplets contain negative biomarker closer to the anchor than the 

positive and semi-hard contains negative further from the anchor than the positive, but the difference of 

distance is less than the margin m. 

Lifted structured loss139 further utilizes all the pairwise edges within one training batch. The dense 

pairwise distance matrix is computed for every training batch. Essentially, for each risk pair, this type of 

loss function involves the distance between the risk sample and every other negative sample, the 

smoothed version of lifted structured loss is as follows: 
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𝐿𝑠𝑡𝑟𝑢𝑐𝑡 =
1

2|𝑃|
∑ max (0, 𝐿𝑠𝑡𝑟𝑢𝑐𝑡

(𝑖𝑗)
)

2

(𝑖,𝑗)∈𝑃

 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑠𝑡𝑟𝑢𝑐𝑡
(𝑖𝑗)

= 𝐷𝑖𝑗 + log ( ∑ exp(𝑚 − 𝐷𝑖𝑘)

(𝑖,𝑘)∈𝑁

+  ∑ exp(𝑚 − 𝐷𝑗𝑙)

(𝑗,𝑙)∈𝑁

) 

𝑚 is margin parameter to push the distance of risk-benign pair further. 𝐷𝑖𝑗  denotes the distance 

between risk sample 𝑖 and 𝑗, 𝐷𝑖𝑘  denotes the distance between risk sample 𝑖 and benign sample 𝑘. 𝑃 

contains the set of positive pairs and 𝑁 is the set of negative pairs. 

 

4.2.3 Implementation details 

 
We used the PyTorch140 package for training and testing multi-layer perceptron (MLP) and ResNet141 

with triplets, lifted structured loss and classification with cross entropy loss settings. Maximum training 

epochs was set at 500. Early stopping with the maximum tolerance of 10 epochs was applied to prevent 

over- training. Learning rate scheduler was set to reduce the learning rate by the factor of 0.1 when the 

validation AUC stops increasing for one epoch. The batch size was set to 128 for triplet and classification 

with cross entropy loss and 32 for lifted structured loss. For triplet and lifted structured loss, we use 

mining strategy to select all hard negatives and semi-hard negatives for calculating the loss. Random seed 

was set to ensure the training and validation set split was reproducible and same for model comparison. 

 

4.3 Results 

 

4.3.1 Evaluation and performance comparison 

 
Our preliminary experiments compare the performance of three models constructed using Siamese 

neural networks of a) ResNet, b) multi-layer perceptron (MLP) with triplet loss and c) fully connected 

neural network trained with classification loss (cross-entropy loss). Model c is the baseline model. In 

order to compare the performance of few shots learning models (a and b) and the traditional classification 

model (c), after the training is completed, for the 𝑖𝑡ℎ unseen testing sample 𝑥𝑡𝑒𝑠𝑡𝑖
, we calculate the 
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distance between 𝑥𝑡𝑒𝑠𝑡𝑖
 and the positive sample groups (assume the number of positive samples in the 

training set is k) in the training set and denotes the distance set as 

{𝑑𝑖𝑝𝑜𝑠
|𝑑 (𝑥𝑡𝑒𝑠𝑡𝑖

, 𝑥𝑡𝑟𝑎𝑖𝑛𝑝𝑜𝑠1
) , (𝑥𝑡𝑒𝑠𝑡𝑖

, 𝑥𝑡𝑟𝑎𝑖𝑛𝑝𝑜𝑠2
) , … , (𝑥𝑡𝑒𝑠𝑡𝑖

, 𝑥𝑡𝑟𝑎𝑖𝑛𝑝𝑜𝑠𝑘
)}, as well the distance between 

𝑥𝑡𝑒𝑠𝑡𝑖
 and the negative sample groups (assume number of negative samples in the training set is j) in the 

training set and denotes the distance set as 

{𝑑𝑖𝑛𝑒𝑔
|𝑑 (𝑥𝑡𝑒𝑠𝑡𝑖

, 𝑥𝑡𝑟𝑎𝑖𝑛𝑛𝑒𝑔1
) , (𝑥𝑡𝑒𝑠𝑡𝑖

, 𝑥𝑡𝑟𝑎𝑖𝑛𝑛𝑒𝑔2
) , … , (𝑥𝑡𝑒𝑠𝑡𝑖

, 𝑥𝑡𝑟𝑎𝑖𝑛𝑛𝑒𝑔𝑗
)}. Then, the ratio of the mean of 

set 𝑑𝑖𝑛𝑒𝑔
 and 𝑑𝑖𝑝𝑜𝑠

 is calculated as the prediction. A larger ratio suggests the unseen variant of interest is 

closer to positive samples in the training set and thus should be predicted as positive (risk variant). In 

contrast, a smaller ratio suggests the unseen variant is more likely to be benign. The AUC calculated 

based on the ratio predictions is used to compare with the baseline binary classification model. 

We performed 5-fold cross validation on our GWAS and EWAS dataset. For GWAS part, we 

compared our result with eleven existing genomic annotation tools. From a total of 14 methods, Siamese 

network-based methods performed best in 55 out of 89 diseases if applying triplet loss, and 58 out of 89 

diseases if applying structured lifted loss. The average cv-AUC for Siamese-based model with triplet loss 

and structured lifted loss are similar (Table 4-2(GWAS dataset) Mean cv-AUC of 14 methods 

across 89 diseases dataset.). In that case, triplet loss is preferred due to its advantage in computation 

efficiency. The following experiments comparison for the Siamese network-based models are all based on 

triplet loss. The performance of Siamese network-based ResNet is significantly better than the baseline 

MLP classification model (mean cv-AUC: 0.657 vs 0.615; 𝑝 = 2.665 × 10−7, one-side Wilcoxan rank 

sum test) and the same conclusion holds for the comparison of Siamese network-based MLP and baseline 

MLP classification model (mean cv-AUC: 0.658 vs 0.615; 𝑝 = 2.810 × 10−7, one-side Wilcoxan rank 

sum test). The detailed performance comparison for all 14 methods can be found in Table 4-2 and Figure 

4-2. The detailed performance of 14 methods for each disease can be found in Figure 4-3. Due to the fact 

that there are only a few annotation tools existing for the EWAS studies, we only compared model 
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performance to the baseline model. The performance of Siamese network-based ResNet is better than the 

baseline MLP classification model (mean cv-AUC: 0.824 vs 0.811) and the same conclusion holds for the 

comparison of Siamese network-based MLP and baseline MLP classification model (mean cv-AUC: 

0.827 vs 0.811). However, we do not observe statistically significant difference in these two comparisons. 

More future experiments are needed to illustrate the usefulness of Siamese-based methods in the 

application of EWAS datasets. The detailed performance comparison between Siamese-based methods 

and baseline model can be found in Table 4-3. 

In addition, we also performed experiment with subsampling to see if Siamese network-based methods 

perform better when the number of training samples is limited. We performed the experiment on 

Myocardial Infarction GWAS dataset, one of the datasets with relatively large number of risk training 

samples (N=698). We can observe from Table 4 that although all three methods suffer worsen 

performance when the sampling rate increases, the performance margin between Siamese network-based 

methods and MLP classification baseline model become larger when only extreme small fraction of risk 

samples are available. 

Method AUC 

Siamese-ResNet (Triplet Loss) 0.657 

Siamese-MLP (Triplet Loss) 0.658 

Siamese-ResNet (Lifted Structured Loss) 0.652 

Siamese-MLP (Lifted Structured Loss) 0.658 

MLP-classification 0.615 

PAFA 0.607 

GWAVA-TSS 0.598 

GWAVA-Region 0.584 

GWAVA-Unmatched 0.530 

Eigen-PC 0.572 

Eigen 0.568 

GenoCanyon 0.568 

CADD 0.560 

LINSIGHT 0.556 

FATHMM-MKL 0.527 

DANN 0.519 
Table 4-2(GWAS dataset) Mean cv-AUC of 14 methods across 89 diseases dataset. 
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Figure 4-2 Performance comparison box plot of Siamese based methods, baseline classification-based method and 

12 other existing genomic annotation tools across 89 diseases for GWAS dataset 

 

Figure 4-3 cv-AUC heatmap of 14 methods for each of 89 diseases. 
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Trait Siamese-ResNet Siamese-MLP MLP-classification 

Beta-amyloid 0.762 0.762 0.749 

Braak staging scores 0.802 0.803 0.782 

CERAD 0.796 0.801 0.776 

Cognitive decline trajectory 0.793 0.797 0.771 

Global Pathology 0.844 0.853 0.841 

Neurofibrillary tangles 0.946 0.948 0.949 
Table 4-3 (EWAS dataset) Mean cv-AUC of Siamese-based methods and the baseline method for 6 AD related 

EWAS datasets. 

 

4.3.2 Conclusion 

 
In summary, in this work, we explore applying few shots learning on disease risk annotation for 

GWAS and EWAS studies. Our experiments show that few shorts learning based risk annotation models 

have better performance compared to many existing tools and the baseline classification model. The 

promising results shows that few shots learning method can be a trustworthy alternative for the traditional 

classification framework in this research field, especially when the number of training samples is limited. 

In addition, deep networks can effectively exploit the relationships between omics data without 

performing feature selection and thus provides a neat end-to-end solution. The omics genome-wide 

features we preprocessed from the ENCODE and the ROADMAP project can also be a valuable resource 

for other genomic/epigenomic studies that would like to utilize omics data. 
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Chapter 5 Future Works 
 

 
The continuous evolving sequencing technologies have enabled endless new possibility for more 

precise and comprehensive genome annotation. The single-cell sequencing technology, which was named 

as the Method of the Year in 2013142, and the single-cell multimodal omics sequencing technology, which 

was named as the Method of the Year in 2019143, have enabled us to explore biological insight at the 

cellular level. As one of its applications, single-cell sequencing is capable of revealing somatic mutations 

and structural changes in cancer cells, which tend to have high mutation rates, allowing researchers to 

identify biomarkers for the prediction and validation of small molecules that target drug-tolerant cells144. 

Incorporating single-cell omics data (e.g., single-cell RNA seq, single-cell ATAC seq, single cell DNA 

methylome seq, etc.) into genome annotation can give us deeper insight from a different perspective than 

traditional bulk sequencing data and provide greater transparency in discovering informative features, 

thus allowing us to demonstrate further the relevance between our annotation results and biological 

discoveries to researchers who are interested in the interpretation behind annotation scores. 

Besides the current sequencing data involved in the modeling, cohorts such as UK Biobank145 have 

provided a large volume of individual level data including electronic health records (EHR) and other 

individual phenotypes that can be combined with the genome annotation results for personalized risk 

prediction for certain diseases. In addition to the individual phenotypes data, as most diseases are both 

genetically and environmentally influenced146, including environmental exposure data can complement 

the sequencing data we current have. From the modeling perspective, it is reasonable to design a model 

structure with two independent blocks that process the genomic/epigenomic profiles and individual level 

phenotypes data separately. Essentially, these two blocks are designed as feature extractor modules to 

handle these two types of features separately, and the extracted high-level features can then be combined 

in the final output module to make the final prediction. It is worthwhile to note that the usage of 

individual level data should adhere to strict data privacy regulation and subject to approval from the 

Institutional Review Boards (IRBs).  
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In addition to the data from additional types of sequencing assays, newly emerged advanced machine 

learning algorithms also enable the analysis of more types of input data. Modern deep learning models 

that can handle sequence-like data would be a promising direction for the future genome annotation tasks. 

The current proposed approaches in my thesis assign the features to the biomarker of interest based solely 

on its genomic coordinate. However, there is a spatial interaction and connection between genomic 

activities, and the activities that take place in a given genomic region can be influenced by those that 

occur in regions downstream or upstream. For example, SNPs found in gene bodies are not the only ones 

that affect gene transcription, SNPs located in intergenic regulatory sequences, such as enhancers, may 

also interfere with normal activities of nearby regulatory elements and thereby impact gene expression147. 

Hence, it is reasonable to include the nearby genomic and epigenomic profiles of the variants into the 

modeling process. The development of Recurrent neural network (RNN) with Long Short-Term Memory 

(LSTM)148 and Gated Recurrent Units (GRU)149, as well as an even more powerful self-attention based 

model Transformer150 has revolutionized natural language processing and computer vision. These 

techniques are capable of training with long sequences data without experiencing gradient exploding or 

gradient vanishing. Moreover, these models can also be extended directly to include the DNA sequence of 

four types of nucleotides. RNN and Transformer are able to harness information from the DNA sequence 

patterns and generate high-level features that can be further utilized for the final prediction of the 

annotation outcome. As the next step, we would like to explore taking advantage of these new methods to 

update EAWASplus, CASAVA and DRFAT to further improve their performance.  
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