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Abstract

INFERRING CHARACTERISTICS OF SENSORIMOTOR
BEHAVIOR BY QUANTIFYING DYNAMICS OF ANIMAL

LOCOMOTION

By Kawai Leung

Locomotion is one of the most well-studied topics in animal be-
havioral studies. Many fundamental and clinical research make
use of the locomotion of an animal model to explore various
aspects in sensorimotor behavior. In the past, most of these
studies focused on population average of a specific trait due to
limitation of data collection and processing power. With recent
advance in computer vision and statistical modeling techniques,
it is now possible to track and analyze large amounts of be-
havioral data. In this thesis, I present two projects that aim
to infer the characteristics of sensorimotor behavior by quanti-
fying the dynamics of locomotion of nematode Caenorhabditis
elegans and fruit fly Drosophila melanogaster, shedding light on
statistical dependence between sensing and behavior.
In the first project, I investigate the possibility of inferring nox-
ious sensory information from the behavior of Caenorhabditis
elegans. I develop a statistical model to infer the heat stim-
ulus level perceived by individual animals from their stereo-
typed escape responses after stimulation by an IR laser. The
model allows quantification of analgesic-like effects of chemical
agents or genetic mutations in the worm. At the same time,
the method is able to differentiate perturbations of locomotion
behavior that are beyond affecting the sensory system. With
this model I propose experimental designs that allows statis-
tically significant identification of analgesic-like effects. In the
second project, I investigate the relationship of energy budget
and stability of locomotion in determining the walking speed
distribution of Drosophila melanogaster during aging. The loco-
motion stability at different age groups is estimated from video
recordings using Floquet theory. I calculate the power consump-
tion of different locomotion speed using a biomechanics model.
In conclusion, the power consumption, not stability, predicts the
locomotion speed distribution at different ages.
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Chapter 1 Introduction

Animal locomotion has been one of the most studied topics in biology. Since

the beginning of natural science, scientists and philosophers have been dedicated to

explore the relationship between sensation and locomotion. In Movements of Animals,

one of the earliest studies of biology, Aristotle discussed and proposed a qualitative

model of sensing and locomotion [1]. Inevitably, he was incorrect - and so were many

researchers after him. The main reason behind this failure is that unlike other in

other disciplines, it was impossible at the time to quantify and characterize the full

repertoire of behavior and sensory input of an animal. But in the last several decades,

with the advance of computer vision and data analysis techniques, we are now able to

capture and analyze a significant amount of behavioral data from multiple animals.

At the same time, we are also able to deliver precise stimulation to the sensory

system. Combined with automated data collection, it is now possible to collect large

quantitative stimulus to behavior datasets, which opens up a way to investigate the

relationship between sensory input and animal behavior. In the following thesis,

I present two projects that are related to inferring characteristics of sensorimotor

behavior by quantifying the locomotion of the nematode Caenorhabditis elegans and

the fruit fly Drosophila melanogaster.

The nematode C. elegans was proposed as a model organism in genetics and

neuroscience in the second half of twentieth century [2]. Since then, it has been

used in different disciplines such as cell biology, neurobiology and aging [3, 4]. Many

important discoveries in biomedical science were first made in the worm [5]. The

worm has a number of features that make it an important tool in biomedical or basic

biology research, especially for studies in sensorimotor behavior. First, it is easy to

be raised and maintain in a laboratory setting on a diet of E. coli. Second, the rapid
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reproduction and growth facilitate large-scale experiments on this animal. Third, the

transparent nature of the worm body allows the use of in vivo fluorescence markers

to study biological process. Fourth, although the nervous system is relatively simple,

with only 302 neurons, the worm exhibits complex behavior [6, 7]. These qualities

make C. elegans an ideal model to study the sensorimotor behavior.

The locomotion behavior of C. elegans has been very well studied. In early studies,

standard assays for behavior were subjective and imprecise. For example, uncoordi-

nated mutants (”Unc”) are classified qualitatively into categories such as ”Coiler”,

”Irregular movement”, ”Shaker” and ”Sluggish” [8]. Since these categories are vague

and subjective, it is not surprising that the quantitative relationship of sensory in-

formation and locomotion behavior remained unexplored for several decades. It was

not until the last 20 years that the behavior of the worm could be quantitatively

characterized [9, 10]. Many different methods have been designed to study uncon-

strained locomotion using video microscopy [11, 12, 13, 14]. These methods reveal

important features of worm locomotion, such as low dimensional shape space [15] and

stereotyped behavior [16]. Base on these results, we are able to develop a statistical

model of behavior through quantifying locomotion.

The worm has been shown to react to chemical, mechanical and thermal stimuli

[17, 18, 19]. It is also a very well established model organism in the study of noci-

ception [20]. Despite these efforts, no method allows us to infer to perceived noxious

level from single worm behavior. In most of these studies, the nociception assays

focus on a particular behavioral feature of the subject, which is usually selected in an

ad hoc fashion. At the same time, these assays may convolve the effect on the sensory

system to motor behavior. To address these problems, I present a quantitative model

to infer the perceived level of pain from stereotypical escape response of C. elegans

stimulated by an IR laser in Chapter 2. The model provides a method for quantifica-

tion of analgesic-like effects of chemical stimuli or genetic mutations in C. elegans. I
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test the model with Ibuprofen-treated worms, and I show that the ibuprofen lowered

the perceived level of pain significantly. At the same time, by assuming a stereotyp-

ical escape behavior, this model can differentiate between the effect of chemical of

mutation beyond the thermal sensory system.

The fruit fly D. melanogaster is another common model organism. In particular,

it is used as a model in genetics [21], aging [22] and behavior [23]. Since flies have

a relatively short life span and are inexpensive to maintain, it is a perfect model

for studying functional decline during aging. Many aspects of age-related functional

decline were studied in this animal, such as geotaxis [24], exploratory activity [25],

olfaction [26] and cardiac function [27]. Many of these functional declines are related

to the distribution of locomotion speed. On average, the animal moves slower during

aging. There are two explanation for this effect - reduction of energy budget [28] and

ability of motor control [29].

In Chapter 3, I present a project that aims to find out the the relationship between

D. melanogaster locomotion speed distribution, the energy cost of transport and sta-

bility by quantifying locomotion at different ages. Estimating the energy budget and

ability of motor control is not a trivial task, but previous research has already paved

the way to our goal. First of all, the fly has to be tracked and analyze automati-

cally. Development of Computer Vision offers an effective strategy for automatically

tracking and measuring the behavioral phenotype of flies [30, 31, 32]. Second, the

energy cost of locomotion can be estimated by a biomechanical model [33, 34]. Fi-

nally, the stability of locomotion can be estimated through Floquet theory [35, 36].

I discover that the energetic cost of transport, not stability, significantly predicts the

speed distribution during aging.
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Chapter 2 Stereotypical escape behavior
in Caenorhabditis elegans allows quantifi-
cation of effective heat stimulus levels

2.1 Introduction

A grand goal in understanding sensory systems is to predict the behavioral re-

sponse of an organism to specific sensory stimuli; or, conversely, to infer the sensory

stimuli from measurements of the behavioral response. Such a goal requires careful

experimental design, precise control of the sensory inputs, and quantification of the

behavioral outputs. While sensory stimuli can be carefully quantified and applied,

the quantification of the behavioral output and its relationship to the stimulus is

non-trivial because the behavior is often complicated and not well defined. In this

work we address this grand goal in the context of studies of pain, or nociception

(i. e., sensing of noxious stimuli, which damage or threaten to damage normal tis-

sues), where behavioral quantification is especially hard. (Note that, in this paper, we

use nomenclature developed by the International Association for the Study of Pain,

http://www.iasp-pain.org/Taxonomy.)

Pain studies on human subjects are difficult because of ethical constraints, difficul-

ties in quantifying a psychophysical response, and subjectivity in self-reporting [37].

Partial conservation of molecular mechanisms of nociception among many different

species [38, 39, 40] allows to solve some of these problems by using animal mod-

els. However, then the grand goal of quantifying the behavior and relating it to the

stimulus becomes even harder: animal subjects cannot communicate their perceived

noxious levels to us in an obvious fashion. Thus progress in using animal models

depends crucially on our ability to quantitatively and objectively infer the perceived

http://www.iasp-pain.org/Taxonomy
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level of noxious stimuli from animal behavior.

Historically, studies of nociception primarily used mammalian models [41, 42]. For

rodents, the tail flick test [43], the hot-plate test [44, 45] and the Hargreaves’ method

[46] correlate pain perception with the reaction latency of different body parts to

noxious stimuli. For larger animals such as canines [47] and primates [48, 49], similar

nociceptive assays have also been developed. In recent years, new approaches started

incorporating facial expressions in nociception quantification [50, 51, 52]. Although

these mammalian models are extensively studied, several drawbacks hinder their use.

First, ethical issues and risks arise for certain experiments. Second, compared to inver-

tebrates, vertebrate subjects require more time and resources to maintain. Therefore,

much effort has been devoted to investigations of the possibility of using invertebrate

models in nociception research [39, 53]. In experiments involving Drosophila larva,

measures such as the response percentage of the total population [54, 55] and the time

to response [56] have been used to investigate changes in the ability of the animals to

sense noxious stimuli. In experiments on Caenorhabditis elegans, behavioral features

such as the turning rate [38] and the percentage of escape response [57] have been

used to characterize nociception.

All of these models share some common problems. First, the nociceptive assays

focus on one particular coarse behavioral feature of the subject, such as avoidance

behavior, orientation, or turning rate. Such features are selected in an ad hoc fashion,

subject to a particular design of an experiment. This makes it difficult to compare

results across different labs and experiments. Further, this does not solve the grand

goal of quantifying the full stimulus-behavior relation, and thus the behavior may be

providing additional information about the perceived noxious stimulus level that is

not being captured by the coarse measures. Second, some assays report measurements

as a percentage of a population, so that these measurements cannot be made for indi-

viduals. To overcome these problems, an ideal assay would infer a perceived noxious
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stimulus level of an individual animal on a continuous scale, using comprehensive,

objective measurements of its behavioral profile.

Solving the grand goal of quantifying the stimulus-behavior relation in the context

of pain studies would allow one to use the assays to calibrate the perceived noxious

stimulus level, and maybe even reductions in such levels due to analgesic-like effects

of drugs, or mutations in the nociceptive pathways. At the same time, drugs or

mutations can affect the motor response, rather than the nociception per se. Thus

traditional pain assays mentioned above may convolve the perceived noxious stimu-

lus reduction, if any, with behavioral changes. For example, a mutant defective for

turning behavior will register a strong reduction in the turning rate, but it would

be a mistake to interpret this as a reduction in nociception. Such concerns are very

real, as is illustrated by a known fact that opioids can cause large behavioral changes

[58]. To attribute a behavioral response difference to reduced nociception and not

to motor changes, the response must be stereotyped and reflexive, which is often the

case [42]. Further, only the response amplitude or frequency, but not the detailed

temporal structure, should change in response to a drug or a mutation. Establishing

the stability of the stereotypic response pattern requires solving the grand goal: anal-

ysis of the entire stimulus-triggered response behavior, rather than of its few selected

features, as is done by most behavioral assays.

In this work, we address these issues in the context of the nematode C. elegans,

solving the grand goal in the context of its heat-evoked escape behavior, and hence

developing the worm further as an animal model system for nociception research.

The worm is a great model organism for such studies for a number of reasons. First,

the behavioral dynamics of freely moving C. elegans is intrinsically low dimensional

[15]. This makes quantification of its behavioral response relatively straightforward,

providing an opportunity to use the entire motile behavior as a basis for assays.

Second, the worms show a noxious response to a wide range of sensations including
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certain types of chemical [59, 60], mechanical [61, 18], and thermal [62, 63] stimuli,

and such a nociceptive response is different from and is transduced independently

of the related taxis behaviors [64, 65, 66, 67, 68]. Third, at the molecular level,

many details of heat nociception in the worm may be similar to vertebrate animals

[39]. Fourth, there are powerful genetic and optical tools to reveal mechanisms of

nociception in C. elegans. Finally, the low cost, small size, and absence of ethical

constraints make the animal amenable to large scale pharmacological screens for new

human analgesics [69].

We present combined experimental and modeling studies that show that the entire

temporal behavioral profile during the heat-evoked escape response in C. elegans is

highly stereotypical, with the frequency of the escape response and the amplitude of

the escape velocity profile scaling with the stimulus level. By verifying the ability

of the behavioral template to capture the response following a heat stimulus, the

model we develop distinguishes changes in sensory system from changes to the motor

program. When a change is attributed to the sensory system, the model can infer the

reduction in the perceived heat stimulus level following pharmacological or genetic

treatments from the behavior of an individual worm. This quantification requires

only about 60 worms to show statistically significant perceived stimulus reduction

for a common human analgesic, and its statistical power quickly improves with an

increasing number of subjects.

Overall, this solution of the grand goal in the worm heat-evoked escape context

suggests that, for C. elegans, it is possible to disambiguate perturbations to the sen-

sory system from other perturbations affecting motility, and to quantify the reduction

in the perceived heat stimulus from behavioral data. Combined with the previous ev-

idence, this bodes well for further establishment of the worm as a model system for

pain research. However, we stress that the differences between the worm and the

human are so large that we do not want to overstate the importance of a C. elegans
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nociception model in the study of human health. Our analysis may be useful in the

future for identifying molecular mechanisms of nociception (which may be similar to

those leading to pain in humans), or identification of drugs that affect them. Some of

these drugs may even work in humans, but there is no reason to believe that pain (and

especially its emotional component) occurs in C. elegans, or that drugs that affect

nociception actually produce analgesic effect in worms. Thus the main contribution

of our work is in addressing the grand goal, namely in quantitative characterization

of regularities of complete heat-evoked escape behavior C. elegans on a single-subject

level, and analysis of changes in these regularities under different pharmacological

and genetic treatments, rather than potential applications of our findings to future

discovery of new human analgesics.

2.2 Results

We aim to infer the perceived heat stimulus level from the temporal dynamics of

the worm response. The heat stimulation is administered using an infrared laser while

the worm crawls on an agar plate. The worm motion is captured by video microscopy

and analyzed using custom image analysis software. The worm postures are very

stereotypical, adding up to simple sinusoidal motions forwards or backwards, and to

turns [15]. Thus without much loss of the statistical power, we characterize the entire

escape behavior of the animal by a time series of its center of mass velocity (Materials

and Methods). Our task is then to verify if such responses are stereotypical, scaling

in frequency and amplitude with the applied laser current. If they are stereotypical

and thus can be used to characterize the perceived stimulus level, the next task is to

infer the applied laser current from the velocity data.

For each heat stimulus trial a random worm is selected on the plate and its motion

is sampled at 60 Hz for 15 s. An infrared laser pulse with a randomly chosen current

between 0 to 200 mA and a duration of 0.1 s is then directed to the head of the worm
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Figure 2.1: Typical center-of-mass heat-evoked escape responses in C. elegans. (A)
Typical center-of-mass trajectory of two wild-type worms in a paused and an active
state (see below for the detailed discussion of the two states). The infrared laser was
directed at each worm at t = 1 s. The paused state is characterized by the near zero
velocity after the laser stimulus. (B) Actual trajectories of these two worms. Worm
changes its direction of motion in two ways: in a “reversal”, it stops and backtracks
along its previous path; in an “omega” turn the worm’s head curls back and crosses
the tail, setting then a new direction of forward motion.

1 s after the start of the video recording. The worm’s center of mass motion in a

typical trial consists of a forward motion before the stimulus, a stop and/or backward

motion after the stimulus, then followed by an “omega” turn, after which the worm

emerges with a forward motion in a different direction (Fig. 2.1). This is a typical

response to many noxious stimuli in C. elegans, and not just to heat stimulus [63]

(stereotyped, typical escape responses also exist in other animals [70, 71]). Further,

previous research has shown that, even though the maximum temperature change in

this assay is rather small (∼ 1 − 2◦C), the escape behavior is significantly different

from the more commonly studied thermotactic behavior, and is mediated by different

neural and genetic pathways [62, 72, 63].

To understand the effects of pharmacological and genetic interventions , we col-

lected three distinct datasets. In the first, the stimulus was applied to wild-type

worms (N2). In the second, the wild-type worms were pre-treated with an ibupro-
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Figure 2.2: Global characteristics of the heat-evoked escape. (A) The mean (± s.
e. m.) of the maximum reverse speed for the three worm types is plotted against
the stimulus laser current, partitioned into five bins. Negative values correspond to
backward motion. (B) Maximum reverse speeds for individual control worms. We
define an active worm (dot) as having the maximum reverse speed of over 10 pixels/s
(about 0.2 body length per second); otherwise the worm is paused (plus sign). (C)
Probability of the paused state vs. the laser current. Dots represent the actual data
(± s. e. m.), and lines are the fitted model. The datasets are divided into equally
sampled bins for each worm type.

fen solution (Materials and Methods), which we surprisingly discovered to affect the

heat-evoked response, after screening some common human analgesics. Since ibupro-

fen’s molecular mechanism of action in C. elegans is unclear, we refer to this as an

analgesic-like treatment throughout the paper. In the third, we applied the stimu-

lus to an untreated triple mutant (ocr-2(ak47) osm-9(ky10) IV; ocr-1(ak46)), which

is widely used in C. elegans nociception studies; it has one of the strongest effects

on reduction of heat-evoked nociceptive response [72]. Hereafter we refer to these

datasets as “control”, “ibuprofen”, and “mutant”, respectively. We chose not to ex-

plore hyperalgesic treatments for this study. We collectively refer to ibuprofen and

mutant worms as “treated” worms. Forward motion in all three data sets was similar

(typical forward velocity of 13 ± 9, 9 ± 7, 13 ± 10 pixel/s respectively, where the

error denoted the standard deviation of the velocity distribution), so that there are

no drastic defects in motility.
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2.2.1 Statistical model of the heat-evoked escape

For presentation purposes, we bin the laser current of the heat stimulus into five

distinct levels (bins), defined to have an equal number of control worms in each bin

(40 per bin). The maximum reverse escape velocity is indistinguishable among all

three worm types for the largest stimulus level, indicating no gross defects to motility

or noxious response. At the same time, the velocity at smaller stimuli levels shows

substantial differences (Z scores of up to 3.8) between the control and the treated

worms, especially in the vicinity of ∼ 100 mA laser stimulation (Fig. 2.2A). Two

way ANOVA shows the difference between the ibuprofen and the control worms at

p = 0.021 and between the mutant and the control at p = 1.5 ·10−5 across all five laser

current groups. Mutant worms are especially different from the control over a wider

stimulus range. However, as discussed above, it is unclear if such simple observed

behavioral differences are indicative of the reduction of the perceived stimulus level

or of other changes to the motor response. Furthermore, there might be additional

changes in the detailed temporal structure of the heat-evoked escape dynamics, which

would not be captured by simple statistics, such as the maximum reverse speed.

To address this, instead of subjectively segmenting the complex escape behavior

or choosing ad hoc metrics of the worm’s movement, we choose to infer the applied

stimulus strength from a comprehensive model of the entire worm’s response velocity

profile. Due to the considerable randomness and individual variability of responses,

we choose to model them probabilistically (see [73] for another example of Bayesian

probabilistic modeling of nociception). Thus we are interested in estimating P (I|v),

the probability distribution of the applied laser current I conditional on the observed

velocity of the escape response v ≡ {v(t)}. Using Bayes’ theorem, we write

P (I|v) =
P (v|I)P (I)

P (v)
=

1

Z
P (v|I)P (I), (2.1)

where Z is the normalization factor, and P (I) is the prior distribution of stimuli.
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When we characterize the velocity profiles of the noxious response of C. elegans, we

notice that the worm can react to the stimulus in two different ways. Some worms

pause after the heat stimulus, even at large laser currents (Fig. 2.2B). These worms

remain largely immobile for a few seconds, sometimes as long as the recording dura-

tion. Other worms actively reverse and follow the classic escape behavior (Fig. 2.1).

We choose to separate the active vs. the paused worms with a cutoff of 10 pixels/s,

where 50 pixels is about one body length of the worm. To account for this hetero-

geneity in the behavior, we introduce the state variable s, which can take one of two

values, a or p, for each individual worm. Then

P (v|I) = P (v|s = p, I)P (s = p|I) + P (v|s = a, I)P (s = a|I). (2.2)

We model the probability of the paused state P (p|I) by a sigmoid function (Fig. 2.2C),

P (s = p|I, I0) =
1

1 + (I/I0)2
, (2.3)

where I0 is the pause current threshold. Then the probability of the active state is

P (s = a|I, I0) = 1− P (s = p|I, I0) =
(I/I0)2

1 + (I/I0)2
, (2.4)

We infer I0 from data by maximizing
∏Ntype

i=1 P (si|Ii, I0), where Ntype is the number

of trials with worms of the analyzed type, and Ii is the actual laser current for a

particular trial. Note that each of the three data sets has its own pause current

(25.9 ± 2.8, 26.6 ± 1.9, and 51.6 ± 6.3 mA for the control, ibuprofen, and mutant

worms, respectively). Changes in this threshold, like that for the mutant, will result in

different numbers of worms responding to the same stimulus, which can be consistent

with the changes in the stimulus level, depending on whether the response profiles

themselves stay stable. This is what we investigate next. Parenthetically, we note

that the fraction of active worms is essentially the same as the percentage of the

escape response, which has been used previously to quantify worm nociception [57].
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Here we go further and additionally analyze the behavioral profiles of the responding

worms.

C. elegans locomotion consists of a series of stereotyped postures and behavioral

states [16, 74]. Further, in other animals, escape responses are stereotyped as well

[42]. Therefore, it is natural to explore if the escape response of C. elegans is also

stereotyped, separately for the paused and the active states. For paused worms, the

escape velocity is small and independent of the laser current, and we model it as a

multivariate normal variable,

P (v|p, I) =
1

(2π)
T
2 |Σp|

1
2

exp

[
−1

2
(v − up)

TΣ−1p (v − up)

]
, (2.5)

where up is the mean velocity profile of the paused worms measured from data,

which we call the paused template velocity. Σp is the empirical covariance of the

paused velocity, and T is the total number of effectively independent time points in

the velocity profile time series, determined using the autocorrelation structure of the

profile (Materials and Methods).

We expect that, in the active state, the worm escape is laser current dependent.

Specifically, we seek to represent it by a current-dependent rescaling of a stereotypical

escape velocity, v ∼ f(I)ua, where f is the scaling function, and ua is the active

template velocity. Since various features of the worm escapes (the maximum reverse

speed, the maximum reverse acceleration, and the time to the omega turn), scale non-

linearly and saturate with the laser current (Fig. 2.2A), the rescaling, f(I), must be

sigmoidal. Further, some worms have nonzero velocities even at zero laser current, so

that f(0) may be nonzero. Finally, the overall scale of the template can be absorbed

in the definition of ua. The simplest scaling function obeying these constraints has

only two parameters

f(I) ≡ fI1,I2(I) = I1 +
I

1 + I/I2
, (2.6)

where I1 and I2 are again constants, different for the three different worm types.

With this, we write the probability of a velocity profile given the laser current I for
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the worm in an active state as a multivariate normal distribution

P (v|a, I) =
1

(2π)
T
2 |Σa|

1
2

× exp

[
−1

2
(v − fI1,I2(I)ua)

TΣ−1a (v − fI1,I2(I)ua)

]
, (2.7)

where Σa is the covariance of the average velocity profile. We find the constants I1

and I2, ua and Σa by maximizing the likelihood of the observed data (Materials and

Methods).

In summary, the probability of a velocity profile given the laser current in a certain

trial is

P (v|I) =

{
1

1 + (I/I0)2
× 1

(2π)
T
2 |Σp|

1
2

exp

[
−1

2
(v − up)

TΣ−1p (v − up)

]}

+

{
(I/I0)2

1 + (I/I0)2
× 1

(2π)
T
2 |Σa|

1
2

exp

[
−1

2
(v − fI1,I2(I)ua)

TΣ−1a (v − fI1,I2(I)ua)

]}
.

(2.8)

The overall model of the experiment, Eq. (2.1), also includes P (I). To a large extent,

this is controlled by the experimentalist, and details are described in Materials and

Methods.

2.2.2 Is the heat-evoked escape stereotyped?

The model we built assumes a stereotypical escape behavior. Is this assumption

justified? Velocities in the paused state are very small (worms barely move). Thus

whether the stereotypy assumption provides a good model of the data is determined

largely by the stereotypy of the active worms. If the active stereotypical response

template exists, then it should be possible to collapse the average velocity profiles

onto a single curve by the following transformation

vcollapse =
va

fI1,I2(I)
. (2.9)

Indeed, the means of different bins collapse relatively compactly, providing evidence

for the existence of the stereotypy in active responses (Fig. 2.3). We show the template
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Figure 2.3: Collapse of the response behavior. (A) The mean (dark lines) and stan-
dard deviation (similar semitransparent light colors) of velocities of active control
worms, binned for presentation purposes into five different groups of 40 worms each,
based on the stimulus current. (B) The mean and standard deviation of velocities
(same color code) in the same time period rescaled by f−1I1,I2(Ii). Rescaled mean ve-
locities nearly collapse (see Fig. 2.5 for quantification of the collapse). Note that the
parameters I1 and I2 are optimized as in Materials and methods to collapse individual
profiles, and not the five mean profiles illustrated here.

velocities and the non-linear scaling function f inferred from the control, ibuprofen,

and mutant in Fig. 2.4.

Note that the three active template velocity profiles are very similar (Fig. 2.4A),

but the mutant template velocity profile shows a response lag of 83 ms (one time

frame at 12 Hz) compared to the control or ibuprofen data set. In other words, the

pharmacological treatments and the mutations weakly affect the templated response,

and the mutation slightly delays it. This bodes well for the assumption of the stereo-

typical response, definitely for ibuprofen and, to a somewhat lesser extent, for the

mutant.

While the existence of the stereotypical patterns and their similarity across treat-

ments is encouraging, we still need to quantify how good the statistical models are.

In the ideal case, the variance σ2
collapse of the collapsed velocities, Eq. (2.9), calculated

over individual trials, would be zero. However, there are a number of expected sources



16

Time (s)
1  1.5 2  2.5 3  3.5

Pa
us

e 
te

m
pl

at
e 

ve
lo

ci
ty

 (p
ix

el
/s

)

0

5

10

15
A

control
ibuprofen
mutant

Time (s)
1  1.5 2  2.5 3  3.5A

ct
iv

e 
te

m
pl

at
e 

ve
lo

ci
ty

 (a
.u

.)

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2

B

control
ibuprofen
mutant

1  1.5 2  2.5 3  3.5
-1

-0.5

0

Laser current (mA)
0 50 100 150 200

R
es

ca
lin

g 
fu

nc
tio

n 
(p

ix
el

/s
)

-20

0

20

40

60 C

control
ibuprofen
mutant

Figure 2.4: Stereotypical active response. (A) Paused template velocities. Error bars
show the standard deviation of the template. Models are estimated separately for the
three different worm types, indicated by different colors. Time t = 1 s corresponds
to the moment of the stimulus application. (B) Normalized active template velocity.
Each template velocity is normalized by the absolute value of its minimum |mint va|.
The error bars represent the model standard deviation, estimated by bootstrapping
(Materials and Methods). The subfigure shows the template velocities adjusted by
the time of maximum reverse velocity, illustrating that the three templates nearly
match. (C) The rescaling function fI1,I2(I) for the three different worm types, nor-
malized by multiplying by the absolute value of the minimum of the active template
velocity |mint va|. The optimized parameter values are I1 = −4.5,−4.5, 66.5 and
I2 = 45.0, 12.0,∞ for the control, ibuprofen, and mutant worms, respectively. We
deliberately do not report error bars on individual parameters, but rather show the
one standard deviation confidence intervals for the entire rescaling curve as shaded
regions on the figure. The confidence region was again estimated using bootstrapping.

of variance in the velocity, such as the individual variability and the model inaccura-

cies. To establish how good the stereotypical model fits are, we need to disambiguate

these contributions. For this, we again partition all velocity profiles into five current

bins. We then write the total variance of all responses as

σ2
total = σ2

I + σ2
ind, (2.10)

where σ2
ind is the variance due to individual responses within each bin, and σ2

I is the

current-driven variance of the mean responses across the bins. Since the individu-

ality of the worms is not accounted for in our model, σ2
I represents the maximum

potentially explainable variance in the data. The stereotypy-based model would be

nearly perfect if σ2
I were to drop to zero after the f−1 rescaling. To explore this,

we plot the total variance of the active response σ2
total (Fig. 2.5A), and the fraction
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Figure 2.5: Variability of the active response. For the three worm types, in (A) we
plot the total variance of velocity profiles σ2

total. Note that these numbers depend
strongly on the preprocessing of the data – in particular, smoothing of the velocity
(with the 500 ms filter, Materials and Methods) decreases the total variance. In (B)
we show the fraction of potentially explainable variance σ2

I/σ
2
total. Finally, (C) shows

the part of the explainable variance that was not explained by our statistical model
σ2

res/σ
2
I . See the main text for the discussion of the differences between the three

worm types on this plot.

of the potentially explainable variance, σ2
I/σ

2
total (Fig. 2.5B). The latter varies from

20% to 40% of the total variance, depending on the time post-stimulus and on the

treatment. In both panels, the mutant and the control dataset are nearly indistin-

guishable, while the ibuprofen worms show a smaller variance, and a smaller fraction

of the explainable variance. This is consistent with a smaller stimulus-driven response

for this analgesic-like treatment.At the same time, these figures suggest that the de-

crease in the maximum reverse speed in the mutant worm (Fig. 2.2A) should not

be attributed entirely to the reduced perceived heat stimuli. Indeed, the similarity

of the variance and the explainable variance in the control and the mutant worms,

which have very different mean maximum reverse velocities, suggests the existence

of an additional (explainable, non-templated) component in the response behavior of

the mutant, which is not present in the control.

The explainable variance σ2
I is further split into the variance explained by the

model, σ2
m, and the residual variance, σ2

res, which the model fails to explain:

σ2
I = σ2

m + σ2
res. (2.11)
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In Fig. 2.5C, we plot σ2
res/σ

2
I , which is the fraction of the variance not captured by

our model. Of the explainable variance, about 80% is captured by our model for

the control and the ibuprofen worms in the window between 1 s and 3.3 s since the

start of the trial, on average. This is a relatively large fraction for behavioral data,

and provides an additional validation for our choice of a stereotypy-based model for

representing escape behavior in these worms. Stability of the template itself between

these two conditions, and the stability of the fraction of the explained variance suggest

that much of the effect of ibuprofen can be attributed to the scaling of the templated

response (and also the fraction of active worms). In other words, ibuprofen decreases

the sensed heat stimuli.

In contrast, the unexplained variance for the mutant is about twice as large as

that for the control, and approaches 100% at t > 2.7 s. This again illustrates that the

templated response model is not very good for this treatment. Thus the mutations

introduce changes in the behavior that are not consistent with a simple rescaling –

mutations affect the fine motor behavior in addition to sensory system per se.

2.2.3 Using the statistical model

One of the goals of our study is to develop methods for quantitative assessment

of the efficacy of pharmacological interventions to decreases sensed heat stimuli, at

least in those cases where their action can be specifically interpreted as a change in

thermal sensory transduction. We can use the developed statistical model for this.

Specifically, taking the model derived from the control worms, we can infer the laser

current from behavior of all three different worm types. To the extent that the current

inferred for the treated worms is smaller than that for the control worms at the same

applied current, the heat stimuli level perceived by the treated worms is smaller.

Figure 2.6 shows the overall structure of the inference done with the model. In

the first row, we plot the conditional distribution of the inferred laser current given
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the actual applied current I for the three worm types, P (Iinf |I, type). We again bin

the trials using Ii into five bins Iµ, µ = 1, . . . , 5 as before, and plot

P (Iinf |Iµ, type) =

Ntype∑
i

Pcontrol(Iinf |vi)Ptype(vi|Iµ). (2.12)

Here Ptype(vi|Iµ) is 1 if the stimulus on the i’th trial for this worm type was in the Iµ

bin, and zero otherwise. Further, Pcontrol(Iinf |vi) is given by the full model, Eq. (2.8),

with the parameters inferred for the control worm, and with the empirically observed

velocities v in trial i for each worm type. We see that there is more probability

concentrated at small Iinf for the ibuprofen and the mutant worms, suggesting a

reduction in the perceived stimulus level. Similarly, in the second row in Fig. 2.6,

we plot the expected value, Īi, of the distribution of the current inferred using the

control model, Pcontrol(Iinf |vi), for each of the individual trials in each of the three

worm types. To the extent that the values for the ibuprofen and the mutant worms

are again somewhat lower than for the control worms, there is some reduction in the

perceived current by this measure as well.

However, these population averaged results wash out important differences in the

structure of the stimulus-response relationship. To quantify these small effects more

accurately, we now look at the perceived stimulus changes for individual worms in

the datasets. Specifically, for each trial i in the control dataset, a trial j(i) with the

closest value of the applied laser current is found in the ibuprofen / mutant dataset

(the mean magnitude of the current mismatch is < 1 mA for both the ibuprofen

and the mutant worms). We then use the control model to calculate the expected

value of the inferred current for the jth trial in the ibuprofen / mutant datasets.

This expectation is subtracted from the expectation value of the inferred current for

the matched trial i for the control dataset. The difference of the expectation values,

averaged over all control worms, is our measure of the reduction in the perceived
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stimulus level

∆Itype =
1

Ncontrol

Ncontrol∑
i

(
Ii,control − Ij(i),type

)
. (2.13)

We evaluate ∆Itype for different worm types and for control worms binned into the

five usual current bins (Fig. 2.7). To estimate the error of ∆Itype, we bootstrap the

whole analysis pipeline, see Materials and Methods. There is a statistically significant

difference in stimulus perception between the ibuprofen and the control worms. The

difference is most significant when the actual laser current is around 100-110 mA. This

coincide with our observation (Fig. 2.2A) that the most sensitive region of maximum

reverse speed is around 100mA. Indeed, at smaller currents, the perceived stimulus

level is small, many worms pause, and the behavior cannot be used to reliably estimate

the stimulus level. At high current, the heat perception saturates, and all worms

behave similarly, again reducing the ability to disambiguate the applied current level.

This analysis of ibuprofen worms achieves one of our main goals. It proves our

ability to reconstruct stimulus from the behavior, and shows that analgesic-like ef-

fects of pharmacological perturbations can be quantified from the behavior. At the

same time, ∆Imutant turns out to be insignificant (Fig. 2.7B), even though a large sta-

tistically significant difference exists between the mutant and the control behaviors

(Fig. 2.2A). This failure to detect a significant perceived stimulus reduction is because

the templated response model is not very good for the mutant worm; thus our anal-

ysis cannot reliably assign a mutant trajectory on a given trial to a specific stimulus

level. In other words, the large error bars in Fig. 2.7B serve as yet another check

for self consistency: effects of the mutations cannot be attributed just to changes in

stimulus perception.

2.3 Designing experiments: how many worms?

We expect our analysis to be useable for screening large numbers of chemicals for

analgesic-like action. Since our approach targets one individual worm at a time, we
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Figure 2.6: Inferring the perceived stimulus level from C. elegans escape behavior.
The first row shows the conditional distributions of the inferred current vs. the actual
applied current, partitioned into five bins, Pcontrol(Iinf |Iµ). Inference is done with
the model of the control worm behavior. Panels (A), (B), (C) show the averaged
probability of inferred laser current for the control, ibuprofen, and mutant worms,
respectively. The second row shows the expected inferred laser current for each trial,
Īinf,i =

∑
Iinf,iP (Iinf,i|vi) vs. the applied current Ii. The inference is again done using

the control model, and panels (D), (E), (F) show the three worm types. The panel
(D), (E), (F) is different from (A), (B), (C) since the first three show the average
probability of inferred laser current while last three show the individual expected
value of inferred laser current.

need to estimate the number of worms needed to achieve statistical significance in such

screening experiments. For this, we fix the number of control worms, arguing that

these must be only analyzed once, and hence a relatively large number of them can be

tested. We then focus on ibuprofen, whose action is analgesic-like in our experiments,

and on the bin at 110 mA, where the worms experience the most significant perceived

stimulus reduction. There are Nibuprofen,110 = 94 worms in this bin. We randomly sam-

ple with replacements n < Nibuprofen,110 worms from among these ibuprofen-treated

worms and repeat our analysis pipeline, estimating the ∆Iibuprofen(n). Resampling

1000 times (both the ibuprofen and the control datasets), we also estimate the vari-
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Figure 2.7: Perceived stimulus level decrease due to treatments. (A) Differences of
the inferred laser current between the control and the ibuprofen datasets, ∆Iibuprofen.
Errors represent standard deviations, estimated with bootstrapping. (B) Similar
differences for the mutant worm, ∆Imutant. Error bars are estimated by bootstrapping.
(C) Dependence of the statistical significance of the perceived stimulus level reduction
(measured by the Z score) for ibuprofen at 110 mA on the number of ibuprofen trials.

ance of ∆Iibuprofen(n), and hence the Z score as a function of n (Fig. 2.7C). The plot

here is an underestimate of the true Z score since resampling with replacements re-

moves some stimulus values from the dataset, hence increasing the mismatch between

control worms and the paired treated worms. Even with this, Z ≈ 2 is achieved at

n ≈ 60 ibuprofen worms. In other words, in a typical screening experiment, one

would need to test 200 or more worms to build the control model, and then at least

∼ 60 worms additionally for each treatment condition.
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2.4 Discussion

Typically a goal of sensory-response experiments is to develop a model that can

predict the behavior in response to the stimuli. Here we wanted to do this in re-

verse. Our grand goal was to build a statistical model of the heat stimulus from

careful measurements of the escape behavior of C. elegans, and to use this model to

infer the changes in the perceived level of the stimulus felt by the organism due to

perturbation in the sensory transduction pathway. Given this model, we could then

measure changes in stimulus perception due to effects of chemicals and mutations,

and use this as a basis to study the mechanism of sensory transduction in a genetically

tractable organism amenable to high-throughput screens. As a representative data

set, we choose to study the standard laboratory C. elegans strain N2, N2 treated with

ibuprofen, and a mutant with defects in TRPV function. Other chemicals are also

studied, but only ibuprofen is selected due to two reason. First, we selected chemicals

that did not affect normal motion without laser stimulus, to make it more likely that

the stereotypical behavior was not affected. Second, we made sure that the worm

nonetheless displayed visually different behavior after the laser stimulus compared to

N2 strain. Only ibuprofen passed these tests.

For the model to be successful, we had to meet a number of challenges. Since the

worm could not communicate its perceived stimulus level to us directly we had to infer

this level by reading the “body language” of the worm’s escape response. The diffi-

culty with quantifying a behavioral response as a measure of perceived stimulus level

is that drugs or mutations can affect locomotory behavior in addition to perturbing

sensory transduction. So in an attempt to deconvolve these effects, we used the entire

behavioral profile instead of making ad hoc measurements. We leveraged the fact that

escape responses in C. elegans turn out to be highly stereotyped, so that the escape

response can be modeled with a velocity profile template that scales non-linearly in

response to an applied laser current. The success of the template in modeling the
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stereotyped wild-type escape response was confirmed by a functional collapse of the

velocity profiles across different perceived stimulus levels. This discovery of invari-

ance is important since it not only allowed us to effectively correlate escape behavior

to the stimulus level, but it also allowed us to determine if the locomotory changes

in our assay were due to changes specifically in the sensory transduction pathway or

due to other general locomotory factors. By carefully accounting for the variation in

our data and quantifying how much of this variation is captured by the model, we

showed that the stereotypical behavior is unaffected by ibuprofen, save for changing

the amplitude of the response. Thus this drug application likely reduced the perceived

stimulus level in the worm. In contrast, a TRPV mutation changes locomotion in a

way that is not as well captured by the template model. Thus we can be objectively

critical about any inference made with this strain.

The model was also useful in determining key experimental parameters for fu-

ture measurements. After verification that the model works well with the native

and ibuprofen treated stimulus-response data, we quantified the changes in heat per-

ception due to ibuprofen treatment. Our modeling and experimental assessment of

escape behavior identified the optimal stimulus range and required number of trials

to determine statistically significant differences between the inferred current of N2 in

the untreated and treated conditions.

As a cautionary note, we point out that we avoid to call our heat stimulus as

noxious, although the escape behavior of the worm in our experiment is similar to no-

ciception. In the IASP definition, a nociceptive stimulus is an actually or potentially

tissue-damaging event. The heat stimulus used in our experiment causes tempera-

ture increase of around 2◦C in 0.1s, which does not have any evidence to damage

the worm tissue. But previous research showed that the worm responses to small

and rapid temperature increase in a nociception-like behavior [63]. Also a prolonged

exposure to our heat stimulus is likely to cause damage to the worm tissue. Therefore
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although we are not calling our stimulus as noxious, we believe our model will be valid

for nociceptive behavior.

Also we point out that many noxious responses, especially in larger animals, are

not stereotyped (and hence less studied), and not all stereotyped behaviors are noxious

responses. The stereotypy of escape in C. elegans has turned out to be helpful in

disambiguating qualitatively different effects that ibuprofen and mutations have on

nociception, and it is likely to be equally helpful in the future in characterizing effects

of other mutations and perturbations. However, by itself the stereotypy should not

be viewed as evidence for a nociceptive response, and neither should the absence of

stereotypy be used as an evidence that a response is not noxious.

In conclusion, we have solved what we defined as a grand problem in stimulus-

response quantification and built a general model that connects stereotyped behavior

to stimulus in the context of C. elegans heat-induced escape responce. With a lan-

guage to describe this relationship, it is now possible to study quantitatively the

effects of genetics and chemicals on this sensorimotor behavior. We believe that the

utility of the model is quite general and could be applied to different model systems.

However, we particularly hope that this work helps further establish C. elegans as a

model for nociceptive research.

2.5 Materials and Methods

2.5.1 Worm preparation and experiment design

All worms were grown and maintained under standard conditions [75], incubated

with food at 20 ◦C. Well fed worms were washed twice then gently spun down for 1

minute and the supernatant discarded by aspiration. We discovered empirically that

ibuprofen affects the heat-induced escape response in our assay. For the drug appli-

cation 100 µL of ibuprofen in M9 at 100 µM was added to the eppendorf tube. For

the wild-type and mutant data set, M9 was used instead of the drug solution. Worms
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were then placed in an incubator for 30 minutes at 20◦C. After that worms were

poured onto a seeded agar plate and transferred to agar assay plates by a platinum

wire pick. These assay plates were incubated at 20◦C for 30 minutes, and then the

experimental trials were done within the next 30 minutes. In total N = 201 worms

for the control group, N = 441 worms for the ibuprofen group, and N = 100 worms

for the mutant group (ocr-2(ak47) osm-9(ky10) IV; ocr-1(ak46)) group were tested.

The mutant strain was obtained from the Caenorhabditis Genetics Center.

The heat stimulation instrument has been described previously [63]. In summary,

an infrared laser is directed to heat the head of a freely crawling worm (∼ 0.5mm

FWHM) on an agar plate. The laser pulse is generated with a randomly chosen laser

current between 0 to 200 mA, with a duration of 0.1 s. The heating of the worm is

nearly instantaneous, and it is directly proportional to the current, between 0 and 2

◦C for the current range used in our experiments. The temperature change at 60 mA

current is 0.4◦C ± 0.03◦C, 100 mA current is 0.89◦C ± 0.05◦C and 150mA current

is 1.4◦C ± 0.2◦C. Worms were stimulated only once and not reused. The movements

of the worms are imaged using a standard stereomicroscope with video capture and

laser control software written in LabVIEW. For each stimulus trial, a random worm

is selected on the plate and its motion is sampled at 60 Hz for 15 s, and the laser is

engaged 1 s after the start of the video recording.

2.5.2 Data Analysis

The recorded response videos were then processed with Matlab to calculate the

time series of the worm centroid motion as described previously [63]. All the worms

that were not stimulated near the head or were not moving forward in the beginning

of the video were discarded. Numerical derivatives of the centroid times series were

then taken and filtered with a custom 500 ms Gaussian filter, which was a one-sided

Gaussian at the edges of the recorded time period, becoming a symmetric Gaussian
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away from the edges. This removed the noise due to numerical differentiation and also

averaged out the spurious fluctuations in the forward velocity due to the imperfect

sinusoidal shapes of the moving worm. We verified that different choices of the filter

duration had little effect on the subsequent analysis pipeline. The direction of the

velocity was determined by projecting the derivative of the centroid time series onto

the head-to-tail vector for each worm, with the positive and negative velocity values

denoting forward / backward motion, respectively.

The filtered velocity profiles needed to be subsampled additionally. This was

because the statistical model of the data, Eq. (2.8), involved covariance matrices of

the active and paused velocity profiles, Σp and Σa (note that velocity profiles are

not temporally translationally invariant due to the presence of the stimulus, thus the

full covariance matrix is needed, and not a simpler correlation function). To have a

full rank covariance matrix, the number of trials must be larger than the number of

time points. Alternatively, regularization is needed for covariance calculation. The

autocorrelation function for all three worm types showed a natural correlation time

scale of & 0.2 s, whether the data was pre-filtered or not. Thus subsampling at a

frequency > 5 Hz would not result in data loss. Therefore, instead of an arbitrary

regularization, we chose to subsample the data at 12 Hz, leaving us with 37 data points

to characterize the first 3 s of the worm velocity trace after the stimulus application,

1 ≤ t ≤ 4 s since the start of the trial. Equation (2.8) additionally needs knowledge of

T , the number of effectively independent velocity measurements in the profile. This is

obtained by dividing the duration of the profile by the velocity correlation time. An

uncertainty of such procedure has a minimal effect on the model of the experiment

since it simply changes log likelihoods of models by the same factor, not changing

which model has the maximum likelihood.

We then considered limiting the duration of the velocity profile used in model

building: if velocities at certain time points do not contribute to identification of
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I, they should be removed to decrease the number of unknowns in the model that

must be determined from data (values of the templates at different time points). The

first candidate for removal was the period of about 10 frames (0.16 s) after the laser

stimulation since worms do not respond to the stimulus so quickly. However, removal

of this time period had a negligible effect on the model performance, and we chose to

leave it intact. In contrast, starting from 3.3 s (2.3 s after the stimulus) the fraction

of explainable variance drops to nearly zero (Fig. 2.5) since many worms already had

turned by this time and resumed forward motion. Therefore, we eventually settled

on the time in the 1.0 . . . 3.3 s range for building the model.

Whenever needed, we estimated the variance of our predictions by bootstrap-

ping the whole analysis pipeline [76]. For this, we created 1000 different datasets

by resampling with replacement from the original control dataset and the mutant /

ibuprofen datasets. Control statistical models (the scaling function f and the velocity

templates) were estimated for each resampled control dataset. Standard deviations

of these models were used as estimates of error bars in Fig. 2.4. For Fig. 2.7, we

additionally needed to form the closest control / treatment worm pairs. These were

formed between the resampled data sets for all worm types as well. Standard devia-

tions of ∆Itype evaluated by such resampling were then plotted in Fig. 2.7 and used

to estimate Z scores. Note that such resampling produces control / treatment paired

worms that have slightly larger current differences than in the actual data; this leads

to our error bars being overestimates.

Model in Eq. (2.1) requires knowing P (I). In principle, this is controlled by

the experimentalist, and thus should be known. In our experiments, P (I) was set

to be uniform. However, as described above, some of the worms were discarded

in preprocessing, and this resulted in non-uniformly distributed current samples. To

account for this, we used the empirical Pemp(I) in our analysis instead of P (I) = const.

In turn, Pemp(I) was inferred using a well-established algorithm for estimation of one-
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dimensional continuous probability distributions from data [77].

All of this analysis was implemented using Matlab, and the code is available for

download from a public GitHub repository https://github.com/EmoryUniversityTheoreticalBiophysics/

C.-elegans.

2.5.3 Calculating the template velocities, the covariances, and
the scaling function

The template for the paused state up is calculated by taking the average of all

paused velocity profiles for each of the three worm datasets. The covariance Σp is

then the covariance of the set of the paused velocity profiles.

For active worms, we start with fixed putative parameter values I1 and I2. We

then calculate the active template ua and the covariance matrix
∑

a by maximizing

the likelihood in Eq. (2.7)

∂
∑Ntype,a

i logP (vi|a, Ii)
∂ua

∝
Ntype,a∑

i

[
vifI1,I2(Ii)− uaf

2
I1 I2(Ii)

]
= 0, (2.14)

∂
∑Ntype,a

i logP (vi|a, Ii)
∂Σa

∝
Ntype,a∑

i

[vi − uafI1,I2(Ii)]
2 − (Σa)

−1 = 0, (2.15)

where Ntype,a is the number of active worms of the analyzed type. This gives:

ua(I1, I2) =

∑Ntype,a

i=1 vifI1,I2(Ii)∑Ntype,a

i=1 f 2
I1,I2(Ii)

, (2.16)

Σa =

Ntype,a∑
i

[vi − uafI1,I2(Ii)]
2 . (2.17)

Having thus estimated ua and Σa at fixed parameter values I1, I2, we maximize∏
i P (vi|a, Ii) over the parameters using standard optimization algorithms provided

by MATLAB. We perform optimization from ten different initial conditions to increase

the possibility that we find a global, rather than the local maximum.

https://github.com/EmoryUniversityTheoreticalBiophysics/C.-elegans
https://github.com/EmoryUniversityTheoreticalBiophysics/C.-elegans
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Chapter 3 Cost of transport, not stability,
predicts the walking speed distribution of
Drosophila melanogaster at different ages

3.1 Introduction

Aging is associated with a myriad of behavioral changes [22, 28, 78, 79]. Perhaps

the most studied age-related behavioral change is the reduction of locomotion speed,

which is extensively studied in humans [80] and other animals [81, 25]. There are two

hypotheses of this phenomenon: decrease in energy budget and decrease in motor

control ability. Changes in energy budget during aging has been extensively studied

[28, 82]. Studies in mammalian tissues [83] showed that aged tissues have reduced ca-

pacity to produce ATP, thus potentially reducing the energy sources for locomotion.

Another possible explanation for age-related locomotion decline is motor control abil-

ity. Different studies have already hinted this may be a major factor. First, postural

stability is one of the focus in aging research. Studies showed that human postural

stability decreases with age [84, 85, 86]. To compensate the reduction of postural

stability, aged human adopt a more conservative gait pattern, which reduces walking

velocity [87]. Moreover, proprioception of humans and animals declines during aging

[88, 89]. For fruit flies, proprioception deficiencies by mutation affect walking speed

[90]. Missing, however, is an understanding of the relative contribution of these two

factors to an animal’s locomotion tendencies. In this paper, we study this relationship

using the fruit fly Drosophila melanogaster as a model organism.

The fruit fly is one of the principal model organisms used for studying the effects of

aging [22]. Many behavioral studies of aging have been conducted on the fly, including

cardiac function [91], olfaction [26], stress resistance [92] and exploratory activity [25].
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Such studies led to several important discoveries regarding genetics and environmental

factors that influence life span [93, 94, 95]. They are suited for aging studies for several

reasons. They develop to adulthood quickly and have a relatively short lifespan

compare to mammalian models. They are easy and inexpensive to maintain, and

many genetic tools are available. Furthermore, the fly is already established as a

model for investigating age-related functional decline. Freely moving flies was shown

to have less spontaneous locomotor activity when aged. [96].

To study the energy cost and stability of locomotion, we must first characterize the

locomotion behavior of the fly comprehensively and quantitatively. In the last decade,

many techniques have been developed to study the details of fruit fly locomotion.

High temporal and spatial resolution tracking of each leg of a fly was designed for

constrained spontaneous movement on a trackball [97]. For unconstrained locomotion,

an automated system was developed to track and analyze the trajectory of multiple

flies simultaneously [98]. In this project, we are utilizing a technique that allows

high temporal and spatial resolution analysis of a freely moving fly [32]. This method

captures high-resolution video of a fly moving in an arena, extracts the dynamics of its

posture and classifies the animal’s action into different behavioral modes. Our analysis

on stability and energetic cost of locomotion is based on the postural dynamics from

this method.

There have been many studies that aimed to investigate the motor control ability,

or in other words the stability of locomotion, of legged animals. Most of these meth-

ods involved either a static measurement of center of mass [99] or a biomechanical

model of locomotion [100, 101]. Very few of these studies tried to infer the stabil-

ity from the postural dynamics data. In 1999, Full and Koditschek presented the

Templates and Anchors Hypothesis, which suggested that locomotion can be mod-

eled in two ways [102]. Template is a simplified model which serve as a guide for

control of the body, while Anchor is a more biologically detailed model which allows
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the template model to be embedded. This hypothesis suggests that in the high di-

mensional dynamics of animal locomotion, there exists a low dimensional attracting

invariant manifold[36]. Base on this theory, Revzen and Guckenheimer [36] developed

a method to reconstruct the dynamics of systems with a limit cycle from time-series

data. This approach utilizes the Floquet theory to estimate how fast does the sys-

tem recover from perturbations away from the limit cycle. This method gives us a

measurement of stability by the estimating the time scale of perturbation recovery

during locomotion.

Several methods have been developed to estimate energy expenditure of locomo-

tion. One way is to measure index of metabolic rate such as oxygen consumption

[103] and external load [103]. The other method is to estimate the energy consump-

tion through a biomechanical model of leg dynamics. Nishii [33, 34] proposed an

analytical estimation of energy cost (cost of transport) legged movement by modeling

the leg as links and joints. In this model, the cost of transport is given by the sum of

mechanical work and energy dissipation. The physical parameters of the model are

quantified by high-speed imaging [90],[104].

In this paper, we study the relationship between speed distribution, energy cost of

transport and stability. We estimate the cost of transport and measure gait stability of

freely behaving flies of varying ages. Through building a linear regression model that

predicts speed distribution from energy cost of transport and stability, we discover

that the cost of transport, not stability, determines the speed distribution. Finally

we discover that this relationship does not change with the age of the fly. This result

suggests that the walking speed distribution is not limited by the motor control ability,

but the energy budget of the fly.
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3.2 Experiment

The experimental setup is the same as used in Berman et al. [32]. Here the

spontaneous behavior of ground-based fruit flies (D. melanogaster) were studied in a

featureless circular arena. The arena was constructed as a thin chamber with gently

sloping sides to prevent flies from flying, jumping and climbing the walls. To prevent

the flies from adhering to the ground, the underside of the arena was coated with

repellent saline compound. The flies were recorded with sufficient spatial-temporal

resolution (100Hz, 1088×1088 pixels) to resolve moving body parts such as legs. The

camera was controlled by a LabView-based tracking system to keep to the fly inside

the frame.

We studied the behavior of 275 male flies with an age of 1 to 71 days after eclosion.

Each fly was isolated within 4 h of eclosion. Before the start of the recording, the

flies were transfered to the arena via aspiration and allowed 5 minutes or adaptation.

Then it was imaged for 1 hr, yielding 9.9× 107 frames in total for all 275 flies. All of

the recordings occurred between 9:00 and 13:00 in a temperature of 25 degree Celsius.

The data were then used to generate a two-dimensional behavioral map that sep-

arates stereotyped behavior using unsupervised approaches (for full details see [32]).

The images were first segmented from the background, rescaled to a reference size and

then aligned by their head-to-tail vector. Then a set of 50 basis vectors of flies’ posture

was generated using Principle Component Analysis (PCA). Time series were produced

by projecting the pixels of the images onto the basis set. The spectrogram of these

projections was then embedded into two dimensions using t-Distributed Stochastic

Neighbor Embedding (t-SNE) [105]. Each point on the behavioral map represent a

unique set of postural dynamics, and the nearby positions represent similar motion.

This is due the fact that t-SNE algorithm preserves the local relationship when em-

bedding the high dimensional data into a low dimensional map. The behavior of each

region on the map was identified manually and the corresponding projection time
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Figure 3.1: Data analysis pipeline overview. (a) For a specific behavioral region,
the projections of different modes in this region are extracted and then estimated
the phase value. The synchronization parameter of each mode is then calculated by
phase-averaged projections. Then synchronized modes are defined by the modes that
have a synchronization parameter larger than 0.5. (b) The projection pairs y(φ) and
y(φ + 2π) are then selected for each of the synchronized modes. The return map is
estimated by linear regression and the eigenvalues of the return map is computed.

series become the basis of our analysis.

3.3 Analysis

The analysis of fly behavior is composed of two sections. First, we determine the

stability of a specific behavioral region using Floquet theory [36]. The stability is

defined as the characteristic decay time of perturbation. Second, we estimate the

power consumption of the behavior by an biomechanical model [33, 34]. The physical

parameters of the model is obtained from previous research [106, 90].
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3.3.1 Estimating stability by Floquet theory

The framework of stability analysis is described in figure 3.1. We use a modified

algorithm based on Revzen & Guckenheimer [36], which is based on Floquet theory,

to find out the stability of locomotion. Floquet theory states that for a linearly driven

periodic system

ẏ(t) = A(t)y(t), (3.1)

where A(t) is periodic

A(t+ T ) = A(t), (3.2)

the fundamental matrix solution φ has the form

φ(t) =
∑
i

Qi(t)e
tRi , (3.3)

where Qi(t) are linearly independent and periodic, and the factor etRi are called the

Floquet multipliers. The Floquet multipliers determine how fast each mode decays

with time. The Floquet multipliers are given by the eigenvalues of the return map A.

y(φ+ T ) = Ay(φ), (3.4)

In our analysis, the periodic system is the postural dynamics of the fly. By Floquet

theory, the solution can be mapped into a combination of periodic functions and the

corresponding decay functions. The decay function represents the characteristic time

of the corresponding component of the periodic postural dynamics. The longest

characteristic time represent the main locomotion behavior of the fly. The second

longest characteristic time represents the decay time of perturbation. Therefore we

select the second longest characteristic time as a proxy for the stability of the fly

behavior.

3.3.2 Stability analysis algorithm

The raw behavioral data ~yi are the time series projections on 50 eigenmodes of the

posture and the corresponding watershed behavioral region index. The locomotion
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data is first isolated using the embedding method developed by Berman et al. [32]. At

the each analysis cycle, we select a specific locomotion region and the corresponding

projection data series. The separate data series are catenated together with the first

2 and last 2 frames (0.02 sec) discarded to avoid artifacts in phase estimation. Each

series is subtracted by its mean over time before catenation. We then use the Phaser

phase estimation algorithm developed by Revzen & Guckenheimer [35] to estimate

the phase of the projection ϕ̂i.

Since not every eigenmode is synchronized with the dynamics, we use an iterative

heuristic to select the synchronized modes. At each cycle we estimate the phase and

calculate the synchronization parameter of each mode, which is defined as the ratio

between explained variance by the phase and variance of projection of each mode.

We then choose the modes for next cycle by a linearly increasing threshold. After 20

cycles and maximum threshold of 0.5, a set of synchronized modes are selected for

each behavioral region. For some regions, none of the modes are synchronized and

the region is not used in our analysis.

Then for each valid behavioral region, we extract the points on the Poincare section

~yi at target phase φj = φ0 + 2πj by linearly interpolating between adjacent data

points. Then we calculate the return map by multivariate regression on projection

pairs ~yi and ~yi+1. The Floquet multipliers are given by the eigenvalue of the return

map matrix A. Contrary to deterministic noiseless dynamical systems, we expect

the Floquet multipliers to vary between the Poincare section, as noted in human

and cockroach data [107, 36]. To address this problem, we calculate the empirical

distribution βφ of the return map Aφ by bootstrapping the pairs {~yi, ~yi+1} while

retaining the relationship between the points. The empirical distribution allow us to

estimate the confidence level of the Floquet multipliers. Moreover, to select a proper

Poincare section, we compute the multiplier for 100 equally spaced phases around the

cycle and pick the phase value with largest multiplier closest to 1.
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Figure 3.2: Power consumption per unit mass as a function of speed. The power
consumption is estimated by the method mentioned in Nishii 2006. In this model we
used the physical parameters estimated in Mendes et al. 2013.

3.3.3 Power consumption

The power consumption of locomotion is difficult to measure directly from ex-

periment. Therefore we use an analytical estimation developed by Nishii [33, 34] to

calculate the power consumption. In the model, there are two phases of locomotion:

stance and swing. The stance phase represent the phase when the leg exert force on

the ground and push the body forward. The swing phase represent the phase when

the leg is moving forward to the starting position. In each phase there are two sources

of energy consumption: mechanical work and heat dissipation. Combining these four

factors, we estimate the power consumption per unit mass of fly as a function of speed

(figure 3.2). The power consumption has a non-linear relationship with speed.

e(V, β, S) = esww + estw + eswh + esth (3.5)

Where esww , estw represent the work done in swing and stance phase, and eswh , esth

represent heat dissipation in swing and stance phase respectively. Their analytical

form is shown as follows:
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Table 3.1: Parameters of locomotion energy consumption model

Body weight M 0.25 mg [106]
Body length 2.5 mm [106]
Stance length S 0.04711× V + 0.748 [90]
Velocity V 0-30 mm/s [106]
Length of leg l 1.25 mm [106]
Moment of inertial of the leg I 0.0156 mgmm2 [106]
Duty ratio β tst

tst+tsw

Stance duration tst 11.5 + (910/V ) [90]
Swing duration tsw (−0.126× V ) + 36.56 [90]

esww =
nI

l2M

βV 2

S

1 + β2

(1− β)2
(3.6)

estw =
1

8l
S (3.7)

eswh = γ
2nπ2I2

l2M

V 3β2

(1− β)3S2
(3.8)

esth = γ
M

n

1

βV

(
α2 +

S2

12

)
(3.9)

Where n is the number of legs, M is the body weight, S is stance length, V is

locomotion speed, β is the duty ratio, l represent the length of a leg, I is the moment

of inertia of the leg around its joint. These physical parameters are estimated from

Isakov et al. and Mendes et al. [106, 90]. Values of the parameters and scaling

relationship between duty ratio and speed are listed in Table 3.1. The stance length

(step length) is estimated by a regression model from speed according to Mendes et

al. [90]. The factor γ represent the ratio of heat dissipation to mechanical work and

α is the amplitude of the torque required to maintain a bent leg posture. We are

using the values from Nishii 2006 [34] for these factors.
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Figure 3.3: Statistics of analysis of different behavioral region. Grey color denote
regions that do not have enough data to estimate the statistic. (a) Probability den-
sity function of behavior space and segmentation of behavioral region (b) Functional
description of behavioral regions. The characterization of behavioral region is per-
formed through visual assessment.(c) Mean phase frequency of estimated phase. (d)
Number of synchronized modes. (e) Maximum synchronization parameter of each
behavioral region. (f) Variance of synchronized modes as a ratio of total variance of
all modes.

3.4 Results

3.4.1 Phase estimation and synchronization

Figure 3.3 shows the statistics of the phase estimation and synchronized modes.

Similar to the results in Berman et al. [32], we notice that there are several different

phase frequencies in the locomotion regions. The fastest region has a phase frequency

at around 13Hz, which correspond to around 20 mm/s. For all the behavioral regions,

the number of synchronized modes ranges from 0 to 23 (figure 3.3b). In the locomotion

region, there are 8 to 15 synchronized modes. The maximum value of synchronization

parameter of each behavioral region varies, but the values are higher in the locomotion
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region compare to other region (figure 3.3c).

We quantify the statistical power of the synchronized modes by calculating the

fraction of variance it explained. In the locomotion region, this number ranges from

0.3 to 0.6.

3.4.2 Stability at different behavioral region

To systematically investigate the relationship of locomotion speed and stability,

we focus on several locomotion regions with the highest probability density function

(figure 3.3e). For each behavioral region, we catenate all projection time series and

estimate the absolute value of the Floquet multipliers (figure 3.4a). The largest

multipliers in different locomotion regions have an absolute value near one, indicates

the dominant components have a very large decay characteristic time. This is because

in our analysis, we select the data of the animal performing a specific behavior.

Therefore the corresponding periodic trajectories in the postural space should oscillate

indefinitely, and the largest Floquet multiplier should be close to one.

Since the most stable component is the locomotion behavior itself, the second

largest Floquet multiplier represents the decay time of perturbation. If the loco-

motion is stable, the decay characteristic time and the multiplier should be small.

We estimate the multipliers at different behavioral regions (figure 3.4c) and discover

that the stability decreases when the locomotion speed increases. Note that for some

regions, there are not enough projection pairs to compute the multiplier.

3.4.3 Stability of different age groups

To understand the effect of age on the stability of locomotion, we divide the data

into five groups, each representing a 14 days period. We analyze the data with the

same method and project them onto the same behavioral map. But even in the same

behavioral region, the animals behaves differently. In the fastest locomotion region,

the average frequency of phase estimate decreases with time (figure 3.5a). Therefore
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Figure 3.4: Eigenvalue rank plot of locomotion region. (a) The eigenvalues of four
locomotion region with different speed. The errorbars are estimated by bootstrapping
the projection pairs. (b) Region corresponding to (a), coded by color. (c) Map of
second largest eigenvalues at different behavioral region. Grey area denote behavioral
regions that do not have enough data to estimate the eigenvalues.

we convert the Floquet multipliers to a characteristic time to represent the dynamical

stability of the specific behavior. The characteristic time is defined by

t∗ =
−1

f logM
(3.10)

where M is the second largest Floquet multiplier and f is average frequency of the

phase in the behavioral region. This is equivalent to the time need for the perturbation

to decay to 1/e of the initial amplitude.

In general, the relationship of locomotion speed and stability is preserved during

aging. The characteristic time of the fastest locomotion is the largest, suggesting the

stability is the lowest. For most of the locomotion regions, the 15-28 days period has

the highest stability, and then the stability decreases with age. This confirm with

previous studies that stability of locomotion decreases with age.

3.4.4 Relationship between speed, stability and power con-
sumption of different age groups

To understand to what extent a decrease in energy budget and ability to control

motor system affect the reduction of locomotion speed, we use a linear regression
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Figure 3.5: Behavioral dynamics. (a) The mean phase frequency of locomotion region
as a function of age. (b) The eigenvalues of locomotion region with speed equal to
11Hz. (c) The characteristic time of perturbation of different locomotion region as
a function of age. Note that for the 13Hz locomotion, there are not enough data to
estimate the Floquet multipliers of older age groups.

model to estimate the relationship between probability of speed, stability and power

consumption at different locomotion regions. Similar to previous section, we bin the

data set into five different age groups and estimate the parameters separately. In the

model, we represent stability by the characteristic time t∗. The relationship is shown

as follows:

log(P ) = β0 + β1 log(e) + β2t
∗ (3.11)

where P represents the probability of speed. Figure 3.6a,b shows that power consump-

tion is highly correlated with speed distribution while characteristic time (stability)

does not exhibit any correlation. This observation is confirmed by the regression pa-

rameters. The parameters for power consumption are significantly smaller than zero,

indicating a negative relationship between power consumption and speed distribution.

The parameters for stability (t∗) are not significantly different from zero, indicating

stability does not have a linear relationship with speed distribution.(Figure 3.6d, e, f)

The scatter plot of probability of speed and stability further shows that it is highly

unlikely that another nonlinear structure exists (Figure 3.6b). As a comparison, we

also studied linear models with stability or log power consumption only. Table 3.2



43

Figure 3.6: Relationship between probability of speed, stability and power consump-
tion of different age groups. (a) Relationship between log probability of speed and
log power consumption of flies in 1-14 days. The surface denote the regression model,
and each data point represent a locomotion region. (b) Relationship between log
probability of speed and stability measured in characteristic time of flies in 1-14 days.
The surface denote the regression model, and each data point represent a locomotion
region. (a) and (b) represent the same model in different perspective. (c) Relationship
between log probability of speed and log power consumption of flies of different age
groups. Each surface represent a regression model. (d) Regression model intercept
of different age groups. (e) Regression model coefficient of power consumption. (f)
Regression model coefficient of stability measured in characteristic time.
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Table 3.2: BIC score of different relationship models at different ages

Model 1-14
days

15-28
days

29-42
days

43-56
days

57-71
days

stability only -3.2 -0.5 -18.0 -14.2 -5.2

power consumption only -43.2 -35.2 -31.4 -41.6 -32.4

stability and power consumption -39.4 -29.7 -30.7 -35.8 -30.2

Table 3.3: R2 of different relationship models at different ages

Model 1-14
days

15-28
days

29-42
days

43-56
days

57-71
days

stability only 0.09 0.002 0.73 0.03 0.01

power consumption only 0.98 0.97 0.92 0.97 0.96

stability and power consumption 0.99 0.97 0.95 0.95 0.98

and 3.3 present the Bayesian information criterion (BIC) score and R2 of different

models as a function of age. From Table 3.2, we note that the BIC score of power

consumption only model is less than other models. Therefore we can conclude that

power consumption is the major factor in determining the speed distribution of the

fly.

Age of the fly changes the relationship between speed distribution, stability and

power consumption, but stability still plays an insignificant role in the relationship in

all age groups. The parameter of stability does not exhibit any significant difference

when age changes (Figure 3.6f). At older (57-71 days) and younger age groups (1-

14 and 15-28 days), the power consumption has a greater negative impact on speed

distribution compare to middle age groups (29-42 and 43-56 days)(Figure 3.6e). This

coincide with the observation that middle aged flies spend a significantly more time in

faster locomotion, compare to older or younger flies. The intercept, which represent

the baseline of the magnitude of speed distribution, also support this observation

(Figure 3.6d).
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3.5 Discussion

We design a method to determine the quantitative relationship between speed dis-

tribution, power consumption and stability. We estimate the stability of locomotion

using Floquet theory from postural dynamics, and power consumption by a biome-

chanical model with physical parameters estimated from other studies. Locomotion

behavior is identified by a map of behavior from postural data. Contrary to many ob-

servation and hypothesis [108, 109], we found that the stability of locomotion has no

significant correlation with speed distribution. The power consumption has a much

stronger predictive power to speed distribution. By building a regression model, we

discovered that the power consumption has a strong linear relationship with the speed

distribution.

Combine with tools of genetic and neural perturbation, we can now study quan-

titatively how different perturbation is affecting the stability and distribution of lo-

comotion behavior. We stress that we do not present this result as a causal relation

between speed distribution and power consumption. Our study suggest a strong

correlation, but further studies are required to uncover the mechanism of the fly to

determine its locomotion speed.

Finally, we note that this method is not limited to Drosophilia locomotion. The

stability analysis algorithm is not dependent on any specific animal. Given that

behavior is periodic and with sufficient data, this algorithm is able to analyze stability.

On the other hand, the Energy consumption model can be generalized to any legged

locomotion. This allows potential application to different animals and find out the

relationship of speed distribution with stability and energy consumption.
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Chapter 4 Summary and outlook

Animal sensorimotor behavior is an intriguing but complex phenomenon. While

the underlying mechanisms are not clear in most cases, in this thesis I demonstrate

that it is possible to infer a statistical relationship between sensory information and

locomotion behavior. Since locomotion is highly stereotypical, high dimensional be-

havioral data can be reduced to low dimensional space [15, 32]. At the same time, the

stereotypical behavior enables us to classify different behavioral modes of an animal.

Through these properties, I develop two models for C. elegans and D. melanogaster

using techniques from Bayesian inference and dynamical system theory. These ap-

proaches reveal important features that predict thermal noxious stimulus in worms

and walking speed distribution in fruit flies.

The statistical model in Chapter 2 allows us to infer the strength of heat stim-

ulus from the escape behavior of C. elegans, and to use this model to measure the

changes in perceived level of stimulus felt by an individual animal due to the effects

of chemicals and genetic mutation. Using the entire escape profile, instead of ad hoc

measurements, this model can infer the posterior probability of perceived stimulus

level. Moreover, by comparing the escape response profile to wild-type response tem-

plate, we can distinguish changes to the sensory system and motor system. Most of

the nociceptive assays in previous studies are not able to address this difference. In

our case, the stereotypical escape behavior is not affected by ibuprofen, while TRPV

mutation affects the stereotypical behavior significantly. Therefore, ibuprofen is likely

to reduce the perceived pain level, while we cannot make any inference of analgesic

effects of TRPV mutation. This method can be used to build a high-throughput ex-

periment system to study the genetics of nociception or find out possible candidates

for analgesics.
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Besides C. elegans, many other animal models are used for nociception studies

[110]. It is natural to develop statistical models or machine learning methods to infer

the level of pain in other animals. One of the possible directions is inferring perceived

pain of rodents. With a manual behavioral coding system, perceived pain level and

effect of analgesics can be estimated [111] from facial expression. But similar to other

assays, this method focuses on ad hoc components of behavior. It would be interesting

to improve this process by using facial expression recognition techniques developed

in computer vision [112] to build a nociception assay base on stereotypical behavior.

Besides inferring the sensory system input, I also investigated the possibility of

inferring behavioral strategies through quantifying locomotion. In particular, I focus

on the change of locomotion speed distribution during aging. There are two major

hypothesis of reduction of walking speed - reduction of energy budget [28, 83, 113]

and locomotion stability [108, 114, 109, 115]. In Chapter 3, I attempt to study

this relationship by estimating the stability and energy budget during locomotion of

freely walking fruit fly D. melanogaster at different ages. Through method developed

from dynamical system theory [35, 36] and biomechanics [34, 33], I determine that

energy cost of transport, not stability, predicts the walking speed distribution. This

statistical relationship cannot explain the causal relationship between these factors,

and further experiments are needed in this direction. For example, to validate the

relationship between energy cost of transport and walking speed distribution, we can

investigate the same relationship with different mass added to the freely walking fly.

Furthermore, recent research discovered that the fly behavior exhibits multiple time

scales and can be organized into a hierarchical structure [116]. It would be interesting

to see how aging affects the transition of locomotion states and how locomotion

stability and energy cost determine the distribution and transition of these locomotion

states.

In summary, in this thesis, I demonstrated the possibility to infer characteristics of
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sensorimotor behavior by quantifying dynamics of animal locomotion. These models

help us to understand more about the behavioral strategies during aging, the rela-

tionship between nociception and escape behavior, and developing new analgesics in

the future. I hope this will lay down the foundation for further research on animal

behavior in the future.
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