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Abstract

Dynamical Inference and Representations in Complex Biological Systems
By Josuan Calderon

This thesis introduces a comprehensive analytical framework that combines Temporal
Autoencoders for Causal Inference (TACI) with a new pipeline for discovering and an-
alyzing behavioral states in complex dynamical systems. Although these two method-
ologies have different purposes, they both focus on comprehending time-dependent
phenomena through the lens of time series and temporal interactions, which are om-
nipresent in the natural world.

We begin with TACI, a novel methodology designed to analyze time-varying causal
interactions within complex dynamical systems. Traditional approaches to causal-
ity often fall short when faced with non-linear, non-stationary interactions between
system variables. To address these challenges, TACI leverages a novel metric, the
Comparative Surrogate Granger Index (CGSI), alongside a two-headed Temporal
Convolutional Network (TCN) autoencoder architecture. Through tests on both syn-
thetic and real-world datasets, we demonstrate TACI’s ability to accurately quantify
dynamic causal interactions across a variety of systems. Our findings display the
method’s effectiveness compared to existing approaches and also enhance our under-
standing of time-varying interactions in various domains, from physical to biological
systems. Through this work, TACI emerges as a significant advancement in the field
of causal inference, promising to deepen our comprehension of dynamic systems across
a range of scientific disciplines.

The thesis also explores the intricate dynamics of behavioral states using a com-
prehensive analytical framework rooted in proven methods of dynamical systems and
advanced computational techniques. By integrating wavelet transforms with autoen-
coders, followed by predictive modeling using Long Short-Term Memory (LSTM)
networks and dimensionality reduction via t-distributed stochastic neighbor embed-
ding (t-SNE), we offer novel insights into the temporal and spectral characteristics of
behavior. The use of LSTM networks to model the temporal sequences of behavioral
states aims to predict future states and identify stable points within the system’s
dynamics. These fixed points are then mapped into a two-dimensional space using
t-SNE, creating a visual landscape of behavioral basins of attraction. This visual-
ization not only simplifies the interpretation of behavioral dynamics but also reveals
the underlying structure and transitions between states, highlighting areas of stabil-
ity and potential pathways for state changes. Our findings highlight the stability
and fluidity of behavioral states, providing insights into the mechanisms governing
behavioral transitions. The identification of basins of attraction and the hierarchical
organization of behaviors suggest that complex behaviors may be constructed from
simpler, foundational actions.

The thesis successfully demonstrates how the TACI methodology and the behav-
ioral states pipeline provide an extensive strategy to understand dynamical systems.
Together, they offer novel insights into the behavior and causality within these sys-
tems, highlighting the fluidity and stability of behavioral states, and providing a



deeper understanding of the mechanisms driving transitions. This unified approach
not only advances our understanding of individual systems but also offers a broader
perspective on the temporal interactions that shape the complexity of the natural
world, as exemplified by its application to diverse datasets including climate pat-
terns, neural activities in monkeys, and the behaviors of rats.
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3.2 Causal inference in the Rössler-Lorenz System . . . . . . . . . . . . . 89

3.3 Causal inference in the bidirectional species system . . . . . . . . . . 90

3.4 Causal inference in the coupled autoregressive models system . . . . . 91

3.5 Causal inference in the coupled Hénon Maps system . . . . . . . . . . 92
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1

Chapter 1

Quantifying temporal dynamics in

biological time series

1.1 Introduction

Temporal relationships are essential components of the dynamical systems that we

find everywhere in nature. They are present in a wide variety of systems, ranging

from the smallest biological processes to the complex mechanisms driving climate

change. These interactions regulate how elements within a system impact each other

across different points in time. Thus, these relationships are not static but rather

are continuously flowing and evolving. For instance, these interactions may manifest

as feedback loops in ecological systems [1], complex patterns of gene expression in

cellular processes [2], or intricate synchronizations during epilepsy episodes seen in

the human brain [3].

One classic example of temporal relationships can be found in the predator-prey

system involving Didinium and Paramecium. Gause first studied this system in the

1920s, which was later further improved by Veilleux [1]. Through this convoluted

connection between survival and population control, temporal interactions between
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the predator and its prey lead to constant fluctuations in the population sizes over

time. Another interesting case is observed in the relationship among Pacific sardine

(Sardinops sagax ) landings, northern anchovy (Engraulis mordax ) landings, and sea

surface temperature (SST) measured at Scripps Pier and Newport Pier, California

[4]. Several competing hypotheses have been generated to answer for the alternat-

ing patterns of dominance of sardine and anchovy observed across global fisheries

on multi-decadal time scales. Some researchers argue that the species act in direct

competition with each other; however, other researchers claim that this is merely a

response to common large-scale environmental forces. This example showcases the

complexity of temporal interactions in marine ecosystems by demonstrating how tem-

poral dynamics can influence species populations.

As a result, we can see that quantifying and understanding temporal dynamics is a

very important topic of scientific research. Only through understanding the dynamic

structure of these systems can we reach an understanding of the complex interactions

present in the natural world. This thesis explores the temporal interactions influ-

encing behavioral states and causal relationships in biological organisms. Through

novel computational methods and models, this research tries to map out the temporal

patterns observed in these systems and discover the fundamental mechanisms that

govern these patterns.

My goal in this thesis is to build towards an integrated approach that is able to

combine the concepts of temporal interactions and dynamics in a way that allows

us to understand the complex flow of events and behaviors in natural and artificial

systems. At the heart of this investigation, I will focus on two important areas:

the causal inference of temporal interactions and the characterization of behavioral

states as they unfold over time. The first area looks at identifying cause-and-effect

relationships within temporal data, pushing the limits of traditional causal analysis by

introducing innovative methods to capture the dynamic nature of these interactions.
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The second area involves exploring the diverse range of behavioral states and mapping

out the transitions and stability of these states to reveal the deeper structure of

biological behavior. Together, these approaches shed light on the complex interplay of

temporal dynamics, providing new insights into the patterns that govern the behavior

of complex systems.

Causal Inference as a Key to Decode Temporal Interactions:

Real-world signals are usually not stationary and well-behaved, with their causal link-

ages and interactions often exhibiting unpredictable patterns: frequently appearing,

changing, disappearing, and reappearing. Despite these challenges, many important

potential applications exist for casual discovery across many fields. For instance,

causality is used in climate science to comprehend the complex interactions between

the many factors that affect climate change, such as how human behavior impacts

global warming [4]. In healthcare, accurate detection of causal relationships is es-

sential for developing treatment plans that can monitor the influence of different

medications or lifestyle decisions on the health of the general population [5]. More-

over, economists apply causal models as a prediction tool to anticipate how various

economic indicators are going to be affected by changes in policy or recent news de-

velopments [6, 7, 8]. In neuroscience, causal models have been used extensively to

model the complex web of interactions between different brain regions, helping to

comprehend and, in some cases, prevent neurological disorders, including Alzheimer’s

and Parkinson’s [9, 10].

The study of temporal interactions focuses on reaching a deep understanding of a

system’s causal connections and relationships as they unfold over time. However, in

many circumstances, identifying causality can become a difficult and arduous process

due to the inherent characteristics that define these systems of interest. One of the

main challenges many causal inference methods face is the non-linear relationships
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observed in these systems. Small perturbations to one time series can trigger dispro-

portionally large effects on another time series. These dynamics, unfortunately, can

mask the underlying cause-and-effect mechanisms present due to the unpredictability

and chaos that come with the changes from perturbing some of the variables as they

ripple through the other parts of the system. Another challenge is that, in general,

these systems typically contain many different interacting components that can in-

troduce multiple layers of complexity to their analysis. As the dimensions of the data

increase, the interactions become more intricate and harder to predict. Addition-

ally, when statistical properties such as the mean and variance are non-stationary, it

can further complicate matters. The presence of hidden factors, or latent variables,

can also be detrimental to causal discovery since they are not directly observable

through conventional methods. These hidden influences create misleading connec-

tions between variables that may appear related, leading to inaccurate detection of

bidirectional causal links. Moreover, the behavior of these systems can also be affected

by both internal and external environmental factors that turn the task of isolating

causal relationships into an even more difficult process.

Two main approaches have been used to identify causal relationships [2]. The

first involves directly tracking how perturbations to one element of a system can af-

fect other aspects of it. However, implementing this approach can be difficult since

it is often limited by ethical, logistical, and technical constraints. Examples of the

approach are prominent in disciplines such as human physiology and neuroscience

[11, 12, 13]. There, we see that direct manipulation of variables related to physio-

logical processes or to those that control the flow of information between different

brain regions often creates ethical concerns or may simply be unattainable by current

methods of study. Therefore, on top of the intricate nature of these systems, the

potential for negative consequences makes interventions in real-world systems often

impractical [14]. This problem, however, is not exclusive to the life sciences. For



5

example, in climate research, variables cannot be treated in the same way we are

used to in controlled experiments due to the magnitude of the system. Therefore,

manipulating weather systems to observe causal relationships is not a viable process.

Instead, researchers often develop complex models and run complex computer sim-

ulations to investigate how changes in one meteorological feature can impact other

parts of the climate system [15, 16, 14].

On the other hand, if we are unable to directly perturb the system of interest,

we must then rely on inferring causal interactions using a different alternative. By

passively observing the features of the system as they naturally unfold over time, we

can attempt to estimate the causal relationships that govern it. Inferring causality

from passive observations, however, also comes with its own set of challenges. For

instance, without the ability to control the system and randomly assign conditions, it

is difficult to rule out alternative explanations for observed relationships. Moreover,

the presence of co-founding and latent variables can obscure true causal links [17].

Thus, observed changes may be influenced by these unmeasured or unknown factors,

complicating the causal interpretation. Still, this method is extremely attractive in

various fields of research like genomics, ecology, epidemiology, space physics, clinical

medicine, and neuroscience. The use of interventions or randomized experiments in

these disciplines is often out of reach due to prohibitive costs and impractical time

requirements [2].

What have researchers done given these constraints? Many methods, such as

directed coherence and partial directed coherence, have been developed to tackle some

of these problems [18]. Even in the most straightforward nonlinear systems, however,

variables interacting for long periods can change their behavior and become anti-

correlated [19]. Therefore, it makes sense to initially approach these issues using cross-

correlation-based techniques. However, this method has two significant drawbacks:

first, the requirement for suitably large data sets, and second, the inability to detect



6

nonlinear interactions [20]. Data scarcity has been less of an issue over the past years

due to advances in data collection techniques. However, inaccuracy in the detection

of non-linear relationships has made researchers look for better alternatives.

A more effective method of determining causality involves the mutual prediction

of a few chosen observable metrics through multivariate models. In the context of

stochastic linear regression models, the idea of causality, first put forth by Wiener

and later more precisely defined by Granger [21], has come to be accepted as a

tool for identifying directed interactions between interconnected systems. The core

principle of this technique is that if signal X affects signal Y , then utilizing both Y ’s

historical data and X’s historical data should improve the prediction of Y ’s current

state compared to simply using Y ’s historical data.

Many methods built on this concept, such as Granger Causality(GC), have been

created to address multivariate linear models and nonlinear systems successfully. In

contrast to linear or nonlinear parametric models, alternative approaches, such as

Conditional Mutual Information (CMI), provide a model-independent mechanism to

assess nonlinear causality, applicable to deterministic and stochastic systems [22].

Using a somewhat different strategy, Convergent Cross Mapping (CCM) operates in

the state spaces of dynamic systems. The procedure continues to consider the ob-

servable variables X and Y . However, according to CCM, a deterministic dynamic

system’s states eventually converge on an attractor, which could be a point of equilib-

rium, a limit cycle, or a higher-dimensional chaotic attractor [23]. These techniques

frequently require a careful assessment of the particular properties of the system to

be able to detect causality in a consistent, understandable manner. These methods

claim to offer solutions to most problems, but in the end, they only provide solutions

to suitably selected examples. Finding a formula that will solve all the problems

is unrealistic, but there should not be conflicting results with the same method for

different systems with the same data type. This experience made us question the
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reliability of some of these techniques and where their limitations were. Nonetheless,

these methods helped us to understand the need for a mechanism that addressed

continuous coupling and synchronization in non-separable noisy systems.

Since Granger causality was initially designed for linear systems, its success in

nonlinear contexts can vary, depending on the problem. Even though a rather gen-

eral class of covariance stationary multivariate processes—rather than just stochastic

processes produced by a linear autoregressive scheme can be modeled as Vector Au-

toregressive (VAR) models, Granger causality can occasionally accurately capture

interaction patterns in various nonlinear time series. However, there are instances

where the method falls short [24]. Others have extended the effectiveness of this

method by incorporating Fourier transform surrogates. This concept provides a more

objective evaluation of the results by including an extra layer of testing. After fit-

ting an autoregressive model to the time series, comparisons can be made about the

variation in y, which can be explained by the addition of x and the one explained by

the addition of a surrogate (xs). As a result, we are able to calculate the Granger

Causality for the surrogates using the same methodology as for the original data.

With this addition, we are now able to identify powerful interactions like phase syn-

chronization or generalized synchronization. However, the GC surrogate estimation is

still limited in more complex systems that show strong coupled synchronization and

often measure misleading patterns of causality that generate a substantial number of

false positives.

In Chapter 3, we use this concept of surrogate Granger tests and develop a hybrid

model that aims to capitalize on the strengths of this technique and new machine

learning algorithms to provide more precise and trustworthy causal inferences to non-

linear problems. The framework we created does not aim to disprove many effective

systems where these methods excel but rather to study a class of systems that are not

covered to our knowledge by any of these more conventional methods. Our method,
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called Temporal Autoencoders for Causal Inference (TACI), consists of a two-headed

Temporal Causal Network (TCN) autoencoder that uses two symmetrical encoder-

decoder networks, where the input sequence is encoded into a latent space and is then

used to reconstruct a future representation of the original input learning more com-

plex features in the process. TACI is deeply rooted in the Granger causality concept

but addresses some of the original method’s limitations to draw reliable conclusions

regarding causal links.

We first illustrate the fundamentals of our methodology using simple models of

stationary synthetic data, where the actual underlying dynamic system is known to

us. Despite variations in signal timescale and noise, our method consistently and

reliably measures the interactions between observed nodes as well as the dynamic

complexity that results from these interactions.

Interpreting Temporal Dynamics through Behavioral States:

While temporal interactions are concerned with how different factors might affect

one another over time, the study of temporal dynamics is centered on detecting and

comprehending change patterns within a system as time advances. These efforts are

less about the direct influence of variables and more about observing the evolving

patterns, such as fluctuations, cycles, trends, and rhythms that characterize the evo-

lution of variables or states. Temporal dynamics are seen in complex and non-linear

systems, often resulting in unexpected behaviors and the emergence of new properties.

Therefore, this concept helps us capture and decode a system’s sequential behavior

over time. It reveals the system’s response and adaptation to both internal factors

and external stimuli while simultaneously adapting and maintaining an equilibrium.

This concept plays a fundamental role in biological systems. For instance, a

powerful demonstration of how temporal dynamics manifest within natural systems

is the seasonal migration of the monarch butterfly (Danaus plexippus) [25]. These
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butterflies embark on an extensive journey spanning thousands of miles from North

America to Mexico each year. This system is driven by several internal and ex-

ternal factors that are continuously changing its dynamics. Some of these factors

include environmental signals like temperature and daylight duration, alongside the

internal biological instincts responsible for navigation. Another compelling example

of temporal dynamics is the mating dance of the fruit fly, Drosophila melanogaster

[26]. This courtship ritual is a complex sequence of behaviors exhibited by the male.

This phenomenon includes unique alternating patterns of wing vibrations to produce

courtship songs. This initiative mating behavior is followed by licking and constant

attempts of copulation. Although these actions might appear random, if analyzed

in a deeper context, we can see that they are part of a highly structured and timed

strategy influenced by both internal genetic programming and external sensory cues

from the female and the environment.

Consequently, it makes sense to approach animal behavior from the point of view

of multiscale temporal dynamics. Understanding the dynamic structure of behavior

is crucial for illustrating how behaviors evolve, adapt, and manifest in a hierarchical

and structured manner. Numerous research studies have been published with the goal

of revealing stereotypical behaviors in various organisms [27, 28, 29, 30]. The idea

of stereotypy specifies that an organism’s actions can be broken down into discrete,

reproducible elements. For instance, Berman et al. [27, 28] found that most of these

behavioral states correspond to familiar movements such as walking, running, front leg

grooming, and proboscis extension. These states emerged from the data themselves

and are not a direct consequence of a priori definitions. Moreover, Stephens et al. [30]

also highlights this idea of behavior states. In this study, by analyzing the equation

of motion of the nematode C. elegans, they discover that the space of natural worm

postures can be fully described with a set of multiple attractors.

These methods rely on state-of-the-art machine learning and computer vision al-
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gorithms to gain insights into the complexities of animal behavior. Even though there

are subtle differences in these approaches, the primary goals remain the same: rec-

ognizing, classifying, and measuring the stereotypical actions displayed by animals in

their everyday lives. The general pipeline of these processes usually starts with ex-

tracting simple postural time sequences from a set of data and then converting these

still postures into dynamic representations that more accurately depict stereotypical

behavior as actions rather than just poses.

A commonality between these approaches, however, is that they rely on under-

standing behavior through the lens of a single or a relatively small number of time

scales that are semi-arbitrarily chosen [31]. Consequently, we still need a robust

analytical framework that is able to isolate important behavioral dynamics across

multiple time scales.

Fortunately, innovative methodologies have been created in recent years to de-

code the complexity of temporal dynamics, particularly using artificial neural net-

works [32, 33]. I will describe our attempts at adapting them to the discovery of

multi-time-scale stereotyped behavioral states and temporal dynamics. In Chapter

4, we used the detailed observation of 3D kinematics in rats over extended periods

for generating 2D maps that identify behavior primitive states. We found that these

states act as the building blocks from which complex behaviors are constructed. The

training of sequence-to-sequence Recurrent Neural Networks (RNNs) on these data

enriches the analysis of behavioral states and their transitions. These types of net-

works allow the identification of fixed and slow points within the RNN’s phase space.

Once we have found these states, we can also examine transitions between them and

how these transitions are influenced by temporal dynamics. The basin-like structure

that emerges from this analysis is represented in a complex landscape of behavioral

possibilities. Each basin denotes a distinct behavioral state. Therefore, we can think

of transitions between these basins as the temporal evolution of behavioral states
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over time. These transitions are not abrupt but flow in a continuum, influenced by

the organism’s previous experiences, its current state, and its anticipation of future

needs.

1.2 Causality

As stated in the introduction to this chapter, there have traditionally been two main

approaches used to identify causal relationships from dynamically changing systems.

The first is concerned with the effects that actively changing one aspect of a sys-

tem has on the others, while the second relies on passively observing the system’s

characteristics as they naturally evolve by themselves, without being affected by any

external factor [2]. Causality is a keystone in our endeavor to comprehend the world

around us. It is not just about observing that two events occur simultaneously; it is

also important to comprehend how one affects the other and vice versa.

The idea behind causality is that one event (cause) considerably shapes another

(effect). For example, if we take two distinct occurrences, A and B, in which B is

the result of A, then A must exist in order for B to manifest. However, B’s existence

does not always mean that A must occur. In other words, the cause and effect

have a domino effect relationship in which the cause influences the effect to some

extent. Interestingly, this dynamic can be a two-way street, in which the outcome

can sometimes loop back and influence the cause as well. Furthermore, the causal

relationships are complex, where influences can follow a “many to one” or “one to

many” direction. For instance, an event can be affected by several causal factors that

have occurred in the past and have some influence on its present. On the other hand,

one event can serve as a causal factor for several other events. As a result, studying

causality requires looking at the relationships and influences between many variables

and events.
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It is important to note that causality is a rather wide term that applies to many dif-

ferent domains and applications, offering guidance and insights into decision-making.

It includes science, philosophy, healthcare, economics, social sciences, and several

other quantitative disciplines that aim to clarify how and why specific results are the

direct product of possible cause-and-effect relationships in observational data.

Environmental scientists use causality to comprehend the complex interactions

between the many factors impacting climate change, such as how human behavior

affects global warming [4]. In healthcare, understanding causal linkages can be essen-

tial for developing treatment and preventative plans that can monitor the influence

of medication or lifestyle decisions on health outcomes [5]. Economists apply causal

models to understand how various economic indicators are affected by changes in

policy or recent news [6, 7, 8]. In epidemiology, causality is crucial for monitoring the

transmission of illness and developing public health initiatives [4]. In neuroscience,

causal models have been used to model the complex web of interactions between dif-

ferent brain regions, shedding light on the etiology of neurological disorders such as

Alzheimer’s and Parkinson’s [9, 10]. In engineering and technology, it serves as the

basis for system design, AI growth, and the development of machine learning algo-

rithms. Across all of these fields, the use of causality is integral to innovative thinking

and problem-solving, offering a foundation for comprehending and navigating the in-

tricate web of cause and effect.

1.2.1 Challenges in Causal Inference

Detecting causality in complex systems is far from a closed topic [17]. Competing

hypotheses emerge in many research papers as scientists try to explain systems in

which correlation, coupling, and synchronization continuously change the causal re-

lationships of their variables.

Mirage correlations can appear in even the most straightforward nonlinear sys-
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tems [34]. Variables that may be positively correlated at some point can become

anticorrelated some moments after or even lose all coherence, even when the under-

lying dynamics driving them do not change. For instance, in fisheries, due to the

changing environment that surrounds them, they can display changes in correlation

[4]. Another, more concrete, example is the case of a bidirectional two-species model

where two coupled logistic differential equations exhibit chaotic behavior:

X(t = 1) = X(t) [3.8− 3.8X(t)− 0.02Y (t)]

Y (t = 1) = X(t) [3.5− 3.5Y (t)− 0.1X(t)]

(1.1)

Although correlation – even in its nonlinear form, like in information theory –

is often an interesting and useful quantity to measure, the presence of correlation is

neither necessary nor sufficient to demonstrate causation (and the same is true for the

lack of correlation) [35, 36]. But just as correlation changes with time, variables can

show alternating patterns of dominance. Time-varying coupling linkages have been

widely investigated in finance. The coupling fluctuations tend to behave strongly

during periods of financial turmoil and debt crisis [8, 37, 6]. Understanding the

essence of these linkages is vital to making appropriate risk management decisions

and increasing returns.

In biology, even though observational error, noise, and limited data affect the

accuracy of any test, coupling changes in the time domain are still significant. For

example, time-varying coupling was found between two EEG signals during a typical

absence seizure from patients with childhood absence epilepsy [3]. In ecology, some

hypothesized that in the case of landings of Pacific sardine and northern anchovy,

the variables of the system exhibit a varying coupling due to the nature of the direct

competition between the species [38]. As one population starts to peak, the other

declines.

At certain coupling values, the possibility of correctly predicting the driver-response
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relationships between systems remains deeply ingrained in the concept of generalized

synchronization. We interpret generalized synchronization between variables X and

Y as the following:

y(t) = F (x(t)) (1.2)

where F is a transformation that describes how these variables adjust their dynamics

to a common behavior due to the coupling of the system [39].

We differentiate between two primary processes that might result in synchronized

states. First, consider the case of unidirectional coupling, while X evolves indepen-

dently and freely but simultaneously influences and controls the state of Y . There-

fore, the response subsystem becomes enslaved, closely mirroring the behavior of the

master subsystem. Second, there is the case of bidirectional coupling, where the rela-

tionship is reciprocal with no slaves or masters. Here, both X and Y are coupled with

each other, thus creating a rhythm adjustment that results in mutually synchronized

behavior.

These situations have become an area of active study in a range of scientific fields.

For instance, investigations about the extreme events of the coupled ocean-atmosphere

phenomenon “El Niño/Southern Oscillation” have shown that internal synchroniza-

tions play a crucial role in phase-to-phase causal linkage [40]. More examples can be

found in physiology, e.g., the human cardio-respiratory system, where a long period

of synchronization was discovered during breathing, even for weak coupling between

respiration and cardiac rhythm [41].

My goal in Chapter 3 of this thesis is to quantify the extent of time-varying cou-

pling on the causal linkage between variables of the interacting systems. I accomplish

this goal using a novel approach that is based on temporal convolutional network au-

toencoders and a new metric for assessing causality using a surrogate data approach.
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1.3 The Dynamics of Behavior

The concept of behavioral dynamics in biological studies is complex and has been

described in several ways. These concepts often reflect the complexity and variety of

actions and responses exhibited by organisms [42]. These ideas are broad and include

things like “all actions performed by an organism,” while others are more focused and

include things like “a total of movements made by the intact animal” [43].

Some definitions of behavior focus on the relationship that exists between an or-

ganism and its environment. This definition allows one to see the behavior as a

dynamic response to environmental stimuli from external factors. In contrast, alter-

native interpretations place emphasis on the internal processes of the organism, thus

suggesting that behavior is primarily dictated by internal states and physiological

processes. A more integrative approach takes into account both external and interior

influences. It views the behavior as a result of the interaction between an organism’s

internal state and its external environment.

1.3.1 Ethology and Tinbergen’s Four Questions

The biological study of animal behavior is known as ethology, and it includes a wide

variety of topics such as functional, phenomenological, causal, and ontogenetic. These

areas of research, also known as “Tinbergen’s Four Questions,” offer a comprehensive

approach to examining animal behavior [43, 44].

• Function (Adaptation): Why does the animal engage in this behavior, and how

does it increase its overall fitness? This question asks the adaptive value of a

behavior. It aims to understand the role that behavior plays in enhancing the

animal’s survival and reproductive abilities.

• Evolution (or phylogeny): How has the behavior evolved over time due to the in-

fluence of natural selection? This question investigates the evolutionary history
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of behavior. It is a comparative approach where the behavior among closely

related species is analyzed to determine how the behavior may have evolved

from the animal ancestors.

• Causation (or mechanism): What physiological mechanisms trigger the execu-

tion of behavior? This question addresses the immediate reasons for the behav-

ior. It involves understanding the stimuli and environmental factors that cause

a particular behavior.

• Development (Ontogeny): How have experience and learning shaped the de-

velopment of an individual’s behavior over the course of their lifetime? This

question focuses on how a person’s behavior changes from birth until adulthood.

It pays special attention to the influence of genes, learning, and environmental

triggers on the development of behavior.

The field of animal behavior, as outlined in the influential work of Niko Tinber-

gen in 1951 and 1963 [43, 44], originates from the groundbreaking studies of Kon-

rad Lorenz, Karl von Frisch, and Niko Tinbergen themselves, who were collectively

awarded the 1973 Nobel Prize for their notable contributions to our understanding of

animal behavior.

The primary focus of ethology is to provide an in-depth description and charac-

terization of behavior. This approach is crucial for understanding behavior within

its ecological and evolutionary framework. Initially, ethological studies were pre-

dominantly qualitative. They relied on detailed observational descriptions of animal

behavior. Ethologists would primarily observe animals in their natural habitat and

record their findings about animal life and behavior.

However, over the past decades, as new techniques for recording and describing

behavior have developed, there has been a significant shift towards more quantitative

methods in ethology. This transition involves the use of systematic methods to observe
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and document specific behaviors based on well-defined criteria. This approach allows

the use of statistical tools to interpret the numerical data extracted from animals’

behavior. For example, an observer can document the frequency of a particular behav-

ior, the time it takes for an animal to initiate that behavior (known as latency), and

the duration of each instance of the behavior and compare the frequency or duration

of various behaviors. These quantitative evaluations have introduced fresh oppor-

tunities in ethological investigations, enabling more rigorous assessments of theories

regarding animal behavior, its origins, progression, and evolutionary importance.

1.3.2 Measuring Behavior

Measuring behavior is a critical aspect of psychological, biological, and ethological

research. Even with modern techniques, it has proven to be a challenging task due to

the complexity and variability of behaviors. Behaviors must be defined clearly and

objectively to ensure that what is being measured is consistent and reliable [45].

Historically, researchers have analyzed behavior using different approaches. A

widely used technique was the paradigmatic approach, where behavior quantification

is integrated into the experimental setup. While this method may not fully encom-

pass the complexities of behaviors, it does provide a simplified, low-dimensional per-

spective, although in some cases, potentially unnatural measurement [46]. Another

method involves measuring more coarse variables. However, this tends to focus on

behavior at a singular scale and may overlook intricate behaviors like specific groom-

ing patterns or subtle social interactions. More recently, researchers have developed

human-defined classification systems and scored by trained observers. This approach

allows for a deeper, more detailed understanding of behavior but is extremely labor-

intensive. Still, this process is time-consuming and requires considerable human re-

sources. Moreover, the subjective nature of these systems makes it difficult to argue

quantitatively that one representation of behavior is more accurate or appropriate
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than another, limiting reproducibility across studies [31]. To overcome these ob-

stacles, new technological advancements have been created. The use of automated

tracking systems, machine learning algorithms, and advanced statistical methods have

allowed scientists to quantify and analyze behavior more objectively and efficiently.

1.3.3 Stereotyped Behavior

A great deal of modern biological research is focused on studying stereotyped behav-

iors in animals (defined in the previous section as movements an animal makes that

are performed often and repeatably). As a result, powerful analytical methods have

been developed to investigate these patterns without the requirement for manually

labeled examples. This transition towards data-informed, unsupervised analysis is

based on the idea that a considerable portion of their behavior is low-dimensional

and exhibits repetitive patterns. Therefore, this implies that animals tend to rely

on a limited repertoire of movements that are repeated on a consistent basis under

similar contexts or in response to certain stimuli.

Several studies have developed numerous tools to uncover and understand these

stereotyped behaviors across a broad spectrum of organisms [27, 29]. The method-

ologies employed in these studies are diverse, encompassing various techniques from

machine learning and computer vision to neuroscience and ethology. However, de-

spite all the differences in these approaches, these studies share the same objectives:

to identify, categorize, and quantify the stereotyped behaviors exhibited by animals

during their daily activities.

In general, these approaches to studying animal behavior typically begin by ex-

tracting low-dimensional postural time series from a dataset. Traditionally, this re-

duction to low-dimensional data has been accomplished by tracking specific parts of

the animal’s body, such as joints, leg tips, tails, or heads.

The next stage, once these postural data have been obtained, is to convert these
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static postures into a dynamic representation. This transformation is crucial because

when we define stereotyped behavior, we associate movements and not postures. For

example, walking is not simply described by the specific angles of knee or ankle joints

at a given moment but by the trajectory of these angles over time [31]. Therefore,

creating a dynamic model that accounts for the way these postures alter over time

is essential. One way of achieving this is by fitting a differential equation directly

to the postural data or by identifying dynamic features within segments of the data.

Another method for representing behavioral dynamics across multiple time scales

is time-frequency analysis [27, 28]. This allows us to measure the importance of

the frequencies present in each series over time. Time-frequency analysis offers a

multifaceted view of the animal’s behavior by showing how certain movements or

behaviors manifest across different temporal scales.

The primary objective of these procedures is to create a behavioral representation

that can identify the longer-term changes in the underlying postural movements that

give rise to the observed motions. An ideal dynamical representation would naturally

emerge from the analysis of postural dynamics, capturing the essence of the animal’s

behavior in a way that is both comprehensive and understandable.

1.4 Thesis Outline

This thesis is divided into five chapters. While this chapter serves as a broad intro-

duction, Chapter 2 serves to provide a background of the analytical tools and their

underlying theories that are discussed throughout the rest of this thesis. Specifically,

I have provided a comprehensive overview of foundational concepts and method-

ologies in the fields of temporal dynamics, causality, and behavioral state analysis.

Beginning with an exploration of both linear and nonlinear correlations, this section

delineates the difference between correlation and causality, setting the stage for a
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deeper investigation into causal interactions. The chapter then moves on to outline

established methods for deducing temporal causal connections, including Granger

causality, Transfer Entropy, and Convergent Cross Mapping. Additionally, it intro-

duces key concepts of dynamical systems, such as basins of attraction and fixed points,

along with the application of recurrent neural networks (RNNs), particularly LSTM

models, for the analysis of intricate temporal sequences. The chapter concludes with

a review of methods for behavioral analysis, emphasizing wavelet transform, autoen-

coders for dimensionality reduction, and spatial embedding techniques as pivotal tools

in capturing the essence of behavioral states.

Chapter 3 introduces Temporal Autoencoders for Causal Inference (TACI), a

novel method created to tackle the complexities of causal relationships within dy-

namic systems. Traditional approaches to causal inference often fall short in han-

dling the nonlinear, non-stationary behaviors and varying strengths of causal links in

real-world variables. TACI addresses these challenges using a dual-headed Temporal

Convolutional Network (TCN) autoencoder structure, which leverages the strengths

of TCNs—simplicity, long-term memory retention, and auto-regressive prediction ca-

pabilities—to analyze time-series data effectively. Its efficacy was demonstrated across

deterministic and stochastic models, as well as in varied practical scenarios, including

artificial models like Autoregressive Models and Henon Maps, to investigate coupling

strength effects and dynamic causal relationships. Moreover, we explored its practi-

cal applicability using real-world datasets, including the Jena Climate Dataset and

electrophysiological data from a monkey during different states of consciousness.

In Chapter 4, the focus shifts to the representation of behavioral states through

dynamical models. The introduction sets the stage for a detailed exploration of be-

havioral states and the significance of RNN fixed points in modeling these states.

The chapter demonstrates how dynamical models may capture the emergent features

of behavior through the examination of postural decomposition, spectrogram gen-
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eration, and the discovery of latent dynamics and fixed, and slow transition states.

The discussion on embedded space dynamics and transition matrices highlights the

model’s ability to clarify the hierarchical organization of behavioral states, emphasiz-

ing the predictability and hierarchy inherent in animal behavior.

Chapter 5 reflects on the thesis’s contributions to the fields of temporal dynamics

and behavioral analysis, summarizing the key findings of each chapter and discussing

the implications of this work. It acknowledges the limitations encountered, partic-

ularly in the application of TACI for causal inference and the fixed points pipeline

in modeling dynamical systems. Looking forward, the chapter outlines promising

avenues for future research, such as investigating brain connectivity in prairie voles

during social bonding and exploring the concept of brain states.
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Chapter 2

Background Information

2.1 Introduction

In this thesis, I introduce novel approaches to quantifying temporal dynamics in

biological time series. To accomplish this aim, I developed two methods: the first an-

alyzes the temporal interactions within these complex systems, and the second aims

to decode a representation of the temporal dynamics of behavioral states. Accord-

ingly, I have divided this chapter into two parts, each corresponding to the technical

background information that underlies these two methods, respectively.

The chapter begins by exploring the different methods used for discovering tem-

poral causal links, such as Granger tests, Transfer Entropy, and Convergent Cross

Mapping, as well as those based on Artificial Neural Networks. The second part of

the chapter then ventures into the realm of dynamical systems, highlighting key con-

cepts, such as Recurrent Neural Networks and fixed points, that are used for analyzing

the temporal dynamics of the intricate patterns of behavioral states.
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2.2 Methods for Causal Inference Analysis

2.2.1 Correlation

Correlation is a statistical tool that characterizes the relationship between two or

more variables. In statistics, “correlation” often refers to the degree to which two

variables vary together; however, in the broadest meaning, it can represent any kind

of link. In essence, it measures the relationship between two or more variables. It is

an essential concept in the domains of statistics and data analysis that sheds light on

the connections between various data sets.

Linear Correlation

The most often used indicator to measure the degree of dependency between two

quantities is “Pearson’s correlation coefficient.” It is a methodical process that quan-

tifies the linear relationship between two variables by calculating the ratio of the

covariance of the two variables in issue and dividing by the product of their standard

deviations. The objective of the correlation coefficient is to determine an optimal line

that best fits the dataset comprising the two variables. It does this by comparing

the expected values to the actual data points. The Pearson’s correlation coefficient

results show how much the actual dataset deviates from the predicted values.

The Pearson’s correlation coefficient ρX,Y between two random variables X and

Y with expected values µX and µY and standard deviations σX and σX is defined as:

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
=

E [(X − µX) (Y − µY )]

σXσY
, if σXσY > 0, (2.1)

where µX and µY are the expected values and σX and σX are standard deviations. The

E is the expected value operator, cov stands for covariance, and corr is a commonly

used abbreviation for the correlation coefficient. Only finite and greater-than-zero
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standard deviations for both can be used with the Pearson correlation. This calcula-

tion also assumes that both variables come from a normal distribution.

The Pearson’s coefficient, which ranges from -1 to +1, indicates the direction and

intensity of the linear relationship between the variables under investigation. Strong

positive correlations are indicated by coefficient values that are close to +1, whereas

strong negative correlations are indicated by values that are close to -1. A number

close to 0 denotes a very weak linear connection.

Nonlinear Correlation

In situations where the statistical relationship between two variables does not follow a

straight line, nonlinear correlation has been established as a more reliable statistical

method than Pearson. Put otherwise, the rate of change in one variable does not

remain constant with respect to the other. The evaluation of Pearson’s Correlation

Coefficient would only provide the direction and strength of the linear association be-

tween the variables of interest when there is no discernible linear relationship between

two random variables but rather a monotonic relation (if one increases, the other in-

creases or decreases). On the other hand, nonlinear approaches such as Spearmans’s

and Kendall’s rank correlation coefficient method would provide us with the strength

and direction of the monotonic relation between the connected variables. This con-

cept is essential in various fields since nonlinear interactions are frequently observed

in real-world data.

Spearman’s rank correlation coefficient: Spearman’s rank correlation coeffi-

cient, also known as Spearman’s ρ, is a non-parametric indicator of statistical depen-

dence between two variables. It evaluates the degree to which a monotonic function

can adequately characterize the relationship between two variables, and it is based

on the rankings of the data rather than their absolute values. This method makes
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it perfect for continuous data that don’t meet the assumptions of normality needed

for Pearson’s correlation or for ordinal data where the exact changes between levels

aren’t always significant. The robustness of Spearman’s correlation to outliers and

non-normal distributions is one of its main benefits. The correlation coefficient is

less affected by extreme values because it is based on rankings rather than absolute

values.

To calculate Spearman’s ρ, each set of data is ranked independently. On these

ranks, the Pearson correlation coefficient is then calculated as:

ρR(X),R(Y ) =
cov(R(X), R(Y ))

σR(X)σR(Y )

, (2.2)

where R(X) and R(Y ) are the rank of X and Y respectively. The value ranges be-

tween -1 and +1. A perfect positive monotonic connection is denoted by a coefficient

of +1, a perfect negative monotonic relationship by a value of -1, and no monotonic

relationship is implied by a coefficient of 0. Essentially, it measures the degree to

which a relationship between two variables is monotonic, that is, such that as one

variable grows, the other continuously increases or decreases. Spearman’s correlation

has drawbacks despite its versatility. It may not adequately represent the strength of

non-monotonic relationships as it just measures monotonic relationships. Addition-

ally, its meaning may become less clear in circumstances when there are several tied

rankings.

Kendall’s rank correlation coefficient: Kendall’s rank correlation coefficient,

also known as Kendall’s τ , is another non-parametric statistic used to measure the

association between two measured quantities. The foundation of Kendall’s τ lies

in the idea of concordance and discordance between pairs of observations. To put

it simply, any two observations are concordant if and only if the rank order is the

same in both pairs and discordant if the rank order differs. Being robust is one of
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Kendall’s tau’s main benefits, particularly when working with datasets that have a

large number of connections or small sample sizes. It is a more trustworthy metric in

some situations than Pearson’s correlation because it is less susceptible to outliers.

To calculate Kendall’s τ , one must first count the number of concordant and

discordant pairings. The difference between these counts must then be calculated

and normalized by the total number of pairs [47]. This technique works especially

well with data sets that have a large number of tied ranks or a small number of

observations. Mathematically, this is represented as:

τ =
(number of concordant pairs)− (number of discordant pairs)

(number of pairs)
. (2.3)

The values for Kendall’s τ oscillate between -1 and +1. A value of +1 represents

a perfect positive relationship, whereas a value of -1 is a perfect negative association,

and a 0 value corresponds to no association. Kendall’s τ , unlike Spearman’s ρ, is

usually more conservative and accurate since it produces a lower value for a given

dataset. This feature becomes very handy when overestimating the strength of the

correlation leads to incorrect conclusions. However, these advantages also carry some

limitations since they are more computationally complex and can become a limiting

factor for particularly large datasets.

Correlation vs Causality

In common (non-technical) usage, people often use the terms correlation and causality

as if they mean the same thing, but they actually relate to distinct ideas. The

distinction between correlation and causality is a fundamental concept in various

scientific fields, such as statistics, economics, epidemiology, computer science, and

philosophy.

Correlation is a specific type of association that indicates a pattern or trend in the
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data, such as an increase or decrease in one variable that corresponds with changes

in another. The general idea of association, or dependence, states that one variable

can provide information about another. Although it does not necessarily indicate a

causal relationship, it does reflect that the variables are connected in some manner

[48]. In a deck of cards, for example, drawing a red card affects the probability

of getting a black card after it, demonstrating a link brought about by the change

in the composition of the deck. Thus, correlation denotes the extent to which two

or more variables fluctuate together. It can be calculated using Pearson’s correlation

coefficient for linear trends or Spearman’s and Kendall’s rank correlation for nonlinear

trends, as we saw in Section 2.2.1.

Causal inference, on the other hand, goes beyond simple association or correla-

tion. Its focus is on establishing whether the relationship between variables is causal

– if changes in one variable cause changes in another. This inference involves under-

standing the circumstances in which particular effects occur.

There are many circumstances when it seems obvious that one action causes an-

other, but there are also many others where it is difficult to determine and validate

the nature of this link. As a result, it is crucial to understand the difference between

correlation and causation in order to prevent drawing incorrect conclusions. This is

exemplified in the historical case of the Aristotelian theory of spontaneous genera-

tion [49]. Although it was grounded in empirical observations after noticing that flies

appeared when there was decaying meat, this theory proposed that live things may

emerge spontaneously from non-living matter, a causal explanation. Concluding that

the presence of flies was causally related to the existence of decaying meat represented

an erroneous interpretation of the relationship. Louis Pasteur’s investigations did not

disprove this notion until the 19th century, underscoring the need to differentiate

between correlation and causation.
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2.2.2 Granger Causality

The notion of causality in experimental practice, particularly in the analysis of time

series data, was significantly advanced by Clive W. J. Granger, recipient of the 2003

Nobel Prize in Economics. Granger, who first proposed this theory in 1969 [21], made

significant contributions to the study of economics by putting out the argument that

causality could be tested by measuring the forecast ability of a time series by using the

past values of another time series. The statistical definition of this theory is inspired

by Norbert Wiener’s work and identifies two primary premises about causation [50]:

1. The cause occurs before the effect; and

2. The cause contains information about the effect that is unique and is in no other

variable.

Granger causality, which originally developed in the field of econometric time

series analysis, has been accepted as one of the most important theories since people

first became interested in the field of causality [51]. The growing popularity of this

method has led researchers to find applications for it in a variety of different fields. It

has had a profound impact on economics and neuroscience in the last few decades. It

provides a platform that uses predictability instead of correlation to identify causation

between time series variables recovered from the brain signals. If X “Granger Cause”

Y , then information about X will be contained in Y and cannot be removed from the

universe of all possible causative variables.

A necessary condition for GC is separability. This means that information about

the causative factor has to be inherent to that variable (e.g., information about the

effects of the predator is not contained in the time series of the prey) and can be

omitted by removing that variable from the model. Separability is a feature of purely

stochastic and linear systems, which allows GC methods to be quite useful for iden-

tifying interactions between strongly coupled systems.
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Granger’s vector autoregressive test

In its most classical formulation, GC is generated from Vector Autoregressive (VAR)

stochastic processes, which use linear regression to characterize the dynamics between

the past and present states of the observable processes. This method assumes that

the selected model can accurately capture the whole interaction between the systems.

If this assumption does not hold true, the regression coefficients may not support the

causal inferences made, which might lead to incorrect conclusions regarding causality

[52]. For instance, to illustrate the mathematical formulation of this theory, let us

consider two variables x and y that belong to a linear autoregressive model:

x(t) =

p∑
j=1

Axx
j x(t− j) +

p∑
j=1

Axy
j y(t− j) + Ex/y(t)

y(t) =

p∑
j=1

Ayx
j x(t− j) +

p∑
j=1

Ayy
j y(t− j) + Ey/x(t),

(2.4)

where j is the number of lagged observations of the model, the matrix A contains the

contributions of each lagged observation to the two variables x and y of the model,

and Ex/y and Ey/x are the predictions errors for each variable. In the case of a

bivariate VAR model of lag p we calculate the error ratio 1 − [var(Ey/x)/var(Ey)],

where a negative ratio result indicates that x fails to “Granger Cause” y. We can

define Ey(t) as follows:

y(t) =

p∑
j=1

Ay
jy(t− j) + Ey(t). (2.5)

Traditionally, when testing for Granger Causality, one uses an asymptotic F−

Distribution with p and T − 3p degrees of freedom that compares the past values of

x and y (full model) to only the past values of x (reduced model)

F =
(RSS2

red −RSS2
full)/p

RSS2
full/(T − 3p)

, (2.6)
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where RSS2
full =

∑
(Ey/x)2 and RSS2

red =
∑

(Ey)2 are the sum of the squared residu-

als of the full and restricted model, respectively, and T is the number of observations.

using this test, we can say that y Granger cause x if the result of the F -test (from

Equation 2.6) is above the (1− α)% quantile.

Since this causal VAR modeling was created for linear models, its application

to nonlinear dynamics has several notable limitations. In some cases, it can over-

look complex patterns of interactions between variables. Additionally, its coefficients

explain the time-lag effects between the processes, but they do not take into consid-

eration the instantaneous (i.e., not lagged) effects. This method requires the time

series to be stationary, i.e., its statistical parameters, such as mean and variance,

must remain constant over time in order to draw correct conclusions about causality.

Extended Granger test

The classic Granger causality test is formulated for linear regression models and

assumes that the time series are stationary. Nonetheless, nonlinear behavior and non-

stationary features are present in a wide range of real-world problems. Furthermore,

this method lacks a way that can simultaneously address both instantaneous and

lagged effects. As a result of this incomplete description, the traditional VAR models

can generate incorrect interpretations of causation [52].

Extender Granger causality is an advanced modification of the classic Granger

causality test, aiming to solve some of its drawbacks and increase its applicability

in a larger variety of contexts [53]. Even for nonlinear and non-stationary data,

the dynamics of the processes may still be locally approximated using simple linear

regression. To achieve this, we must first generate a delay embedding reconstruction

of the phase space attractors. Following this, traditional Granger causality is applied

to each local neighborhood, and then the results are averaged over the entire state

portrait of the dynamics.
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Consider the time delay embedding vector Z(t) = [X(t), Y (t)] according to Takens

[54], formed by the two nonlinear time series X(t) and Y (t):

X(t) = [x(t), x(t− τX), . . . , x(t− (dX − 1)τX)]

Y (t) = [y(t), y(t− τY ), . . . , y(t− (dY − 1)τY )],

(2.7)

where τX and τY are the time delay and dX and dY are the embedding dimensions

for X and Y , respectively. In general, the time delays and embedding dimensions

are different for different time series. However, in order to determine causation using

Granger’s VAR local neighborhood approximation, we must equal the time delays

τ = τX = τY .

In the delay embedding space, there exists a function that can map a specific

point Z(t) to its subsequent observed image, Z(t + τ). Even if the analytical form

of this function is not known, it is possible to do a local linear approximation as

Z(t + τ) = A · Z(t) + R(T ) [55]. Here, the coefficient matrix A can be calculated

using the least squares method, and the R terms represent the error vector between

the actual observed values and those predicted by the linear approximation

x(t+ τ)

y(t+ τ)

 =A1

x(t)
y(t)

+A2

x(t− τ)

y(t− τ)


+ · · ·+Ad

x(t− (d− 1)τ)

y(t− (d− 1)τ)


+

Ex/y

Ey/x

 ,

(2.8)

where the embedding dimension d = dX = dY has been assumed to be equal to

simplify the equation. Furthermore, each time series can be fitted in a neighborhood
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of Z using linear regression approximations:

x(t+ τ) =

dX∑
j=1

Ax
jx[t+ (j − 1)τ ] + Ex(t)

y(t+ τ) =

dY∑
j=1

Ay
jy[t+ (j − 1)τ ] + Ey(t).

(2.9)

The error ratio can be calculated as 1 − [var(Ey/x)/var(Ey)] by applying the

concepts of Granger causality to these local linear systems. The process above is

replicated across a set of selected neighborhoods distributed over the entire attractor.

This is done to ensure we sample the full attractor adequately by averaging the error

ratios obtained from each local region. Thus, the extended Granger causality index

(ECGI) can be computed as:

∆y→x =
〈
1− var(Ex/y)/var(Ex)

〉
, (2.10)

where the symbol ⟨∗⟩ refers to the averaging of the error ratio over all the chosen

neighborhoods. When the ratio of the errors, expressed as var(Ex/y)/var(Ex) or

var(Ey/x)/var(Ey), falls below 1, it suggests that X or Y is causally influenced by Y

or X, respectively.

A key challenge in this method lies in determining the optimal size of the neigh-

borhood, denoted as δ. For the method to be effective, the number of data points in

each chosen area must be large enough to guarantee statistically significant results

[24, 56]. On the other hand, the neighborhood also needs to be sufficiently small to

support the linearity assumption.

In linear systems, the value of this index remains constant, even as the neighbor-

hood size δ becomes smaller. In contrast, for nonlinear systems, the index begins to

show the true nature of the nonlinear causal relationships within the system. Conse-

quently, the selection of δ is not merely a technical detail but an important decision
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that can significantly impact the results of the analysis.

2.2.3 Information theory as a tool for causality detection

In the field of information theory, the primary metric for measuring the information

of a discrete random variable is its Shannon Entropy [57]. This entropy quantifies

the decrease in uncertainty or unpredictability present when the actual value of a

variable is measured. Wiener’s approach to causality is grounded in the concept of

predictability improvement. In this framework, a signal X causes Y if we can better

predict the future state of Y with the inclusion of both the past and present of X [58].

Therefore, if an increase in predictive power can be associated with a reduction in

uncertainty, then it makes sense to describe causality in terms of information-theoretic

principles [59].

Shannon entropy is a powerful measure for analyzing and interpreting data, with

applications in numerous fields. It allows for a deeper understanding of the intrinsic

uncertainty and unpredictability present in a wide range of processes, from simple

communication systems to complex biological networks. This knowledge is essential

for both theoretical research and real-world applications where precise prediction and

effective data processing are critical.

Entropy and Mutual Information

The concept of entropy is essential to comprehend the nature of information. Assume

X is a discrete random variable having possible outcomes x1, x2, . . . , xn and their

associated probability distribution pi = (xi), where i = 1, . . . , n. Then, the entropy

can be explicitly written as:

H(X) = −
n∑

i=1

pi log pi, (2.11)



34

where the sum extends over all states i the process can assume [57]. The base of

the logarithm, bits when the base is two and nats when it is e, determines the units

used to measure the information. Let X, Y be two discrete random variables; we can

define the combined or joint entropy analogously

H(X, Y ) = −
nX∑
i=1

nY∑
i=1

p(xi, yi) log p(xi, yi), (2.12)

where p(xi, yi) is the corresponding joint probability that the variable X is the state

xi and Y is in the state yi. However, sometimes, we face a problem where the

probability of an output depends on certain inputs. In this case, the joint probability

can be written in terms of the conditional entropy as follows:

H(X, Y ) = H(X|Y ) +H(Y ), (2.13)

where

H(X|Y ) = −
nX∑
i=1

nY∑
i=1

p(xi, yi) log p(xi|yi), (2.14)

and p(xi|yi) is the conditional probability [60].

Now that we have quantified the total amount of information shared by a specific

pair of random variables, we must adopt a different approach to determine how much

one random variable reveals about the other. Mutual information (MI) of a pair of

variables reflects the mutual reduction in uncertainty about one variable given the

knowledge of another. Mathematically, for two random variables X and Y , mutual

information can be defined as a combination of the marginals and joint probability

distributions.

I(X;Y ) = H(X) +H(Y )−H(X, Y )

= −
nX∑
i=1

nY∑
i=1

p(xi, yi) log
p(xi, yi)

p(xi)p(yi)
.

(2.15)
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For jointly discrete pairs, the mutual information can be seen as the Kullback-

Leibler divergence (KLD) between the joint distribution p(xi, yi) and the product of

the marginal distributions p(xi) · p(yi). In other words, it quantifies the deviation

between the joint distribution of X and Y and what it would be if they were inde-

pendent. The KLD, also known as relative entropy or cross-entropy, is used as an

alternative method to mutual information [61]. It measures the excess number of bits

that will be coded if an alternative distribution is chosen. For discrete probability

distributions p(x) and q(x) of a variable X, the KLD is defined as:

DKL(p, q) =
n∑

i=1

pi log
pi
qi
. (2.16)

Mutual information is a specific application of KLD that quantifies the shared

information between variables and provides a metric for the degree of dependency or

association between them. For this reason, it serves as a bridge between entropy and

KLD, contributing to a deeper knowledge and comprehension of information theory.

Mutual information captures nonlinear as well as linear interdependence, in contrast

to correlation, which only assesses linear connection.

Conditional Mutual Information

Rooted in the principles established by Shannon [57], conditional mutual information

(CMI) builds upon the concept of mutual information by introducing a conditional

aspect. This powerful statistical technique was introduced by Paluš et al. [62] to

understand the causal relationship and directionality of coupling between the variables

of interest. Thus, the CMI I(y;xτ |x) and I(x; yτ |y) allows us to identify the direction

of the link between the processes X(t) and Y (t). A causal link is indicated by a

significantly high value of the CMI between the variables studied.

Let x(t)Mt=1 and y(t)
N
t=1 be two finite time series that represent the evolution of two
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dynamical systems in spaces of dimensionsM and N , respectively. Then, according to

Takens [54], we can use the time delay coordinates instead of the original components

of the vectors. As a result, the direction of coupling can be calculated as:

I(Y⃗ (t); X⃗(t+ τ)|X⃗(t)) = I((y(t), y(t− ρ), . . . , y(t− (M − 1)ρ));

x(t+ τ)|x(t), x(t− η), . . . , x(t− (N − 1)η)), (2.17)

where η and ρ are the lags used for the time delay embeddings of the processes

X(t) and Y (t), respectively. The I(X⃗(t); Y⃗ (t + τ)|Y⃗ (t)) can be defined analogously.

This method can be understood as an information-theoretic formulation of Granger

causality [51]. A high CMI value is an indication of an information flow between

Y⃗ (t) and X⃗(t+ τ) conditioned on the past of X⃗(t). Since the forward time lag, τ , is

typically unknown beforehand, the CMI is calculated as a function of τ . Consistent

findings across various forward time lags, τ , after averaging imply the existence of a

causal link from Y (t) to X(t).

Transfer Entropy

Transfer entropy (TE) was developed by Schreiber et al. [22] as a metric to quantify

the transfer of information between temporally evolving systems. The concept of

mutual information can be adapted to have a directional aspect by adding a time lag

into one of the variables and then computing it

MIJ(τ) =
∑

p(in, jn−τ ) log
p(in, jn−τ )

p(i)p(j)
. (2.18)

This method allows the inclusion of a dynamic structure by shifting the focus from

static probabilities to transition probabilities. For instance, in a system that can be

approximated by a stationary Markov process of order k, the conditional probability

of finding I in a particular state, in+1, at a given time n+1 is independent of the state
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in−k. Therefore, the transition probabilities describing the evolution of the system

are

p(in+1|in, . . . , in−1+1) = p(in+1|in, . . . , in−1+1, in−k). (2.19)

Assuming all prior states are known, the entropy rate can be used to determine the

average number of bits required to encode one additional state of the system. Calcu-

lating this involves comparing the Shannon entropies of the processes represented by

the k and k + 1 dimensional delay vectors constructed from I

hI = −
∑

p(in+1, i
(k)
n ) log p(in+1, i

(k)
n ). (2.20)

However, it is preferable to generalize the entropy rate to more than one system

for the study of the dynamics of shared information. The most intuitive way we can

approach this idea is by expanding hI to a mutual information rate that measures

the deviation from independence between two processes. The generalized Markov

property, assuming that I and J are independent is:

p(in+1|in, . . . , in−k+1) = p(in+1|i(k)n , j(l)n ), (2.21)

where k and l are the orders or conditioning states from processes I and J respectively,

in such a way that i
(k)
n = (in, . . . , in−k+1) and j

(l)
n = (jn, . . . , jn−l+1). Thus, because of

its symmetry, Schreiber proposed using the Kullback-Leibler divergence for quantify-

ing the difference in the transition probabilities from the generalized Markov property

(Eq. 2.21) [60].

A lack of information flow from J to I makes the state of J have no impact on the

transition probabilities of I. The additional bits that must be employed to encode

the information about the process’s state can be measured by a KLD, by which we
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define the transfer entropy as:

TJ→I =
∑

p(in+1|i(k)n , j(l)n ) log
p(in+1|i(k)n , j

(l)
n )

p(in+1|i(k)n )
. (2.22)

However, using some of the properties of joint and conditional probabilities, we can

manipulate Eq. 2.22 to obtain:

TJ→I =
∑

p(in+1, i
(k)
n , j(l)n ) log

p(in+1, i
(k)
n , j

(l)
n )

p(in+1|i(k)n )p(i
(k)
n , j

(l)
n )

=
∑

p(in+1, i
(k)
n , j(l)n ) log p(in+1, j

(l)
n |i(k)n )

−
∑

p(in+1, i
(k)
n ) log p(in+1, i

(k)
n )−

∑
p(i(k)n , j(l)n ) log p(i(k)n , j(l)n ).

(2.23)

Now, we can refer back to Eq. 2.17, make a few substitutions, and change our notation

for transfer entropy to match Schreiber’s mutual information definition. Looking at

the results, we can conclude that these two concepts are, in fact, equivalent expressions

[62, 60].

Figure 2.1: Transfer entropy from source Y to target X, with target history length
k. Adapted from Joseph Lizier’s work on the Java Information Dynamics Toolkit
(JIDT) [63].

One important benefit of determining causality with an information-theoretic

function such as transfer entropy is that it does not require a particular model to
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characterize the interactions between two systems of interest. When contrasted with

Granger Causality (GC) or other model-based techniques, transfer entropy’s capacity

to identify correlations of all orders becomes a significant advantage for exploratory

study. This feature is especially useful when trying to determine unknown nonlinear

interactions that might be present in the system.

2.2.4 Cross Mappings

Cross-mapping methods operate in state spaces of dynamical systems where shadow

manifolds are reconstructed from the lags of the observables. A key feature of these

reconstructions is that points that are close in the original state space tend to remain

close in the reconstructed space, ensuring that the neighborhoods are preserved. This

aspect is crucial, particularly in the context of causality detection.

Cross-mapping methods rely on the topological aspects of the reconstructed at-

tractor dynamics to add a more detailed explanation for how nonlinear interactions

cause complex dynamics. Time series variables, according to dynamical systems the-

ory, are casually linked if they share a common attractor manifold [64, 65, 19]. In

other words, the process of detecting causality between two systems, X and Y , re-

volves around examining whether the time indices from the historical data of manifold

MY can effectively identify proximate points within the reconstructed manifold MX .

Embedding Theory

The ideas behind the cross-mapping methods are deeply rooted in the theory of time-

delay embedding. The initial insight into this concept was provided by Crutchfield

[66] and later proven by Taken [65], who also provided a more rigorous and structured

framework for the concept. This approach was tested in 1991 [67], then subsequently

evolved and generalized, expanding its applicability and scope.[19].

Let ϕ be a dynamic process that defines the temporal evolution of points in a d-
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dimensional state space. The paths traced by these points gradually converge towards

a manifoldM such that the process ϕ acting as a mapping function from M onto itself,

symbolized as ϕ :M →M . Thus, for any given point m(t) located on the M at time

t, its subsequent state at time t+ 1, can be determined by m(t+ 1) = ϕ(m(t)) [4].

Consider two time series of length L, ⟨X⟩ = ⟨X(1), X(2), . . . , X(L)⟩ and ⟨Y ⟩ =

⟨Y (1), Y (2), . . . , Y (L)⟩. These time series can be thought of as functions that map

points on the manifold M to a sequence of real numbers, i.e., X(t + 1) = X(m(t))

and Y (t + 1) = Y (m(t)). The manifolds of X and Y are constructed by using a

mathematical property named delay-embedding in nonlinear dynamical systems. This

property enables the topological reconstruction of global attractor dynamics based on

a sequence of scalar measurements of the variables, which depends on the state of the

system [65, 68, 69, 70]. If we have a d-dimensional state space and a positive time

lag τ , then we can construct the lagged-coordinate vectors of the shadow manifolds

MX and MY as follows:

x(t) = ⟨X(t), X(t− τ), X(t− 2τ), . . . , X(t− (d− 1)τ)⟩

y(t) = ⟨Y (t), Y (t− τ), Y (t− 2τ), . . . , Y (t− (d− 1)τ)⟩ ,
(2.24)

where the value of t runs from 1 + (d− 1)τ until L.

Generally, the points from the shadow manifolds map 1:1 to points on the orig-

inal manifold M . However, there are special cases, such as in the canonical Lorenz

attractor, where the coordinate Z fails to meet the reconstruction criteria and, hence,

does not generate a legitimate shadow manifold. The reason for this failure lies in

the symmetrical nature of the two fixed points of the attractor with respect to the

Z coordinate. To address this issue and accurately capture the full dynamics of the

system, a slight modification, such as a small rotation, can be applied. This adjust-

ment ensures a diffeomorphism (a one-to-one, smooth, and continuously differentiable

mapping that preserves the topological structure of the manifold) between the new



41

Figure 2.2: Construction of a shadow manifold MX . Adapted from the work of Luo,
Zheng, and Zeng on causal inference in social media using Convergent Cross Mapping
[71].

MZ and M .

Convergent Cross Mapping

Convergent Cross Mapping (CCM) was introduced in [4] to determine causation in

real systems. This method is based on simplex projection [72], a robust technique

that relies on exponentially weighted distances from points in close proximity on a

reconstructed manifold to do kernel density estimation [65].

Consider the time series of length L and their lagged-coordinated vectors discussed

in section 2.2.4. We begin by finding the d + 1 nearest neighbors of the lagged-

coordinate vectors on the shadow manifold MX to generate a cross-mapped estimate

of Y (t). Next, we find the time indices from closest to farthest corresponding to the

d + 1 nearest neighbors of x(t) on MX . These time indices are used to identify the

analogous points (neighbors) in Y to estimate Y (t) from a weighted mean of the Y (ti)
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values, where i = 1, . . . , d+ 1.

Ŷ (t)|MX =
∑

wiY (ti), (2.25)

where the weighting function wi is based on the distance between x(t) and its ith

nearest neighbor on MX . Thus, the weights can be determined by the following

equations

wi = ui/
d+1∑
j=1

uj, (2.26)

where

ui = e
− d[x(t),x(ti)]

d[x(t),x(t1)] , (2.27)

and d(X, Y ) is the Euclidean distance between vectors X and Y . Analogously, we

can define the CCM from Y to X

Figure 2.3: Overview of CCM. Adapted from the work by Takahashi et al. on
performance-portable implementation of Empirical Dynamic Modeling using Kokkos
[73].

The causal discovery from X to Y is derived from the correlation coefficient ρ

between Y and Ŷ (t)|MX . By analogy, if Y drives X, a high value of correlation

between X and X̂(t)|MY is expected. Low values of correlation are indications of a
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poor or complete absence of a causal link between variables of the system.

In their study, the researchers focused on observing the convergence of cross-

mapped estimates toward accurate values as the number of data points used increased.

This approach is particularly effective in distinguishing causally coupled systems from

those that are merely correlated. The amount of data required for an accurate re-

construction is dependent on the dimensionality of the attractor. Thus, in systems

where there is a causal connection, the accuracy of the estimates tends to improve as

the length of the time series increases, demonstrating a direct relationship between

the quantity of the data and the reliability of the causal inference.

State space reconstruction methods are most effective in scenarios where the sys-

tem under study is nonlinear and can be represented in a relatively low number of

dimensions. Additionally, these methods yield better results when the observational

noise within the system is manageable.

2.2.5 Causal Neural Networks

Neural networks excel in multiple fields, including computer vision and natural lan-

guage processing, among other things. Specifically, Convolutional Neural Networks

(CNNs) have drastically changed areas like computer vision and pattern recognition,

where a grasp of spatial hierarchies is critical. However, these traditional networks

are fundamentally “associative,” which means they are great at finding correlations

but not necessarily causations. In order to close this knowledge gap, causal networks

have arisen with the goal of better comprehending causal interactions in both time

and spatial domains. Before exploring some methods that employ CNNs, let’s first

clarify a few key definitions.

Convolutional Neural Networks: A convolutional neural network, also known

as CNN or ConvNet, is a sophisticated type of neural network that is highly effective
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in handling data represented in a grid format, such as images, videos, and even multi-

dimensional time-series data. This specialized network architecture has several unique

features and improvements over traditional feed-forward neural networks. Conven-

tional machine learning techniques require hand-crafted extraction and selection of

features. CNNs, on the other hand, can perform feature engineering automatically by

identifying these features independently through training. Moreover, common issues,

such as vanishing and exploding gradients, are prevented by employing regularized

weights across a reduced number of connections during the backpropagation process

[74].

A CNN is primarily composed of three types of layers: convolutional layers, pool-

ing layers, and fully connected layers. The convolution and pooling layers extract

features, while the fully connected layer transforms these features into final outcomes,

like classifications.

The convolution layer is essential to the CNN’s structure, carrying most of the

computational load. This layer employs three key concepts that are crucial to its

operation [75]. First, convolutional layers employ sparse interaction, which involves

employing fewer weights (or filters) to interact with specific portions of the input

and concentrate on localized regions. Second, weights are shared across various input

components through parameter sharing. The same filter (set of weights) is used across

the entire input, allowing for the detection of a feature regardless of its position in the

input. Third, equivariant representations guarantee that if the input changes (e.g.,

shifts), the output changes in the same manner.

Pooling layers are used after convolutional layers in order to minimize the spatial

dimensions (width and height) of the input volume. This reduction in dimensionality

means that the network requires less memory and has less computing burden because

the following layers have fewer parameters. Pooling layers, despite reducing the size of

the input, preserve the most important information of the network. They accomplish
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this by summarizing (max or average) the presence of features in patches of the feature

map. Pooling helps the network achieve translation invariance. In other words, once

a feature is identified, its precise location loses significance.

Fully connected layers are positioned towards the end of the network. They handle

all the high-level reasoning in the network after all the convolutional and pooling

layers. These layers are where the network makes decisions based on the features

extracted and condensed by previous layers. They can be considered a part of the

network’s decision-making process.

Causal Convolutional Networks: Causal Convolutional Networks are a special-

ized type of neural network that integrates causal inference into convolutional frame-

works. One important consideration in many convolutional applications, especially

audio processing applications, is maintaining the temporal order of the input signal.

The time-domain signal in these applications is a series of samples that need to be

handled with consideration for the temporal order of the sequence. According to this

criterion of causal processing, output at any given point in time should only depend

on input samples that came before it, not on samples that will come after.

Standard convolutional operations do not inherently meet this causal requirement.

They take into account all input samples that fall within the filter’s coverage, including

those from the future. This means that the convolution at each time step incorporates

future information, thereby violating the principle of causality.

Causal convolutions are designed to address this issue by restricting the input that

may be accessed at each time step to only include data up to the current timestep.

This method guarantees that the output at any given time is solely impacted by past

and present data. One common approach is to add padding to the input data in

such a way that the principle of causality is always satisfied by making the convolu-

tional filters access only current and past data. This technique is known as “masked
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convolution” or “causal padding.”

Figure 2.4: Standard vs Causal Convolution.

Unlike standard convolutional layers that use a fixed kernel, causal convolutions

employ a kernel that adapts based on the current time step. This is achieved by

creating a kernel mask, a binary tensor that matches the dimensions of the convolu-

tional kernel. The mask has zeros in positions corresponding to future values, which

essentially prevents them from having an impact on the current output. By applying

the causal convolution in conjunction with this masked kernel, the network makes

predictions based only on past and present data. The temporal order is preserved

as this technique successfully stops any data leakage from future time steps into the

model.

2.2.6 Neural Granger Causality

In order to detect Granger causality in nonlinear settings, Tank et al. introduced the

Neural Granger method [76]. This method includes the use of either structured multi-

layer perceptrons (MLPs) or recurrent neural networks (RNNs), along with penalties

that induce sparsity in their weights. By utilizing convex group-lasso penalties, this

strategy concentrates on pushing specific groups of weights to zero. Unlike con-

ventional techniques, this framework can effectively identify long-range connections

between series.

Consider xt as a p-dimensional stationary time series within the Rp space, observed
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across a span of T time points, denoted as (x1, . . . , xT ). In the realm of nonlinear au-

toregressive modeling, the trajectory of xt unfolds according to more general nonlinear

dynamics

xt = g(x<t1, . . . , x<tp) + et, (2.28)

where

x<t1 =
(
. . . , X(t−2)i, x(t−1)i

)
. (2.29)

Here, x<t1 captures the past of the i series. Within this framework, the function g

operates as a nonlinear autoregressive function, which can be dissected into distinct

components corresponding to each series. For any given series i, this relationship is

represented as:

xti = gi(x<t1, . . . , x<tp) + eti. (2.30)

Here, gi maps out the influence of the past K lags on the current state of series i,

thereby linking historical data to present values.

In this context, Granger non-causality, especially between two series j and i, hinges

on the independence of gi from x<tj, the historical lags of series j. This suggests that

the historical values of series j do not contribute to or influence the future trajectory

of series i as determined by gi.

Sparse Input MLPs for Time Series: A Multilayer Perceptron (MLP) is a type

of modern feed-forward artificial neural network, i.e., information moves in only one

direction—from input nodes, through hidden layers, to output nodes—without any

loops or cycles. It is widely used in machine learning for various tasks, including

classification, regression, and pattern recognition.

An MLP consists of fully connected neurons with nonlinear activation functions

that are organized in three or more layers, including an input layer, one or more

hidden layers, and an output layer. It is notable for being able to distinguish data
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that is not linearly separable.

Often referred to as “vanilla” neural networks, MLPs are trained by a technique

called backpropagation [77]. The procedure involves calculating the error that exists

between the network’s output and the actual target values. This error is then propa-

gated back through the network to modify the weights and biases. This is often done

using gradient descent or variations.

Neural Granger uses a distinct MLP to model each component gi, which we refer

to as a componentwise MLP (cMLP). This technique simplifies the process of distin-

guishing the influences of inputs on the outputs. For every component i, the function

gi is configured as an MLP with L layers. We denote the values in the l-th hidden layer

at time t as hlt. The weights across the layers are represented as W = {W 1, . . . ,WL},

with the initial layer weights specified as W 1 = {W 11, . . . ,W 1K}. The hidden values

at the first layer at time t are calculated by:

h1t = σ

(
K∑
k=1

W 1kxt−k + b1

)
, (2.31)

where σ is the activation function, and b1 is the bias at the first layer. Subsequent

layers are composed of fully connected units with σ activation functions. The output

xti is then given by:

xti = gi(x<t) + eti = wT
Oh

L
t + eti, (2.32)

where wT
O is the linear output decoder, and hLt is the final hidden output from the

L-th layer. This structure enables each gi to effectively model complex relationships

within the data, leveraging the depth and nonlinear capabilities of MLPs.

It may be inferred that the time series j does not Granger cause series i if, for

all of k, the j-th column of the first layer weight matrix W 1k
:j in Eq. 2.31 is made

up entirely of zeros. Thus, analogously to the VAR case, with a group lasso penalty

applied to the columns of the W 1k matrices for each gi, it is possible to select for
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Figure 2.5: Neural Granger using cMLPs. Adapted from the research on Neural
Granger Causality by Tank et al. [76].

Granger causality, as indicated by the following equation:

min
W

T∑
t=K

(
xit − gi(x(t−1):(t−K))

)2
+ λ

p∑
j=1

∥∥(W 11
:j , . . . ,W

1K
:j )
∥∥
F
, (2.33)

where λ is a regularization parameter. For a sufficiently large λ, the solutions to this

equation will lead to many zero columns in each W 1k matrix, suggesting that only

a few Granger causal connections are estimated. This method effectively identifies

significant relationships in the data by penalizing and thus simplifying the complexity

of the model.

Sparse Input Recurrent Neural Networks: Recurrent Neural Networks (RNNs)

represent a sophisticated class of artificial neural networks specifically engineered for

discerning patterns in sequential data types, including but not limited to textual

content, genomic sequences, handwriting styles, and spoken language (more detailed

information can be found in Sec. 2.3.3). Unlike traditional neural networks, which

operate under the assumption that inputs and outputs are mutually exclusive and

unrelated, RNNs are particularly well suited to modeling time series data. This pro-

ficiency comes from their ability to effectively compress historical data from a time

series into a distinct hidden state, allowing them to unravel and understand complex
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temporal patterns and nonlinear relationships that extend over longer periods than

what is typically achievable with standard time series models.

We take a similar approach to MLPs in order to capture Granger causality using

RNNs, where each function gi is modeled using a single RNN. Let ht−1 ∈ Rm denote

the m-dimensional hidden state at time t, which captures the historical background

of the time series necessary for forecasting the component xti. This hidden state at

time t+ 1 is recursively updated as:

ht = f(xt, ht−1). (2.34)

In this equation, f represents some nonlinear function that depends on the particular

recurrent architecture. To model this function, we utilize Long Short-Term Mem-

ory (LSTM) networks due to their proven capability to handle complex temporal

dependencies (more detailed information can be found in Sec. 2.3.3). LSTMs are

particularly adept at maintaining information over extended periods, which is essen-

tial for accurately modeling the time-dependent relationships inherent in Granger

causality analysis.

To simplify this approach, the output gi(x<t) is expressed as a linear function of

the hidden states at time t:

xti = gi(x<t) + eti = wT
Oht + eti. (2.35)

In the LSTM framework, we introduce an additional hidden state variable ct,

known as the cell state, leading to the complete set of hidden parameters being
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(ct, ht). The standard LSTM model is formulated as follows:

ft = σ(W fxt + U fht−1),

it = σ(W inxt + U inht−1),

ot = σ(W oxt + U oht−1), (2.36)

ct = ft ⊙ ct−1 + it ⊙ tanh(W cxt + U cht−1),

ht = ot ⊙ tanh(ct),

where ⊙ represents element-wise multiplication. The terms it, ft, and ot correspond

to the input, forget, and output gates, respectively. These gates regulate the updates

to each component of the cell state ct and its transfer to the hidden state ht, which

is used for predictions. The sigmoid function σ and the hyperbolic tangent function

tanh are applied element-wise, allowing the LSTM to effectively manage the flow of

information and update its memory (cell state) for accurate predictive modeling.

The set of input matrices we used in Eq. 2.36 form the block matrix W , repre-

sented as:

W =
(
(W f )T , (W in)T , (W o)T , (W c)T

)T
, (2.37)

where W governs how the previous time series data, xt, affects the various gates

of the LSTM –namely, the forget, input, and output gates– as well as the updates

to the cell state. Consequently, it influences the evolution of the hidden state. In

this componentwise LSTM model (cLSTM), similarly to the MLP methodology, a

sufficient condition for Granger non-causality from an input series j to an output

series i is indicated if all the elements of the j-th column of W are zeroes. Therefore,

to determine which series Granger causes series i during the model’s estimation phase,
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a group lasso penalty is applied to the columns of W :

min
W,U,wO

T∑
t=2

(xit − gi(x<t))
2 + λ

p∑
j=1

∥W:j∥2, (2.38)

where W:j represent all the elements of the j column. Here, U is defined as:

U =
(
(U f )T , (U in)T , (U o)T , (U c)T

)T
. (2.39)

Setting a high value for λ leads to many zero columns in W , effectively creating a

model of sparse Granger causal links.

2.2.7 TCN Introduction

Temporal Convolutional Networks (TCN) were first introduced by Lea et al. [78]

for video-based action segmentation. They have been specifically adapted to han-

dle one-dimensional temporal data, making them highly effective for analyzing time

series. Their rise in popularity can be attributed to their ability to extend most

of the convolutional advantages of regular CNNs, such as sparsity and translational

equivariance, into the time domain. Recurrent neural networks (RNNs) and long

short-term memory networks (LSTMs) have historically dominated the field of se-

quential data processing. However, due to their lack of effectiveness, TCNs were

created in response to the necessity for more efficient methods. TCNs provide a flexi-

ble and efficient framework for most sequence modeling tasks, with fewer parameters

and fewer memory requirements.

TCNs provide a reliable and effective alternative for sequence modeling, particu-

larly in scenarios where it is crucial to understand the long-range temporal dependen-

cies of the data. They are an important tool in the fields of data analysis and machine

learning because of their versatility, capacity for parallel processing, and ability to
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handle long sequences. TCNs outperform recurrent neural networks (RNNs) and long

short-term memory (LSTM) models when dealing with long sequences as they can

overcome issues like vanishing gradients commonly encountered in these traditional

models. However, effective training of TCNs often requires a substantial amount of

data to accurately capture intricate temporal patterns. Additionally, TCNs are sen-

sitive to hyperparameter selection, including the size of the convolutional filters and

the dilation rates.

TCN Architecture

A TCN is formed by several causal, dilated 1D convolutional layers with the same

input and output lengths able to encode the spatial-temporal information of the

time series. A key characteristic of this framework is its simplicity, long memory,

and ability to outperform most convolutional architectures during auto-regressive

prediction tasks [79].

Dilated causal convolutions are the most important component of TCNs. The

dilated causal convolution that is used in the TCN architecture is derived from the

WaveNet paper [80]. The number of time steps seen by the sliding kernel, also known

as the receptive field, is equal in a single-layer TCN to the size of the kernel specified

by the user. The receptive field in TCNs adapts based on the dilation rate and the

depth of the network. This adaptability allows the network to focus on learning

long-range dependencies without increasing the computational complexity. In order

to uncover the causal relationship, the receptive field has to be no less than the delay

between cause and effect. By “causal,” we understand that there is no information

leakage from the future to the past, e.g., a filter can only use inputs at time step t

and earlier.

A dilated convolution skips input values with a certain step size, called dilation

factor, by applying a kernel over an area larger than its size [81]. This dilation
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factor can increase exponentially, which facilitates a network with stacked dilated

convolutions to work on a large area without loss of resolution or coverage. This

results in an exponentially larger receptive field containing fewer parameters and

layers.

Another component of TCNs is residual blocks, which originated from ResNet

[82]. Two dilated causal convolution layers are stacked together, and the results from

the last convolution step are then added to the inputs to extract the output from

the block, thus enabling a long, effective history. In the case where the number of

channels of the inputs and the number of filters are different, a 1D convolution is

applied to the inputs.

Let’s delve deeper into some of these concepts to better understand their applica-

tions and implications.

Dilated Convolutions: Dilated convolutions are methods utilized in CNNs that

are particularly beneficial for tasks that require the capture of long-range context

without sacrificing resolution. The kernel (or filter) is expanded by inserting gaps (or

“dilations”) between its consecutive elements. This expansion of the receptive field

allows the filter to cover a larger area of the input feature map without increasing the

size of the filters and facilitating the learning of more intricate representations of the

input data.

Dilated convolutions differ from standard convolutions by adding holes within

the kernel elements, which are controlled by the dilation rate. This hyperparameter

controls the distance between the filter elements. Dilated convolution is identical

to regular convolution when the dilation rate is set to 1. One can visualize this as

applying an array of filters across the input data, with each filter sampling one data

point but spaced apart according to the dilation rate. Greater dilation rates widen

the receptive field by increasing the distance between the filter’s elements.
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Figure 2.6: Stack of dilated causal convolutional layers. Adapted from the work by
van den Oord et al. on WaveNet, a generative model for raw audio [80].

Residual Connections: Residual Connections, also known as skip connections, of-

fer a novel approach to connecting layers in a neural network. They were designated

to make training very deep neural networks easier. As networks become more com-

plex, residual connections prevent the gradients from becoming too small for effective

learning during backpropagation.

Figure 2.7: Residual Connections. Adapted from He et al.’s foundational study on
deep residual learning for image recognition [82].

In a typical layer of a neural network, the input is transformed through weights,

biases, and activation functions to produce an output. In a network with residual
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connections, a shortcut or “skip” connection is created, allowing the output of an

earlier convolutional layer to effectively skip a number of intermediate convolutional

steps.

In its most basic form, these connections perform an identity mapping, in which

the input is added directly to the output of the residual block. This prevents the

degradation issue that might arise in very deep networks and guarantees that the

deeper levels can perform as well as the shallower layers. Moreover, deeper layers can

focus on learning the residuals instead of learning the complete representation from

scratch. These connections improve the flow of gradients during backpropagation,

making it easier to train deeper models.

Autoencoders: Kramer initially introduced the autoencoder as a nonlinear exten-

sion of principal components analysis (PCA) [83]. An autoencoder represents a form

of artificial neural network designed for unsupervised learning, with the objective of

efficiently discovering representations of unlabeled data. It has two primary functions:

the first is to encode the input data into a new representation, and the second is to

decode the encoded information in order to recreate the original input.

The primary purpose of an autoencoder is to discover a compressed and efficient

encoding of a dataset. They are typically used for the purpose of dimensionality

reduction or feature learning, although over time, their application has expanded so

that they are now widely used for learning generative models of data. The structure

of an autoencoder consists of three key components:

• Encoder: This part of the autoencoder is a feed-forward, fully connected neural

network consisting of a sequence of convolutional blocks followed by pooling

modules. Each convolutional block in the encoder applies a series of filters to

successfully extract and highlight different features and patterns of the input

data. Following this process, these features are passed through pooling modules,
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Figure 2.8: Autoencoder architecture. Adapted from Jeremy Jordan’s exploration of
autoencoders [84].
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which help to decrease the spatial dimensions of the data. Convolution and

pooling progressively compress the data while extracting the most important

information at the same time. The encoder learns to preserve as much of the

significant information from the input data as possible but in a more compact

form. This representation is typically several orders of magnitude smaller than

the input data.

• Bottleneck: Also known as the latent space or hidden layer, the bottleneck is the

most important part of the neural network. It regulates the flow of information

from the encoder to the decoder, ensuring that only the most important elements

of the input data are allowed to pass through. The bottleneck also prevents the

neural network from simply memorizing the input data. This is crucial for time

series analysis, where discovering trends and patterns is more important than

just memorization. However, the size of the bottleneck must be chosen carefully.

A well-calibrated bottleneck allows the network to learn and interpret these

complex patterns present in time series data. On the other hand, if the size is too

small, it might be more detrimental than beneficial. An excessively restricted

bottleneck might prevent the network from capturing all the necessary data,

which increases the chances of important information getting leaked through

the pooling layers. Therefore, it is vital when designing an autoencoder to find

the proper size so that we can use them to their full potential. It should be big

enough to capture the important temporal dynamics and patterns in the data

but not so big that it makes the network prone to overfitting.

• Decoder: The decoder has a similar structure to the encoder but in reverse order.

It consists of a series of upsampling and convolutional blocks, each meticulously

designed to reconstruct the output originating from the bottleneck. This step

is essential in order to recover the spatial resolution that was compressed dur-
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ing the encoding process. After upsampling, the convolutional blocks are used

to refine the upsampled data. The finer details and structures of the original

input are gradually restored by the use of filters that can extract and enhance

its elements. This process involves not just a merely straightforward data aug-

mentation but a careful and precise decompression from its latent attributes,

ensuring that the reconstructed time series faithfully mimics the original data.

An autoencoder’s training begins with a forward pass, where the input data is

first compressed by the encoder and then reconstructed by the decoder. Once that

is done, the autoencoder calculates the loss by measuring the difference between the

original input and its reconstruction. This metric is extremely important since it

quantifies the autoencoder’s proficiency in capturing and reconstructing the input

data. Generally, we use Mean Squared Error (MSE) for continuous data and Binary

Cross-Entropy for binary data.

Backpropagation is the primary method by which the autoencoder learns the

underlying pattern and structure of the input data. During this process, the gradient

of the loss function is calculated with respect to each weight in the network. The

gradients are calculated in reverse order, starting from the output and then traveling

back through the network. The idea behind this step is to identify how each weight

contributes to the error and what adjustments are needed to reduce it.

After calculating the gradients, the neural network adjusts its weights and biases

using an optimization algorithm like Stochastic Gradient Descent (SGD), Adam, or

RMSprop. The learning rate is one of the most important hyperparameters, and it

determines the size of the steps necessary to minimize the loss. It’s crucial to find the

right balance: a learning rate that is too high can overshoot the minimum, and a rate

that is too low can either slow down the convergence or get stuck in local minima.

The entire process of forward pass, loss computation, backpropagation, and weight

updating is repeated across multiple iterations, known as epochs. During each epoch,
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the entire dataset is passed through the autoencoder. This process is repeated until

the loss stops changing significantly, implying that the autoencoder has successfully

learned to represent the input data accurately.

2.2.8 Temporal Causal Discovery Framework

The Temporal Causal Discovery Framework (TCDF) developed by Nauta et al. [81]

represents an innovative approach in the field of causal discovery, particularly for

analyzing time series data. TCDF aims to construct a temporal causal graph that

reveals the causal relationships and time delays between various observed continuous

time series within a dataset. They do this by utilizing attention-based Convolutional

Neural Networks (CNNs) in conjunction with a causal validation step. TCDF also

tries to solve the typical challenges encountered by several previous methods when

facing complex causal models.

Figure 2.9: Examples of causality confounds. Left: X1 is the direct cause of X2 with
a one-time step delay and influences X3 indirectly, resulting in a cumulative delay of
4-time steps (1 + 3). Right: X1 acts as a common cause for X2 and X3, influencing
them with delays of 1 and 4 time steps, respectively. Adapted from Nauta et al.’s
study on causal discovery with attention-based convolutional neural networks [81].

First, it is crucial to identify whether a causal relationship is direct (i.e., one

variable directly influences another) or indirect (i.e., the influence is mediated through

one or more intermediate variables), as we can see in Figure 2.9 left. TCDF utilizes

the attention mechanism within CNNs to focus on the specific inputs (time series)

that are most predictive of a target series. This focus helps to infer direct causality.

The causal validation step further refines these relationships by assessing the impact
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of potential causes on the target series, thus distinguishing between direct and indirect

causes. Second, some causal effects occur almost instantaneously, meaning there is

little to no time delay between the cause and its effect. Detecting these effects can

be difficult, especially in time series data where the resolution is not good enough

to capture rapid changes. Third, accounting for confounders that could potentially

introduce spurious correlations and incorrect causal inferences. We can see in Fig 2.9

right how the presence of X1 influencing X2 and X3 could mislead causal methods

into assuming a causal link between X2 and X3.

The Attention Mechanism: This methodology builds upon the foundational

Temporal Convolutional Network (TCN) model ( more about this topic in Section

2.2.7 ). The standard TCN model, due to its univariate nature, restricts its ap-

plication to multivariate time series analysis. In a standard deep TCN setup, the

addition of 1D-convolutional layers to the architecture results in a one-dimensional

output from each convolutional layer. Such a configuration inherently mixes the input

signals, which can prevent the network from learning an accurate causal discovery.

The univariate TCN architecture can be extended into a one-dimensional depth-

wise separable convolutional architecture to better accommodate the challenges of

multivariate time series analysis. This modification employs depthwise convolutions

to independently apply a unique kernel to each input channel, ensuring that each input

time series is processed in isolation. This step is followed by a pointwise convolution of

size 1x1 that merges the outputs from all channels into a unified representation. This

adjustment diverges from traditional convolutional network designs, which typically

use a single kernel across all layers to process combined inputs.

In practical terms, the TCDF architecture consists of N distinct channels, each

dedicated to one of the input time series. Each of these channels is formed by an

attention-based Convolutional Neural Network (CNN). The architecture of TCDF,
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Figure 2.10: The Temporal Causal Discovery Framework (TCDF) employs N inde-
pendent Convolutional Neural Networks (CNNs), denoted as N1, N2, . . . , Nn, where
each network is tasked with processing time series inputs X1, X2, . . . , Xn of length
T . Each network Nj is designed not only to forecast the future values X̂j of its
corresponding time series Xj but also to produce the associated kernel weights Wj

and attention scores aj. Adapted from Nauta et al.’s study on causal discovery with
attention-based convolutional neural networks [81].
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illustrated in Figure 2.10, shows how each Nj channel is optimized to forecast the

values of its corresponding target series Xj. The objective of each network Nj is

to minimize the loss L between the actual observed values of Xj and its predictions

X̂j. The input for any given channel Nj is the dataset X, which is composed of N

time series, each extending over T time steps. Row Xj corresponds to the target

series, denotes as Xj =
[
0, X1

j , X
2
j , . . . , X

T−1
j

]
, while all other rows are assigned to

the exogenous time series Xi ̸=j =
[
0, X1

i , X
2
i , . . . , X

T−1
i

]
The network’s architecture can be further enhanced by incorporating an attention

mechanism. This mechanism tells the network where to focus when predicting a

time series. Attention is implemented through a trainable vector a of dimension

1×N , where N is the number of input time series. Each element within this vector

is known as an attention score. For every network Nj, a unique attention vector

aj = [a1,j, a2,j, . . . , ai,j, . . . , aN,j]. The attention score ai,j is specifically assigned to

input time series Xi in network Nj. This indicates the degree of focus Nj places on

Xi for the prediction target Xj. A higher score for ai,j suggests a possible causal

relationship where Xi influences Xj, while a lower score implies a lesser or no causal

link.

The attention mechanism is initially implemented through a soft attention strat-

egy, employing the Softmax function s to each element a within aj during each epoch

of training. After the training of network Nj is finished, a semi-binarization function,

dubbed HardSoftmax, which zeros out any attention scores not meeting a specified

threshold τj, is applied.

h = HardSoftmax(a) =


σ(a) if a ≥ τj,

0 if a < τj.

(2.40)

Here, hj is the subset of attention scores in aj subjected to the HardSoftmax function.

A time series Xi is considered a potential influencer of the target series Xj if its
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corresponding adjusted attention score hi,j exceeds 0. This approach allows TCDF

to systematically identify and enumerate potential causal relationships across the

dataset’s time series, encouraging a better understanding of the underlying causal

structures.

2.3 Methods for Behavioral States Discovery

2.3.1 Dynamical systems

The field of dynamical systems theory is built upon the principles of motion and forces

that govern physical systems. This foundation stretches back to the early formulations

of classical mechanics. It provides a comprehensive framework for understanding the

evolution of various systems over time and extends its use from simple mechanical

structures to complex biological networks. A dynamical system in an n-dimensional

space Rn is defined by n first-order differential equations, which model the temporal

dynamics of evolutionary processes. The ‘state’ of such a system includes a wide

range of variables that are crucial to the specific context under study. For example,

in the field of ecology, it could refer to the fluctuating populations of predators and

prey.

Dynamical systems are categorized into types such as linear versus nonlinear and

deterministic versus stochastic. Linear systems are usually easier to analyze and fore-

cast due to the straightforward proportionality between inputs and outputs. On the

other hand, nonlinear systems are harder to analyze due to unexpected and complex

behaviors. For a continuous-time dynamical system, the representation can be given

as:

x = x(t) ∈ Rn, t ∈ I ⊆ R (2.41)

dx

dt
= ẋ = f(x, t), (2.42)
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where x represents the system’s dynamics, and f(x, t) is a smooth function defined in

a subset U ⊆ Rn×R. In this model, t usually represents time, and f(x, t) is typically

nonlinear [85].

An important element in the analysis of dynamical systems is the concept of phase

space. It includes all possible states of the system. By examining the trajectories

within this phase space, we can discover the temporal behavior of the system. More-

over, the study of dynamical systems involves an understanding of how these systems

adapt and respond to varying environmental conditions or parameter changes.

Basins of Attraction

The idea of basins of attraction is central to the framework of dynamical systems. It

explains how initial states evolve over time toward specific outcomes or attractors.

These basins include the entire range of possible starting conditions that influence

the long-term behavior of the system and ultimately guide it toward a specific attrac-

tor. The system can display a range of behaviors, including quasiperiodic patterns,

chaotic dynamics, and periodic oscillations, depending on the type of attractor. If

there is a single, global attractor, the analysis is simpler since every initial condition

within the state space will eventually converge to this unique attractor over time.

However, many dynamical systems display multistability, where multiple attractors

exist simultaneously, each with its own basin of attraction [86]. Therefore, because

of this phenomenon, the state space is divided into distinct regions, each of which

directs the initial conditions towards its corresponding attractor.

The complexity of basins of attraction often makes typical analytical approaches

inadequate for their study. Instead, numerical simulations become the primary tool

for exploring these basins. Therefore, researchers need to define the basins of attrac-

tion and carefully trace the trajectories from a wide array of initial conditions to their

eventual attractors.
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Attractors themselves can take various forms, including stable points (equilibria),

limit cycles (periodic orbits), attracting torii (quasiperiodic orbits), or strange attrac-

tors (chaotic behavior). The basin of attraction surrounding each type of attractor can

vary greatly in size and shape, from narrowly encircling the attractor to encompassing

the entire state space. Most commonly, a basin of attraction occupies a sizeable but

finite portion of the state space, potentially extending infinitely in certain directions

while remaining bounded in others [87]. This spatial diversity highlights how the

complicated interaction between initial conditions and system dynamics impacts the

evolution and ultimate behavior of these systems.

2.3.2 Fixed Points

A fixed point in the context of dynamical systems is a specific state or value within

the phase space where the system’s state remains constant over time. When a system

reaches a fixed point, it will stay in this state indefinitely, assuming there are no

external influences to perturb it. Mathematically, for a system represented by a

function f , a fixed point x∗ is defined such that f(x∗) = x∗ for discrete systems. For

continuous systems, this condition is represented by ẋ = 0, where ẋ denotes the time

derivative of x, indicating a state where there is no change in the system’s state over

time.

Fixed points can exhibit different stability characteristics: stable, asymptotically

stable, or unstable [88]. A stable fixed point means that trajectories that start near

the fixed point will remain close to it over time. An asymptotically stable fixed point

not only maintains the closeness of trajectories but also ensures that these trajectories

will converge towards the fixed point as time progresses towards infinity. On the other

hand, an unstable fixed point acts repulsively, causing trajectories that start near it

to diverge away as time moves forward. In complex dynamical systems, determining

and assessing the stability of fixed points is an essential but difficult task. However,
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in many systems, such as harmonic oscillators, pendulums, and fluid flows, the trivial

solution of u∗ = 0 is a fixed point.

Fixed points, in the domain of ordinary differential equations (ODEs), are con-

stant solutions that are necessary to comprehend the system’s behavior. Therefore,

from a stability standpoint, we can better understand the asymptotic properties of so-

lutions and trajectories close to these fixed points. Similarly, in systems governed by

partial differential equations (PDEs), fixed points facilitate the pursuit of steady-state

solutions, which are vital due to their ability to represent systems in equilibrium.

2.3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks that are

especially important in the studies of animal behavior because of their ability to

recognize patterns in sequential or time series data. These deep learning methods

are frequently utilized for ordinal or temporal problems. This type of artificial neural

network is characterized by its capability to handle sequences of different lengths.

This makes them especially helpful in our scenario since they can utilize their internal

memory to store information from previous inputs.

The concept of RNNs dates back to the 1980s. John Hopfield first introduced the

Hopfield Network in 1982 [89]. However, RNNs began to gain significant attention in

the 1990s when researchers started exploring their capabilities in depth, particularly

for speech and handwriting recognition. Over the years, RNNs have evolved, with

advancements addressing their initial limitations, such as difficulty in learning long-

range dependencies within sequences.

The hidden state, also known as the memory state, is the main and most important

feature of RNNs. It serves as the network’s memory, allowing it to remember past

information and affect future outputs. RNNs stand out from other neural network

designs because of the hidden state’s capacity to retain previous inputs. It keeps
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track of the prior input sent to the network and uses the same parameters to carry

out the same operation on all inputs or hidden layers in order to create the output.

This greatly reduces the complexity of the parameters.

An RNN can be visualized in two ways: in its compact form and in its unrolled

form. The compact form symbolizes the network’s recurrent nature, while the unrolled

form expands the network across the time dimension, illustrating how it processes a

sequence step-by-step.

Figure 2.11: RNN Architecture [90].

• Input Layer: At each time step t, the network receives an input x(t), such as a

one-hot encoded vector representing a word in a sentence.

• Hidden Layer: The hidden state h(t) at time t is a function of the current input

and the previous hidden state h(t − 1), mathematically represented as h(t) =

f(Ux(t) +Wh(t − 1)). This computation incorporates a nonlinear activation

function f , like tanh or ReLU, to introduce nonlinearity into the model.

• Weights: RNNs utilize three main weight matrices: U (input to hidden), W

(hidden to hidden), and V (hidden to output). These weights are shared across
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all time steps, significantly reducing the model’s complexity by limiting the

number of parameters to learn.

• Output Layer: The output at each time step o(t) is derived from the hidden

state, potentially passing through additional nonlinear transformations, espe-

cially if the network feeds into subsequent layers.

To address the limitations of basic RNNs, particularly their struggle with learning

long-term dependencies due to the vanishing gradient problem, advanced variants like

Long Short-Term Memory (LSTM) units and Gated Recurrent Units (GRUs) have

been developed. These models introduce mechanisms to selectively remember and

forget information, making them more effective for tasks requiring the understanding

of long sequences.

LSTM

Long Short-Term Memory (LSTM) networks are a special kind of Recurrent Neural

Network (RNN) that is well-suited for sequence prediction tasks due to their ability

to learn long-term dependencies. LSTMs were introduced by Hochreiter and Schmid-

huber in 1997 [92] to overcome the long-term dependency and the vanishing gradient

problem that affects standard RNNs.

Recurrent Neural Networks (RNNs) are distinguished by their unique architecture.

The main idea of this architecture is the concept of a chain of repeating modules,

which allows RNNs to maintain a form of memory across the inputs they process.

In standard RNNs, the repeating module within this chain-like structure is typi-

cally quite simple. This structure usually consists of a single layer with a nonlinear

activation function, such as the hyperbolic tangent (tanh) function. However, this

simplicity often brings some limitations. For example, even though RNNs are theo-

retically capable of handling long-range dependencies within sequences, in practice,
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Figure 2.12: LSTM Gates [91].
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they struggle to maintain their internal state across long sequences due to issues like

the vanishing gradient problem.

LSTMs make use of a more complex structure for the repeating module to learn

these types of long-range dependencies. LSTMs use four distinct layers (Fig 2.12)

instead of a single layer common in traditional RNNs. The fundamental principle of

LSTMs is the cell state, which has few linear interactions and flows directly down

the network’s chain. This design allows information to flow unaltered and guarantees

that data may be maintained and accessed by the network for extended periods of

time.

1. Forget Gate: The forget gate decides which information should be discarded

from the cell state. It looks at the previous hidden state ht−1 and the current

input xt and applies a sigmoid function to each number in the cell state Ct−1.

The output of the function is a number between 0 and 1, where 0 means to

“forget” and 1 means to “remember”. This allows LSTM to retain only the

important information necessary for future predictions.

2. Input Gate: The input gate is in charge of controlling the new information

that goes to the cell state. This gate operates in a two-step process: first, a

sigmoid layer called the “input gate layer” determines the values to be updated.

Next, a tanh layer generates a vector of new candidate values C̃t.

3. Cell State: The cell state functions as the LSTM’s “memory.” It carries the

relevant information as the sequence is processed. It is modified by two gates.

First, the input gate combines C̃t with the old state, effectively allowing the

LSTM to update its memory with new relevant information. Second, the forget

gate removes all useless information by multiplying the old state by ft.

4. Output Gate: The output gate determines the next hidden state ht based

on the information from previous inputs. The hidden state can be used for
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predictions and is carried over to the next time step. To determine which parts

of the cell state to output, the output gate examines the previous hidden state

and current input. This step is performed by employing a sigmoid function.

Following this, a tanh function is applied to the cell state, resulting in a value

between -1 and 1, which is then multiplied by the output of the sigmoid gate

to produce only the chosen parts of the cell state.

The interaction among these four gates allows the LSTM to properly manage its

internal state and output. This process makes it highly effective for tasks that require

understanding sequences and their long-term dependencies. LSTM can make accurate

predictions by choosing to forget irrelevant information, updating its memory with

new information, and controlling the flow of information to the output. This complex

process is what makes LSTMs the mainstay of sequence modeling in deep learning.

LSTM Sequence-to-Sequence

As discussed in the previous section, LSTMs work by mapping input sequences onto

an output sequence. This mapping allows the model to capture the complex temporal

patterns and dependencies within the data.

Predicting future values of a time series is a difficult task and one of the main

topics of research in machine learning [93]. One of the most effective approaches for

accomplishing this task involves the use of “sequence-to-sequence” (seq2seq) models.

In this thesis, whenever we mention “sequence-to-sequence” we are specifically refer-

ring to many-to-many RNN seq2seq models. However, for the sake of brevity, we will

simply use the term “sequence-to-sequence” throughout. This type of model is used

in problems when the input and output sequences are of the same length. Seq2seq

models are especially relevant if one of the objectives is to predict the future values

of a dataset based on the information learned from its past values. Each element in

the output sequence is directly predicted from a corresponding element in the input
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sequence. Consequently, this method enables the model to maintain a continuous

flow of information across the time steps.

More precisely, let X = (x1, x2, . . . , xT ) be the input sequence of length T and

Y = (yτ+1, yτ+2, . . . , yτ+T ) be the corresponding output sequence. Here, each yτ+t is

the predicted value from xt shifted by τ timesteps forward. At each timestep, t, the

LSTM uses the input element xt to update its hidden state, ht, based on the previous

hidden state ht−1. Mathematically, this can be represented as:

ht = f(ht−1, xt; θ), (2.43)

where f is the update function and θ represents the set of weights and biases that

define the model.

Finally, once we have calculated the hidden state, we can proceed to calculate the

output:

yτ+t = g(ht;ϕ), (2.44)

where g is the output function and ϕ consists of the weights and biases that are part

of the output layer of the model. These parameters control how the hidden states are

translated into the output at each timestep.

2.3.4 Wavelet Transform

Wavelet transforms are a mathematical tool for analyzing data that provides a mul-

tiple time-scale representation of the system’s dynamics. In this thesis, we calculate

the amplitudes using the Morlet continuous wavelet transform for each postural mode

[94]. Wavelets offer a multi-resolution time-frequency trade-off that allows for a more

detailed depiction of postural dynamics across multiple time scales [95]. The wavelet
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transform of a signal y(t) at a time scale s is given by:

Ws,τ [y(t)] =
1√
s

∫ ∞

−∞
y(t)ψ∗

(
t− τ

s

)
dt, (2.45)

where ψ(η) is the Morlet wavelet function, defined as:

ψ(η) = π− 1
4 eiω0ηe−

η2

2 . (2.46)

Here, ω0 = 5 is a non-dimensional parameter, and τ is a time point. Additionally,

the time scale s is related to the Fourier frequency f by the equation:

s(f) =
ω0 +

√
2 + ω2

0

4πf
(2.47)

This relationship is derived by maximizing the response of the wavelet transform to a

pure sine wave, facilitating the interpretation of wavelet scales in terms of frequency.

The power spectrum S(k, f ; τ) is calculated using:

S(k, f ; τ) =
1

C(s(f))

∣∣Ws(f),τ [yk(t)]
∣∣ , (2.48)

where C(s) is a scalar function for normalization:

C(s) =
π− 1

4

√
2s
e
1/4

(
ω0−

√
ω2
0+2

)2

. (2.49)

This normalization corrects for the Morlet wavelet’s bias towards lower frequencies,

ensuring a uniform response for all scales [27].

The frequencies for the wavelet spectrogram are chosen to be dyadically spaced

between a minimum frequency fmin = 1 Hz and the Nyquist fmax = 60 Hz, using the

formula:

fi = fmax2
− i−1

Nf−1
log2

(
fmax
fmin

)
, (2.50)
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for i = 1, 2, . . . , Nf , where Nf is the number of frequencies analyzed.

2.3.5 Autoencoders as a dimensionality reduction technique

High-dimensional spaces often suffer from the curse of dimensionality, where data

points become increasingly isolated. This sparsity decreases the density of data,

complicating the task of identifying accurate patterns or relationships among vari-

ables. The high dimensionality of the feature space means that conventional distance

metrics become less informative. Therefore, in order to mitigate these challenges,

traditional dimensionality reduction techniques like Principal Component Analysis

(PCA) are usually employed. Linear methods like PCA reduce the dataset’s dimen-

sionality by projecting it onto a lower-dimensional subspace that captures the most

variance. However, most of these methods fall short of portraying the full complexity

of the data, especially when we encounter intricate nonlinear relationships.

Autoencoders, a class of neural networks designed for unsupervised learning ( more

in Section 2.2.7 ), can be used as a powerful alternative for dimensionality reduction.

Because of their deep architecture, they can learn to encode and decode data in a way

that both linear and nonlinear correlations are captured. This ability allows them

to identify and represent the underlying structure of the data more accurately than

linear methods. They compress the data into a lower-dimensional latent space, where

the most critical features are preserved and the redundancies are eliminated.

The method begins with the training of the autoencoder. During this phase, the

autoencoder adjusts its weights to minimize the difference between the original input

data and its reconstruction from the latent representation. This involves learning the

most efficient way to encode the salient features of the data into the latent space. Once

the autoencoder has been adequately trained, the decoder component is removed.

Now, we focus only on the encoding part. The output of the encoder, which is

the projection of the high-dimensional data into the latent space, serves as a lower-
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dimensional representation of the original data [96]. This latent representation is

significantly easier to manage, visualize, and process.

Figure 2.13: Deep autoencoder. The encoder is orange, and the decoder is blue. The
reduced 1-dimensional representation is the bicolored node in the middle. Adapted
from the comparative study by Fournier and Aloise on autoencoders versus traditional
dimensionality reduction methods [96].

This approach effectively positions autoencoders as a non-linear generalization of

PCA. While PCA linearly transforms data to a lower-dimensional space by projecting

it onto the principal components that maximize variance, autoencoders go a step

further. They use non-linear activation functions in their hidden layers to perform

non-linear transformations to the original data in order to capture the data’s inherent

structure.

2.3.6 Spatial embedding

The approach taken to reduce the dimensions of the fixed points identified by the

RNN must be designed to reduce distortions in the local embedding, ensuring that it

accurately captures close relationships in the data. This strategy should not priori-
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tize the preservation of global structure or long-distance relationships, providing more

flexibility in representing distances between distant points on the manifold. There-

fore, we selected t-Distributed Stochastic Neighbor Embedding (t-SNE) since it is a

method that possesses all these properties [97]. Other traditional methods, such as

PCA, multi-dimensional scaling, and Isomap do exactly the opposite, sacrificing local

accuracy to obtain better global structure [98, 99, 100].

t-SNE is a popular method for dimensionality reduction that is particularly well-

suited for visualizing high-dimensional datasets. It works by converting distances

between data points in the high-dimensional space into conditional probabilities that

represent similarities. The similarity of data point tj to data point tji is given by a

conditional probability pj|i, which is defined as:

pj|i =
exp

(
−d(ti,tj)

2

2σ2
i

)
∑

k ̸=i exp
(
−d(ti,tk)2

2σ2
i

) , (2.51)

where d(ti, tj) is the distance between two points ti and tj, and σi is the variance of

the Gaussian that is centered on data point ti. The conditional probability pj|i = 0,

since all self-transitions are excluded. Similarly, in the low dimensional space, a new

set of transition probabilities qj|i are defined. However, in this case, it is important

that these pairwise similarities are proportional to a Student-t kernel of the points’

Euclidean distances in the embedded space.

Finally, a distance function must be defined. We aim to minimize the differences

between pj|i and qj|i; thus, a reasonable distance function is the Kullback-Leibler

divergence (KLD) between the two distributions [101].
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Chapter 3

Inferring time-varying coupling of

dynamical systems with temporal

convolutional network

autoencoders

3.1 Introduction

Rather than being static in time, interactions between parts of a complex system

continuously ebb and flow, with one variable driving another at one point, just to

see the relationship reverse or lessen or disappear at a later point in time. Real-

world signals are seldom stationary and well-behaved, and their causal linkages and

interactions frequently appear, disappear, and reappear, possibly changing in strength

over time. Examples of such systems abound in neuroscience [3, 102], ecology [38],

finance, [8, 37, 6], and climate [103, 104, 40].

Despite the ubiquity of these dynamically altering interactions, however, most

methods for assessing causality in complex dynamical systems have difficulty mea-
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suring how the direction and extent of interactions between variables in a system

alter in time. This difficulty arises from several inherent characteristics of complex

systems and the limitations of existing causal assessment methodologies. Most of

these methods, including Granger Causality (GC) [51], often assume that the dy-

namical system should be approximately stationary, meaning their statistical prop-

erties do not change over time. Other common assumptions, such as linearity and

time-invariance are also often violated in complex real-world systems. These con-

straints significantly limit the applicability and accuracy of these approaches in many

scenarios [16, 81, 105, 7, 106, 4].

In addition, in systems where variables are strongly coupled and synchronized,

some of these causality inference methods struggle to accurately infer the coupling

strength and direction of causality [4]. This issue extends to scenarios of intermediate

coupling, where the variables are neither weakly nor strongly linked. Additionally, the

presence of noise in the system leads to a decrease in cross-mapping fidelity, revealing

further limitations [107, 108]. Although the lack of correlation is neither necessary

nor sufficient to demonstrate causation [35, 36], correlation does play an important

role in many statistical methods as the basis for hypothesis tests for causality. Mirage

correlations can appear in the simplest nonlinear systems [34]. Variables that may be

positively correlated at some point in time can become anti-correlated some moments

after or even lose all coherence. However, most causality methods do not adequately

account for the fact that sudden changes in correlation over time between variables

may indicate a change in the underlying temporal causal relationships.

In this chapter, we introduce a new methodology for probing time-varying causal

interactions using a new metric for assessing causal interactions combined with a

novel machine learning architecture for causal inference, which we call Temporal

Autoencoders for Causal Inference (TACI). We show the method’s effectiveness on

synthetic and real-world data sets, both in an absolute sense and in comparison to
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extant methods, particularly focused on how to find time-varying causal structure in

complex dynamical systems.

3.2 Overview of Methodology

In our methodology, we adopt a two-fold approach towards developing a causal in-

ference method that accurately assesses causality between variables x(t) and y(t) in

the Granger sense for nonlinear systems with time-varying interactions. The first

aspect of our approach is to use a novel surrogate data comparison metric – the

Comparative Surrogate Granger Index (CSGI) – that measures the relative improve-

ment in prediction accuracy when including both variables vs. one of them and a

randomized version of the other. The other aspect is to use a two-headed Temporal

Convolutional Network architecture to robustly capture the space of potential non-

linear mappings between variables across the entire time series. As will be observed,

the CSGI with linear autoregressive models works well to identify causal interactions

in situations where relatively straightforward mappings exist between variables, but

the more complicated neural network model is more effective when the mappings are

more non-linear.

3.2.1 Comparative Surrogate Granger Index (CSGI)

Informally, Granger Causality (GC) defines a causal interaction from x(t) to y(t) to

be when knowing the full history of both x(t) and y(t) provides a better prediction

about the future of y(t) than knowing just the history of y(t) alone. While there

are many variations on this methodology [24, 109, 76], the typical form used is to

compare two models of similar type (e.g., linear autoregressive models, feedforward

neural networks, etc.) based on their ability to predict the future state of y(t). More
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explicitly, the comparison is between

y(t) ≈ f(yt−1, yt−2, . . .) (3.1)

and

y(t) ≈ g(xt−1, xt−2, . . . , yt−1, yt−2, . . .). (3.2)

Usually, an F-test is used to determine whether the latter model is preferred over the

former.

This form, however, suffers from two limitations. First, the comparison is a bi-

nary one – the second model is “significantly” better than the first or it is not –

thus, differences in the strength of coupling can not be detected, just the presence or

absence. Second, because the F-test and similar methods incorporate strong assump-

tions about the underlying dynamics of the system, statistical statements deriving

from these tests are often not robust under resampling or re-parameterization. In

addition, because the model complexities for the two models being compared are in-

evitably quite different, with one typically having twice as many parameters as the

other, the F-test often fails to detect causal interactions properly.

A common strategy for ameliorating these limitations is to compare not

f(yt−1, yt−2, . . .) and g(xt−1, xt−2, . . . , yt−1, yt−2, . . .), (3.3)

but rather (as described in Eqns. (3.1) and (3.2))

f(xt−1, xt−2, . . . , yt−1, yt−2, . . .) and g(x
(s)
t−1, x

(s)
t−2, . . . , yt−1, yt−2, . . .), (3.4)

where x(s) is a surrogate data set that shares similar statistical properties to x(t) but

is shuffled in some manner (e.g., shuffling values to preserve the distribution of values

or shuffling phases of the time series’ Fourier Transform to preserve the frequency
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profile). Typically, this comparison is accomplished through the Extended Granger

Causality Index (EGCI) [24, 52]. If ϵy(t) are the residuals for fitting the future of

y(t) on the past of y(t) and ϵxy(t) are the residuals for fitting the future of y(t) on

the pasts of both x(t) and y(t), then the EGCI is given by ratio between the relative

reduction in residual variance when the past of x(t) is included in the model:

EGCI = 1− var(ϵxy(t))

var(ϵy(t))
. (3.5)

y(t) is thus said to cause x(t) if the EGCI using the actual values of x(t) is significantly

higher than the EGCI found substituting x(t) for x(s)(t).

Our approach attempts to assess directly the relative increase in variance explained

for the predictive model when using x(t) vs. x(s)(t). Specifically, if R2
xy is the fraction

of variance explained about the future of y(t) using the pasts of x(t) and y(t) in the

model and R2
x(s)y

is the fraction of variance explained using x(s)(t) and y(t), then we

define the Comparative Surrogate Granger Index (CGSI), χx→y, to be defined via

χx→y =
R2

xy −R2
x(s)y

1
2
(R2

xy +R2
x(s)y

)
. (3.6)

This metric’s advantages over the EGCI are that it is able to measure small changes in

causal interactions and that it explicitly measures the difference in predictive power

between using actual data and using surrogate data to predict the future. In this

chapter, we will be measuring χx→y and χy→x for all pairs of variables to assess

whether there is causal coupling between two variables, whether it is uni- or bi-

directional, and the relative strength of the coupling.

3.2.2 Temporal Autoencoders for Causal Inference

While one advance in our methodology is the use of the CGSI in the previous section,

the other novel contribution is the use of a new artificial neural network architecture
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Figure 3.1: Schematic of the Temporal Autoencoders for Causal Inference (TACI)
Networks. We use a two-headed network consisting of Temporal Convolutional Net-
works that interact through a shared latent space to predict a time-shifted version
of one of the two input time series. For each pair of variables we wish to examine
(here, X and Y ), we train two networks for each causal direction: one using X and
Y as inputs and another using X and a Fourier-shuffled surrogate version of Y . We
consider an interaction from Y → X to be causal if the network using the actual value
of Y predicts the future of X better than the network using the surrogate version of
Y . In this particular case, we show the approach applied to two different variables
from the Lorenz system.
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to calculate the functions f and g in Eqn. (3.4) that are used to predict the future

of y(t). The original (and still most common) models ([51]) for f and g are auto-

regressive linear models of the form

y(t) =
k∑

i=1

(aix(t− i) + biy(t− i)) + ϵt, (3.7)

where x(s)(t) can be substituted for x(t) when using the surrogate approach. While

this relatively simple approach shows impressive performance in a variety of scenarios,

these models fail to accurately predict known causal interactions for couplings that

have weak to moderate coupling and are governed by nonlinear dynamics that are not

well approximated by linear models [21, 17]. This inability is typically because the

systems fail to satisfy separability. In other words, all information about a causative

factor has to be inherent to that specific variable and can be omitted by removing that

variable from the model, as is the case for purely stochastic or linear systems [4]. For

systems with strongly nonlinear deterministic components, however, this assumption

fails, and, accordingly, so do the predictions from auto-regressive linear GC [105, 17].

In addition, because these linear models have difficulty predicting information across

multiple timescales, they often have difficulty detecting subtle shifts in causality as a

function of time.

In recent years, a solution has been to replace the linear model in (3.7) with deep

neural networks of varying architectures that, due to their nearly non-parametric

nature, excel in approximating complex functions [90]. These methods include the use

of Variational Autoencoders to estimate causal effects [110], Causal Generative Neural

Networks to learn functional causal models [111], Neural Granger to estimate non-

linearly dependencies based on Granger causality principles [76], and the Temporal

Causal Discovery Framework (TCDF) to address time delay causal relationships [81].

These methods, however, are often unwieldy to train, are prone to overfitting, and
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are susceptible to inaccuracies in the presence of a significant amount of noise.

In this chapter, we introduce a novel neural network architecture for causality

using a two-headed Temporal Convolutional Network (TCN) autoencoder (Fig. 3.1).

TCNs, the primary building block of our approach, are a specialized type of neural

network that integrates causal inference into convolutional architectures. First intro-

duced for video-based action segmentation [78], TCNs quickly became popular due to

their ability to extend most of the convolutional advantages of regular CNNs – includ-

ing sparsity and translational equivariance – into the time domain through a series

of dilated and causal convolutional layers. A key characteristic of this framework is

its simplicity, relatively long memory, and ability to outperform most convolutional

architectures in auto-regressive prediction tasks [79].

Our approach, which we call Temporal Autoencoders for Causal Inference (TACI)

is a neural network that consists of a two-headed TCN autoencoder, where two

TCNs are used to encode time series x(t) and y(t), and a third is used for decoding

an equivalently long time series describing the future trajectory of y(t) (shifted by

some time, τ) from a relatively low-dimensional latent space that is derived from the

outputs of the first two autoencoders. A more detailed description of our model

and our training methodology can be found in Materials and methods. Code is

available here: https://github.com/josuancalderonglez/Temporal-Autoencoders-For-

Causal-Inference-TACI-/tree/main.

For each comparison of interest, we train four versions of this network: one using

x(t) and y(t) as input time series to predict the future of x(t), another that is the

same except for replacing x(t) with the surrogate data x(s)(t), another pair of the

networks that are structured the same except with x and y reversed in each case.

Given these four trained networks, we can then make predictions for the future of the

appropriate variable and calculate the fraction of variance explained over a moving

window (i.e., R2
xy(t) or R

2
x(s)y

(t)). From these values, we can then apply Eqn. (3.6) to

https://github.com/josuancalderonglez/Temporal-Autoencoders-For-Causal-Inference-TACI-/tree/main
https://github.com/josuancalderonglez/Temporal-Autoencoders-For-Causal-Inference-TACI-/tree/main
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calculate the CGSI values χx→y and χy→x, which we will use to assess causal inference

between these two variables.

3.2.3 Other Methods We Compare Against

Alongside comparing GC with linear autoregressive models, which we will refer to

here as Surrogate Linear Granger Causality (SLGC), we will also test against two

other commonly used methods: Convergent Cross Mapping and Transfer Entropy.

Convergent Cross Mapping (CCM)

Convergent Cross Mapping (CCM) was introduced to determine causation in systems

that could be modeled as relatively noiseless deterministic dynamical systems [4]. The

core concept of this approach is that according to Takens’ Embedding Theorem, if x(t)

and y(t) are two variables of a deterministic dynamical system, one can reconstruct

x(t) from a delay embedding of y(t) if and only if the time derivative of x(t) explicitly

depends on y(t) [64, 65, 19]. Thus, if it is possible to predict x(t) from an embedding

of y(t) alone, we would say that y has a causal interaction with x. Practically,

these predictions are calculated by predicting x(t) from y(t) (and vice versa) and

computing the correlation coefficient between the actual and predicted values [4],

with correlations near one implying a strong casual influence and correlations near

zero implying no or little influence. Here, we used Scikit Convergent Cross Mapping

(skccm), a Python-based-library implementation of CCM for causal discovery [112].

Transfer Entropy

Transfer entropy (TE) is a metric that quantifies a reduction in uncertainty in pre-

dicting the future of one variable given the past of another using formalism from

information theory [22]. Specifically, we can measure the transfer entropy from y(t)
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to x(t) at a given distance in the future, τ , (TY→X(τ)) via

TY→X(τ) = H(x(t)|x(t− 1), . . . , x(t− τ)) (3.8)

−H(x(t)|x(t− 1), . . . , x(t− τ), y(t− 1), . . . , y(t− τ)),

where H(X|Y ) is the Shannon entropy of the conditional probability distribution

p(X|Y ). This quantity is zero if adding information about the past of y(t) results

in no reduction in our future guesses for x(t), and if it is non-zero, the quantity

can be interpreted as the rate of information flowing from Y to X. Practically, we

calculate TE for our systems using the Java Information Dynamics Toolkit (JIDT or

Infodynamics Toolkit) [113].

3.3 Results

3.3.1 Artificial Test Systems

To test the validity of our approach, we applied the methodology to a variety of

different deterministic and stochastic dynamical system models with known causal

interactions, finding that TACI performs well across all cases. In particular, we are

interested in cases where the coupling changes in time, which we will explore in detail

for the Coupled Henon Maps system.
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The Rössler-Lorenz System

Our first example case is a system of coupled chaotic attractors, where the Lorenz

system (y⃗) [114] is driven by a Rössler oscillator (x⃗)[115]:

ẋ1 = −6(x2 + x3),

ẋ2 = 6(x1 + 0.2x2),

ẋ3 = 6
(
0.2 + x3(x1 − 5.7)

)
,

ẏ1 = 10(y2 − y1),

ẏ2 = 28y1 − y2 − y1y3 + Cx22, (3.9)

ẏ3 = y1y2 −
8

3
y3,

where the constant C controls the coupling strength of the system, and the driving

severely distorts the behavior of the Lorenz attractor as C increases [116]. Synchro-

nization between x⃗ and y⃗ starts near C = 2.14, making the two systems’ behavior

effectively coupled above this point despite the lack of an explicit coupling term, mak-

ing traditional formal notions of causality ill-posed (Fig. 3.2A) [39]. The solutions

to the differential equations were generated by using a fourth-order Runge-Kutta

method. C was chosen between 0 and 5, computing a time series of length 300,000

(dt = 0.1) after a burn-in time of 30,000 time points at each coupling strength.

As seen in Figure 3.2B-E, TACI is the only method of the four tried here that

accurately predicts the unidirectional coupling from x⃗ to y⃗. SLGC (Fig. 3.2B) fails to

predict any coupling whatsoever between the variables, and CCM and TE (Figs. 3.2C-

D) predict bidirectional coupling (albeit with somewhat more information flowing

from x⃗ → y⃗ than in the reverse). TACI, in contrast, predicts only unidirectional

coupling until the point of synchronization (C ≈ 2.14), after which, it predicts no

effective causation in either direction.
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Figure 3.2: Causal inference in the Rössler-Lorenz System. A) 2-dimensional pro-
jections of the Rössler attractor (left) and the Lorenz system (right three plots) as
C increases. Mathematically, there is only coupling from X → Y , but starting near
C = 2.14, the two systems become synchronized, making finding the causal inter-
actions an ill-posed problem. B-E) Results from applying the four methods to the
system. Note that only TACI accurately predicts the unidirectional coupling in the
regime above C > 0 and before synchronization occurs. Error bars are generated
using a bootstrapping procedure (see Materials and Methods).

Coupled Bi-directional Two-Species Model

In contrast to the Rössler-Lorenz System, the bi-directional two-species model [117],

is calculated in discrete time, and it exhibits (unsurprisingly) bi-directional coupling:

x(t+ 1) = x(t)
(
3.8− 3.8x(t)− Cy(t)

)
,

y(t+ 1) = y(t)
(
3.5− 3.5y(t)− 5Cx(t)

)
, (3.10)

where C once again is the coupling strength, noting that the coupling strength is

five times larger from x → y than in the reverse direction. In this system, sepa-

rability is not satisfied (i.e., information about y is redundantly present in x and

vice versa). Despite the fact this model is deterministic and dynamically coupled, it

shows alternating periods of positive, negative, and zero correlation [4]. For values

of C ∈ [0, 0.35], we created a bivariate time series of length 300,000 (after a burn-in
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of 30,000 time points). The initial conditions were generated with random starting

points drawn from the uniform distribution (0.01, 0.99).

Figure 3.3: Causal inference in the bidirectional species system. A-D) Results from
applying the four methods to the bidirectional species system. Error bars are gener-
ated using a bootstrapping procedure (see Materials and Methods).

Applying the four methods to these data (Fig. 3.3), we find that both TE

and TACI correctly identify both the bi-directional aspect of the coupling and the

increased causal link from x → y compared to y → x. CCM identifies the bi-

directionality correctly, but it does not identify the relative strength of the couplings,

and SLGC is unable to identify any causal link from y → x.

Coupled Autoregressive Models

Coupled autoregressive models are an extension of basic autoregressive models, in-

tended to represent the dynamics of systems where multiple time series influence each

other. In these models, the value of a variable at a given time point is not only a func-

tion of its own previous values but also depends on the past values of other variables

in the system. Here, we study the following system consisting of two bidirectionally

coupled autoregressive processes of the first order:

x(t+ 1) = 0.5x(t) + 0.2y(t) + ϵx(t),

y(t+ 1) = Cx(t) + 0.7y(t) + ϵy(t), (3.11)
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where C is the strength of the coupling between x and y, and ϵx(t) and ϵy(t) are drawn

from a normal (Gaussian) distribution with a mean of 0 and σ2
x = σ2

y = 0.1. Higher

values of C represent stronger couplings from x → y, and for C = 0, the system is

unidirectional (only the past of y has an impact on the future of x). We examined

values of C ∈ [0, 0.6] and created sets of bivariate time series of length L = 300, 000

for each value of C (after a burn-in time of 30, 000 points). The initial conditions

of the system were generated from the normal distribution with zero mean and unit

variance.

Figure 3.4: Causal inference in the coupled autoregressive models system. A-D) Re-
sults from applying the four methods to the coupled autoregressive models system.
Error bars are generated using a bootstrapping procedure (see Materials and Meth-
ods).

Fig. 3.4 shows that SLGC does very well at identifying the onset of bi-directionality

for C > 0, with the coupling of x → y monotonically increasing with C. This fact

is perhaps not surprising, as SLGC is based on precisely such linear systems. TACI

also does a comparable job at detecting bi-directionality, even roughly predicting the

switchover between x→ y and y → x coupling strengths at C = 0.5. CCM, however,

does not predict any coupling from y → x at C = 0, and TE does not predict any

coupling from y → x across all values of C.
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Coupled Hénon Maps

Our last example, the Hénon map, is a well-known example of a discrete-time dy-

namical system that exhibits chaotic behavior that was first developed as a simplified

version of the Poincaré portion of the Lorenz model [117], and in its chaotic regime,

it is characterized by an attractor with a warped horseshoe shape. Here we consider

a case of two Hénon maps, x⃗ and y⃗, with unidirectional coupling [118]:

x1(t+ 1) = 1.4− x21(t) + 0.3x2(t), (3.12)

x2(t+ 1) = x1(t),

y1(t+ 1) = 1.4−
(
Cx1(t)y1(t) + (1− C)y21(t)

)
+ 0.3y2(t),

y2(t+ 1) = y1(t),

where C controls the strength of the coupling from x⃗ to y⃗. For coupling strengths

above C > 0.65, the systems start to show evidence of intermittent synchronizations.

This on-off behavior becomes a fully synchronized state after C > 0.7 [119]. For

C ∈ [0, 0.9], we generated sequences of length 300,000 (after a burn-in period of

30,000) and analyzed data from x1 and y1 for each of the methods. TACI is the only

Figure 3.5: Causal inference in the coupled Hénon Maps system. A-D) Results from
applying the four methods to the coupled Hénon Maps system. Here, only TACI
accurately predicts univariate coupling across all values of C prior to synchroniza-
tion. Error bars are generated using a bootstrapping procedure (see Materials and
Methods).
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method out of the four that correctly identifies the uni-directional coupling between

from x⃗ to y⃗ (but not from y⃗ to x⃗), although SLGC is very close, it is statistically

significantly different from zero at intermediate values of C. TE and CCM both

predict bi-directional interactions, albeit with weaker coupling from y⃗ to x⃗ than in

the reverse direction.

Non-stationary Coupled Hénon Maps

Taken as a whole, TACI is the only method that performed well across all four artificial

test cases, but the challenge remains as to whether it can identify patterns in data

that change over time. To test this idea, we generated time series from the coupled

Hénon maps in (3.12) but with time-varying couplings, Cxy(t) and Cyx(t):

x1(t+ 1) = 1.4−
(
Cyx(t)y1 (t)x1 (t) + (1− Cyx(t))x

2
1 (t)

)
+ 0.3x2 (t) ,

x2(t+ 1) = x1 (t) ,

y1(t+ 1) = 1.4−
(
Cxy(t)x1 (t) y1 (t) + (1− Cxy(t)) y

2
1 (t)

)
+ 0.3y2 (t) ,

y2(t+ 1) = y1 (t) .

(3.13)

Here, the two coupling terms are similar to the coupling term, C, in (3.12) but with

time-varying values and potentially allowing for coupling from y to x.

We performed four different tests to see how TACI performs when causal inter-

actions alter with time: (i) setting Cyx(t) = 0 and toggling Cxy(t) between 0 and

0.6, (ii) initially setting Cyx(t) = 0 and Cxy(t) = 0.6 and then switching the two

half-way through the run, (iii) setting Cyx(t) = 0 and toggling Cxy(t) between 0 and

0.6 but with pulses of Cxy(t) = 0.6 being set to different time widths, and (iv) setting

Cyx(t) = 0 and stepping Cxy(t) from 0 to 0.4 and back down again in steps of 0.1.

Other than the coupling changes, all time series were generated in an identical

manner to the previous section. It is important to note that the network for TACI was
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only trained once on the entire time series, not specifically for each testing window.

Thus, by creating a robust model, our network is able to identify complex causal

dynamics that change in time without having to constantly fit new models, as would

be the case for SLGC, CCM, and TE.

In Fig. 3.6, we show that TACI performs well in the first three of these scenar-

ios, ably identifying when eliminations of causal interactions occur, as well as when

Cyx(t) = 0 and Cxy(t) flip. In addition, Fig. 3.7 shows that the TACI network is able

to identify how coupling strengths change with time.

Figure 3.6: TACI applied to coupled non-stationary Hénon Maps. A) A plot of the
TACI inference when applied to the coupled Hénon Maps system where the coupling
from X → Y is set to either Cxy = 0.6 (blue bar above the plot) or Cxy = 0 (no bar
above the plot). B) Same as A but with a toggle from Cxy = 0.6 to Cyx = 0.6 (where
the blue and red bars above the plot flip). C) Same as A but with multiple pulses of
Cxy = 0.6 of varying sizes. Error bars are generated using a bootstrapping procedure
(see Materials and Methods).
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Figure 3.7: TACI applied to coupled non-stationary Hénon Maps with ramped cou-
plings. A) Inferred causal coupling as a function of time during the simulation. B
Time series of how the coupling from X to Y was stepped up and then down. Error
bars are generated using a bootstrapping procedure (see Materials and Methods).

Summary of Results on Artificial Test Systems Among the methods tested,

only TACI is able to robustly infer known causal interactions between variables with-

out incorrectly predicting non-existent interactions. TACI consistently differentiates

between unidirectional and bidirectional coupling in low, moderate, and strong set-

tings. Additionally, it accurately detects instances when the time series become syn-

chronized in all tested scenarios. TACI excels in identifying complex causal dynamics

that evolve over time, such as those observed in pulse systems with time-varying cou-

pling. Given these successes in artificial systems, we will now apply the method to

two real-world examples.

3.3.2 Jena Climate Dataset

The first data set we will test our model on is the “Jena Climate Dataset”, a detailed

collection of weather measurements recorded by the Max Planck Institute for Biogeo-

chemistry from a weather station located in Jena, Germany [120]. The dataset spans

nearly eight years – from January 10, 2009, to December 31, 2016 – and includes 14
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distinct meteorological features recorded every 10 minutes. These features include a

wide range of atmospheric conditions, from temperature to relative humidity to vapor

pressure deficit (see Table 3.1 for details). Several example time series are shown in

Fig. 3.8.

Figure 3.8: Time series of Temperature, Dew Point, Relative Humidity, and Vapor
Pressure Deficit from the Jena Climate Dataset.

A key advantage of these data is that some of the interactions are known already

due to empirical models of atmospheric dynamics, providing a good test case for our

method on real data. One example is the relationship between relative humidity

(RH), the dew point (Tdew), and the temperature (T ), which is given by

RH = 100 exp
17.625Tdew
Tdew + 243.04

/
exp

17.625T

T + 243.04
, (3.14)

where Tdew and T are in degrees Celsius and RH is a percentage [121]. Calculating

the partial derivative of RH with respect to T (keeping Tdew fixed), we find that we

should expect stronger interactions to occur from T to RH at lower temperatures (Fig.

3.9A). After training our TACI model from each of the variables in the data set onto

T , we indeed find that causal interactions peak during epochs when the temperature
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Table 3.1: Summary of Jena Climate Dataset Features

Feature Description

Date/Time Date-time reference
p (mbar) Atmospheric pressure stated millibars
T (degC) Temperature in Celsius
Tpot (K) Temperature in Kelvin
Tdew (C) Dew Point Temperature in Celsius
RH (%) Relative Humidity in percentage
VPmax (mbar) Saturation vapor pressure
VPact (mbar) Vapor pressure
VPdef (mbar) Vapor pressure deficit
sh (g/kg) Specific humidity
H2O C (mmol/mol) Water vapor concentration
rho (g/m3) Air density
wv (m/s) Wind speed
max. wv (m/s) Maximum wind speed
wd (deg) Wind direction in degrees

drops (Fig. 3.9B), showing that our method can accurately find temporal variations

in causal interactions in messy real-world data.

3.3.3 Electrocorticography in Non-Human Primates

Lastly, we used electrocorticography (ECoG) data from non-human primates to test

whether our methodology can detect time-varying interactions between brain regions

from these electrophysiological signals. These data frequently exhibit extraordinarily

complex dynamics that shift in time as an animal changes its state: from sleep to

wake, from satiated to hungry, from attending from one object to another, and so

on [102]. These alterations are often subtle, and, thus, understanding how different

regions of the brain drive one another’s activity requires a method that can detect how

slight variations in the relationship between variables lead to changing interactions

across time.

Here, we analyzed publicly available ECoG data from a single monkey (Macaca

fuscata) [122, 123, 124]. These recordings consisted of 128 channels of data that
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Figure 3.9: Causal interactions with relative humidity from the Jena Climate Dataset.
A) Empirical relationship between relative humidity and air temperature (assumes
Tdew = 10). Note the large negative partial derivative at low values of T . B) TACI
predictions for causal interactions for how the other 13 variables in Table 3.1 affect
relative humidity as a function of time across the eight years of the dataset (gray
lines, mean trajectory is the black line). Note how causal influence peaks consistently
when the temperature (C) is at its nadir, just as predicted by the plot in A.

recorded activity from a hemisphere of the monkey’s brain that covered the visual,

temporal, parietal, motor, prefrontal, and somatosensory cortices, sampling at 1kHz

(details can be found in [122]). Data were collected during both awake and anes-

thetized states to examine neural activity across different consciousness levels. To

generate an anesthetized state, the monkey was chair-restrained and propofol was in-

jected intravenously. The recording sessions were structured into four distinct phases:

an initial phase where the monkey is awake with eyes open, a subsequent phase where

the monkey is awake but with its eyes covered, a phase where the monkey is under

deep anesthesia, induced to reach a state of loss of consciousness, and a final stage

where the monkey recovers from anesthesia with its eyes covered. The depth of anes-

thesia was assessed by monitoring the monkey’s responsiveness to tactile stimulation

and the presence of slow wave oscillations in the ECoG signal [122].

Previous studies analyzing these data for changes in causal interactions using
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Spectral Granger Causality [122] or CCM [123], but each was only able to analyze

data at the level of the four phases described in the previous paragraph (each requiring

training a separate model, as well). Moreover, given the performance of Granger

Causality and CCM on our synthetic data sets in the previous section, we were

curious whether our results would differ qualitatively or quantitatively from these

approaches. Specifically, we trained TACI on one monkey (George in [124]) with a

sequence length of 50 to account for the extended autocorrelation time observed in

the time series (average of 53). Approximately 53 minutes of data corresponding to

the four previously outlined phases were utilized for this purpose. The training was

conducted over 300 epochs or until the point of convergence. Further details of the

parameters used can be found in 3.2

Finally, to compare with these previous studies, while we calculated the causal

interactions between each pair of electrodes, we will present many of the results as the

average result between pairs of electrodes assigned to the same region of the cortex.

Here, we will be using the eight coarse-grained regions defined in [123]: the medial

prefrontal cortex (mPFC), lateral prefrontal cortex (lPFC), pre-motor cortex (PMC),

motor and somatosensory cortex (MSC), temporal cortex (TC), parietal cortex (PC),

higher visual cortex (HVC), and lower visual cortex (LVC).

Fig. 3.10 shows time-averaged values of correlation (A), TACI-derived causal in-

teractions (B), and Directionality (C), which we define as the difference in CSGI

values in one direction vs. the other, for epochs of time before, during, and after

anaesthetization. For correlation, we measure the average Pearson correlation co-

efficient between all the electrodes assigned to the various regions. Note that the

diagonal terms do not necessarily have to be equal to one here, as electrodes within a

region are not perfectly correlated with one another. There are only minimal changes

in brain region interactions across the three time windows when measuring correla-

tion, but large differences emerge when analyzing the data using TACI. Specifically,
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we see that almost all interactions disappear during the anesthetized period, with the

interactions beginning to re-emerge during the recovery period. These results differ

from the results from CCM in [123], where they claimed that while some interactions

decreased, others strengthened (this effect is seen in our Directionality measurements,

however). Also interesting are the nearly vertical lines in Fig. 3.10B, implying that

certain regions like the mPFC might be affected broadly by signals from various parts

of the cortex – a finding that agrees with the commonly held notion that the mPFC’s

role often involves higher-level cognitive function. Again, it should be noted that only

one TACI network was trained per pair of interactions across all time epochs, unlike

the other methods we describe, which must find interactions separately during each

measurement period.

Lastly, taking advantage of the aforementioned property of TACI, we took a finer-

grained look at how interactions between a pair of regions might change with time

during the experiment, specifically the mPFC and the PC. In Fig. 3.11, we show

how these regions’ interactions alter with time. Using our approach, we observe how

the coupling slowly decays upon administration of the propofol and how it rapidly

increases a few minutes into the recovery period. Also interesting is that while dur-

ing the awake periods, PC consistently has a casual interaction towards mPFC, the

reverse interaction has significant temporal fluctuations whose study might lead to

insights into how these brain regions drive each other during cognitive tasks.

3.4 Discussion

In this chapter, we introduce a new methodology for probing time-varying causal in-

teractions in complex dynamical systems using a novel machine learning architecture

for causal inference, Temporal Autoencoders for Causal Inference (TACI), combined

with a novel metric for assessing causal interactions using surrogate data. A particu-
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Figure 3.10: Interactions between brain regions in ECoG data. Each plot here shows
the average interaction between all electrodes within each of the 8 coarse-grained
regions described in the text. The left matrices are from before the anesthesia was
administered, the middle matrices are from when the monkey was anesthetized, and
the right plots are from the recovery period. A is the Pearson correlation between
the signals, B is the TACI-derived inference of causal interaction, and C displays the
TACI Directionality – the difference between the CSGI score in one direction minus
the CSGI score in the other direction.
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Figure 3.11: Causal interactions across time between Parietal and medial Prefrontal
Cortices. Plot of the average TACI-derived interactions between PC and mPFC over
the course of the anesthesia experiment. Error bars are the standard errors of the
mean across all electrode interactions, and the dashed lines represent change points
in the experimental protocol (labeled above the axes).

lar advantage of our approach is being able to train a single model that captures the

dynamics of the time series across all points in time, allowing for time-varying interac-

tions to be found without retraining, a computationally expensive endeavor for most

artificial neural networks. We found that our method performed well compared to

other methods in the field on synthetic data sets with known causal interactions, in-

cluding those with time-varying couplings between variables. We also found that our

method was able to identify known interactions between variables in a climate data

set and was able to discover subtle temporal fluctuations in coupling in non-human

primate ECoG data.

Our approach, while novel, is not without its limitations. One of the primary con-

cerns is the extensive training time and the resource-intensive nature of the model.

Implementing TACI, especially on large datasets, requires significant computational

power and time. We envision that several technical improvements in the network ar-

chitecture and training will allow for the method to be sped-up considerably, however.

Another concern is the potential for overfitting due to TACI’s considerable modeling

capacity. While the framework is designed to capture the nuanced dynamics of causal
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relationships over time, like most other causal network models, this method can fit

data too closely if not trained properly, resulting in models that perform exception-

ally well on training data but generalize poorly to unseen data. Furthermore, TACI

incorporates elements of the Granger causality approach, which means it also inherits

some of its problems. Granger causality assumes that the causal variable contains

unique information about the future values of the effect variable, which might not al-

ways hold true in complex systems where numerous latent factors influence outcomes.

Lastly, but importantly, as our approach is based solely on observational data, TACI

only attempts to provide hypotheses about causal relationships between variables or

to infer important relationships between variables when perturbation experiments are

impossible or unethical to perform.

These limitations withstanding, however, the results presented in this chapter

provide evidence that our approach will be broadly applicable to complicated data

sets with time-varying causal structure, with particular promise for neural data, where

we hope to build our understanding of how parts of the brain shift their interactions

as behavioral states and needs alter in the world.

3.5 Materials and methods

At its core, TACI uses a two-headed autoencoder architecture implemented in a two-

step process aiming to facilitate the prediction of future states and the inference of

causal relationships between different time series datasets. In the first application,

the two-headed autoencoder is utilized to process the original time series data, x(t)

and y(t). The encoder segments of this autoencoder independently process x(t) and

y(t), capturing and encoding their temporal dynamics and features into latent rep-

resentations. These representations are then merged in the bottleneck, combining

the distilled information from both time series into a unified latent space that en-
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capsulates potential causal interactions. From this combined latent representation,

the decoder works to reconstruct or predict the future trajectory of y(t), shifted by

a time τ . The second application involves replacing x(t) with the surrogate data

x(s)(t). This surrogate data is generated to mimic the statistical properties of x(t)

but is designed to break any potential causal link between x(t) and y(t)

This two-step process is essential for figuring out how these variables are linked

to one another. The model can validate the presence of a causal relationship by

comparing the predictive accuracy of the decoder when using the original x(t) versus

the surrogate x(s)(t). A significant drop in accuracy with the surrogate data suggests

that the original x(t) contains specific information causally linked to the future states

of y(t).

3.5.1 Architecture

In the TACI architecture, the concept of a two-headed encoder is employed to simul-

taneously process two distinct time series datasets, denoted as x(t) and y(t). This

design allows for the independent yet parallel analysis of each time series, enabling

the model to capture and encode their individual characteristics and temporal dy-

namics before merging their representations during the bottleneck process. The input

sequences are selected to be greater in length than the autocorrelation time of each

variable. This ensures that the sequences capture meaningful temporal dependencies

and dynamics. A GaussianNoise layer is added to enhance the model’s ability to

generalize and prevent overfitting.

The most important part of the encoder includes the use of a Temporal Convolu-

tional Network (TCN) layer. Thus, capturing the long-term dependencies within each

time series. This layer utilizes several key parameters: “nb filters” sets the number

of convolutional filters, “kernel size” affects the temporal extent of each convolution,

“dilations” allows the model to efficiently gather information across various temporal



105

distances. Additionally, “Dropout” layers are used to decrease overfitting by ran-

domly dropping units during the training phase. Following the TCN, a Conv1D layer

continues to process the data for each series, allowing the network to change dimen-

sionality while preserving temporal resolution. An AveragePooling1D layer may then

downsample the Conv1D layer’s output by pooling across the temporal dimension.

This operation reduces the sequence length, emphasizing significant features and fur-

ther decreasing data dimensionality. The data is subsequently processed by a series

of Dense layers that compress it into a dense, lower-dimensional latent representa-

tion. The size of these layers decreases in each successive layer, concentrating the

information into a more compact form.

The bottleneck stage starts once the two-headed encoder has finished processing

and compressing the input sequences into a lower-dimensional latent space represen-

tation. The Bottleneck merges these latent representations through an element-wise

multiplication operation. By combining the representations in this manner, the model

effectively captures the potential interactions and dependencies between the time se-

ries, which are essential for uncovering causal relationships.

Once the latent representations are merged in the Bottleneck, this combined rep-

resentation is forwarded to the Decoder. The Decoder’s task is to predict the future

trajectory of the target time series. The first step in the Decoder is to progressively

upscale the combined latent representation. This is achieved through a series of Dense

layers, where each layer aims to increase the dimensionality of the data. The number

and size of these layers are determined by the complexity of the data and the level of

compression achieved by the Encoder. After the initial upscaling, an UpSampling1D

layer is used to increase the sequence length to its original size, effectively reversing

the pooling operation performed in the Encoder. A TCN layer is used to ensure that

the reconstructed data maintains its temporal integrity and dynamics. This layer

mirrors the TCN configuration in the Encoder, utilizing the same parameters for
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“nb filters”, “kernel size”, and “dilations” to capture the temporal dependencies and

patterns necessary for accurate prediction. Lastly, a Dense output layer produces the

final prediction of the future states of the target time series.

3.5.2 Training and Prediction

As discussed earlier, the training phase of the TACI model involves four distinct con-

figurations of the network. Central to this phase is the use of the Mean Squared Error

(MSE) as the loss function, which facilitates the optimization of predictions for future

trajectories against actual observed values. The Adam optimizer [125] is employed

for its adaptive learning rate capabilities. Training is done across 300 epochs to give

the model enough time for the parameters to adjust and converge toward optimal

solutions. The parameters controlling the batch size and data shuffling are finely

tuned to balance computational efficiency and the promotion of model generaliza-

tion. Callbacks such as ReduceLROnPlateau, EarlyStopping, and ModelCheckpoint

are employed in this phase for optimizing the training process by adjusting learning

rates, preventing overfitting, and preserving the best model state, respectively.

Surrogate data were created by initially converting the original series into the fre-

quency domain through a Fourier transform. Subsequently, we applied random phase

shifts, making sure the amplitude spectrum remained unaltered. This randomness is

crucial to breaking any specific temporal dependencies present in the original series.

Following this process, an inverse Fourier transform was employed to reconstruct

the series back into the time domain. This step generates a new time series that

mirrors the original in terms of its overall power distribution but only has random

contingencies with its partner data set.

After training is completed, the model moves on to the prediction phase, where

the focus shifts to evaluating the trained model. In the first step of the prediction

phase, the pre-trained models are loaded, each representing a unique configuration
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designed in the training phase to capture and analyze the causal dynamics between

the time series datasets x(t) and y(t). At the same time, the full original dataset is

divided into sequences with the same length and structure as the models were trained

on. The prediction process occurs over defined rolling windows to allow for a temporal

exploration of the dataset, enabling the models to make predictions for future states

of the time series within each window. The models’ accuracy in forecasting future

time series states is quantitatively evaluated for each rolling window using the R2

metric. To enhance the reliability and confidence of these assessments, 100 bootstrap

samples are generated for each window. The causal inference for each rolling window

can be determined using the CGSI Eq. 3.6. Through this calculation, the model not

only quantifies the strength and direction of the causal relationship but also shows

its variation over time, providing a dynamic and temporal perspective on causal

inference.

For each interval, a bootstrap strategy is implemented. This strategy involves cre-

ating a set number of surrogate samples by randomly resampling within the interval.

These samples are then used to evaluate the model’s predictions, which are generated

under two conditions: one using the actual interactions between the time series and

another using the surrogate data. By employing Equation 3.6, it’s possible to derive

scores from which we compute both the mean and standard deviation. These com-

putations provide insight into the average performance and variability of the model’s

predictions across the bootstrap samples. The utilization of bootstrap methods sig-

nificantly enhances the analytical depth by ensuring that the derived error bars and

confidence intervals are supported by a solid statistical foundation. These statistics

play a vital role in establishing the error bars in the plotted figures. By repeating

this procedure across all intervals, the method provides a comprehensive view of how

model performance fluctuates over time and under different conditions.
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3.5.3 TACI Network Parameters

Parameter Description Value
nb filters Number of filters in TCN layers. 32
kernel size Size of the kernel in TCN layers. 32
dilations Dilation rates for TCN layers. [1, 2, 4, ..., 32]
nb stacks Number of stacked TCN layers. 1
ts dimension Dimensionality of the time series. 1
dropout rate tcn Dropout rate for TCN layers. [0.0, . . . , 0.5]
dropout rate hidden Dropout rate for hidden layers. [0.0, . . . , 0.5]
conv kernel init Kernel initializer for convolutional layers. ’he normal’
latent sample rate Downsampling rate in the latent space. 2
act funct Activation function used in layers. ’elu’
epochs Number of training epochs. 300
batch size Batch size for training. 512
shuffle Whether to shuffle the data during training. [True or False]
scaling method Method used for scaling the input data. Z score
loss funct Loss function used for training. ’mse’
noise Standard deviation of Gaussian noise added. [0.0, . . . , 0.5]
window len Size of the rolling window for predictions. value
seq length Length of sequences used for train-

ing/prediction.
[10, . . . , 100]

lag Lag between x(t) and y(t) for prediction. [10, . . . , 100]

Table 3.2: Parameters used in the TACI model training and prediction phases (ranges
indicate the parameter range used across the examples in this chapter)
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Chapter 4

Building emergent representation

of behavioral states using

dynamical models

4.1 Introduction

Behavior is inherently dynamic, requiring a vast range of intricate coordinated move-

ments. These movements are not completely random but are instead a precise combi-

nation of neural and muscular control in response to a multitude of internal and ex-

ternal stimuli. These movements are essential for survival and reproduction, enabling

the animals to find sources of food, attract mates, and escape potential predators.

When experimentally probing an animal’s repertoire of actions, the most common

approach is to isolate stereotyped behaviors [31]. These often-repeated and consistent

behaviors are executed in response to specific internal states. Isolating these stereo-

typed behavioral states has been of intense interest in recent years [27, 28, 29, 30].

These methods rely on state-of-the-art algorithms to recognize, classify, and measure

the stereotypical actions displayed by animals in their everyday lives.
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A common issue with these methods, though, is that they typically only can

be measured at a single time scale [28]. Behavior spans across a multitude of scales,

however. For instance, a behavior can be a split-second reflex action, but there are also

other behaviors that take place over minutes or hours, such as the mating dances of

certain birds (peacocks, cranes, etc.) or the hunting patterns of predators. This scale

is often chosen based on the results either from arbitrary experimental observations

or from fitting a Markov model to the system [126], but creating a representation of

stereotyped behaviors that spans multiple time scales remains an unresolved problem.

In this Chapter, we introduce a novel approach for measuring the entire behavioral

repertoire of an animal’s behavior that does not rely on a single time scale. This

method uses Recurrent Neural Networks (RNNs) to create a dynamical system model

of postural time series and then finds the fixed points of that model. These fixed points

are what we will use to build our multi-time-scale representation. We applied this

method to 3D kinematic data from freely behaving rats that captures the movements

of a given rat’s head, trunk, and limbs over extended periods, typically spanning

week-long timescales. By identifying these primitives, we can begin to piece together

how complex behaviors may be constructed across multiple time scales.

4.1.1 Methods

A foundational concept in the study of dynamical systems is the identification of

fixed points within the phase space. Fixed points are characterized by their lack of

motion in phase space and because the dynamics near them can be approximated

as linear, making them easier to analyze and understand. These points are pivotal

for understanding the system’s behavior, as they often represent stable states or

attractors that the system gravitates towards under certain conditions. Our goal

is to build a dynamical model of an animal’s behavior and to find the fixed points

resulting from that model.



111

Figure 4.1: Multi Basin Behavioral Landscape. Each basin signifies a stable behav-
ioral state toward which the system naturally converges. The barriers separating
these basins represent the thresholds for transitions, symbolizing shifts in behavior.
The white arrow is a trajectory suggesting a potential behavioral shift from one basin
to another

Because of the complexity of the system, we relied on artificial neural networks

to approximate the dynamical system that we will then analyze. Specifically, we

trained a sequence-to-sequence Recurrent Neural Network (RNN) on the processed

data (see Section 2.3.3). Viewing the RNN as a nonlinear dynamical system offers a

rich framework for analysis (more in Section 4.1.2). This perspective allows for the

examination of the internal states of an RNN across different regions of phase space.

The idea of fixed points in the internal states of the RNN provides a compelling

framework for defining behavioral states. The interactions among these fixed points

create a complex landscape of behavioral possibilities characterized by a basin-like

structure (more in Section 2.3.1). In this landscape, certain sets of states form the

“bottom” of basins, acting as attractors that other states gravitate towards. The way

the system is organized suggests that transitions between these basins, as shown in

Figure 4.1, may be used to explain the behavior of the system. Each basin corresponds

to a distinct behavior, and transitions between them represent changes in behavior.

If we compare the dynamical system of internal states to a particle moving in a multi-
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well landscape, we can gain insights into how behavioral transitions occur. Each well

or basin in the landscape corresponds to a stable state, with the barriers between

basins representing the thresholds that must be overcome for transitions to take

place.

4.1.2 Recurrent Neural Networks Fixed Points

Fixed points in the context of Recurrent Neural Networks (a more broad definition

in Section 2.3.3) refer to states of the network where the output of the RNN for

a given input is equal to the input of the RNN. In other words, when the network

reaches a fixed point, the state of the network remains constant despite the continuous

application of the network dynamics. For simple networks, it is possible to analytically

solve for fixed points. However, for larger and more complex networks like RNNs,

researchers often have to rely on iterative numerical techniques to approximate these

points. Once the fixed points have been identified, their stability can be analyzed

numerically by examining the eigenvalues of the Jacobian matrix of the network’s

dynamics at that point.

Considering an RNN as a high-dimensional dynamical system, its behavior at any

given time step can be described by the state update equation:

ht = f(W · ht−1 + V · xt + b), (4.1)

where ht is the hidden state at time t, xt is the input, W and V are weight matrices

for the recurrent and input connections, respectively, b is a bias term, and f is a

nonlinear activation function. Now, if we simplify this system to a sequence of length

3 as in [33]. The evolution of the network’s state can be iteratively computed as
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follows, starting from an initial state h0:

h0 = h0,

h1 = f(Wh0 + V x0),

h2 = f(Wh1 + V x1),

h3 = f(Wh2 + V x2).

This iterative process suggests a fixed-point formulation where the sequence of states

h⃗ can be expressed as a function of itself and the sequence of inputs x⃗, leading to a

fixed-point equation:

h⃗ = f⃗(W⃗ · h⃗+ V⃗ · x⃗). (4.2)

The Banach Fixed Point Theorem, or the Contraction Mapping Theorem, provides

conditions under which a function f on a complete metric space will have a unique

fixed point towards which iteratively applying f will converge [127]. The theorem not

only guarantees convergence to a fixed point but also states the following iterative

process h⃗n+1 = f (⃗hn; x⃗) will converge exponentially fast to the fixed-point of h⃗ =

f (⃗h; x⃗). This means that the distance between the state h⃗n at iteration n and the

fixed point decreases exponentially with n. In the context of RNNs, the equation

h⃗n+1 = f⃗(W⃗ · h⃗n + V⃗ · x⃗), (4.3)

describes the corresponding iterative process where h⃗n represents the state of the

network at iteration n.

This process guarantees that the system’s dynamics are stable and predictable. In

other words, the convergence to a steady state does not depend on the network’s initial

conditions. Moreover, it speeds up the analysis by allowing parallel computations of

all historical states.
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Figure 4.2: RNN iterative self-feeding mechanism. The RNN generates an output
based on an initial input sequence. This output, representative of the network’s
prediction for the next state, is then recursively fed back as the new input in a
continuous loop. This self-feeding cycle is repeated iteratively until subsequent inputs
no longer result in significant changes to the internal states.
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Consequently, once the network has been trained, the network’s output can be

used as the initial state of the iterative process for further analysis, particularly for

deriving the fixed points of the network. This approach involves setting the network’s

output as the starting point and then iteratively applying the network’s dynamics

without any external input to see how the internal state evolves according to the

equation:

h⃗n+1 = f⃗(W⃗ · h⃗n + V⃗ · x⃗n), (4.4)

where x⃗(n) is the output of network from the previous state.

4.2 Data

The data we used for this analysis are 3D motion-tracked kinematic data from freely

behaving rats [128]. Here, researchers built a specialized rodent motion capture stu-

dio to facilitate precise tracking. This setup included a two-foot-diameter plexiglass

arena surrounded by 12 motion capture cameras strategically positioned to minimize

occlusions and ensure comprehensive coverage of the rat’s movements. The arena

was outfitted with bedding, various objects, and a lever for operant conditioning,

promoting a range of natural behaviors.

Figure 4.3: Schematic depictions of the rats’ arena and attached markers. Adapted
from the study by Marshall et al. on continuous whole-body 3D kinematic recordings
across the rodent behavioral repertoire [128].
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Despite the advanced setup, vision-based tracking systems, including this one, are

susceptible to marker dropouts caused by the animal’s self-movement or environmen-

tal factors, leading to temporary loss of tracking data. Notably, these dropouts, es-

pecially affecting the forelimb and hindlimb markers, were predominantly short-lived,

lasting around 20 milliseconds. To counteract these gaps, the researchers employed

standard interpolation techniques, leveraging the temporal history of each marker’s

position. This method allowed for the accurate reconstruction of the markers’ posi-

tions during brief occlusions, ensuring the continuity and reliability of the kinematic

data.

The continuous kinematic recordings obtained through this sophisticated setup

enabled the creation of a definitive reference dataset of rat behavior. This dataset

catalogs an extensive array of movements performed by the rat over week-long periods,

providing an unprecedented level of detail and insight into the behavioral repertoire

of freely behaving animals.

4.2.1 Analysis Pipeline

The general framework of our analysis is described in Figure 4.4. The initial phase

involves decomposing the collected 3D kinematic data into postural time series. This

decomposition allows us to isolate specific postural modes and their temporal evolu-

tion, providing a granular view of the rats’ movements.

Figure 4.4: Overview of the data analysis pipeline.
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These time series are then transformed into wavelet spectrograms, offering a

spatio-temporal representation of the rats’ dynamics. The spectrograms serve as

a powerful tool for visualizing the frequency and intensity of postural changes over

time, effectively capturing the essence of the rats’ movements in both space and time.

The next step involves the use of an autoencoder as a dimensionality reduction

tool. We use the wavelet spectrograms as input into the autoencoder. The au-

toencoder is trained to compress the high-dimensional spectrograms into a lower-

dimensional latent space, extracting the most salient features that characterize the

original data. This process results in a condensed representation that retains the

most important information about the rats’ behavioral dynamics while reducing the

complexity of the data at the same time.

Once the reduced-dimensional spectrogram data has been obtained from the au-

toencoder, we proceed to train a Long Short-Term Memory (LSTM) network. This

network is tasked with predicting future values of the rats’ movements based on the

learned representations. This predictive modeling step is crucial for understanding

the temporal patterns and potential future states of rat behavior. After training and

validating the LSTM network, we shift our focus to the analysis of fixed and slow

points within the network. These points are of particular interest as they can reveal

stable states or attractors in the rats’ behavioral dynamics.

We continue by embedding the candidate fixed points into a two-dimensional

space via t-SNE. This process not only simplifies the visualization but also reveals

the basins of attraction within the behavioral dynamics of rats. To delve deeper into

the structure of these basins of attraction, we proceed to estimate the probability

distribution over the two-dimensional space generated by t-SNE. This step is impor-

tant for identifying the density and distribution of fixed points within the embedded

space. Lastly, we estimate the probability distribution over this dimensional space

and discover peaks in the distribution.
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Postural decomposition

We use data corresponding to 3D movement kinematics encompassing the entire be-

havioral repertoire of rats. This comprehensive dataset documents a wide variety

of movements performed by different rats over prolonged periods, specifically across

week-long timescales. The dataset utilized in this study is derived from 19 strategi-

cally placed markers on the animals, specifically targeting the head, trunk, forelimbs,

and hindlimbs. This comprehensive marker setup ensures a detailed capture of the

full range of motion exhibited by the animals.

We carefully created a subset of this data, selecting only those segments exceeding

a certain length threshold—those comprising more than 10,000 frames, equivalent to

approximately 27 minutes of continuous data. To address the memory constraints

of our computational capabilities, the dataset was downsampled from its original

recording rate of 300 Hz to a more manageable 60 Hz. The final dataset utilized

for analysis was carefully screened for correctness and clarity during this selection

process to make sure it was free of noise, artifacts, and tracking errors that would have

compromised the study’s findings. In order to get accurate and dependable insights

into the intricate dynamics of the rats’ movement and behavior, it was imperative to

prioritize the selection of clean data segments.

Following the identification of a suitable dataset, we applied an egocentric tech-

nique to the selected data. This process was performed on the x and y coordinates

of each rat’s body part segment, while the z coordinate was left unmodified. This

decision was made to accurately capture and preserve the vertical movements of the

rats, such as instances where they rise on their hind legs, a behavior often referred

to as “rearing.” Egocentering involved repositioning the data so that the subject rat

was consistently positioned at the center of the coordinate system for each analyzed

segment. By centering the subject rat within the coordinate system, we eliminated

variations in the horizontal orientation.
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Spectrogram Generation

Creating a spectrogram for postural dynamics analysis provides a more comprehensive

approach to understanding behavior beyond the limitations of instantaneous time

series values. Traditional studies in behavior have sought to identify motifs to uncover

patterns and trends. However, these approaches encounter significant challenges, such

as issues with temporal alignment and relative phasing between the component time

series [27].

As a solution to these problems, the spectrogram representation emerges as a

powerful alternative. This method focuses on measuring the power at a specific fre-

quency f associated with each postural mode, yk(t), within a time window centered

around a moment in time, S(k, f ; t) (details of these calculations are shown in Sec-

tion2.3.4). The amplitudes for each postural mode are computed using the Morlet

continuous wavelet transform, which allows the spectrogram to capture the core of

postural dynamics over a variety of time scales. In contrast to a spectrogram, which

offers a fixed resolution across all frequencies, wavelets provide a multi-resolution

time–frequency trade-off that allows for a more detailed examination of phenomena

occurring at various time scales.

In this particular case, the spectrogram contains 30 frequency channels that are

dyadically spaced between 1 Hz and 60 Hz. This approach ensures a comprehensive

coverage of the frequency spectrum, allowing for a detailed and dynamic represen-

tation of postural modes. Importantly, the wavelet transform amplitudes provide

insight into the temporal and frequency distribution of postural dynamics, offering a

clearer understanding of the underlying behaviors.

Latent Dynamics

The use of a deep autoencoder for dimensionality reduction of high-dimensional data

is a generalization of traditional linear methods like PCA. However, contrary to these



120

Figure 4.5: Example wavelet transform of postural data. Top: Typical time series
from one of the three coordinates of a specific body part. Bottom: Its corresponding
wavelet transform

methods, autoencoders address both linear and nonlinear correlations. This ability is

the reason why we chose it: to better identify and represent the underlying structure

of the data. More details can be found in Section 2.3.5.

The deep autoencoder employed in this study is constructed exclusively with dense

layers. These types of layers are effective at learning complex patterns and relation-

ships present in the data. The autoencoder’s architecture is designed to compress the

high-dimensional input spectrogram into a more compact representation in the latent

space before reconstructing it back to its original form.

In this analysis, the spectrogram utilized contains 30 frequency channels, dyadi-

cally spaced between 1 Hz and 60 Hz. This frequency distribution is applied to each

coordinate of every body part marked for tracking, with a total of 19 different body

markers employed. Consequently, this results in a substantial input sequence for the

autoencoder, with a length of 1710.

The choice of using wavelet transform conditions the normalization method we
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Figure 4.6: Diagram of the autoencoder architecture utilized for the dimensionality
reduction of wavelet-transformed behavioral data. The input layer contains the high-
dimensional data derived from wavelet transforms of behavioral sequences. The latent
space conserves the critical information of the input data in a reduced form while
discarding redundancies. Following the compression, the decoder reconstructs the
original input data from the reduced latent representation.

used for these sequences. Traditional normalization methods, such as norm are highly

sensitive to amplitude modulations and do not provide a reliable measure of the

spectral differences. However, since each sequence is inherently positive and semi-

definite, we can transform it into a probability distribution function (PDF) over all

mode-frequency channels at a given time point so that each sequence would sum up

to 1.

We designed this deep autoencoder to manage the complexity and high dimen-

sionality of these input sequences. The initial layer of the autoencoder is densely

populated with 1024 neurons, establishing a robust foundation for capturing the in-

tricate patterns within the data. Subsequent layers follow a systematic reduction in

complexity, with each layer halving the number of neurons in a power of 2 sequences.

This progressive reduction continues until the network converges to the latent space,

which is deliberately constrained to 16 dimensions.

For activation functions, we employed “ELU” for the intermediate layers and “soft-
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max” for the output layer. The choice of “softmax” for the output layer is necessary

to convert the output of the autoencoder into a probability distribution. This func-

tion is able to transform the output layer’s raw prediction scores into probabilities

by exponentiating and normalizing each score, ensuring that the sum of probabilities

equals one. This allows us to compare the results from our autoencoder to the data

normalized as PDFs. Additionally, we used the Kullback-Leibler divergence (“kld”)

as our loss function. This algorithm is particularly effective in measuring how differ-

ent one probability distribution is from another. Given that each input sequence is a

PDF, it makes sense to use a function that can quantify how similar or different our

reconstruction sequence is relative to the original distributions.

Several configurations of the autoencoder were rigorously tested to identify the

optimal structure. The criterion for selecting the final configuration was based on

the autoencoder’s ability to accurately reconstruct the original input data from the

compressed latent representation. This specific configuration achieved an R-squared

(R2) value of 0.997 in the reconstruction. This metric indicates a higher degree of

effectiveness in the reconstructed spectrogram than the original, suggesting that the

autoencoder successfully captures the underlying structure and dynamics of the data

within the reduced-dimensional latent space. An R2 value so close to 1 signifies that

the model accounts for nearly all the variance in the original data.

To further validate the effectiveness of the autoencoder in capturing the essential

dynamics of the spectrogram data, a secondary test was performed using test-set

data. This test-set data was created by randomly selecting sequences from the origi-

nal dataset, ensuring that the test set is representative of the broader data while at

the same time being distinct enough to serve as a valid test for the model’s general-

ization capabilities. The selected testing data was then passed through the trained

autoencoder. The autoencoder, having learned to compress and reconstruct the data

based on its training, applied this learned transformation to the testing data. This
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Figure 4.7: Validation of Autoencoder Reconstruction with Test-Set Data and t-SNE
Dimensionality Reduction. Test data is processed through the trained autoencoder,
which applies its learned compression and reconstruction capabilities to generate a re-
constructed version of the test data. Both the original test data and the reconstructed
version are subjected to t-SNE for dimensionality reduction to two dimensions.

resulted in a reconstructed version of the testing data.

In addition, we used t-SNE on both the original testing data and the reconstructed

testing data for dimensionality reduction to two dimensions. This step was done to

highlight any discrepancies in the autoencoder’s reconstruction ability. This applica-

tion yielded two-dimensional plots that did not reveal any apparent differences.

Fixed and Slow Transition States

LSTM networks are especially useful for sequence prediction tasks because of their

ability to effectively learn long-term temporal relationships. Therefore, after success-

fully transforming the original spectrogram to the dimensions of the latent space via

the autoencoder, we can use this reduced representation for predictive modeling. In

this process, we employ a deep, stateful, one-layer LSTM sequence-to-sequence model

(more information in Section 2.3.3). This model is specifically designed to forecast the
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subsequent time instance (t+1) based on the current and past information encoded

in the latent space representation.

Figure 4.8: Schematic representation of LSTM neural network processing time se-
ries data. The diagram illustrates the flow of information from the input sequence
X1, X2, . . . , Xt through the internal LSTM cell states (h, c), and ultimately projecting
the transformed data to the output sequence X2, X3, . . . , Xt+1. The middle network
structure symbolizes the complex interactions within the LSTM cell that contribute
to the network’s ability to capture temporal dependencies. The four arrows symbolize
the network’s ability to process a batch of sequences simultaneously

The training process involves feeding the LSTM model with sequences derived

from the latent space representation of the spectrogram data. The model learns

to map these sequences to their subsequent time instances, iteratively adjusting its

weights to minimize the prediction error. The LSTM layer is configured with 256

neurons. This size is chosen to provide the model with sufficient capacity to capture

and model the complex temporal dependencies.

The Exponential Linear Unit (ELU) activation function is selected for its ability

to handle the vanishing gradient problem, which is a common problem seen when

training neural networks where the gradients become too small for effective learning.

This function allows for small negative values when the input is less than zero, thus

improving the gradient flow during backpropagation. Unlike the autoencoder that

uses input and output sequences that are normalized to make a PDF, the sequences

that are fed to the LSTM are extracted from the latent space. These representa-
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tions are not probabilistic distributions. Instead, they are numerical and continuous.

These sequences need a loss function that is able to reliably measure the difference

between the output of the model and the original data. Therefore, the loss function

we employed is the Mean Square Error (MSE). This loss is particularly useful in this

type of regression problem because it emphasizes larger errors. For the optimizer,

we use ‘Adam’ since it is highly efficient in handling sparse gradients. Moreover, its

ability to adjust the learning rate dynamically makes it particularly useful for this

type of model with large and varying sequences of data.

The choice of a ”stateful” configuration of the LSTM layer is critical for retrieving

fixed points from the network. Statefulness guarantees that the model can retain its

state (cell states and hidden states) across batches. This property allows the model

to maintain continuity in its internal state across different sequences.

After training the LSTM model to predict future instances based on the reduced

representation of the spectrogram data, the next phase of the analysis focuses on

identifying fixed and slow points within the network’s dynamics. More information

about this can be found in Section 4.1.2.

The first step in this process involves externally driving the network to a specific

state. This is achieved by feeding the LSTM with consecutive input sequences from

the dataset. The idea is to simulate a continuous flow of data that takes the network’s

internal states (cell states and hidden states) toward a targeted region in the state

space. This process acts as a warm-up, transitioning the states from their initial inert

condition to a more dynamic state that anticipates the next sequence.

Following the external driving phase, the analysis transitions to a self-driving

step. In this phase, the output of the network is recursively fed back as input. This

self-feeding loop continues iteratively, with the network’s output at each time step

serving as the input for the next step. The iterative nature of this process allows the

network’s internal states to evolve autonomously based on its learned dynamics.
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Figure 4.9: Dynamics of State Vector Evolution through External and Self-Driving
Phases. During the external driving phase (light blue), the network is fed with se-
quences from the original dataset, simulating a natural progression of inputs that
drive the network’s internal states towards a specific region in the state space. In the
self-driving phase, indicated by the shift to dark blue, the network begins to operate
in a closed-loop manner until the network’s internal states stabilize and converge to-
wards fixed points.
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The main objective during the self-driving phase is to reach the convergence of the

network’s hidden states (cell states and hidden states). By converge, we mean that the

network reaches a state where its internal dynamics stabilize. As we can see in Figure

4.9, the difference of the state vector (cell states, hidden states, output) between

successive iterations keeps decreasing until it converges. This state of convergence is

indicative of the network encountering a fixed point or a slow point within its state

space.

In this context, we define fixed points as the states where the network’s internal

dynamics come to a stop, i.e., the hidden states no longer change between successive

iterations. Similarly, we can define slow points as the states characterized by a signif-

icant reduction in the rate of change of the network’s hidden states without reaching

a complete stop. These points suggest regions in the state space where the network’s

dynamics decelerate, potentially indicating transitional states.

The convergence behavior observed in the networks is expected due to their dis-

sipative nature. This dissipative property manifests as the network’s internal states

(e.g., cell states and hidden states) converge towards fixed points or slow points dur-

ing the self-driving phase of analysis. In physical systems, dissipation refers to the

process by which energy is transformed and gradually lost from the system, typically

as heat. In neural networks, dissipation can be thought of as the loss of informa-

tion entropy or the reduction of uncertainty within the network’s internal states as

it processes data. Dissipative systems naturally evolve towards configurations that

minimize their energy or, in the case of neural networks, configurations that repre-

sent stable solutions given the learned parameters and dynamics. This is analogous

to physical systems settling into states of lowest potential energy.
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4.3 Results

4.3.1 Embedded Space Dynamics

The analysis of the candidate fixed and slow points derived from the LSTM network

faces the challenge of high dimensionality. Each fixed point has dimensions equivalent

to the sum of the cell states, hidden states, and output states, making the analysis

and visualization cumbersome. To address this issue, a dimensionality reduction step

is needed.

The first step in simplifying the analysis involves embedding the high-dimensional

candidate points into a two-dimensional space. t-SNE is a particularly efficient tool

for this purpose due to its ability to maintain the local structure of high-dimensional

data in a lower-dimensional space [97]. The embedding process uncovers the basins of

attraction of the behavioral dynamics modeled. These basins show stable behavioral

patterns or modes by representing areas in the state space where the system’s states

tend to converge. The next step is to estimate the probability distribution across the

two-dimensional space formed by t-SNE in order to get more insight into the structure

of these basins of attraction and the characteristics of the fixed points inside them

[27]. More details can be found in 2.3.6.

Estimating this probability distribution is crucial for several reasons. It allows for

the identification of how densely packed and distributed the fixed points are within

the embedded space. Areas of higher density can indicate more prevalent or sta-

ble behavioral states. Moreover, we can identify peaks and valleys by analyzing

the probability distribution. Peaks usually correspond to areas of high density in the

two-dimensional space. These peaks are not arbitrary; they represent clusters of fixed

points that exhibit similar characteristics, effectively grouping stable states that share

common behavioral attributes. The identification of these peaks and the correspond-

ing clusters provides profound insights into the predominant stable states within the
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Figure 4.10: t-SNE embeddings of the model fixed points. The right plot is a prob-
ability density map of the points, and the left plot is a watershed transform of the
inverse of the probability distribution

rats’ behavioral dynamics. It highlights the existence of distinct modes of behavior

that the rats are more likely to adopt, shedding light on the natural tendencies and

preferences in their movement patterns.

4.3.2 Transition Matrices

In this Chapter, we delineate distinct behavioral states based on the density peaks

in the embedded space. These peaks, or pauses at the peaks, are considered the

lowest level of description of behavioral organization, representing the most stable

and recurrent states within the behavioral dynamics. The pauses at these density

peaks are interpreted as discrete states of behavior, each corresponding to a specific

behavior the rats are more likely to exhibit. Consequently, we investigate the pattern

of transitions among these states over time. This involves tracking how the system

moves from one state to another, revealing the underlying structure and rules govern-

ing behavioral changes. We have a description of behavior represented as a discrete

variable S(n), which can assume one of N = 106 different values at each discrete time

step n
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The behavioral transition matrix is defined as:

[T(τ)]i,j ≡ p(S(n+ τ) = i|S(n) = j), (4.5)

which describes the probability that the rats will transition from state j to state i

after a specified number of τ transition steps [28]. The matrix T(τ = 1) focuses

on immediate transitions, capturing the rats’ behavior at its most fundamental level

(Fig. 4.11 left). The predominance of self-transitions has profound consequences:

Figure 4.11: Transition Matrices.

First, it indicates that the system’s states have a high degree of stability. This

stability suggests that once the system enters a particular state, it is likely to remain

in that state for the next time step. This persistence can be indicative of stable

behavioral patterns or attractors within the system’s dynamics. The system tends

to remain in its current state (or basin of attraction) like a particle resting at the

bottom of a well. The deeper the well, the more stable the state, and the higher the

probability of self-transitions, as it becomes less likely for the system (or particle) to

spontaneously move to a different state (or well).

Second, there is a high degree of inertia within the system. Changes in state are

less frequent than the maintenance of the current state. This inertia is due to the
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energy costs associated with changing states. In other words, the barriers between

basins in the landscape space represent the thresholds that must be overcome for the

system to transition from one stable state (or basin of attraction) to another. These

barriers can be thought of as the off-diagonal elements in the transition matrix that

are not self-transitions. A high prevalence of self-transitions implies that the barriers

between different basins are significant, making transitions to other states less likely.

As the time scale τ increases (Fig. 4.11 middle to the right), it is anticipated that

the structure within the distribution of transitions will deteriorate. This is a direct

consequence of the decreasing predictability of future states as the prediction horizon

extends. The farther out the predictions are made, the more uncertain they become.

4.3.3 Predictability and Hierarchy

Understanding that the system gravitates towards certain stable states and tends

to persist in these states sets the stage for a more structured analysis of behavioral

transitions and patterns. Thus, we can group these fixed points or stable states into

clusters that preserve information about future actions based on the current state.

This introduces a method for analyzing and understanding the structure of behavioral

dynamics. This method is particularly focused on uncovering potential hierarchical

organizations within the behaviors exhibited by the system.

The premise of this study is that behaviors are naturally structured hierarchically.

Therefore, increasing the number of clusters used to categorize behaviors would lead to

the subdivision of existing clusters rather than a merging of behaviors from different

clusters. This idea is based on the fact that behaviors in the same cluster have

common characteristics or belong to the same larger behavioral group.

The behaviors are mapped into groups, S(n) → Z, in a manner that compresses

the current state’s description while preserving critical information about the state τ

transitions into the future, S(n+ τ). The goal is to maximize the mutual information
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Figure 4.12: Information bottleneck partitioning of behavioral space.

between the compressed description Z and the future state S(n + τ), denoted as

I(Z;S(n+ τ)), while maintaining a fixed level of information about the current state

S(n), denoted as I(Z;S(n)). Thus, the optimization problem can be formalized as:

F = I(Z;S(n+ τ))− βI(Z;S(n)), (4.6)

where β serves as a Lagrange multiplier, regulating the trade-off between the amount

of information about the current state that is preserved and the predictive power

regarding future states. Varying β and the number of clusters allows for an explo-

ration of how the system’s complexity can be effectively reduced without significantly

compromising the ability to make accurate predictions about future states.

4.4 Discussion

In this study, we employed a sophisticated pipeline that integrates wavelet trans-

forms, autoencoders, LSTM networks, and dimensionality reduction techniques such

as t-SNE. This analysis offers a novel perspective on the stability and transitions of

behavioral states. This pipeline provides insights into the stability and fluidity of
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behavior. The identification of basins of attraction and the transitions between them

offer a window into the mechanisms that govern behavioral changes, shedding light on

how certain states become predominant and under what conditions transitions occur.

The application of wavelet transforms to behavioral data provides a rich spectral

representation that captures both the frequency and temporal dynamics of behavior.

This step is crucial for identifying patterns and transitions that are not immediately

apparent in the raw data. By reducing the data to a more manageable form while

preserving its essential features, autoencoders facilitate a deeper exploration of the

behavioral states encoded within the data. The use of LSTM networks is an important

decision, as they have the capability to model temporal sequences in order to predict

future behavioral states. This predictive modeling serves a dual purpose: it tests

the LSTM’s capacity to capture the temporal dynamics of behavior and aids in the

identification of fixed points within the system. The predictive nature of LSTM

networks plays a significant role in understanding the evolution of behavioral states

over time. Mapping the identified fixed points into a two-dimensional space via t-

SNE allows for a visual representation of the basins of attraction within the behavioral

dynamics. This visualization not only simplifies the interpretation of complex data

but also reveals the underlying structure of behavioral states, highlighting areas of

stability and potential pathways for state transitions.

Furthermore, the hierarchical organization revealed through the clustering of be-

havioral states underscores the modular nature of behavior. This finding suggests

that complex behaviors may be constructed from simpler, foundational actions.
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Chapter 5

Conclusion and Future Directions

5.1 Thesis Contributions

The primary contribution of this thesis revolves around the exploration and under-

standing of time-varying coupling effects on causal linkages between variables in in-

teracting systems. To achieve this aim, we created a novel approach designed to

investigate the dynamics within complex systems. This method focuses on under-

standing the variations in correlation and synchronization across different coupling

values and is robust to datasets that are lengthy, noisy, non-linear, and non-stationary.

This approach aims to fill a gap in current methods for analyzing causality in complex

dynamic systems, which often struggle to accurately follow the changing patterns of

variable interactions over time.

A key part of this exploration includes a comparative analysis of the proposed

approach against established methods such as Granger Causality, Convergent Cross

Mapping, and Transfer Entropy. It is important to note that our goal is not to

discredit the effectiveness of these established techniques in areas where they have

been proven to work effectively. Rather, our research focuses on trying to solve specific

types of systems that have not been adequately dealt with by these conventional



135

methods.

We are confident in our approach due to the positive results and strong perfor-

mance it has shown when tested with actual data. The results of our experiments

highlight the ability of our method to detect causal relationships, outperforming cur-

rent top techniques. This advancement marks a significant step forward in the ability

to identify and measure causal networks from time series across various research

fields. Our goal with this progress is not only to address a key gap in current tools for

causal inference but also to broaden the possibilities for understanding and modeling

complex causal relationships in dynamic systems.

The secondary objective of this thesis is to quantify and measure behavioral states

in a multi-time-scale manner, using behavior from freely behaving rats as a test

case. This study seeks to enhance our understanding by analyzing complex behavior

patterns and the underlying mechanisms. The importance of this analysis lies in its

ability to provide insights that are applicable across multiple animals.

This analysis is significant in contributing to the theoretical understanding of

behavioral systems. It achieves this by identifying fixed points, mapping basins of

attraction, and explaining the hierarchical organization of behaviors. Therefore, this

research offers a novel framework for conceptualizing how complex behaviors emerge

from simpler dynamics.

This theoretical advancement on behavioral states offers a promising foundation

for future studies in neuroscience. By applying the same analytical pipeline developed

for studying behavioral markers to brain data, we can extend our exploration into the

realm of brain states, potentially uncovering a basin landscape that represents the

stable and transient states of brain activity. This novel approach could revolutionize

our understanding of how brain states correlate with behavior, providing insights into

the neural underpinnings of complex actions and cognitive processes.

Furthermore, this analysis holds the potential to enhance predictive capabilities
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regarding behavioral transitions and states. By understanding the conditions under

which certain behaviors are likely to occur and how systems transition between states,

we can develop strategies for predicting behavioral patterns based on historical states.

Understanding the probabilistic nature of behavioral transitions allows for the pre-

diction of how an animal is likely to behave in response to a given stimulus based on

its current or previous state. This capability can significantly enhance the design of

behavioral experiments, allowing researchers to design experiments to target or avoid

certain behaviors more effectively.

5.2 Summaries of Chapters

5.2.1 Chapter 1 summary

This chapter sets the stage for the thesis by introducing the complex relationship

between temporal dynamics, causal inference, and the analysis of behavioral states.

This chapter begins with an introduction that demonstrates the significance of tem-

poral interactions in the study of dynamic systems and their behaviors. It then

explores the concept of causality, highlighting its importance in the analysis of such

systems and the challenges inherent in inferring causal relationships. This leads to

the introduction of Temporal Convolutional Networks (TCN) as a solution to these

difficulties.

The chapter progresses to provide a comprehensive overview of TCN architecture,

including the roles and functionalities of Convolutional Neural Networks (CNNs),

Causal Convolutional Networks, Dilated Convolutions, Residual Connections, and

Autoencoders in capturing and analyzing temporal data. This discussion serves as a

prelude to the introduction of Temporal Autoencoders for Causal Inference (TACI),

focusing on the TACI Autoencoder’s design and its application in temporal causal

inference.
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The next area of focus is on behavioral analysis, including a conversation about the

definition of behavior, the influence of ethology, and Tinbergen’s Four Questions in

comprehending behavioral motivations and mechanisms. This section also addresses

the methodologies for measuring behavior and the concept of stereotyped behavior,

providing a foundation for the thesis’s exploration of behavioral state representations.

The chapter concludes with a thesis outline, offering readers a roadmap of the

study’s trajectory.

5.2.2 Chapter 2 summary

This chapter serves as a foundational overview of the key methodologies and back-

ground information used in this study. It begins by addressing the inherent challenges

in causal inference, setting the stage for a deep dive into the importance of a new

method that can address all the current problems in this field. The discussion fol-

lows by examining the critical distinction between correlation and causality, thereby

addressing a common misconception in statistical analysis and empirical research.

Building on this foundation, we introduced in this chapter the methodology be-

hind the most prestigious methods for causal discovery, such as “Granger Causality,”

“Transfer Entropy,” and “Convergent Cross Mapping.” We also explored the prob-

lems with these approaches and why we need to transition from traditional statistical

methods to causal neural network approaches for causal inference. This segment

presents the principles behind Neural Granger causality and the Temporal Causal

Discovery Framework, signaling a significant leap toward integrating causality with

neural network architectures. Further, we introduced a novel autoencoder architec-

ture we designed, Temporal Autoencoders for Causal Inference (TACI), specifically

for temporal causal inference.

The concluding sections of this chapter transition into the realm of behavioral

analysis, offering detailed insights into the methodologies and concepts required for
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the effective measurement and categorization of behavior. This includes an explo-

ration of stereotyped behaviors and basins of attraction. Furthermore, these final

sections set the stage for Chapter 4 by laying out the foundational information neces-

sary for the innovative process we used for identifying fixed points (behavioral states)

from time series data of behavior. This methodology employs recurrent neural net-

works (RNNs) to analyze and interpret the dynamic patterns and sequences inherent

in behavioral data, enabling the identification of stable states or attractors within the

system.

5.2.3 Chapter 3 summary

In this chapter, we introduced a novel approach named Temporal Autoencoders for

Causal Inference (TACI), designed to address the dynamic nature of causal relation-

ships in complex systems. Traditional causal inference methods struggle with the

non-linear, non-stationary, high synchronization, and fluctuating behavior of real-

world variables, where causal linkages may strengthen, weaken, or change direction

over time. TACI utilizes a two-headed Temporal Convolutional Network (TCN) au-

toencoder to capture and analyze these causal interactions.

The foundation of TACI, known as TCN, is a type of neural network that extends

the benefits of convolutional neural networks (CNNs) to time-series data. They are

notable for their simplicity, ability to retain long-term memory, and effectiveness in

auto-regressive prediction tasks. The neural network architecture of TACI encodes

time series data of two variables, x(t) and y(t), and decodes a future trajectory of

y(t) from a compressed latent space derived from the initial time series. This method

enables a detailed analysis of causal dynamics over time.

TACI uses four different network versions to determine causal inference, taking

into account both the original and surrogate data to predict future states and calculate

the variance explained across a moving window. We validated TACI’s effectiveness



139

through its application to deterministic and stochastic dynamical system models with

known causal relationships, where it demonstrated strong performance.

First, we applied TACI to a series of complex static artificial models by system-

atically varying the coupling strength between them. The systems involved were

“Autoregressive Models,” “Henon Maps,” “Bidirectional Two Species Model,” and

“Rössler-Lorenz Attractors.” Second, we made use of “Coupled Henon Maps” to sim-

ulate different scenarios with dynamic causal relationships. These examples included

intermittent coupling, a midway flip of causal influence, and pulses of varying widths.

These experiments tested TACI’s ability to detect, adapt to, and accurately repre-

sent changes in causal direction and intensity over time. Lastly, we tested TACI’s

real-world applicability by using two datasets: the Jena Climate Dataset and elec-

trophysiological data from a monkey undergoing anesthesia and sleep tasks. TACI

successfully identified temporal seasonal coupling in the climate data and dynamic

changes in causal relationships between brain areas during anesthesia induction and

recovery in the monkey.

The successful application across these varied and complex scenarios demonstrates

TACI’s robustness and versatility in modeling time-evolving causal dynamics.

5.2.4 Chapter 4 summary

In this chapter, we conducted a thorough investigation using a detailed analytical ap-

proach to understand the intricate dynamics of behavioral states. Our investigation

was not merely about identifying distinct behavioral states but aimed at understand-

ing the transitions, stability, and hierarchical organization of these states within the

broader context of the behavior’s dynamics.

Initially, our attention was directed towards data preprocessing, an important

stage to guarantee the accuracy and quality of the data. We use data corresponding to

3D movement kinematics encompassing the entire behavioral repertoire of rats. The
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dataset utilized in this study is derived from 19 strategically placed markers on the

animals, specifically targeting the head, trunk, forelimbs, and hindlimbs. We removed

noise and artifacts by meticulously filtering out irrelevant or erroneous information

and normalizing the data to a common scale.

We then transitioned to calculating the spectral representation of the behavioral

data using wavelet transforms. This approach allowed us to capture both the fre-

quency and temporal information contained within the data, providing a rich, mul-

tidimensional perspective on behavioral dynamics. The use of wavelets was instru-

mental in revealing subtle patterns and transitions not readily apparent in the raw

data.

We employed an autoencoder for dimensionality reduction to manage the com-

plexity of the spectral data. This step compressed the high-dimensional data into a

more tractable form, retaining the most salient features essential for understanding

the behavioral states. With the data in a reduced and concentrated form, we trained a

Long Short-Term Memory (LSTM) network to predict future behavioral states. This

predictive modeling served as a means to identify fixed points within the system.

Lastly, by using t-SNE, we mapped the identified fixed points into a two-dimensional

space to visualize the basins of attraction. This mapping created a “basin landscape,”

offering a graphical representation of the stable states and the transitions between

them.

5.3 Limitations

5.3.1 TACI and causal inference

The Temporal Autoencoders for Causal Inference (TACI) framework, while innova-

tive in its approach to modeling time-varying causality in complex systems, is not

without its limitations. One of the primary concerns is the extensive training time
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and the resource-intensive nature of the model. Implementing TACI, especially on

large datasets, requires significant computational power and time.

Another concern is the potential for overfitting due to TACI’s considerable mod-

eling capacity. While the framework is designed to capture the nuanced dynamics of

causal relationships over time, like most other causal network models, this method can

fit data too closely without careful regularization, resulting in models that perform

exceptionally well on training data but generalize poorly to unseen data.

Furthermore, TACI incorporates elements of the Granger causality approach,

which means it also inherits some of its problems. Granger causality assumes that

the causal variable contains unique information about the future values of the effect

variable, which might not always hold true in complex systems where numerous latent

factors influence outcomes.

5.3.2 Fixed Points Pipeline

While the analytical approach detailed in this study offers significant insights into

the dynamics of behavioral states, it is important to acknowledge the limitations

encountered during the research process. These limitations arise from various stages

of the analysis, from data collection to computational challenges, each impacting the

overall effectiveness of the study.

A critical limitation arose during the data collection phase. The segments chosen

for analysis were oversampled, resulting in a dataset that lacked sufficient behavioral

information for an effective and comprehensive analysis. This oversampling resulted

in a reduction in the quality of the behavioral data, limiting our capacity to fully

capture the range of behavioral patterns. As a result, the hierarchical approach

we used, which depended on the information bottleneck technique for identifying a

progression from complex to simpler behaviors, did not yield the expected clarity

in the hierarchical organization of behaviors. The absence of detailed behavioral
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data also impeded our ability to uncover interesting findings when reviewing the flux

matrix, a tool meant to illustrate the transitions between various behavioral states.

Another significant limitation was the computational demand of calculating wavelet

transforms for such extensive data. Wavelet analysis, while powerful for capturing the

spectral and temporal characteristics of behavioral data, requires substantial mem-

ory resources to handle effectively. The sheer volume of data, combined with the

high-resolution requirements of wavelet analysis, placed considerable strain on com-

putational resources, limiting the scope and depth of our spectral analysis.

The calculation of fixed points, a central component of our analysis aimed at

identifying stable states within the behavioral dynamics, presented another challenge.

Despite implementing parallel processing techniques to expedite the calculations, the

process remained extremely slow. This sluggishness is inherent to the nature of fixed

point calculations, which require iterative processes to allow the network’s internal

states to settle and converge for each data point. The time-intensive nature of reach-

ing convergence significantly slowed down the analysis, impacting the efficiency and

scalability of our approach.

5.4 Future Directions

5.4.1 Brain connectivity of prairie voles during social bond-

ing

In this study, the Temporal Autoencoders for Causal Inference (TACI) framework can

be employed to analyze the brain connectivity of prairie voles during social bonding,

specifically focusing on the directional influence of one brain area over another during

mating. Here, we aim to follow in the footsteps of Amadei et al. [129] and create

a unique causal model of all the voles that allows us to explore the time-varying

coupling between brain areas during social behaviors.
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Despite the recognized role of mPFC–NAcc communication in coordinating be-

havior for reward acquisition, including the adoption of new behavioral strategies,

there is limited understanding of its specific activation during affiliative behaviors.

Therefore, first, we aim to validate whether mPFC–NAcc functional connectivity fa-

cilitates the transition of animals to express affiliative behavior towards a partner.

Given that low-frequency drive from mPFC to NAcc can modify behavioral responses

to environmental stimuli, we would like to explore if mPFC–NAcc connectivity in-

tensifies during social behaviors that encourage more affiliative responses towards a

partner.

To understand the impact of low-frequency connectivity on local activity in spe-

cific brain regions, our methodology was adapted to incorporate a spectral analysis

approach. We integrated the Morlet wavelet transform into our analysis to enable the

exploration of time-varying causality within the frequency domain. This advanced

technique allows us to dissect the dataset’s frequency domain, categorizing frequencies

to assess causality with a focus on the power inherent in each time series. This spec-

tral approach reveals the complex, evolving dynamics of interaction between brain

regions over time, offering a deeper understanding of the neurological mechanisms of

social bonding.

Additionally, this adjustment allows for the possibility of comparing the levels of

connectivity between the medial prefrontal cortex (mPFC) and nucleus accumbens

(NAcc) during various social behaviors. For instance, we can analyze the differences

between these neural interactions during mating and those observed during other

social activities like huddling and grooming.

5.4.2 Brain States

The extension of the fixed points (basin) pipeline to brain states involves analyz-

ing neural activity data, such as that obtained from electroencephalography (EEG),
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functional magnetic resonance imaging (fMRI), or other neuroimaging techniques,

using a similar methodology to that employed for behavioral data. By calculating

spectral representations, reducing dimensionality through autoencoders, and employ-

ing LSTM networks for predictive modeling, we can identify fixed points within the

neural activity that correspond to stable brain states. Mapping the fixed points from

these datasets into a two-dimensional basin landscape would allow us to visualize and

explore the dynamics of brain states in an intuitive and informative manner.

Each basin represents a stable state or attractor within the brain’s dynamical

system, with transitions between basins reflecting changes in neural activity patterns.

Our goal in studying these transitions is to uncover the underlying neural mechanisms

of behavior. Thus, it reveals how specific brain states correlate with different actions

or cognitive processes performed by animals or humans.

One interesting part of this exploration is the potential hierarchical organization

of brain attractors. Just as behaviors can be broken down into simpler, modular

actions, brain states may also exhibit a hierarchical structure, with complex patterns

of neural activity emerging from the interaction of simpler, foundational brain states.

By examining how different stable brain states interact and influence each other, we

can uncover the neural networks and pathways that facilitate cognitive processes and

behavioral responses.
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