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Abstract

Motivated by three different biomedical studies, this dissertation investigates novel
Bayesian feature selection methods to analyze complex biomedical data.

In the first project, motivated by the colorectal cancer study, we propose a unified
Bayesian approach for hierarchical feature selection of structured functional predic-
tors in Generalized Functional Linear Models (GFLMs). Feature selection here is
inherently hierarchical, involving selection of functional predictors and selection of
regions within them. To achieve hierarchical feature selection, we construct a class of
mixture priors for functional coefficients based on Gaussian processes. In addition,
we use Ising priors on the model space to incorporate hierarchical structural infor-
mation. Applying our approach to the motivating study, we find that one functional
biomarker and its expression level in the transitional region between the proliferation
and differentiation zones are associated with the risk for colorectal cancer.

In the second project, motivated by the Autism Brain Imaging Data Exchange
(ABIDE) study, we are interested in identifying important biomarkers for early de-
tection of the ASD under high resolution brain. We propose a novel multiresolution
variable selection procedure under a Bayesian probit regression framework and it re-
cursively uses posterior samples for variable selection at a lower resolution to guide
variable selection at a higher resolution. The proposed algorithms are computational-
ly feasible for ultra-high dimensional data. In addition, we also incorporate two levels
of structural information into variable selection. Applied to the resting state func-
tional magnetic resonance imaging (R-fMRI) data in the ABIDE study, our methods
identify imaging biomarkers predictive of the ASD in several brain regions, which are
biologically meaningful and interpretable.

Finally, with the goal to select gene and gene subnetworks with periodic behavior
in a microarray dataset, we propose a nonparametric Bayesian model incorporating
network information. In addition to identifying genes that have a strong associa-
tion with a clinical outcome, our model can select genes with particular expressional
behavior. We show that our proposed model is equivalent to an infinity mixture
model for which we develop a posterior computation algorithm. We also propose two
fast computing algorithms that approximate the posterior simulation with good gene
selection accuracy but low computational cost.
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Introduction
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1.1 Background

Recent advances in biomedical technologies enable scientists to produce complex and

big data in order to obtain useful information that provides valuable insights into

biomedical research. This brings new challenges to develop efficient statistical meth-

ods for extracting important features from such data while integrating relevant sci-

entific findings from prior biomedical research. In this dissertation, we propose some

new Bayesian methods and develop computational tools to analyze large complex

datasets motivated by several biomedical studies.

1.1.1 A Colorectal Adenoma Study

One motivating example is a recent study of protein biomarkers of risk for colorectal

cancer (Ahearn et al., 2012). This study is aimed to investigate whether the expres-

sion patterns of several markers in normal-appearing colorectal mucosa are associated

with the presence of colorectal adenomas, a surrogate for the risk for colorectal cancer.

The panel of protein biomarkers under investigation (Table 1.1) represents highlights

of features that are related to the known molecular basis in the earliest stages of col-

orectal carcinogenesis. In addition, colorectal crypts, U-shaped microscopic structures

in human colon, are known to be a nice model for the regulation of cell proliferation,

differentiation, and apoptosis in a continuously renewing colorectal epithelium. Thus,

it is of particular interest to examine whether the profiles of the biomarkers along the

length of colon crypts and their features are associated with cancer risk.

In this study, subjects with and without adenomas were considered at higher risk

and lower risk for colorectal cancer, respectively. Biopsy samples of normal-appearing

colorectal mucosa were collected from participants. Through automated immunohis-

tochemistry (staining) with quantitative image analysis, each crypt was divided into

2



Biomarker Group Biomarker Names

Inflammation COX2
Colon Carcinogenesis Pathway

APC pathway - APC, β-catenin, c-myc, cyclin D1, E-cadherin
Mismatch repair pathway - MSH2, MLH1, TGFβRII, bax

Cell Cycle:
Proliferation - mib1
Differentiation - p21
Apoptosis inhibition & promotion - bcl2, bak, bax

Crypt Stem Cell Longevity - Telomerase
Autocrine/Paracrine Growth Factors & Receptors: TGFα, TGFβ1, TGFβRII

Table 1.1: Biomarkers of risk in the colorectal adenoma study

two symmetric hemi-crypts, and the entire length of each hemi-crypt was standard-

ized into a fixed number of segments, numbered in an ascending order from the base

to the top of a crypt; subsequently, the staining optical density, representing the

biomarker expression level, was recorded for each segment and was plotted against

the segment location to construct the expression profile along the length of crypts;

cf. Figure 1 in Ahearn et al. (2012). The expression profile along the length of crypts

forms a natural one-dimensional curve, and is an example of functional data measured

over space. We refer to these biomarker profiles/curves as functional biomarkers or

functional predictors. The functional biomarkers can be divided into different groups

based on biological functions and pathways (Table 1.1), noting that biomarkers (e.g.,

bax) may belong to multiple groups. In addition, the functional biomarkers were

measured at discrete design points subject to measurement error. For each subject,

multiple biomarkers were measured; for each biomarker, the expression curve was

measured in multiple hemi-crypts from each subject’s biopsy tissues.

The goal of the this study is to identify important functional biomarkers and their

features that are associated with the risk for colorectal cancer, while also incorporating

the structural information. Clearly, feature selection in this case is inherently hier-

archical with two levels: first, select important functional biomarkers (i.e., between

3



functional predictors); and second, for each selected biomarker, identify the regions

of its profile that are associated with cancer risk (i.e., within functional predictors).

Similarly, there are also two levels of structural information that can be incorporated

into the feature selection process: the biological structure between biomarkers and

the spatial structure within each biomarker curve.

1.1.2 Autism Brain Imaging Data Exchange (ABIDE)

Another interesting example that motivates our methodological development is the

Autism Brain Imaging Data Exchange (ABIDE) study (Di Martino et al., 2013).

The major goal of the ABIDE study is to explore association of brain activity with

the autism spectrum disorder (ASD), a widely recognized disease due to its high

prevalence and substantial heterogeneity in children (Rice, 2009). The ABIDE study

aggregated 20 resting-state functional magnetic resonance imaging (R-fMRI) data

sets from 17 different sites including 539 ASDs and 573 age-matched typical controls.

The R-fMRI is a popular non-invasive imaging technique that measures the blood

oxygen level to reflect the resting brain activity. For each subject, the R-fMRI signal

was recorded for each voxel in the brain over multiple time points (multiple scans).

Several standard imaging preprocessing steps (Di Martino et al., 2013) including

motion corrections, slice-timing correction, and spatial smoothing have been applied

to the R-fMRI data, which were registered into the standard Montreal Neurological

Institute (MNI) space consisting of 228,483 voxels. To characterize the localized

spontaneous brain activity, we focus on the fractional amplitude of low-frequency

fluctuations (fALFF) (Zou et al., 2008) based on the R-fMRI time series at each

voxel for each subject. The fALFF is defined as the ratio of the power spectrum

of low frequency (0.01-0.08Hz) to the entire frequency range and has been widely

used as a voxel-wise measure of the intrinsic functional brain architecture derived

4



from the R-fMRI data (Zuo et al., 2010). In this work, we analyze the voxel-wise

fALLF values over 116 regions in the brain involving 185,405 voxels in total, where

regions are defined according to the Automated Anatomical Labeling (AAL) system

(Hervé et al., 2012). Besides the imaging data and the clinical diagnosis of the ASD,

demographical variables were also collected, such as age at scan, sex and intelligence

quotient (IQ).

One question of interest in this study is to identify imaging biomarkers, i.e., voxel-

wise fALFF values over 116 regions, for detecting the ASD risk. In particular, our

goal is to perform two levels of variable selection: at the first level, important regions

are selected in relation to the ASD risk; at the second level, a set of important vox-

els within the selected regions are selected and are referred to as ASD imaging risk

factors. Correspondingly, two levels of structural information – functional connec-

tivity among regions and spatial dependence among voxels – can be incorporated to

facilitate variable selection and produce biologically more interpretable results. To

achieve this goal, we use a Bayesian probit regression model for spatial variable selec-

tion, where the binary outcome is the ASD disease status and the predictors include

all voxel-level imaging biomarkers from multiple regions. We use Ising prior models

to incorporate structural information for the two levels of variable selection. Howev-

er, it is extremely challenging to perform spatial variable selection in such ultra-high

dimensional structured feature space (185,405 voxels within 116 regions) under our

modeling framework.

1.1.3 Spellman Yeast Cell Cycle Microarray Data

The third motivating example is the Spellman Yeast Cell Cycle Microarray Data

(Spellman et al., 1998). The dataset is intended to detect genes with periodic be-

havior along the procession of the cell cycle. It has been extensively used in the
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development of computational methods. The gene network information depicting

the biological relationships is summarized from the Database of Interacting Proteins

(DIP) (Xenarios et al., 2002). We use the high-confidence connections between yeast

proteins from the DIP. Eventually, the network contains 2031 genes, where the mean,

median, maximum and minimum edges per gene are 3.948, 2, 57 and 1 respectively.

Different from the previous two motivating examples, there is no outcome variable

in the cell-cycle dataset, and we focus on the selection of genes and gene sub-networks

with periodic behavior in light of the network. It is known that such genes show

different phase shifts along the cell cycle and may not be correlated with each other

(Yu, 2010). We perform the Fishers exact G test for periodicity (Wichert et al.,

2004) for each gene. In this case, a linear regression or parametric model may not

be suitable, and we propose a Bayesian nonparametric mixture model for large scale

statistics incorporating network information.

1.2 Literature Review

In this selection, we provide an overview of existing statistical methods on variable

selection and discuss their advantages and limitations.

1.2.1 Variable Selection in High-Dimensional Feature Space

We first consider the observed data (yi,x
T
i )ni=1 with yi and xi denoting a clinical

outcome and a p-dimensional predictor, respectively. Let β = (β1, . . . , βp)
T , then

without specifying the distribution of yi, we construct the following regression model:

g{E(yi | xi)} = xTi β, i = 1, . . . , n, (1.1)
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with g{·} being a link function and E(y | x) denoting the conditional expectation of

y given x.

Over the past decades, a unified approach to model selection for (1.1) has been

suggested–optimization penalized likelihood

L(β) + Pλ(β), (1.2)

with the loss function L(·) and penalized function Pλ(·). When yi is from Gaussian dis-

tribution with g{·} chosen as the identical link, minimization (1.2) based on (1.1) has

been well investigated from a frequentist perspective. Starting from the least absolute

shrinkage and selection operator (LASSO) using L1-penalty proposed by Tibshirani

(1996), a large number of methods equipped with various penalized functions have

been proposed to extend theoretical properties, improve practical performance or ac-

commodate to the emergence of new data structures. These approaches include the

nonconcave penalized likelihood variable selection using the smoothly clipped abso-

lute deviation (SCAD) penalty (Fan and Li, 2001), the least angle regression (LARS)

(Efron et al., 2004), the elastic net (Zou and Hastie, 2005), the adaptive LASSO (Zou,

2006), the group LASSO (Yuan and Lin, 2006) and many other extensions (Tibshi-

rani et al., 2005; Li and Li, 2008; Pan et al., 2010; Friedman et al., 2010; Wang et al.,

2009; Wu and Wang, 2013). Most of the above LASSO-type optimization problems

can be computed through the LARS algorithm by operating the entire solution path.

Compared with the frequentist approach, a huge advantage of Bayesian methods is

their ability to quantify uncertainty. Polson and Scott (2010) demonstrated that the

estimate based on a LASSO-type optimization method was equivalent to the posterior

mode under a Bayesian framework with a global-local (GL) prior

βj ∼ N(0, ψjτ), ψ ∼ f, τ ∼ g, (1.3)
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with properly specified f and g. In (1.3), τ controls the global sparsity (spike) and

ψj allows deviations (slide). The Bayesian LASSO (Park and Casella, 2008; Hans,

2009) is a canonical application of this type of method by setting an exponential

distribution for f to obtain a double-exponential prior.

The GL prior owns computational advantages compared with the other Bayesian

variable methods, however, it results in many of the βjs very small but not exact to

zero, which limits its application to some extent. The most widely used Bayesian

variable selection method for (1.1) in the literature is to set a conditional two com-

ponents mixture prior for the coefficients with one component concentrated at zero

(spike) and the other diffuse (slide). Specifically, we can introduce a latent selection

indicator γ = (γ1, . . . , γp) with γj ∈ {0, 1} indicating the selection status of βj. Then

one can assign a prior for βj:

βj | γj ∼ (1− γj)N(0, σ2
j0) + γjN(0, σ2

j1), j = 1, . . . , p, (1.4)

where σ2
j0 is a small value for spike and σ2

j1 is a large value for slide. Here σ2
j0 can

be viewed as a threshold for selection, and without prior knowledge, one can also

simplify (1.4) as

βj | γj ∼ (1− γj)δ(0) + γjN(0, σ2
j ), j = 1, . . . , p, (1.5)

where δ(0) represents a point mass at zero. Prior (1.5) indicates the preference to

only exclude βj that exactly equals zero, and any coefficients, no matter how small,

can be selected into the model with enough data as long as they are distinct from

zero. In practice, it is intractable to calculate the posterior probability of γj based on

(1.5) and (1.4) exactly. Alternatively, rather than search for the entire model space,

George and McCulloch (1993) proposed a stochastic search method named Stochastic
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Search Variable Selection (SSVS) to efficiently locate the optimal model in the poste-

rior inference. This technique is further discussed by George and McCulloch (1997);

Brown et al. (1998); Chipman et al. (2001). Such two-component variable selection

procedure has been extensively adopted by a wide range of applications (Yi et al.,

2003; Ishwaran and Rao, 2003; Theo and Mike, 2004; Sha et al., 2006; Li and Zhang,

2010; Stingo et al., 2011; Goldsmith et al., 2012; Huang et al., 2013). Different from

the classical slide and spike method, more recently, Johnson et al. (2012) proposed

a new model selection procedure by imposing nonlocal prior densities (Johnson and

Rossell, 2010) for the coefficients. Such nonlocal prior owns the advantage to have

a zero density function in the case of a zero model parameter, and has been shown

to have a promising performance in the high-dimensional and ultra high-dimensional

cases (Johnson, 2013). However, due the complex prior formulation and potentially

intensive posterior computation, both the first and second topics of our work adopt

the point mass mixture approach as in (1.5).

Although regression models are widely used for the selection of informative fea-

tures associated with an outcome variable, in some situations, we are interested in

identifying certain type of features, like the third motivating example, to study the

periodicity behavior of genes without an outcome variable. To conduct such selec-

tion/detection, we assume the following mixture distribution

p0f0(x) + p1f1(x) (1.6)

of the observed data which forms a classification problem. Bernardo et al. (2003)

proposed a two-step procedure to address the problem by reducing the dimension of

the data via Principal Component Analysis (PCA) following with a mixture model.

By incorporating biological information, Wei and Pan (2012) used a two-component

Gaussian mixture model with a Markov random field prior to jointly study multiple
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gene networks. Tadesse et al. (2005); Hoff et al. (2006) adopted finite mixture of

Gaussian distributions with model parameters updated through Markov chain Monte

Carlo (MCMC). To further release the model assumption, Kim et al. (2006) conducted

clustering via Dirichlet process mixture models which allows the flexility on cluster

number and could better fit the data. In the third topic, with the goal to select

genes with periodic behaviors, we formulate the problem into a clustering procedure

and adopt a Bayesian nonparametric mixture model with network information also

incorporated.

1.2.2 Incorporating Biological Information

In biomedical studies, the biological information/knowledge that we learn from pre-

vious research findings has always been an important factor that leads the feature

selection procedure to a more biologically interpretable direction. For example, in

a gene selection problem, incorporating the gene network/pathway information can

greatly improve the selection accuracy (Li and Li, 2008; Pan et al., 2010; Stingo et al.,

2011) and obtain scientifically meaningful results. In a study on the identification of

imaging biomarkers, the relevant brain functional networks are very useful to facili-

tate the problem solving and provide valuable insights behind the results (Goldsmith

et al., 2012; Huang et al., 2013).

From a frequentist perspective, incorporating the biological information into fea-

ture selection has been implemented in multiple scenarios by constructing different

penalized functions accordingly (Tibshirani et al., 2005; Li and Li, 2008; Pan et al.,

2010; Yuan and Lin, 2006; Friedman et al., 2010; Wang et al., 2009; Wu and Wang,

2013). Those approaches have been widely adopted for feature selection or prediction

in various applications, particularly in genomic studies, to import gene network/path-

way information.
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In a Bayesian framework, it is natural to incorporate such biological information

through the prior setting for the latent selection indicators or the coefficients with the

former approach more often used. Specifically, under model (1.1), with an undirected

graph G representing the biological connectivity information among the p predictors,

we can specify an Ising / Binary Markov random field (MRF) prior for γ as

γ | η, ξ ∝ exp

(
η

p∑
j=1

γj + ξ

p∑
j=1

∑
j∼k

I[γj = γk]

)
. (1.7)

Here, “j ∼ k” represents predictors j and k are biologically connected in G. We refer

to η as the sparse parameter which controls the overall sparsity among γ and ξ as

the smooth parameter which regulates the impact from the biological information.

In the presence of high-dimensional data/big data, the posterior inference for Ising

parameters η and ξ can lead to intractable computation due to the calculation of

the normalized constant. Even through the posterior inference can be proceed under

path sampling method (Gelman and Meng, 1998) or certain strategies for smooth

parameter by Smith and Fahrmeir (2007), most of the previous work (Li and Zhang,

2010; Stingo et al., 2011; Goldsmith et al., 2012; Huang et al., 2013) still fixed these

parameters in the posterior inference based on either a biological priori or the cross-

validation approach. In the absence of prior knowledge, particularly, one can also

assign a zero external field–remove the sparse parameter η in (1.7) as the previous

work Smith and Fahrmeir (2007); Barbu and Zhu (2007); Johnson et al. (2012), which

can also ease the computation. When ξ = 0, prior (1.7) reduces to independent and

identically distributed Bernoulli distributions with no biological information incorpo-

rated. In the first topic, we hierarchically incorporate both biological connectivity

among the functional predictors and the spatial information within each curve. In

the second topic, we consider the functional connectivity among ROIs and the spatial

information among the voxels. And in the third topic, the gene network information
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is directly incorporated. In this dissertation, we adopt different strategies to estimate

Ising parameters.

1.3 Outline

The remainder of the dissertation proposal is organized as follows. In Chapter 2, we

propose a unified Bayesian framework for hierarchical feature selection of structured

functional predictors measure with error. In Chapter 3, we develop a Bayesian feature

selection method for ultra high-dimensional data based on a multiresolution approach.

In Chapter 4, we investigate gene selection via Bayesian nonparametric method. We

finally conclude this dissertation with discussion and future plans in Chapter 5.
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Chapter 2

Bayesian Hierarchical Feature

Selection of Structured Functional

Predictors Measured with Error
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2.1 Introduction

Functional data, measured temporally or spatially, have been regularly collected in

many biomedical and epidemiological studies. In these studies, it is often of interest to

investigate the association between a scalar outcome and functional predictors while

also conducting feature selection between and within functional predictors.

2.1.1 Functional Data Analysis

Ramsay and Silverman (2005) provides a nice, thorough review of different types of

models for functional data. In particular, when assessing the relationship between

multiple functional predictors (say, θj(·), j = 1, . . . ,m) and a scalar response (say, y),

the generalized functional linear models (GFLMs), an extension of the Generalized

Linear Models (GLMs) in the presence of functional predictors, are a natural choice,

g [E {y|θj(·), j = 1, . . . ,m}] = α +
m∑
j=1

∫
θj(t)βj(t)dt

where βj(·)’s are the functional coefficients and g(·) is a monotonic and smooth link

function. GFLMs have been intensively investigated in recent years (James, 2002;

Müller and Stadtmüller, 2005; Malloy et al., 2010; Yao et al., 2005; Reiss and Ogden,

2007; Krämer et al., 2008; Reiss and Ogden, 2009). In many studies such as our moti-

vating study, functional predictors are not fully observed, in which case
∫
θj(t)βj(t)dt

is intractable and needs to be approximated in order to fit GFLMs. To this end,

one approach is to approximate θj(·) using a truncated series expansion based on a

set of basis functions; for example, James (2002) used cubic spline bases and Yao

et al. (2005) used a set of parsimonious bases obtained from functional principal

component analysis (FPCA) (Yao et al., 2005). Alternatively, one can fit discretized
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GFLMs (Reiss and Ogden, 2007, 2009; Malloy et al., 2010). In the presence of mea-

surement error in functional predictors, a popular, desirable approach is to jointly

model the scalar outcome and the error-contaminated functional predictors (James,

2002; Crainiceanu et al., 2009); a less desirable approach is to estimate functional

predictors first and plug their estimates into GFLMs, which ignores the uncertainty

of estimating functional predictors and underestimates the true sampling variance.

Functional data analysis has been extended to multi-level functional data such as

the biomarker curve data in the motivating study. For example, Morris and Carroll

(2006) adopted a wavelet-based Bayesian approach for modeling multi-level functional

data and applied their methods to a colon carcinogenesis study, and Baladandayutha-

pani et al. (2007) considered a similar setting and proposed a hierarchical Bayesian

model to account for spatial correlation among functions measured from the same

study unit; however, these authors focused on models with functional biomarkers

as outcomes, which is fundamentally different from our setting. Crainiceanu et al.

(2009) have extended GFLMs to handle multi-level functional data that were mea-

sured temporally; their approach used multi-level functional principal component

analysis (MFPCA) (Di et al., 2009) to derive basis functions and also accounted for

measurement error in functional predictors.

2.1.2 Feature Selection in GFLMs

There has been limited work on feature selection in GFLMs and most existing meth-

ods focus on the case of no measurement error in functional predictors. For feature

selection between functional predictors, Zhu et al. (2009) proposed a Bayesian hier-

archical model for classification which also accounted for batch effect; their approach

for variable selection was to specify a hierarchical mixture prior on functional coeffi-

cients βj(·) along the lines of stochastic search variable selection (SSVS) proposed by

15



George and McCulloch (1997). A more recent work by Lian (2011) adopted a regu-

larization approach to select functional predictors in functional linear models using

group smoothly clipped absolute deviation penalty (SCAD), where the coefficients of

basis functions for the same functional predictor were grouped together.

To conduct feature selection within functional predictors, i.e., identify regions

where β(·) = 0. James et al. (2009) proposed to enforce sparsity in the deriva-

tives of β(·) and Tian and James (2012) proposed a different approach by expanding

β(·) based on a set of piecewise constants or linear basis functions that are inter-

pretable. Alternatively, regularization methods such as lasso and SCAD have been

used in functional linear models to realize selection of basis functions for modeling

β(·) (Zhao et al., 2012; Lee and Park, 2012), which does not directly lead to fea-

ture selection within functional predictors; however, if B-spline basis functions are

used, such an approach can induce sparsity in the estimate of β(·) and hence feature

selection within functional predictors (Zhou et al., 2012).

To the best of our knowledge, no methods have been proposed to conduct hierar-

chical feature selection between and within functional predictors, not to mention in-

corporating structural information. In particular, different from Zhu et al. (2009), we

investigate feature selection between and within functional predictors that is guided

by structural information through a class of Ising priors (Li and Zhang, 2010). While

there has been considerable interest in incorporating structural or biological infor-

mation in feature selection in recent years (Li and Li, 2008; Pan et al., 2009; Li and

Zhang, 2010; Stingo et al., 2011), this approach has not been adopted for functional

data.

The novel contributions of our work are several-fold. First, it makes the first at-

tempt to propose a unified framework for hierarchical feature selection between and

within functional predictors in GFLMs. Second, with a consideration for measure-
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ment error, we incorporate a hierarchical Bayesian model for multi-level functional

data into the joint-modeling framework. Third, our approach incorporates two levels

of structural information into feature selection, leading to more biologically meaning-

ful and interpretable results. Lastly, we assign Gaussian process priors to multi-level

functional predictors in the model and adopt a discrete approximation, which is more

amenable to our hierarchical feature selection procedure. More importantly, this

approach circumvents the issue of varying variable dimensions and simplifies the pos-

terior computation as an alternative to more complicated trans-dimensional MCMC

algorithms. In addition, different covariance functions such as the exponential kernel

and theM atérn kernel can be specified for Gaussian process priors in light of different

degrees of smoothness.

2.2 Model Formulation

2.2.1 Basic Structure

To fix ideas, suppose that the observed data have the same multi-level structure as the

motivating data described in Section 1.1.1. For subject i (i = 1, . . . , n), let yi denote

the binary outcome, si denote a set of p scalar predictors including an intercept term,

and {Xijk(tl) : j = 1, . . . ,m; k = 1, . . . , qij; l = 1, . . . , L} denote the observed, error-

contaminated functional data at design point l (e.g., crypt location) of replicate curve

k (e.g., crypt k) for functional predictor j. Without loss of generality, we focus on

the case of a balanced design, i.e., the set of design points {t1, t2, . . . , tL} is the same

for all functional predictors and for all subjects. It is straightforward to extend our

method to data with unbalanced design or data with a different multi-level structure.

For the multi-level functional data, we denote by θijk(·) the true replicate curve k
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for predictor j from subject i, by θij(·) the true curve for predictor j from subject i,

and by θj(·) the true mean curve for predictor j across all subjects. Let T denote

the compact domain of all functional predictors; without loss of generality, we take

T = [0, 1], t1 = 0 and tL = 1. We model yi through a GFLM with the probit link by

introducing a latent variable zi as follows,

yi = I[zi > 0],

zi = sTi α+
m∑
j=1

∫
T
βj(t)θij(t)dt+ εi, (2.1)

Xijk(tl) = θijk(tl) + εijkl,

where I(A) = 1 if event A is true and 0 if otherwise, εi
i.i.d.∼ N(0, 1) with N(µ, σ2)

denoting a normal distribution with mean µ and standard deviation σ, and εijk =

(εijk1, εijk2, . . . , εijkL)T ∼ N(0,Ω) with Ω = σ2IL and IL denoting an identity ma-

trix of L × L. The parameters of interest include the scalar coefficients α and

the functional coefficients {β1(·), . . . , βm(·)}. Write Y = (y1, y2, . . . , yn), Xijk =

(Xijk(t1), . . . , Xijk(tL))T , X = {Xijk, i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , qij}.

We adopt a Bayesian hierarchical model with Gaussian process priors for the func-

tional predictors at each level of the hierarchy. Specifically, the proposed priors are:

α ∼ N(0, σ2
0Ip), (2.2)

θijk(·) ∼ GP(θij(·),K1(·, ·)), (2.3)

θij(·) ∼ GP(θj(·),K2(·, ·)), (2.4)

θj(·) ∼ GP(0,K3(·, ·)), (2.5)

where GP(µ(·),K(·, ·)) denotes a Gaussian process with mean function µ(·) and co-

variance function K(·, ·).
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2.2.2 Priors for Functional Coefficients: Feature Selection

We investigate three prior models for βj(·) (j = 1, . . . ,m) and their utility in feature

selection. We start with a model assuming that βj(·) is a Gaussian process, i.e.,

βj(·) ∼ GP(0,K4(·, ·)).

Under this model, βj(·) is almost surely non-zero in any specific region of T ; thus,

this model does not directly allow for feature selection at any level.

To enable feature selection between functional predictors, we assume

βj(·) = Cjβ̃j(·), β̃j(·) ∼ GP(0, K4(·, ·)), (2.6)

where Cj ∈ {0, 1} is a latent selection indicator. If Cj = 1, βj(·) = β̃j(·) is a Gaussian

process, indicating that functional predictor j is selected. If Cj = 0, βj(·) ≡ 0,

indicating that predictor j is not related to the outcome. It follows that model (2.6)

is equivalent to a mixture of Gaussian process and a point mass concentrated at a

function that equals zero everywhere, denoted by δ(0),

βj(·) | Cj ∼ (1− Cj)δ(0) + CjGP(0, K4(·, ·)). (2.7)

We refer to the model based on (2.6) as the Selection Between-Predictor Model

(SBPM).

To conduct hierarchical feature selection between and within functional predictors,

we need to modify prior (2.6) further. To facilitate feature selection within functional

predictors, we introduce a set of grid points and, to simplify exposition, we consider

the case where the set of grid points for feature selection is the same as the set of design

points in the observed data {t1 = 0, t2, . . . , tL = 1}. However, our method can be read-

19



ily extended to conduct feature selection in a set of arbitrarily chosen subintervals by

introducing additional grid points and we provide a brief discussion on this extension

in Section 2.6. Given the set of grid points t = {tl, l = 1, . . . , L}, the compact domain

T = [0, 1] is divided into L− 1 subintervals, {[tl, tl+1) : l = 1, 2, . . . , L− 2; [tL−1, tL]}.

We then introduce a set of lower level latent indicator variables for each functional

coefficient βj(·), namely, γj = {γjl ∈ {0, 1} : l = 1, . . . , L− 1}, where γjl = 0 indi-

cates that βj(·) ≡ 0 in the subinterval [tl, tl+1). To ensure selection consistency at

both levels, we impose a constraint on γj as

max{γj} = Cj, j = 1, . . . ,m, (2.8)

which essentially avoids the situation that a functional predictor is selected but none

of its regions is selected.

Given γj, the functional coefficient j is divided into Rj regions and each region

includes a set of contiguous subintervals that have the same γ value; we denote by

Kj the number of such regions with γ = 1, i.e., the number of selected regions where

βj(·) is allowed to be nonzero. It can be shown that Kj = b(Rj + γj1)/2c, where bxc

is the largest integer not greater than x, and

Rj =
L−2∑
l=1

I(| γj(l+1) − γjl |= 1) + 1, Kj =
L−2∑
l=1

I(γj(l+1) − γjl = 1) + rj1.

For example, as illustrated in Figure 2.1, given L = 8, γj = {0, 0, 1, 1, 0, 1, 1} indicates

that βj(·) = 0 in [t1, t3) ∪ [t5, t6) and βj(·) 6= 0 in [t3, t5) ∪ [t6, t8] with Rj = 4 and

Kj = 2. We define an index set b̃j = {bjr}
2Kj

r=1 based on γj as follows,

bj1 = min{l : γjl = 1},

bjr = min
l>bj(r−1)

{l : γjl = 1− γjbj(r−1)
}, r = 2, . . . , 2Kj − 1,
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and bj(2Kj) = minl>bj(2Kj−1)
{l : γjl = 1− γjbj(2Kj−1)

} if Rj − γj1 is an odd number and

bj(2Kj) = L−1 ifRj−γj1 is an even number. The set, b̃j, essentially includes the indices

of grid points that are at the two ends of each selected region with γ = 1 for functional

predictor j and there is a one-to-one mapping between γj and b̃j (j = 1, . . . ,m). In the

aforementioned example (Figure 2.1), with γj = {0, 0, 1, 1, 0, 1, 1}, the corresponding

index set is b̃j = {3, 5, 6, 8}. Given b̃j, we can write the set of selected (active) regions

for predictor j as Rj =
⋃Kj

k=1[tbj(2k−1)
, tbj(2k)) =

⋃Kj

k=1Rjk.

Figure 2.1: Relationship between t, γj and b̃j . The dashed lines represent the non-selected
regions and solid lines represent the selected regions.

To enable selection within functional predictors, we modify prior (2.6) given Cj

and γj as follows,

βj(·) = Cj

Kj∑
k=1

IRjk
(·)β̃j(·), β̃j(·) ∼ GP(0, K4(·, ·)), (2.9)

where the indicator function IRjk
(t) = 1 if t ∈ Rjk and 0 if otherwise. Given Cj = 1,

model (2.9) implies that βj(·) is allowed to be nonzero inRj and βj(·) ≡ 0 inRj where

Rj denotes the set complement ofRj in T . Similar to (2.7), integrating out β̃j(·), prior

(2.9) is equivalent to a mixture prior distribution with its mixture components in-

dexed by different values of Rj (or equivalently, γj); for a given Rj,
∑Kj

k=1 IRjk
(·)β̃j(·)

defines the form of the distribution for the corresponding mixture component, which

is constructed from a Gaussian process. For example, for Rj = [0, 1], the correspond-
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ing mixture component is GP(0, K4(·, ·)); for Rj = ∅, the corresponding mixture

component is δ(0). It follows that the number of components is the number of values

that Rj can take. We refer to the model based on (2.9) as the Hierarchical Feature

Selection Model (HFSM). Of note, while this prior assumes that βj(·) is continu-

ous within each selected region Rjk, it does not impose continuity conditions at the

boundary points {tbjr : r = 1, . . . , 2Kj}. The SBPM is a special case of the HFSM,

since prior (2.9) reduces to (2.6) when γjl ≡ 1 for all l = 1, . . . , L− 1 or equivalently

Rj can only take the value of [0, 1].

2.2.3 Hyperpriors: Incorporating Structural Information

Structural information is incorporated through hyperpriors on C = (C1, . . . , Cm)T

and γ = {γj, j = 1, . . . ,m}. Suppose that the structure of the functional predictors

is represented by an undirected graph G where an edge indicates that two predictors

are connected biologically either in the same pathway or with the same biological

function as shown in Table 1.1. Based on G, we define an m×m connection matrix

R = (rst) where rst = 1 if functional predictors s and t are connected in G and 0

if otherwise. We introduce an Ising prior for C, the indicator for feature selection

between functional predictors, as follows,

C | η ∝ exp

η m∑
j=1

∑
k:rkj=1

I[Cj = Ck]

 , (2.10)

which naturally incorporates the structural information in G. In the absence of prior

information, we here assign a zero external field in (2.10) (Smith and Fahrmeir, 2007;

Johnson et al., 2012; Barbu and Zhu, 2007), resulting in the marginal probability of

P (Cj | η) = 0.5 for each j = 1, . . . ,m. The parameter η > 0 controls the degree

of smoothness of C over G. When η = 0, the prior (2.10) reduces to independently

22



identically distributed Bernoulli priors, which does not incorporate any structural in-

formation between functional predictors. We can assign a prior for η, η ∼ Unif(0, Uη)

with a pre-specified Uη, e.g. Uη = 10, where Unif(a, b) denotes a uniform distribution

in (a, b). When m is not too large, we can calculate the normalizing constant in the

Ising prior, namely, h(η) =
∑
C∈Ξ exp(η

∑m
j=1

∑
k:rkj=1 I[Cj = Ck]) with Ξ being the

domain of C, which allows for posterior inference for η. This approach is adopted in

our numerical studies.

To incorporate the spatial information within each functional predictor, we assume

a conditional Ising prior for γ, the indicator for feature selection within each functional

predictor, given C, as follows,

γ | C ∝ exp

(
ξ

m∑
j=1

L−2∑
l=1

I[γjl = γj(l+1)]

)
m∏
j=1

I(max
l
γjl = Cj), (2.11)

where ξ controls the degree of smoothness of γ over the spatial structure of each func-

tional predictor. Essentially, this prior treats two adjacent subintervals as connected.

Similarly, when ξ = 0, prior (2.11) reduces to independently identically distributed

Bernoulli priors with no spatial information incorporated. Since γ is often of high

dimension even for moderate m, we choose to pre-specify ξ to avoid intractable com-

putation. We propose to run MCMC for different ξ values and select an optimal value

of ξ based on a chosen criterion. In our numerical studies, we use the posterior Bayes

factor (Aitkin, 1991) for its ease of computation.

The hyperpriors for the remaining parameters introduced in Sections 2.2.1 and

2.2.2 are as follows. The covariance functions for Gaussian processes (2.3) – (2.5) and

(2.9) are assumed to be Kp(s, t) = τ 2
p exp{−ρ(s− t)2},∀s, t ∈ T , p = 1, 2, 3, 4. Other

covariance functions can also be used depending on the specific property of the data.

To set a fairly noninformative prior for α, we specify a large value for its variance σ2
0,
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e.g., σ2
0 = 20. The hyperpriors for other parameters are

σ2 ∼ IG(α1, ζ1), ρ ∼ Unif(0, Uρ), τ 2
p ∼ IG(α2, ζ2), p = 1, 2, 3, 4

where IG(α, ζ) denotes an inverse gamma distribution with shape α and scale ζ and

α1, α2, ζ1, and ζ2 are pre-specified.

2.2.4 Model Approximation

To conduct posterior inference for the SBPM and the HFSM, we adopt a discretized

representation of model (2.1); specifically we approximate
∫
βj(t)θij(t)dt using the

trapezoidal rule, similar in spirit to the discrete model formulation in Malloy et al.

(2010). Such a model approximation, though not as widely used as the approach

of basis expansion, facilitates one essential idea in our approach – feature selection

within each functional predictor. Since the SBPM is a special case of the HFSM, we

only discuss the model approximation for the HFSM, which can be readily modified

to accommodate the SBPM. Similar to what is encountered in Section 2.2.2, we need

to choose a set of grid points for model approximation. Again, we focus on the case

where the set of grid points for model approximation is the same as the set of design

points, i.e., {t1, t2, . . . , tL}, and our numerical studies in Sections 2.4 and 2.5 show

that this approach performs well when the number of design points in the observed

data is moderate to large, e.g., L = 20.

We denote functional predictors θj(·), θij(·), θijk(·) and functional coefficients

βj(·) at design points by θj = (θj(t1), . . . , θj(tL))T , θij = (θij(t1), . . . , θij(tL))T ,

θijk = (θijk(t1), . . . , θijk(tL))T , and βj = (βj(t1), . . . , βj(tL))T , respectively. We denote

the index set of selected (active) functional predictors by S = {j : Cj = 1}, and the

index set of selected (active) grid points for predictor j by Qj =
⋃Kj

k=1(bj(2k−1) : bj(2k))
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where (a : a
′
) =

{
a, a+ 1, . . . , a

′}
for integers a < a

′
. It follows that γjl = 1 if

l ∈ Qj, otherwise γjl = 0. Let dj = |Qj| denote the number of active grid points for

predictor j where | · | is the cardinality of a set. Given C and γ, we denote selected

functional coefficients at design points in selected regions by β∗j = (βj(tl), l ∈ Qj)T

(of dimension dj × 1), and write βS = (β∗Tj , j ∈ S)T (of dimension (
∑

j∈S dj) × 1)

representing a collection of functional coefficients corresponding to all the select-

ed functional predictor segments. Similarly, we write selected functional predic-

tors at design points in selected regions by θ∗ij = (θij(tl), l ∈ Qj)T (of dimension

dj × 1). We write θS i = (θ∗Tij , j ∈ S)T (of dimension (
∑

j∈S dj) × 1) and θS =

(θS1,θS2, . . . ,θSn) (of dimension (
∑

j∈S dj)×n). Under the SBPM, β∗j and θ∗ij simply

become βj and θij, respectively. Denote by 4tg,f a diagonal matrix with the diagonal

elements as
(
4tg(g+1),4tg(g+2),4t(g+1)(g+3), . . . ,4t(f−3)(f−1),4t(f−2)(f−1),4t(f−1)f

)
,

where 4tgf =
tf−tg

2
. Define 4Tj as a block diagonal matrix with Kj blocks and

the kth block being 4tbj(2k−1),bj(2k) , and 4T as a block diagonal matrix with |S|

blocks and the diagonal blocks being 4Tj (j ∈ S). Then, model (2.1) is discretized

according to the trapezoidal rule as follows,

zi = sTi α+
∑
j∈S

(θ∗ij)
T4Tjβ∗j + εi,

or in a more compact form,

Z = STα+ (θS)T4TβS + ε, (2.12)

where Z = (z1, . . . , zn)T , ε = (ε1, . . . , εn)T , and S = (sTi , . . . , s
T
n )T . In addition, it

follows from models (2.3)–(2.5) that the priors for the discretized functional predictors
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are as follows,

θijk ∼ N(θij, τ
2
1H(ρ)), θij ∼ N(θj, τ

2
2H(ρ)), θj ∼ N(0, τ 2

3H(ρ)),

where H(ρ) is the correlation matrix and its (p, q)th element is exp{−ρ(tp − tq)
2}

(p, q = 1, . . . , L). From model (2.9), the priors for the discretized functional coeffi-

cients β∗j are

[β∗j | Cj = 1,γj ] ∼ N(0, τ 2
4H
∗
j (ρ)), j = 1, . . . ,m

where H∗j (ρ) is a sub-matrix of H(ρ), namely, H(ρ)[Qj,Qj], noting that Qj is the

index set of the active grid points in all selected regions of functional predictor j and

is used to index the corresponding rows and columns of H(ρ).

2.3 Posterior Inference

To conduct posterior inference, we adopt the Swendsen-Wang algorithm (Swendsen

and Wang, 1987) by introducing two sets of auxiliary variable u = {ust; rst = 1} and

v =
{
vjl, j = 1, . . . ,m; l = 1, . . . , L − 2

}
for C and γ. Each ust corresponds to an

edge in G that connects the functional predictor pair (s, t) and each vjl corresponds

to an edge in functional predictor j that connects two adjacent subintervals indexed

by l and l+ 1. Specifically, given C and γ, all the auxiliary variables are assumed to

be mutually independent and their conditional distributions are given by

π(ust | C, η) = exp(−ηI(Cs = Ct)) · I(0 ≤ ust ≤ exp(ηI(Cs = Ct))), (2.13)

π(vjl | γj) = exp(−ξI(γjl = γj(l+1))) · I(0 ≤ vjl ≤ exp(ξI(γjl = γj(l+1)))),(2.14)
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noting that ξ is pre-specified. The full list of parameters in our model is Θ1, Θ2,

Θ3, β, σ
2, α, τ 2, ρ, C, γ, u, v and η, where Θ1 = (θj, j = 1, . . . ,m), Θ2 =

(θij, i = 1, . . . , n; j = 1, . . . ,m), Θ3 = (θijk, i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , qij),

β = (βj, j = 1, . . . ,m), and τ 2 = (τ 2
1 , . . . , τ

2
4 ). To speed up the convergence of the

posterior simulation, we integrate out parameters Θ3, Θ1, β and α in the model.

This leads to the target distribution of our MCMC algorithm:

π(Z,Θ2, τ
2, σ2, ρ,C,γ,u,v, η | Y,X)

∝ π(Y | Z)π(Z | Θ2,C,γ, τ
2, ρ)π(X | Θ2, τ

2, ρ, σ2)π(Θ2, τ
2, ρ, σ2)π(C,γ,u,v, η).(2.15)

A detailed formulation for (2.15) is provided in Appendix 2.7.1. The posterior

inference is similar for the SBPM and the HFSM and the main difference is in

the updating scheme for the latent indicators C and γ, noting that the SBPM

does not involve γ. Thus, we focus Sections 2.3.1 and 2.3.2 on the posterior in-

ference for C and γ under each model. The details of the complete MCMC al-

gorithm are provided in Appendix 2.7.2. Given simulated samples from the poste-

rior distribution (2.15), it is straightforward to make posterior inference on other

parameters in the model by conditional sampling. For example, recall that each

sample of C and γ partitions the functional coefficient β into two parts βS and

β−S = [(β∗T−j , j ∈ S), (βTj , j /∈ S)]T where β∗T−j = (βj(tl), l /∈ Qj)T . Thus, to obtain

a sample from the posterior distribution of β, we draw βS from N(µβ,Σβ) and set

β−S = 0, where Σβ = [4TθS{In − S(Ipσ
−2
0 + STS)−1ST}θTS4T + (τ 2

4H
∗(ρ))−1]−1

and µβ = Σβ · (4TθS){In − S(Ipσ
−2
0 + STS)−1ST} ·Z. We note that our posterior

simulation algorithm is similar in spirit to the SSVS algorithm proposed by George

and McCulloch (1997) and the Bayesian variable selection approach by Li and Zhang

(2010) and the dimension of the parameter space in our MCMC algorithm does not

change.
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2.3.1 Posterior inference for C under SBPM

Note that in (2.21) a value ust > 1 indicates Cs = Ct. Hence, given a sample u,

we partition the m functional predictors into G classes (zg, g = 1, . . . , G) with lg

functional predictors in class g (g = 1, . . . , G), and the predictors in the same class

are either added to or dropped from the active set S together. The full conditional

distribution of C follows a discrete distribution with N = 2G elements which is given

by

π(C = (cz1 , . . . , czG
) | Z,S,θS , τ 2, ρ,u)

∝ |Σt|
1
2 |Σα|

1
2 exp

[ZT
{
W + (S − SW )Σα(S − SW )T

}
Z

2

]
|τ 2

4H
∗(ρ)|−

1
2 ,(2.16)

where czg = cg1lg with cg ∈ {0, 1} (g = 1, . . . , G), 1d is a d-vector with all elements

equal to 1, Σt =
{

(4T · θS)(4T · θS)T + (τ 2
4H
∗(ρ))−1

}−1
, W = (4T ·θS)TΣt(4T ·

θS), and Σα = (STS−STWS+Ipσ
−2
0 )−1. Here, H∗(ρ) and 4T are defined as those

in Section 2.2.4 with Qj = (1 : L) for j ∈ S, i.e., without feature selection within

functional predictors.

The above algorithm becomes computationally intensive when G becomes large.

As an alternative, we update each element in Czg = (Cj, j ∈ zg) for g = 1, . . . , G

directly from a Bernoulli distribution:

π(Czg = k1lg | C−zg ,Z,S,θS , τ
2, ρ,u)

∝ |Σt|
1
2 |Σα|

1
2 exp

[ZT
{
W + (S − SW )Σα(S − SW )T

}
Z

2

]
|τ 2

4H
∗(ρ)|−

1
2 ,(2.17)

where k takes values 0 or 1, and C−zg = (Czg , . . . ,Czg−1 ,Czg+1 , . . . ,CzG
).
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2.3.2 Posterior Inference for C and γ under HFSM

Under the HFSM, both C and γ are included in posterior inference to realize hierar-

chical feature selection. We consider two algorithms for updating C and γ. One is a

nested Swendsen-Wang algorithm through which we jointly update (C,γ). In (2.21),

a value vjl > 1 indicates γjl = γj(l+1), thus, u and v divides all functional predictors

into G classes; it also divides the set of L−1 subintervals for each functional predictor

j into Hj groups with their index sets defined as {ψjh, h = 1, . . . , Hj} and group h

has ljh elements (h = 1, . . . , Hj) with
∑Hj

h=1 ljh = L − 1. Let γzg = (γj, j ∈ zg).

Given the constraint (2.8) on γ, a natural extension of (2.17) for the posterior in-

ference for (Czg ,γzg) is implemented by drawing from a discrete distribution with

N ′ = 1+
∏

j∈zg
(2Hj−1) elements. However, this algorithm becomes computationally

infeasible even for moderate G and Hj’s.

To mitigate this problem, we consider an alternative approach by using a Metropolis-

Hastings (MH) algorithm to jointly update (C,γ). We choose the following proposal

distribution:

g(C∗,γ∗ | C(o),γ(o),P ,S,R) = π(γ∗ | C∗,P ,S) · p(C∗ | S,R), (2.18)

where the superscript “∗” and “(o)” denote the proposed and the current parame-

ter value respectively, and P = {Z,θS , τ 2,v, ρ, η}. The term p(C∗ | S,R) is the

marginal posterior probability of C defined under the SBPM and π(γ∗ | C∗,P ,S) is

the conditional posterior probability of γ∗ defined under the HFSM. Drawing (C∗,γ∗)

from this proposal entails two steps. We first draw C∗ from the posterior sample of

C generated using the algorithms in Section 2.3.1 based on (2.16) or (2.17). Subse-

quently, given C∗, we draw γ∗ from its full conditional (provided in Appendix 2.7.2)

with C fixed at C∗. One can show that p(C | S,R) > 0 for any C, so the sample
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space for C under this proposal function is the same as that for C under the HFSM,

making (2.18) a valid proposal. In addition, our numerical studies show that this

proposal achieves satisfactory performance.

2.4 Simulation Studies

We conduct simulation studies to assess the performance of the proposed approach

in terms of hierarchical feature selection for structured functional predictors. Since

no existing methods can handle hierarchical feature selection between and within

functional predictors, we focus on comparing the HFSM and the SBPM and note

that the approach by Zhu et al. (2009) is similar to the SBPM but cannot incorporate

the biological information between functional predictors. Each Monte Carlo data set,

containing n = 50 or n = 100 subjects, is generated based on models (2.1) and

(2.3)-(2.5) including eight functional predictors and one scalar predictor. The scalar

predictor is generated from a uniform distribution on (−15, 25). The intercept and

the scalar coefficient are set to α = (1, 1). The underlying true curves for each

functional predictor – namely, θijk(·), θij(·) and θj(·) – are generated from models

(2.3)-(2.5) with τ 2
1 = τ 2

2 = τ 2
3 = 0.5 and ρ = 36, where i = 1, . . . , n, j = 1, . . . , 8,

and k = 1, . . . , 10. Given θijk(·), the observed functional data X are generated at

20 equally spaced design points between 0 to 1 with independent measurement error

added. To examine the effect of measurement error, all components of σ2 are set to 0.1

or 0.2. The functional predictors are structured through the network that contains

edges {1 ∼ 4, 2 ∼ 4, 3 ∼ 4, 4 ∼ 5, 5 ∼ 6, 5 ∼ 7, 5 ∼ 8} with functional predictors

4 and 5 as the central nodes. Following this structure, we set the true values for C

as (1, 1, 1, 1, 0, 0, 0, 0). The binary outcome, Y , is generated from model (2.1) where

the integrals are calculated using the approach of Gaussian quadrature. The true
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functional coefficients are set as β1(t) = 0.5 + 9 sin(4t + 1), β2(t) = 1.5 − 8 sin(6t),

β3(t) = 1−8 sin(ct+1) with c = 19/14×(arcsin(0.125)+4), β4(t) = 1+8 sin(4t−1.05),

and β5(·) = · · · = β8(·) = 0. In addition, to evaluate feature selection for both

discontinuous (β1(·) and β2(·)) and continuous (β3(·) and β4(·)) functional coefficients,

we set β1(·) = 0 in (0.000, 0.315) and (0.632, 1.000), β2(·) = 0 in (0.263, 0.789), and

β3(·) = 0 in (0.000, 0.737), whereas β4(·) remains unchanged.

Given the simulated data (Y ,S,X), the analyses are conducted using both the

HFSM and the SBPM, where we use the set of design points as the set of grid points

for discretizing the GFLM and for feature selection. In both models, we use a flat prior

for α with σ2
0 = 20 and set hyper-parameters α1, α2, ζ1 and ζ2 to 1 and Uρ to 1000. We

let the smoothing parameter ξ in the Ising prior for γ vary in (0.0, 1.0, 1.5, 2.0, 2.5, 3.0)

to investigate the effect of different ξ. We use the marginal posterior mode of C and

γ to conduct feature selection. In each simulation scenario, multiple chains with

random initial values are run for 5000 iterations with the first 2000 as burn-in. Our

results show that the posterior inference is insensitive to initial values and a proper

mixing for each parameter is verified by the trace plots.

In all settings, the posterior samples of C converge to its true value within 30

iterations, indicating a good performance of our method on feature selection between

functional predictors. Therefore, we focus on feature selection within predictors and

we calculate the sensitivity (Sens) and the specificity (Spec) for feature selection

within γ,

Sens =

∑
(j,l)∈S0 I(p̂r(γjl = 1) ≥ 0.5)

|S0|
, Spec =

∑
(j,l) 6∈S0 I(p̂r(γjl = 1) < 0.5)

mL− |S0|
,

where S0 = {(j, l) : γjl = 1} is the true active set in γ and p̂r(γjl = 1) is the marginal

posterior probability of γjl = 1.
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Table 2.1 summarizes the simulation results for different settings. The proposed

approach achieves a very good performance under n = 50 and a larger sample size

(n = 100) leads to only modest improvement in performance. When ξ is between

1.0 and 2.0, the proposed approach achieves a satisfactory performance in feature

selection with both the sensitivity and the specificity approaching 1. As ξ increases,

the sensitivity further approaches or remains at 1, whereas the specificity gradual-

ly decreases and approaches that of the model with only feature selection between

predictors (i.e., the SBPM). This is expected since larger values of ξ induce stronger

effect of the Ising prior on the posterior inference of γ; eventually, the Ising prior

would dominate the likelihood and, in our case, result in the same values in the

posterior samples for all γ’s that are connected in a network. The impact of σ2 is

moderate in our simulation studies and the results in the cases of σ2 = 0.2 and 0.1

are comparable given the same sample size, showcasing the ability of our model to

handle measurement error. The criterion of the posterior Bayes factor is presented in

Table 2.1 with the model under ξ = 0 as the reference; an optimal value of ξ = 1.5 is

chosen for both σ2 values under n = 50 and ξ = 1.5 (ξ = 1.0) is chosen in the case

of σ2 = 0.1 (σ2 = 0.2) under n = 100. As shown in Table 2.1, ξ = 1.0 and ξ = 1.5

lead to two of the best results in feature selection, confirming the usefulness of this

tuning strategy.

To further evaluate the performance on feature selection within functional predic-

tors, Figure 2.2 presents the marginal posterior probability of γ = 1 for the selected

functional predictors (i.e., γ1 through γ4) under n = 50 in the case of σ2 = 0.1 and

ξ = 1.5. Figure 2.2 shows that our model correctly selects most of the nonzero re-

gions for γ1 and γ3, which have considerably higher posterior probabilities of being

selected than the zero regions. The only false positive in the second curve is located

closely to the transition point between zero and nonzero regions. For β4(·) which has
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σ2 = 0.1 σ2 = 0.2

n ξ Sens Spec PBF Sens Spec PBF

50

0.0 0.750 0.982 referent 0.725 1.000 referent
1.0 0.900 0.991 46.244 0.800 1.000 -47.314
1.5 0.925 0.991 195.809 0.900 0.991 26.954
2.0 0.950 0.973 185.245 0.925 0.991 -55.004
2.5 0.950 0.929 66.696 0.950 0.884 -69.436
3.0 1.000 0.804 131.257 0.950 0.839 -25.775

SBPM 1.000 0.679 -2.195 1.000 0.679 -308.282

100

0.0 0.800 0.955 referent 0.850 0.964 referent
1.0 0.900 0.982 -114.533 0.950 0.982 338.773
1.5 1.000 0.982 280.001 1.000 0.982 -70.689
2.0 1.000 0.964 118.216 1.000 0.938 -14.098
2.5 1.000 0.848 91.300 1.000 0.884 -62.905
3.0 1.000 0.759 167.309 1.000 0.804 -40.732

SBPM 1.000 0.679 -338.464 1.000 0.679 -29.413

Table 2.1: Simulation results under different σ2 and n. Sens and Spec, sensitivity and
specificity for γ; and PBE, log posterior Bayes factor with the model under ξ = 0 as the
referent.

no pre-specified zero region, the posterior mode of γ4 is exactly equal to the truth;

however, the posterior probabilities of being selected are lower in the region (0.579,

0.737) than in the other regions. A closer examination reveals that this region is close

to the point where the true functional coefficient β4(·) crosses zero.

Finally, Figure 2.3 presents the posterior means and credible intervals for β1(·)

through β4(·) with a comparison between the HFSM under ξ = 1.5 (right panel) and

the SBPM (left panel) in the case of σ2 = 0.1 and n = 50, illustrating the differences

between the two models. As shown in Figure 2.3, for all four functional predictors,

the 95% credible intervals estimated by the HFSM cover the true curves and the

posterior means are fairly close to the truth. In the case of the SBPM, however, the

posterior inference fails to identify the regions in which each functional coefficient is

0, resulting in over-smoothed posterior means for such functional coefficients.
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Figure 2.2: Posterior probability of γ = 1 for the functional coefficients that are selected
in the case of σ2 = 0.1 and ξ = 1.5 (n=50). The symbol ∗ indicates a true value of 1 for
the corresponding indicator γ. The dotted horizontal line highlights the cutoff of 0.5.

2.5 Application to the Colorectal Adenoma Data

We apply the proposed approach to the motivating study introduced in Section 1.1.1.

In this study, a total of 17 functional biomarkers (Table 1.1) were measured, though

not all biomarkers were measured for each participant. Since the data processing is

still ongoing, the final results will be reported elsewhere once all data become avail-

able. Nevertheless, our current analysis of the data represents the first attempt to

identify functional biomarkers and their features that are associated with the risk for

colorectal cancer through hierarchical feature selection while incorporating biological

information. We conduct an analysis of seven functional biomarkers (namely, APC,

MSH2, bax, β-catenin, E-cadherin, MLH1, and TGFβ1), for which data processing

has been completed. In the data set for our analysis, we have complete data for all

seven biomarkers in a subset of 44 subjects and the number of hemicrypts scored per

biomarker and per subject ranges between 1 to 76. Functional data measured at 24

equally-spaced design points between 0 and 1 are used to model biomarker profiles
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with 0 representing the base of crypts and 1 representing the top of crypts. The bio-

logical information listed in (Table 1.1) and the spatial information are incorporated

through Ising priors (2.10) and (2.11), respectively, in the analyses. The outcome

variable, y, is binary with 1 for presence of adenoma and 0 for absence of adenoma;

our GFLM also includes a scalar predictor, age.

Both the SBPM and the HFSM are applied to the data set, where we again use the

set of design points as the set of grid points for discretizing the GFLM and for feature

selection. Similar to the simulation studies, we set σ2
0 = 20, (α1, α2, ζ1, ζ2) = (1, 1, 1, 1)

and Uρ = 1000. We fit the HFSM with different values of the smoothing parameter ξ

in the Ising prior (2.11) for γ, ranging between ξ = 1.0 to 3.0 with a step size of 0.1

as well as ξ = 0, and we use the posterior Bayes factor to choose an optimal ξ value.

For each model, starting with random initial values, we run MCMC chains for 5,000

iterations with a burn-in period of 2,000 iterations. The trace plots for all parameters

are checked for convergence, all showing satisfactory mixing.

The hierarchical feature selection is conducted based on the marginal posterior

mode of C and γ. TGFβ1 is the only biomarker selected by the SBPM and the

HFSM with different ξ values and the marginal posterior probability for selecting

TGFβ1 is greater than 0.9 in all models. For the HFSM, ξ = 2.5 is chosen as the

optimal value based on the criterion of the posterior Bayes factor. Under this model,

the region between 0.435 and 0.826 for TGFβ1 is selected. The right panel in Figure

2.4 presents the posterior mean and 95% credible interval of the functional coefficient

β(·) for TGFβ1; it shows that the 95% credible interval of β(·) excludes 0 between

0.565 and 0.696, indicating that higher expression level of TGFβ1 in this region is

associated with lower risk for colorectal cancer. In addition, the lower 60% and the

upper 40% of colon crypts are known as the proliferation zone and the differentiation

zone, respectively (Gerdes et al., 1993); the expression levels of biomarkers that are
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involved in cell cycle change in the transitional region. Our results indicate that

the expression level of TGFβ1 near this transitional region is likely predictive of the

risk for colorectal cancer. To evaluate the goodness of fit of the model, a posterior

predictive assessment (Gelman et al., 1996) is conducted using a discrepancy measure,

the sum of mean χ2 discrepancy for yi and mean χ2 discrepancy forXijk. The resulting

posterior predictive p-value of 0.542 suggests a good fit to the data.

When the HFSM with ξ = 0 is used (i.e., feature selection is conducted within

functional predictors without incorporating the spatial information), no region within

the expression profile of TGFβ1 is selected with the posterior probabilities of γ = 1

all less than 0.5; evidently, without incorporating the spatial information, signals

selected under the HFSM with ξ = 2.5 – the region between 0.435 and 0.826 –

are lost. When the SBPM is used (i.e., feature selection is not conducted within

functional predictors), the estimated functional coefficient is fairly flat with its 95%

credible interval covering 0 throughout (the left panel of Figure 2.4), underestimating

the strength of the association between TGFβ1 and the outcome. In addition, we also

fit a GFLM without feature selection at any level and find no statistically significant

results, further demonstrating the importance of feature selection between and within

functional predictors.

2.6 Discussion

In this article, we propose a unified Bayesian framework for hierarchical feature s-

election of structured functional predictors in GFLMs, which also accommodates

multi-level functional data and measurement error. We present our method in a

simplified setup where the set of grid points for feature selection within functional

predictors and for model discretization are the same as the set of design points in
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the observed data. We briefly describe here how to extend our method to conduct

posterior inference on an arbitrary set of grid points. Suppose that we consider a set

of grid points that include all design points in the observed data and La additional

points {tal , l = 1, . . . , La}. A careful examination of our method shows that we can

conduct posterior inference using this set of grid points as long as we can generate

the posterior samples for θaij = (θij(t
a
l ), l = 1, . . . , La). This can be readily achieved

through the posterior predictive distribution for θaij by recognizing that (θaij,θij) fol-

lows a multivariate normal distribution based on model (2.4). Specifically, we draw

θaij from a conditional normal distribution given θij with θij drawn from its posterior

distribution.

In our numerical studies, we choose the marginal posterior mode of C and γ to

conduct hierarchical feature selection in our model. A different threshold can also be

used, in particular, if it is motivated by prior knowledge. In addition, the smoothing

parameter ξ in the Ising prior (2.11) is fixed in posterior inference to avoid potentially

intractable computation. We use the posterior Bayes factor (Aitkin, 1991) to choose

an optimal value for ξ for its ease of computation, which is shown to achieve good

performance in our simulation studies. In practice, we can also use other criteria such

as variations of the Bayes factor as discussed in Kadane and Lazar (2004).

Our model does not impose any continuity condition on functional coefficients

at the boundaries of selected and unselected regions, essentially allowing for jumps

within a functional coefficient at these boundaries. Such jumps may capture a sudden

change of biological events and are potentially biologically meaningful. In cases where

continuity holds true, our model is expected to still work given that our model relies

on a weaker assumption, as shown in our simulation studies. If such prior knowledge

is provided, our model can be extended to impose this condition by modifying the

mixture prior (2.9).
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2.7 Appendix

2.7.1 Marginalizing the Likelihood with respect to Θ3, Θ1, β

and α

The posterior likelihood of all the parameters (Θ1,Θ2,Θ3,β, σ
2,α, τ 2, ρ,C,γ,u,v, η)

is

π(Z,Θ1,Θ2,Θ3,β,α, σ
2, τ 2, ρ,C,γ,u,v, η | Y ,X,S)

∝
n∏
i=1

(I[zi > 0]I[yi = 1] + I[zi ≤ 0]I[yi = 0]) exp
{
− (Z − STα− θTS4TβS)

⊗2

2

}
·
n∏
i=1

m∏
j=1

qij∏
k=1

[
σ−L exp

{
−(Xijk − θijk)T (Xijk − θijk)

2σ2

}
|τ 2

1H(ρ)|−
1
2 exp

{
− 1

2τ 2
1

(θijk − θij)T

H(ρ)−1(θijk − θij)
}]
·
n∏
i=1

m∏
j=1

|τ 2
2H(ρ)|−

1
2 exp

{
−(θij − θj)TH(ρ)−1(θij − θj)

2τ 2
2

}
m∏
j=1

|τ 2
3H(ρ)|−

1
2 exp(−

θTj H(ρ)−1θj

2τ 2
3

) · |2πτ 2
4H
∗(ρ)|−

1
2 exp(−β

T
SH

∗(ρ)−1βS
2τ4

) exp(−α
Tα

2σ2
0

)

(σ2)−α1−1 exp(−γ1

σ2
)

4∏
p=1

(τ 2
p )−α2−1 exp(−γ2

τ 2
p

) ·
∏

s,t:rst=1

I(0 ≤ ust ≤ exp(ηI(Cs = Ct)))

·
m∏
j=1

L−2∏
l=1

I(0 ≤ vjl ≤ exp(ξI(γjl = γj(l+1)))) ·
m∏
j=1

I(max
l
γjl = Cj) ·

I[0 < ρ < Uρ]

Uρ
· I[0 < η < Uη]

Uη
.

After integrating out Θ3, Θ1, β and α, we obtain π(Z,Θ2, τ
2, σ2, ρ,C,γ,u,v, η |
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Y ,X,S)

π(Z,Θ2, τ
2, σ2, ρ,C,γ,u,v, η | Y ,X,S)

∝
n∏
i=1

(I[zi > 0]I[yi = 1] + I[zi ≤ 0]I[yi = 0]) exp
[
− 1

2
ZT{In −W − (S −W · S)Σα(S

−W · S)T}Z
]
· exp

[
− 1

2

m∑
j=1

{
n∑
i=1

τ 2
1 + qijτ

2
2

(τ2τ1)2
θTijH(ρ)−1θij −

τ 2
3

τ 4
2 + n(τ3τ2)2

(
n∑
i=1

θij)
TH(ρ)−1

(
n∑
i=1

θij)

}]
· exp

{
n∑
i=1

m∑
j=1

qij∑
k=1

1

2

(
H(ρ)−1

τ 2
1

θij + σ−2Xijk

)T (
H(ρ)−1

τ 2
1

+ σ−2IL

)−1 (H(ρ)−1

τ 2
1

θij

+σ−2Xijk

)} n∏
i=1

m∏
j=1

qij∏
k=1

σ−L exp(−
XT

ijkX
T
ijk

2σ2
) · (σ2)−α1−1 exp(−γ1

σ2
)

4∏
p=1

(τ 2
p )−α2−1 exp(−γ2

τ 2
p

)

∏
s,t:rst=1

I(0 ≤ ust ≤ exp(ηI(Cs = Ct))) ·
m∏
j=1

L−2∏
l=1

I(0 ≤ vjl ≤ exp(ξI(γjl = γj(l+1))))

m∏
j=1

I(max
l
γjl = Cj) ·

I[0 < ρ < Uρ]

Uρ
· I[0 < η < Uη]

Uη

|H(ρ)|−
∑n

i=1
∑m

j=1(qij+1)

2

τ
∑n

i=1

∑m
j=1 qijL

1 τ
m(n−1)L
2 (τ 2

2 + nτ 2
3 )

mL
2

· | H(ρ)−1

τ 2
1

+ σ−2IL |−
∑n

i=1
∑m

j=1 qij

2 ·|Σt|
1
2 |Σα|

1
2 |τ 2

4H
∗(ρ)|−

1
2 .

2.7.2 MCMC Algorithm

We provide here the details of the Metropolis–Hastings within Gibbs sampling al-

gorithm for posterior inference under the HFSM . The MCMC algorithm under the

SBPM is a special case of this algorithm.

Scheme for sampling Z : The full conditional for Z is as follows:

π(Z | Y ,S,Θ2, τ
2
4 , ρ,C,γ) ∼ TNn(0,µZ−,µZ+,ΣZ), (2.19)

with TNn(µ,µ−,µ+,Σ) denoting a n dimensional truncated normal distribution with

mean µ (of dimension n×1), element-wise lower and upper bounds µ− (of dimension

39



n×1) and µ+ (of dimension n×1), and covariance matrix Σ (of dimension n×n). Here,

µZ− = (µz1−, . . . , µzn−)T = ( I[y1=1]−1
I[y1=1]

, . . . , I[yn=1]−1
I[yn=1]

)T , µZ+ = (µz1+, . . . , µzn+)T =

(1−I[y1=0]
I[y1=0]

, . . . , 1−I[yn=0]
I[yn=0]

)T and ΣZ = {In −W − (S −W · S)Σα(S −W · S)T}−1.

Based on (2.19), we perform an element-wise update for Z from conditional uni-

variate truncated normal distributions through a Gibbs sampler with

π(zi | Z−i, yi,S,Θ2, τ
2
4 , ρ,C,γ) ∼ TN1(µzi|Z−i

, µzi−, µzi+, σ2
i ), i = 1, . . . , n,

where Z−i = (z1, . . . , zi−1, zi+1, . . . , zn), µzi|Z−i
= (ΣZ

i,−i)
T (ΣZ

−i,−i)
−1Z−i and σ2

i =

ΣZ
i,i − (ΣZ

i,−i)
TΣZ
−i,−iΣ

Z
i,−i. Here, Σ−i,−i (of dimension (n − 1) × (n − 1)) denotes the

sub-matrix of Σ by eliminating the ith row and ith column; Σi,−i (of dimension

(n − 1) × 1) denotes the sub-vector of the ith column of Σ by eliminating its ith

element.

Scheme for sampling Θ2 : The full conditional for θij is as follows:

π(θij |X,S,Z,θ−i−j, τ
2, ρ,C,γ) ∝ N(µθ,Σθ) ·Qθ, (2.20)

with θ−i−j = (θij, i = 1, . . . , i− 1, i+ 1, . . . , n; j = 1, . . . , j − 1, j + 1, . . . ,m),

Qθ = exp
[ZT ·

{
W + (S −W · S)Σα(S −W · S)T

}
·Z

2

]
| Σt |

1
2 | Σα |

1
2 ,
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Σθ =
[
(
qij
τ 2

1

+
1

τ 2
2

− τ 2
3

nτ 2
3 τ

2
2 + τ 4

2

) ·H−1(ρ)

−qij(τ 2
1H(ρ))−1{(σ−2IL + (τ 2

1H(ρ))−1)−1}(τ 2
1H(ρ))−1

]−1

,

µθ = Σ1 ·

[
H(ρ)−1

∑
w 6=i

τ 2
3

nτ 2
3 τ

2
2 + τ 4

2

θwj

+(τ 2
1H(ρ))−1

{
(σ−2IL + (τ 2

1H(ρ))−1)−1σ−2

qij∑
k=1

Xijk

}]
.

Based on (2.20), we update θij as follows:

1. Draw θpij ∼ N(µθ,Σθ).

2. Set θij = θpij with probability (1− Cj) + Cj min {1, Rθ}, where

Rθ =
π(θpij |X,S,θ−i−j,Z, τ

2, ρ,C,γ)

π(θij |X,S,θ−i−j,Z, τ 2, ρ,C,γ)
.

Scheme for sampling u and v : As stated in the paper, the conditional uniform

distribution for each ust is

π(ust | C, η) = exp(−ηI(Cs = Ct)) · I(0 ≤ ust ≤ exp(ηI(Cs = Ct))),

where functional predictor pair (s, t) satisfies rst = 1, corresponding to each edge in

G. Similarly, for each vjl with j = 1, . . . ,m; l = 1, . . . , L− 2, we have the conditional

density function

π(vjl | γj) = exp(−ξI(γjl = γj(l+1))) · I(0 ≤ vjl ≤ exp(ξI(γjl = γj(l+1)))).

Scheme for sampling C and γ :
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As stated in the paper, one approach is to jointly update C and γ by drawing

from the full conditional

π(Czg = k1lg , {γjψjh
= kjψjh

1ljh , j ∈ zg, h = 1, . . . , Hj} | C−zg ,Z,S,θS , τ
2, ρ,u,v)

∝
∏
j∈zg

I(max
l
γjl = Cj)|Σt|

1
2 |Σα|

1
2 exp

[1

2
ZT
{
W

+(S − SW )Σα(S − SW )T
}
Z
]
|τ 2

4H
∗(ρ)|−

1
2 , (2.21)

where kjψjh
takes value 0 or 1, and γjψjh

= (γjl, l ∈ ψjh). Based on (2.21), one can

update each element (Czg ,γzg) individually (g = 1, . . . , G).

The alternative approach is to sample proposal (C∗,γ∗) through g(C∗,γ∗ | C(o),γ(o),P ,S,R)

with the full conditional π(γ∗ | C∗,P ,S) depending on (2.21). Given the proposed

values (C∗,γ∗), the MH acceptance ratio can be calculated as follows:

R(C∗,γ∗ | γ(o),C(o)) =
π(C∗,γ∗ | P ,S,R)

π(C(o),γ(o) | P ,S,R)
· g(C(o),γ(o) | C∗,γ∗,P ,S,R)

g(C∗,γ∗ | C(o),γ(o),P ,S,R)
,

=
π(C∗ | S,R,P)

π(C(o) | S,R,P)
· p(C

(o) | S,R)

p(C∗ | S,R)
. (2.22)

In (2.22), the second ratio in the right-hand side is calculated directly from the pos-

terior sample under the SBPM; for the first ratio

π(C∗ | S,R,P) =

∫
π(C∗,γ | S,R,P)dγ. (2.23)

Integral (2.23) is computed using importance sampling with a given instrumental

distribution and the sample size nγ (e.g., γjl
i.i.d.∼ Bernoulli(0.5), nγ = 10000).
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Scheme for sampling η : The full conditional for η is as follows:

π(η|C,R) ∝
exp(η

∑
j

∑
k:rkj=1 I[Cj = Ck])∫

exp(η
∑

j

∑
k:rkj=1 I[Cj = Ck])dC

I[0 < η < Uη]. (2.24)

Based on (2.24), we update η by sampling a proposal ηp ∼ N(η, σ2
η) and setting η = ηp

with probability min{1, Rη}, where Rη = π(ηP |C,R)
π(η|C,R)

.

Scheme for sampling σ2 : The full conditional for σ2 is as follows:

π(σ2|X,Θ2, ρ, τ
2
1 )

∝ exp

{
n∑
i=1

m∑
j=1

qij∑
k=1

1

2

(
H(ρ)−1

τ 2
1

θij + σ−2Xijk

)T (
H(ρ)−1

τ 2
1

+ σ−2IL

)−1 (H(ρ)−1

τ 2
1

θij

+σ−2Xijk

)}
σ−

∑n
i=1

∑m
j=1 qijL−2α1−2 exp

(
−
∑n

i=1

∑m
j=1

∑qij
k=1X

T
ijkX

T
ijk + 2γ1

2σ2

)

·
∣∣∣∣H(ρ)−1

τ 2
1

+ σ−2IL

∣∣∣∣−
∑n

i=1
∑m

j=1 qij

2

I[σ2 > 0]. (2.25)

Based on (2.25), we update σ2 by sampling a proposal σ2(p) ∼ N(σ2, σ2
σ) and setting

σ2 = σ2(p) with probability min{1, Rσ}, where Rσ =
π(σ2(p)|X,Θ2,ρ,τ21 )

π(σ2|X,Θ2,ρ,τ21 )
.

Scheme for sampling τ 2
1 : The full conditional for τ 2

1 is as follows:

π(τ 2
1 |X,Θ2, ρ, σ

2)

∝ exp

{
n∑
i=1

m∑
j=1

qij∑
k=1

1

2

(
H(ρ)−1

τ 2
1

θij + σ−2Xijk

)T (
H(ρ)−1

τ 2
1

+ σ−2IL

)−1 (H(ρ)−1

τ 2
1

θij

+σ−2Xijk

)
− 1

2

n∑
i=1

m∑
j=1

qij
τ 2

1

θTijH(ρ)−1θij −
γ2

τ 2
1

}
· τ−

∑n
i=1

∑m
j=1 qij ·L−2α2−2

1

·
∣∣∣∣H(ρ)−1

τ 2
1

+ σ−2IL

∣∣∣∣−
∑n

i=1
∑m

j=1 qij

2

I[τ 2
1 > 0]. (2.26)
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Based on (2.26), we update τ 2
1 by sampling a proposal τ

2(p)
1 ∼ N(τ 2

1 , σ
2
τ1

) and setting

τ 2
1 = τ

2(p)
1 with probability min{1, Rτ1}, where Rτ1 =

π(τ
2(p)
1 |X,Θ2,ρ,σ2)

π(τ21 |X,Θ2,ρ,σ2)
.

Scheme for sampling τ 2
2 : The full conditional for τ 2

2 is as follows:

π(τ 2
2 |X,Θ2, ρ, τ

2
3 )

∝ · exp

[
− 1

2

m∑
j=1

{
n∑
i=1

θTij(τ
2
2H(ρ))−1θij −

τ 2
3

τ 4
2 + nτ 2

3 τ
2
2

(
n∑
i=1

θij

)T

H(ρ)−1

(
n∑
i=1

θij

)}
− γ2

τ 2
2

]
· τ−m(n−1)L−2α2−2

2 · (τ 2
2 + nτ 2

3 )−
mL
2 I[τ 2

2 > 0] (2.27)

Based on (2.27), we update τ 2
2 by sampling a proposal τ

2(p)
2 ∼ N(τ 2

2 , σ
2
τ2

) and setting

τ 2
2 = τ

2(p)
2 with probability min{1, Rτ2}, where Rτ2 =

π(τ
2(p)
2 |X,Θ2,ρ,τ23 )

π(τ22 |X,Θ2,ρ,τ23 )
.

Scheme for sampling τ 2
3 : The full conditional for τ 2

3 is as follows:

π(τ 2
3 |X,Θ2, ρ, τ

2
2 )

∝ · exp

[
m∑
j=1

{
τ 2

3

2(τ 4
2 + nτ 2

3 τ
2
2 )

(
n∑
i=1

θij)
TH(ρ)−1(

n∑
i=1

θij)

}
− γ2

τ 2
3

]
·τ−2α2−2

3 · (τ 2
2 + nτ 2

3 )−
mL
2 I[τ 2

3 > 0] (2.28)

Based on (2.28), we update τ 2
3 by sampling a proposal τ

2(p)
3 ∼ N(τ 2

3 , σ
2
τ3

) and setting

τ 2
3 = τ

2(p)
3 with probability min{1, Rτ3}, where Rτ3 =

π(τ
2(p)
3 |X,Θ2,ρ,τ22 )

π(τ23 |X,Θ2,ρ,τ22 )
.

Scheme for sampling τ 2
4 : The full conditional for τ 2

4 is given by π(τ 2
4 | Z,S,Θ2, ρ,C,γ) ∝ Qθ·

exp( γ2
τ24

) · (τ 2
4 )−α2−1−

∑
j∈S dj

2 I[τ 2
4 > 0]. We update τ 2

4 by sampling a proposal τ
2(p)
4 ∼

N(τ 2
4 , σ

2
τ4

) and setting τ 2
4 = τ

2(p)
4 with probability min{1, R

τ
2(p)
4
}, where R

τ
2(p)
4

=

π(τ
2(p)
4 |Z,S,Θ2,ρ,C,γ)

π(τ24 |Z,S,Θ2,ρ,C,γ)
.
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Scheme for sampling ρ : The full conditional for ρ is given by

π(ρ | Z,S,Θ2, τ
2,C,γ)

∝ Qθ · exp

[
− 1

2

m∑
j=1

{
n∑
i=1

τ 2
1 + qijτ

2
2

(τ2τ1)2
θTijH(ρ)−1θij −

τ 2
3

τ 4
2 + n(τ3τ2)2

(
n∑
i=1

θij)
TH(ρ)−1

(
n∑
i=1

θij)

}]
· exp
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qij∑
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1

2

(
H(ρ)−1

τ 2
1

θij + σ−2Xijk

)T (
H(ρ)−1

τ 2
1

+ σ−2IL

)−1 (H(ρ)−1

τ 2
1

θij

+σ−2Xijk

)}
I(0 < ρ < Uρ)|H(ρ)|−

∑n
i=1

∑m
j=1(qij+1)

2 ·
∣∣∣∣H(ρ)−1

τ 2
1

+ σ−2IL

∣∣∣∣−
∑n

i=1
∑m

j=1 qij

2

|H∗(ρ)|−
1
2 .

We update ρ by sampling a proposal ρp ∼ N(ρ, σ2
ρ) and setting ρ = ρp with probability

min{1, Rρp}, where Rρp = π(ρp|Z,S,Θ2,τ2,C,γ)
π(ρ|Z,S,Θ2,τ2,C,γ)

.
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Figure 2.3: Posterior inference of the functional coefficients under the mode of C and γ in
the case of σ2 = 0.1 (n=50). The left panel is for the case under the SBPM and the right
panel is for the case under the HFSM (ξ = 1.5). The solid blue lines represent the true
functional coefficients; the dashed lines represent the posterior means; and the dotted lines
represent the corresponding 95% credible intervals.
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Figure 2.4: Posterior mean (solid line) and 95% credible interval (dotted lines) of the
functional biomarker TGFβ1 under the SBPM (left panel) and the HFSM (right panel).
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Chapter 3

Bayesian Spatial Variable Selection

for Ultra-High Dimensional

Neuroimaging Data: A

Multiresolution Approach
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3.1 Introduction

3.1.1 Variable Selection in Ultra-high dimensionality

As discussed in Section 1, variable selection is a widely encountered issue in biomed-

ical studies to facilitate comprehensive statistical learning and biological discovery.

Regularization methods have been developed to conduct variable selection and ex-

tended to handle high-dimensional feature spaces. Alternatively, Bayesian methods

also play a prominent role in solving the variable selection problem.

Although the aforementioned methods have been successful for variable selection in

relatively high-dimensional feature space (e.g., the number of predictors is on the order

of thousands), these methods become infeasible due to their prohibitive computation-

al costs when faced with a problem such as our motivating study involving hundreds

of thousands or even millions of predictors. This has stimulated the development of

variable selection techniques for ultra-high dimensional problems. Fan and Lv (2008)

proposed the Sure Independence Screening (SIS) approach often used in conjunction

with regularization methods. This method does not require intensive computations

and has good theoretical properties. Although it is applicable to a probit regression

model, the SIS does not explicitly model the dependence among variables and cannot

assess the uncertainty of variable selection. In a Bayesian modeling framework, Bot-

tolo and Richardson (2010) developed a powerful sampling scheme to accommodate

the high-dimensional multimodal model space based on the evolutionary Monte Car-

lo. This method has been shown to be able to handle up to 10,000 predictors, but it

is still computationally inefficient when applied to our motivating study with almost

200,000 predictors. More recently, by assigning nonlocal priors to model parameters,

Johnson and Rossell (2012) proposed a novel Bayesian model selection method that

possesses the posterior selection consistency when the number of predictors is smaller
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than the sample size. Johnson (2013) demonstrated that it can achieve high selec-

tion accuracy in ultra high-dimensional problems, comparable to the SIS combined

with regularization methods. However, their method is not directly applicable to our

problem in that it was developed for a linear regression model without incorporating

any structural information in the covariate space. Goldsmith et al. (2012) and Huang

et al. (2013) developed a single-site Gibbs sampler for Bayesian spatial variable se-

lection using Ising priors with application to neuroimaging studies. This algorithm is

able to fit linear regression models with ultra-high dimensional imaging biomarkers,

i.e. “scalar-on-image regression” models, however, the single-site updating scheme

leads to a very slow mixing of the Markov chain in the posterior computation for

a probit regression model (Lamnisos et al., 2009, 2012). Thus, there are needs for

developing more efficient posterior computation algorithms that can be applied to our

motivating problem. Particularly, we resort to a multiresolution approach.

3.1.2 Multiresolution Approach

The idea of multiresolution, which facilitates the information transition through a

construction of coarse-and-fine-scale model parameters, has been adopted to optimize

algorithms successfully in data mining and machine learning. The pioneer work of u-

tilizing the multiresolution idea for Bayesian computation traces back to a multi-grid

MCMC method proposed by Liu and Sabatti (2000). This approach was original-

ly adopted by Goodman and Sokal (1989) to solve a problem in statistical physics.

Motivated by image denoising problems, Higdon et al. (2002) proposed a coupled

MCMC algorithm with the coarsened-scale Markov chains serving as a guide to the

original fine-scale chains. The coupled Markov chains can better explore the entire

sample space and avoid getting trapped at local maxima of the posterior distribution.

Holloman et al. (2006) further proposed a multiresolution genetic algorithm to reduce
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computational burden, provide more accurate solution of maximization problem, and

improve mixing of the MCMC sampling. In a similar fashion, Koutsourelakis (2009)

adopted a multiresolution idea to estimate spatially-varying parameters in PDE-based

models with the salient features detected by the coarse solvers. From the computa-

tional perspective, Giles (2008) showed that the computational complexity for esti-

mating the expected value from a stochastic differential equation could be reduced by

a multiresolution Monte Carlo simulation. More recently, Kou et al. (2012) applied a

multiresolution method to diffusion process models for discrete data and showed that

their approach improves computational efficiency and estimation accuracy. From the

perspective of model construction, Fox and Dunson (2012) adopted the multiresolu-

tion idea in Gaussian process models to capture both long-range dependencies and

abrupt discontinuities.

In this chapter, we develop efficient multiresolution MCMC algorithms for variable

selection in the ultra-high dimensional image feature space. In contrast to the coupled

Markov chain methods (Higdon et al., 2002; Holloman et al., 2006; Kou et al., 2012)

that alternate between different resolutions in posterior simulation, we construct and

conduct posterior computations for a sequence of nested auxiliary models for variable

selection from the coarsest scale to the finest scale. Our goal is to conduct variable

selection at the finest scale – the resolution in the observed data. The MCMC algo-

rithm for the model at each resolution depends on the posterior inclusion probabilities

obtained from fitting the auxiliary model at the previous, resolution through the use

of a “smart” proposal distribution that allows the algorithm to explore the entire

sample space more efficiently. This avoids the complication of alternating between

resolutions for a large number of selection indicators in our problem.
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3.2 Model Formulation

3.2.1 A Probit Regression Model for Variable Selection

Suppose there are n subjects in the data. For i = 1, . . . , n, let yi ∈ {0, 1} be the

binary outcome representing the disease status of subject i (disease = 1, control =

0). Assume that the whole brain B consists of R regions and region r contains Vr

voxels, for r = 1, . . . , R, with V =
∑R

r=1 Vr representing the total number of voxels

in the brain. Let xirv denote the imaging biomarker at voxel v within region r for

subject i and sij denote clinical variable j for subject i (j = 1, . . . , p). We consider a

probit regression model for variable selection

yi = I[zi ≥ 0], zi = α0 +

p∑
j=1

αjsij +
R∑
r=1

cr

Vr∑
v=1

γrvβrvxirv + εi, and εi ∼ N(0, 1),(3.1)

where indicator function I(A) = 1 if event A occurs and 0 otherwise, αj and βrv are

coefficients of clinical variable sij and imaging biomarker xirv, respectively, cr ∈ {0, 1}

is the selection indicator for region r, and γrv ∈ {0, 1} is the selection indicator for

voxel v in region r. Thus, the imaging biomarker xirv is excluded from the model if

at least one of cr and γrv is zero.

We further denote by emk = (0, . . . , 0, 1, 0, . . . , 0)> an m × 1 vector with the kth

element of 1 and all other elements of 0, by 0m = (0, . . . , 0)> an all-zero vector of

dimension m× 1, by 1m =
∑m

k=1 emk an all-one vector, and by Im =
∑m

k=1 emke
>
mk an

m×m identity matrix. Define Mr = (0>V r
,1>Vr ,0

>
V r

)> (of dimension V × 1) and M =

(M1, · · · ,MR) (of dimension V × R), where V r =
∑r−1

r′=1 Vr′ and V r =
∑R

r′=r+1 Vr′ .

It follows that M represents an index map between voxel and region and model (3.1)
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can be rewritten in a compact form,

y = I[z ≥ 0n], z = Sα+ X (λ ◦ β) + ε, ε ∼ N(0n, In) (3.2)

where y = (y1, . . . , yn)>, z = (z1, . . . , zn)>, ε = (ε1, . . . , εn)>, xrv = (x1rv, . . . , xnrv)
>,

Xr = (xr1, . . . ,xrVr), X = (X1, . . . ,XR), sj = (s1j, . . . , snj)
>, S = (1n, s1, . . . , sp),

α = (α0, α1, . . . , αp)
>, βr = (βr1, . . . , βrVr)

>, β = (β>1 , . . . ,β
>
R)>, c = (c1, . . . , cR)>,

γr = (γr1, . . . , γrVr)
>, γ = (γ>1 , . . . ,γ

>
R )>, and λ = (Mc) ◦ γ with “◦” representing

the Hadamard product (or entry-wise product) (Styan, 1973). It is worth noting that

λ, the V dimensional binary vector, defines the set of important voxels.

3.2.2 Prior Specifications

We assign the Gaussian priors to the regression coefficients in model (3.2),

α ∼ N(0p+1, σ
2
αIp+1) and β ∼ N(0V , σ

2
βIV ), (3.3)

where σ2
α and σ2

β are the prior variances of the regression coefficients. Given a network

configuration matrix W = {wij} for a multivariate binary random variable d =

(d1, . . . , dm)> ∈ {0, 1}m, we denote by d ∼ Ising(a, b,W) an Ising distribution with

a sparse parameter a and a smooth parameter b and the probability mass function

of d is proportional to exp
(
a
∑m

i=1 I[di = 0] + b
∑m

i=1

∑m
j=1 wijI[di = dj]

)
. The prior

specifications for c and γr are

c ∼ Ising(η1, ξ1,F) and γr
iid∼ Ising(η2, ξ2,Lr), for r = 1, . . . , R, (3.4)

where F = {fr′r} with fr′r ∈ R representing the population-level functional connec-

tivity between region r′ and region r and Lr = {lrv′v} with lrv′v ∈ {0, 1} indicating
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whether voxels v′ and v are neighbors in region r. In our case, F can be estimated

separately from the R-fMRI time series or obtained from existing literature. For the

hyper-prior specifications in (3.3) and (3.4), we have

σ2
β ∼ IG(aβ, bβ), ηk ∼ U(aη, bη), and ξk ∼ U(aξ, bξ), for k = 1, 2, (3.5)

where IG(a, b) denotes an inverse gamma distribution with shape a and rate b, and

U(a, b) represents a uniform distribution on region [a, b].

3.2.3 Standard Posterior Computation

In a standard MCMC algorithm for posterior computation of models (3.2)–(3.5), each

parameter in z, c,γ, α and σ2
β can be directly sampled from its full conditional. The

sparse and smooth parameters in the Ising priors, ηk and ξk for k = 1, 2, can be

updated using the auxiliary variable method by Møller et al. (2006). The details of

the MCMC algorithm are provided in Appendix 3.7.1.

In the case of high or ultra-high dimensional data, we suggest a block update of

β. The full conditional of β is

π(β | z,α, c,γ, σ2
β) ∝

R∏
r=1

Vr∏
v=1

φ (βrv/σβ) exp

{
−1

2
‖z− Sα−X {λ ◦ β}‖2

}
, (3.6)

where φ(·) is the standard normal density function and ‖ · ‖ denotes the Euclidean

vector norm. Given λ, the block update entails drawing β1 (the coefficients corre-

sponding to the selected predictors with λ = 1) and β0 (the coefficients corresponding

to the unselected predictors with λ = 0) separately from

β1 ∼ N (µβ1 ,Σβ1) and β0 ∼ N
(
0m0 , σ

2
βIm0

)
, (3.7)
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where Σβ1 =
(
σ−2
β Im1 + X>λXλ

)−1
, µβ1 = ΣβX

>
λ (z− Sα), m1 = ‖λ‖2, m0 = V −m1,

and Xλ includes the columns of X corresponding to the important voxels defined by

λ. The computational complexity of computing Σβ1 is O(nm2
1). Also, we implement

the rank-one downrate algorithm of Cholesky decomposition on sampling β1 with

an order of O(nm2
1). While m1 changes from one MCMC iteration to another, the

posterior samples of m1 are likely concentrated on values substantially smaller than

V when the true model is sparese, i.e., the number of important voxels is small.

Compared with the single-site Gibbs sampling approach (Goldsmith et al., 2012;

Huang et al., 2013), the block update of β reduces the computational costs and

improves Markov chains mixing and hence is more appealing for high-dimensional

problems where the number of predictors is on the order of thousands. However,

for ultra-high dimensional problems such as imaging data in a standard brain space

with around 200,000 voxels, this algorithm is still very inefficient. To address this

challenge, we propose a novel multiresolution posterior computation approach.

3.3 Multiresolution Approach

The basic steps of our multiresolution approach include first carefully constructing a

sequence of partitions of brain regions from the pre-defined coarsest scale to the finest

scale – the resolution in the observed data – and subsequently defining and fitting a

sequence of auxiliary models for variable selection from the coarsest scale to the finest

scale. The key idea is that the posterior samples on coarse scale variable selection

are used to create a “smart” proposal for the MCMC posterior computation for the

model in the next, finer scale resolution, allowing the MCMC algorithm to explore

the entire sample space for model selection more efficiently.
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3.3.1 Partition and Auxiliary Models

Suppose that we define K resolutions with resolution K being the target resolution in

the observed data. At resolution k, the R brain regions are grouped into G(k) mutually

exclusive partitions with 1 = G(0) < G(1) < G(2) < · · · < G(K) = R and each partition

is a collection of regions based on spatial contiguity or functional connectivity. The

partitions at resolution k are nested within the partitions at resolution k − 1. Let

B(k) = (b
(k)
rg ) be an R × G(k) matrix with b

(k)
rg ∈ {0, 1} indicating whether region r

is located in partition g at resolution k, and B̃(k) = (̃b
(k)
gg′) be a G(k) × G(k−1) matrix

with b̃
(k)
gg′ ∈ {0, 1} indicating whether partition g at resolution k is located in partition

g′ at resolution k − 1. We have B(k)1G(k) = 1R due to mutually exclusive partitions

at each resolution and B(k−1) = B(k)B̃(k) due to nested partitions across resolutions.

In addition, B(K) = IR, B̃(1) = 1G(1) , B̃(k)1G(k−1) = 1G(k) and {B(k)}Kk=1 is uniquely

determined by {B̃(k)}Kk=1. Figure 3.1 provides a detailed illustration on the partitions

of a two-dimensional rectangle area in one slice of brain at three resolutions. Of note,

B(k) defines the partitions at resolution k.

In a similar fashion, at resolution k, we divide region r with a total of Vr voxels into

H
(k)
r mutually exclusive subregions with 1 = H

(0)
r < H

(1)
r < H

(2)
r < . . . < H

(K)
r = Vr

and each subregion is a collection of contiguous voxels. The subregions in resolution

k are nested within the subregions in resolution k − 1. Let A
(k)
r = (a

(k)
rvh) denote a

Vr×H(k)
r matrix with a

(k)
rvh ∈ {0, 1} indicating whether voxel v is located in subregion h

at resolution k and let Ã
(k)
r = (ã

(k)
rhh′) denote anH

(k)
r ×H(k−1)

r matrix with ã
(k)
rhh′ ∈ {0, 1}

indicating whether subregion h at resolution k is located in subregion h′ at resolution

k − 1. Similarly, we have A
(k)
r 1

H
(k)
r

= 1Vr due to mutually exclusive subregions at

each resolution and A
(k−1)
r = A

(k)
r Ã

(k)
r due to subregions nested across resolutions.

In addition, A
(K)
r = IVr , Ã

(1)
r = 1

H
(1)
r

, Ã
(k)
r 1

H
(k−1)
r

= 1
H

(k)
r

, and {A(k)
r }Kk=1 is uniquely

determined by {Ã(k)
r }Kk=1. It follows that A(k) = diag{A(k)

1 , . . . ,A
(k)
R } defines the
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subregions at resolution k.

Given the partitions defined by B(k) and the subregions defined A(k) which could

be specified in light of the brain anotomy, we define an auxiliary probit model for

variable selection at resolution k, denoted as M(k), which is given by

y = I[z(k) ≥ 0n], z(k) = Sα(k) + X
{
λ(k) ◦ β(k)

}
+ ε(k), (3.8)

where z(k),α(k),β(k) and ε(k) have the same definitions and dimensions as z,α,β and

ε in the target model (3.2). The binary indictor vector λ(k) = (MB(k)c(k))◦(A(k)γ(k)),

where c(k) = (c
(k)
g ) is of dimension G(k)×1 with c

(k)
g denoting the selection indicator for

partition g; γ
(k)
r = (γ

(k)
rh ) is of dimension H

(k)
r × 1 with γ

(k)
rh representing the selection

indicator for subregion h; and γ(k) = (γ
(k)>

1 , . . . ,γ
(k)>

R )> is of dimension H(k)×1 with

H(k) =
∑R

r=1 H
(k)
r . By this definition, M(K) is equivalent to model (3.2) including

the prior specifications Section 3.2.2. The main difference betweenM(k) (k < K) and

M(K) is that variable selection is conducted at the partition level and the subregion

level inM(k) as opposed to the region level and the voxel level inM(K), reflected by

the definitions of the selection indicators in M(k), i.e. {c(k),γ(k)}.

The dimensions of c(k) and γ(k) increase as the resolution k increases and eventually

become equal to the dimensions of c and γ in the target model (3.2). In other

words, the large number of latent indicators c and γ in the target model are replaced

by a smaller number of latent indicators c(k),γ(k) (k < K) in the auxiliary model

M(k) particularly in the initial resolutions. In ultra-high dimensional problems, this

dimension reduction can be very significant and is exploited in our proposed sampling

schemes in Sections 3.3.2 and 3.3.3 to allow for efficient posterior computations for

the sequence of auxiliary models M(k) (k < K) and the target model M(K).

To complete the specification for auxiliary models M(k) (k < K), we assign the
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same priors to α(k) and β(k) in (3.8) as α and β in (3.2) and denote by σ
2(k)
β the prior

variance for β(K−1), and we assign i.i.d Bernoulli priors with a probability 0.5 to c(k)

and γ(k). Under such prior specifications, it can be shown that the posterior inclusion

probability for each voxel or region is always positive in each auxiliary model.
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Figure 3.1: An example of multiresolution partitions and variable selection. Suppose a rectangle
area in one axial slice cutting through brain that contains 64 regions (R = 64) is of interest. We
consider three resolutions (K = 3). Three images in the right, middle, and left panels are labeled
with the partition indices for the nested partitions at resolutions 3, 2 and 1 respectively. At the
highest resolution (Resolution 3) there are 64 partitions (G(3) = 64) with each partition including
only one region and the partition indices are the same as the region indices, thus B(3) = I64.
Resolution 2 has 16 partitions (G(2) = 16) where each partition g contains four regions indexed

by 4g − 3, 4g − 2, 4g − 1 and 4g, for g = 1, . . . , 16, indicating B̃(3) = B(2) = I16 ⊗ 14, where ⊗ is
Kronecker product. Resolution 1 has four partitions (G(1) = 4) where each partition g′ contains
four finer-scale partitions at resolution 2 indexed by 4g′−3, 4g′−2, 4g′−1 and 4g′, for g′ = 1, . . . , 4,
resulting in B̃(2) = I4 ⊗ 14; thus it contains 16 regions indexed by 16g′ − 15, 16g′ − 14, . . . , 16g′, for
g′ = 1, . . . , 16, leading to B(1) = I4 ⊗ 116. Suppose the true important voxels (yellow) are located
in regions 39, 40 and 41. Valid posterior inferences for models at different resolutions produce high
posterior inclusion probabilities of imaging biomarkers in the corresponding partitions (red) at all
resolutions.

3.3.2 Sequential Resolution Sampling

In the analysis of ultra-high dimensional imaging data, it is reasonable to assume

that the signals (i.e., important voxels and regions) are sparse and the vast majority

of voxels in the brain are not associated with the outcome. Typically, many of the

unimportant voxels/regions, providing little information on prediction of disease risk,

are included in the model at each iteration of a standard MCMC algorithm such
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as the one in Section 3.2.3, resulting in potentially intractable posterior computa-

tions. To construct an efficient and computationally feasible MCMC algorithm, one

solution is to specify a good proposal distribution in the Metropolis–Hastings (M-H)

step for voxel/region selection. Ideally, this proposal distribution should possess two

properties:

P1: It assigns large probabilities for excluding unimportant voxels and including

important voxels, which substantially reduces the number of selected voxels

and simplifies computations in most MCMC iterations.

P2: It still assigns a positive probability for including each voxel in the model,

ensuring that the simulated Markov chain is able to explore the entire sample

space of the voxel selection.

In other words, we want to construct a “smart” proposal distribution that concen-

trates on the true model with sparse signals. To this end, we resort to the multires-

olution auxiliary models M(k) defined in Section 3.3.1, based on which we develop

a sequential resolution sampling (SRS) procedure. Specifically, we conduct the pos-

terior computations for each auxiliary model M(k) sequentially from resolution 1 to

resolution K. At resolution 1, we use the standard MCMC algorithm for posterior

simulation on modelM(1). At resolution k, for k = 2, . . . , K, we propose a resolution

dependent MCMC algorithm for posterior simulation on model M(k), referred to as

the SRS–MCMC. The essential step is an M-H step for sampling selection indicators

{c(k),γ(k)}, where the “smart” proposal distribution is constructed using the poste-

rior distribution (samples) of {c(k−1),γ(k−1)} in M(k−1) at resolution k − 1. Of note,

based on the SRS procedure, at resolution K, we can obtain posterior samples on

voxel/region selection at the finest scale, i.e. our target resolution.
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The SRS procedure is illustrated in Figures 3.1 and 3.2. Figure 3.1 presents an

example where the location information of the important voxels is passed along from

resolution 1 to resolution 3, becoming more and more precise. Figure 3.2 provides

the details on the SRS procedure. Specifically, to construct the “smart” proposal

distributions in the M-H step of the SRS–MCMC, we first introduce auxiliary variable

selection indicators c̃(k−1) and γ̃(k−1) in M(k) at resolution k,

c̃
(k−1)
g′ = max

{
c(k)
g : b̃

(k)
gg′ = 1

}
, and γ̃

(k−1)
rh′ = max

{
γ

(k)
rh : ã

(k)
rhh′ = 1

}
, (3.9)

for g′ = 1, . . . , G(k−1), r = 1, . . . , R and h′ = 1, . . . , H
(k−1)
r . {c̃(k−1), γ̃(k−1)} are

completely determined by {c(k),γ(k)} and can be considered as a “coarse-scale sum-

mary” of the variable selection indicators in M(k). In particular, {c̃(k−1), γ̃(k−1)}

in M(k) are of the same dimension and structure as the variable selection indica-

tors {c(k−1),γ(k−1)} in M(k−1). The key idea is to use the posterior distribution of

{c(k−1),γ(k−1)} in M(k−1) as the proposal distribution for {c̃(k−1), γ̃(k−1)} in M(k),

which subsequently is served as a guide to the construction of the proposal distribu-

tion for {c(k),γ(k)} in M(k).

The posterior distribution of the parameters and latent quantities in M(k) is

π(z(k),α(k),β(k), σ
2(k)
β , c(k),γ(k), c̃(k−1), γ̃(k−1) | S,X,y)

= π(z(k),α(k),β(k), σ
2(k)
β , c(k),γ(k) | S,X,y)π(c̃(k−1) | c(k))π(γ̃(k−1) | γ(k)),(3.10)

where π(c̃(k−1) | c(k)) and π(γ̃(k−1) | γ(k)) are equal to 1 if (3.9) holds and 0 oth-

erwise. In the SRS–MCMC, the updating scheme for {z(k),α(k),β(k), σ
2(k)
β } given

all other parameters is the same as the Gibbs sampling scheme for {z,α,β, σ2
β}

for model (3.2); see Appendix 3.7.2 for details. However, the updating scheme for

{c(k),γ(k), c̃(k−1), γ̃(k−1)} is more elaborate and is described in detail as follows.
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In the M-H step of the SRS-MCMC, we introduce the subscripts “∗” and “o” to

represent the proposed and current values of the corresponding parameters, respec-

tively. Denote by “•” all other parameters {z(k),α(k),β(k)} and data {S,X,y}. A

proposal distribution for updating {c(k)
o ,γ

(k)
o , c̃

(k−1)
o , γ̃

(k−1)
o } is given by

T[{c(k)
o ,γ(k)

o , c̃(k−1)
o , γ̃(k−1)

o } → {c(k)
∗ ,γ(k)

∗ , c̃(k−1)
∗ , γ̃(k−1)

∗ } | •]

= H(c(k)
∗ ,γ(k)

∗ | c(k)
o ,γ(k)

o , c̃(k−1)
o , γ̃(k−1)

o , c̃(k−1)
∗ , γ̃(k−1)

∗ )Pk−1(c̃(k−1)
∗ , γ̃(k−1)

∗ | S,X,y).(3.11)

where Pk−1(· | ·), specifying the sampling scheme for {c̃(k−1)
∗ , γ̃

(k−1)
∗ }, is the posterior

distribution of the variable selection indicators {c(k−1),γ(k−1)} in the model M(k−1)

at resolution k− 1 and H(· | ·) specifies the sampling scheme for {c(k)
∗ ,γ

(k)
∗ } given the

sampled {c̃(k−1)
∗ , γ̃

(k−1)
∗ } from Pk−1(· | ·) and the current state of the Markov chain,

i.e., {c(k)
o ,γ

(k)
o , c̃

(k−1)
o , γ̃

(k−1)
o }. The sampling scheme based on decomposition (3.11) is

illustrated in Figure 3.2b. Of note, in the SRS procedure Pk−1(· | ·) is approximated

by the posterior samples of {c(k−1),γ(k−1)} in the model M(k−1) at resolution k − 1.

One choice of H(· | ·) that has performed well in our numerical studies is

H(c(k)
∗ ,γ(k)

∗ | c(k)
o ,γ(k)

o , c̃(k−1)
o , γ̃(k−1)

o , c̃(k−1)
∗ , γ̃(k−1)

∗ )

=
∏
b̃
(k)

gg′=1

h(c(k)
g,∗ | c(k)

g,o, c̃
(k−1)
g′,∗ , c̃

(k−1)
g′,o , νc)

R∏
r=1

∏
ã
(k)

rhh′=1

h(γ
(k)
rh,∗ | γ

(k)
rh,o, γ

(k−1)
rh′,∗ , γ

(k−1)
rh′,o , νγ),(3.12)

where h(· | ·) is a probability mass function for binary random variable defined as

h(x | y, a, b, ν) = (1− a)δ0(x) + a[(1− b)νx(1− ν)1−x + bδy(x)], for x ∈ {0, 1}

with ν ∈ (0, 1) and a, b ∈ {0, 1}. The indicator δy(x) = 1 if x = y and δy(x) = 0

otherwise. Figure 3.2c presents a binary tree to illustrate the sampling scheme for c
(k)
g,∗

based on the h(· | ·) function and the sampling scheme for γ
(k)
rh,∗ according to h(· | ·)
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is along the same lines.

Resolution 1

Standard MCMC

P1(· | S,X,y)

Resolution 2

SRS–MCMC

P2(· | S,X,y)

· · · · · ·

· · · · · ·

· · · · · ·

Resolution K

SRS–MCMC

PK(· | S,X,y)

(a) Sequential resolution sampling procedure

c̃
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o c
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o γ
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∗ c

(k)
∗ γ

(k)
∗

data {X,y} and the model at resolution k − 1
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Figure 3.2: Illustration of sequential resolution sampling. (a) Initially, we utilize the standard
MCMC algorithm to produce the posterior distribution of the selection indicators in M(1) at reso-
lution 1, i.e. P1(· | S,X,y), which is then used to guide the construction of the proposal function
in the SRS-MCMC algorithm to produce P2(· | S,X,y) for M(2) at resolution 2. This procedure
is performed sequentially until resolution K to generate the posterior distribution PK(· | S,X,y)
for our target model M(K). (b) Decomposition of the proposal function T(· → · | •) (red) includes

two steps for drawing a proposed sample. Step 1 (green): draw {c̃(k−1)∗ , γ̃
(k−1)
∗ } from the poste-

rior distribution Pk−1(· | ·) under the model M(k−1) at resolution k − 1. Step 2 (blue): sample

{c(k−1)∗ ,γ
(k−1)
∗ } given {c̃(k−1)∗ , γ̃

(k−1)
∗ } in step 1 and the current state of the Markov chain using

H(· | ·). (c) A binary tree represents the sampling scheme for c
(k)
g,∗ based on the probability mass

function h(· | ·). It is determined by c̃
(k)
g′,∗ and c̃

(k)
g′,o for g′ satisfying b̃

(k)
gg′ = 1, and c

(k)
g,o.

In addition to the above M-H step, we suggest a moving step with full conditional

updates for each element of {c(k),γ(k)} given {c̃(k−1), γ̃(k−1)} and all other param-

eters using Gibbs sampling. In this step, we only need to update the selection for

the fine-scale partitions/subregions that are nested within the selected coarse-scale

partitions/subregions. Thus, this step does not require extensive computations and

it improves the mixing of the entire Markov chain. To recapitulate, the updating

scheme in SRS-MCMC is as follows.
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Updating Scheme for {c(k),γ(k)} in SRS-MCMC

M-H Step: Set {c(k)
o ,γ

(k)
o , c̃

(k−1)
o , γ̃

(k−1)
o } = {c(k),γ(k), c̃(k−1), γ̃(k−1)}

− Draw (c̃
(k−1)
∗ , γ̃

(k−1)
∗ ) ∼ Pk−1(· | S,X,y);

− Draw (c
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∗ ,γ
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∗ ) ∼ H(· | c(k)

o ,γ
(k)
o , c̃

(k−1)
o , γ̃

(k−1)
o , c̃

(k−1)
∗ , γ̃

(k−1)
∗ );

− Draw r ∼ U[0, 1]. Set {c(k),γ(k), c̃(k−1), γ̃(k−1)} = {c(k)
∗ ,γ

(k)
∗ , c̃

(k−1)
∗ , γ̃

(k−1)
∗ } if

r < R, where
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.

Moving Step: Full conditional updates of {c(k)
g , γ

(k)
rh } via Gibbs sampling.

− For g′ with c̃
(k−1)
g′ = 1 and g with b̃

(k)
gg′ = 1,

− if c
(k)
[−g] 6= 0G(k)−1 then draw c

(k)
g ∼ π(· | c(k)

[−g],γ
(k), •), else set c

(k)
g = 1;

− For r with b
(k)
rg = 1, h′ with γ̃

(k−1)
rh′ = 1 and h with ã

(k)
rhh′ = 1,

if γ
(k)
r[−h] 6= 0

H
(k)
r −1

, then draw γ
(k)
rh ∼ π(· | γ(k)

r[−h],γ
(k)
[−r], c

(k), •), else set

γ
(k)
rh = 1.

where c
(k)
[−g] = (c

(k)
1 , . . . , c

(k)
g−1, c

(k)
g+1, . . . , c

(k)

G(k))
>, γ

(k)
r[−h] = (γ

(k)
r,1 , . . . , γ

(k)
r,h−1, γ

(k)
r,h+1, . . . γ

(k)

r,H(k))
>,

and γ
(k)
[−r] = (γ

(k)>
1 , . . . ,γ

(k)>
r−1 ,γ

(k)>
r+1 , . . . ,γ

(k)>
R )>.

3.3.3 Fast Sequential Resolution Sampling

The SRS procedure in Section 3.3.2 provides a general framework for posterior com-

putations for variable selection in a ultra-high dimensional feature space. The choice

of auxiliary models over resolutions and the corresponding MCMC algorithms can be

flexible as long as they reduce the total computational cost and improve the mixing

of the Markov chains. As an example, we consider two modifications that can poten-
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tially further improve computation efficiency: 1) Gaussian quadrature approximation

in the auxiliary modelsM(k) (k < K) that further reduces the number of parameters

in the models and 2) a joint updating scheme for the regression coefficients and the

selection indicators inM(k). Combining both, we develop a fast sequential resolution

sampling (fastSRS) algorithm.

Gaussian Quadrature Approximation in Auxiliary Models The element-

wise representation of auxiliary model (3.8) at resolution k is given by

z
(k)
i = α

(k)
0 +

p∑
j=1

α
(k)
j sij +

G(k)∑
g=1

c(k)
g

R∑
r=1

b(k)
rg

H
(k)
r∑

h=1

(
γ

(k)
rh

Vr∑
v=1

a
(k)
rvhβ

(k)
rv xirv

)
+ ε

(k)
i .(3.13)

To introduce an approximation to summation
∑Vr

v=1 a
(k)
rvhβ

(k)
rv xirv, we first define two

integrable functions β
(k)
r (·) and xir(·) defined on B with constraints that β

(k)
r (sv) = β

(k)
rv

and x
(k)
ir (sv) = xirv, where the coordinate sv ∈ B represents the location of voxel v.

Denote by S(k)
rh the compact domain of subregion h in region r. Let δs represent the

volume of a voxel in the brain. Based on the definition of the Riemann integral, we

have

∫
S(k)rh

β(k)
r (s)xir(s)ds ≈ δs

Vr∑
v=1

a
(k)
rvhβ

(k)
rv xirv. (3.14)

When δs is small, this approximation is accurate. If both β
(k)
r (·) and xir(·) are smooth

over B, we can further approximate the integral using Gaussian quadrature on a set

of sparse grids given by

∫
S(k)rh

β(k)
r (s)xir(s)ds ≈

∑
v∈Q(k)

rh

w
(k)
rvhβ

(k)
rv xirv = δs

Vr∑
v=1

q
(k)
rvhβ

(k)
rv xirv, (3.15)
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where w
(k)
rvh is the weight and Q(k)

rh is a set of voxel indices of the sparse grid points

on S(k)
rh based on the Smolyak’s construction rule (Gerstner and Griebel, 1998). The

term q
(k)
rvh = w

(k)
rvh/δs if v ∈ Q(k)

rh , q
(k)
rvh = 0, otherwise. Combining (3.14) and (3.15),

we can replace a
(k)
rvh by q

(k)
rvh in (3.13) to construct auxiliary models M(k) based on

Gaussian quadrature approximation.

Of note, we only need to conduct such approximation at lower resolutions to re-

duce computation when each subregion contains a large number of voxels. With∑R
r=1

∑H
(k)
r

h=1 Q
(k)
rh approaching V as the resolution increases, the saving in computa-

tional costs vanishes and it is recommended to use the original model (3.8) for higher

resolutions. Since the auxiliary models are only used to guide the construction of

the proposal distributions and our target model M(K) remains unchanged, such an

approximation is still valid.

Joint Updating Scheme We introduce an auxiliary variable defined as

β̃(k)
rv = γ

(k)
rh β

(k)
rv for r = 1, . . . , R, and v, h with a

(k)
rvh = 1. (3.16)

Define β̃
(k)
rh = (β̃

(k)
rv , a

(k)
rvh = 1)>, β̃

(k)
r = (β̃

(k)>
r1 , . . . , β̃

(k)>
rH

(k)
r

)> and β̃(k) = (β̃
(k)>
1 , . . . , β̃

(k)>
R )>.

It follows that β̃(k) is completely determined by γ(k) and β(k) and the joint posterior

distribution of all parameters is given by

π(z(k),α(k),β(k), σ
2(k)
β , c(k),γ(k), c̃(k−1), γ̃(k−1), β̃(k) | S,X,y)

= π(z(k),α(k),β(k), σ
2(k)
β , c(k),γ(k) | S,X,y)π(c̃(k−1) | c(k))π(β̃(k) | γ(k),β(k))π(γ̃(k−1) | γ(k)),(3.17)

where π(β̃(k) | γ(k),β(k)) = 1 if (3.16) holds and π(β̃(k) | γ(k),β(k)) = 0 otherwise.

Furthermore, for r = 1, . . . , R and h = 1, . . . , H
(k)
r , π(β

(k)
rh | γ

(k)
rh = 1,S,X,y) =

π(β̃
(k)
rh | γ

(k)
rh = 1,S,X,y) and π(β

(k)
rh | γ

(k)
rh = 0,S,X,y) = π(β

(k)
rh ), implying that
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the marginal posterior distribution of β(k) is determined by the marginal posterior

distribution of {β̃(k),γ(k)} and its prior. Thus, we integrate out β(k) in (3.17) and

focus on π(z(k),α(k), σ
2(k)
β , c(k),γ(k), c̃(k−1), γ̃(k−1), β̃(k) | S,X,y), leading to the target

distribution of the fastSRS-MCMC algorithm. Compared to the SRS-MCMC algo-

rithm, the updating scheme for {z(k),α(k), σ
2(k)
β } is the same but the sampling scheme

for c(k),γ(k), c̃(k−1), γ̃(k−1) and β̃(k) needs to be modified. For an M-H step, we choose

the following proposal distribution

T̃[{β̃(k)
o , c(k)

o ,γ(k)
o , c̃(k−1)

o , γ̃(k−1)
o } → {β̃(k)

∗ , c(k)
∗ ,γ(k)

∗ , c̃(k−1)
∗ , γ̃(k−1)

∗ } | •]

= T[{c(k)
o ,γ(k)

o , c̃(k−1)
o , γ̃(k−1)

o } → {c(k)
∗ ,γ(k)

∗ , c̃(k−1)
∗ , γ̃(k−1)

∗ } | •] H̃(β̃(k)
∗ | β̃(k)

o ,γ(k)
∗ ,γ(k)

o ),(3.18)

where T[· → · | •] is the proposal distribution in SRS-MCMC in Section 3.3.2. The

function H̃(· | ·) is decomposed as

H̃(β̃(k)
∗ | β̃(k)

o ,γ(k)
∗ ,γ(k)

o ) =
R∏
r=1

H
(k)
r∏

h=1

h̃(β̃
(k)
rh∗ | β̃

(k)
rh,o, γ

(k)
rh,∗, γ

(k)
rh,o, σ

2(k)
β ), (3.19)

Here, h̃(· | ·) is a probability density function for a d-dimensional random vector

h̃(u | v, a, b, σ2) = (1− a)δ0(u) + a[(1− b)φ(u; 0, σ2I) + bδv(u)],

where u,v ∈ Rd (d > 1), a, b ∈ {0, 1}, σ2 > 0, and φ(·;µ,Σ) denotes a normal density

function with mean µ and covariance Σ. Figure 3.3 illustrates the sampling scheme

for β̃
(k)
rh,∗ based on h̃(· | ·), which depends on β

(k)
rh,o, γ

(k)
rh,∗, γ

(k)
rh,o and σ

2(k)
β .

Again, in addition to the M-H step, we suggest a moving step to improve the

mixing by updating {c(k),γ(k), β̃(k)} given c̃(k−1) and γ̃(k−1). The moving step for

c(k) is the same as the SRS-MCMC in Section 3.3.2. For {β̃(k),γ(k)}, we consider a

block updating scheme. For h′ with γ̃
(k−1)
rh′ = 1, denote by β̃

(k)
rh′ = (β̃

(k)>
rh : ã

(k)
rhh′ = 1)>
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Figure 3.3: A binary tree to illustrate the sampling scheme of β̃
(k)
rh,∗ via h̃(· | ·).

and γ
(k)
rh′ = (γ

(k)>
rh : ã

(k)
rhh′ = 1)> the collection of the regression coefficients and the

collection of the selection indicators in M(k) for subregion h′ at resolution k − 1,

respectively. Similarly, define β̃
(k)
rh′1 = (β̃

(k)>
rh : γ

(k)
rh = 1, ã

(k)
rhh′ = 1)> and β̃

(k)
rh′0 =

(β̃
(k)>
rh : γ

(k)
rh = 0, ã

(k)
rhh′ = 1)>. The updating scheme for {β̃(k)

rh′ ,γ
(k)
rh′} is based on the

following decomposition of the joint full conditional distributions:

π(β̃
(k)
rh′ ,γ

(k)
rh′ | •) = π(γ

(k)
rh′ | •)π(β̃

(k)
rh′1 | γ

(k)
rh′ , •)π(β̃

(k)
rh′0 | γ

(k)
rh′ , •), (3.20)

The details of (3.20) are provided in Appendix 3.7.3.

The updating scheme for the fastSRS-MCMC is summarized as follows.

Updating Scheme for {c(k),γ(k), β̃(k)} in fastSRS-MCMC

M-H Step: Set {c(k)
o ,γ

(k)
o , c̃

(k−1)
o , γ̃

(k−1)
o , β̃

(k)
o } = {c(k),γ(k), c̃(k−1), γ̃(k−1), β̃(k)}

− Draw (c
(k)
∗ ,γ

(k)
∗ , c̃
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(k)
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o )→ · | •];
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(k)
∗ ∼ H̃(· | β̃(k)
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(k)
∗ ,γ

(k)
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−Draw r ∼ U[0, 1]. Set {c(k),γ(k), c̃(k−1), γ̃(k−1), β̃(k−1)} = {c(k)
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(k)
∗ , c̃
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(k−1)
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if r < R, where
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o , c̃
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o | •)
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.
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Moving Step: Full conditional updates of {c(k)
g ,γ

(k)
rh′ , β̃

(k)
rh′} via Gibbs sampling.

− For g′ with c̃
(k−1)
g′ = 1 and g with b̃

(k)
gg′ = 1,

− if c
(k)
[−g] 6= 0G(k)−1 then draw c

(k)
g ∼ π(· | c(k)

[−g],γ
(k), •), else set c

(k)
g = 1;

− For r with b
(k)
rg = 1, h′ with γ̃

(k−1)
rh′ = 1,

Draw {β̃(k)
rh′ ,γ

(k)
rh′} based on (3.20).

3.4 Application

We analyze the motivating ABIDE study introduced in Section 1.1.2 using the SRS

procedure. Our goal is to identify important voxel-wise image biomarkers that are

predictive of the ASD risk. After removing missing observations, our analysis includes

831 subjects aggregated from 14 different sites. For each subject, the voxel-wise

fALFF values are computed for each of 185,405 voxels over 116 regions in the brain.

In addition, three clinical variables, age at scan, sex and IQ, are included in the

analysis. Since we observe no substantial difference in the fALFF values and the

number of ASDs/TDs between different study sites, site is not included in our analysis,

consistent with the previous analysis of the data (Di Martino et al., 2013).

A region-wise functional connectivity network is constructed based on the correla-

tions between the regional R-fMRI time series that are summarized from voxel-wise

R-fMRI time series using a single value decomposition approach (Bowman et al.,

2012). The neighborhood of each voxel is defined as the set of adjacent voxels from

six different directions (top, bottom, front, back, left, and right); voxels are connected

to their neighbors in the spatial dependence network. These two levels of structural

information are incorporated using the Ising priors for selection indicators c and γ.

For other prior specifications, we set σ2
α = 20 leading to a fairly flat prior on α and

set aβ = 5 and bβ = 10 leading to a less-informative prior on σ2
β; we specify the range
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of the uniform distribution priors for the sparse parameters in the two levels of Ising

model as [aη, bη] = [−5, 5] and for the smooth parameters as [aξ, bξ] = [0, 5].

In light of the brain anatomy, brain partitions and corresponding subregions at

eleven resolutions are used to construct auxiliary multiresolution models,
{
M(k) : k = 1, . . . , 11

}
.

We utilize the fastSRS-MCMC in Section 3.3.3 to conduct the posterior inference. For

each resolution, we run five MCMC chains with random initial values for 2,000 itera-

tions with 1,000 burn-in. The MCMC convergence is assessed by Gelman and Rubin’s

method (Gelman and Rubin, 1992). For all resolutions, the potential scale reduction

factors (PSRF) for the log-likelihood over 1,000 iterations after burn-in are less than

1.1, suggesting convergence.

Similar to other works in imaging data analysis, we assume that the true signals are

sparse. After obtaining the posterior samples at the highest resolution, the threshold

for variable selection is set to 99%, 98% or 97% quantiles of the posterior inclusion

probabilities (ranging from 0.000 to 0.380) for all voxels, equivalent to selecting top

1%, 2% and 3% voxels. The selection results based on different thresholds are sum-

marized in Table 4.1. For all thresholds, the selected voxels are mainly located in two

regions: the right postcentral gyrus (PoCG-R) and the right inferior frontal gyrus (tri-

angular part) (IFGtriang-R). With a threshold of 97%, our approach selects 2381 and

1424 voxels in the PoCG-R and the IFGtriang-R, respectively. Most of them are spa-

tially clustered and contiguous within a region, as shown in Figure 3.4a. The PoCG is

known as the center of the brain for sending and receiving the message and its volume

has been shown significantly larger in autism patients compared with controls (Rojas

et al., 2006). The IFGtriang is well known for its dominant roles in the cognitive con-

trol of language and memory (Foundas et al., 1996; Badre and Wagner, 2007). More

recently, several recent task-related fMRI studies (Just and Pelphrey, 2013) showed

that autism patients exhibited reduced brain activities in the IFGtriang-R. Our re-
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sults further suggest that the resting state brain activities (reflected by the fALFF) in

the PoCG-R and the IFGTriang-R along with other four regions are highly predictive

of the ASD risk. Figure 3.4b presents the posterior means of the regression coeffi-

cients for the selected voxels, interestingly, showing both large positive values (red

voxels) and large negative values (blue voxels) in the selected regions, especially the

IFGtriang-R. Di Martino et al. (2013) reported a negative association of the fALFF in

a similar region (the right middle frontal gyrus) with the ASD, suggesting that there

may be an anti-correlation brain network located in this region that is predictive of

the ASD risk. The posterior mean with 95% credible interval of regression coefficients

for age, sex and IQ are respectively −0.132 (−0.580, 0.352), −0.956 (−2.048,−0.004)

and −1.504 (−1.848,−1.133), indicating that age is not significantly associated with

the ASD, while patients with low IQ and males have a relatively high ASD risk.

These findings have the potential to help neuroscientists and epidemiologists better

understand the autism etiology.

To evaluate the goodness of fit of our model, we perform a posterior predictive

assessment (Gelman et al., 1996) based on the χ2 discrepancy and obtain a posterior

predictive p-value of 0.850, indicating a good fit. To assess the performance on

the ASD risk prediction, we use a ten-fold cross-validation approach based on the

important sampling method (Vehtari and Lampinen, 2002). Table 4.1 shows that

both sensitivity and specificity are greater than 0.9 for all three thresholds, indicating

a strong predictive power of our method.

As a comparison, we also analyze the ABIDE data using an alternative approach,

namely, SIS+LASSO, implemented by R packages SIS and gl1ce. This approach

first identifies a set of potentially important voxels via the SIS method (Fan and

Song, 2010) for a probit regression model and then applies Lasso (Tibshirani, 1996)

to the same model using only the voxels selected in the first step. This approach se-
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Threshold Selected AAL Regions Nvoxel P-Sens P-Spec

99% IFGtriang-R, PoCG-R, DCG-R, 1,779 0.938 0.918

98% IFGtriang-R, PoCG-R, DCG-R, 3,494 0.927 0.921

97%
IFGtriang-R, PoCG-R, DCG-R,

5,160 0.901 0.932
SFGmed-R, SMA-R, HES-R

Table 3.1: Selection results and prediction accuracy for the ASD risk. The six selected AAL regions
are the right postcentral gyrus (PoCG-R), the right inferior frontal gyrus triangular part (IFGtriang-
R), the right median cingulate and paracingulate gyri (DCG-R), the right superior frontal gyrus
(SFGmed-R), the supplementary motor area (SMA-R) and the right heschl gyrus (HES-R). Nvoxel

is the total number of selected voxels. P-Sens and P-Spec represent sensitivity and specificity in
prediction of the ASD risk via a ten-fold cross validation

(a) Important voxels selected using different thresholds (red 99%, red+blue 98%, red+blue+yellow
97%)

(b) Posterior mean of regression coefficients for important voxels selected using a threshold of 97%

Figure 3.4: Five real brain Sagittal (right) slices (X = 40, 44, 50, 54, 60 mm) cutting through two
regions: IFGtriang-R and PoCG-R.
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lects only 99 important voxels, most of which are not located in the regions identified

by our method. More notably, when evaluated via a ten-fold cross-validation, the

SIS+LASSO approach achieves a considerably lower sensitivity (0.705) and specifici-

ty (0.701) in prediction compared to our method, suggesting the superiority of our

method in the prediction of the ASD risk.

3.5 Simulation Studies

We conduct three simulations to illustrate the variable selection performance of the

proposed methods. In the first simulation, we consider a relatively low dimensional

data set (1600 voxels) to compare the standard method and proposed approach (SRS

and fastSRS) in terms of the selection accuracy, the computational time and the

effective sample size (ESS). The standard method is implemented by the standard

posterior computation (SPC) discussed Section 3.2.3. In the second one, in light of the

original ABIDE data set, we generate 50 Monte Carlo (MC) data sets with number of

signals smaller than sample size to compare the proposed method to the widely used

frequentist variable selection method SIS+LASSO (as illustrated in Section 3.4). In

the third one, we directly mimic the ABIDE study to illustrate the variable selection

performance of the proposed method under the ultra high-dimensional case with

number of signals larger than the sample size. All the hyper-prior settings directly

follow those in Section 3.4. Similarly, all the MCMC simulations are performed

under multiple chains with random initials. The convergence is confirmed by the GR

method, where the PSRF is close to 1 for each of the simulations. All algorithms are

implemented in Matlab. All the simulations are run on a PC with 3.4 GHz CPU,

8GB Memory and Windows System.
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3.5.1 Simulation 1

We focus on a 40 × 40 two-dimensional square with 1,600 voxels (Figure 4.6). It

consists of four regions (regions 1 – 4) where each of them contains 400 voxels, i.e.

R = 4, Vr = 400, for r = 1, . . . , 4. We set n = 100 and jointly simulate imaging

biomarkers {xirv}Rr=1
Vr
v=1 from a zero mean Gaussian process with an exponential kernel

(variance 0.5, correlation 36). We further set 35 and 50 voxels in regions 1 and 4 to

general the true signals (red voxels in Figure 4.6) with the coefficients drawn from

Gaussian processes with mean 5 and −6 (variance 0.2, correlation parameter 50). For

each of three algorithms, we run 3,000 iterations with 1,000 burn-in.

The variable selection sensitivity and specificity under different thresholds, the area

under the curve (AUC), the effective computing time, the resolution related time and

the ESS per minute for each algorithm are presented in Table 4.2. Based on the

results, with a similar performance of feature selection accuracy, the proposed algo-

rithms (SRS and fastSRS) require a substantial lower computational cost compared

to the standard method (SPC); and such a difference is expected to become more

remarkable with the number of variables increased. In addition, as shown in Table

4.2, the fastSRS algorithm achieves an around 54 times and 680 times larger ESS per

minute than the algorithms SRS and SPC respectively. This is consistent with our

expectation that the fastSRS substantially improves the mixing of the Markov chains

compared with the other two methods.

The comparable feature selection performance of the three algorithms indicates

that our multiresolution approach is a useful tool to improve computational efficien-

cy and speed up the MCMC convergence. When the data dimension is very high,

the standard MCMC algorithm suffers a heavy or even intractable computation. In

contrast, both the SRS and the fastSRS are still computationally feasible and have a

good performance on feature selection, while the fastSRS provides a more appealing
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Figure 3.5: Simulation 1 design: two-dimensional square with four regions labeled with texts.
Important voxels (red) are located in regions 1 and 4.

ESS. Thus, in the following simulation study, similar to Section ??, we only conduct

posterior inference using the fastSRS.

Threshold SPC SRS fastSRS

Sensitivity/Specificity

95% 0.659/0.984 0.625/0.982 0.671/0.985
90% 0.847/0.941 0.753/0.936 0.847/0.941
85% 0.941/0.889 0.953/0.895 0.965/0.895
80% 0.977/0.838 1.000/0.846 1.000/0.844

AUC 0.973 0.970 0.979
Effective Time (mins)1 13.100 1.600 2.600

Resolution related Time (mins)2 0.000 5.033 7.233
ESS/min 0.669 8.381 454.004

1 The computational time for resolution K (last resolution) for the SRS and the fastSRS.
2 The computational time for resolutions 1, . . . ,K − 1 for the SRS and the fastSRS.

Table 3.2: Variable selection performance by three different algorithms in Simulation 1

3.5.2 Simulation 2

We consider an ultra-high dimensional case in simulation 2 and compare the proposed

fastSRS method with SIS+LASSO approach in terms of variable selection accuracy.

Specifically, we generated 50 MC data sets with the imaging biomarkers obtained

by permuting the original ABIDE data (X) over regions, i.e. X∗irv = Xζirrv for
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r = 1, . . . , R and v = 1, . . . , Vr with X∗irv the observed data form a particular data

set and (ζ1r, . . . , ζnr) is one permutation of (1, . . . , n). In such way, for each data set,

we could keep the correlations of fALFF values between voxels within a particular

region. We set the true signals located in two regions (IFGtriang-R and PoCG-R) as

detected in Section 3.4 with 371 and 241 important voxels that are spatially contigu-

ous. The voxel-wise regression coefficients are drawn from N(7, 0.1) and N(5, 0.1) for

the important voxels in the IFGtriang-R and the PoCG-R respectively, and are set

to be zero for all other voxels. The fastSRS-MCMC is run 2,000 iterations with 1,000

burn-in. Similarly, SIS and LASSO are implemented by R packages SIS and gl1ce.

Method Threshold TP (sd) TN (sd) Sensitivity Specificity

fastSRS
99% 586 (19.535) 183,528 (19.421) 0.958 0.993
98% 612 (0.000) 181,701 (4.945) 1.000 0.983
97% 612 (0.000) 180,002 (212.430) 1.000 0.974

SIS+LASSO 65 (5.857) 184,777 (4.840) 0.106 1.000

Table 3.3: Variable selection performance over 50 MC data sets by the fastSRS algorithm
and SIS+LASSO approach in Simulation 2

The variable selection performance under different methods are summarized in

Table 3.4 based on true positive (TP), true negative (TN), sensitivity and specificity.

Here, without pre-specifying the number of selected variables for SIS, the SIS function

in the SIS package results in an extremely small number of selections (around 30),

which is far from the truth. To improve the performance of the SIS+LASSO, we

specify the number of selected variable in SIS to be 700 for all the 5 data sets,

which is larger than the true number of signals and conduct LASSO based on these

700 screening variables. Based on Table 3.4, our methods show a substantial better

performance than SIS+LASSO approach in terms of variable selection accuracy.
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Threshold Sensitivity Specificity
99% 0.719 0.998
98% 0.962 0.990
97% 1.000 0.982

Table 3.4: Variable selection accuracy for
different thresholds using fastSRS-MCMC
in simulation 3

Figure 3.6: Receiver operating characteris-
tic (ROC) curve for the variable selection us-
ing fastSRS-MCMC in simulation 3

3.5.3 Simulation 3

In this part of simulation, we directly adopt the voxel-wise fALFF values over the

whole brain (116 regions and 185,405 voxels) from the ABIDE data for all 831 subjects

containing the region-wise functional connectivity and voxel-wise spatial correlation

information. To create sparsity as the case in practice, similar to simulation 2, the

true signals are set to be located in the two regions (IFGtriang-R and PoCG-R) as

detected in Section 3.4, respectively containing 852 and 1,090 important voxels which

are spatially contiguous. We still let the voxel-wise regression coefficients drawn from

N(7, 0.1) and N(5, 0.1) for the two pieces of signals, and are set to be zero for the

noninformative part. The fastSRS-MCMC is run 2,000 iterations with 1,000 burn-in.

Of note, in this set of simulation, the number of signals are larger than the sample

size as compared to simulation 2.

The variable selection accuracy under three thresholds are summarized in Table

3.4. The results suggest that our method achieves an extremely high variable selection

accuracy: both sensitivity and specificity are close to one for thresholds of 97% and

98%. Also, we obtain a very good receiver operating characteristic (ROC) curve by
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varying the threshold between 1% and 99% as shown in Figure 3.6. Such satisfactory

performance not only shows the feasibility of the proposed method under an ultra

high-dimensional case, but also verifies the selection results in data application to

certain extent with a consideration of the mimic settings in the current simulation.

The computational time for the whole posterior simulation is 2.77 hours, which is

extremely remarkable under such an ultra high-dimensionality.

3.6 Discussion

In this chapter, we present a novel Bayesian multiresolution approach for variable

selection in a ultra-high dimensional feature space. Our approach is computationally

feasible and efficient and it can incorporate both spatial information and functional

connectivity information into feature selection, leading to biologically more inter-

pretable results and improved performance. As shown in our numerical studies, it

works especially well when the true important voxels are sparse and spatially clus-

tered.

The current multiresolution approach is developed based on the commonly used

latent indicator approach in a Bayesian modeling framework. The bottleneck of it-

s posterior computation comes from the inefficiency in sampling multi-level latent

selection indicators. One direction of extending our work that will further reduce

computational time is to develop parallel computing algorithms for jointly updating

high dimensional latent indicators and implement them using the popular General-

Purpose computation on Graphics Process Unit (GPGPU) technique (Suchard et al.,

2010). Also, the Bayesian shrinkage approach as a different strategy for variable s-

election has also attracted much attention recently (Park and Casella, 2008; Hans,

2009; Li and Lin, 2010; Hans, 2011; Bhattacharya et al., 2012). This method is close-
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ly related to penalized likelihood approaches and it imposes a “weak” sparsity prior

assumption that ensures a high probability on the model parameters being close to

zero rather than a positive probability of exactly being zero. It avoids introducing

latent indictors in the model and the aforementioned complication in posterior com-

putations. Thus, another potentially interesting extension of our work is to develop

a multiresolution variable selection procedure using Bayesian shrinkage methods.

3.7 Appendix

3.7.1 Standard Posterior Computation Algorithm

We provide the details of the standard posterior computation algorithm in Section

3.2.3 which is implemented via a Gibbs sampler. The joint posterior distribution of

all the parameters given the data is

π(z,β,α, c,γ, σ2
β, η1, η2, ξ1, ξ2 | S,X,y) (3.21)

∝ π(y | z)π(z | β,α, c,γ,S,X)π(β | σ2
β)π(α)π(c | η1, ξ1)

[
R∏
r=1

π(γr | η2, ξ2)

]
π(σ2

β)π(η)π(ξ)

where η = (η1, η2) and ξ = (ξ1, ξ2).

In the Gibbs sampler, the sampling schemes are as follows.

Sampling scheme for z: for i = 1, . . . , n, draw

[zi | β,α, c,γ, yi,S,X ] ∼ yiN[0,+∞)(µ̃i, 1) + (1− yi)N(−∞,0)(µ̃i, 1), (3.22)

where NA(µ,Σ) denote a normal distribution with mean µ and covariance Σ truncated

on region A, and µ̃i = Siα−Xi {λ ◦ β}, where Si,Xi are row i for S,X.
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Sampling scheme for α: draw

[α | β, z, c,γ,S,X] ∼ N(µ̃α, Σ̃α), (3.23)

where Σ̃α = (S′S + σ−2
α Ip)

−1 and µ̃α = Σ̃α (z−X {λ ◦ β}) S.

Sampling scheme for σ2
β: draw

[σ2
β | β] ∼ IG(aβ + V/2, bβ + (1/2)

R∑
r=1

Vr∑
v=1

β2
rv). (3.24)

Sampling scheme for c: for r = 1, . . . , R, the full conditional of cr is given by

π(cr | β, z,α, c−r,γ,S,X)

∝ exp

(
η1

R∑
r=1

cr + ξ1

R∑
r′=1

fr′rI[cr′ = cr]

)
n∏
i=1

φ (zi − Siα−Xi {λ ◦ β}) ,(3.25)

where c−r = (cr′ , r
′ 6= r).

Sampling scheme for γ: for r = 1, . . . , R and v = 1, . . . , Vr, the full conditional

of γrv is given by

π(γrv | β, z,α, c,γ−rv,S,X)

∝ exp

(
η2

Vr∑
v=1

γrv + ξ2

Vr∑
v′=1

lrv′vI[γrv′ = γrv]

)
n∏
i=1

φ (zi − Siα−Xi {λ ◦ β}) ,(3.26)

where γ−rv = (γst, s 6= r or t 6= v).

Sampling scheme for η and ξ: the parameters in Ising priors are updated using

the auxiliary variable method by Møller et al. (2006).
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Sampling scheme for β: based on the full conditional (3.6), update β via a block

update by (3.7).

3.7.2 SRS-MCMC Algorithm

The updating scheme for z(k),α(k),β(k), σ
2(k)
β , η and ξ follows the standard posterior

computation algorithm in Appendix 3.7.1.

Sampling scheme for c(k) and γ(k):

• when k = 1, for g = 1, . . . , G(k); r = 1, . . . , R;h = 1, . . . , H
(k)
r , the full condi-

tionals of c
(k)
g and γ

(k)
rh are

π(c(k)
g | β(k), z(k),α(k), c

(k)
−g ,γ

(k),S,X) ∝
n∏
i=1

φ
(
z

(k)
i − Siα

(k) −Xi

{
λ(k) ◦ β(k)

})
;

(3.27)

π(γ
(k)
rh | β

(k), z(k),α(k), c(k),γ
(k)
r[−h],γ

(k)
[−r],S,X) ∝

n∏
i=1

φ
(
z

(k)
i − Siα

(k) −Xi

{
λ(k) ◦ β(k)

})
;

(3.28)

• when 1 < k < K, the sampling scheme is stated in Section 3.3.2 with the full

conditional updates of c
(k)
g and γ

(k)
rh in the moving step following (3.27) and

(3.28).

• when k = K, the sampling scheme is stated in Section 3.3.2 with the full

conditional updates of c
(k)
g and γ

(k)
rh in the moving step following (3.25) and

(3.26).
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3.7.3 fastSRS-MCMC Algorithm

The updating scheme for z(k),α(k), σ
2(k)
β , η and ξ follows the standard posterior

computation algorithm in Appendix 3.7.1.

Sampling scheme for c(k),γ(k), β̃(k):

• when k = 1, the full conditional of c(k) follows (3.27). For the full conditional

of (γ(k), β̃(k)) in (3.20), π(γ
(k)
rh′ | •) =

∫
π(β̃

(k)
rh′ ,γ

(k)
rh′ | •)dβ̃

(k)
rh′ ∝ φ(0;µ

(k)
rh′ ,Σ

(k)
rh′),

π(β̃
(k)
rh′1 | γ

(k)
rh′ , •) = φ(β̃

(k)
rh′1;µ

(k)
rh′ ,Σ

(k)
rh′) and π(β̃

(k)
rh′0 | γ

(k)
rh′ , •) = δ0(β̃

(k)
rh′0) with

Σ
(k)
rh′ =

(
σ
−2(k)
β I + X>rh′Xrh′

)−1

; µ
(k)
rh′ = Σ

(k)
rh′X

>
rh′

(
z(k) − Sα(k)

)
, (3.29)

where Xrh′ = (xrv, a
(k)
rvh = 1; γ

(k)
rh = 1; ã

(k)
rhh′ = 1).

• when 1 < k < K, the sampling scheme is stated in Section 3.3.3.

• when k = K, the sampling scheme is stated in Section 3.3.3 with the full

conditional updates in the moving step following of c
(k)
g following (3.25), and

(γ(k), β̃(k)) following (3.20) with an alternative π(γ
(k)
rh′ | •) = π(γrv | •) ∝

exp
(
η2

∑Vr
v=1 γrv + ξ2

∑Vr
v′=1 lrv′vI[γrv′ = γrv]

)
φ(0;µ

(k)
rh′ ,Σ

(k)
rh′).
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Chapter 4

A Bayesian nonparametric mixture

model for selecting genes and gene

sub-networks
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4.1 Introduction

In high-throughput data analysis, selecting informative features from tens of thou-

sands of measured features is a difficult problem. Incorporating pathway or network

information into the analysis has been a promising approach, and the network could

contain information such as protein interaction, transcriptional regulation, enzymatic

reaction, and signal transduction etc (Cerami et al., 2011).

With the primary goal to identify either the important pathways or the genes

that are strongly associated with clinical outcomes of interest, some methods are de-

veloped using the available network topology with incorporating the gene-pathway

relationships or gene network information into a parametric/regression model. For

example, there are a series of works (Wei and Li, 2007, 2008; Wei and Pan, 2010) that

model gene-network using a Discrete- or Gaussian-Markov random field (DMRF or

GMRF). Li and Li (2008) and Pan et al. (2010) used the gene network to build penal-

ties in a regression model for gene pathway selection. Ma et al. (2010) incorporated

the gene co-expression network in identification of caner prognosis markers using a

survival model. Li and Zhang (2010) and Stingo et al. (2011) developed Bayesian

linear regression models using MRF priors or Ising priors that capture the dependent

structure of transcription factors or the gene network/pathway. Recently, Jacob et al.

(2012) proposed a powerful graph-structured two-sample test to detect differentially

expressed genes.

Although regression models are widely used for the selection of the gene subnet-

work that is associated with an outcome variable, in some situations, the question of

interest is to study the expressional behavior of genes, e.g. periodicity, without an

outcome variable. In other situations, the experimental design is more complex than

simple case-control. For example, some gene expression studies involve longitudinal/-

83



functional measurements for which the parametric models (Leng and Müller, 2006;

Zhou et al., 2010; Breeze et al., 2011) or the multivariate testing procedure (Jacob

et al., 2012) may not be applicable without a major modification. A straightforward

approach to this problem is to perform large-scale simultaneous hypothesis testing

on gene behavior. A set of genes can be selected based on the testing statistics or

p-values, where a correct choice of a null distribution for those correlated testing

statistics (Efron, 2004, 2010) should be used. However, this approach ignores the

gene network information that is useful to identify the subnetwork of genes with the

particular expressional behavior. Due to the diverse behavior of neighboring genes on

the network, it is generally believed that genes in close proximity on a network are

likely to have joint effects on biological/medical outcomes or have similar expressional

behavior. This motivates the needs of analyzing the large scale testing statistics or

statistical estimates incorporating the network information. Another motivation is

that a linear regression or parametric model of gene expression levels might not be

suitable in some cases. For example, we may be interested in finding subnetworks of

genes that have nonlinear relations with an outcome without specifying a parametric

form. To address these problems, a simple framework can be adopted. First, a certain

statistic is computed for each feature without considering the network structure. The

statistic can come from a test of nonlinear association, a test of periodic behavior,

or a certain regression model. After obtaining the feature-level statistics, a mixture

model that takes into account the network structure can be used to select interesting

features/subnetworks.

To mitigate problems of the current methods, we propose a Bayesian nonpara-

metric mixture model for large scale statistics incorporating network information.

Specifically, the gene specific statistics are assumed to fall into two classes: “unselect-

ed” and “selected”, corresponding to whether the statistics are generated from a null
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distribution, with prior probabilities p0 and p1 = 1−p0. A statistic has density either

f0(r) or f1(r) depending on its class, where f0(r) represents “unselected” density and

f1(r) represents “selected” density. Thus, without knowing the classes, the statistics

follow a mixture distribution:

p0f0(r) + p1f1(r). (4.1)

As suggested by Efron (2010), it is reasonable to assume statistics are normally dis-

tributed. This justifies the use of a Dirichlet process mixture (DPM) of normal

distributions to estimate both f0(x) and f1(x). Note that different from Wei and Pan

(2012), our model does not assume that f0 and f1 directly take the form of a normal

density function. The DPM model has been discussed extensively and widely used in

Bayesian statistics (Antoniak, 1974; Escobar, 1994; Escobar and West, 1995; Müller

and Quintana, 2004; Dunson, 2010), due to the availability of efficient computational

techniques (Neal, 2000; Ishwaran and James, 2001; Wang and Dunson, 2011) and the

nonparametric nature with good performance on density estimation. The DPM has

been extended to make inference for differential gene expression (Do et al., 2005) and

estimate positive false discovery rates (Tang et al., 2007) but without incorporating

the network information. In our model, we assign an Ising prior (Li and Zhang, 2010)

to class labels of all genes according to the dependent structure of the network. As dis-

cussed previously, the class label only takes two values: “selected” and “unselected”,

while a DPM model is equivalent to an infinity mixture model (Neal, 2000; Ishwaran

and James, 2001, 2002), based on which we develop a posterior computation algorith-

m. Our method selects genes and gene subnetworks automatically during the model

fitting. To reduce the computational cost, we propose two fast computation algo-

rithms that approximate the posterior distribution either using finite mixture models

or guided by a standard DPM model fitting, for which we develop a hierarchical or-
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dered distribution clustering (HODC) algorithm. It essentially performs clustering

on ordered density functions. The fast computation algorithms can be tailored from

any routine algorithms for the standard DPM model and combined with the HODC

algorithm. Also, we suggest two approaches to choosing the hyper-parameters in the

model.

4.2 The Model

Let n be the total number of genes in our analysis. For i = 1, . . . , n, let ri denote a

statistic for gene i. It represents either a functional behavior or the association with

a clinical outcome. For the association analysis, it is common to have an outcome Y

and a gene expression profile Xi for each gene, i. As an alternative to a regression

model, we can produce statistics for each gene. i.e. ri = s(Xi, Y ), where s(·, ·)

can be a covariance function or other dependence test statistics. For a large scale

testing problem, we usually obtain p-values, p1, . . . , pn, which can be transformed to

normally distributed statistics, i.e. ri = −Φ−1(pi), where Φ(r) denotes the cumulative

distribution function for the standard normal distribution. This transformation is a

monotone transformation and it ensures the “selected” genes have a larger value of

ri. Let zi be the class label for gene selection, where zi = 1 if gene i is selected,

zi = 0 is unselected. For i, j = 1, . . . , n, let cij denote the gene network configuration,

where cij = 1 if gene i and j are connected, cij = 0 otherwise. Write r = (r1, . . . , rn)′,

z = (z1, . . . , zn)′ and C = (cij). In our model, r and C are observed data, z is a latent

vector of our primary interest.
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4.2.1 A network based DPM model for gene selection

As suggested by Efron (2010), we assume ri’s are normally distributed. Let N(µ, σ2)

denote a normal distribution with mean µ and standard deviation σ. Let DP(G,α)

represent a Dirichlet process with base measure G and scalar precision α. Given the

class label z, we consider the following DPM model: for i = 1, 2, . . . , n and k = 0, 1,

[ri | µi, σ2
i ] ∼ N(µi, σ

2
i ), (4.2)

[(µi, σ
2
i ) | zi = k,Gk ] ∼ Gk,

Gk ∼ DP [G0k, τk],

where µi and σ2
i are latent mean and variance parameters for each ri. The random

measure Gk and the base measure G0k are both defined on (−∞,+∞) × (0,+∞).

We specify G0k = N(γk, ξ
2
k) × IG(αk, βk), where IG(α, β) denotes an inverse gamma

distribution with shape α and scale β. Note that given latent parameters µi, σ
2
i , the

statistic ri is conditionally independent of zi. By integrating out (µi, σ
2
i ), we build

the conditional density of ri given zi = k in (4.1), i.e.

fk(r) =

∫
π(r | θ)dGk(θ), π(r | θ) =

1

σ
φ

(
r − µ
σ

)
, (4.3)

where θ = (µ, σ2) and φ(r) is the standard Gausian density function. This provides

a Bayesian nonparametric construction of fk(r).

To incorporate the network structure, we assign a weighted Ising prior to z:

π(z | π,%,ω,C) ∝ exp

[
n∑
i=1

(
ω̃i log(πzi) + %zi

∑
j 6=i

ωjcijI[zi = zj]

)]
, (4.4)

where π = (π0, π1) with 0 < π1 = 1 − π0 < 1, % = (%0, %1) with %k > 0 for k = 0, 1,
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ω = (ω1, . . . , ωn)′ with ωi > 0 for i = 1, . . . , n, and ω̃i =
∑n

j=1 cijωj/
∑n

j=1 cij. The

indicator function I[A] = 1 if event A is true, I[A] = 0, otherwise. The parameter π

controls the sparsity of z, and the parameter % characterizes the smoothness of z over

the network. For each gene i, a weight ωi is introduced to control the information

inflow to gene i from other connected genes, which can adjust the prior distribution

of zi based on biologically meaningful knowledge, if any. The term ω̃i is introduced to

balance the contribution from π and % to the prior probability of z. When % = (0, 0)

and ω = (1, . . . , 1)′, the latent class labels zi’s are independent identically distributed

as Bernoulli with parameter π1.

4.2.2 Model Representations

As discussed by Neal (2000), the DPM models can also be obtained by taking the limit

as the number of components goes to infinity. With a similar fashion, we construct

an equivalent model representation of (4.2) for efficient posterior computations. Let

Discrete(a,b) denote a discrete distribution taking values in a = (a1, . . . , aL)′ with

probability b = (b1, . . . , bL)′, i.e. if ξ ∼ Discrete(a,b), then Pr(ξ = al) = bl, for

l = 1, . . . , L. Let Dirichlet(α) denote a Dirichlet distribution with parameter α.

Let Lk, for k = 0, 1, represent the number of components for density fk(r). We

define the index sets a0 = (−L0 + 1,−L0 + 2, . . . , 0) and a1 = (1, 2, . . . , L1). Let q0 =

(q−L0+1, q−L0+2, . . . , q0) and q1 = (q1, . . . , qL1) with
∑

g∈ak
qg = 1. Let 1n = (1, . . . , 1︸ ︷︷ ︸

n

).

Then model (4.2) is equivalent to the following model, as L0 →∞ and L1 →∞,

[ri | gi, θ̃ ]
i.i.d.∼ N(µ̃gi , σ̃

2
gi

), (4.5)

[gi | zi = k,qk ]
i.i.d.∼ Discrete(ak,qk),

θ̃g ∼ G0k, for g ∈ ak,

qk ∼ Dirichlet(τk1Lk
/Lk),
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where θ̃ = {θ̃g}g∈a0∪a1 and θ̃g = (µ̃g, σ̃
2
g). The index gi indicates the latent class

associated with each data point ri. Write g = (g1, . . . , gn) and z = (z1, . . . , zn). For

each class, g, the parameter θ̃c determines the distribution of ri from that class. The

conditional distributions of gi and θ̃gi given zi = 0 and zi = 1 are different. Based on

model (4.5), the conditional density of fk(r) in (4.3) becomes

fk(r) =
∑
g∈ak

qg
σ̃g
φ

(
r − µ̃g
σ̃g

)
. (4.6)

This further implies that given L0 and L1, the marginal distribution of ri also has a

form of finite mixture normals. i.e.,

π(r) =
1∑

k=0

pkfk(r) =

L1∑
g=−L0+1

q̃g
σ̃g
φ

(
r − µ̃g
σ̃g

)
, (4.7)

where q̃g = p0qg if g ≤ 0, q̃g = p1qg, otherwise.

Model (4.5) is not identifiable for zi in the sense that if we switch the gene se-

lection class label “0” and “1”, the marginal distribution of ri (4.7) is unchanged.

Without loss of generality, we assume that the “selected gene” should be more likely

to have large statistics compared to the “unselected genes”. Thus, we impose an

order restriction on the parameter θ̃, for g = −L0 + 1, . . . , L1,

µ̃g < µ̃g+1. (4.8)

This also sorts out the non-identifiability of parameter θ̃. In many cases, the func-

tional behaviors of some genes are strongly evident from prior biological knowledge.

Whether or not those genes are selected is not necessarily determined by other genes

in the network. Those genes are likely to be the hubs of the networks, thus the deter-

mination of the status of these genes might help select genes in their neighborhood.
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This suggests that it is reasonable to pre-select a small amount of genes that can be

surely elictied by biologists from their experience and knowledge. We refer to them

as “surely selected” (SS) genes. These genes are usually associated with very large

statistics. We evaluate the performance via the simulation studies in Section 4.4.2.

4.2.3 Posterior Computation

In model (4.5), given L0 and L1, we have the full conditional distribution of gi = g

and zi = k given g−i = (g1, . . . , gi−1, gi+1, . . . gn), z−i = (z1, . . . , zi−1, zi+1, . . . , zn) and

data r:

π(gi = g, zi = k | g−i, z−i, r, θ̃) (4.9)

∝ 1

σ̃g
φ

(
ri − µ̃g
σ̃g

)
n−ig + τk/Lk
τk +mk − 1

exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)
,

where mk =
∑n

i=1 I[zi = k] is the number of genes in class k and n−ig =
∑

j 6=i I[gj = g]

represents the number of gj for j 6= i that are equal to g.

As L0 →∞ and L1 →∞, if (g, k) = (gj, zj) for some j 6= i, then

π(gi = g, zi = k | g−i, z−i, r, θ̃) (4.10)

∝ n−ig
τk +mk − 1

exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)
1

σ̃g
φ

(
ri − µ̃g
σ̃g

)
,

and

π(gi 6= gj, zi 6= zj, for all j 6= i | g−i, z−i, r, θ̃) (4.11)

∝ τk
τk +mk − 1

exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)

×Γ(αk + 1/2)βαk
k√

2πΓ(αk)ξk

∫
φ

(
µ− γk
ξk

)(
βk +

1

2
(ri − µ)2

)−(αk+1/2)

dµ,
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where the integral can be efficiently computed by the Gaussian quadrature method

in practice.

The full conditionals of µ̃g and σ̃2
g , for g ∈ {g1, . . . , gn} are given by,

[µ̃g | σ̃2
g , r ] ∼ N

(
σ̃2
gγk + ξ2

k

∑
i:gi=g

ri

σ̃2
g + ξ2

kng
,

σ̃2
gξ

2
k

σ̃2
g + ξ2

kng

)
, (4.12)

[σ̃2
g | µ̃g, r ] ∼ IG

(
αk +

ng
2
, βk +

1

2

∑
i:gi=g

(ri − µ̃g)2

)
, (4.13)

where k = I[g > 0] and ng =
∑n

i=1 I[gi = g]. We summarize this algorithm in

Appendix 4.6.2 and refer to it as NET-DPM-1. It is computationally intensive when

n is very large. To mitigate this problem, we propose two fast algorithms to fit finite

mixture models (FMM) with appropriate choices of the number of components.

4.2.4 Fast Computation Algorithms

FMM Approximation

When L1 and L0 fit the data well, we can accurately approximate the infinite mixture

model (4.2) by the FMM (4.5). Given a fixed L0 and L1, it is straightforward to per-

form posterior computation for model (4.5) based on (4.9). We refer to this algorithm

as NET-DPM-2 (see Appendix 4.6.2 for details). This algorithm does not change the

dimension of θ̃ over iterations. In this sense, it simplifies the computation. Also, in

order to keep computation efficient, we search for smaller values of L0 and L1 which

fit the data well. This can be achieved under the guidance of a DPM density fitting

for which we introduce an algorithm in the next section.
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Hierarchical Ordered Density Clustering

Without using the network information, a DPM model fitting on data r provides

an approximation to the marginal density (4.7). It generates posterior samples for

mixture densities, where the mean number of components should be close to L0 +L1.

Let us focus on one sample. Suppose L0 + L1 is equal to the number of components

in this sample. To further obtain an estimate of L0 and L1 for this sample, we

need to partition the L0 + L1 components into two classes. Thus, we propose an

algorithm to cluster a set of ordered densities. We call it hierarchical ordered density

clustering (HODC). Here, the density order is determined by the mean location of

that density. For example, a set of Gaussian density functions are sorted according

to their mean parameters. Similar to the classical hierarchical clustering analysis, we

define a distance metric of density functions:

d(f, f ′) =

∫ +∞

−∞
[f(x)− f ′(x)]2dx, (4.14)

where f and f ′ are two univariate density functions. Let P = {(µ̂g, σ̂2
g , p̂g)}

L0+L1
g=1

denote parameters for L0 +L1 Gaussian densities, where µ̂g < µ̂g+1, g = 1, 2, . . . , L0 +

L1−1. This is the input data to the HODC algorithm totally consisting of L0 +L1−2

steps. At the m step, there are L0 + L1 − m clusters of densities and let s
(m)
l , for

l = 1, . . . , L0 + L1 −m, denote the density indices in cluster l. For simple, we define

φ̃(r; s,P) =
∑
g∈s

p̂g
σ̂g
φ

(
r − µ̂g
σ̂g

)/∑
g∈s

p̂g, (4.15)

which represents a mixture of Gaussian densities, where the components indexed by

s are a subset of {φ[(r − µ̂g)/σ̂g]/σ̂g}L0+L1
g=1 .

HODC:
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Input: Parameters for a mixture of Gaussian densities, i.e, P .

Initialization: Set m = 0 and s
(0)
l = {l}, for l = 1, 2, . . . , L0 + L1;

Repeat the following steps until m = L0 + L1 − 2:

Step 1: Find

l(m) = arg min
l

d
(
φ̃(·; s(m)

l ,P), φ̃(·; s(m)
l+1 ,P)

)
.

Step 2: For l = 1, 2, . . . , L0 + L1 −m− 1, set

s
(m+1)
l =


s

(m)
l If l < l(m),

s
(m)
l ∪ s

(m)
l+1 If l = l(m),

s
(m)
l+1 If l > l(m).

Step 3: Set m = m+ 1.

Output: {s(m)
l }

L0+L1−m
l=1 for m = 1, 2, . . . , L0 + L1 − 2.

Fig. 4.1 illustrates the HODC algorithm. The algorithm stops when m = L0+L1−

2, where the ordered density components are partitionned into two classes indexed

by s
(m)
1 and s

(m)
2 . This suggests that the number of indices in s

(m)
k+1, denoted by |s(m)

k+1|,

is an estimate for Lk in model (4.5). By running the HODC, we can obtain one

Lk estimate for each posterior sample generated from a DPM fitting. We take the

average of Lk estimates over all the posterior samples as the input of NET-DPM-

2. The HODC also provides an approximation to fk(r) in (4.6), i.e. φ̃(r; s
(m)
k+1,P).

This implies that we can further simplify the computation with the algorithm in the

following section.
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Figure 4.1: An illustration of the HODC algorithm for six density components: the
HODC starts with clustering densities 1 and 2 as a mixture density labeled as 7,
since the “distance” between 1 and 2 is shorter than all other adjacent density pairs.
Then the HODC computes the “distance” between densities 3 and 7, densities 3 and
4, . . . , to proceed the clustering. Following this procedure, the HODC ends up with
clustering densities 1,2,3 as a mixture density (labeled as 8) and 4,5,6 as another
mixture density (labeled as 10).

FMM guided by a DPM model fitting

From a DPM model fitting, we obtain V posterior samples of the parameters for

the marginal density of r. We denote them as Pv = {(µ̂vg, σ̂2
vg, p̂vg)}

Lv0+Lv1
g=1 , for

v = 1, 2, . . . , V . For each Pv, the HODC algorithm partitions Lv0 + Lv1 components

into two classes, where the class-specific components are indexed by av,0 and av,1.

This leads to V approximations of fk(r), i.e. φ̃(r; av,k,Pv). Given fk(r), our proposed

gene selection model reduces to

[ri | zi = k ]
i.i.d.∼ fk(r), (4.16)

for i = 1, 2, . . . , n and k = 0, 1, and z follows (4.4). To make inference on the posterior

distribution of z by combining all V approximations of fk(r), we consider

π(z | r) ≈ 1

V

V∑
v=1

π
(
z | r, φ̃v

)
, (4.17)
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where φ̃v = {φ̃(r; av,0,Pv), φ̃(r; av,1,Pv)}. For each v, the full conditional of zi is

given by

π(zi = k | z−i, r, φ̃v) (4.18)

∝ φ̃(ri; av,k,Pv) exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)
.

We refer to this algorithm as NET-DPM-3 (see Appendix 4.6.2 for details). It is

extremely fast with a moderate V . Since the marginal density is estimated without

using the network information, it might introduce bias on the distribution of zi and

underestimate the variability of zi. From our experience, those issues do not affect

the selection accuracy much. Some examples are provided in Section 4.4.

4.2.5 The choice of hyper-parameters

To proceed NET-DPMs, we need to specify the hyper-parameters π, % and ω in

(4.4). We assume that ω is pre-specified according to biological information. In this

paper, we choose equal weight, i.e. ω = 1n without incoorporating any biological

prior knowledge. We suggest two approaches to choosing π and %: 1) we assign

hyper-priors on π and % and make posterior inference; 2) for a set of possible choices

of π and %, we employ the Bayesian model averaging. The details are provided in

Appendix 4.6.3.

4.3 Application

To demonstrate the behavior of our method, we apply the proposed method to the

analysis of the Spellman yeast cell cycle microarray dataset (Spellman et al., 1998) as

introduced in Section 1.1.3. There is no outcome variable in the cell-cycle dataset. In

95



this demonstration we focus on the selection of genes with periodic behavior in light

of the network. It is known that such genes show different phase shifts along the cell

cycle and may not be correlated with each other (Yu, 2010). We first perform the

Fisher’s exact G test for periodicity (Wichert et al., 2004) for each gene. We then

transform the p-values to normal quantiles, ri = Φ−1(pi) for gene i. We apply the

fully Bayesian inference (NET-DPM-1), one fast computation approach (NET-DPM-

3) and the standard DPM model fitting (STD-DPM) to this dataset. For the NET-

DPM-1, set τ0 = 10, τ1 = 2; following the results by STD-DPM, set γk = µk, ξ
2
k =

σ2
k, βk = 10, αk = βk/ξ

2
k + 1 with k = 0, 1, where {µk} and {σ2

k} are preliminary

estimations by the STD-DPM. We also conduct a sensitivity analysis for the hyper-

parameters specification (Appendix 4.6.4) to verify the robustness of the proposed

methods. For both methods, the choices of π0 and % for the model averaging algorithm

are (0.75, 0.8, 0.85, 0.9) and (0.5, 1, 5, 10, 15) × (0.5, 1, 5, 10, 15) with restriction %0 <

%1. We run all the algorithms 5,000 iterations with 2,000 burn-in. In this article,

as discussed in Barbieri and Berger (2004), a cutoff 0.5 for the marginal posterior

probability of zi is taken to determine whether gene i is selected or not. The standard

DPM fitting is obtained by an R package: DPpackage and all the proposed algorithms

are implemented in R.

Table 4.1 presents the gene selection results based on three methods in a two-

by-two table format. The number of the “selected” genes by the NET-DPM-1, the

NET-DPM-3 and the STD-DPM are 201, 216 and 114, respectively. The summation

of the diagonal elements of the table comparing the NET-DPM-3 and the NET-DPM-

1 is larger than that for NET-DPM-3 and the STD-DPM. This indicates a stronger

agreement between the two algorithms for NET-DPM.

We focus our discussion on the NET-DPM-3 results. After removing all unselected

genes, as well as selected genes not connected to any other selected genes, 163 of the
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NET-DPM-1 STD-DPM
Selected Unselected Selected Unselected

NET-DPM-3
Selected 170 46 100 116

Unselected 31 1784 14 1801

Table 4.1: The genes selection results by the three methods for the cell cycle dataset

216 genes fall into 11 subnetworks. Of the 11 subnetworks, 10 are very small, each

containing 5 or less genes. The remaining subnetwork contains 135 genes. Considering

the purpose of the study is to find genes with periodic behavior, and most such genes

are functionally related and regulated by the cell cycle process, this result is expected.

We present the subnetwork in Fig. 4.2. Sixty-one of the 135 genes belong to the

mitotic cell cycle process based on gene ontology (Ashburner et al., 2000). The yeast

mitotic cell cycle can be roughly divided into the M phase and the interphase, which

contains S and G phases (Ashburner et al., 2000). We do not further divide the

interphase because the number of genes annotated to its descendant nodes are small.

Among the 135 genes, 45 are annotated to the M phase, and 21 are annotated to the

interphase. By coloring the M phase genes in red, the interphase genes in blue, and

the genes annotated to both phases in green, we see that the majority of the selected

M phase genes are clustered on the subnetwork, while the selected interphase genes

are somewhat scattered with 7 falling into a small but tight cluster.

We show part of the subnetwork detected by the NET-DPM-3 with the corespond-

ing one under the STD-DPM in Fig. 4.3, where the genes that are linked by a dashed

line are connected to other genes that are not shown in the figure. In this subnetwork,

the gene selection results by the NET-DPM-1 agrees with the NET-DPM-3 except

only one gene “YML064” for which the NET-DPM-1 does not select it with prob-

ability 0.478 while the NET-DPM-3 selects it with probability 0.687. This implies

that both methods provide large uncertainty on this gene. Comparing the top-panel

(our method, NET-DPM-3) and bottom-panel (STD-DPM), we observe a number of
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Figure 4.2: A subnetwork composed of genes with periodic behavior. The subnetwork
consists of 135 genes. Red nodes: genes functionally involved in the M-phase of cell cycle;
blue node: genes functionally involved in the interphase of cell cycle; green nodes: genes
functionally involved in both M and interphase of cell cycle.
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genes selected by NET-DPM but not by STD-DPM, and almost all such genes are

cell cycle-related (denoted by a star by the ORF name). Examples include YAL041W

(CLS4), which is required for the establishment and maintenance of polarity and crit-

ical in bud formation (Chenevert et al., 1994; Cherry et al., 2012). The gene only

shows moderate periodic behavior, as denoted by the color of the node. However

due to its links to other genes that have strong periodic behavior, it is selected by

our method as an interesting gene. Another example is YFL008W (SMC1). It is a

subunit of the cohesion complex, which is essential in sister chromatid cohesion of

mitosis and meiosis. The complex is also involved in double-strand DNA break repair

(Strunnikov and Jessberger, 1999; Cherry et al., 2012). Similar to CLS4, the periodic

behavior of SMC1 is not strong enough. It is only selected when the information is

borrowed from linked genes that are functionally related and show strong periodic be-

havior. A number of other cell cycle-related genes in Fig. 4.3 are in similar situation,

e.g. YBR106W, YDR052C, YJL157C, YGL003C, and YMR076C. These examples

clearly show the benefit of utilizing the biological information stored in the network

structure.

To assess the functional relevance of the selected genes globally, we resort to

mapping the genes onto gene ontology biological processes (Ashburner et al., 2000).

We limit our search to the GO Slim terms using the mapper of the Saccharomyces

Genome Database (Cherry et al., 2012). The full result is listed in the supplemen-

tary file. Clearly the over-represented GO Slim terms are centered around cell-cycle.

Here we discuss some GO terms that are non-redundant. Among the 216 selected

genes, 70 (32.4%, compared to 4.5% among all genes) belong to the process response

to DNA damage stimulus (GO:0006974). The term shares a large portion of its

genes with DNA recombination (GO:0006310) and DNA replication (GO:0006260)

processes, which are integral to the cell cycle. Sixty-seven of the selected genes
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(31.0%, compared to 4.7% among all genes) belong to the process mitotic cell cycle

(GO:0000278). Twenty-six of the 67 genes are shared with response to DNA damage

stimulus (GO:0006974). Forty-one of the selected genes (19.0%, compared to 3.0%

among all genes) belong to the process regulation of cell cycle (GO:0051726), among

which 29 also belong to mitotic cell cycle (GO:0000278). Thirty-one of the selected

genes (14.4%, compared to 2.6% among all genes) belong to the process meiotic cell

cycle (GO:0051321), among which 12 are shared with mitotic cell cycle (GO:0000278).

Other major enriched terms include chromatin organization (12.5%, compared to 3.5%

overall), cytoskeleton organization (12.5%, compared to 3.4% overall), regulation of

organelle organization (9.7%, compared to 2.4% overall), and cytokinesis (7.9%, com-

pared to 1.7% overall). These terms clearly show strong relations with the yeast cell

cycle.

4.4 Simulation Studies

In this section, we illustrate the performance of our methods (NET-DPMs) using

simulation studies with various network structures and data settings compared with

other methods. In Simulation 1, we study the similarity between the fully compu-

tational algorithm NET-DPM-1 and two fast computation approaches NET-DPM-x,

x = 2, 3 in terms of gene selection accuracy and uncertainty estimations. Each of

the three algorithms can be used along with one of the two methods for choosing

hyper-parameters: the posterior inference and model averaging. In Simulation 2, we

focus on the gene network selection under a particular network structure and two

types of simulated data to demonstrate the flexibility of the proposed methods. In

both simulations, we compare the NET-DPMs with a STD-DPM combined with the

HODC algorithm without using any network information.
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    Figure 4.3: A portion of the subnetwork shown in Fig. 4.2, together with the immediate
neighbors of the selected genes. Upper panel: NET-DPM-3 results; lower panel: STD-
DPM results. The node labels indicate the gene name; circles and triangles represent
selected?and unselected?genes; colors denote the value of the normal quantiles; a star in
superscript represents the genes functionally annotated to the cell-cycle process. Dash lines
denotes connections to genes not shown in the figure.
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4.4.1 Simulation 1

Figure 4.4: Partial network structure with the dash lines representing connections to other
nodes not shown in the figure.

In this simulation, we investigate the performance of the proposed algorithms using

a simulated dataset that mimic the real data in Section 4.3. We generate a scale-

free network with 1,000 genes based on the rich-get-rich algorithm (Barabási and

Albert, 1999), i.e. n = 1, 000. Two hub genes with 64 and 69 connections to other

genes are in this network; the mean and median edges per gene are 1.998 and 1.

Partial network structure with the two hub genes included is shown in Fig. 4.4. From

the network structure, we generate z from the Ising model (4.4) with the sparsity

parameter π0 = 0.8, smoothness parameters % = (%0, %1) = (5, 10). For i = 1, . . . , n,

in light of the results in Section 4.3, we simulate data ri given zi from the empirical

distributions (Fig. 4.5) of the test statistics for “selected” and “unselected” genes in

the Spellman yeast cell cycle microarray data. As shown in Section 4.3, the NET-

DPM-3 (Scenario 1) and the STD-DPM (Scenario 2) provide different gene selections

results. We set both secenarios as the truth to simulate data.

We apply the NET-DPM-x, for x = 1, 2, 3 and the STD-DPM to the simulated

dataset. To choose the sparsity and smoothness parameters, the NET-DPM-1 and

the NET-DPM-3 are both combined with model averaging, where the possible choic-

es of π0 and % are (0.75, 0.8, 0.85, 0.9) and (1, 5, 10, 20, 50) × (1, 5, 10, 20, 50), while

the NET-DPM-2 is combined with the posterior inference on (π0,%). As for other

hyper-parameters, we specify τk, ξk, γk, βk, αk; k = 0, 1 the same way as in the data
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Figure 4.5: Empirical distributions of “selected” genes (upper panel) and “unse-
lected” genes (lower panel) in the Spellman yeast cell cycle data estimated by the
NET-DPM-3 (right panel) and the STD-DPM (left panel).

application for the NET-DPM-x, for x = 1, 2. With random starting values, each

algorithm is run 10 times under 5,000 iterations with 2,000 burn-in. The selection

performance for each method based on the average of the 10 runs are presented in

Table 4.2. We also compare the posterior probability estimates of z between different

algorithms under Scenario 1 in Fig. 4.6.

STD-DPM NET-DPM-1 NET-DPM-2 NET-DPM-3

Scenario 1
True Positive Rate 0.893 0.973 0.920 0.920
False Positive Rate 0.292 0.001 0.000 0.006
False Discovery Rate 0.801 0.014 0.000 0.080

Scenario 2
True Positive Rate 1.000 1.000 1.000 1.000
False Positive Rate 0.232 0.000 0.000 0.007
False Discovery Rate 0.741 0.000 0.000 0.085

Typical computation time (hrs) 0.100 8.500 2.800 0.150

Table 4.2: Gene selection accuracy in Simulation 1

From Table 4.2, it is clear that the NET-DPMs achieve a better selection perfor-
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Figure 4.6: Marginal posterior probabilities of the class labels of all 1000 genes by the
different methods: NET-DPM-3 vs. NET-DPM-2 (left panel) and NET-DPM-2 vs. NET-
DPM-1 (right panel). The probability values are jittered by tiny random noises for better
presenting.

mance than the STD-DPM method under both scenarios. The STD-DPM without

using the gene network information provides an extreme high false discovery rate

in each scenario. This implies that it is critical to incoorporate the gene network

information to control FDR. Table 4.2 also suggests the NET-DPM-2 and the NET-

DPM-3 approximate the NET-DPM-1 very well in terms of the gene selection accuracy

with a substantial lower computational cost (3.4 GHz CPU, 8GB Memory, Windows

System). In addition, a comparison between the NET-DPM-2 and the NET-DPM-

3 shows that the Bayesian model averaging over hyper-parameters (π0,%) provides

an efficient alternative to the standard Bayesian posterior inference procedure. For

the posterior probability estimates, the NET-DPM-2 and the NET-DPM-3 achieve a

good agreement as shown in the left panel of Fig. 4.6. However, in the right panel of

Fig. 4.6, compared with the NET-DPM-1, the NET-DPM-3 tends to provide larger

probability estimates for the “selected” genes, but smaller probability estimates for

“unselected” genes. This implies the fast computation approaches underestimate the

uncertainty of gene selection.
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4.4.2 Simulation 2

In this simulation, we demonstrate the flexibility of the proposed methods and their

ability to identify subnetworks of interest. We consider a 94 gene network which

consists of a 11-gene subnetwork by design and a 83-gene scale-free network simulated

from the rich-get-rich algorithm. The mean and median edges per node for the whole

network are 2.02 and 1. Fig. 4.7 shows the designed 11-gene subnetwork, where

genes 5, 6 and 11 are connected with three other genes from the 83 gene scale-free

network. Rather than simulating from priors, we directly specify the class label z as

zi = 1 for i ∈ {1, 2, 3, 4, 5, 8, 9, 10}, zi = 0, otherwise. In Fig. 4.7, the blue nodes

represent the “selected” genes and red nodes are “unselected” genes. In addition, all

other genes in the scale-free network (not shown in the figure) are “unselected”. The

gene subnetwork of interest includes genes 1, 2, 3, 4 and 5, which are encircled by

a rectangle frame in Fig. 4.7. The null distribution for “unselected” ri is specified

as a standard normal distribution: [ri | zi = 0 ] ∼ N(0, 1). For the distribution of

“selected” genes, we consider two settings:

Gaussian data: [ri | zi = 1 ] ∼ 0.4× N(3, 1) + 0.6× N(2, 0.5),

Non-Gausian data: [ri | zi = 1 ] ∼ 0.4×G(5, 2) + 0.6×G(6, 3),

where G(a, b) denotes a gamma distribution with shape a and rate b. According to

the above procedure, we simulate 100 datasets for each type of data. We apply the

NET-DPM-3 and the STD-DPM to each dataset. We utilize the model averaging for

choosing hyper-parameters and a set of possible choices are given by {1, 2, 5, 10, 15}

for both %0 and %1, and {0.8, 0.85, 0.9, 0.95} for π0. We run 10,000 iterations with

2,000 burn-in on each dataset for both methods. In each simulated dataset, we pre-

determine one gene as a “sure selected” gene. It has the largest number of connections
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Figure 4.7: Partial simulated gene network structure: the blue nodes represent “selected”
genes and red nodes represent “unselected” genes. Dash lines denotes connections to genes
not shown in the figure. A subnetwork of interest includes nodes 1,2,3,4 and 5 which are
encircled by a rectangle frame.

with the “selected” genes estimated by the STD-DPM model.

Table 4.3 summarizes the selection accuracy of the gene subnetwork based on

the 100 simulated datasets for each type of data. It is clear that the NET-DPM-

3 provides much higher accuracy of the subnetwork selection than the STD-DPM.

The NET-DPM-3 achieves a more than 60% accuracy rate in correctly identifying

the subnetwork with an additional low false positive and false negative occurrences

regardless of the type of data. This verifies the overall better performance of NET-

DPM-3 than the STD-DPM in terms of identifying the gene subnetwork, and the

robustness of the proposed methods on different types of data.

Method
TPR FPR FDR TPR FPR FDR

Gaussian data Non-Gaussian data

NET-DPM-3 63% 11% 15% 60% 5% 8%
STD-DPM 15% 33% 69% 17% 26% 60%

1 For gene subnetwork selection, the TPR is defined as the percentage of exactly selecting the correct
network. The FPR is the percentage of selecting a larger network containing the correct network
and at least one more other gene that has connection to the network. The FDR is the proportion
of falsely selecting a larger network among all the network discoveries (selecting a correct or larger
network).

Table 4.3: The selection accuracy of gene subnetwork1 by TPR (true positive rate), FPR
(false positive rate) and FDR (false discovery rate) in Simulation 2
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4.5 Discussion

In the chapter, we propose a Bayesian nonparametric mixture model for gene/gene

subnetwork selection. Our model extends the standard DPM model incorporating the

gene network information to significantly improve the accuracy of the gene selections

and reduce the false discovery rate. We demonstrate that the proposed method

has the ability to identify the subnetworks of genes and individual genes with a

particular expressional behavior. We also show that it is able to select genes which

are strongly associated with clinical variables. We develop a posterior computation

algorithm along with two fast approximation approaches. The posterior inference

can produce more accurate uncertainty estimates of gene selection, while the fast

computing algorithms can achieve a similar gene selection accuracy. Due to the

nonparametric nature, our method has the flexibility to fit various data types and

has robustness to model assumptions.

When we observe gene expression data along with measurements of a clinical out-

come, we need to create statistics to perform the selection of genes that are strongly

associated with the clinical outcome. The choice of the statistics is crucial to the

performance of our methods. To model the relationship between the clinical outcome

and gene expression data, many literatures suggest a linear regression model (Li and

Li, 2008; Pan et al., 2010; Li and Zhang, 2010; Stingo et al., 2011), from which we

produce testing statistics or coefficient estimates as the candidates. For instance,

the most straightforward approach is to fit simple linear regression on each gene and

use the t statistics as the input data to our methods. However, there is no scien-

tific evidence that the relationship between gene expression profiles and the clinical

outcome should follow a linear regression model. Without making this assumption,

we may test the independence between each gene expression profile and the clinical

outcome via a nonparametric model suggested by Einmahl and Van Keilegom (2008)
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and use our model to fit the testing statistics. Other potential choices of statistics

for the non-linear problems include mutual information statistics (Peng et al., 2005)

and maximal information coefficient (MIC) statistics (Reshef et al., 2011).

4.6 Appendix

4.6.1 Derivations

Derivations of equation (4.9)

π(gi = g, zi = k | g−i, z−i, r, θ̃)

=
π(gi = g, zi = k,g−i, z−i, r, θ̃)

π(g−i, z−i, r, θ̃)
=

π(r | θ̃,g, z)π(g, z)

π(r | θ̃,g−i, z−i)π(g−i, z−i)

=
π(r | θ̃,g, z)

π(r | θ̃,g−i, z−i)
π(g, z | g−i, z−i) ∝ π(ri | θ̃, gi)

π(g | z)

π(g−i | z−i)
π(zi = k | z−i),

where

π(g | z)

π(g−i | z−i)
=

∫
π(g | z,q)π(q0)π(q1)dq∫

π(g−i | z−i,q)π(q0)π(q1)dq

=

∫
qg1 · · · qgi−1

qgqgi+1···qgn
∏1

k′=0 Γ(τk′)Γ(τk′/Lk′)
−Lk′

∏
l∈ak′

q
τk′/Lk′−1
l dq∫

qg1 · · · qgi−1
qgi+1

· · · qgn
∏1

k′=0 Γ(τk′)Γ(τk′/Lk′)−Lk′
∏

l∈ak′
q
τk′/Lk′−1
l dq

=
Γ(τk +mk − 1)

Γ(τk +mk)
· Γ(τk/Lk + nig + 1)

Γ(τk/Lk + nig)
=
nig + τk/Lk
τk +mk − 1

,

with mk =
∑n

i=1 I[zi = k] and nig =
∑

i′ 6=i I[gi′ = g].
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Derivations of equation (4.11)

π(gi 6= gj, zi 6= zj, for all j 6= i | g−i, z−i, r, θ̃)

∝ τk
τk +mk − 1

exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)

×
∫
φ

(
ri − µ
σ

)
1

ξk
φ

(
µ− γk
ξk

)
βαk
k

Γ(αk)σ2(αk+3/2)
exp

(
−βk
σ2

)
dµdσ2

∝ τk
τk +mk − 1

exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)

× βαk
k√

2πΓ(αk)ξk

∫
φ

(
µ− γk
ξk

)
1

σ2(αk+3/2)
exp

(
−
βk + 1

2
(ri − µ)2

σ2

)
dµdσ2

∝ τk
τk +mk − 1

exp

(
ω̃i log(πk) + %k

∑
j 6=i

ωjcijI[zj = k]

)

×Γ(αk + 1/2)βαk
k√

2πΓ(αk)ξk

∫
φ

(
µ− γk
ξk

)(
βk +

1

2
(ri − µ)2

)−(αk+1/2)

dµ.

4.6.2 Algorithms

Let Ξ denote a set of the distinct values in {g1, . . . , gn}. Let di ∈ {1, . . . , n} denote

the rank of ri. Given the pre-specified hyper-parameters (π,%), we have the following

algorithms to simulate the posterior distribution of g and θ̃:

NET-DPM-1

Input: Data r:

Initialization: Set gdi = 0 for di < π0n, and gdi = 1, otherwise. Then Lk = 1

and Ξ = {0, 1}. Set µ̃g =
∑

i:gi=g
ri/ng and σ̃2

g =
∑

i:gi=g
(ri − µ̃g)2/(ng − 1).

Repeat the following steps until the distributions of L0 and L1 get stable:
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Step 1: For i = 1, . . . , n:

Step 1.1: If n−igi = 0, then update Ξ to Ξ/{gi}.

Step 1.2: Update (gi, zi) according to (4.10) and (4.11).

Step 1.3: If (gi, zi) are sampled from (4.11), then

· set gi = (−1)1−zi(Lzi + zi) and Lzi = Lzi + 1;

· draw σ̃2
gi

from IG(αk, βk);

· given σ̃2
gi

, sample µ̃gi from (4.12);

· update Ξ to Ξ ∪ {gi}.

Step 2: For g ∈ Ξ, update µ̃g and σ̃2
g from (4.12) and (4.13), respectively.

Step 3: Sort θ̃g by µ̃g such that µ̃g ≤ µ̃g′ if g < g′, for g, g′ ∈ Ξ; update

(gi, zi) accordingly.

Output: Simulated samples from the posterior distribution of z.

NET-DPM-2

Input: Data r and Lk for k = 0, 1.

Initialization: Draw gi ∼ Discrete[a0∪a1,1/(L0 +L1)]. Set µ̃g =
∑

i:gi=g
ri/ng

and σ̃2
g =

∑
i:gi=g

(ri − µ̃g)2/(ng − 1). Sort θ̃g by µ̃g such that µ̃g < µ̃g+1.

Repeat the following steps until the distributions of g and θ̃ are stable:

Step 1: For i = 1, . . . , n, update gi and zi according to (4.9).

Step 2: For g = −L0 + 1,−L0, . . . , L1, update µ̃g and σ̃2
g from (4.12) and

(4.13), respectively.

Step 3: Sort θ̃g by µ̃g such that µ̃g ≤ µ̃g+1, for g = −L0 + 1, . . . , L1 − 1.

Update (gi, zi) accordingly.
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Output: Samples from the posterior distributions of g and θ̃.

NET-DPM-3

Input: Data r, posterior samples of parameters {Pv}Vv=1 produced by a DPM

fitting and index sets {av,0, av,1}Vv=1 generated by the HODC algorithm.

Initialization: for v = 1, . . . , V and i = 1, . . . , n, draw zvi ∼ Discrete({0, 1}, {0.5, 0.5}).

Write z(i) = (z1i, z2i, . . . , zV i)
′. Sample zi ∼ Discrete(z(i),1V /V ).

Repeat the following steps until the distribution of z is stable: for i = 1, 2, . . . , n,

Step 1: For v = 1, . . . , V , update zvi according to (4.18);

Step 2: Sample zi ∼ Discrete(z(i),1V /V ).

Output: Simulated samples from the posterior distributions of z.

4.6.3 Hyper-parameters

Posterior Inference

We set hyper-priors for π0 and % in (4.4) as:

π0 ∝ U(0, 1), %k ∝ U(0, ∞), for k = 0, 1,

where U(a, b) represents a uniform distribution on (a, b). Note that the priors for %0

and %1 are improper, however, the corresponding posteriors are proper. A Metropolis-

Hastings algorithm can be used to simulate the hyper-parameters (π,%). We define
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an unnormalized density of z:

h(z | π0,%) = exp

[
n∑
i=1

(
ω̃i log(πzi) + %zi

∑
j 6=i

ωjcijI[zi = zj]

)]
, (4.19)

where π1 = 1−π0. Then we have the density (4.4), π(z | π,%) = h(z | π0,%)/Q(π0,%),

where the normalizing constant Q(π0,%) =
∫
h(z | π0,%)dz. To efficiently compute

Q, we rewrite

Q(π0,%) = Ez

[
exp

(
n∑
i=1

%zi
∑
j 6=i

ωjcijI[zi = zj]

)]
, (4.20)

where zi
i.i.d.∼ Discrete({0, 1}, {π0, π1}) for i = 1, . . . , n. To simulate π0 and %, we

consider the following algorithm:

Algorithm for posterior inference on (π0,%):

Input: The number of auxiliary variables V and the proposal variance δ:

Initialization: Draw z̃vi ∼ Discrete({0, 1}, {π0, π1}), for i = 1, 2, . . . , n and

v = 1, 2, . . . , V . Set π0 = 0.8 and % = (0.5, 0.5)′; Compute Q̂(π0,%) according

to

Q̂(π0,%) =
1

V

V∑
v=1

exp

(
n∑
i=1

%z̃vi
∑
j 6=i

ωjcijI[z̃vi = z̃vj]

)
. (4.21)

The following steps can be embedded in each iteration of Algorithm 1–3. Sup-

pose z is one simulated sample generated from those algorithm.

Step 1: Draw (π̃0, %̃)′ ∼ N ((π0,%)′, δI3).

Step 2: If π̃0 ∈ (0, 1) and %0, %1 > 0, then compute Q̂(π̃0, %̃) according to
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(4.21) and the acceptance ratio

R =
h(z | π̃0, %̃)Q̂(π0,%)

h(z | π,%)Q̂(π̃0, %̃)
,

and set (π0,%) = (π̃0, %̃) and Q̂(π0,%) = Q̂(π̃0, %̃) with probability min{1, R}.

Output: Simulated samples for (π0,%) along with z.

Note that the primary goal of this algorithm is making posterior inference on z by

taking into account for the uncertainty from the choices of hyper-parameters (π0,%).

Bayesian model averaging

In some cases, a set of possible values of π and % that can be elicited from biological

knowledge. We denote them as {πm,%m}Mm=1. If we consider each (πm,%m) as a

model choice, then the marginal posterior distribution of z can be approximated by

Bayesian model averaging. i.e.

π(z | r) ≈
M∑
m=1

π(z | πm,%m, r)π(πm,%m | r), (4.22)

where π(z | πm,%m, r) refers to the posterior distribution of z given the hyper-

parameters is chosen as (πm,%m). This can be simulated or approximated by one

of Algorithm 1–3. The term π(πm,%m | r) is a weight for each choice. It can be

represented as

π(πm,%m | r) ∝ Ez|πm,%m [π(r | z)] := wm, (4.23)

where Ez|πm,%m [·] is with respect to the prior density of z, i.e., (4.4), with parameter

(πm,%m) and the density π(r | z) is the likelihood function of z. This suggests that we
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might estimate the weight for each (πm,%m) via Monte Carlo methods. Specifically,

we draw zvm ∼ π(z | πm,%m), for v = 1, . . . , V and m = 1, . . . ,M , then the weight

estimate ŵm and the normalized weight estimate w̃m are respectively given by

ŵm =
1

V

V∑
v=1

π(r | zvm), w̃m =

∑V
v=1 π(r | zvm)∑M

m′=1

∑V
v=1 π(r | zvm′)

, (4.24)

where
∑M

m=1 w̃m = 1. Write w̃ = (w̃1, . . . , w̃M). We consider the following algorithm

to simulate z from (4.22):

Algorithm for model averaging over (π,%):

Input: The possible choices {πm,%m}Mm=1 and the model averaging weight w̃;

Initialization: Draw zmi ∼ Discrete({0, 1}, {π0, π1}), for i = 1, 2, . . . , n and

m = 1, 2, . . . ,M . Write zm = (zm1, . . . , zmn) for m = 1, . . . ,M and z(i) =

(z1i, . . . , zMi) for i = 1, . . . , n.

Repeat the following steps until the distribution of z is stable:

For i = 1, . . . , n,

Step 1: For m = 1, . . . ,M , update zmi according to the corresponding

steps in one of Algorithm 1–3 given the hyper-parameter (πm,%m).

Step 2: Draw zi ∼ Discrete(z(i), w̃).

Output: Simulated samples from the posterior distribution of z.

Fig. 2 provides an illustration of this algorithm. One could put further restrictions

on the choice of (π,%) based on background information. For example, we could
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assume %1 > %0 to indicate a stronger impact of the “selected” genes than that of the

“unselected” ones.

z(1) z(2) . . . z(n) w̃ (π,%)
z1 z11 z12 . . . z1n w̃1 (π1,%1)
z2 z21 z22 . . . z2n w̃2 (π2,%2)
...

...
...

...
zM zM1 zM2 . . . zMn w̃M (πM ,%M)

↓ ↓ ↓
z← z1 z2 . . . zn

Figure 4.8: An illustration of the algorithm for Bayesian model averaging over (π,%).
In each iteration, zm = (zm1, . . . , zmn) is simulated from the posterior of z given
hyper-parameters (πm,%m) for m = 1, . . . ,M , Resample zi from z(i) = (z1i, . . . , zMi)
with probability w̃, for i = 1, . . . , n.

4.6.4 Sensitivity Analysis

We conduct sensitivity analysis for effect of prespecified hyper-parameters, i.e. βk, τk

with k = 0, 1 on the application dataset. With the presented results in Section 4.3

under βk = 10, k = 0, 1; τ0 = 10, τ1 = 2 as the gold standard, we consider additional 9

realizations of the hyper-parameters with other settings staying the same. The gene

selection results for both the whole datasets and the subnetwork of interest illustrated

in Figure 4.2 are summarized in Table 4.4 by sensitivity (Sens) and specificity (Spec)

against gold standard results.

Based on Table 4.4, the gene selection results for both the whole application dataset

and the subnetwork of interest are stable among different combinations. The balance

accuracy (arithmetic mean of sensitivity and specificity) for each scenario is always

larger than 0.8. Based on this sensitivity analysis, we conclude the robustness of

the proposed methods to the hyper-parameters and validate the results in the data

application.
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Dataset Subnetwork

(βk, τ0, τ1) Sens Spec Sens Spec

(10, 10, 5) 0.861 0.980 0.857 1.000
(10, 15, 5) 0.826 0.983 0.762 1.000
(10, 15, 5) 0.886 0.979 0.857 1.000
(10, 20, 2) 0.876 0.995 0.762 1.000
(100, 10, 2) 0.761 0.990 0.714 1.000
(100, 10, 5) 0.677 0.990 0.667 1.000
(100, 15, 2) 0.736 0.992 0.762 1.000
(100, 15, 5) 0.910 0.955 1.000 0.737
(100, 20, 2) 0.756 0.987 0.762 1.000

Table 4.4: Sensitivity analysis for the hyper-parameters specification for the application
dataset and subnetwork
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Chapter 5

Summary and future research
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Recent advance in technology brings large numbers of complex biomedical dataset-

s with complicated data structures and comprehensive biological information. This

brings new challenges to conduct effective and practical statistical analyses. Among

all, the dissertation focuses on the variable selection problem, one of the most impor-

tant issues to realize statistical learning and biological investigation, for the complex

biomedical data. Under Bayesian frameworks, we develop novel statistical methods

for the analysis of three different types of data–functional data, neuroimaging data

and high-throughput genomics data.

First, motivated by a colorectal adenoma study, with the goal to select informative

profiles of functional biomarkers that are highly associated with the clinical outcome,

we propose a unified Bayesian approach to conduct feature select under GFLMs. We

novelly bring up the hierarchical nature of the feature selection in functional data

and a class of mixture priors for the functional biomarkers to perform selection both

between and within the functional curves. Accordingly, two levels of biological infor-

mation are incorporated into the selection procedure to facilitate more biologically

meaningful results. Due to some limitations of the current work, future research could

be focused on discussing the choosing of grid points of the feature selection and the

continuity assumption of functional coefficients at the boundaries points.

Second, to conduct spatial variable selection in the ultra high-dimensional neu-

roimaging data, we propose a novel multiresolution variable selection procedure un-

der Bayesian probit regression models to make the posterior simulation considerably

more efficient. Our approach is to construct auxiliary models at different resolutions

and sequentially let the coarse-scale selection serve as a guild to fine-scale selection

by constructing a proposal function, which reduces the computation by facilitating

the posterior inference concentrates on the true signals more efficiently. As a future

work, we plan to replace the point mass mixture priors by the continuous shrinkage
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priors to further improve the computation efficiency and build up a multiresolution

shrinkage effect.

Lastly, to select genes and gene subnetworks with periodic behavior in a microarray

dataset, we novelly extend the DPM model by incorporating gene network structure

via Ising priors to estimate the selected and unselected densities of gene features.

Two fast computational algorithms for the posterior simulation are also developed

to dramatically release the computational burden of the standard MCMC algorithm.

As a future extension, we plan to extend the current model from one dimensional to

multiple dimensions. In addition, the current NET-DPM model focuses on the effect

from genes that are directly connected. More biologically meaningful results could

be obtained by incorporating the network distance into the priors of the class label,

and we will also investigate more on this part.
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Hervé, P.-Y., Razafimandimby, A., Vigneau, M., Mazoyer, B., and Tzourio-Mazoyer,

N. (2012), “Disentangling the brain networks supporting affective speech compre-

hension,” NeuroImage, 61, 1255–1267.

Higdon, D., Lee, H., and Bi, Z. (2002), “A Bayesian approach to characterizing

uncertainty in inverse problems using coarse and fine-scale information,” Signal

Processing, IEEE Transactions on, 50, 389–399.

Hoff, P. D. et al. (2006), “Model-based subspace clustering,” Bayesian Analysis, 1,

321–344.

Holloman, C. H., Lee, H. K., and Higdon, D. M. (2006), “Multiresolution genetic al-

gorithms and Markov chain Monte Carlo,” Journal of Computational and Graphical

Statistics, 15.

Huang, L., Goldsmith, J., Reiss, P. T., Reich, D. S., and Crainiceanu, C. M. (2013),

“Bayesian Scalar-on-Image Regression with Application to Association Between

Intracranial DTI and Cognitive Outcomes,” NeuroImage.

125



Ishwaran, H. and James, L. (2001), “Gibbs sampling methods for stick-breaking pri-

ors,” Journal of the American Statistical Association, 96, 161–173.

— (2002), “Approximate Dirichlet Process computing in finite normal mixtures,”

Journal of Computational and Graphical Statistics, 11, 508–532.

Ishwaran, H. and Rao, J. S. (2003), “Detecting differentially expressed genes in mi-

croarrays using Bayesian model selection,” Journal of the American Statistical As-

sociation, 98.

Jacob, L., Neuvial, P., and Dudoit, S. (2012), “More power via graph-structured tests

for differential expression of gene networks,” The Annals of Applied Statistics, 6,

561–600.

James, G. (2002), “Generalized linear models with functional predictors,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 64, 411–432.

James, G., Wang, J., and Zhu, J. (2009), “Functional linear regression thats inter-

pretable,” The Annals of Statistics, 37, 2083–2108.

Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. (2012), “A Bayesian non-

parametric Potts model with application to pre-surgical FMRI data,” Statistical

Methods in Medical Research.

Johnson, V. E. (2013), “On Numerical Aspects of Bayesian Model Selection in High

and Ultrahigh-dimensional Settings,” Bayesian Analysis, 7, 1–18.

Johnson, V. E. and Rossell, D. (2010), “On the use of non-local prior densities in

Bayesian hypothesis tests,” Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology), 72, 143–170.

— (2012), “Bayesian Model Selection in High-Dimensional Settings,” Journal of the

American Statistical Association, 107, 649–660.

126



Just, M. A. and Pelphrey, K. A. (2013), Development and Brain Systems in Autism,

Psychology Press.

Kadane, J. and Lazar, N. (2004), “Methods and criteria for model selection,” Journal

of the American Statistical Association, 99, 279–290.

Kim, S., Tadesse, M. G., and Vannucci, M. (2006), “Variable selection in clustering

via Dirichlet process mixture models,” Biometrika, 93, 877–893.

Kou, S., Olding, B. P., Lysy, M., and Liu, J. S. (2012), “A Multiresolution Method for

Parameter Estimation of Diffusion Processes,” Journal of the American Statistical

Association, 107, 1558–1574.

Koutsourelakis, P.-S. (2009), “A multi-resolution, non-parametric, Bayesian frame-

work for identification of spatially-varying model parameters,” Journal of compu-

tational physics, 228, 6184–6211.
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