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Abstract 

Spatiotemporal Distribution of Cutaneous Leishmaniasis in Relation to Climate Factors, Pará, 

Brazil, 2007-2019 

By Margalit Leiser 

Background Cutaneous leishmaniasis (CL) is an endemic vector-borne disease of Brazil, which 

is home to ~40% of CL cases in the Americas. Well-known environmental factors associated 

with incidence include deforestation, precipitation, and temperature, but CL dynamics are highly 

variable and little data are available for many states.  This study evaluates the role of 

environmental factors on CL incidence in the state of Pará (PA), identifying high-risk and likely 

regional clusters of disease incidence. 

Methods A spatiotemporal ecological study utilizing publicly sourced confirmed cases of CL by 

reporting municipality was conducted from 2007 through 2019. Cumulative and annual 

incidence rates were mapped to evaluate spatial heterogeneity. Multivariate negative binomial 

regression models were generated for the overall period and annually to investigate the 

associations between factors including minimum temperature, maximum temperature, total 

precipitation, urbanicity of residence, and Multivariate El Nino Southern Oscillation Index 

(MEI). Local indicator of spatial autocorrelation (LISA) and Kulldorff spatial scan statistics were 

conducted to evaluate clustering. 

Results Over the study period, 46,163 cases of CL were reported from PA (population 

7,588,078). Cumulative incidence was 608 cases per 100,000 people, with average annual 

incidence of 47 cases per 100,000 people. In the overall model, which explained 57% of 

variance, monthly minimum temperature, monthly maximum temperature, and monthly total 

precipitation were significantly, inversely associated with CL incidence in Pará. Urbanicity and 



month displayed significant, direct association with CL incidence. Seasonally lagged MEI and 

year did not achieve significance in the overall model. There was a spatially heterogenous 

distribution of high-high and low-low risk municipalities across the state, and stable and 

significant clusters of highest-risk municipalities were found in the northwestern and 

southwestern regions of the state. 

Discussion This study provides insight into the distribution of CL across Pará, showing a likely 

role of environmental factors including minimum and maximum monthly temperature and total 

monthly precipitation on disease incidence and clustering in the state. These results suggest 

possible factors of influence leading to high incidence years and tactics for managing prevention 

and control efforts of CL in Pará, Brazil.  
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LITERATURE REVIEW 

Leishmaniasis, a tropical infectious disease, is caused by many species of Leishmania 

protozoa and spread by infected phlebotomine female sandflies (1, 2). Leishmaniasis is broadly 

distributed across the globe in 98 countries but is concentrated in Africa, Asia, and much of the 

Americas (3, 2, 4). 

Leishmaniasis disease presentation is classified into three categories: cutaneous (CL), 

visceral (VL), or mucocutaneous (MCL) (5, 1). The disease presentation typically depends on the 

infecting Leishmania species, which is strongly influenced by region (1, 2, 6). CL is the most 

prevalent form of disease worldwide. CL disease presentation is extremely diverse and 

dependent upon complex interactions amongst parasite, host, and vector factors, but is most often 

characterized by a non-healing ulcer at the site of an infecting sandfly bite (1). Most cases of CL 

remain mild and may be self-healing, which renders a comprehensive accounting of incidence 

challenging (6). Infections from so-called ‘New World’ Leishmania species are more likely than 

‘Old World’ infections to progress beyond self-healing ulcers (6). In these cases, CL ulcerations 

may become chronic or, in severe cases, progress to nasopharyngeal destruction, facial 

disfigurement, or life-threatening systemic infection (6).  Acute CL may disseminate locally, a 

rare clinical presentation that is increasing in frequency in New World infections (1). This 

manifestation ranges in severity, of which the rarest and most severe is disseminated CL (DCL), 

which presents as nonulcerating lesions in areas like the face and extensor limb surfaces, may 

cause deep tissue destruction, and persists indefinitely (1, 6). Some cases of CL can become 

more severe upon co-infection by strains that cause both CL and MCL (7, 6). Certain sandfly 

species, particularly members of the L. Vianna subgenus in L. braziliensis complex are strongly 

associated with more severe and protracted infections with the possibility of developing MCL 
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(1). Even mild cases of CL can result in life-long scars or serious disability, sometimes becoming 

a source of stigma (8). Because patients are often unaware of their bites, a combination of 

clinical features, epidemiological history, and laboratory diagnosis is most often employed to 

diagnose CL (6, 2). Prevention of CL relies entirely upon bite prevention, as there are no 

prophylactic medications or vaccinations currently developed (1, 2). Furthermore, there is no 

single treatment course following infection, as treatment depends on both infecting species and 

clinical presentation (2, 9). 

CL is the most prevalent form of leishmaniasis worldwide, with over 350 million people 

considered at-risk and an annual estimated incidence of 2-2.5 million cases globally (5, 2, 6, 8). 

CL was characterized as a severely neglected and Category I emerging and uncontrolled disease 

by the WHO as of 2009 (2, 6, 3, 8). Control of CL is made especially challenging due to the 

multiple infectious pathways: it may be acquired from approximately 20 Leishmania species, 

which interact with multiple arthropod vectors and animal reservoir populations (10, 9, 3). 

Furthermore, CL vector species often dwell in tropical rainforest biomes, where vector-control 

interventions such as insecticide usage are both logistically challenging and of dubious 

conservational merit (11). Finally, the global and local distribution of vector species is dependent 

on a complex interplay of factors both climatic and anthropogenic and thus prone to change (11). 

Nonetheless, the vast majority - over 90% - of CL cases are concentrated in just 7 

countries: Afghanistan, Algeria, Iran, Peru, Saudi Arabia, Syria, and Brazil (6). In 2018, 16,167 

of 261,608 CL cases reported by the WHO were located in Brazil (8). Only Afghanistan and 

Pakistan reported higher case numbers in that year (8). Within the Americas region, Brazil 

accounted for 35% of CL cases reported in 2018 (8). Incidence in Brazil has decreased since the 

turn of the century, with approximately 20,000 cases reported to PAHO in 2017 as compared to 
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approximately 27,000 in 2000 (8, 12). This decline is not perfectly consistent, however; cases 

increased 38% between 2016 and 2017 (8, 12). Within Brazil, CL is well-established and 

endemic: every state reports cases (13). Transmission is associated with more than one vector 

species in each state, with the Amazon region in particular home to over 400 phlebotomine sand 

fly species, and many may be competent to carry and transmit Leishmania (13, 14, 15, 16, 17). 

To date, seven Leishmania species have been indicated as primary causes of CL (1). These 

Leishmania species have distinct geographical distributions and are carried by a host of sandfly 

species; vector species of sand fly appear to differ by Leishmania species (18).  Similarly, 

reservoir populations are many and varied, including species from seven mammal orders (19). 

 Brazilian CL transmission is distributed unevenly across the population. The majority 

(68.7%) of cases occur in men, and most cases affect individuals between the ages of 20 and 50 

years old (12). As a neglected disease, CL infection is thought to occur mostly among low-

income populations (10). A recent study using spatiotemporal statistical scan analysis of 

incidence across Brazil found the northern and central regions of the country to be a primary 

cluster for CL infection, with most infections occurring within the Brazilian Legal Amazon 

(BLA) and a large persistent hotspot located in the northeastern state of Pará (PA) (20, 7). 

Pará has been characterized as highly endemic for Leishmania braziliensis braziliensis 

since the 1970s, when species of the genus Psychodopygus were reported as the most common 

phlebotomine fly in the area (21). It is consistently identified as a high-transmission state in 

modern reports, as well (5, 22, 20). New causative and vector species implicated in the spread of 

CL have been continuously characterized in Pará through to the present day (14-17). CL 

transmission in PA is currently thought to be caused by four main Leishmania species: L. 

(Viannia) braziliensis, L. (Leishmania) amazonensis, L. (V.) lainsoni, and L. (V.) lindenbergi (23, 
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24). Of these, the most commonly isolated Leishmania species has been Leishmania (Viannia) 

lindenbergi (43.7%) (24). Scientific understanding of PA reservoir and host species remains 

incomplete: host species for Leishmania are potential reservoirs, but because CL dynamics are 

highly temporally and regionally variable, cumbersome local ecological and parasitological 

analyses tare necessary to reservoir species identification (19). One literature review identified 

more than 70 documented host species and 14 potential reservoir species spanning seven 

mammalian orders in Brazil alone, with putative reservoirs identified as such only when the 

species had been documented to retain infection or transmit the Leishmania parasite to vectors 

(19). 

As with any vector-borne disease, sociodemographic, anthropogenic, and climate factors 

all play a role in modifying CL transmission cycles. Poverty is frequently cited as a risk factor 

for infection, and this may act along multiple axes (10). For one, household characteristics 

associated with low-income status, including non-durable wall construction, the absence of gas 

stoves, and lack of clean water and sanitation carry an increased risk of CL infection in Brazil 

(25, 22). Malnutrition also increases host susceptibility to CL infection (4). The high proportion 

of CL cases among males may be driven by profession, as the sandfly vector species of CL dwell 

in forests and may be encountered at elevated rates by agricultural or forestry workers (9, 26, 

27). Indeed, these historically male-dominated occupations have been found to be significant 

determinants favoring CL infection (10,27). Other activities occurring in rainforested areas, 

including fishing, hunting, and firewood collection, are also associated with increased risk of CL 

infection (10, 26).  

Anthropogenic factors including deforestation and urbanization with increased peri-urban 

expansion are also associated with CL transmission, although directionality varies. This lack of 
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consensus is likely due to the vast number of Leishmania vector species and an ensuing variable 

response to habitat alteration (18). CL transmission risk, unlike VL, appears to remain peripheral 

to the forest and does not expand directly into urban areas, but peri-urban development may have 

diverse effects (25). There is no question that the expansion of the wild-urban interface in the 

modern era has increased human exposure to environments in which Leishmaniasis vector 

species are firmly established. Studies like a Mesoamerica-wide model of CL incidence and 

distribution found that fragmentation of forests by either agricultural expansion or urbanization, 

measured via edge metrics, did not rank within the 10 most influential predictors of CL incidence 

at all, although this may have resulted from the obscuration of fine-grained, highly localized, and 

variable effects across a broad study area (28). In the state of Rondônia, it has been suggested 

that increasing urbanization leads to decreased exposure to sandflies, reducing CL transmission 

(22, 29). On the other hand, a study in the municipality of Caxias, within the state Maranhão, 

found peri-urban expansion in the region to be associated with increased CL incidence (27). 

There are few studies investigating statewide CL incidence in PA, but a study centered in the PA 

municipality of Cametá found deforestation to be a strongly significant, directly associated driver 

of CL incidence (23). 

Climate factors influencing CL incidence and distribution are many and varied. One 

recent study of South and Meso-America found that climate variables drove ~80% of the 

variation in recent past CL case distribution, and that temperature and precipitation seasonality 

variables alone could explain more than 40% of said variance (28). This suggests a very strong 

climatic influence on incidence. Temperature, precipitation, and humidity are commonly 

considered environmental factors (25, 23, 30, 22, 3). Increased CL transmission has been 

strongly associated with the rainy season in Brazil, possibly indicative of an association between 
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CL and precipitation level or air humidity (23). Differing tolerances of vector species prevent the 

identification of a single precipitation range that is favorable to CL transmission: high 

precipitation has been directly associated with CL incidence in some studies and inversely 

associated in others (25, 30, but 22, 3). In fact, one study found that CL incidence was highest in 

areas with narrow seasonal ranges of both temperature and precipitation (28). Vegetation 

measures are also commonly employed in investigations of the effect of climate on CL, as warm, 

forested areas are thought to encourage the presence of both reservoir and vector species by 

providing protection and shelter (5, 31, 25). Indeed, higher measures of the Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) have consistently 

been positively associated with CL (22, 32, 25). CL transmission has also been found to cycle 

with seasonal El Niño events: a study in Costa Rica found that models using just temperature and 

MEI could predict CL incidence dynamics with ~75% accuracy, suggesting a powerful 

connection (30). Previous studies of CL in the northern city of Manaus, Amazonas have found 

that El Niño Southern Oscillation (ENSO) and downstream meteorologic measures such as 

precipitation, humidity, and temperature are strong drivers of CL incidence in the study areas 

(33, 34). One study found El Niño conditions preceding expanded incidence by approximately 4-

6 months and La Niña presaging contracted incidence by the same time period (34). Another 

found the opposite effect, with La Niña driving increased rainfall in the late year to be followed 

by an increase in CL cases (33). Despite this apparent lack of consensus, it appears highly likely 

that ENSO effects do have some impact on CL case incidence in Brazil.  

Given this close interplay of climate factors and CL, it is no surprise that modern research 

into the potential effects of climate change in Brazil have shown potentially large impacts on 

disease dynamics (33, 23, 28, 35, 25). This is due to predicted alteration to ‘landscape 
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epidemiologies’ that will alter vector-borne disease transmission cycles alongside climate and 

meteorologic conditions (28, 35, 36, 25). Potential effects will be transmitted along multiple 

axes, including direct effects on factors like temperature and rainfall, which may influence vector 

competence and parasite life cycles; indirectly, by effects on vector population viabilities; and 

indirectly, via socioeconomic status (SES) changes that will alter human interaction patterns with 

vector species (28). As with other investigations of the drivers of CL incidence, highly localized 

dynamics and the complexity conferred by multiple vector and reservoir populations appears to 

complicate studies of the effect of climate change on CL. A study investigating likely climate 

change impacts on South and Meso-American CL found that increases in temperature and 

precipitation seasonality – measured as 100-fold the standard deviation of monthly temperature 

values and the coefficient of variation of monthly precipitation values, respectively -- would 

contract the geographic range incidence by 35-50% (28). One ecological niche modeling 

investigation in Southern Brazil found likely expansion in L. whitmani populations with a 

concurrent rise in CL across multiple scenarios of global climate change conditions, while a later 

study instead found potential habitat expansion for L. intermedia in northeastern Brazil and a 

southerly habitat shift for L. neivai (37 but 38). Results such as these highlight the immense 

complexity involved in forecasting alterations in CL incidence. In summary, CL can be 

understood to be highly climatologically responsive disease of concern in Pará, with little 

available data to predict how climate change will affect its incidence or distribution. Taking 

together the hefty burden of ‘New World’ CL incidence within Brazil, the persistent hotspot of 

Brazilian CL incidence within Pará, and the highly variable behavior of the disease over 

relatively small spatial scales, furthering an understanding of the relationships between climate 

variables and CL in PA proves meritorious. This study aims to provide insight mechanisms of 
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influence on CL incidence in a region accounting for many cases of the disease. Deeper 

understandings of factors influencing CL incidence in PA can inform CL management policies 

within the region in the near future, and may additionally yield useful information in 

understanding possible trajectories of CL incidence and spatial distribution under the effects of 

global climate change.  
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MANUSCRIPT 

ABSTRACT 

Title: Spatiotemporal Distribution of Cutaneous Leishmaniasis in Relation to Climate Factors, 

Pará, Brazil, 2007-2019 

Author: Margalit Leiser 

Background Cutaneous leishmaniasis (CL) is an endemic vector-borne disease of Brazil, which 

is home to ~40% of CL cases in the Americas. Well-known environmental factors associated 

with incidence include deforestation, precipitation, and temperature, but CL dynamics are highly 

variable and little data are available for many states.  This study evaluates the role of 

environmental factors on CL incidence in the state of Pará (PA), identifying high-risk and likely 

regional clusters of disease incidence. 

Methods A spatiotemporal ecological study utilizing publicly sourced confirmed cases of CL by 

reporting municipality was conducted from 2007 through 2019. Cumulative and annual 

incidence rates were mapped to evaluate spatial heterogeneity. Multivariate negative binomial 

regression models were generated for the overall period and annually to investigate the 

associations between factors including minimum temperature, maximum temperature, total 

precipitation, urbanicity of residence, and Multivariate El Nino Southern Oscillation Index 

(MEI). Local indicator of spatial autocorrelation (LISA) and Kulldorff spatial scan statistics were 

conducted to evaluate clustering. 

Results Over the study period, 46,163 cases of CL were reported from PA (population 

7,588,078). Cumulative incidence was 608 cases per 100,000 people, with average annual 
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incidence of 47 cases per 100,000 people. In the overall model, which explained 57% of 

variance, monthly minimum temperature, monthly maximum temperature, monthly total 

precipitation, urbanicity, and month displayed significant association with CL incidence in Pará. 

Seasonally lagged MEI and year did not achieve significance in the overall model. There was a 

spatially heterogenous distribution of high-high and low-low risk municipalities across the state, 

and stable and significant clusters of highest-risk municipalities were found in the northwestern 

and southwestern regions of the state. 

Discussion This study provides insight into the distribution of CL across Pará, showing a likely 

role of environmental factors including minimum and maximum monthly temperature and total 

monthly precipitation on disease incidence and clustering in the state. These results suggest 

possible factors of influence leading to high incidence years and tactics for managing prevention 

and control efforts of CL in Pará, Brazil.  
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INTRODUCTION 

Cutaneous leishmaniasis (CL) is the most prevalent disease presentation of the 

leishmania parasites worldwide, with over 350 million people considered at-risk and an annual 

estimated incidence of 2-2.5 million cases globally (5, 2, 8). Many areas in the western 

hemisphere are highly endemic with nearly 40% of CL cases arising in the Americas occur in the 

nation of Brazil (8). CL is characterized as a severely neglected and Category I emerging and 

uncontrolled disease by the WHO as of 2009, therefore, improving the understanding of the 

epidemiology of the disease is crucial to mitigation (8).  

Pará, a state in Northern Brazil, is home to one of the highest state incidence rates of 

cutaneous leishmaniasis infection in the nation, with an average number of cases approximately 

3,500 per year. However, there have been very few studies on the specific dynamics of CL 

infection within Pará relative to its more populous neighbors, despite the highly variable 

infectious pathway of CL and the Amazonian climates of Pará (14-17, 25). Pará is known to be 

home to several species of phlebotomine flies that act as vectors for CL, and the Amazon region 

in particular is home to over 400 phlebotomine sand fly species, many of which may be 

competent to carry and transmit Leishmania (13, 14-17). Additionally, CL is a disease of the 

forest verge, and Pará is experiencing deforestation at a rapid pace. This opens the possibility of 

a near-future rapid expansion of CL within the state of Pará, as the disease vectors shift and 

diversify or as humans encounter vectors at an increasing rate (25).  

Climate factors also play a powerful role in CL disease transmission, with one recent 

study finding climate factors capable of explaining 80% of CL incidence variability alone, with 

40% of the explanatory power encompassed by just temperature and precipitation data (28). 
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Variations in temperature and precipitation are thought to be primarily driven by the rainy season 

and El Niño Southern Oscillation (ENSO) perturbations, both of which are powerful explanatory 

factors on their own and may be subject to further alterations because of climate change in the 

near future (23). Other climatologic factors, including wind speed variation and land use 

modification are thought to play a role in CL transmission and incidence rates but are largely 

understudied (10, 25).  

To date, no studies have investigated the associations between environmental factors and 

cutaneous leishmaniasis incidence in Pará at the municipality level of distribution. It is therefore 

uncertain what factors drive CL in Pará, how these factors may change over the spatial region, 

and how they have altered over time. This study aims to describe the incidence of CL on a 

municipality level in Pará, to determine which, if any, environmental factors impact CL 

incidence in Pará, and to evaluate potential high-risk areas and cluster areas across Pará over the 

time period 2007-2019.  

This investigation is of especial interest in the context of global climate change. CL has 

been variably predicted to contract or expand in northeastern Brazil under differing climate 

change scenarios forecasting more drastic seasonal meteorologic variability, possibly 

downstream of strong influence by hyperlocal weather patterns (28, 38). For this reason, it is 

crucial to understand and contextualize historical climate data with CL incidence: a better 

understanding of risk factors for increased CL incidence and the location of high-risk regions 

could provide information towards understanding a likely future of CL in Pará as meteorologic 

trends and climate types alter. This study could also inform short-term decision-making 

processes related to vector control in the aim of future outbreak mitigation and prevention. 
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METHODS 

Ethical considerations 

No identifiable information was received as case data was aggregated by municipality 

and taken from a publicly available data source. 

 

Study setting and population 

This study was conducted in Para, a partially coastal state in northern Brazil. Pará is 

traversed by the lower Amazon River. It is the most heavily populated state in the North Region 

but only contains ~4% of the Brazilian population. Pará is the second-largest state in Brazil by 

area. Its capital is the port city of Belem, which lies in the northeast of the state with an estimated 

population of 1,500,000 people. Pará possesses a primarily tropical monsoon climate type, with 

some areas of tropical rainforest and a small region of tropical savannah. Broad swaths of Pará 

are categorized as part of the Amazon rainforest, and Pará is home to the largest biodiversity in 

the world.  

 

Data collection 

Cutaneous leishmaniasis is passively surveilled with healthcare providers reporting cases 

to the state health notifiable disease system. Total numbers of CL cases by reporting 

municipality were obtained from the Information System of Diseases Notification (Sistema de 

Informação de Agravos de Notificação—SINAN) data portal (39). Case numbers were obtained 

for reporting municipality, as well as sex and age distribution of cases by municipality. Data 
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were collected for January 2007, the earliest date of availability, until December 2019. Data 

January 2020 and later was excluded, as CL incidence reporting was likely disrupted by the 

advent of the COVID-19 pandemic. 

Social demographic data at the municipality level, including population and percent 

urban population, were obtained through the Brazilian Institute of Geography and Statistics 

(Instituto Brasileiro de Geografia e Estatıstica, IBGE) (40). 

Climate data were obtained via the WorldClim database for 2000-2019 (41). Climate 

variables of interest included minimum monthly temperature, maximum monthly temperature, 

and total monthly rainfall. The minimum temperature of each year’s coldest month, maximum 

temperature of the year’s warmest month, and total annual precipitation were calculated in R 

from these datasets. Multivariate El Nino Southern Oscillation Index data was obtained through 

the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration 

(NOAA) for 1979-2023 and subsequently cropped to the years of interest (42). This data was 

used to calculate average annual MEI data. 

 

Statistical analysis 

All analyses were conducted using R and R Studio (43). Case data was aggregated by 

municipality, and then reviewed by age, sex, urbanicity, and year of diagnosis, for the years 

2007-2019. A multivariate negative binomial regression model was generated, accounting for 

overdispersion and seasonal MEI lag, to examine associations between environmental variables 

of interest and the outcome (incidence of CL) at the municipality level. Collinearity was assessed 

and corrected by removal of variables with demonstrated collinearity, as indicated by a VIF 
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value over 10. Backwards elimination was conducted to reach final models. Individual years 

were also used to create models. Overall cumulative models used minimum monthly 

temperature, maximum monthly temperature, total monthly precipitation, percent of the 

population considered urban, percent of the population identified male, average annual MEI 

values, and seasonally lagged monthly MEI data as predictors. Annual models took minimum 

monthly temperatures, maximum monthly temperature, total monthly precipitation, a seasonally 

lagged MEI value, urbanicity, and percentage population male into as predictors. Variance 

inflation factor (VIF) was assessed for each covariate; none were collinear and therefore all kept. 

Model fit was assessed using Nagelkerke R-squared values.  

 

Spatial analysis 

Spatial analysis was conducted using aggregated cases at the municipality level. Baseline 

information, including annual incidence of cutaneous leishmaniasis per 100,000 people by 

municipality was obtained, and cumulative incidence mapping per 100,000 people was carried 

out at the municipality level. A Besag-York-Mollie model was fit to the data and significantly 

high risk areas were identified using Bayesian exceedance probabilities at a 5% alpha level. 

Maps were produced in R Studio using WGS84 projection.  

To evaluate spatial heterogeneity at the municipality level, both spatial and aspatial 

goodness of fit testing was conducted. Spatial autocorrelation was tested using Moran I statistics, 

including the Global Moran I for Poisson distributions. Candidate clusters of CL incidence by 

municipality were visualized using a Local Moran’s I Local Indicators of Spatial Association 
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(LISA) evaluation under the constant risk Poisson assumption. Finally, Kulldorff’s Scan 

Statistics were used to visualize the most likely clusters of CL cases within Pará.  
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RESULTS 

Study area and population 

A total of 46,163 cases were identified through the Sistema de Informação de Agravos de 

Notificação (SINAN) database in Pará from January 2007 – December 2019. Pará is comprised 

of 143 municipalities (Figure 1). Of those, 140 reported at least one visceral leishmaniasis case 

during the study period (Figure 2a). Baseline visual evaluation with no adjustment, for 

population or otherwise, shows high case counts in the western half of the state and uneven case 

distribution. Of these cases reported to SINAN, 664 lacked demographic information. Of those 

with reported demography, the overwhelming majority of cases were male (80.5%) and mixed-

race (71.8%), and most were 20-39 years of age (49.3%) (Table 1). The lowest incidence year 

was 2016, with only 1,737 cases reported. Over the study time, case reporting rates were 

relatively constant. The highest number of cases were reported in 2014 and 2015 (each 4,526), 

each of which accounts for 9.8% of the cases reported during the study period. This is 2.6 times 

higher than 2016, which immediately followed.  

The total population of Pará was 7,588,078 in 2010, resulting in a cumulative incidence 

of 608 cases per 100,000 persons during the study period. The average annual cutaneous 

leishmaniasis incidence for the state was 47 cases per 100,000 persons. Santarem in the central 

northern region of Pará, with a population of 294,774, reported the highest cumulative case count 

(2,156 cases), while a close neighbor, Medicilandia, reported the highest average annual 

incidence (7,161 cases per 100,000 persons) during the study period.  

Environmental conditions varied across the state and by year, with minimum 

temperatures ranging from 20.0 to 24.1C during the study period, maximum temperatures 
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ranging from 31.3 to 36.1C, annual precipitation ranging from 1352 to 3248mm, and average 

monthly MEI ranging from -4.6 to 3.1 (Table S1). 

 

Multivariate analysis  

In the overall, multi-year, model, minimum temperature, maximum temperature, 

precipitation, urbanicity, and month of reporting were all significantly associated with incidence 

at an alpha level of 5% (Table 2). The associations of seasonally lagged MEI and year did not 

attain significance.  Of significant covariates, urbanicity index and month were positively 

associated, while average monthly precipitation, monthly maximum temperature, and monthly 

minimum temperature were negatively associated. Urbanicity and minimum temperature both 

had particularly large-magnitude estimates (β). Average precipitation had the smallest estimate 

value. Model predictive power was good, with a pseudo-R-squared value of 0.57, meaning that 

approximately 57% of the spatiotemporal distribution of CL incidence in Pará could be 

explained by the model (Table 2). 

Annual models were very consistent overall and had similar pseudo-R-squared values to 

the overall model (Table S2). MEI value attained significance in many of the annual models, 

unlike the overall model. Minimum monthly temperature, maximum monthly temperature, 

monthly precipitation, and urbanicity were all significantly associated with CL incidence in 

annual models. The associations of minimum monthly temperature, maximum monthly 

temperature, and monthly precipitation were mostly negative, while urbanicity was consistently 

positively associated. The directionality of lagged MEI association was variable. 

 Akaike Information Criterion (AIC) scores were lower for all fitted models than their null 
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counterparts, as were deviances, indicating that incorporating the utilized covariates into 

modeling improved explanatory power of the spatiotemporal variability of CL relative to a 

purely spatial fitting. 

 

Spatial analyses 

To investigate patterns of CL across reporting municipalities, one choropleth each was 

made depicting prevalence (Figure 2a), cumulative incidence (Figure 2b), and annual incidence 

(Figure S1). Prevalence mapping demonstrates that the highest number of cases over the study 

period appears in a Y-shape across the state’s municipalities, with relatively low counts in the 

coastal north and border municipalities (Figure 2a). Calculations of cumulative incidence show 

that this pattern of occurrence is strengthened after accounting for population sizes in differing 

municipalities: low-incidence municipalities cluster in the coastal north, where the state capitol 

of Belem lies, while some sparsely populated municipalities in the west have high incidence 

rates (Figure 2b). The uneven patterning of both prevalence and cumulative incidence maps 

suggest CL may be spatially heterogenous, i.e., irregularly distributed across Pará. Cumulative 

incidence mapping utilizes maximal available data but may be skewed by contributions from 

high-incidence or epidemic years. Therefore, annual incidence maps of the three highest- and 

lowest-incidence years in Pará were made; the close consistency of these six maps with the 

pattern of incidence in cumulative maps suggests that CL distribution is, in fact, consistent 

regardless of the severity of CL in a given year (Figure S1). Spatial and aspatial smoothing 

tactics were used to account for possible noise in the incidence rate data due to low CL counts 

(Figures S2, S3). Of spatial empirical Bayes tactics used, smoothing under a Queen’s contiguity 
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neighbor framework, pictured, was marginally most impactful on root mean-squared error 

(RMSE) (Figure S1). Overall, neither smoothing approach altered CL incidence maps, 

suggesting the cumulative distribution of cases across Pará is not strongly influenced by noisy 

municipalities. Statistical exploration via chi-square testing for overdispersion under a Poisson 

probability model indicated significant spatial heterogeneity under the null (Statistic = 93,788, p-

value = 0.002). 

A Besag-York-Mollie model was therefore used to account for both spatially structured 

and spatially independent processes contributing to the observed heterogeneity of CL incidence. 

The t2 parameter had a mean value of 2.75, while s2 had mean 0.27, suggesting that more of the 

total variability in state-wide CL incidence is due to spatially structured processes than aspatial 

processes. Exceedance probability mapping of the model results indicated that broad swaths of 

the western half of the state, excepting the central western edge, are areas of significantly high 

risk for CL infection (Figure 3d). Interestingly, these central western edge regions are situated in 

the only regions of Pará that are described as having tropical monsoon climates, rather than the 

predominating tropical rainforest climate of the state. The high-risk municipalities consistently 

remain classified as such year after year, even when comparing epidemic years like 2014 and 

2015 with the study period’s year of lowest incidence, 2016 (Figure 3abc).  

A test of Global Moran’s I after Empirical Bayes smoothing, used to check for spatial 

autocorrelation of CL across the study period, found very high likelihood of clustering while 

accounting for both sparse data and possible outliers (Statistic = 0.455, p-value = 0.002). 

Exploratory mapping towards identification of local clusters of high-risk municipalities was 

undertaken via Local Moran’s I testing under a constant risk assumption. This revealed clusters 

of high risk municipalities in the northwestern extreme of the state, in the Amazon Basin 
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mesoregion, as well as in the southwestern corner and extending into the central-eastern region 

(Figure 4a). Low risk municipalities clustered together largely near Belem, in the northeast, and 

in the southeastern extreme of the state. There were a small number of discordant municipalities, 

largely appearing in between clusters and therefore likely artifactual. Clustering was not 

identically dispersed across the state in the highest- and lowest-incidence years of 2014/2015 and 

2016, but the expansive high-risk cluster remained in both years, as did the low-risk cluster in the 

northeast (Figure 5). This suggests that, while there is some mutability in the exact composition 

of high- and low-risk clustering in Para year-by-year, some regions of the state can reliably be 

considered hot spots. Kuldorff’s spatial scan statistics at a = 2 generated a most likely cluster 

encompassing the western half of the state, even when clusters sizes were restricted to a 

maximum incorporation of 25% of Para’s population (Figure 4b). The most likely cluster 

encompasses western municipalities clustered as high-risk under the earlier Local Moran’s I 

testing, while the largest secondary cluster appears to be composed of eastern high-risk 

municipalities.  
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DISCUSSION 

Overall, our study findings demonstrate persistent CL transmission across the study 

period, and heterogenous distribution across the state of Pará. Across the study period, the PA 

municipality with the highest total case count of CL was the central northern municipality of 

Santarém, population 294,774. A close neighbor, Medicilândia, reported the highest average 

annual incidence (7,161 cases per 100,000 persons) during the study period. The western region 

of the state exhibited a consistently high incidence rate, as is also indicated by the available data 

on cumulative incidence and prevalence through the study period. High risk regions were 

distributed in very similar manners in both high-incidence (epidemic) and low-incidence years, 

for example 2015 as compared to 2016. This suggests that these municipalities may be good 

candidates for intensive control and prevention programs in any given year. The stability of high-

risk region placement suggests that interventions designed to control vector and reservoir 

abundance have high potential. These high-incidence municipalities all share a tropical rainforest 

climate and have few large urban areas. Notably, the most highly rainforest-covered region of 

Pará does not appear to lie within this high-risk cluster, possibly due to the density of forest and 

its relative inhospitableness.   

Environmental conditions all varied by year, as expected, with precipitation having a 

particularly broad IQR. In the overall model, average maximum temperature, average minimum 

temperature, and average monthly precipitation were significantly and inversely associated with 

monthly incidence. Urbanicity was significantly positively associated, while seasonally lagged 

MEI and year showed no significant association. In this first study to evaluate the municipality 

level CL incidence in Pará, our results were consistent with previous studies of CL in Brazil with 

a  disease profile that was highly variable and highly responsive to climate (27, 32, 10). In these 
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other Brazil studies, CL incidence was associated with a few climate factors (MEI and 

temperature) in some studies, or almost entirely with anthropogenic factors (30, 44, 34 but 10). A 

study of CL predictors across Meso- and South America found that temperature and precipitation 

variables were the strongest predictors of CL distribution, with seasonality also ranking as one of 

the more significant predictors (28). A Costa Rica study fitting linear models of CL incidence to 

climate predictors found much higher predictivity up to 12 months ahead when models 

incorporate climate variables, although this study did not interrogate directionality of association 

(30). Interestingly, the Costa Rican study found a 3-year cycle of CL incidence associated with 

MEI and temperature; the shorter time increments used in our study may explain the non-

significance of MEI in the overall model (30). A study in Bahía, Brazil, found that dry conditions 

lead to spikes in CL incidence 3 months later with improved model performance when MEI and 

maximum noontime temperature were included (44). In Manaus, a study using wavelet analysis 

found that during La Niña events, CL incidence spikes following increased late-fall rainfall, 

suggesting a relationship of climatic variables mediated by MEI values (33). In our overall 

model, the extremely low p-values of significant parameters and high (0.57) pseudo-R-squared 

value of the model also support these variables’ roles as drivers of CL incidence in Pará. This 

robust pseudo-R-squared value indicates that approximately 57% of CL incidence variability is 

captured by the model, which echoes previous findings that models using only abiotic predictors 

to model CL distribution can account for a vast majority of variance in disease incidence (28). 

Potential remains for increasing explanatory power by incorporating more parameters, including 

landscape predictors that are more fine-scaled than simple urbanicity measures, such as irrigated 

land area or measures of canopy density, as used elsewhere (28). The lack of significance 

associated with inter-annual comparisons demonstrates that CL incidence did not significantly 
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change across the study period, suggesting no broad temporal trends in CL incidence in Pará 

during the study period. This is consistent with work in Maranhao suggesting alteration in fine- 

but not coarse-grained spatial incidence of CL in Brazil (45).  

On the other hand, seasonality was associated with CL incidence in  PA with higher 

incidence in the wet season late in the year, as has also been found in Costa Rica, the Brazilian 

state Manaus, and the PA municipality of Caméta (30, 33, 23). When controlling for all other 

covariates, monthly minimum temperature and monthly maximum temperature were negatively 

associated with CL, suggesting that incidence may occur within an ‘optimal band’: if either 

minimum or maximum temperatures increase too much, transmission decreases. This may be due 

to effects on survival or behavior of the vector and reservoir species in response to meteorologic 

conditions. Finally, precipitation was negatively associated with CL incidence in the overall 

model when controlling for all other covariates. This suggests that higher precipitaition may 

impact vector populations, possibly by shifting environmental conditions outside of a similar 

‘optimal band’ of rainfall. This reinforces the results of a bevy of studies carried out in other 

regions. These include: a boosted regression tree (BRT) study across Meso- and South America 

which found high sensitivity of CL distribution to ENSO, temperature, and precipitation factors, 

a comparison of time-series models in Bahía that found increased CL 3-5 months after decreased 

precipitation and strong incidence seasonality, a Costa Rica study finding excellent predictivity 

of models incorporating temperature and MEI, and a Manaus study finding strong responsivity to 

late-fall rain increases under La Niña conditions (28, 44, 30, 33). A study among forest 

fragments near Belém, PA, found that that L. antenusi sandflies were the most frequently 

captured putative vector species, and that they decreased in abundance following periods of 
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rainfall (34), providing possible insight into the mechanism underpinning our model findings, as 

it reflects conditions within PA itself.  

Urbanicity was used in this study as a proxy measure for the disturbance of the natural 

environment by human factors. Our findings of a strong, direct relationship echo previous work 

carried out in French Guiana, which used ecological niche modelling to investigate the relative 

contribution of environmental factors like those used in our study and human factors like 

population density, human poverty indices, and human footprint (31). Compellingly, this study 

found that areas of high CL risk overlapped with zones experiencing the highest anthropogenic 

pressure; this suggests that the role of environmental factors may be overshadowed by human 

drivers in urban and peri-urban environments (31). This effect was most visible on a fine scale in 

an ecological niche modelling study, but may partially explain the strong effect of urbanicity 

found in our models (31). Within Brazil, a high-resolution integrated nested Laplace 

approximation-based study found an association between not only humid, warm climates but 

also socioeconomic factors including poverty and CL incidence (22). Areas with the lowest 

socioeconomic status were the most highly affected, while areas with highest access to clean 

water and sanitation were affected the least (22). In this study, urbanicity may be partially 

confounded by more precise metrics of poverty and living standard; nonetheless, high prevalence 

of poor living conditions and poverty within urban regions of PA are likely contributors to this 

outcome.  

The annual models broadly followed the results of the overall model. Average maximum 

and minimum temperatures, average monthly precipitation, and urbanicity achieved significance 

in all years. In annual models but not the overall model, lagged MEI values achieved 

significance in most years, suggesting that El Niño effects are impactful of CL incidence when 
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examined on a finer temporal scale. Minimum monthly temperature and maximum monthly 

temperature were both inversely associated with CL incidence. Precipitation was similarly 

negatively correlated across annual models. This reinforces the finding from the overall model 

that rainfall has a dampening effect on CL incidence. There was little difference in the annual 

models when comparing one high-incidence year and low-incidence year models; both tracked 

the overall trend of the annual models closely. McFadden’s pseudo-R-squared values for all 

annual incidence models were similarly predictive to the overall model, with values around 57%.  

This study has several limitations. The most significant of these hinges on the passive 

nature of CL surveillance in Brazil. Many CL infections are likely unreported, as initial bites are 

subtle and may never develop into severe cases. Dependence upon healthcare reporting 

consistently leads to under-reporting, especially in areas with poor access to healthcare. This 

affect may be stronger in more sparsely populated or poorer regions of the study area. These 

factors contribute to a likely higher true burden of disease than that captured by this study. 

Model power could be strengthened with the incorporation of additional covariates, such as 

normalized difference vegetation index (NDVI) values and measures of anthropogenic habitat 

changes. As some prior fine-scale studies have found strong effects of both climate and 

sociological factors, the incorporation of further sociodemographic information such as tree 

coverage, human footprint measures, and social vulnerability index could provide a more 

thorough picture of likely impactful factors (22, 31). Seroprevalence studies and the 

incorporation of factors such as distance traveled to health care and municipality-level income 

data would improve future studies. Misclassification bias is also likely in this study, as it is 

impossible to ascertain from reporting data where a patient was bitten: rather, only the reporting 
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locale is available. Incorporating travel history from patients would alleviate some of this 

misclassification bias, especially around Belem.  

This is the first known study to examine the association between climactic factors and CL 

incidence in PA as a monthly time-series regression. Overall, it is clear from the results that 

environmental factors do play a significant role in influencing the incidence of CL in the PA. 

Cases cluster strongly in the west, recapitulating coarser scale research by Portella and Kraenkel 

(20). Further research incorporating other variables, as well as more candidate climatic drivers of 

CL incidence, including NDVI and ground-level wind speed, would expand the study by 

strengthening the explanatory power of the models. Such expanded studies would greatly aid in 

the prediction of likely high-incidence years and regions, enabling heightened monitoring and 

increased vigilance of healthcare providers in areas which may be high-risk for CL outbreaks in 

a given year. Despite its limitations, this study contributes to our understanding of CL incidence 

within the state of Para and is helpful in elucidating fine-grained trends. 
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CONCLUSIONS 

SUMMARY 

 This study aimed to: describe the incidence and prevalence of cutaneous leishmaniasis in 

the Brazilian state of Pará from the years 2007 until 2019, explore the spatiality of these factors 

and elucidate possible clustered municipalities that were high-risk for CL infection and evaluate 

likely candidate climatic and sociologic variables (like urbanicity, temperature, precipitation, and 

MEI), for strength of association and explanatory power when applied to CL incidence and 

distribution in Pará. A review of all spatial parameters affirmed a likely cluster located in the 

western half of the state of Pará, with extensions into both the northerly and southerly extreme of 

the state.  Models confirmed that climatic factors as well as urbanicity were significantly 

associated with incidence across the state. In future studies, explanatory power could be raised 

from ~60% by incorporating more covariates to reflect the effect of anthropogenic change and 

other likely significant factors.  

 
PUBLIC HEALTH IMPLICATIONS 

 The results of this study offer an enhanced understanding of the disease, cutaneous 

leishmaniasis, and its responsivity to climate and environment. Analyses demonstrated a trend 

towards higher CL incidence as MEI tends towards El Niño-like effects, which is a hallmark 

weather pattern of global climate change. This can enable public health officers in areas that are 

likely to be affected by this change to intervene early and mitigate effects, whether by carrying 

out vector control or increasing public awareness of CL in areas where CL is likely to spread or 

increase in incidence. Furthermore, spatial analyses revealed areas of highest disease burden as 

well as areas of highest risk for disease. These pieces of information are useful to health officers 
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wishing to allocate resources more efficiently, towards municipalities that are the most affected 

or are most at-risk, and to forecast likely years of high CL incidence. Municipalities in 

discordant High-Low clusters can examine their own policies in contrast to their neighbors’ and 

navigate towards more effective prevention and mitigation policy based on differences. Areas 

with high risk, especially those with high risk in low-incidence years, can use this knowledge to 

maintain baseline vector control policies at a reasonable level. This study highlights the utility of 

a more active surveillance or detection system for CL in Brazil, as counts were likely low and 

more accurate data could drive much more powerful experimentation. 

 
 

FUTURE DIRECTIONS 

 Further research describing the nature, composition, and life cycle of the vector 

populations, as they may change across Pará municipalities, would provide great insight into 

what factors may remain un-accounted for. There are considerably many other climatic factors, 

including wind speed, NDVI, mean diurnal range, water vapor, and land usage purpose, that may 

act to influence cutaneous leishmaniasis. Social factors of access to healthcare, marginality, and 

daily occupation should also be considered, as these influence the likelihood of cases being 

detected by the Brazilian Ministry of Health, or the odds of encountering a vector species of CL. 

It is also pertinent that some municipalities have proportionally more citizens employed in jobs 

that take them to the forest verge, such as lumber-industry jobs, where they are much more likely 

to contact CL than citizens who live in Belem and work in dockyards, for instance. 

 The results of this study are useful to public health officials who would like to forecast 

about CL incidence, be it quantitatively or spatially, by drawing inference from areas of high 
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likelihood and significant drivers of CL incidence as identified by this paper. Future studies 

should be implemented to strengthen models and account for further likely factors of import in 

the causal chain of CL infection. 
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TABLES 

Table 1. Descriptive characteristics of patients diagnosed with cutaneous leishmaniasis in Pará, 

Brazil, 2007-2019 

Patient Characteristic 
Number of Cases (%) 

  N=45,499 

Age 
 

   < 1 - 19 11,072 (24.3) 
   20-39 22,434 (49.3) 
   40-59 9,074 (19.9) 
   60-79 2,057 (4.5) 
   80 + 198 (0.43) 

Race 
 

   White 6,384 (14.0) 
   Black 4,186 (9.2) 
   Asian 612 (1.3) 
   Mixed 32,655 (71.8) 
   Indigenous 679 (1.5) 
   Unknown 983 (2.2) 

Sex 
 

   Male 36,618 (80.5) 
   Female 8,880 (19.5) 

Year of Diagnosis 
 

   2007 4,432 (9.7) 
   2008 3,845 (8.5) 
   2009 3,532 (7.8) 
   2010 2,465 (5.4) 
   2011 3,811 (8.4) 
   2012 4,280 (9.4) 
   2013 3,227 (7.1) 
   2014 4,529 (10.0) 
   2015 3,803 (8.4) 
   2016 1,745 (3.8) 
   2017 3,373 (7.4) 
   2018 3,206 (7.0) 
   2019 3,251 (7.1) 
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Table 2. Overall Multivariate Analysis of Climatologic and Sociologic Risk Factors with 

Cutaneous Leishmaniasis Incidence in Pará, Brazil, 2007-2019. 

Covariate Estimate (β) Std. Error p-value 
Pseudo 
R2 

Overall Model    0.570 
Intercept 24.317 7.019 0.001*  
Year -0.003 0.004 0.337  
Month 0.016 0.005 0.001*  
Average Minimum Temperature, Monthly -0.413 0.011 <0.001*  
Average Maximum Temperature, Monthly -0.272 0.013 <0.001*  
Average Precipitation, Monthly -0.002 0.0001 <0.001*  
Seasonally Lagged MEI Value 0.022 0.014 0.110  
Percent Population Urban 2.018 0.059 <0.001*  

*Statistically significant at 5% significance level (p<0.05)  
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FIGURES 

Figure 1. Map of Pará, Brazil. 
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Figure 2. a) Distribution of Cutaneous Leishmaniasis Cases by Reporting Municipality, Pará, 

Brazil, 2007-2019. b) Cumulative Incidence of Cutaneous Leishmaniasis Cases by Reporting 

Municipality, Pará, Brazil, 2007-2019. 
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Figure 3. Municipalities Considered Significant High Risk Areas for Cutaneous Leishmaniasis, 
Pará, Brazil. a) 2014 & b) 2015 are highest-incidence years, c) 2016 is the lowest-incidence year, 
and d) 2007-2019 synthesizes data from all years. 
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Figure 4. a) Local Spatial Autocorrelation of Cutaneous Leishmaniasis Incidence in Pará, Brazil, 
2007-2019. b) Locations of Most Likely Cutaneous Leishmaniasis Clustering in Pará, Brazil, 
2007-2019. 
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Figure 5. Local Spatial Autocorrelation of Cutaneous Leishmaniasis Incidence in Pará, Brazil, a)/ 
2014/2015, highest-incidence years b). 2016, lowest-incidence year. 
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SUPPLEMENT 

Table S1. Descriptive characteristics of environmental factors of interest in Pará, 2007-2019. 
Environmental Factor Median (IQR) 
Minimum Monthly Temperature (C) 

2007 22.0 (20.3, 23.7) 
2008 21.5 (19.9, 23.1) 
2009 22.0 (20.7, 23.3) 
2010 22.0 (19.9, 24.1) 
2011 21.9 (20.7, 23.1) 
2012 21.4 (20.0, 22.9) 
2013 22.0 (20.7, 23.2) 
2014 21.3 (20.1, 22.6) 
2015 22.0 (20.8, 23.2) 
2016 22.0 (20.2, 23.8) 
2017 22.0 (21.0, 23.0) 
2018 22.0 (20.7, 23.3) 
2019 21.9 (20.1, 23.8) 

Maximum Monthly Temperature (C) 
2007 33.0 (31.8, 34.2) 
2008 33.1 (31.8, 34.4) 
2009 33.1 (32.1, 34.0) 
2010 33.6 (31.7, 35.5) 
2011 33.0 (31.3, 34.7) 
2012 33.2 (31.9, 34.5) 
2013 32.9 (31.3, 34.5) 
2014 33.0 (31.9, 34.1) 
2015 33.8 (32.4, 35.3) 
2016 33.8 (32.3, 35.2) 
2017 33.8 (31.8, 35.9) 
2018 33.5 (32.4, 34.6) 
2019 33.9 (31.8, 36.1) 

Annual Precipitation (mm) 
2007 2098.9 (1607.4, 2590.5) 
2008 2360.6 (1856.0, 2865.2) 
2009 2461.2 (1831.3, 3091.2) 
2010 2103.6 (1591.2, 2615.9) 
2011 2519.2 (1844.8, 3193.7) 
2012 2186.0 (1582.3, 2789.7) 
2013 2340.5 (1817.7, 2863.3) 
2014 2300.9 (1634.6, 2967.3) 
2015 2004.7 (1352.6, 2656.8) 
2016 2223.9 (1399.4, 3048.5) 
2017 2247.1 (1414.7, 3079.5) 
2018 2273.8 (1875.1, 2672.4) 
2019 2315.4 (1382.6, 3248.1) 

Average Monthly Multivariate ENSO Index 
2007 -0.8 (-1.6, 0.0) 
2008 -1.1 (-1.3, -0.9) 
2009 0.3 (-1.0, 1.6) 
2010 -1.8 (-4.6, 1.0) 
2011 -1.3 (-1.9, -0.8) 
2012 -0.3 (-0.7, 0.1) 
2013 -0.3 (-0.7, 0.1) 
2014 -0.1 (-0.5, 0.4) 
2015 1.7 (0.3, 3.1) 
2016 0.0 (-1.5, 1.6) 
2017 -0.6 (-0.9, -0.2) 
2018 -0.5 (-1.4, 0.5) 
2019 0.3 (0.1, 0.5) 
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Table S2. Annual Multivariate Analyses of Climatologic and Sociologic Factors with Cutaneous 
Leishmaniasis Incidence in Pará, Brazil, 2007-2019. 
Covariate Estimate (β) Std. Error p-value Pseudo R-Sq 
2007    0.548 
Intercept 13.012 1.981 <0.001*  
Minimum Temperature -0.525 0.037 <0.001*  
Maximum Temperature -0.056 0.048 0.244  
Precipitation 0.000 0.001 0.663  
Seasonally Lagged MEI Value 0.079 0.085 0.353  
Percent Population Urban, 2010 2.411 0.203 <0.001*  
2008    0.562 
Intercept 16.502 1.728 <0.001*  
Minimum Temperature -0.426 0.036 <0.001*  
Maximum Temperature -0.269 0.046 <0.001*  
Precipitation -0.003 0.001 <0.001*  
Seasonally Lagged MEI Value -1.117 0.306 <0.001*  
Percent Population Urban, 2010 2.382 0.219 <0.001*  
2009    0.575 
Intercept 17.499 1.833 <0.001*  
Minimum Temperature -0.437 0.038 <0.001*  
Maximum Temperature -0.252 0.048 <0.001*  
Precipitation -0.002 0.0004 <0.001*  
Seasonally Lagged MEI Value -0.179 0.088 0.042*  
Percent Population Urban, 2010 1.941 0.202 <0.001*  
2010    0.598 
Intercept 14.349 1.920 <0.001*  
Minimum Temperature -0.430 0.039 <0.001*  
Maximum Temperature -0.155 0.046 <0.001*  
Precipitation -0.003 0.001 <0.001*  
Seasonally Lagged MEI Value 0.048 0.047 0.307  
Percent Population Urban, 2010 2.040 0.218 <0.001*  
2011    0.566 
Intercept 15.735 1.969 <0.001*  
Minimum Temperature -0.346 0.037 <0.001*  
Maximum Temperature -0.292 0.047 <0.001*  
Precipitation -0.004 0.001 <0.001*  
Seasonally Lagged MEI Value -1.161 0.211 <0.001*  
Percent Population Urban, 2010 1.967 0.209 <0.001*  
2012    0.560 
Intercept 12.634 1.999 <0.001*  
Minimum Temperature -0.392 0.042 <0.001*  
Maximum Temperature -0.138 0.051 0.006*  
Precipitation -0.001 0.0005 0.005*  
Seasonally Lagged MEI Value -0.680 0.153 <0.001*  
Percent Population Urban, 2010 2.255 0.224 <0.001*  
2013    0.583 
Intercept 15.507 1.902 <0.001*  
Minimum Temperature -0.273 0.039 <0.001*  
Maximum Temperature -0.291 0.047 <0.001*  
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Precipitation -0.003 0.0004 <0.001*  
Seasonally Lagged MEI Value 1.042 0.131 <0.001*  
Percent Population Urban, 2010 2.264 0.203 <0.001*  
2014    0.550 
Intercept 13.200 1.995 <0.001*  
Minimum Temperature -0.222 0.044 <0.001*  
Maximum Temperature -0.260 0.052 <0.001*  
Precipitation -0.003 0.0005 <0.001*  
Seasonally Lagged MEI Value -0.360 0.197 0.068  
Percent Population Urban, 2010 2.324 0.208 <0.001*  
2015    0.551 
Intercept 13.477 1.952 <0.001*  
Minimum Temperature -0.281 0.043 <0.001*  
Maximum Temperature -0.215 0.049 <0.001*  
Precipitation -0.003 0.001 <0.001*  
Seasonally Lagged MEI Value -0.227 0.097 0.019*  
Percent Population Urban, 2010 2.329 0.207 <0.001*  
2016    0.624 
Intercept 15.980 1.837 <0.001*  
Minimum Temperature -0.432 0.040 <0.001*  
Maximum Temperature -0.226 0.045 <0.001*  
Precipitation -0.001 0.0005 0.024*  
Seasonally Lagged MEI Value 0.043 0.072 0.550  
Percent Population Urban, 2010 1.972 0.217 <0.001*  
2017    0.58 
Intercept 19.491 1.713 <0.001*  
Minimum Temperature -0.420 0.039 <0.001*  
Maximum Temperature -0.295 0.042 <0.001*  
Precipitation -0.004 0.0005 <0.001*  
Seasonally Lagged MEI Value 0.924 0.233 <0.001*  
Percent Population Urban, 2010 1.837 0.217 <0.001*  
2018    0.575 
Intercept 16.271 1.914 <0.001*  
Minimum Temperature -0.308 0.041 <0.001*  
Maximum Temperature -0.288 0.046 <0.001*  
Precipitation -0.001 0.001 0.072  
Seasonally Lagged MEI Value 0.404 0.109 <0.001*  
Percent Population Urban, 2010 1.129 0.213 <0.001*  
2019    0.573 
Intercept 16.866 1.767 <0.001*  
Minimum Temperature -0.374 0.037 <0.001*  
Maximum Temperature -0.258 0.043 <0.001*  
Precipitation -0.002 0.0005 <0.001*  
Seasonally Lagged MEI Value -0.086 0.276 0.754  
Percent Population Urban, 2010 1.390 0.213 <0.001*  

*statistically significant at 5% significance level (p<0.05). 
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Figure S1. Highest and Lowest Annual Cutaneous Leishmaniasis Incidence by Reporting 

Municipality, in Pará, Brazil, 2007-2019. 
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Figure S2. Comparative Raw (Left) and Aspatially Smoothed (Right) Incidence Rates of 

Cutaneous Leishmaniasis, Pará, Brazil, 2007-2019. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



46 

 

Figure S3. Comparative Raw (Left) and Spatially Smoothed (Right) Incidence Rates of 

Cutaneous Leishmaniasis, Pará, Brazil, 2007-2019. 

 
 
 
 


