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Abstract

Fair Clustering Problems

By Zirui Deng

Clustering is a fundamental tool in machine learning and data mining which takes

many forms according to different objectives being considered. It entails partitioning

points into groups (clusters) and may be used to make decisions for each point based

on its group. We study various fair clustering problems under the disparate impact

doctrine, where each minority class must be represented approximately equally in

every cluster. We offer a survey of recent clustering algorithms that account for

different notions of fairness.
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1 Introduction

Machine learning algorithms and their potential bias towards underrepresented groups

have become increasingly visible. While the learning algorithms themselves are not

necessarily biased or unfair in nature, they may still run the unintended risk of ex-

posing and amplifying biases that are already present in the training data available.

Thus the recent work that focuses on designing fair algorithms is certainly justified.

There has been a growing interest in developing research into fairness in various learn-

ing and optimization problems. The goal here is to develop reasonable criteria and

algorithms to ensure that we are able to find solutions for optimization problems that

are fair with respect to a certain protected feature such as gender or race.

Recent exploration of fairness in machine learning mainly involves two directions. The

first is in defining what fairness means exactly. We trace the inception of individual

fairness considerations to Dwork et al. [DHP+12]. In their framework, fairness is

characterized by the principle that any two individuals who are similar with respect

to a particular feature or task should be classified similarly. They then assume a

distance metric that defines similarity between individuals. Specifically, the guiding

principle of fairness is formalized as a Lipschitz condition on the classifier [DHP+12].

The Lipschitz condition requires that any two individuals x, y that are at distance

d(x, y) ∈ [0, 1] are mapped to distributions M(x) and M(y), respectively, with the

property that the statistical distance between M(x) and M(y) is at most d(x, y). In

other words, the distributions over outcomes observed by x and y are indistinguishable

up to d(x, y). The optimization problem of constructing fair Lipschitz classifiers can

be expressed as a linear program and solved efficiently.

The second direction, which is the focus of this work, is in designing algorithms that

yield fair outcomes according to one specific notion of fairness. All of the fair al-
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gorithms we will proceed to dig into come from this line of exploration. They also

share the notion of disparate impact due to Feldman et al. [FFM+15], which infor-

mally states that protected attributes such as race and gender should not explicitly

affect decision making, and the decisions made should not reflect disproportionately

differences for applicants in different protected classes [CKLV17].

In this work we consider the problem of clustering, one of the most common unsuper-

vised problems. Typically with clustering problems we are given a set X of n points

that are located in some metric space. We aim to find a clustering, i.e., a partition

of X into different groups (or clusters) that result in an optimal value with respect

to a certain objective function. In the metric k-center problem, for instance, our goal

is to find a set of k vertices for which the largest distance of any point to its closest

vertex in the chosen set of k vertices is minimum. In the k-median problem, our goal

is to find a set of k vertices for which the sum of the distances from the points in X

to their nearest centers is minimum. The vertices must be in a metric space, thus

providing a complete graph that satisfies the triangle inequality.

The classical clustering problems can all be solved exactly, but in exponential time.

Since we would like to avoid working with NP-hard problems, we instead turn to

approximation techniques that give rise to substantially faster algorithms. There

have been several proposed approximate solutions to the classical k-center and k-

median problems. A greedy algorithm given by Gonzalez [Gon85] is known to be a

2-approximation for the k-center problem. Another interesting algorithm given by

Hochbaum and Shmoys is also a 2-approximation [HS85]. Their method uses the

technique of parameter pruning [Vaz03]. The k-median clustering problem can be

approximated by a linear programming relaxation of an integer program. Assume
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that the points in X are indexed by 1, 2, ..., n.

min
∑
i,j

xijd(i, j)

∑
j

yj ≤ k

∑
j

xij = 1

xij ≤ yj

xij, yj ∈ {0, 1}

where d(i, j) is the distance between two points i, j (1 ≤ i, j ≤ n), yj = 1 iff point

j is chosen as a center, and xij = 1 iff j is the center that serves point i. Because

an integer program in general cannot be solved efficiently, we relax it into a linear

program that can be solved in linear time, by replacing

xij, yj ∈ {0, 1}

with

xij, yj ∈ [0, 1].

Then we can round the (fractional) solution to this linear program to get an approx-

imate solution to the original problem.

For convenience in the subsequent discussion, we assume that each point x ∈ X has a

color that helps identify its protected class. A clustering algorithm that does not take

the notion of protected attributes into consideration is called colorblind [CKLV17],

and it may result in unfair clusterings. Figure 1 illustrates the difference between fair

and colorblind algorithms [CKLV17].
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Figure 1: Illustration for the difference between fair and unfair (colorblind) algo-
rithms.

As we know, a classic, colorblind k-center clustering algorithm would group points

a, b, c into one cluster and x, y, z into another, with a and z as centers. A fair k-center

clustering algorithm, on the other hand, may group a, b, x into one cluster and c, y, z

into another with a and z as centers, as indicated by the dashed line, so that every

protected class is represented relatively equally in each cluster. We observe that in

the fair case a point is no longer necessarily assigned to its nearest cluster center; in

this example, x is assigned to a even though z is closer.

One real-world problem that captures the essence of the above figure would be like

this [BGK+19]: Suppose we are given the task of assigning incoming students to k

schools such that the maximum distance of any student to his or her nearest school

is minimized. The school capacity is indicated by the number of its teachers: For

each teacher, s students, for example, can be admitted. It is easy to tell that this

is actually an instance of the metric k-center problem. A näıve solution may result

in some schools having more boys than girls and vice versa. We would prefer a fair

assignment where the classes are more balanced in terms of gender. We need to

assign the children so that the gender ratio is approximately 1:1 while minimizing the

maximum distance.

We will be discussing fair approximation algorithms in subsequent sections. The
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algorithms all run in polynomial time. In Section 2, we first examine the work by

Chierichetti et al. [CKLV17] that employs the notion of fairlets for solving fair k-

center and k-median problems. A fairlet is a small set of elements that satisfies the

fairness constraint. Chierichetti et al. [CKLV17] have shown that fair k-median and

k-center can be solved by first decomposing an instance into fairlets and then solving

the clustering problem on the set of centers of these fairlets. Their main results are a

4-approximation for the fair k-center problem and (t+ 1 +
√

3 + ε)-approximation for

the k-median problem where t is the balance (defined in section 2) of the resulting

clustering from the algorithm.

In Section 3, the idea of restricted dominance (RD) and minority protection (MP)

is employed by Bera et al. [BCFN19] in their presentation of fair algorithms for

clustering. Additionally, the results by Bera et al. have to do with the amount of

overlap, ∆, defined to be the maximum number of protected groups any individual can

be a part of: Given any ρ-approximation algorithm for a classic clustering problem, a

(ρ+2)-approximation with 4∆+3 additive error for the corresponding fair clustering

problem can be achieved. In the special case of ∆ = 1, meaning no overlap between

clusters, the additive error can be improved to 3 [BCFN19].

In Section 4, we investigate the fair correlation clustering problem brought forth

by Ahmadian et al. [AEKM20], which takes multiple colors into account and uses

information about similarity and dissimilarity relationships among a set of points.

In contrast to other k-median and k-center problems, the number of clusters is not

specified beforehand but rather determined based on the outcome of an optimization.

Their main contribution lies in a fairlet-based reduction for the graph clustering

problem of correlation clustering. They have introduced a cost function that caters

to the correlation clustering fairlet decomposition problem and proven that this cost

can be approximated by a median-type clustering cost function for a carefully defined
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metric space [AEKM20]. Their results depend on an upper bound of α on the fraction

of vertices of every color of every each cluster.

In Section 5, we consider the notion of essential fairness introduced by Bercea et

al. [BGK+19] A cluster C is said to be essentially fair if there exists a fractional fair

cluster C ′ such that for each color h the number of color h points in C differ by at most

1 from the mass of color h points in C ′, and this difference induces a small additive

fairness violation. Bercea et al. start with a solution to the unconstrained problem.

and derive a fair clustering solution with the same centers. They have achieved this

by a technique called weakly supervised LP rounding [BGK+19], in that they solve

an LP for the fair clustering problem and then combine it with the integral unfair

solution by careful rounding. They have obtained results in this way for a wide range

of clustering problems, not limited to k-center and k-median. We also notice that the

bounds used in this section are similar to the idea of restricted dominance (RD) and

minority protection (MP) in Section 3.

There is some notational convention shared by the subsequent sections. For an integer

k, let [k] denote the set {1, ..., k}. For two points u, v in a vertex set V , (u, v) denotes

the edge that connects u and v, and d(u, v) denotes the distance between u and v.

2 Fair Clustering Through Fairlets

Let X be a set of points in a metric space. In this section we assume that each point

in X is colored either red or blue. If R denotes the set of red points and B the set of

blue points, then R and B are disjoint and X = R ∪B.
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2.1 Definitions

We first define a notion of balance with regard to the coloring of points as follows.

Definition 1 (Equivalent to Definition 1 of [CKLV17]). For a non-empty subset

X ′ ⊆ X, the balance of X ′ is defined as:

balance(X ′) = min

(
|R ∩ X’|
|B ∩ X’|

,
|B ∩ X’|
|R ∩ X’|

)
∈ [0, 1]

where |R ∩ X’| and |B ∩ X’| denote the number of red points (blue points, respectively)

in X ′. A clustering is a partition of all client points into disjoint subsets. The balance

of a clustering C = {C1, C2, ...} is defined as:

balance(C) = min
Ci∈C

balance(Ci).

In order to introduce the notion of fairness and fairlets employed in this section, we

need to prove the following lemma.

Lemma 1 (Equivalent to Lemma 3 of [CKLV17]). Let b/r ≤ balance(X) ≤ 1 for

some integers 1 ≤ b ≤ r such that gcd(b, r) = 1. Then there exists a clustering

Y = {Y1, ..., Ym} of X such that: (i) |Yj| ≤ b+ r for each Yj ∈ Y , i.e., each cluster is

small, and (ii) balance(Y ) ≥ b/r.

Proof. Without loss of generality, let |B ∩ X’| ≤ |R ∩ X’|. By assumption, |B∩X’|
|R∩X’| ≥

b
r
.

Case 1: |B∩X’|
|R∩X’| >

b
r
. We construct the clustering Y iteratively as follows.

If |R ∩ X’| − |B ∩ X’| ≥ r− b, then we remove r red points and b blue points from the

current set to form a cluster Yj ∈ Y , assuming that there are enough points from which

to remove to form the cluster. By construction, |Yj| = b + r and balance(Yj) = b/r.
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Furthermore the leftover set has balance (|B ∩ X’| −b)/(|R ∩ X’| −r) ≥ b/r and we

iterate on this leftover set.

If |R ∩ X’| − |B ∩ X’| < r− b, then we remove (|R ∩ X’| − |B ∩ X’|+b) red points and

b blue points from the current set to form Yj ∈ Y , assuming that there are enough

points from which to remove to form the cluster. Note that |Yj| ≤ b + r and that

balance(Yj) = b/(|R ∩ X’| − |B ∩ X’|+b) ≥ b/r.

Finally note that when the remaining points are such that the red and the blue points

are in a one-to-one correspondence, we can pair them up into perfectly balanced

clusters of size 2.

Case 2: |B∩X’|
|R∩X’| = b

r
, which means |B ∩ X’| = mb and |R ∩ X’| = mr. We can simply

construct a clustering Y consisting of m clusters, each of which contains b blue points

and r points.

We call the clustering Y as described in Lemma 1 a (b, r)-fairlet decomposition of

X and call each cluster Yj ∈ Y a fairlet. Now we proceed to define fair clustering

problems with respect to the clustering objectives. To do so, we need to assume that

the metric space containing X is equipped with a distance function d : X2 → R≥0.

Definition 2 (Equivalent to Definition 4 of [CKLV17]). The problem of dividing X

into a clustering C such that (i) |C| = k, (ii) balance(C) ≥ t, and (iii) φ(X,C) =

max
Ci∈C

min
c∈Ci

max
x∈Ci

d(x, c) is minimized is called the (t, k)-fair center problem.

Similarly, for the definition of the (t, k)-fair median problem, the goal is to di-

vide X into C such that (i) |C| = k, (ii) balance(C) ≥ t and (iii) ψ(X,C) =∑
Ci∈C

min
c∈Ci

∑
x∈Ci

d(x, c) is minimized.

For the definition of the (t, k)-fair means problem, the goal is to divide X into C
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such that (i) |C| = k, (ii) balance(C) ≥ t and (iii) ψ(X,C) =
∑
Ci∈C

min
c∈Ci

∑
x∈Ci

(d(x, c))2

is minimized.

Here are some extra notations we need to introduce before defining decomposition

cost. Let Y = {Y1, ..., Ym} be a fairlet decomposition. For each cluster Yi, we let an

arbitrary point yi ∈ Yi be its center. Let Y ′ = {y1, ..., ym} be the set of fairlet centers

from Y . For any point x ∈ X, we denote β : X → [m] as the index of the fairlet to

which it is mapped. That is, the index of the fairlet to which x belongs is β(x). Thus

the center to which x is assigned can be expressed as yβ(x). We may now define the

cost of a fairlet decomposition.

Definition 3 (Equivalent to Definition 5 of [CKLV17]). For a fairlet decomposition,

we define its k-center cost as maxx∈X d(x, yβ(x)), k-median cost as
∑

x∈X d(x, yβ(x)),

and k-means cost as
∑

x∈X(d(x, yβ(x)))
2. A (b, r)-fairlet decomposition is optimal if

it has minimum cost among all possible (b, r)-fairlet decompositions.

2.2 Main results

Here we present the main results of [CKLV17] that show that any fair clustering

problem can be reduced to finding a fairlet decomposition through constructions of

min-cost flow (MCF) instances and then clustering the resulting fairlets using classical

algorithms. Given a standard graph with a source, a sink, edge costs and capacities,

the focus of an MCF problem is to push a certain amount of flow from source to

sink at a minimum cost while maintaining flow conservation and satisfying capacity

constraints. The MCF problem can be solved in polynomial time.

Theorem 1 (Equivalent to Theorem 13 of [CKLV17]). There exists a 4-approximation

algorithm for the (1/t’, k)-fair center problem, where t = 1/t′, for any positive integer

t′. The algorithm first finds fairlets and then clusters them.
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Proof. Here we mainly contribute to a proof of the 2 factor omitted in [CKLV17]. The

creation of a min-cost flow (MCF) instance is similar to that in [CKLV17]. Suppose

Z = {Z1, ..., Zk} is an optimal (1/t′, k)-fair center clustering with cost C. That is, Z

has k clusters, each with balance at least 1/t′, and all points are within distance C

of their cluster center. Our goal is to find a (1/t’,k)-fair center clustering of cost at

most 4C.

By applying Lemma 1 to each cluster of Z, with b = 1 and r = t′, we get a (1,t’)-

fairlet decomposition Y . For every point x ∈ X, we let Zj(x) denote the center of the

cluster Zj ∈ Z containing x, and from the notations introduced earlier we have yβ(x)

as the center of the cluster Yβ(x) ∈ Y containing x. The maximum distance between

any two points in one fairlet is at most 2C (In particular, all red-blue distances are

at most 2C): Since Z is optimal, the distance between x and Zj(x), d(x, Zj(x)), and

the distance between yβ(x) and Zj(x), d(yβ(x), Zj(x)), are both at most C. Thus by

triangular inequality, d(x, yβ(x)) ≤ d(x, Zj(x)) + d(yβ(x), Zj(x)) = 2C.

Now we need to set up an appropriate MCF instance as follows. Note that for k-center,

the objective is usually encoded in the constraints, and the linear program itself has

no objective function. We search for a minimum threshold, a positive parameter τ

such that the problem is feasible. Given the set of blue points B, the set of red points

R, any integer t′, and τ , we construct a directed graph H = (V,E), whose node set

V consists of source node β, sink node ρ, all nodes in B ∪R, and t′ additional copies

of each node v ∈ B ∪R, i.e.

V = {β, ρ} ∪B ∪R ∪ {bji : bi ∈ B, j ∈ [t′]} ∪ {rji : ri ∈ R, j ∈ [t′]}

where bji ’s and rji ’s are the additional copies. The directed edges of H are made up

of the following:
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(i) A (β, ρ) edge with cost 0 and capacity min(|B|, |R|),

(ii) a (β, bi) edge for each bi ∈ B and an (ri, ρ) edge for each ri ∈ R, all of whom

have cost 0 and capacity t′ − 1,

(iii) a (bi, b
j
i ) edge for each bi ∈ B and for each j ∈ [t′], and a (ri, r

j
i ) edge for each

ri ∈ R and for each j ∈ [t′], all of whom have cost 0 and capacity 1,

(iv) a (bmi , r
n
j ) edge with capacity 1 for each bi ∈ B, rj ∈ R and for each m,n ∈ [t′],

whose cost is 1 if d(bi, rj) ≤ τ and ∞ otherwise. That is to say, we disregard

edges of length that are greater than τ .

Furthermore, we specify that each node in B has a supply of 1, each node in R has a

demand of 1, β has a supply of |R|, and ρ has a demand of |B|. The other nodes each

have zero supply and zero demand. Below we show an example of such construction

for t′ = 2. Here the only nodes with positive demands or supplies are β, ρ, b1, b2, b3, r1

and r2, and all dotted edges have cost 0. For an example of this construction, see

Figure 2 [CKLV17].

Figure 2: Example construction of an MCF instance for the directed graph where
t′ = 2.

Since all demands and capacities are integers, there exists an integral solution that

pushes integral flow across each edge. If we set up the MCF instance in the manner

shown above [CKLV17], allowing only red-blue edges of length at most 2C, i.e. we set
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τ to 2C, we will get a (1,t’)-fairlet decomposition Y , again with all red-blue distances

at most 2C. (Each fairlet has either a single red point or a single blue point, which

we can treat as the center of that fairlet.)

Since Y ′ as the set of fairlets centers from Y is a subset of X, we know Y ′ has a

k-center decomposition with cost at most C. So the Gonzalez algorithm [Gon85] will

find a k-center decomposition Z ′ of Y ′ with cost at most 2C. Now we combine Y and

Z ′. That is, starting with clustering Z ′: for each point x, add it to the same cluster

as its fairlet center yβ(x). Then x is at distance at most 2C from yβ(x), and yβ(x) is at

distance at most 2C from its cluster center in Z ′. Thus we have a (1/t’,k)-fair center

clustering of cost at most 2C + 2C = 4C.

Theorem 2 (Equivalent to Theorem 15 of [CKLV17]). There exists a (t′+1+
√

3+ε)-

approximation algorithm for the (1/t’, k)-fair median problem for any positive integer

t′. The algorithm first finds fairlets and then clusters them.

Proof. Here we mainly contribute to a proof of the t′ factor omitted in [CKLV17]. The

creation of an MCF instance is similar to that in [CKLV17]. Suppose Z = {Z1, ..., Zk}

is an optimal (1/t′, k)-fair median clustering with cost C. That is, Z has k clusters,

each with balance at least 1/t′, and the sum of the distances of every point to its

cluster center is at most C. Our goal is to find a (1/t’,k)-fair median clustering of cost

at most (t′ + 1 +
√

3 + ε)C.

By applying Lemma 1 to each cluster of Z, with b = 1 and r = t′, we get a (1,t’)-

fairlet decomposition Y . For every point x ∈ X, we let Zj(x) denote the center of

the cluster Zj ∈ Z containing x. By triangular inequality, d(x, yβ(x)) ≤ d(x, Zj(x)) +

d(yβ(x), Zj(x)). Then since Z is optimal, we take the sum over all points in X and
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get:

∑
x∈X

d(x, yβ(x)) ≤
∑
x∈X

d(x, Zj(x)) + (t′ − 1)
∑
x∈Y ′

d(x, Zj(x))

≤
∑
x∈X

d(x, Zj(x)) + (t′ − 1)
∑
x∈X

d(x, Zj(x))

= t′
∑
x∈X

d(x, Zj(x))

= t′C.

We create an MCF instance like we do with the k-center problem with the exception

that we set the cost of every red-blue edge to the distance between the corresponding

red node and blue node. That is, for each bi ∈ B, rj ∈ R and for each m,n ∈ [t′],

we set the cost of the edge (bmi , r
n
j ) to d(bi, rj). In this way we will get a (1,t’)-fairlet

decomposition Y with the sum of all red-blue distances at most t′C. (Each fairlet has

either a single red point or a single blue point, which we can treat as the center of

that fairlet.)

Since Y ′ as the set of fairlets centers from Y is a subset of X, we know Y ′ has a

k-median decomposition with cost at most C. So the Li & Svensson algorithm [LS16]

will find a k-median decomposition Z ′ of Y ′ with cost at most (1 +
√

3 + ε)C. Now we

combine Y and Z ′ in a fashion similar to that in Theorem 1 and get a (1/t’,k)-fair

median clustering of cost at most t′C + (1 +
√

3 + ε)C = (t′ + 1 +
√

3 + ε)C.

Theorem 3. There exists a (2t′ + 6.357)-approximation algorithm for the (1/t’, k)-

fair means problem for any positive integer t′. The algorithm first finds fairlets and

then clusters them.

Proof. Here we mainly contribute to a proof of the 2t′ factor. The creation of an MCF

instance is similar to that in [CKLV17]. Suppose Z = {Z1, ..., Zk} is an optimal (1/t′,
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k)-fair means clustering with cost C. That is, Z has k clusters, each with balance at

least 1/t′, and the sum of the distances squared of every point to its cluster center

is at most C. Our goal is to find a (1/t’,k)-fair means clustering of cost at most

(2t′ + 6.357)C.

By applying Lemma 1 to each cluster of Z, with b = 1 and r = t′, we get a (1,t’)-

fairlet decomposition Y . For every point x ∈ X, we let Zj(x) denote the center of

the cluster Zj ∈ Z containing x. By triangular inequality, d(x, yβ(x)) ≤ d(x, Zj(x)) +

d(yβ(x), Zj(x)). Squaring both sides of this we get another inequality:

(d(x, yβ(x)))
2 ≤ (d(x, Zj(x)) + d(yβ(x), Zj(x)))2

= (d(x, Zj(x)))2 + (d(yβ(x), Zj(x)))2 + 2d(x, Zj(x))d(yβ(x), Zj(x))

≤ (d(x, Zj(x)))2 + (d(yβ(x), Zj(x)))2 + (d(x, Zj(x)))2 + (d(yβ(x), Zj(x)))2

= 2(d(x, Zj(x)))2 + 2(d(yβ(x), Zj(x)))2

Then since Z is optimal, we take the sum over all points in X and get:

∑
x∈X

(d(x, yβ(x)))
2 ≤ 2

∑
x∈X

(d(x, Zj(x)))2 + 2(t′ − 1)
∑
x∈Y ′

(d(x, Zj(x)))2

≤ 2
∑
x∈X

(d(x, Zj(x)))2 + 2(t′ − 1)
∑
x∈X

(d(x, Zj(x)))2

= 2t′
∑
x∈X

(d(x, Zj(x)))2

= 2t′C.

We create an MCF instance like we do with the k-center problem with the exception

that we set the cost of every red-blue edge to the distance squared between the

corresponding red node and blue node. That is, for each bi ∈ B, rj ∈ R and for each

m,n ∈ [t′], we set the cost of the edge (bmi , r
n
j ) to (d(bi, rj))

2. In this way we will get a
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(1,t’)-fairlet decomposition Y with the sum of all red-blue distances squared at most

2t′C. (Each fairlet has either a single red point or a single blue point, which we can

treat as the center of that fairlet.)

Since Y ′ as the set of fairlets centers from Y is a subset of X, we know Y ′ has a k-

means decomposition with cost at most C. The best known approximation algorithm

for classical k-means will find a k-means decomposition Z ′ of Y ′ with cost at most

6.357C [ANFSW17]. Now we combine Y and Z ′ in a fashion similar to that in

Theorem 1 and get a (1/t’,k)-fair means clustering of cost at most 2t′C + 6.357C =

(2t′ + 6.357)C.

Remark: The results of Theorem 1 and Theorem 2 have been claimed in [CKLV17].

Theorem 3 is a completely new result that has not been present in existing research

literature in the fair clustering area, until now.

3 Algorithms for ”Relaxed” Fair Clustering

Building on the discussion in the previous section, we move on to consider the more

general situation where individuals are allowed to belong to more than one protected

group. We denote ∆ to be the amount of overlap, i.e. the maximum number of groups

of which any individual can be a member. For example, if X is the set of clients and

X1, X2, ..., Xl are l groups of X with X =
⋃
i∈[l] Xi, then the Xi’s are disjoint if and

only if ∆ = 1. The quality of solutions to the fair clustering problems depends on

∆. To obtain more fair algorithms for a wider variety of problems, we consider a

somewhat ”relaxed” version of fairness where we allow very small additive violations

to the fairness constraint. We are able to get fair algorithms for any lp-norm objective

if small additive violations are allowed, and these violations are shown to be negligible
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through empirical studies on large data sets [BCFN19].

For each group i, we define two parameters βi, αi ∈ [0, 1]. We say that a clustering

solution is fair if each cluster satisfies restricted dominance (RD), which states that

the fraction of individuals from group i in any cluster is at most αi, and minority

protection (MP), which asserts that the fraction of individuals from group i in any

cluster is at least βi [BCFN19]. βi, αi’s can be arbitrary parameters. With this notion,

we are able to define fair clustering problems in this section using (RD) and (MP)

fairness constraints.

We present a two-step procedure for solving the fair clustering problem. First, we

solve the classical clustering problem and fix the centers S. Then, we solve a fair

assignment problem, which we proceed to define below, on the same set of facilities

to get assignment φ. We return (S, φ) as our fair solution.

Definition 4 (Equivalent to Definition 2 of [BCFN19]). Given the original set of

clients X and l groups of X, X1, X2, ..., Xl, with X =
⋃
i∈[l] Xi, and a set S ⊆ F with

|S| = k, where F is the set of all possible cluster center locations, the objective of

the fair assignment problem is to find the assignment φ : X → S such that (a) the

following (RD) and (MP) constraints are satisfied:

|{v ∈ Xi : φ(v) = f}| ≤ αi · |{v ∈ X : φ(v) = f}|,∀f ∈ S,∀i ∈ [l] (RD)

|{v ∈ Xi : φ(v) = f}| ≥ βi · |{v ∈ X : φ(v) = f}|,∀f ∈ S,∀i ∈ [l], (MP)

and (b) the objective function L(S;φ) = (Σv∈Xd(v, φ(v))p)1/p is minimized among all

such assignments. Here, p = 1, 2,∞ correspond to the fair k-median, k-means, and

k-center problems respectively.

We denote as OPTv(I) the optimal value of the classical clustering problem (like those
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defined in the introduction section) given an instance I of the problem. Similarly,

we denote as OPTf (I) the optimal value of any instance I of the fair clustering

problem and OPTa(I) the optimal value of any instance I of the assignment problem

defined above. Before we show a reduction from the fair clustering problem to the

fair assignment problem, we need to introduce the notion of λ-additive violation:

A fair solution (S, φ) has λ-additive violation if and only if the (RD) and (MP)

constraints are satisfied with a margin of error of λ. More formally, for any f ∈ S

and for any i ∈ [l], we have

βi · |{v ∈ X : φ(v) = f}| − λ ≤ |{v ∈ Xi : φ(v) = f}| ≤ αi · |{v ∈ X : φ(v) = f}|+ λ.

Theorem 4 (Equivalent to Theorem 3 of [BCFN19]). Given a ρ-approximation al-

gorithm A for the classical clustering problem and an algorithm B with λ-additive

violation for the fair assignment problem, there is a (ρ+ 2)-approximation algorithm

for the fair clustering problem with λ-additive violation.

Proof. Given an instance I of the fair clustering problem, we run algorithm A on

I to get a solution (S, φ) (not necessarily fair). We have L(S;φ) ≤ ρ · OPTv(I) ≤

ρ ·OPTf (I). Let J be the instance of the fair assignment problem obtained by taking

S as the set of facilities. We run B on J to get an assignment φ̂ with λ-additive

violation. (S, φ̂) is the desired solution. The rest of the proof follows from the lemma

below.

Lemma 2 (Equivalent to Lemma 4 of [BCFN19]). OPTa(J) ≤ (ρ+ 2) ·OPTf (I).

Proof. Suppose the optimal solution of I is (S∗, φ∗) with L(S∗;φ∗) = OPTf (I). Re-

calling that (S, φ) is the solution returned by algorithm A, we describe the existence

of an assignment φ′ : X → S such that φ′ satisfies (RD) and (MP) constraints and
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L(S;φ′) ≤ (ρ+2) ·OPTf (I): For every f ∗ ∈ S∗, define nrst(f ∗) := argminf∈Sd(f, f ∗)

as the closest facility in S to f ∗. For every client c ∈ X, define φ′(c) := nrst(φ∗(c)).

It is rather straightforward to prove that (RD) and (MP) constraints are satisfied.

Please refer to [BCFN19] for details.

Now we proceed to show L(S;φ′) ≤ (ρ + 2) · OPTf (I): Fix a client c ∈ X. Let

f = φ(c), f ′ = φ′(c), f ∗ = φ∗(c). With the definition of nrst and triangular inequality,

we have

d(c, f ′) = d(c, nrst(f ∗)) ≤ d(v, f ∗) + d(f ∗, nrst(f ∗))

≤ d(v, f ∗) + d(f ∗, f)

≤ 2d(v, f ∗) + d(v, f).

Then it is easy to verify that

L(S;φ′) ≤ 2L(S∗;φ∗) + L(S;φ) ≤ 2OPTf (I) + ρ ·OPTf (I) = (ρ+ 2) ·OPTf (I).

We now present a theorem that helps us ultimately achieve our main result. The proof

of this theorem depends on an algorithm for the minimum degree-bounded matroid

basis problem [KLS12]. For this problem, we are typically given a matroid (V, I), a

cost function c : V → R, and a hypergraph (V,E). For each hyperedge e ∈ E(H),

we are also given lower and upper bounds, l(e) and u(e), respectively. The goal is to

find a basis B such that l(e) ≤ |B ∩ e| ≤ u(e) for every e, with minimum cost.

Theorem 5 (Equivalent to Theorem 7 of [BCFN19]). There exists an algorithm with

(4∆ + 3)-additive violation for the fair assignment problem.
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Please refer to [BCFN19] for details of the proof for this result. Combining the two

above theorems in this section, we arrive at the main result:

Theorem 6 (Equivalent to Theorem 1 of [BCFN19]). Given a ρ-approximation al-

gorithm A for the classical clustering problem, we can derive a (ρ+ 2)-approximation

solution (S, φ) with (4∆ + 3)-additive violation for the fair clustering problem.

4 Fair Correlation Clustering

The problem of correlation clustering makes use of both similarity and dissimilarity

relationships within a set of objects to cluster them [BBC04]. In this problem, the

number of clusters is not specified beforehand but determined by the outcome of an

optimization, unlike other clustering problems like k-median and k-center.

The technique developed in Section 1 has been used only for metric space clustering

problems such as k-center and k-median [AEKM20]. Here in this section we aim at

developing a reduction from the graph clustering problem of correlation clustering

based on the notion of fairlets. To be more specific, we derive a cost function for

dealing with the correlation clustering fairlet decomposition problem and then prove

that this cost can be approximated by a median-type cost function for a carefully

defined metric space [AEKM20]. Then, with a solution to this problem, we show

that the fair correlation clustering instance can be reduced to a regular correlation

clustering instance through a graph transformation.

4.1 Problem statement

Let G = (V,E) be a complete undirected graph on |V | = n vertices and σ : E → R

be a function that assigns a label to each edge. The label σ(e) for each e is either
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+1 (indicating that the two endpoints of e are similar) or −1 (indicating that they

are dissimilar). This is an instance of an unweighted version of the problem. Let

E+ = {e ∈ E : σ(e) > 0} be the set of positive edges and E− = E \ E+ be the

set of non-positive edges. For subsets S, T ⊆ V , let E(S) = E ∩ S2 denote the

edges inside S and E(S, T ) = E ∩ (S × T ) denote the edges between S and T . Let

E+(S, T ) = E+ ∩ E(S, T ) and E−(S, T ) = E− ∩ E(S, T ).

As established before, a clustering is a partitioning C = {C1, C2, ...} of V into dis-

joint subsets. We define intra-cluster and inter-cluster edges in a clustering C as

intra(C) =
⋃
Ci∈CE(Ci) and inter(C) = E \ intra(C). The correlation clustering

cost of C is defined as:

COST (G,C) =
∑

e∈intra(C)∩E−
|σ(e)|+

∑
e∈inter(C)∩E+

|σ(e)|

= |intra(C) ∩ E−|+ |inter(C) ∩ E+|.

Our goal is to find a clustering C that minimizes COST (G,C) and also satisfies

fairness constraints. We give a general reduction from fair correlation clustering to

a median fairlet decomposition that works for any notion of fairness that has been

considered.

4.2 Overview of results

Consider a fairlet decomposition P = {P1, P2, ...}. For each fairlet Pi, we are going to

let FCOST in(Pi) = |E− ∩ intra(Pi)| be the number of negative edges inside Pi. For

fairlets Pi and Pj (i 6= j), we let FCOST out(Pi, Pj) be the number of edges between
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them with the minority sign, i.e.,

FCOST out(Pi, Pj) = min(|E−(Pi, Pj)|, |E+(Pi, Pj)|).

Then we let

FCOST in(P ) =
∑
i

FCOST in(Pi),

FCOST out(P ) =
∑
i<j

FCOST out(Pi, Pj),

and finally,

FCOST (P ) = FCOST in(P ) + FCOST out(P ).

Given a constrained correlation clustering instance G and a fairlet decomposition P

for G, we define a reduced correlation clustering instance as follows. Let GP be a

complete graph on {p1, ..., pn}, with n = |P |, where each vertex pi corresponds to a

fairlet Pi ∈ P . The label σ(pi, pj) of the edge between pi and pj is the majority sign

of the edges in E(Pi, Pj) (with ties broken arbitrarily) multiplied by a weight that is

equal to the number of edges in E(Pi, Pj) with the majority sign. This instance GP is

a weighted instance, but as we will see, the weights of the edges are within a constant

factor of each other, so we can still use unweighted correlation clustering methods.

Given a solution to this unconstrained problem, we can then expand it into a solution

C’ to the original constrained problem. See Algorithm 1.

Algorithm 1 Constrained Correlation Clustering

1. P ← approximate fairlet decomposition.
2. GP : (pi, pj) gets majority sign in E(Pi, Pj) and weight
max(|E+(Pi, Pj), |E−(Pi, Pj)|).
3. Let C be an approximate (non-constrained) correlation clustering solution of GP .
4. Output clustering C’ = {∪pj∈CiPj : Ci ∈ C}.
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The first two lemmas below prove a transformation between a solution of G and a

solution of GP . The third lemma bounds the cost of a fairlet decomposition in terms

of the cost of the optimal solution to the constrained correlation clustering problem.

Please refer to the appendix of [BCFN19] for proof of these lemmas.

Lemma 3 (Equivalent to Lemma 3.1 of [AEKM20]). Given a correlation clustering

instance G, a fairlet decomposition P for G, and a clustering C of G, there exists a

clustering C’ of GP such that

COST (GP ,C’) ≤ COST (G,C) + FCOST out(P ).

Lemma 4 (Equivalent to Lemma 3.2 of [AEKM20]). Let C be a clustering of GP

and C’ be the clustering computed in Algorithm 1. Then,

COST (G,C’) ≤ COST (GP ,C) + FCOST (P ).

Lemma 5 (Equivalent to Lemma 3.3 of [AEKM20]). For any constrained correla-

tion clustering instance G and any constrained clustering C of G, there is a fairlet

decomposition P of G satisfying FCOST (P ) ≤ COST (G,C).

With these three lemmas we have the following:

Theorem 7 (Equivalent to Theorem 3.4 of [AEKM20]). Assume there is an η-

approximation algorithm A1 for finding the minimum cost fairlet decomposition P

and a β-approximation algorithm A2 for solving the unconstrained correlation clus-

tering instance GP . Then Algorithm 1 produces a (β(1 + η) + η)-approximation for

the constrained correlation clustering instance G.

Proof. Let OPT be an optimal solution to the constrained correlation clustering in-

stance G. By Lemma 5, the fairlet decomposition problem has a solution of cost
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at most COST(G, OPT). Therefore, algorithm A1 must find a decomposition P

with FCOST (P ) ≤ η · COST (G,OPT ). Also, by Lemma 3, the instance GP

has a solution of cost at most (1 + η) · COST (G,OPT ). Thus algorithm A2 can

find a clustering C in GP of cost at most β(1 + η) · COST (G,OPT ). Thus, by

Lemma 4, the cost of the final clustering produced in G by Algorithm 1 is at most

(β(1 + η) + η) · COST (G,OPT ).

For the next step, we explain the approximation factor β we can get for solving uncon-

strained correlation clustering instance GP and in the next subsection we will address

approximation ratios η that we can get for minimum cost fairlet decomposition prob-

lems depending on the fairness parameter α and the number of colors in a given fair

correlation clustering instance.

Lemma 6 (Equivalent to Lemma 3.5 of [AEKM20]). There exists an approximation

algorithm for unconstrained correlation clustering of GP with approximation ratio

of β = min(log(n), 2ρr2) where r =
maxPi∈P |Pi|
minPi∈P |Pi|

and ρ is the approximation factor

of unweighted correlation clustering. (Currently best known approximation factor is

ρ = 2.06 [CMSY15].)

Proof. Since the reduced correlation clustering instance is a weighted correlation clus-

tering instance, there exists an O(log(n))-approximation [DEFI06]. Now since the

weight of the edge between pi and pj in GP is at least|Pi| · |Pj|/2 and at most|Pi| · |Pj|,

any two edges weights are within 2r2 of each other. Hence if we solve the resulting

unweighted instance, we will get a (2ρr2)-approximation.



24

4.3 Fair decomposition

Consider a correlation clustering instance G and let d be a distance function defined

on a metric space M containing the set of vertices V . For a fairlet decomposition

P = {P1, P2, ...}, we define the following median cost:

MCOST (Pi) = min
u∈M

∑
v∈Pi

d(u, v)

and

MCOST (P ) =
∑
Pi∈P

MCOST (Pi).

Notice that the problem of finding the fairlet decomposition with minimum MCOST(P)

is precisely the fairlet decomposition problem for fair k-median.

We define an embedding φ : V → [0, 1]n as follows. For vertices u, v ∈ V , let φ(u)v = 1

if u = v or (u, v) ∈ E+, and φ(u)v = 0 if (u, v) ∈ E−. We then use Hamming distance

as our metric. That is, for u, v ∈ V , we have d(u, v) = |φ(u)− φ(v)|.

The following two lemmas, whose proofs can be seen in the appendix of [BCFN19],

show that the FCOST of a fairlet decomposition is close to its MCOST with respect

to d.

Lemma 7 (Equivalent to Lemma 4.1 of [AEKM20]). For any fairlet decomposition

P , we have

MCOST (P ) ≤ 2 · FCOST (P ).

Lemma 8 (Equivalent to Lemma 4.2 of [AEKM20]). For any fairlet decomposition

P , let f = maxPi∈P |Pi|. Then we have

FCOST (P ) ≤ 2f ·MCOST (P ).
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Hence we get the following theorem:

Theorem 8 (Equivalent to Theorem 4.3 of [AEKM20]). If there is a γ-approximation

algorithm for fairlet decomposition with median costs, and this algorithm always pro-

duces fairlets of size at most f , then the solution produced by this algorithm is a

(4fγ)-approximation to the problem of finding a fairlet decomposition with minimum

FCOST.

Next, we focus on three fairness constraints: an upper bound of α = 1/2 on the

fraction of vertices of each color in each cluster; an upper bound of α = 1/col where

col is the number of distinct colors, which marks an improvement over Section 2; and

an upper bound of α = 1/t for an integer t on the fraction of vertices of each color

in each cluster. (Here when we speak of the cost of a fairlet decomposition, we mean

its median cost.)

4.3.1 α = 1/2:

In this case, we can show that fairlets have size at most 3 and find these fairlets

by solving a minimum weight 2-factor problem in a graph. A 2-factor is a subgraph

where each vertex has degree 2 and edges may be used multiple times. Define a graph

H on points in V as follows: two vertices u, v are connected by an edge if they have

distinct colors, and the weight of the edge is d(u, v).

Lemma 9 (Equivalent to Lemma 4.4 of [AEKM20]). The cost of an optimal 2-factor

in H can be bounded by 2·MCOST (P ∗), where P ∗ is the optimal fairlet decomposition.

Proof. We construct a feasible 2-factor by constructing a 2-factor for each fairlet

Pi ∈ P ∗ with center µi. There are at most |Pi|/2 vertices of any color, depending on
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the parity of Pi, vertices of Pi can be covered by matching and a possible multi-color

triangle. Doubling the matching edges, we can get a 2-factor for covering P ∗.

Then we bound the cost of this 2-factor. For a matching edge (u, v) : u, v ∈ Pi, by

triangle inequality, d(u, v) ≤ d(u, µi) + d(v, µi), and for a triangle (u, v, w) : u, v, w ∈

Pi, the sum of pairwise distances can be bounded by 2(d(u, µi) + d(v, µi) + d(w, µi)).

Therefore the cost of the proposed 2-factor for covering P ∗ is at most 2·MCOST (P ∗).

Lemma 10 (Equivalent to Lemma 4.5 of [AEKM20]). For α = 1/2, there is an

approximation algorithm for fairlet decomposition that returns a solution with median

cost at most 2 · MCOST (P ∗), the size of largest fairlet at most 3 and the size of

smallest fairlet at least 2.

Proof. Consider an optimal 2-factor in H. Define a fairlet decomposition as follows.

For each cycle of even length, consider a set of alternating edges and let each alter-

nating edge be a fairlet with one of the endpoints chosen as center. For a cycle of odd

length, there must exist three consecutive vertices that have pairwise distinct colors.

In this case, let one fairlet be these three vertices with the middle vertex as center

and for the (unique) alternating edges covering the remaining vertices, let each edge

be a fairlet with one of the endpoints as center. The median cost of these fairlets

is at most the weight of the original 2-factor, which is at most 2 ·MCOST (P ∗) by

Lemma 9. The lemma follows.

Lemma 10 and Theorem 5 yield the following.

Theorem 9 (Equivalent to Theorem 4.6 of [AEKM20]). For α = 1/2, there is a

256-approximation algorithm for fair correlation clustering.

Proof. Going back to Lemma 6, here we take ρ to be the currently best known
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approximation factor 2.06. From Lemma 10, r = 3/2. Then we go back to Theorem

8 with f = 3 and γ = 2. Finally we refer to Theorem 7 with β = 2ρr2 = 9.27 and

η = 4fγ = 24 to approximately reach the 256 factor.

Remark: For the 2-color special case, vertices of P can be covered by matching

alone. Then from the proof of Lemma 8 we know that there is an approximation

algorithm for fairlet decomposition that returns a solution with median cost at most

2 · MCOST (P ∗) (since edges are used twice with each matching), and the size of

the fairlets are 2. Thus in this special case we have r = 1, f = 2 and γ = 2.

β = 2ρr2 = 4.12 and η = 4fγ = 16. Hence there is a (β(1 + η) + η) = 86-

approximation algorithm for fair correlation clustering with 2 colors.

The next case concerns multiple colors. Let col denote the number of distinct colors.

4.3.2 α = 1/col:

Lemma 11 (Equivalent to Lemma 4.7 of [AEKM20]). For α = 1/col, there is an

approximation algorithm for fairlet decomposition that returns a solution with median

cost at most col ·MCOST (P ∗) and the size of each fairlet is col.

Proof. Consider an arbitrary ordering of the colors and solve a min-cost matching

problem between points of color c and c + 1 in the graph H. The union of these

matchings yields a partition of V into paths of length col. Each such path is a fairlet.

Let P denote this fairlet decomposition.

Now we want to bound the cost of P . Let M be an arbitrary matching between

vertices of color c and c+ 1 such that point u is matched to a point v only if u and v

belong to the same partition of P ∗. Since each cluster in P ∗ has an equal number of

vertices of each color and there is an edge between any two vertices of different colors
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in H, a matching M exists. Since d(u, v) can be bounded by d(u, µ)+d(v, µ) where µ

is the center of the partition containing u and v, the cost of M can be bounded by the

median cost of serving clients of colors c and c+ 1. Since each color is matched twice,

the total cost of each path corresponding to a partition is at most 2 ·MCOST (P ∗).

For each path we pick the middle vertex as center and the cost of assigning vertices of

the path to the center is at most col/2, as each edge is charged at most col/2 times.

Hence MCOST (P ) ≤ col · MCOST (P ∗). This means that in this case, we get a

2-approximation with fairlets of size at most col.

Lemma 11 and Lemma 5 yield the following:

Theorem 10 (Equivalent to Theorem 4.8 of [AEKM20]). For α = 1/col, there is a

(20.48col2)-approximation algorithm for fair correlation clustering.

Proof. The proof is similar to that of Theorem 9. Here we take ρ = 2.06 and r = 1.

Then we go back to Theorem 8 with f = col and γ = col. Finally we refer to

Theorem 7 with β = 2ρr2 = 4.12 and η = 4fγ = 4col2 to reach the 20.48col2

factor.

Remark: The original paper claims a better bound of 16.48col2 [AEKM20], but we

have not been able to verify it. We tried to contact the authors for an explanation,

but with no response.

4.3.3 α = 1/t:

Here t is any given integer. We argue that we can utilize any approximation algorithm

for fairlet decomposition as a black-box to build an algorithm for fair correlation

clustering. While we allow the black-box to produce fairlets of arbitrary size, the

following lemma ensures that we are able to bound the size of the fairlets.
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Lemma 12 (Equivalent to Lemma 4.9 of [AEKM20]). For any set P that satisfies

fairness constraint with α = 1/t, there exists a partition of P into sets (P1, P2, ...)

where each Pi satisfies the fairness constraint and t ≤ |Pi| < 2t.

Proof. Let p = mt+ r with 0 ≤ r < t, where p = |P |. The fairness constraint ensures

that there are at most m elements of each color. Consider the partitioning obtained

as follows: Given an ordering of elements where all points of the same color are in

consecutive places, assign points to sets P1, ..., Pm in a round-robin fashion. Then

each set Pi gets assigned at least t elements and at most t+ r < 2t elements. Because

there are at most m elements of each color, each set gets at most one point of any

color. Hence all sets satisfy the fairness constraint as 1/|Pi| ≤ 1/t.

Theorem 11 (Equivalent to Theorem 4.10 of [AEKM20]). For α = 1/t, given an

γ-approximation algorithm for fairlet decomposition with median cost, there is an

O(tγ)-approximation algorithm for fair correlation clustering.

5 Essentially Fair Clustering

Given a set of points X, in this section we also consider the case of multiple colors.

Specifically, we are given a set of colors Col = {col1, ..., colg} and a coloring function

col : X → Col that assigns a color to each point x ∈ X. For any subset of points

X ′ ⊆ X and any color colh ∈ Col, we denote colh(X
′) = {h ∈ X ′ : col(h) = colh} as

the set of points in X ′ that have color colh and rh(X
′) =

|colj(X′)|
|X′| as the ratio of colh

in X ′.

In our clusters, we want to preserve the ratios of colors in X. Here we distinguish two

cases: exact preservation of ratios and relaxed preservation of ratios [BGK+19]. For

the exact preservation of ratios, we ask that all clusters be exactly fair [BGK+19]: A
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set of points X ′ ⊆ X is exactly fair if for each colh ∈ Col we have rh(X
′) = rh(X). For

the relaxed case, we are given upper and lower bounds l = (l1 = p1
1/q

1
1, ..., lg = pg1/q

g
1)

and u = (u1 = p1
2/q

1
2, ..., ug = pg2/q

g
2) on the ratio of colors in each cluster and require

that all clusters satisfy rh(X
′) ∈ [lh, uh] for each color colh ∈ Col.

5.1 LP formulations for fair clustering problems

Let I = (X,L, col, d, k, l, u) be a problem instance for a fair clustering problem, where

L is the set of potential locations. Let S ⊆ L denote the set of locations that are

opened. We introduce binary variables yi ∈ {0, 1} for all i ∈ L such that yi = 1 if

and only if i ∈ S. Similarly, we introduce binary variables xij ∈ {0, 1} for all i ∈ L

and j ∈ P with xij = 1 if and only if j is assigned to i. All integer LP formulations

have in common the following inequalities:

∑
i∈L

xij = 1, ∀j ∈ X, (1)

which means that every point j in X is assigned to a center location,

xij ≤ yi,∀i ∈ L, j ∈ P, (2)

i.e. if we assign j to i, then i must be open,

yi, xij ∈ {0, 1},∀i ∈ L, j ∈ X, (3)

the integrality constraints, and ∑
i∈L

yi ≤ k, (4)

which limit the number of opened centers to k.
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For the k-center case, the integer LP has no objective function. The idea is to

guess the optimum value τ [BGK+19]: Given τ , we construct a threshold graph

Gτ = (X ∪ L,Eτ ) on the sets of points and locations, where a connection between

i ∈ L and j ∈ X is added iff the distance between i and j is within the threshold τ ,

i.e., (i, j) ∈ Eτ ⇔ d(i, j) ≤ τ . Then, we need to make sure points are not assigned to

centers outside their range, and this is achieved through

xij = 0,∀i ∈ L, j ∈ P, (i, j) /∈ Eτ . (5)

For the k-median case, we use the following objective function (6):

min
∑

i∈L,j∈X

xijd(i, j). (6)

Replace (3) with yi, xij ∈ [0, 1],∀i ∈ L, j ∈ X and we have the relaxed LP from the

integer LP. To incorporate fairness, we add the constraints (7) with respect to the

upper and lower bounds:

lh
∑
j∈X

xij ≤
∑

col(pj)=colh

xij ≤ uh
∑
j∈X

xij, ∀i ∈ L, colh ∈ Col. (7)

(1)-(5) and (7) represent the fair k-center problem, and (1)-(4) and (6)-(7) repre-

sent the fair k-median problem. We aim to find an optimal solution {x, y} for both

problems.

For a set X ′, we denote massh(X
′) = |colh(X ′)| as the mass of color colh in X ′.

For a possibly fractional LP solution {x, y}, we extend this notion: massh(x, i) =∑
j∈colh(X) xij. We denote the total mass assigned to i in {x, y} by mass(x, i) =∑
j∈X xij. Now we can define essential fairness:

Definition 5 (Equivalent to Definition 6 of [BGK+19]). Let I be an instance of a
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fair clustering problem and let {x, y} be an integral but not necessarily fair solution

to I. We say that {x, y} is essentially fair if there exists a fractional fair solution

{x′, y′} for I such that ∀i ∈ L:

bmassh(x′, i)c ≤ massh(x, i) ≤ dmassh(x′, i)e, ∀colh ∈ Col

and

bmass(x′, i)c ≤ mass(x, i) ≤ dmass(x′, i)e.

For essentially fair clustering, we employ approximation algorithms for (unfair) clus-

tering problems as a black-box and transform their output into essentially fair solu-

tions. We are going to assume that we are given two solutions, an integral unfair

solution, and a fractional fair solution. The first step is to find a fractional fair

assignment to the centers of the integral solution with a reasonable cost.

5.2 Combining two solutions

Let {xLP , yLP} be an optimal solution to the LP with the property that all assign-

ments are fair but the centers could be fractionally open and the points could be

fractionally assigned to multiple centers, and let cf be the value of this solution. Let

{x̄, ȳ} be an integral solution to the LP that may violate the fairness constraints (7),

and let ci be the value of this solution. We denote the cost of the optimal integral

solution to the LP by c. Our goal now is to combine {xLP , yLP} and {x̄, ȳ} into a

third solution {x̂, ŷ} such that the cost of {x̂, ŷ} is bounded by O(cf + ci) ⊆ O(c)

[BGK+19]. Furthermore, the entries of ŷ shall be integral.

Let S be the set of opened centers in {x̄, ȳ}. For any j ∈ X, denote the center in S

closest to j by φ̄(j) (different notation from that in Section 2). Keep in mind that L
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may or not be a subset of X depending on the specific problem we are dealing with.

We extend the φ̄(j) function as follows. Let i ∈ L \ X be any center, and let ĵ be

the closest point to i in X. Then we set φ̄(i) to φ̄(ĵ). This means i is assigned to the

center in S closest to the point in X that is closest to i. Finally, for any i ∈ S, let

C̄(i) = φ̄−1(i) be the set of all points and centers assigned to i by φ̄.

The following lemma effectively completes the step of combining the integral unfair

solution with the fractional fair solution.

Lemma 13 (Equivalent to Lemma 7 of [BGK+19]). Let {xLP , yLP} and {x̄, ȳ} be

two solutions to the LP, where {x̄, ȳ} is integral but may violate inequality (7). Then

the solution defined by

ŷ = ȳ,

x̂ij =
∑

i′∈C̄(i)
xLPi′j , ∀i ∈ S, j ∈ X,

x̂ij = 0, ∀i /∈ S, j ∈ X

is fair, ŷ is integral, and the cost ĉ of {x̂, ŷ} is bounded by cf + ci for k-center and by

2cf + ci for k-median.

Proof sketch. The definition of {x̂, ŷ} means that for every (fractional) assignment

from a point j to a center i′, we can shift this assignment to i, so from the perspective

of i we collect all fractional assignments to centers in C̄(i) and consolidate them at i.

ŷ is integral since ȳ is integral. Next, we observe that {x̂, ŷ} satisfies fairness con-

straints because {xLP , yLP} respects inequality (7), and we are moving all assignments

from a center i′ to the same center φ̄(i′). This shifting operation preserves fairness.

The costs can be verified through straightforward (β-relaxed) triangular inequality

arguments [BGK+19].
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5.3 Rounding the x-variables

The x-variables after the first step are not necessarily integral, so we need to round

them here. Let j ∈ X be a point that is fractionally assigned to a set of centers

L′ ⊆ L.

First we observe that for the k-center problem, we can shift mass from an assignment

of j to i′ ∈ L′ to an assignment of j to i′′ ∈ L′ while preserving the objective. We say

that such objectives are reassignable [BGK+19] (k-supplier also has this property).

For the k-median problem, the distances influence the cost in the form
∑

i∈L,j∈X cij ·xij

for some positive real number cij. We say that such objectives are separable in that

the distances are a separate part of the total cost [BGK+19] (Facility location and

k-means also fall into this category.)

Lemma 14 (Equivalent to Lemma 8 of [BGK+19]). Let {x, y} be an α-approximate

fractional solution for a fair clustering problem such that all yi are integral. Then

we can obtain an α-approximate integral solution {x′, y′} with an additive fairness

violation of at most one in time O(poly(|S|+ |X|)).

Proof sketch. We create our rounded solution {x′, y′} through min-cost flow (MCF)

operations. We define a min-cost flow instance (G = (V,A), c, b) with unit capacities

and costs c on the edges as well as balances b on the nodes. We begin by defining a

graph Gh = (Vh, Ah) for every color index h ∈ [g] with

V h = V h
S ∪ V h

X , V h
S = {vhi : i ∈ S}, V h

X = {vhj : j ∈ colh(X)},

Ah = {(vhj , vhi ) : i ∈ S, j ∈ colh(X), xij > 0},

and costs ch defined by cha = cij for a = (vhj , v
h
i ) ∈ Ah, i ∈ S, j ∈ colh(X) and balances
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b by

bhv =


1 v ∈ V h

X

−bmassh(x, i)c v = vhi ∈ V h
S

.

We then use Gh to define G = (V,A):

V = {t} ∪ VS ∪
⋃
h∈Col

V h, VS = {vi : i ∈ S},

A =
⋃
h∈Col

Ah ∪ {(vhi , vi) : i ∈ S, h ∈ Col,massh(x, i)− bmassh(x, i)c > 0}

∪{(vi, t) : i ∈ S,mass(x, i)− bmass(x, i)c > 0},

as well as costs c defined by ca = cha for a ∈ Ah and 0 otherwise. Balances b are

defined by

bv =


bhv v ∈ V h, h ∈ Col

−Bi v = vi ∈ VS

and bt = −B, where Bi = bmass(x, i)c −
∑

h∈Colbmassh(x, i)c and B = |X| −∑
i∈Sbmass(x, i)c.

See Figure 3 for an example G used to round the x-variables [BGK+19].

Figure 3: Example for the graph G used in rounding the x-variables (P = X).
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We make the following observations about separable objectives (k-median) [BGK+19]:

1. All capacities, costs and balances and B and Bi for all i ∈ S are all integers.

Consequently, there are integral optimal solutions for the MCF instance (G, c, b).

2. A feasible solution for (G, c, b) is found in {x, y} by defining a flow x in G in the

following way:

xa =


xij a = (vhj , v

h
j ) ∈ Ah, j ∈ P, i ∈ S

massh(x, i)− bmassh(x, i)c a = (vhi , vi) ∈ A, h ∈ Col, i ∈ S

mass(x, i)− bmass(x, i)c a = (vi, t) ∈ A, i ∈ S

Since {x, y} is a fractional solution, x satisfies capacity and non-negativity con-

straints. We have flow conservation as well.

3. Integral solution x to the MCF instance (G, c, b) leads to an integral solution

(x̄, y) to the original clustering problem by setting x̄ij = xa for a = (vhj , v
h
i ) ∈ Ah

if j ∈ colh(X), i ∈ S. This incurs the additive fairness violation of at most one,

for every i ∈ S is guaranteed to have at least bmassh(x, i)c points of color h and

at least bmass(x, i)c points in total assigned to it.

In the case of reassignable objectives (k-center), we basically employ the same strat-

egy as before, but instead of a min-cost flow problem we solve the transshipment

problem (G = (V,A), b) with unit capacities on the edges and balances b on the

nodes [BGK+19]. Notice that the three observations from the previous case apply

here as well, and reassignability guarantees that the cost does not increase.

Lemma 13 and Lemma 14 combined lead to the following theorem.
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Theorem 12 (Equivalent to Theorem 9 of [BGK+19]). Black-box approximation for

fair clustering gives essentially fair solutions with a cost of cf + ci for k-center and

2cf + ci for k-median.

We know that cf is not more expensive than an optimal solution to the fair clustering

problem. The best known approximation factor for k-center is 2 [Gon85] and for

k-median (1 +
√

3 + ε) [LS16]. We arrive at the following theorem.

Theorem 13. Black-box approximation for fair clustering gives essentially fair solu-

tions with an approximation factor of 3 for k-center and (3 +
√

3 + ε) for k-median.

5.4 True approximation for k-center

We now extend our rounding technique for the k-center problem to the case of exact

fairness, using a specific approximation algorithm to obtain true approximation for

the fair clustering problem via rounding of the LP solution. That is, we consider

the fair k-center problem with exact preservation of ratios and without any additive

fairness violation.

We begin by choosing a set of centers. Rather than use an arbitrary algorithm

for the standard k-center problem, we specifically look for nodes in the threshold

graph Gτ = (X,Eτ ) (τ is a parameter of Gτ and the optimal value we seek) where

Eτ = {(i, j) : i 6= j ∈ X, d(i, j) ≤ τ} that form a maximal independent set S in G2
τ

[BGK+19]. (Here Gt
τ denotes the graph on X that connects all pairs of nodes with a

distance at most t in G, and Et
τ denotes the edge set of Gt

τ . We also assume in this

subsection that Gτ is a connected graph.)

The procedure uses the approach by Khuller and Sussmann [KS00] to find S with the

following property: There exists a rooted tree T spanning all the nodes in S such that
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two adjacent nodes in T are exactly distance 3 apart in Gτ . The procedure begins by

choosing a root vertex n ∈ X into S and marking every node within distance 2 of n

(including itself). Until all the nodes in X are marked, it chooses an unmarked node

u that is adjacent to a marked node v and marks all nodes within distance two of u.

Notice that u is exactly at distance 3 from a node u′ ∈ S chosen earlier that led to v

getting marked. The tree T over the nodes of S is thus defined implicitly.

Next we make the following observation [BGK+19]:

Observation 1. Let m ∈ N be the smallest integer such that for each color colh ∈ Col

we have rh(X) = qh
m

for some qh ∈ N. Then for each cluster Xi in a fair clustering C

of X with exact preservation of ratios, there exists a positive integer i′ ∈ N≥1 such

that Xi contains exactly i′ · qh points with color h and i′ ·m total points. Therefore

every cluster must have at least qh points of color colh for each colh ∈ Col.

We use Observation 1 and the set of centers S to obtain the following adjusted LP

formulation for the fractional fair k-center problem [BGK+19].

∑
i∈S

xij = 1, ∀j ∈ X (8)

∑
j∈colh(X)

xij = rh(X)
∑
j∈X

xij, ∀i ∈ S (9)

∑
j∈colh(X),(i,j)∈E2

τ

xij ≥ qh, ∀i ∈ S, h ∈ Col (10)

xij = 0, ∀i ∈ S, j ∈ X, (i, j) /∈ E3
τ (11)

0 ≤xij ≤ 1, ∀i ∈ S, j ∈ X. (12)

Here inequality (10) ensures that each cluster contains at least qh points of color

h ∈ Col.

Finally, the algorithm rounds a fractional solution for the above LP to an integral
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solution of cost at most 5τ in a procedure motivated by Cygan et al. in [CHK12].

Let α(i) denote the children of node i ∈ S in the tree T . Define quantities Γ(i) and

δ(i) as follows:

Γ(i) =

⌊∑
j∈col1(X) xij +

∑
i′∈α(i) δ(i

′)

q1

⌋

δ(i) =
∑

j∈col1(X)
xij +

∑
i′∈α(i)

δ(i′)− Γ(i).

For a leaf node i in T , α(i) = ∅. Then Γ(i) represents the number of color 1 points

assigned to i rounded down to the nearest multiple of q1 and δ(i) denotes the re-

mainder. We want to reassign the remainder to the parent of i. For a non-leaf i′,

Γ(i′) denotes the number of color 1 points assigned to i′ plus the remainder that all

children of i′ want to reassign to their parent i′ rounded down to the nearest multiple

of q1 while δ(i′) again denotes the remainder.

Think of the xij variables as encoding flow from a vertex j to a node i ∈ S. We call

it a color-h flow if j has color h. We can re-route these flows (maintaining the ratio

constraints) such that ∀i ∈ S, j ∈ col1(X), xij is equal to Γ(i) which is an integral

multiple of q1.

Lemma 15 (Equivalent to Lemma 12 of [BGK+19]). There exists an integral assign-

ment of all vertices with color 1 to centers in S in G5
τ which assigns Γ(i) vertices with

color 1 to each center i ∈ S.

Proof sketch. Construct the following flow network: Form a bipartite graph using

sets col1(X) and S, with an edge of capacity one between j ∈ col1(X) and i ∈ S iff

(i, j) ∈ E5
τ . Connect a source s with unit capacity edges to all vertices in col1(X) and

each center i ∈ S with capacity Γ(i) to a sink t. We now show a feasible fractional

flow of value |col1(X)| in this network.
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For each leaf node i in T, assign Γ(i) amount of color-1 flow from the total incoming

color-1 flow
∑

j∈col1(X) xij, from vertices that are at most distance three away from

i in Gtau and propagate the remainder δ(i), which comes from vertices of distance

two from i, upward to be assigned to the parent of i. This is always possible because

of constraint (10). For every non-leaf node i, assign Γ(i) amount of incoming color-1

flow from distance five vertices (including the color-1 flows propagated upward by

its children) and propagate δ(i) amount of color-1 flow from distance two vertices

(possible due to constraint (10)). Hence we have that every center has Γ(i) amount

of color-1 flow passing through it.

Lemma 16 (Equivalent to Lemma 13 of [BGK+19]). For any assignment of a color-

1 flow, there exists a reassignment of color-h flow between the same centers for all

h ∈ Col \ {1}, such that the resulting fractional assignment of the vertices satisfies

the fairness constraints at each center.

Proof. Suppose f1 amount of color-1 flow is reassigned from center i0 to another

center i1. Reassign fh = rh · f1/r1 amount of color-h flow from i0 to i1 for each color

h ∈ Col \ {1}. This is possible due to constraint (9). It is easy to verify that the

ratios at i0 and i1 remain unchanged, for the ratio of the reassigned flows is equal to

the original ratio by construction.

From Lemma 15 and Lemma 16, there is a fair fractional assignment within distance

5τ such that all the color 1 assignments are integral and every center i has Γ(i) color

1 vertices assigned to it. Since this assignment is fair, the total incoming color-h flow

at each center can be written as Γ(i) qh
q1

, which is integral for every center i ∈ S and

every color h ∈ Col.

Lemma 17 (Equivalent to Lemma 14 of [BGK+19]). There exists an integral fair

assignment in G5
τ .
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From Lemma 15, Lemma 16 and Lemma 17, we have the main theorem of this sub-

section.

Theorem 14 (Equivalent to Theorem 15 of [BGK+19])). There is a 5-approximation

for the fair k-center problem with exact preservation of ratios.

Remark: This result may not appear to be an upgrade over Section 1, which offers a

4-approximation algorithm for the fair k-center problem. Keep in mind, however, that

the 4-approximation algorithm does not guarantee exact ratio preservation like the

5-approximation algorithm in this section does. In this sense Theorem 14 does signal

an improvement, with consideration of a more general variant of the fair k-center

problem in the form of multiple colors and exact preservation of ratio.

6 Conclusion

Machine learning is a very active research area, with a long history of work in both

theoretical and practical aspects. In the last decade, the potential harm of algorithmic

bias against underrepresented groups has become a popular concern. The research

community has responded with multiple approaches to both define and address such

issues. There has been a growing interest in developing ”fair” solutions to problems

in learning and optimization.

In this work we have focused on one narrow slice of this work: worst-case approx-

imation bounds for clustering algorithms with added fairness constraints, where we

define fairness in terms of protected populations that must be represented in each

cluster. Even within this narrow scope, we have found multiple recent approaches

and diverse results, as presented in the preceding sections.

There are several ways we could hope to extend on this work.
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• First, there is a need for empirical studies in order to implement and bench-

mark the proposed methods, both to compare their performance on large data

sets, and to evaluate any practical demand for such methods. It seems likely

that the approximation performance of the algorithms presented here could be

improved by some greedy local searching, and we want to confirm this through

experiments.

• Second, we could look for more general algorithmic approaches (e.g. some

variant of LP rounding) that might unify some of the disparate results presented

here. New approaches might also allow other side constraints on the clustering

problems, beyond the fairness constraints studied here.

• Third, we hope to come up with more general ways to incorporate fairness

notions into the clustering framework. For example, instead of hard constraints,

we could add an ”unfairness” cost term to the classical objective, and try to

minimize the resulting system by standard learning methods. This would allow

the user to choose an acceptable trade-off between unfairness and other costs.

Other notions of fairness in clustering may pay attention to issues of crowding,

relative distance, or balancing the load placed on opened facilities.

• More immediately, we may also attempt to solve closely related problems using

the proposed methods. For example, we are currently investigating the use

of the fairlet method to solve fair variants of the facility location problem.

Facility location resembles the clustering problems already discussed, except

that instead of opening a fixed number k of facilities, each facility has an opening

cost, and we are actively exploring the possibility of solving the fair facility

location problem under the fairlet notion.
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