Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from
Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis in whole or in part in all
forms of media, now or hereafter known, including display on the world wide web. I
understand that I may select some access restrictions as part of the online submission
of this thesis. I retain all ownership rights to the copyright of the thesis. I also retain

the right to use in future works (such as articles or books) all or part of this thesis.

Richard Michael Oh April 12, 2010

Cryptanalysis of Small-Valued Secret Exponents in RSA Cryptosystems

Richard Michael Oh

Advisor Skip Garibaldi

Department of Mathematics and Computer Science

Skip Garibaldi

Advisor

Eric Brussel

Committee Member

Jose Soria

Committee Member

April 12, 2010

Cryptanalysis of Small-Valued Secret Exponents in RSA Cryptosystems

by

Richard Michael Oh

Advisor Skip Garibaldi

Abstract of
A thesis submitted to the Faculty of Emory College
of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2010

Abstract

Cryptanalysis of Small-Valued Secret Exponents in RSA Cryptosystems
by
Richard M. Oh

A vulnerability of the RSA encryption system that uses small-valued secret
exponents is written here. When small-valued secret exponents are used, the
encryption system is exposed to an attack via a continued fractions algorithm.
The original algorithm was discovered by Michael J. Weiner. The algorithm
is able to use public key information to find the private key information. The
attack is valuable since it is able to discover the factors of the modulus and the
secret exponent in polynomial time. This paper expands the analysis of Wiener’s

original paper and implements the algorithm through Python programming.

Cryptanalysis of Small-Valued Secret Exponents in RSA Cryptosystems

by

Richard Michael Oh

Advisor Skip Garibaldi

A thesis submitted to the Faculty of Emory College
of Emory University in partial fulfillment
of the requirements of the degree of

Bachelors of Science with Honors

Department of Mathematics and Computer Science

2010

Acknowledgements

I would like to express the deepest appreciation to my committee chair and advisor,
Professor Skip Garibaldi, who has the attitude and substance of a genius. With his
continual guidance and his spirit of adventure in regard to research and scholarship,
he made this honor thesis possible.

I would like to thank my committee members, Professor Eric Brussel and Dr.
Jose Soria, for teaching me and guiding me through my college career. With their
positive reinforcements along with their brilliance in teaching, they have developed
my character academically.

I would also like to thank my academic advisor, Professor Emily Hamilton, for
supporting and guiding me through my college career. Without her continual support
and encouragement, [would not be where I am today.

I would also like to thank Ashlyn Winkler for her comments on my paper. I would
like to thank Shahein Tajmir for his insight on my program.

Finally, T would like to thank my parents, Thomas and Yung Oh, my brother,
Jonathan Oh, and Melissa Steele for their continual support and encouragement

throughout the time period of my honors thesis.

Contents

1 Introduction 1
2 Continued Fractions Background 2
3 Continued Fractions Algorithm 11
4 RSA Encryption System Background 22
5 Continued Fractions Algorithm Applied to RSA 24
6 Polynomial Time 27
7 Appendix 30
7.1 Examples 30
Table 1: Example 31

7.2 Appendix A 31
73 Appendix B 34
74 Appendix C 38
75 Appendix D 47
Table 2: Time Chart for Algorithm Completion 47

Figure 1: Length of Primes versus Average Time of Completion in Seconds 48

1 Introduction

The RSA cryptosystem is one of the most well-known public key cryptosystems in
the world today. Most people unknowingly surf the internet without realizing that their
sessions are being protected by this encryption system. Each public key consists of two
numbers: the public number, or modulus, and the public exponent, or the encrypting
exponent. A common form of weakness that arises within RSA is the poor choice of
keys. Further readings on these weaknesses can be found in [1]. The attack within this
paper is from Michael Wiener’s paper, Cryptananlysis of Short RSA Secret Exponents
[5]. His paper exploits a weakness and breakdown of the RSA cryptosystem when
the secret exponent is small relative to the modulus. Through the use of a continued
fractions algorithm, the attacker is able to produce the secret exponent and the prime
factors of the modulus using only public information. Furthermore, this attack is
especially useful since the attack is done in polynomial time.

There are variety of situations where the use of short secret exponents is desir-
able. A smaller secret exponent allows for faster decryption execution time since RSA
decryption time is roughly proportional to the number of bits in the exponent. There-
fore, it is sometimes convienent to use smaller exponents, especially if there is a vast
difference in computing speeds between the encryption and decryption devices. One
example of this situation is the use of smart cards with computers. It would be con-
vienent for the smart card to possess a short secret exponent since the computing
powers of a smart card are vastly inferior to the computer. The ease of use and conve-

nience of small secret exponents creates a security flaw, which we shall discuss in this

paper.

This paper is an expanded version of Weiner’s original paper. It breaks down
the original argument and builds it back up with some variation to the verfication
step. Furthermore, the algorithm has been implemented through the use of Python

programming, where the user can test various keys.

2 Continued Fractions Background

This section will cover the necessary background on continued fractions allowing the
reader to effectively understand and use the continued fractions algorithm in the next

section.

Definition 2.1. A continued fraction is an expression with the form

a;

a2

by +
(2.1)

A
bm—l ‘I’ K

= al/(bl + ag/(bg + ag/(.../(bm_l + am/bm))))
We are specifically interested in the particular form of continued fractions where
the numerators, or a;’s in (2.1) are equal to one. For convience, we shall denote this

as

(90, @1y @m) = @0+ 1/(qn + 1/(q2 + 1/(.. /(@1 + 1/qm)-..)))- (2.2)

Example 2.2.

(2,1,8.5) = 24 1/(141/(341/5)) = %

3

For vocabulary purposes, we will call % the convergent fraction while (2,1,3,5)
is called the continued fraction expansion. Also, continued fractions do not need to be
finite, but we will not address this issue since our numerators and denominators are
positive integers, thus resulting in finite expansions [3].

We will now cover how to get a continued fractions expansion from a rational
number f. The first step is to subtract the integer part away from f. The following
steps are then done in repetition until the remainder is zero: Invert the remainder,
subtract away the integer part away from the inverted remainder, and repeat. We
shall call ¢; the integer quotient and r; the remainder at step ¢. We will call m the

total number of inversion steps:

o =1Lf], 7mo=1f—aq, and

q; = Lri{lJ s T = 7,}71 — q;, for ¢ = 1,2,...,771,.
When r; = 0, we set j = m, and the algorithm for generating the continued fractions
expansion for f terminates. Since the algorithm generating the expansion results in

the remainder at step m being zero, we have that f = (qo,q1, ..., ¢). There are two

immediate results that emerge at this point. First,
Om > 2. (2.4)

We get this from the fact that if ¢,, = 1, then 0 = r,, = qu — (m, from (2.3). We

get from here that r,,_; = 1, which is impossible since 0 < r; < 1, by construction.

Second, for any x > 0,

<Qqula--'7Qm> < <q07q1""7Qm—17Q’m+x>7 if m is even, (2 5)

<QO7Q17 7Qm> > <q07Q17 coy m—1,9m + :U>7 if m is odd.

This result comes directly from the number of nestings and inversions that occur from
(2.2).

We will now begin to discuss the relationship between numerators and denom-
inators at step ¢ of the continued fraction expansion and its relationship with the

quotients. We will define n; and d; inductively.

Definition 2.3. Let
n_o = 0, n_, =]_, d_2 ==]_, d_1 = 0.
Then we define n; and d; as follows:

no = qo, d() =]-7
ny=qoq1 +1, di =q,

n; = qni—1 + ni—2, di = ¢qdi—1 +di_a, fori=23,...,m.

Lemma 2.4. Let n;, d; be defined as above. Then

n; N .
E - <(I0791a~-~7q@>-

()

Proof. First, we will show for i« = 0. We have from Definition 2.3 that

20 %0 _ o = (o)
do 1 0 0

Next, we will show for ¢ = 1. We have that

ni qoq1 +1 1
T =t — = (0 aq)
1 q1 q1

We will use induction for the rest of the proof. Suppose true for the i case. We have

that

ng QN1+ N9

— — (G0, G1s s @) 2.6
d; gidi—1 +d;—2 (40- a1 @) (2:6)

We wish to prove that the i + 1 case holds true. To do this we use equation (2.6) to

help us supply a proof that

oo Ml Qi1 + N
i1 = =
dit1 Git1d; +d;q

= <q07 q1,---, 45, Qi+1>-

From 2.3, we substitute in n;, d; to get

Mit1 _ Qi+1(qini—1 + ni—a) + N1
dit1 Qi1(qidi—1 + di—2) + d;—4

By multiplying out and rearranging, we are able to get

Qit1(qimi—1 + ni—2) + 11 _ (¢iGi+1 + 1)ni—1 + giyini—o
Qi+1(qidi—1 + di—2) + d;—4 (¢iGiy1 +)di—1 + qiv1di—2

We then divide the numerator and denominator by ¢;,; to get

1
(Qi +) Ni—1 + n—2
41 di+1

di1 1 '
+1 (Qi + —) di—1 +di—s
qi+1

In order to use 2.6, we are hoping that we can replace ¢; with ¢;+

1

—— in the expansion
qi+1 p ’

since there is a similiarity with

i gifioy +nio — (40,9 ¢)
d; gidi—1 + di—o 0r A

and

1
(Qi +) N;—1+ N2
Ni+1 di+1

di1 1
i (qi +) di—1 + di—s
qi+1

This is possible only if we are able to prove that the numbers n; o, d;_2,n;_1,d;_1 do
not change their values when we tamper with g;.

To see that these values do not change, we must look at the manner in which they
are calculated. In equation (2.6), we first replace i by i — 2 and then by ¢ — 1. We

observe the following succession:

Ni—2 _ Gi—2Mi-3 + Ny
di—o Gi—odi—3 4+ di_4

and

Ni—1 ¢i—1Mi—2 + N3
di—1 ¢i—1di—2 + di_3

We can observe from the above that the numbers n;_; and d;_; are dependent on the
number ¢;_; and the numbers n;_o,n;_3,d;_o,d;_3 for « > 3, which are in turn depen-
dent on the preceding ¢’s, n’s, and d’s. Therefore, the numbers n;_1,n; o,d;_1,d;

are dependent on the first ¢ — 1 quotients and are independent of ¢;. Hence, they will

not change when we replace ¢; with ¢; + q+“
Therefore, we are able to substitute ¢; with ¢; + C]%H’ thus getting us
1

n qi + . N1+ N2 1
i+1 i

df = Il = (q0; q1+ - i + ") = (40, Q1 s Qis Git1)-
o (Qi +) di—1 +dio o

di+1

This result leads us to a direct corollary for the above Lemma.

Corollary 2.5. Let the n;’s, d;’s, and q;’s be as above. Then we have that:

nidi,l - le;ldl' = —(—1)2 fOT’i = 1, 2, ., m.

Proof. We will prove this by induction on 7.
Base Case i =1

From Definition 2.3, we have

nidy — nody = (qoqr + 1)(1) — (qoqn) = 1 = —(=1)".

Induction Step

Let us assume to be true up to the ¢ — 1 case, which is as followed:

ni_ldi_g - ni—Qdi—l = _(_1)i_1-

We must show true for the i case:

Using the relationship in Lemma 2.4, we substitute in for n; and d; to obtain

nidi—1 — ni—1d; = (@ini—1 + ni—2)di—1 — ni—1(qidi—1 + d;—2).

Then, by simplification using algebra, we get

—(ni1dig = niadi 1) = (=1) - —=(=1)"" = —(=1)"

]

Corollary 2.6. Let n;,d; be as above. Then n; and d; are relatively prime for i =

0,1,...,m.

Proof. This is obvious for ¢ = 0 because dy = 1. Fori = 1,2, ..., m, if a prime p divided

n; and d;, then p would divide —1, by Corollary 2.5, which is a contradiction. O

We now have this equation as a direct consequence of Lemma 2.4 and Corollary

2.6:

% ={q0,q1, -, q;), gcd(n;d;))=1, fori=0,1,...m
i (2.7)

n; = qini—1 +ni_2,d; = qidi—1 + d;a.
Lemma 2.7. Let f be a fraction and f > 0 and m > 1 where f = (qo,q1, -, qm)- Then

(

0 ifi=0

v

%=1 ifl<i<m:

2 ifi=m
\
Proof. We will first show that ¢y > 0. From the construction of ¢; from (2.3), we have
qo > 0 when f > 0. Next, we will show that ¢; > 1 when 1 < i < m. Here, again by

construction of ¢; from (2.3), we have that

{ : J
qi =)
Ti—1

which implies that when f >0, 0 <r; <1 for 1 <7 < m. This gives us that

¢ >0forl <i<m.

It will suffice to show that ¢; # 0. We will do this by contradiction.

Suppose ¢; = 0. By construction of ¢; from (2.3),

1
%Z{ JZO.
i1

From the above, we are able to get the fact that

1

Tri—1

0<

<1,

which directly leads us to

Ti_1 > 1,

which is a direct contradiction of (2.3). Therefore, ¢; > 1 for 1 <i < m.

Finally, by (2.4), we have ¢,, > 2, which verifies our last case.]

Lemma 2.8. Suppose f = {(qo,q1,-..,qm) > 0 and Z—z = (q0,q1,---,q;). Then d; >

diqy >0 for2<i<m.

We claim that the Lemma fails for the ¢ = 1 case because d; can equal 1. We can
see from Example 2.2, with verification using Definition 2.3, that d; = 1, and since

dy = 1, the inequality fails.

Proof. We will use induction on i to prove this.

Base Case i =2
From Definition 2.3, we have d; = ¢; and dy = gody + dy. Since dy = 1, dy > ¢od;, and
g2 > 1, we have that

dy > dy > 0.

Induction Step
Assume true for the ¢ — 1 case. We will prove the claim for the general ¢ case. From
equation (2.7), we have d; = ¢;d;_1 + d;_» which gives us that d; > ¢;d;_;. Since ¢; > 1

fori>1and d;_; > d;_o > 0, we have
di > di—l > 0.

Therefore, d; > d;_1 > 0 for 2 <i < m. O

10

Corollary 2.9. Let n;’s, d;’s, and ¢;’s be as above and m > 2. Then

dmfl S dm

1
2
Proof. Using Definition 2.3 and Lemma 2.8, we have that

dm > dem—l .

Since ¢, > 2 from (2.4), we have ¢,d,—1 > 2d,,—1. Since d,, > 2d,,_1, we get

d. < %dm. 0

Lemma 2.10. Suppose that

<QO7q17q27 > <z < <Q(/]7q117q;7 >

If qo = q(, then
1

T —qo

<q17q27q37"'> > > <q/17q;7q§,’)7>

Proof. Since gy = ¢, we have through properties of inequalities that

(40, 15 G2,) — qo < (— q0) < (@0, ¢4, G5, ---) — Qo-

Through simplification, we have

<O7Q17qQ7 > < (:C - qO) < <07q/17QQ7 >

Since 0 < (0,q1,¢2,...) < 1 and 0 < (0,¢},d,,...) < 1 by construction of continued

fractions, and the fact for 0 < a < b, we have

Q=
V
S|

11

since f(x) = % is a strictly decreasing function, we get

<q1)qQ7q37"'> > > <q17QQ7QZ’37>

T —qo

]

We have covered sufficient background to proceed on to the Continued Fractions

Algorithm.

3 Continued Fractions Algorithm

Keeping the above background in mind, we shall discuss a continued fractions algo-
rithm that will allow us to produce a reasonable candidate for a rational number f.
We begin this discussion letting f’ be a underestimate for a fraction f, given by the

relationship from the equation below.
/= f(1=29), for some § > 0. (3.1)
We can easily rearrange this equation to
f=1-—= (3.2)

which will be a useful relationship later on. The following is Wiener’s original continued
fractions algorithm[5]. We are given a continued fraction f’, where we assume that f’
is a proper underestimate, and we are given an oracle that will tell us whether or not
a given number is the desired fraction, f. The following step will be repeated until
the oracle reveals to us that the generated fraction is the desired one, or the algorithm

terminates. If § is not of proper size, then the algorithm will terminate by itself since

12
all rational fractions have a finite continued fractions expansion[3], and thus leading
to a finite number of reiterations of the algorithm. We shall discuss in detail what our
oracle is in a following section.

Let ¢, be the i'" quotient of f/, generated as written in (2.3). Let j be the length
of the continued fractions expansion for f’, since the expansion for f’ is finite. Here

are the steps of the algorithm:

1. Give f’ to the oracle. If f’ is the correct number, then terminate. Otherwise,

proceed onto Step 2.
2. Generate the next quotient ¢, of the continued fraction expansion for f’.

3. Using equation (2.7), we construct the fraction equal to

(A, q)s - di_y,q + 1), if i is even
(o, ¢t - @ _1oq}), if i s odd.
4. We give the generated number to the oracle. If the number is incorrect, we go
back to Step 2, unless we have generated q;, which in this case, we quit. If the

number is correct, the algorithm terminates.

We must understand that although we are assuming that f’ is an underestimate of
some number f, we do not know what f is. Therefore, we must evaluate what our o
from (3.1) should be in order for us to find f. We claim that if

1
3)
§nmdm

where n,, and d,, are the numerator and denominator of f, then the algorithm will be

0 <

(3.3)

able to produce f from f’. We will examine the implications of ¢ from (3.3) and see

13
how it leads us to the production of f from f’ from the algorithm. We will examine
the relationship on how the size of § affects the outcome of the algorithm starting with
f'. Studying this relationship will lead us to the theorem that defines the requirement

for the algorithm to succeed.

Proposition 3.1. Suppose that 0 < § < —% Then

a mdm
2n

<QO7q17 vy m—1,9m — 1> < f/ S <q07q17---7Qm>; me is even, (3 4)

<Q0a(11» cooy @m—1,49m + 1> < f, S <q0’q1’ "'7qm>; me is odd.

Proof. From (3.1), we have that if 6 = 0, f' = f. Thus, our upper bound holds.
Therefore, we only have to justify our lower bounds. We perform a separate analysis
for the following cases: m =0, m =1, m > 2 and even, and m > 3 and odd.

Case 1 m =10

Suppose § < —31& Then
5710650

1 1
< [

) .
< Tlodo

3
§n0d0

By Definition 2.3, we know that dy = 1 and that ng = qo. Thus,

1
o< —.
do
!
From (3.2), we have § =1 — % %, which can be rearranged to
f, > qo— 1.

Since m = 0 is even, we get (g0 — 1) < f’ as needed.
Case 2 m=1

Suppose that § < flh By Definition 2.3, we can substitute n; = qoq1 + 1 and

—n1d
2”11

14

d1 = q1 to have

1
0 <

EE—
§(QO(]1 + g

For our next step, we need the following claim.
. 3
Claim: qu >q + 1.
1
By Definition 2.3 and the fact that m = 1, we have that ¢; > 2. Since §q1 > 1, we get

1 3
1< -1 < =q.
Q1+ _Q1+2(J1_ 51
Therefore, we have %ql > ¢, + 1, as required.
With this claim, we have that

1 1

< .
§(qoq1 +1)q (qoq1 +1)(q1 + 1)
2

Then we will rearrange the fraction, resulting in

0 <

T I L1
o ntl _ e+l _@ o+l DT g+
g +1 qoq +1 o+~ @+ 7
il
Using (3.2),

/ @0+ —1

§=11- fl <|1- q1Ir1

Qo+ g; 9 + g7

Solving for f’, we have

1
"> +)
f (CZO q1+1)

Which gives us (qo,q1 + 1) < f’, as required.
Case 3 m > 2 and even

Suppose § < —31% Then by algebra, we have that

a mdm
2n

By Lemma 2.8, we know that d,, — d,,_1 < d,,, therefore we get

1
nm(dm - dm—l) .

o<

Since m is even
Nn—1dm—2 — Npm—odm_1 = 1, by (2.5)
and
N = GuNm—1 + Nm—o and d,,, = ¢udy—1 + dip_2, by (2.7),
By substitution we get

Nm—1 dmf2 — Nm—2 dmfl

o< .
(qmnmfl + nm72)<demfl + dmf2 - dmfl)

We add
qmdm—Ianm—l _dem—Ianm—l +dem—1nm—2 _dem—lnm—2 +dm—IQTnnm—1 -

dm—lanm—l + dm—?anm—l - dm—?anm—l + dm—2”m—2 - dm—2”m—2 =0
into the numerator of the above inequality to get
dem—lqmnm—l - dem—Ianm—l + qmdm—lnm—2 -
demflnmfZ + dmfIanmfl — dmfIanmfl + dmqumnmfl -

5 dm—qunm—l + dm—2nm—2 - dm—?”m—? + nm—ldm—Q - nm—2dm—1
<
(anmfl + nmf2)(demfl + dm72 - dmfl)

Then by factoring, we have that

0 <

15

(dem—l _dm—l +dm—2) (qmnm—l +nm—2) - (qmnm—l —MNm—1 +nm—2) (dem—l +dm—2)

(anm—l + nm—2)(qmdm—1 + dm—2 - dm—l)

Since

(demfl _dmfl +dm72) (anmfl +nm72) _ (qmnmfl —Np—1 +nm72) (demfl +dm72) _

(anm—l + nm—Z)(dem—l + dm—? - dm—l)

1— (qmnm—l — Nm—1 + nm—?)(dem—l + dm—Z)
(dem—l - dm—l + dm—2>(qmnm—1 + nm—2)

9

we can further simplify, and substitute from equation (2.7), we have

(Qm - 1>nm—1 + Nm—2

(Qm - 1)dm—1 + dm—2
GmMm—1 + Npm—2 '
dem—l + dm—2

By Equation (3.2) and equation (2.7), we have

0<1-—

/ / / /
s—1-L S / .
f <qO7q1a 7Qm> -m GmMNm—1 + Mp—2
dm qmdm—l + dm—Q

Thus, we are able to get that

<Qanla vy m —]-> < f/‘

Case 4 m >3 and odd

Suppose 0 < 317 By (2.9), we have that since

— N o,
2

3
dm + dm—l < §dm7

we can simplify the above ¢ inequality to

1

o< :
nm(dm _I' dm—l)

Since 31 <y 1 g We can use a similar analysis as in Case 3, resulting in
m + m—1

_dm
2
nm72dm71 - nmfldmf2
<anmfl + nm72)<qmdmfl + dm72 + dmfl) ’

0 <

Since m is odd, we get from Corollary 2.5 that

nm—Qdm—l - nm—ldm—2 = _(_1)m =1

and from Definition 2.3
N = GmNm—1 + Nm—2, and

dm = dem—l + dm—2

17

After a algebraic simplification similar to Case 3, we will achieve

(Qm + 1>nmfl + Nm—2
(Qm + 1>dm71 + dme

1 —
5 < GmNm—1 + dm72
dem—l + dm—2
By using (3.2), we will get
(qm + 1>nm—1 + mMm—2
/
5:1_ f <1_ <Qm+1)dmfl+dm72
<QO7QI7---an> <QO7QI7"'7qm>

With simplification, it leads to

<QO7 q1; -5 dm +]-> < f/'
After evaluating all four cases, we have sufficiently proven the proposition. n

Proposition 3.2. Let m be even. Assume that f' # f, and that

<QO7QI7 cey Qm —]-> < f/ < <QO7QI;)Qm>
Then q; = q;, for 0 <i < m.

Proof. We will use induction on i. We will use : = 0,1 for our base cases.
Base case i =10

By the construction in (2.3), go = | f|. Since ¢ < [f'] < qo, we get that ¢, = | f'] = qo.
Base case 2 i=1

By the previous case, since ¢ = qo, by 2.10 and r, = f' — ¢}, we have that

1
<Q17Q27---an> < 7’_, < <q17q27 vy @m — 1>
0

Therefore, ¢ = LL,J = q.
To

18
Case 1 i odd, 1 > 2

Assume true for ¢ — 2. Therefore, we have

and

<qi727Qi717 7Qm> < < <Qi725%717 vy Qm — 1)

/
L

We will show that ¢} = ¢;. Since ¢;—2 = ¢/_,, we use Lemma 2.10 and (2.3) to obtain

< <qi—1aqi7 7q’rn>

<Qi—1,%‘a ey Qm — 1> < /
)

By the above inequality and (2.3), we have that

! o 1 .
q;_1 = 7";72 =d{qi-1,

which leads us to ¢;—1 = ¢,_,. Repeating the same argument using Lemma 2.10 and

(2.3), we obtain

1

(Qis Qit1s s Gm) < 7 <G Git1s -y Gm — 1).

i—1

Again, by the above inequality and (2.3), we have that

, 1
q; = 7 = i,
Ti1

which satisifies this case.
Case 2 i even, i >2,1#m

Assume true for ¢ — 2. Therefore, we have

/ .]' _
qi—9 — 7’;73 = (qi—2

19

and

1

(Gim2,Gim1, s qm — 1) < 7 <AGi—2y Qi1 ooy Qi) -
i—3

Using the same argument as the above case, we obtain

! - 1 -
q; 1 = 7";_2 = {i—1,

which satifies this case.
Through case by case analysis by induction, we have shown that for m even, ¢; = ¢/

for 0 <i < m. O

Now, we will prove that the algorithm works for the m!® case. Since f’ and f are
rational numbers, we know that the continued fractions expansion for them are unique
[3]. We claim that the algorithm will find f in at the m' iteration. First, we must

prove that ¢} = ¢; for all 0 < i < m.

Proposition 3.3. Let m be odd. Assume that f' # f, and that

(Q0s q1s s @ + 1) < 1 < A{qo, q1, ., G)-
Then q; = q; for 0 < i < m where the ¢, are quotients for f'.
The proof for this proposition is similar to the proof of Proposition 3.2.
Theorem 3.4. Let the following inequalities hold true:

<q0aq17 cooy @m—1,49m — 1> < f, < <qovq1’ "'7qm>; me 18 even,
<q0>q1> oy Qm—1,9m + 1> < f/ < <q07Q17 "'7Qm>7 me is odd.

Then the algorithm will find f at the m'™ iteration.

20
Proof. We shall prove this by case analysis using induction.
Case 1 m=20

From our hypothesis, we have

(90— 1) < f" < {qo)-
From (2.3), we generate ¢, for our first step in the algorithm. From the above inequal-
ity, we get that

@="L1=aw-1
Since i = 0 is even, we add one to ¢, resulting in ¢j + 1 = (g0 — 1) + 1 = ¢o. The final
step is to verify if the generated fraction is correct, which is immediate.

Case 2 m=1

From our hypothesis, we assume

<C]07Q1 + 1) < f/ < <QO7(11>~

From Proposition 3.2 and Lemma 2.10, we obtain

1
(1) < — <Aqu +1).
)

By the inequality above, we get that

! 1 .
q = 7’6 ={q1.

Next, we generate an expansion, and since ¢ = 1 is odd, we have (g}, ¢}) = {(q0, q1),
which is our desired fraction f.
Case 3 m > 2, m even

From our hypothesis, we assume

<q07q17 vy Qm — 1> < f/ < <CI0>Q1a 7qm>

21
From Proposition 3.2 and Proposition 3.3, we have that ¢, = ¢; for 0 < i < m. By this
fact, we may assume that we can skip to the m* iteration of the algorithm. Assume

that we have
<QO7 q1y - Qm71>'

Our next step is to generate ¢/,. Using Proposition 3.2 and Proposition 3.3 repeatedly,

we have

1
<Qm—17Qm> < - < <Qm—17Qm - 1>
T

m—2

By using Lemma 2.10, we obtain

<Qm>> /1 _Qm><Qm_1>'

m—2
From (2.3), we have that r'l — G = T,L, giving us
m—2 m—1
1
(g —1) < < {(qm)
Tm—1
Therefore, we get
, 1
(.Zm = / = Qm - 1
Tm—1

Proceeding to the next step of the algorithm, since m is even, we add one to ¢,

resulting in the expansion

<Q(/)7q/17 a%/n + 1) = <q17QZ7 >qm> = f

Hence, we have found f for m even on the m' iteration of the algorithm.
Case 4 m >3, m odd

By a similar analysis from Case 3, we can obtain

, 1
qm = / = Qm
T'm-1

22

Proceeding to the next step of the algorithm, since m is odd, we get the expansion

<Q[/)7 qlla ce Q;n> = <Q1> qz, - Qm> = f
Hence, we have found f for m odd. m

Theorem 3.5. Suppose that we have f' and an oracle. If

1

3 Y
— NG,
2

ff=f1-4), 0<d<

where n,, and d,, is the numerator and denominator of f, then the continued fractions

algorithm will find f from f’.

Proof. We begin by following the first step of the algorithm. We give f’ to the oracle.
If the oracle says that f’ is not correct, then we can apply the results of Propositions

3.1, 3.2, 3.3, and Theorem 3.4 to find f from f’. m

4 RSA Encryption System Background

Below here lies a simplified version of the RSA encryption system. Suppose that Alice
wants to receive a message from Bob, but wants to prevent Eve, a third party, from
intercepting it. From R. L. Rivest, A. Shamir, and I. Adleman’s RSA paper [4], Alice
is able to do this by this encryption scheme. First, she picks two prime numbers, p, q,
of approximately the same size. Ideally she would want these two primes to be large.
The modulus n = pq is the product of the two primes. Next, she needs to calculate

¢(n), Euclid’s Phi Function. Since n = pq, the product of two primes,

o(n) = (p—1)(q—1). (4.1)

23
Alice would then need to pick a number e where 1 < e < ¢(n) and ged(e, p(n)) = 1.
The number e is called the public exponent. She would then need to calculate the

private or secret exponent d where

ed=1 (mod ¢(n)). (4.2)

The numbers e, d are called modular inverses of each other. The number d can be
calculated using modular arithmetic. From (4.2), we know that there exists an integer
k such that

ed=Fk-(p—1)(¢g—1)+1. (4.3)

From here, Alice will send Bob the numbers (n, e), which is called the public key. Alice
will not send or reveal to anybody the following numbers: p, g, ¢(n), d. Theoretically,
since p, q are large, ¢(n) will be difficult to calculate, resulting in the prevention of d
being calculated by third parties.

Encryption and decryption using RSA is described in the following simple model.
Alice sends Bob the public key (n,e). Bob encrypts his message M € Z, into a
ciphertext C' by C = M*¢ (mod n). Bob will send C' back to Alice, where she will
decrypt by

C'=M“=M (mod n).

We have this equality from the fact that n is square free, and e, d are modular inverses
mod ¢(n). Since Eve is unable to calculate d, she will be unable to decrypt the message
that she intercepts between Alice and Bob. This is a simple, yet necessary background

of the standard encryption and decryption using the RSA cryptosystem.

24

5 Continued Fractions Algorithm Applied to RSA

In this section, we will apply the continued fractions algorithm to RSA, showing that
if our secret exponent, d, is a certain size, then the algorithm will find the numbers
d,p,q. In order for us to be able to apply the continued fractions algorithm to RSA,
we must first see the relationship between RSA and the algorithm. We see this by
manipulations from the original RSA paper.

Let us start with (4.3). We will divide this equation through by dpgq, resulting in

Elp—1(g—1) +

e k
— = . 5.1
pq dpq 51)
With some algebra, we get
+ 1 !
k prq—1——-
S | P — A (5.2)
pg d Pq
1
prqg—1—-—
If we set § = Tk’ we can rewrite (5.2) to
e k
— =—=(1-9). 5.3
£ _Sa-9) (53)

We must first justify that 6 > 0. Since k is a nonzero integer, % < 1. Also, since p, q

are big, p+q¢>2>1+ % Finally, since p, q are positive integers, pg > 0, we have
1
0= ——7¥——"2>0.
pq

Second, we know that ged(k, d) = 1 since we get this directly from equation (4.3).
Notice the similarities between (5.3) and (3.1). Let us define our f' = piq' Notice that

f" is made entirely up with public information. Now that we have developed an f’

25

that is translated from RSA terms, we must prove that our J is of proper size. That

is, we will prove that if d is small, we will have § < 3
N o,

2

Lemma 5.1. Suppose p,q are primes, and p,q are approximately the same size. Let

n,p,q,e,d be as above. Let d < %{*/ﬁ Then 6 < 1

3
_nmdm
2

Proof. First, we must clarify that we want the end result of the algorithm find the
fraction where n,, = k and d,, = d. We get this from the second observation above.

We will prove this Lemma by contradiction. Suppose that § > 31# From (5.3), we

ékd
get
p+q—1—% 1
> 3
pa “kd
2
We know that
1
ptg _Pra—l-g
pq pq
Therefore, we have that
2
pta 2
pq 3kd

With further algebraic rearrangement, we have that

2pq
d> ——F-—.
3(p+ q)k

Since p, ¢ are approximately the same size, n = pg ~ p* and p + ¢ ~ 2p. Therefore,

_PT g ~ 4 Therefore, we have

P+q

215

=¥
Qv

(5.4)

We have from (4.3) and the fact that & > 1 that ¢(n)k < ed. Since e < ¢(n), we get

dn)k < ed < %gb(n)%

26

Therefore, we get the result that k < %(‘/ﬁ We can combine this result with (5.4) to

get

1
122 = > g,

sls

contradicting the hypothesis that d < %\% Therefore, we have that if d < %{*/ﬁ,

then ¢ < %]
§kd

Now that we know what size d must be in order for the continued fractions al-

gorithm to generate %, we must now reveal our oracle so that we are able to check

whether our generated fractions is correct or not. From (5.3), we know that our desired

product from the algorithm to be % Therefore, we will denote our candidates that

are generated from the algorithm to be S—: Since ed = k(p—1)(¢ — 1) + 1 from (4.3),

we can extract a guess for ¢(n) from this equation. We will denote our guess as ¢(n)’,

where

oy = L1

This is possible since we already know e and have generated d’, k' from the algorithm.
Since
(z —p)(x —q) =2 —pr — gz +pg = 2" — (n — ¢(n) + D)z +n,
we can use our candidate ¢(n)" in this equation. Substituting our candidate into the
equation, resulting in
> — (n—¢(n) + 1)z +n=0.
We are able to find the roots to this equation since it is a quadratic polynomial.

Suppose we get

27

as our roots. If p', ¢ & 7Z, then we have not found our %, since our p, ¢ are positive
integers. Therefore, we move on to the next iteration of the algorithm. If we have
k

p',q¢ € Z and p'q’ = pq, then we have found our d since p, ¢ are unique roots to the

polynomial.

Theorem 5.2. Suppose p,q are primes, and p,q are approrimately the same size. Let
n=pq and let 1 <d,e < ¢(n) satisfy ed =1 (mod ¢(n)). If d < %{‘/ﬁ, then d can be

calculated from the continued fractions algorithm, thus p,q.

Proof. We start off with the public key (n,e). Since d < %{‘/ﬁ, by Lemma 5.1, we

have that § < Slﬁ Therefore, the fraction % can be generated from the continued

—kd
2

fractions algorithm. Using the oracle above that we have defined, and Theorem 3.5,

we have shown that we can produce p, ¢ from only public key information. O]

6 Polynomial Time

We have sufficiently proven that our algorithm will discover a fraction f from f’
when f’ is an underestimate, from (3.1), and § is of proper size. When this algorithm
is applied to RSA where the secret exponent d is small, the algorithm leads to the
discovery of d, p,q. In application to breaking codes, it is important to note that this
discovery should take place in a length of time that is reasonable. For example, if RSA
is used to protect credit card information, you would want to obtain the information
before the credit card expires. Using a brute force attack against RSA to discover ¢(n)

might take a very long time. Fortunately, this algorithm runs in polynomial time, thus

28
allowing us to break an RSA key in polynomial time. The following proof is taken

from [2].

Proposition 6.1. The Fuclidean Algorithm finds the continued fraction expansion for

%foraZb.

Proof. Let

(c_1,¢0) = (a,b)
(p-1,10) = (1,0)

(¢-1,90) = (0,1).
We will set the counter ¢ = 1. We will repeat the following steps until ¢; = 0.
d, = {ﬂJ
Ct—1
Ct = Cr—g — diCrq
Pt = Pi—2 — dipi—2

Gt = Qi—2 — dpqi—1.

t=t+1

When ¢; = 0, the iteration stops. Then set T = t. The previous is the set up for the
proof. We shall use induction on t.

Base case t =0

Induction step

Assume 8 = (dy,ds, ..., d;_1; Ct—_2> We will show that

Ci—1

Cy_
B ={dy,dy, ..., di1,dp; =),

Ct

We will expand % where z = % Therefore, we have

Ci—1

() (2
T (Ct_—Q) Ci1 Ci1 Ci1

With rearrangement by common denominator, we have

Ct—1
Therefore, we have that

Cy_
B ={dy,dy,....dy_1,dp; =),

Cy

When t =T, then ¢y = 0, which leaves

-1
(dT + o) = dT_l.
Ccr—1

This implies that

a

ﬁ — <d1,d2, ...,del,dT> —_ .

j=p)

-1
C—
c Ct—2 — Lt—QJ Ct—1 c -1
))
Ct—1

Therefore, the Euclidean Algorithm is done in polynomial time.

This results leaves us directly to our desired result.

Corollary 6.2. The continued fraction expansion is found in polynomial time.

29

30
Proof. Since the continued fraction expansion is found by the same algorithm as Eu-
clidean Algorithm, it is found in the same time as the Euclidean Algorithm. By 6.1,
since the Euclidean Algorithm takes polynomial time, implying that the continued

fraction expansion is found in polynomial time. O]

Hence, we are able to break short secret exponents RSA encryption using continued

fractions in polynomial time.

7 Appendix

7.1 Examples

In this section, the continued fractions algorithm is going to be applied to a small

RSA key pair to illustrate the operation. For this example, we give
pq = 41626477 and e = 9247217.

We will show each step of the continued fractions algorithm applied to RSA for the

public key, starting with

e 9247217
— = —=(0,4,1,1,164,1,1,1,1,1,7,9,1,5,1,1,3
pq 41626477 (0,4,1,1, ,1,1,1,1,1,7,9,1,5,1,1,3)

in Table 1. The attack on the public key (n, e) produces the following result:

d=9, p=09719, ¢=4283, k=2, g=1.

For further verfication, Appendix A contains an RSA key generator that produces keys

that can be placed into a python program in Appendix B.

Table 1: Example

31

Calculated Quantity How it is Derived 1=0 1=1 =2
q; See (2.3) 0 4 1
/
n.
= = (40,91, -+) See (2.7) g I :
Guess of d—]z From Section 3 % éll %
Guess of ¢(pq) From Section 3 9247217 36988868 41612476
Guess of p From Section 3~ 21309240.778... 4637601.024... 9719
Guess of ¢ From Section 3 (quit) (quit) 4283
dg
d i 9

7.2 Appendix A

We have included a RSA key generator that can produce primes of length 10™ digits

and give you the modulus, along with the public and secret exponents. This is written

in Python programming language, using Sage version 4.3.1.

import random

def extEuclideanAlg(a, b)

"""Computes a solution to a x + b y = gcd(a,b), as well as gcd(a,b)

if b ==

return 1,0,a

else :

X, y, gcd = extEuclideanAlg(b, a % b)

return y, x -y * (a // b),gcd

def modInvEuclid(a,m)

def

"""Computes the modular multiplicative inverse of a modulo m,

using the extended Euclidean algorithm
nmn
X,y,gcd = extEuclideanAlg(a,m)
if ged == 1 :
return x % m
else :

return None

RSAKeyGen(n) :

loopend = 0

evaltest = 0

while evaltest==0:

while loopend ==0:

x = random.randint(10°n, 10~ (n+1))
p = next_prime(x)
y = random.randint(10°n, 10~ (n+1))
q = next_prime(y)

m = p*q

32

phi = (p-1)*(g-1)
d_length = int(n/4)
d = random.randint (10~ (d_length), 10~ (d_length + 1))
if d < 1/3 * (m)~(1/4):
if gcd(d,phi) == 1:
loopend =1
e = modInvEuclid(d, phi)
if e== None:
evaltest = 0
loopend = O
if e != None:
evaltest =1

print "The primes are", n, "digits in length"

print "This is your p value:", p
print "This is your q value:", q
print "This is your modulus:", m
print "This is your secret exponent:", d

print "This is your public exponent:", e

34

7.3 Appendix B

We have included a program of the algorithm applied to RSA, written in Python

programming language, using Sage version 4.3.1.

def SmallExponentAttack(n, e):
"""This algorithm is a modified version of Michael Wiener, Wade
Trappe, and Lawrence Washington’s attack on short secret exponents
of RSA encryption system. Michael Wiener’s version of his attack
is found in his paper "Cryptanalysis of Short RSA Secret Exponents.
The paper can be found in the "IEEE Transaction on Information
Theory", Volume 36, Number 3, May 1990, starting on page 553.
Trappe and Washington’s version can be found in their book
"Introduction to Cryptography with Coding Theory", Second Edition,

starting on page 170.

In order for this program to find the private decryption key from
the public encryption key, the private decryption key, d, must be
below the specified size that this paper has discussed. The input
for this program is the standard form of the public key, (n, e),

where n is the modulus and e is the public encryption exponent.

This program will use a continued fractions algorithm starting off

with the continued fractions expansion for the public key, where

35
’e’ will be the numerator and ’n’ will be the denominator. We will
call this expansion ’x’ in this program. The program will set the
checker to 0. This will allow us to check to see whether the

algorithm will actually find a plausible solution.

In accordance with Wiener’s paper, this program will perform his
algorithm to attempt to find a suitable candidate for inspection to
determine whether the algorithm has found the private key. The
program has already generated ’x’ from the public key. Next, it
will truncate the fraction ’x’, starting from having only one
quotient value, ’q_0’, to the entire fraction ’x’. If the last
quotient in the expansion is on an even slot, then the program will
add one to its value. Otherwise, it will keep the quotient value
as it is. Then the program will proceed to determine whether the
fraction generated can lead to the private key. Using Trappe and
Washington’s method to verify the candidate for the factors of the
modulus, the program proposes a candidate. If the candidate fails,
it will continue the loop with the next quotient slot. If the

candidate succeeds though, it will print the results.

If the program progresses through the entire continued fractions
expansion ’x’, and does not have a suitable candidate, then the

program will print ’No solution for this public key.’ """

x = continued_fraction_list(e / n)

print "Our continued fraction is:"

print x

for i in range(len(x)):

if i%2==0:

y-1=

x[i] + 1

y = x[0:1] + [y_1]

a = convergent(y,i)

y = x[

0:i+1]

a = convergent(y,i)

k_1 = a.numerator()

d = a.denominator()

phi_1 = ((exd)-1)/k_1

p = quadl(n, phi_1)

q = quad2(n, phi_1)

if p * q == n:
print "We have
print "This is
print "This is
print "This is
return

found the solution."

our p value:", p
our q value:", q
our d value (private exponent):", d

print "There is no solution for this public key."

36

def

def

37

quadl(n, phi):
"""This is a quadratic equation solver that will solve for a
root of a given candidate phi."""

b

-(n - phi + 1)
c=n
soll = (-b + sqrt(b”2 - 4%c))/2
if type(soll) == sage.symbolic.expression.Expression:
soll =0
return soll
else:
return soll
quad2(n, phi):
"""This is a quadratic equation solver that will solve for a
root of a given candidate phi."""

b

-(n - phi + 1)

c=n

sol2 = (-b - sqrt(b~2 - 4xc))/2

if type(sol2) == sage.symbolic.expression.Expression:
sol2 = 0
return sol2

else:

return sol?2

38

7.4 Appendix C

In this Appendix, we have listed the keys and the lengths of primes that were gener-
ated through the key generator program in Appendix A. We will use these keys to run
through our program to measure the average time to complete the algorithm. These
results are covered in Appendix D.

The primes are 10 digits in length.

This is your p value: 46109347829

This is your q value: 78894873221

This is your modulus: 3637791151271946587209

This is your secret exponent: 433

This is your public exponent: 1024966559907452583537

The primes are 20 digits in length.

This is your p value: 934302731369511230053

This is your q value: 107725948742424571621

This is your modulus: 100648648149419240655445128876247306125913
This is your secret exponent: 386141

This is your public exponent: 63124841984731876961222306891783219044661

The primes are 30 digits in length.
This is your p value: 9887158870142658718047856176023

This is your q value: 6888662994112943953886773343059

39
This is your modulus: 6810930542566727942728834123498207824420731015847893566
9274357
This is your secret exponent: 85694311
This is your public exponent: 52791135208358055498914739323251738393599629875

076479355470459

The primes are 40 digits in length.

This is your p value: 13205191735070503533522115328056902631643

This is your q value: 79486894339594100967419465408530368096983

This is your modulus: 1049639680179630412269363440709346936377581585696977095
062265598901225822548633069

This is your secret exponent: 93140865639

This is your public exponent: 507089168647920650705537177250123658631994131950

4641076195065253944263 79758387559

The primes are 50 digits in length.

This is your p value: 844455667407145320224667950468929087799316857872103

This is your q value: 971371052487258472662475293496365079311583562692163

This is your modulus: 8202797904281090407554894301225273942189644956487256484
39075920093197977857244429432013147466214428789

This is your secret exponent: 9288018680195

This is your public exponent: 6555602504738429484837506767693078356606995416345

27971517611876942291774249858415857091335390788233495

40

The primes are 60 digits in length.

This is your p value: 9619567266759922233777618523406963094026174850438559217
641961

This is your q value: 2533405596739912797905967880792331632633442688887709322
058081

This is your modulus: 2437026555182565270657003714505511153822392810492663046
951079737244965414434681368621037483068105186466928559598030473684 1

This is your secret exponent: 7544190177959629

This is your public exponent: 2392135019577775989694352272961586445042029338945

3706097716214509957882041165616677738568529177425256575168932805967083269

The primes are 70 digits in length.

This is your p value: 38944640445003509856852015306024034510122229129747852989
433334899610759

This is your q value: 97681556193332181665196200301903514494677023604248487081
725075915292047

This is your modulus: 3804173084057727569677808076248609342224052854541750114
949436170166832714603017552802578072687522212536345058364909473395946220383
196108333673

This is your secret exponent: 328912203630965819

This is your public exponent: 1521552551702992527495266329483716994687439002027

633768029214345378073164880622283877536278623939931646219284033044951855488

41

75735320058015427

The primes are 80 digits in length.

This is your p value: 73150429776657589083716358596936299768851311501702201881
3432830869302769384572709

This is your q value: 50589980362354510859238256409367387173461655011031688245
7458165938529893648493903

This is your modulus: 3700678805898900099457246774194362226700520286050236232
763369271053902427507875627103000409526548647795315867534764736221232920069
74459222098721235400601046693227

This is your secret exponent: 300070249244721159241

This is your public exponent: 3069154869326397209073525641253705938314736744351
227810022112614582503327470074812363409838372708139155914059353367361474235

11498506544920619320405128548025557377

The primes are 90 digits in length.

This is your p value: 231990689166172703932876356774097314014043327776569742810
8007137474585373395399145721501899

This is your q value: 156070942579247553259525515034561971718302230751615462060
4511677982990743678913558189313427

This is your modulus: 36207005527773807515987769988847502115785352960518696040
227923319328322039691179011204415230358989828918737378985529213618401814813

60590135450554719921903067423926663256554086697873

42
This is your secret exponent: 41075147631741792008819
This is your public exponent: 3602467456413542078262491876151097706364901377696
510998123464094628231972403466274186947416351395807416018633643623564379117

082610553333226523925246230283906461869113221741034643331

The primes are 100 digits in length.

This is your p value: 74213394744938727254106462031659198278301080189827176834
371974416507473490047085704054823204670209509

This is your q value: 72653620388150074022408737100172857883354381920328470240
223597812542716198113865385647449531516471197

This is your modulus: 5391871809514709876905700893290517267661079001984716726
503596423142917776048110636924456843611133720703646572497047237137530301791
298325326951555891779417842087894961752120007859372415413189374354012273
This is your secret exponent: 74326535602011313776656669

This is your public exponent: 3774186789318389854227932196912734190538812296961
596861147928472309801557445790745783875876390556697765911248913350373810459
938049477554510186277861261556438285662760632120018264264580898117837711679

557

The primes are 110 digits in length.
This is your p value: 816253795661765796429886098538177015763201227900073089850
957201232311719813593489728346859551329736537401504993

This is your q value: 108456658972051873905431223063537201511456798269459365576

43
979705427374542820284623906312837264281204089522126153
This is your modulus: 8852815955073104831493416701140404110332155301497970155
679638169266870752293801592987386344672951477012374345685086234413887178328
841406310712599174040093380554539896462468871405477605543707127826956516356
2504795405381929
This is your secret exponent: 4939923303153478550097749713
This is your public exponent: 2800033234362677558114277349702269555715028760765
478241717634850947611429552660424882141101831804272731803034963743664346280
015665259805308256348798408181597351796015645416085241356599604297510563459

5669737597960330161201

The primes are 120 digits in length.

This is your p value: 948486960217796347428690297066244461578007072003558765889
7839042056234773364649862516613036566561427116811024218097299033

This is your q value: 215438702759096176075523147595011595562712478227647199029
6213246176027209877430721612104288347049238685342401683089451351

This is your modulus: 20434080029324050694920413032830487714088295414660214776
162510871562595335953427748190308913921722751742978972932931499529466857712
832022437159403637555913997946626246617380657242289320503731319447583722456
087786022753746779655994586952843583

This is your secret exponent: 3520749533844797297612490561341

This is your public exponent: 1893197989429586622955666475377234684255181658361

27589924943030889155761638972127600929284322949914330454385972574244196002

44

52214839405308063946510341405888171087705278370729415324064417318510029185

025128485583086758169947799767521694677363861

The primes are 130 digits in length.

This is your p value: 90251874856497319268147689174390786153975145311819628542
41091908858811196992327368417720849573764425494154254793946347259569680107
9

This is your q value: 482751815949046337858262390481317058604059565504329418
328206148835429328142247247517684953556063394171262954539673014255968795661
01This is your modulus: 43569256479780156736733739998506151924182957460738301
710296413583898768886871259758465902663232226669269080497011343908317986736
924297288377999612087367959741480832902372493210571510132687042542601358107
33229658901142928109809616196926107476316448402787228622979

This is your secret exponent: 127589387268597951315123806196567

This is your public exponent: 3927964927924045986256453794975810604726686892521
113870508304422127786528138057152251109503031264545123271475956725380554724
099709724414096311782656197702654285162658041138420104720298610047780045238

697882660967358449789216626658824921637707954877610636981628503

The primes are 140 digits in length.
This is your p value: 26952417564215204171831631317878181174583743128972126188
213036326911360182556307068169903257894446926494341654416040971604103371326

0065110539

45
This is your q value: 37033442288024320629760778617025147467232709709732166091
901819271357748379049948589498913803304045154405812945476838172799098580870
3536230429
This is your modulus: 9981408003870967974784007382803453112568591102279749149
360096226250605154130243956065916202846218911303030537946179198108284780292
217959838908417474964496650527167002815014011637561189160398441693228160670
670277651147726484377663170713351207701656528836381066459091092370926039123
1
This is your secret exponent: 728971783812315646258642582386548539
This is your public exponent: 3247008936895502688948650241553489493737127293056
839036338819039699391363826053945058168049002682730724286710145371448629281
606935992980258017330606825210439100100669245713212728011150047910899717407
130530566662977491478251255291816762313687966981568466198156285065523009349

7636459

The primes are 150 digits in length.

This is your p value: 46277993696056904889637150752134051376531659112026619424
162794115919350948341222548749622374163509864316285032177520267272784813482
34379832542667940257

This is your q value: 34535344275876905948438705192665767311814136661751043822
559973508194184406437822343409089330759823251541060002551371859871420337685
36765982658031612643

This is your modulus: 1598226444690186368308431081239831565857086899418846304

46
003074688122778215634871253169386140818323445457913920802313679962300145169
855719579571434559543538751929107820499010110263888763509279791627618570183
885716462287423345954959323654441579858103811231283746227806522409292713417
1014013206968889869251
This is your secret exponent: 74632502443571391317895000506799405433
This is your public exponent: 4717762022839780011132017944500574427900421442870
371733070245812301694562733521070655352781754550754953081888015742781192602
325037750004512914148591431165057350095143229518658868112857663638505078180
601748631274730764995176852405235882736115420961123444799776309859511251708

406138011599275464230035337

47
7.5 Appendix D
In this Appendix, we cover the results of time test of the keys from Appendix C.

These tests were run on an iMac, Mac OS X 10.6.2, 3.06 GHz Intel Core 2 Duo, 4 GB

1067 MHz Ram, on Sage v.4.3.1. Each key was run through 5 loops.

Table 2: Time Chart for Algorithm Completion

Primes Modulus Public Exponent Average Time(s)

10 22 22 0.120
20 42 41 0.193
30 62 62 0.351
40 82 81 0.572
50 102 102 0.847
60 122 122 0.925
70 142 141 1.14
80 162 162 1.56
90 181 181 2.02
100 202 202 2.08
110 221 221 2.58
120 242 242 2.90
130 262 262 3.27
140 281 281 3.66
150 302 301 4.27

Putting the length of the primes versus the average in seconds in the graph, we

48

Average Time for Program Completion

4.5 *

4
1.5

3 2
4.5

2 » *
15 *

1

Sorergae Time fo Complete (5}

0.5 *

0 Al 4l b0 &0 100 1:0 140 L&D

Length of Primes (it of digits)

Figure 1: Length of Primes versus Average Time of Completion in Seconds

can see visual evidence that the algorithm runs in polynomial time.

References

[1] Dan Boneh, Twenty years of attacks on the rsa cryptosystem, Notices of the AMS

46 (1999), no. 2, 203-213.

[2] George Nemhauser and Laurence Wolsey, Integer and combinatorial optimazation,

Wiley-Interscience Series in Discrete Mathematics and Optimization, 1999.
[3] C. D. Olds, Continued fractions, The Mathematical Association of America, 1963.

[4] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM 21 (1978), no. 2, 120

126.

49
[5] Michael J. Wiener, Cryptanalysis of short rsa secret exponents, IEEE Transaction

on Information Theory 36 (1990), no. 3, 553-558.

