
 

  
 

 

Distribution Agreement 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive 
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all 
forms of media, now or hereafter known, including display on the world wide web. I understand 
that I may select some access restrictions as part of the online submission of this thesis or 
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain 
the right to use in future works (such as articles or books) all or part of this thesis or dissertation. 

Signature: 

 

               _______                                     ____________ 

Jessica L Coates                                                    Date 

  



2 
 

 

  

 

 

 

Statistical approaches to understanding between and within host dynamics of infectious disease 

agent replication 

 

By 

Jessica Coates 

Doctor of Philosophy 

 

Graduate Division of Biological and Biomedical Sciences 

Microbiology and Molecular Genetics 

 
 

   

Paul Rota, Ph.D. Advisor 

 

   

Katharina Koelle, Ph.D. Co-chair 

 

   

Anice Lowen, Ph.D. Committee Member 

  

Patricia Marsteller, Ph.D. Committee Member 

  

Nic Vega, Ph.D. Committee Member 

 
 

Accepted: 

 
 

Kimberly Jacob Arriola, Ph.D, MPH 

Dean of the James T. Laney School of Graduate Studies 

 
 

Date 

 

 

 



3 
 

 

  

 

 

 

 

 

Statistical Approaches to Understanding Within Host and Between Host Dynamics of Infectious 

Agent Replication 

By 

 

Jessica Coates 
BS Spelman College, 2013 

 

 

 

Advisor: Paul Rota, PhD 

 

 

 

 

 

 

An abstract submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory 
University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Graduate Division of Biological and Biomedical Sciences in Microbiology and Molecular Genetics 

2022 
  



4 
 

 

  

 

 

 

Statistical approaches to understanding between and within host dynamics of infectious disease 

agent replication 

 

By Jessica Coates 

 

 

 

Despite the design of highly effective antibiotics and vaccines, infectious diseases still cause a major 

burden on public health. Infectious diseases account for three of the ten major causes of death in 

the United States and globally infectious diseases can be attributed to over 17 million deaths per 

year. Because of an increase in antibiotic resistance and decreased vaccine effectiveness for multiple 

vaccine preventable diseases, there is a need to better understand the dynamics of infectious disease 

replication under antibiotic stress and in highly vaccinated populations. To better understand these 

dynamics, this work aimed to explore two unique cases: (1) the within host dynamics of E. coli 

replication in the presence of bacteriostatic and bactericidal antibiotics and (2) the between host 

dynamics of mumps transmission in US populations with a high vaccine coverage. Given the 

usefulness of statistical approaches to understanding infectious disease dynamics, we utilized data 

derived from traditional experimental biology to construct a mathematical model describing the 

birth and death processes of bacteria exposed to antibiotics. This work demonstrated that 

bactericidal and bacteriostatic antibiotics have differing effects on the growth dynamics of bacteria 

that can be manipulated to increase the likelihood of bacterial clearance. In a second study, we 

utilized observational data collected through a systematic review to estimate the effective 

reproduction number for mumps outbreaks in the United States post the introduction of a two-dose 

vaccination recommendation. This work highlighted the heterogeneity in transmission dynamics for 

different populations with similar vaccination coverage and provided foundational evidence about 

the potential effectiveness of non-pharmaceutical interventions in controlling mumps outbreaks. 

Together this work adds to the body of work focused on understanding the importance of within 

and between host dynamics of infectious agent replication. Additionally, the work provides novel 

insight that may aid in the design of future studies. This is particularly important because as we 

develop a better understanding of the dynamics of infectious agent replication, it improves our 

ability to reduce the burden caused by infectious diseases on human health.   
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Chapter I. Introduction 

Jessica Coates 

Abstract 

Infectious diseases (IDs), or diseases caused by the transmission of microorganisms, cause a major 

burden on public health in the United States. Public health strategies utilizing antibiotics and 

vaccines can be effective for reducing within-host and between host replication of infectious 

diseases agents. In the introduction chapter of this dissertation, the author introduces background 

information on the within-host and between host transmission dynamics of infectious diseases and 

how public health strategies can be used to reduce transmission. Lastly, the author presents the gaps 

in knowledge, describes the questions asked in the dissertation, and provides a summary of the 

remaining research chapters.    
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Introduction 

Infectious diseases (IDs), or diseases caused by microorganisms, -- such as bacteria, viruses, 

fungi, or parasites – are major causes of morbidity and mortality in the United States and globally. In 

2020, three out of the ten major causes of death in the United States were the result of infectious 

diseases1. In addition to causing mortality, infectious diseases can be associated with the onset of 

negative long-term effects, such as, increased risk of cancer2, paralysis3, and intellectual deficiencies4.  

Lastly, illness due to infectious disease can have major economic impacts as a result of reduced 

human production, decreased desirability in investment, and the financial costs of healthcare5.  Due 

to the high burden associated with infectious diseases, it is essential to understand the dynamics 

associated with infectious disease agent replication in the United States and to design effective 

strategies for the control and prevention of infectious diseases.  

 For infectious diseases to be maintained within a population, two levels of reproduction 

must occur: (1) within-host and (2) between-host. The infectious disease process begins with within-

host reproduction, or the microorganism of interest (bacteria, virus, or parasite) encountering a host 

and circumventing the host’s immune response to complete a series of replication cycles. As a result, 

of each replication cycle, the host may experience symptoms and become infectious to other hosts. 

This process can cause significant damage to the host, sometimes resulting in death. Therefore, to 

sustain infectious diseases at the population level, there must be a successful act of transmission 

between an infectious host and a susceptible host, or between-host reproduction. Transmission 

between two hosts can occur through multiple different mechanisms. Transmission mechanisms 

include direct (i.e., skin-to-skin contact, kissing, and sexual intercourse), droplet spread (short-range 

aerosols produced by sneezing, coughing, or talking) and indirect transmission (infectious agent 

from a reservoir to a host by suspended air particles). Additionally, infectious disease agents can be 
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transmitted via inanimate objects (e.g., unsanitary food, impure water, surfaces) and animate 

intermediaries (vectors))6.   

 Several public health and medical interventions have been devised to prevent pathogen 

replication at each level. Within-host and between host replication, can be mitigated, or prevented 

using social distancing, barrier methods (i.e., condoms and masks), or vaccinations 7. Once within the 

host, antimicrobials and vaccine mediated immune responses can be used to prevent entry into the 

cellular target, reduce pathogen replication, and minimize harm done to the host8,9. Overall, these 

methods have been highly effective as demonstrated by the decreased infectious disease incidence 

and burden following their introduction. Following the discovery of antibiotics and vaccines, the 

United States observed a shift from infectious diseases being the major cause of death to chronic 

diseases – such as heart disease, cancer, and diabetes until the COVID-19 pandemic10. Two 

exemplary examples of the effectiveness of antibiotics and vaccines are the case of penicillin and the 

measles vaccine. Prior to the implementation of the measles vaccination program in 1963, an 

estimated 3 to 4 million measles cases happened annually in the United States. Since the vaccination 

program started, widespread use of the measles vaccines has led to  >99% decrease in measles cases 

compared with the pre-vaccine era11. Part of the United States’ success in World War II can be  

attributed to efforts by the United States government to produce and use penicillin for soldiers. 

During World War II, the use of penicillin reduced soldier mortality from 18% to 1%12.  However, 

in the case of some infectious diseases, there has been an observed decrease in the ability of 

antibiotics and vaccines to prevent or control replication. 
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The Gaps in Knowledge 

For this dissertation, I focused on two cases where effective preventative and control 

measures have been introduced but infectious disease agent replication persists at the between and 

within host levels. Specifically, I start with the case of failed antibiotic treatment despite perceived 

population susceptibility and proceed to discuss the increased incidence of mumps cases in the 

United States despite a high two-dose vaccine coverage since 1989.  

Random (stochastic) processes can affect the course of an epidemic in many ways. For 

example, at the beginning of an epidemic when the number of initial infected hosts is low if a host 

randomly dies or experiences a life event that prevents them from being around other susceptible 

hosts the epidemic may die out before tremendous harm is done to the population. This 

phenomenon also holds true for the within host dynamics of infectious agent replication. At the 

beginning of an infection and following treatment with antimicrobials , the agent load is presumably 

small and vulnerable to stochastic processes that could result in the eradication, or clearance of 

infection, from the host. 

The effect of stochasticity on within host replication can be best depicted utilizing a 

statistical theory called branching process. Branching process, is a type of mathematical object that 

can be utilized to conceptualize the process of bacterial replication within a host13. In this process, 

every bacterial cell can undergo binary fission or die at a predetermined time step with some 

probability. Therefore, the process of going from the initial bacterial load to the final bacterial load 

can be illustrated by a tree whose root is the first bacterium. On average, the probability of a 

bacterium undergoing binary fission in this tree might add up to an average probability greater than 

one. However, chance events might lead to a situation where most cells do not undergo binary 

fission and ultimately die. In this instance, the infection also will die out preventing the opportunity 
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for between host transmission. The likelihood of such events happening is greater when the 

population size is small and chance events have a greater effect. 

In an ideal scenario, antibiotics could be used to reduce the bacterial load to a small 

population size that is highly susceptible to a stochastic breakdown in the branching process, or 

extinction. However, clinically this is not always observed. Instead, antibiotic treatments have been 

observed to fail to clear 100% of bacteria during an infection14. In this instance, as described later in 

this dissertation, there is a need to better understand the population dynamics of small bacterial 

populations exposed to antibiotics. 

Since the early 1900s, statistical methods have been used to better understand the between 

and within host dynamics of infectious agent replication and to design effective strategies for 

preventing and controlling replication. Between-host models of infectious diseases follow the 

dynamics of disease spread at the level of the host population by tracking the number of susceptible 

and infected individuals of different types15. Susceptible-Infected-Recovered, or SIR, models are 

some of the most used models in epidemiology to explore between host dynamics of infectious 

agent replication. SIR models attempt to compartmentalize individuals within a population based on 

their disease status where susceptible individuals can become infected 15. Following infection, 

individuals can transition to recovered depending on the longevity of immunity.  When an infected 

individual enters the population, it can infect on average R0 others, who can in turn transmit the 

infectious disease agent to other susceptible individuals. R0, or the basic reproductive number, is the 

number of newly infected hosts resulting from one already infected host in a population of all 

susceptible hosts16. R0 can take on a range of values when observed within real epidemics such as in 

the cases of hyper-endemic malaria in Nigeria (R0 = 80) in the 1970s and HIV in male homosexuals 

in England and Wales from 1981-198517 (R0 = 2).  When is R0 ≥ 1, the population is considered to 



17 
 

 

  

 

 

 

be in an epidemic state, or an unexpected increase in the number of disease cases in a specific 

geographical area. Eventually as the infectious agent continues to replicate within a population the 

number of susceptible hosts decreases. As the pool of susceptible hosts becomes smaller, between 

host transmission also slows, and the R0 begins to decrease.  

In an ideal scenario, SIR models could be utilized to devise rational vaccination strategies to 

shift R0 until the value reaches zero indicating eradication of the disease from the population.  

Through the use of statistical methods, investigators can estimate the pcrit, or the proportion of the 

population that needs to be vaccinated to achieve an 0 ≥ R0  ≤ 118.  However, in the case of some 

diseases – such as mumps, R0 never reaches zero and the disease continues to circulate within a 

vaccinated population. As described later in this dissertation, mumps is a vaccine preventable 

infection caused by the mumps virus that affects the respiratory system and salivary glands 19. 

However, despite the design of an effective vaccine and high vaccine coverage in the United States, 

cases of mumps continue annually in historically marginalized communities (i.e., Marshall Island and 

Jewish descendants), universities, and detention centers20.  In this instance, it is more appropriate to 

utilize the Re, or effective reproduction number, to explore between host dynamics of infectious 

agent replication. The Re is defined as the average number of secondary cases per infectious case in a 

population made up of both susceptible and non-susceptible hosts21. If Re > 1, the number of cases 

will increase similar to when R0 > 1. Where Re = 1, the disease is endemic, or constantly maintained 

at a baseline level in a geographic. The Re value, as described later in this dissertation, can be used 

similarly to the R0 value to devise effective strategies to control and prevent infectious agent 

replication in vaccinated populations.     

Given the large impact of antibiotic treatment failure and mumps disease on public health, 

this dissertation sought to utilize statistical methods to understand the within-host and between host 
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dynamics of infectious agent replication. Specifically, this work describes the combined use of 

experimental biology methods and stochastic models to investigate changes in the population 

dynamics of a small population of E. coli bacteria once exposed to bactericidal and bacteriostatic 

antibiotics. Additionally, I present data describing the Re value for mumps disease in the United 

States despite having a high vaccine coverage for a perceived vaccine preventable disease. Finally, 

work concludes to offer recommendations for the improvement of future studies and the design of 

strategies to prevent and control the spread of infectious diseases. Herein, I describe the questions 

asked in this dissertation and provide a summary of the remaining dissertation chapters. 

The Questions 

To evaluate the within-in and between-host dynamics of infectious disease agent 

reproduction under antibiotic stress and in vaccinated populations, this dissertation attempted to ask 

the following questions: 

Questions on within-host dynamics of infectious disease reproduction 

1.1.1. How frequently does E. coli reproduction occur in the presence of 

antibiotics? 

1.1.2. Is the frequency of E. coli reproduction associated with a previously acquired 

resistance? If not, what reproduction characteristic (growth rate vs death 

rate) is correlated with the reproduction frequency? 

1.1.3. Can the characteristic(s) associated with reproduction frequency be 

manipulated to decrease the likelihood of reproduction using currently 

available antibiotics? 
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Questions on between-host dynamics of infectious disease reproduction 

1.1.4. What is the mean effective reproduction numbers for mumps outbreaks 

occurring in the United States? 

1.1.5. Is there a relationship between setting and the effective reproduction number 

for mumps? 

 

Outline of The Thesis and Chapter Summaries 

 
In Chapter 2, I present a joint experimental and theoretical study on the dynamics of 

bacterial reproduction under antibiotic stress. In this investigation, we exposed E. coli K-12 

MG1655, a commonly used laboratory strain with no known antibiotic resistance, and mutant strains 

with increased antibiotic resistance to antibiotics to estimate the frequency of pathogen 

reproduction. This bacteria strain serves as the ideal model organism because of the availability of 

information about the genetic background, few genetic manipulations, and the opportunity to 

investigate antibiotic treatment failure.   

In this study, we utilized single-cell microscopy, conventional plating assays, and a stochastic 

birth-death processes model to evaluate the growth and death rate of E. coli in the presence of 

bactericidal and bacteriostatic antibiotics. The results of our experiments suggest that: (I) population 

level survival varies at sub-inhibitory concentrations of bactericidal antibiotics in a concentration 

dependent manner, (II) survival at sub-inhibitory concentrations of bactericidal antibiotics is not 

associated with acquired resistance, and (III) probability of population extinction is associated with 

stochastic fluctuations in death rate. 
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To explore the potential implications of the experimental results for the design and 

evaluation of antibiotic treatment regimens, we used a Markovian birth-death model to account for 

the stochastic extinction dynamics. The results of our model suggest that when bactericidal 

antibiotics are used in combination with bacteriostatic antibiotics at concentrations where the death 

rate is greater than the growth rate the frequency of population extinction can be increased. This 

provides a potential alternative antibiotic treatment strategy using currently available antibiotics that 

would not have been identified using a deterministic approach.  

In Chapter 3, I present a systematic review to understand the dynamics of mumps 

transmission in different settings in the United States following the 2006 resurgence. Mumps 

outbreaks serve as an excellent model for exploring between-host reproduction under current 

prevention measures because of the continued outbreaks observed in universities, mass gatherings, 

detention centers, and close-knit communities despite a high two dose mumps, measles, and rubella 

(MMR) vaccination coverage.  

To assemble the data necessary to estimate the Re value for mumps in the United States, we 

used a MeSH term search to obtain observational data about mumps outbreaks reported to MedLine 

as an alternative to collecting experimental data. Due to the lack of a non-human primate 

experimental model organism for mumps and ethical concerns for performing human challenge 

studies, this method allows for sample analysis of mumps transmission that would be otherwise 

difficult. Due to a small dataset, we were unable to estimate the mean Re value for mumps in the 

United States post the 2006 resurgence. However, we were able to generate point estimates for the 

Re values that suggest mumps transmission can be reduced by non-pharmaceutical interventions 

(NPIs). The results of our analysis suggest that NPIs may be useful in reducing the spread of 

mumps in combination with vaccination but further studies are necessary to validate that claim.    
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To conclude the main portion of this study, I briefly summarize the general conclusions of 

the investigations contained in this dissertation in Chapter 4. I discuss additional questions and lines 

of inquiry that the studies herein have generated and consider potential future direction.  
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Abstract 

Effective antibiotic use that minimizes treatment failures remains a challenge. A better 

understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of 

large bacterial populations established the deterministic framework of pharmacodynamics. Here, 

characterizing the dynamics of population extinction, we demonstrated the stochastic nature of 

mailto:minsu.kim@emory.edu


25 
 

 

  

 

 

 

eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced 

population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance 

were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. 

These striking outcomes of population fluctuations were well captured by our probabilistic 

model. Our model further suggested a strategy to facilitate eradication by increasing extinction 

probability. We experimentally tested this prediction for antibiotic-susceptible and clinically isolated 

resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial 

eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were 

previously deemed inefficacious to eradicate bacteria. 
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Introduction 

The frequent failure of antibiotic treatments is a serious public health threat. A recent study 

projects treatment failures caused by antibiotic resistance will lead to 300 million deaths and a 

healthcare burden of $100 trillion by 2050 (O’Neill, 2016). This epidemic is further exacerbated by 

our inability to reliably eradicate antibiotic-susceptible bacteria. For example, antibiotic treatments of 

infections caused by antibiotic-susceptible bacteria never achieve a success rate of 100%, often 

failing to eradicate them unexpectedly (Doern and Brecher, 2011; Weidner et al., 1999; Gopal et al., 

1976; Ficnar et al., 1997; Forrest et al., 1993). To design effective treatments and avoid antibiotic 

failure, there is a strong need to better understand the dynamics of bacterial populations exposed to 

antibiotics. 

Previously, laboratory studies have extensively characterized how large bacterial populations 

(e.g., ~108 cells in a culture) decline under antibiotic treatment, e.g., see (Nielsen et al., 2011; Ferro et 

al., 2015; Regoes et al., 2004). These studies have led to the current, deterministic model of the 

pharmacodynamics, that is, the population dynamics of bacteria exposed to antibiotics follows a 

predetermined course and can be predicted deterministically a priori; see (Regoes et al., 2004; Czock 

et al., 2009) and references therein. This deterministic framework successfully captures the 

reproducible dynamics of a large bacterial population declining to a small population under 

antibiotic treatments. However, due to their experimental detection limits (e.g., >>100 cells [Nielsen 

et al., 2011; Ferro et al., 2015]), the dynamics of a small population undergoing extinction have not 

been directly characterized. 

Inoculum size as small as a few cells can produce infections (Jones et al., 2006; Haas and 

Rose, 1994; Jones et al., 2005; Tuttle et al., 1999; DuPont et al., 1989; Hara-Kudo and Takatori, 

2011; Kaiser et al., 1992). Thus, if antibiotics manage to reduce a large bacterial population to a very 
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small population but fail to eradicate it, the survivors may replicate and restore infections. 

Additionally, these survivors are more likely to develop antibiotic resistance, making subsequent 

antibiotic treatment of the restored population more difficult (Gullberg et al., 2011; Kohanski et al., 

2010; Lopatkin et al., 2016; Dagan et al., 2001; Allen et al., 2014). Thus, in many cases, including life 

threatening infections or even minor infections in immuno-compromised patients, treatment success 

depends on complete clearance of the infection-causing bacteria. To effectively clear bacteria using 

antibiotics, it is critical that we understand not only how a large population of bacteria declines to a 

small population, but also how a small population eventually goes extinct. Extensive studies focused 

on the former process (discussed above). The present study focuses on the latter process. 

By employing a conventional plate assay, single-cell microscopy, and quantitative modeling, 

we directly characterized the extinction dynamics of antibiotic-susceptible Escherichia coli 

populations. We found that antibiotics known to kill bacteria (i.e., bactericidal drugs) induce 

population fluctuations. At high drug concentrations, all populations go extinct (as expected), but 

the extinction time is highly variable and cannot be deterministically predicted a priori. Even at low 

drug concentrations, due to these fluctuations, populations go extinct with a non-zero probability. 

We found that the Markovian birth-death model quantitatively accounted for the probabilistic 

occurrence of population extinction. Informed by the model, we then altered the extinction 

probability by manipulating cell growth and showed that a bacterial population could be eradicated 

at low drug concentrations that were previously deemed inefficacious. Our work demonstrates that 

the deterministic knowledge obtained from previous studies of large bacterial populations cannot be 

extrapolated to population extinction. Our findings also have significant implications for the 

prediction of treatment outcomes, development of innovative therapies, and assessment of 

antibiotic efficacy. 
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Results 

Contrasting trends in plating efficiency for bacteriostatic and bactericidal drugs 

Previous studies of large populations have established the ‘minimum inhibitory 

concentration’ (MIC; the lowest concentration of the drug that inhibits population growth) as the 

most critical parameter for characterizing the dynamics of a bacterial population under antibiotics 

(Regoes et al., 2004; Czock et al., 2009; Craig, 1998; Falagas et al., 2012). The dynamics of bacterial 

populations exposed to different concentrations of antibiotics  have been examined and modeled 

deterministically in relation to the MIC, as follows. First, without drugs, the growth rate of cells, l, is 

higher than the death rate, f (i.e., l > f), and thus a bacterial population always grows. When drug 

concentration increases, if the concentration remains below the MIC (i.e., sub-MIC), growth rate is 

higher than death rate (l > f), and thus a population still grows, albeit at slower rates. When the drug 

concentration increases further and reaches the MIC, growth rate becomes equal to death rate (l = 

f), and the population size is maintained at a constant level. Only at drug concentrations above the 

MIC does a bacterial population decline. Extrapolating this deterministic knowledge to population 

extinction, studies often claimed that maintaining drug concentrations above the MIC was absolutely 

essential to eradicate bacterial populations. As will become evident later, our data challenge this 

deterministic framework. 

As a first step to examine the dynamics of a small population in relation to the MIC, we used 

a plate assay and characterized how single E. coli cells grew and formed colonies at various 

antibiotic concentrations. Antibiotic-susceptible, wild-type (WT) E. coli cells were cultured in liquid 

LB medium without antibiotics and then spread on LB agar plates containing increasing 

concentrations of antibiotics. After 18 hr of incubation, the number of colony-forming units 
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(NCFU) was determined. By normalizing the NCFU to that for an antibiotic-free plate (N0CFU), 

we then obtained the plating efficiency (=NCFU/N0CFU), which indicates the fraction of cells 

forming colonies. Following the definition of MIC as the lowest drug concentration that inhibits 

population growth, the lowest concentration yielding no visible colonies on the plates was defined as 

the MIC here. See Figure 1—figure supplement 1 for a detailed illustration of this procedure and 

Supplementary file 1 for the MIC values for all of the antibiotics examined. 

When we performed this plate assay for various antibiotic drugs, we observed two strikingly 

distinct trends, which depended on whether the drug used was bacteriostatic (which suppresses cell 

growth) or bactericidal (which induces cell death). For bacteriostatic drugs, at increasing 

concentrations, the plating efficiency remained nearly constant and abruptly dropped to zero when 

the drug concentration reached the MIC (Figure 1A); the grey line was obtained from a linear 

regression analysis of the whole data set below 0.75 MIC (see Figure 1A caption for details). This 

trend indicates that almost every single cell spread on the plate grew and formed colonies at a wide 

range of subMIC drug concentration, and no cells formed colonies at (and above) MIC. This 

observation, suggesting homogeneous population dynamics, agrees with the deterministic prediction 

discussed above. Additionally, we observed a decrease in colony size at increasing drug 

concentrations (Figure 1—figure supplement 2). 

For bactericidal drugs, at increasing concentrations, the plating efficiency decreased gradually 

from 1 to 0 (Figure 1B); the grey line was obtained from a linear regression analysis of the whole 

data set (see Figure 1B caption for details). This trend contrasts with our finding for bacteriostatic 

drugs (compare the grey lines in Figure 1A and B) and cannot be explained by the deterministic 

model. In the literature, other studies have reported a similar gradual decrease in the plating 

efficiency (Liu et al., 2011; Ernst et al., 2002; Dong et al., 2000). However, those studies primarily 
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concerned how to better determine the MIC in the face of such a gradual decrease and have not 

characterized population dynamics underlying the gradual decrease. 

A subsequent plate assay reveals a lack of heritable resistance 

The plating efficiency between 0 and 1 indicates heterogeneous colony formation. In the 

plate assay above, we found that at ~0.6 MIC, the plating efficiency was ~0.5, meaning that 

approximately 50% of the cells plated formed colonies and 50% did not. One possible explanation 

is that the colony-forming cells were intrinsically more resistant to the drugs than the cells that did 

not form colonies, subsequently giving rise to resistant daughter cells (i.e., heritable resistance). To 

examine this possibility, for each bactericidal drug used in the experiment (for which the results are 

shown in Figure 1B), we picked colonies from agar plates exhibiting a plating efficiency of ~0.5 

(near 0.6 MIC), suspended them in liquid medium, and immediately plated them on fresh agar plates 

containing various concentrations of the same drug. The results were plotted in Figure 1C and 

Figure 1— figure supplement 3. Contrary to our expectation, the plating efficiency of the second 

plating was about the same as that of the first plating, or in some cases, marginally lower (possibly 

because cells were challenged with drugs twice consecutively). This observation rules out heritable 

resistance as an explanation for heterogeneous colony formation at sub-MIC drug concentrations. 

Bactericidal drugs induce stochastic fluctuations in population dynamics 

Our data above showing the absence of heritable resistance in the surviving populations 

suggest the possible involvement of stochasticity. That is, bactericidal drugs might induce stochastic 

fluctuations in the bacterial population size. To investigate this possibility, we performed a plate 

assay as above and followed the population dynamics of growing micro-colonies at single-cell 

resolution; we spread cells on agar plates, and rather than waiting for 18 hr and counting colonies 
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visible to the naked eye, we examined how isolated single cells grew to form micro-colonies using 

time-lapse microscopy. First, as a control, we examined the dynamics in the absence of antibiotics 

(Video 1). We counted the number of growing cells in each colony and plotted the number versus 

time (Figure 2A). The colonies proliferated homogeneously, meaning that different colonies grew 

similarly. We then repeated the experiment using a bacteriostatic drug (chloramphenicol, thiolutin, 

or tetracycline) at a sub-MIC level. Visually inspecting the image sequences, we found that cells 

stably grew, albeit at lower rates (Video 2). The number of growing cells in each micro-colony 

increased homogeneously and similarly (Figure 2B and Figure 2—figure supplement 1). Previously, 

we developed a microfluidic chemostat for cell culture (Kim et al., 2012; Deris et al., 2013). When 

we repeated these experiments using this device, we again observed the same homogeneous 

population dynamics (Figure 2—figure supplement 2A). 

Next, we characterized population dynamics for a bactericidal drug (cefsulodin, ofloxacin, 

kanamycin, or 6-APA), at a sub-MIC level. We found that the population dynamics were highly 

stochastic (Video 3). Visual inspection of such image sequences indicated that within a given 

population, some cells were killed stochastically, whereas other cells survived and divided. Such 

demographic stochasticity would lead to random fluctuations in the population size. Indeed, the 

number of growing cells in each colony fluctuated randomly over time (Figure 2C and Figure 2—

figure supplement 3A–C). These fluctuations led to dramatically different dynamics for different 

colonies, even though they originated from genetically identical cells and were cultured under 

homogeneous antibiotic conditions. When we repeated these experiments using the microfluidic 

chemostat, we again observed significant population fluctuations (Figure 2—figure supplement 2B–

D). 
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Importantly, the fluctuations drove some colonies into extinction (the light, red-shaded area 

in Figure 2C). We counted the number of colonies that went extinct and plotted the probability of 

colony extinction at various drug concentrations; here, we are interested in colony extinction 

because it is equivalent to bacterial clearance, which means treatment success. Figure 2—figure 

supplement 4 showed that the extinction probability increased with increasing drug concentrations. 

This increase in the extinction probability agrees with the trend of decreasing plating efficiency we 

found above (Figure 1B). 

The effects of bactericidal drugs on cell growth and death 

A population will undergo extinction if cells die more frequently than divide. Because 

bactericidal drugs induce cell death, an increase in extinction probability at higher drug 

concentrations is expected to be due to an increase in the rate of cell death, f. Additionally, 

bactericidal drugs inflict damage on cells (Belenky et al., 2015; Lobritz et al., 2015). Thus, the rate of 

cell growth, l, might decrease at higher drug concentrations, which could also contribute to colony 

extinction. We next sought to determine how bactericidal drugs affect f and l. Previous studies of 

population growth have shown that at a higher concentration of bactericidal drugs, the ‘net growth 

rate’, which is equal to l f, decreases (Regoes et al., 2004). But, to separately resolve changes in f and 

l, the growth and death of cells must be examined at single cell resolution. We analyzed the single-

cell-level image sequences we obtained above (see Figure 2—figure supplement 5 for details of the 

Video 1. The growth of micro-colonies in the absence of a drug. We characterized how cells grew 

and formed micro-colonies on LB agar using time-lapse microscopy. An example image sequence is 

shown here. The time interval between each frame is 20 min. analysis) and determined l and f at 

various concentrations of bactericidal drugs. We found that at increasing drug concentrations, f 
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increased (Figure 2—figure supplement 6A). But l changed little, remaining nearly constant (Figure 

2—figure supplement 6B). Therefore, bactericidal drugs have significant effects on cell death, but 

not on cell growth. 

A simple, stochastic model of the population dynamics accounts for stochastic clearance of bacterial 

populations 

Our data above suggest that an increase in the probability of population extinction at higher 

drug concentrations (Figure 2—figure supplement 4) is likely due to an increase in the rate of cell 

death (Figure 2—figure supplement 6). To quantitatively understand the relationship between the 

extinction probability and death rate, we employed a stochastic model, known as the Markovian 

birth-and-death process, that has been widely used to study the basic features of stochastic 

population dynamics (Novozhilov et al., 2006; Pavel Krapivsky and Ben-Naim, 2010; Kendall, 

1948). This model contains two parameters, the rate of cell growth and death, l and f, respectively. 

Each individual cell can divide or die stochastically with the probabilities determined by these 

parameters. Due to this demographic stochasticity, the number of cells within a population, n, 

fluctuates over time. Thus, n cannot be predicted deterministically but only probabilistically, and the 

probability is described as follows, 

 

    Pn =  λ (n − 1) Pn−1   − (λ +  ϕ)nPn +  ϕ (n + 1)Pn+1 

 

 

 

where Pn refers to the probability of n cells being present in a population. The key boundary 

condition in this model is that once n reaches 0, it cannot change afterward. Known as an 

‘absorbing boundary’, this condition reflects the biological reality that once a population goes 
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extinct, it cannot revive. Therefore, a solution of this model for n = 0 (i.e., Pn=0 or simply P0) 

describes the dynamics of population extinction. Please see Appendix 1 for the detail and solution. 

We first considered the extinction probability P0 at low drug concentrations in which the 

death rate is lower than the growth rate (f < l). In this range, P0 is given by their ratio, P0 = f / l; see 

Equation A6. Thus, if the death rate is zero (f = 0), the extinction probability P0 is 0, meaning n 

always increases (this makes intuitive sense). As the death rate increases (0 < f < l), P0 increases and 

becomes non-zero, meaning that n may stochastically reach the absorbing boundary, agreeing with 

our observation of stochastic population extinction at sub-MIC drug concentrations; Figure 2C 

shows that some populations reached n = 0 (marked by the light red shaded area), while other 

populations thrived (also see Figure 2—figure supplement 3A–C). The solution P0 = f / l predicts 

that the extinction probability increases linearly with death rate, with the slope being 1 / l (the solid 

line in Figure 2D). We sought to test this prediction quantitatively by comparing it with experimental 

data. Above, analyzing time-lapse microscope images, we obtained the probability of population 

extinction (Figure 2—figure supplement 4), and the death rate (Figure 2—figure supplement 6), at 

different concentrations of bactericidal drugs. Using these data, we obtained the relationship 

between the probability of population extinction and the death rate and plotted it in Figure 2D. We 

found good agreement between the model prediction and experimental data (compare the solid line 

and symbols in Figure 2D). 

Next, using the quantitative relationship we found above (P0 = f / l), we will specify the 

condition for the MIC. In our plate assay (Figure 1B), we observed that the plating efficiency 

decreases at higher drug concentrations (in the sub-MIC range) and reaches zero at the MIC. Also, 

the quantitative relationship we found above showed that extinction probability increases at higher 

drug concentrations (consistent with a decrease in the plating efficiency), reaching one when the 
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death rate is equal to the growth rate (see the dashed line in Figure 2D); thus, P0 = 1 at f = l. The 

extinction probability equal to one (P0 = 1) means that all colonies go extinct, which corresponds to 

zero plating efficiency. The drug concentration at which the plating efficiency reaches zero is the 

MIC (Figure 1B). Taken together, at the MIC, the plating efficiency is zero because extinction 

probability is one (P0 = 1), and the extinction probability is one because the growth rate and death 

rate are equal (f = l). In short, f = l at the MIC. 

Next, we considered drug concentrations above the MIC, where the death rate is higher than 

the growth rate (f > l). In this range, the model predicts that all populations eventually go extinct (P0 

= 1 in Equation A6); this makes intuitive sense. Importantly, due to population fluctuations, 

populations are expected to go extinct at various times (Equation A5), meaning that the number of 

live populations (the populations that have not undergone extinction yet) decreases gradually over 

time. The model predicts that this decrease can be approximated by an exponential decay in the long 

time limit (t  1=jf lj); see Equation A7. We tested these model predictions by repeating timelapse 

microscope experiments at drug concentrations above the MIC. All the populations indeed went 

extinct at various times (Figure 3A and Figure 2—figure supplement 3D–F). When we counted the 

number of live colonies, this number decreased gradually over time (Figure 3B). In this semi-log 

plot, the decrease was linear (compare it with the dashed line), consistent with the model prediction 

of an exponential decay (Equation A7). 

A population with large inoculum size is subject to stochastic clearance at sub-MIC drug 

concentrations 

Our findings above indicate that the simple stochastic model can adequately capture the 

extinction dynamics of populations exposed to bactericidal drugs. What is striking in our findings is 

that, due to drug-induced population fluctuations, a bacterial population may undergo extinction 
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even at subMIC concentrations, the concentrations that were previously deemed inefficacious to 

clear bacteria. We have established this result by examining the dynamics of colonies originated from 

single bacterial cells, the smallest possible inoculum size. Clinical studies have characterized the 

bacterial inoculum size that can produce infections (i.e., infectious dose). The infectious dose can be 

as low as one (Jones et al., 2006; Haas and Rose, 1994; Jones et al., 2005), but is generally 10–100 

(Tuttle et al., 1999; DuPont et al., 1989; Hara-Kudo and Takatori, 2011; Kaiser et al., 1992) or larger 

(Kothary and BABU, 2001; Gama et al., 2012). It is expected that, with larger inoculum size, a 

population experiences less fluctuations (because demographic stochasticity gets averaged out). 

When we estimated the magnitudes of fluctuations by the coefficient of variation (CV), that is, the 

standard deviation divided by the mean, using our model, Equation A16 shows decreasing CV with 

increasing inoculum size, supporting the expectation above. Interestingly, Equation A16 also 

predicted that the magnitude of population fluctuations depends on rates of cell growth and death as 

well (Equation A16); CV increases as the death rate approaches the growth rate, meaning that 

population fluctuations become intensified when neither growth nor death is a dominant event. This 

prediction, together with our finding above that the death rate approaches the growth rate as the 

drug concentration increases to the MIC (Figure 2D), suggests that near the MIC, a population with 

relatively large inoculum size may still be prone to stochastic extinction. 

To test this possibility, we experimentally characterized stochastic clearance of a bacterial 

population starting with different inoculum sizes. First, we prepared a large volume of a cell culture 

with the cell density of ~640 cells/ 200 mL, supplemented the culture with a low concentration of 

cefsulodin (23 mg/ml), and then distributed 200 mL of the cell culture equally to 12 isolated 

chambers in a microtiter plate. Here, an isolated cell culture in each chamber represents a separate 

population. We repeated this procedure using higher cefsulodin concentrations (but maintaining the 
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inoculum size). We then incubated the microtiter plate overnight. We found that, at low cefsulodin 

concentrations (to the left of the dashed line in Figure 3C), all chambers became turbid, meaning all 

populations grew. Thus, the probability of population extinction was zero (P0 = 0). In Figure 3C, we 

used a heat map to graphically represent the probability (we also added the values of the probability 

in the graph for additional clarification). At high concentrations (to the right of the solid line), all 

chambers were clear (P0 = 1); thus, the solid line indicates the MIC. At intermediate concentrations 

(between the dashed and solid lines), we observed heterogeneous population growth; some 

chambers were clear while others were turbid (0 < P0 < 1). Subsequent plating of the clear cultures 

on drug-free LB agar plates yielded no colonies, indicating population extinction. 

We then repeated this experiment by using different inoculum sizes and bactericidal drugs. 

The results were plotted as heat maps in Figure 3D; here, the Y axis represents different inoculum 

sizes. As above, a solid line represents the MIC, above which all chambers were clear (P0 = 1). MIC 

values were higher at higher cell densities. We note that the higher MIC at higher cell density 

(inoculum effect) has been observed previously and is being actively studied by others in the field 

(Artemova et al., 2015; Brook, 1989; Tan et al., 2012; Karslake et al., 2016). Thus, it is not the focus 

of our study; rather, we focus on stochastic clearance below the MIC. As above, a dashed line 

represents the concentrations below which all chambers were turbid (P0 = 0). The area between the 

dashed and solid lines indicates the range of drug concentrations and inoculum sizes that exhibited 

heterogeneous population growth (0 < P0 < 1), meaning stochastic clearance. Figure 3D shows that 

stochastic clearance occurs even for a population starting with as large as ~20,000 cells, inoculum 

size much larger than infectious doses for many infectious diseases. 
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Alteration of the extinction probability to facilitate bacterial eradication at sub-MIC drug 

concentrations 

Previously, antibiotic treatment at sub-MIC levels was not considered a viable option for 

bacterial eradication, because the deterministic model predicts that all bacterial populations should 

grow at sub-MIC levels (i.e., antibiotic treatment failure). However, our experimental results and 

stochastic model above indicate that at sub-MIC levels of bactericidal drugs, a population might 

undergo extinction stochastically. An increase in this probability while keeping the drug 

concentration low would be therapeutically useful; with an increased probability of extinction, sub-

MIC ranges of drugs could be used to eradicate bacteria reliably. We therefore employed our model 

to explore how the extinction probability can be altered by means other than changing the 

bactericidal drug concentration. 

Our model indicates that the extinction probability is determined by the ratio of the death 

and growth rates (P0 = f /l; Equation A6). Thus, based on the model, a reduction in growth rate 

(denominator) should lead to an increase in the extinction probability. Growth rate can be reduced 

by using poor growth media, or alternatively using bacteriostatic drugs. This means, for a sub-MIC 

concentration of a bactericidal drug (for which the extinction probability is less than 1), either a 

switch to poor growth media or addition of a sub-MIC level of a bacteriostatic drug would lead to 

an increase in the extinction probability. We note that the latter represents combination therapies, 

and other studies have characterized bacterial responses to combination therapies (Bollenbach, 

2015). However, these studies primarily concerned deterministic changes in the MIC of a large 

population. Conversely, our study focuses on how combination therapies affect stochastic 

occurrence of population extinction. Another difference is our focus on sub-MIC drug ranges, an 
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important point given previous research showing that the effects of drug combinations at the MIC 

might differ from those at sub-MIC levels (Ocampo et al., 2014). 

To characterize the extinction probability, we introduced the plating inefficiency (= 1 – 

plating efficiency); the plating efficiency reflects the probability that a bacterial cell forms a 

population of a bacterial colony, and therefore, the plating inefficiency reflects the probability of 

population extinction. We first calculated the plating inefficiency using the plate assay results in 

Figure 1B and plotted it as white columns in Figure 4A; thus, white columns represent the extinction 

probability in rich growth media (LB) with bactericidal drugs alone. To test the effect of our growth 

reduction strategy, we repeated the plate assay, either by replacing LB with casamino acids (a poor 

nutrient source that leads to slower growth than LB; see Figure 4—figure supplement 1), or by 

adding a sub-MIC concentration of chloramphenicol or tetracycline. The plating inefficiency 

obtained with these treatments was plotted as solid columns in Figure 4A. The rise of solid columns 

above white columns indicates that growth reduction indeed led to an increase in the extinction 

probability, in agreement with our prediction. 

We next examined how generally such an increase in the extinction probability might occur. 

The extinction probability depends on the growth rate (l) and death rate (f), which we assumed to be 

independent. Because the probability is equal to their ratio (f/l; Equation A6), this growth reduction 

strategy might not work when f is not independent but decreases in response to a decrease in l. Such 

coupling between f and l could occur for bactericidal drugs that kill only growing cells, possibly 

because these drugs target processes critical for cell growth. This means that, for bactericidal drugs 

that exhibit a killing rate of zero for non-growing cells (i.e., ffi 0 when lfi 0), neither the switch to 

poor growth medium nor addition of bacteriostatic drugs would increase the extinction probability. 

To test this possibility, we first identified such bactericidal drugs; we stopped cell growth in cultures 
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by depriving the cells of nutrients, added bactericidal drugs at concentrations capable of eradicating 

growing cells, and then determined which drugs were no longer capable of killing the bacteria. As 

shown in Figure 4—figure supplement 2, killing was completely abolished for kanamycin and 6-

APA, indicating that ffi 0 when lfi 0. As expected, for these drugs, neither the switch to poor growth 

medium nor addition of bacteriostatic drugs resulted in an increase in the extinction probability 

(Figure 4—figure supplement 3). 

Furthermore, our model does not consider specific drug-drug interactions. For example, a 

previous study showed bacteriostatic translation-inhibiting drugs and bactericidal quinolone drugs 

affect gene expression in a way to negate their effects (Bollenbach et al., 2009). Consistent with this 

study, we failed to observe significant changes in the extinction probability when ofloxacin or 

ciprofloxacin (quinolone drugs) is used with and without bacteriostatic translation-inhibiting drugs 

(Figure 4—figure supplement 4). 

Extending the growth-reduction strategy to antibiotic-resistant strains 

Above, we tested the growth reduction strategy for a WT (antibiotic-susceptible) E. coli 

strain. Although the strategy did not work for some drugs due to their complex effects on cells, for 

those that worked, the strategy substantially increased the chance of bacterial clearance at sub-MIC 

drug concentrations. We wondered if this strategy could be applicable to antibiotic-resistant strains. 

Resistant strains are difficult to eradicate because their MICs are very high, to levels that are toxic to 

hosts. Therefore, the development of therapies that utilize sub-MIC doses would be highly useful. 

To test if our growth-reduction strategy would work for antibiotic-resistant bacteria, we repeated a 

plate assay using resistant strains. Laboratory evolution of rifampicin resistance has been frequently 

reported in the literature (Goldstein, 2014). By plating WT (antibiotic-susceptible) E. coli cells on a 
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LB agar plate containing the rifampicin concentration equal to 2x MIC, we isolated a rifampicin  

resistant (Rifr) mutant; the MIC of this mutant was ~10 fold higher than that of the parent strain. 

We then plated the mutant on LB agar plates containing various rifampicin concentrations. 

Additionally, we acquired clinically isolated E. coli strains that were resistant to either cefsulodin or 

vancomycin (see Methods), and plated them on LB agar plates with increasing concentrations of 

cefsulodin or vancomycin. These resistant strains exhibited non-zero plating inefficiency at sub-MIC 

concentrations of bactericidal drugs (white columns in Figure 4B), indicating stochastic clearance. 

We then repeated the experiments either by replacing LB with casamino acids or by adding a sub-

MIC concentration of a bacteriostatic drug. As with the antibiotic-susceptible strain, these 

treatments led to an increase in the plating inefficiency (Figure 4B), indicating that our growth 

reduction strategy facilitated the clearance of antibiotic-resistant bacteria at sub-MIC concentrations. 

Discussion 

Antibiotic treatment typically targets mature infection which contains a large number of 

bacterial cells (e.g., 108) (Smith and Wood, 1956; Palaci et al., 2007; Feldman, 1976; Canetti, 1965; 

Canetti, 1956). To clear infections and avoid post-treatment relapse, not only the reduction of a large 

population of bacteria to a small population, but also the complete extinction of the small 

population is desired (Tomita et al., 2002; Wilson et al., 2013; Bayston et al., 2007); this is especially 

so for immuno-compromised hosts and also for infections involving bacteria with a low infectious 

dose. Previous studies of large bacterial populations adequately accounted for the former process. 

This study focused on the latter process. Our results directly revealed that antibiotics induce 

significant fluctuations in population size, leading to stochastic population extinction. Modeling 

population fluctuations using a probabilistic model, we then established a quantitative understanding 
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of stochastic extinction. This model further predicted how the extinction probability could be 

manipulated to facilitate bacterial eradication at sub-MIC drug concentrations. We experimentally 

tested how amenable the extinction probability is to manipulation. 

One possible molecular-level mechanism that gives rise to population fluctuations could be 

cell-to-cell variability in gene expression. Previous studies showed that variation in expression of 

antibiotic-resistance genes, marA, cat, kagG, ompC, or bla, results in variation in antibiotic 

susceptibility to carbenicillin, chloramphenicol, isoniazid, kanamycin or ceftriaxone, respectively 

(Deris et al., 2013; El Meouche et al., 2016; Wakamoto et al., 2013; Sanchez-Romero and Casadesus, 

2014; Wang et al., 2014). Although our study mostly focuses on antibiotic-susceptible bacteria, a 

similar mechanism might play a role, leading to heterogeneous growth/death of bacterial cells and 

eventually population fluctuations. We note that there were attempts to stochastically model large 

populations of antibiotic-susceptible bacteria (e.g., see [Ferrante et al., 2005]). But, given the 

deterministic nature of observed dynamics, the need for stochastic models was not clear, and the 

model prediction of stochasticity was not tested in the work. On the other hand, previous theoretical 

studies of the evolution of antibiotic resistance typically modeled the growth and death of newly 

emerged mutants as stochastic processes, showing how fluctuations in the size of small mutant 

populations affect evolutionary dynamics; e.g., see (Hermsen et al., 2012; Nissen-Meyer, 1966). Our 

study validates this modeling approach. 

Our findings expose fundamental limits in our predictive ability for bacterial clearance. 

Clinical studies of antibiotic therapies have often reported unexpected failures of eradicating 

antibiotic-susceptible bacteria (Doern and Brecher, 2011; Weidner et al., 1999; Gopal et al., 1976; 

Ficnar et al., 1997; Forrest et al., 1993). Laboratory studies of simple model organisms such as 

worms have reported similar observations (Moy et al., 2006; Needham et al., 2004; Kaito et al., 
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2002). The variability in host environments could certainly contribute to such unexpected antibiotic 

failures. For example, a recent study showed the effects of variability in host immunity on infection 

course (Duneau et al., 2017). Our study demonstrates that even in the absence of host variability, 

bacterial clearance occurs stochastically due to antibiotic-induced population fluctuations. At 

subMIC drug concentrations, bacterial populations may or may not go extinct. At drug 

concentrations above the MIC, all populations eventually go extinct, but not all at once. Rather, the 

extinction time is highly variable, meaning that in some cases, it can take significantly longer to 

eradicate bacteria. This inherent stochasticity, together with host variability, makes it difficult (or 

even impossible) to deterministically predict antibiotic-mediated clearance of bacterial infection. 

More studies are needed to elucidate the impact of these population fluctuations on 

treatment outcomes in clinical settings. However, we observed such fluctuations even for a relatively 

large population (~104 cells). In comparison, previous in vivo studies showed that the population 

size needed to establish infections (i.e., infectious dose) can be as small as 1–100 cells (Jones et al., 

2006; Haas and Rose, 1994; Jones et al., 2005; Tuttle et al., 1999; DuPont et al., 1989; Hara-Kudo 

and Takatori, 2011; Kaiser et al., 1992), which is well within the stochasticity range. This means that 

if tens of cells (or even a few cells) happen to stochastically survive a fixed course of antibiotic 

treatment, this small population can re-establish infections once antibiotics are removed, leading to 

treatment failure. Importantly, a recent article raised an issue regarding the conventional wisdom of 

‘complete the prescribed course’, and argued for re-consideration of antibiotic duration (Llewelyn et 

al., 2017). We believe that our observation of stochastic extinction dynamics, especially inherent 

variability in extinction time, has significant bearing on this issue. 

Furthermore, our study may guide the design of new therapeutic strategies. Based on the 

deterministic understanding of population dynamics, it has been generally accepted that only at drug 
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concentrations above the MIC, bacterial populations go extinct. Contrarily, we observed that 

stochastic population fluctuations drive a population to extinction even at sub-MIC drug 

concentrations. This observation suggests an intriguing possibility that sub-MIC drug ranges can be 

used as a clinical option to clear bacteria. We acknowledge that the stochastic nature in the 

population dynamics is a double-edged sword. Stochasticity can be advantageous because it can 

drive a population to extinction even at low drug concentrations. But, stochasticity makes it 

impossible to pre-determine whether the bacterial population of particular interest will go extinct or 

not; this is disadvantageous because we cannot predict a priori if a specific treatment will work or 

not. However, this disadvantage can be minimized by manipulating population fluctuations and 

thereby increasing the probability of extinction. In the present study, we explored this possibility 

with the help of the probabilistic model, showing that it is possible to increase the probability of 

clearance. This idea of using subMIC drug concentrations to clear bacteria is particularly attractive in 

the context of antibiotic resistance. Antibiotic-resistant bacteria have very high MICs, often above 

the levels that are toxic to hosts. Thus, antibiotic concentrations above the MIC cannot be 

administered, which is why antibiotic resistance is a serious public concern worldwide (O’Neill, 

2016). Our plate assay using bactericidal drugs revealed that, like antibiotic-susceptible bacteria, 

resistant bacteria exhibited non-zero plating inefficiency below the MIC, indicating a non-zero 

probability of clearance at sub-MIC drug concentrations. We also showed that this probability of 

clearance could be manipulated, facilitating the clearance of antibiotic-resistant bacteria. For 

comparison, we note a recent study in the field of viral infections, which showed that stochastic 

noise in HIV gene expression may be used to treat HIV infections (Dar et al., 2014). This study 

further supports the idea that stochasticity can be advantageous and be used to combat infections. 

We believe that the time is ripe for the development of clinical treatment strategies to take advantage 
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of stochasticity, especially so given recent advances in our understanding of stochasticity in 

biological processes (Jones et al., 2014; Ackermann, 2015; Tanouchi et al., 2015; Banerjee et al., 

2017; Scott et al., 2007; Schmiedel et al., 2015; Sigal et al., 2006; Blount et al., 2008; Ray and Igoshin, 

2012). 

Our study will also have positive impacts on in vitro assessment of antibiotic efficacy. MIC is 

the most critical parameter to assess antibiotic efficacy. In the deterministic framework, MIC is 

defined as the drug concentration at which the population size is maintained, which is realized when 

the death rate is equal to growth rate (f = l); see Equation A2. Accordingly, in a broth dilution 

method, the drug concentration that yields no change in the turbidity of bacterial cultures is defined 

as the MIC. Above, we found that in the stochastic framework, at the MIC, the rates of death and 

growth are equal (f = l; see Figure 2D) and the extinction probability is 1 (Equation A6), meaning all 

populations go extinct at the MIC. Therefore, in both deterministic and stochastic frameworks, at 

the MIC, the condition, f = l, is satisfied, but population dynamics are very different (population 

maintenance versus population extinction). This clarification can reconcile two common ways to 

determine the MIC, a plate assay based on complete colony extinction and a broth method based on 

no change in culture turbidity (population maintenance); although the MICs were determined based 

on different population dynamics in these two cases, both methods identify the drug concentration 

at which growth rate is equal to death as the MIC. This clarification is particularly important in light 

of recent efforts to increase the efficiency of the broth method by using small culture volumes 

(which include a few or tens of bacterial cells) (Avesar et al., 2017). With such small volumes, MIC 

should be defined based on population extinction, not population maintenance. 

Lastly, our findings have implications on bacterial persistence. Dormant cells are refractory 

to antibiotics, persisting through antibiotic treatments (Allison et al., 2011; Balaban et al., 2004). 
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They are present in very low frequencies (typically 10-5, meaning 1 out of 105 cells) (Lewis, 2010), 

and thus have little effects on population dynamics in small populations considered here (<<105). 

However, a study of persister formation requires the enrichment of persisters. To enrich them, 

studies often treat a large population using antibiotics and characterize a small population of 

survivors as persisters. The inherently stochastic nature of a small population may lead to variability 

in this process of enrichment and characterization, complicating studies of persisters. In fact, such 

variability was reported by a recent quantitative study of persistence (Brauner et al., 2017). 

Therefore, our findings on the dynamics of small populations could be useful for a better 

understanding of persistence. 

 

Materials and methods 

Bacterial strains and culture 

Experiments were conducted using E. coli strain NCM3722 (Soupene et al., 2003; Lyons et 

al., 2011; Brown and Jun, 2015). Bacteria were grown in 5 mL of Lysogeny Broth (LB, Fisher 

Bioreagents) in 20 mL borosilicate glass culture tubes at 37˚ C with shaking (250 rpm). Our typical 

experimental procedure is as follows. Cells were first cultured in LB broth overnight (pre-culture). 

The next morning, the cells were sub-cultured into pre-warmed LB broth at the optical density 

(OD600) of ~0.001 (measured using a Genesys20 spectrophotometer, Thermo-Fisher) and allowed 

to grow exponentially. The culture at the OD600 of ~0.4 was used for a plate assay or for 

microscope experiments. 

We evolved a rifampicin-resistant mutant from our WT strain (NCM3722). We plated ~108 

WT cells on a LB agar plate containing 20 mg/ml (2 x MICWT). 18 colonies were formed next day. 

We chose one colony and purified it by re-streaking. The mutant (EMK32) had the MIC of 160 
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mg/ml. We obtained the cefsulodin-resistant strain (EMK35, MIC = 170 mg/ml) and vancomycin-

resistant strain (EMK36, MIC = 250 mg/ml) from Georgia Emerging Infections Program MuGSI 

collection (their MuGSI strain numbers were Mu519 and Mu107, respectively.) 

Plate assay 

Cells were spread on LB agar plates containing different concentrations of various 

antibiotics (see below). Through serial dilutions (using 1.16% (w/v) NaCl solution), we ensured the 

number of colonies to be between 50 and 250 on a plate (100x 15 mm Petri dish). The plates were 

then incubated at 37˚C. After 18 hr of incubation, the number of visible colonies on plates was 

determined. As indicated in the main text, we also used casamino acids agar plates. We dissolved 2% 

casamino acids in N-C- minimal medium (Csonka et al., 1994) and filtered the medium. We 

separately autoclaved agar, and when agar was cooled and felt warm to the touch, the casamino acids 

medium was added. 

Antibiotics 

Stock solutions of ciprofloxacin (1 mg/ml), kanamycin (50 mg/ml), 6-APA (2 mg/ml), 

streptomycin (25 mg/ml), ofloxacin (1 mg/ml), erythromycin (10 mg/ml), vancomycin (100 

mg/ml), and cefsulodin (30 mg/ml) were prepared in sterilized water. Stock solutions of tetracycline 

(50 mg/ml) and chloramphenicol (10 mM) were prepared in methanol. Stock solutions of thiolutin 

(2 mg/ml) and rifampicin (50 mg/ml) were prepared in DMSO. Antibiotics were purchased from 

Biobasic Inc (Canada), Acros Organics, or Sigma-Aldrich (St. Louis, MO.). 

Time-Lapse microscopy 

Cells were cultured as described above without antibiotics first. At OD600 of ~0.4, 2 mL of 

aliquot from a culture was loaded into a pre-warmed 35 mm glass-bottom Petri dish (InVitro 
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Scientific). A pre-warmed LB agarose pad containing antibiotics was placed over them (this 

procedure marked time zero). The dish was then moved into a pre-warmed (at 37˚C) inverted 

microscope (Olympus IX83), and appropriate stage positions (typically ~50 positions) were selected. 

Selection of multiple state positions and setting up the software for automatic image acquisition 

normally took 1 ~ 2 hr. The microscope had an automated mechanical XY stage and auto-focus and 

was controlled by the MetaMorph software (Molecular Devices). Also, it was housed by a 

microscope incubator (InVivo Scientific) which maintained the temperature of samples at 37˚C 

during experiments. An oil immersion phase-contrast 60X objective was used for imaging. Images 

were captured using a Neo 5.5 sCMOS camera (Andor). We also cultured cells in a microfluidic 

chemostat (using LB broth as growth medium). The detailed procedure for the microfluidic 

experiments was published in our previous articles (Kim et al., 2012; Deris et al., 2013). Images were 

analyzed using MicrobeJ, a plug-in for the ImageJ software (Ducret et al., 2016), and the analysis 

results were validated manually. In our experiments, all cells that stopped growing eventually 

underwent lysis. Although dormant cells that survive antibiotics (i.e., persisters) may complicate our 

analysis, their frequency is very low, ~10-5 (i.e., 1 in 105 cells) (Lewis, 2010). Because our study 

involves small populations (less than 100 cells), dormancy has little relevance to our study. 

Replicate culture using a microtiter plate 

We first cultured cells in 5 mL LB medium to the OD600 of ~0.4, as described above. 

Previously, using a plate assay, we determined that OD600 of 0.4 contains 2 108 cells per 1 mL. 

Using this relation, we diluted the culture in 10 mL LB broth such that there were ~640 cells per 

200 mL (we separately confirmed this density by plating cells on LB agar plates containing no 

antibiotics and counting colony-forming units). We supplemented this culture with various 
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concentrations of antibiotics. We then equally distributed 200 mL of this culture to 12 chambers in a 

microtiter plate. We repeated this procedure by varying cell density. Next day, we measured the 

OD600 of each chamber. 
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Figure Captions  

 

 

Figure 0-1: Contrasting trends in plating efficiency at increasing concentrations of bacteriostatic and 
bactericidal drugs. 

A) When we performed the plate assay using bacteriostatic drugs, NCFU was generally maintained at 

increasing drug concentrations. See Figure 1-figure supplement 1 for a detailed illustration of 

how this plot was made. A linear regression analysis was performed for the whole data set below 

0.75× MIC, resulting in the grey line (slope = −0.05, intercept = 0.9942, R-squared = 0.99). 



61 
 

 

  

 

 

 

Colony size decreased at increasing drug concentrations (Figure 1-figure supplement 2). B) For 

bactericidal drugs, NCFU decreased at increasing drug concentrations, indicating heterogeneous 

population dynamics of bacteria. A linear regression analysis was performed for the whole data 

set, and the result was plotted as a grey line (slope = −1.07, intercept = 1.10, R-squared = 0.79). 

For both groups of drugs, the lowest concentration yielding no colonies was defined as the 

MIC. The Supplementary File 1 lists the MICs for all drugs examined in this study. We plotted 

plating efficiency for each antibiotic in separate panels in Figure 1-figure supplement 4. C) For 

each bactericidal drug used in the experiment (for which the results were shown in Fig. 1B), we 

picked a few colonies from the agar plate exhibiting a plating efficiency of ~0.5 (e.g., near 0.6x 

MIC) and plated them immediately on fresh agar plates containing various concentrations of the 

same drug. The plating efficiency was similar or marginally lower on the second plating, possibly 

because exposure to the antibiotics on the first plate adversely affected the cells and rendered 

them more susceptible to the antibiotics on the second plating. See Figure 1-figure supplement 3 

for similar results for other drugs. Therefore, the ability of bacteria to grow and form colonies 

on plates containing bactericidal drugs was not heritable. We performed at least two biological 

repeats for all the experiments and plotted the mean here. The error bars represent one standard 

deviation from the repeats.  
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Figure 0-2 Stochastic population dynamics of bacteria exposed to bactericidal drugs. 

We characterized how cells grow and form micro-colonies on LB agar plates containing different 

concentrations of antibiotics using time-lapse microscopy. At time zero, we transferred cells 
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growing in antibiotic-free LB liquid medium to a LB agar plate, and confirmed that individual cells 

were spread out and isolated. Setting up a time-lapse imaging experiment after the transfer took 1~2 

hours, which is why there is a gap in the data immediately after time zero (dashed lines). The 

experiments were independently repeated twice (biological repeats) and the data from one 

experiment are shown here. A, B) We counted the number of growing cells in each micro-colony 

(represented by a different color). In the absence of antibiotics (panel A) or with a sub-MIC level of 

a bacteriostatic drug (panel B, 0.7x MIC of chloramphenicol), the number increased similarly for 

different colonies, revealing homogeneous population growth. Example image sequences are shown 

in Video 1 and 2. The data are replotted on a semi-log scale (insets). Such homogeneous population 

growth was observed for other bacteriostatic drugs (thiolutin and tetracycline) as well; see Figure 2-

figure supplement 1. When we repeated the experiment using a microfluidic device, we again 

observed the same homogeneous population dynamics (Figure 2; figure supplement 2A).  C) In 

contrast, the population dynamics of bacteria exposed to a bactericidal drug were highly 

heterogeneous. An example image sequence was shown in Video 3. The number of growing cells 

within micro-colonies at 0.8x MIC of cefsulodin is plotted here; the result shows stochastic 

population fluctuations. Such population fluctuations were again observed when experiments were 

repeated using other bactericidal drugs (ofloxacin, kanamycin, and 6-APA); see Figure 2-figure 

supplement 3A-C. The light, red-shaded region indicates the number equal to zero (i.e., population 

extinction). When we repeated these experiments using a microfluidic device, we again observed 

population fluctuations (Figure 2-figure supplement 2B-D). D) Our model predicts that the 

probability of population extinction increases linearly with death rate, with the slope being 1 (the 

solid line). We experimentally characterized the extinction probability (Figure 2-figure supplement 

4), and the death rate (Figure 2-figure supplement 5-6), at different concentrations of bactericidal 
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drugs. Using these data, we obtained the relationship between the extinction probability and the 

death rate, and plotted it here (green circles: cefsulodin, pink squares: ofloxacin, and grey triangles: 

6-APA). We found good agreement between the model prediction and experimental data. Note that 

at increasing drug concentrations, death rate changed little (Figure 2-figure supplement 6B), and 

thus was taken as a constant in the analysis here.  

 

Figure 0-3 . Further characterization of stochastic population dynamics. 

A, B) In Fig. 2C and Figure 2-figure supplement 3A-C, we showed the population dynamics of 

bacteria exposed to sub-MIC levels of bactericidal drugs. Here, we show the dynamics at drug 
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concentrations above MIC (1.2x MIC). The number of growing cells within micro-colonies for 

cefsulodin is plotted in panel A. The results for other bactericidal drugs were plotted in Figure 2-

figure supplement 3D-F. We observed that all populations went extinct at various times. We then 

counted the number of live colonies (colonies that have not undergone extinction yet) at various 

times (~150 colonies monitored). The number decreased gradually over time (green circles: 

cefsulodin, pink squares: ofloxacin, and grey triangles: 6APA); see panel B. The decrease was linear 

in a semi-log plot, consistent with the model prediction of an exponential decay (Eq. S7). C) We 

characterized the extinction probability of populations starting with ~640 cells. We prepared a large 

volume of a cell culture with the cell density of ~640 cells/ 200 µL, supplemented the culture with a 

low concentration of cefsulodin (23 µg/ml), and then distributed 200 µL of the cell culture equally 

to 12 isolated chambers in a microtiter plate. We repeated this procedure using higher cefsulodin 

concentrations (but maintaining the inoculum size). We then incubated the microtiter plate 

overnight. By counting the chambers that became turbid or clear, we calculated the extinction 

probability. We used a heat map to graphically represent the probability; for illustration purpose, we 

also added the values of the probability to the plot. At low cefsulodin concentrations (to the left of 

the dashed line), all chambers became turbid (P0 = 0). At high concentrations (to the right of the 

solid line), all chambers were clear (P0 = 1); thus, the solid line indicates MIC. At intermediate 

concentrations (between the dashed and solid lines), we observed heterogeneous results (only some 

chambers were clear, 0 < P0 < 1). D) We repeated this experiment using different inoculum sizes 

and bactericidal drugs. Please note that although we prepared a large volume culture and distributed 

it equally to chambers, the number of cells in each chamber might vary. We found that the variation 

was ~10% or less. See Appendix 3 for details.   
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Figure 0-4 Increasing the population-extinction probability by a growth reduction strategy. 

 

(A, B) Previously, we plated WT (antibiotic-susceptible) E. coli cells on LB agar plates at various 

concentrations of cefsulodin and plotted the plating efficiency in Fig. 1B. Here, we plotted the 

plating inefficiency (1- plating efficiency) as white columns in the top row; the plating inefficiency 
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represents the extinction probability. We then repeated a plate assay, either by using casamino acids 

agar plates (left), or by adding a sub-MIC concentration of a bacteriostatic drug, chloramphenicol 

(0.7x MIC, middle) or tetracycline (0.5x MIC, right), to LB agar plates. Note that casamino acids 

lead to slower growth than LB; see Figure 4-figure supplement 1. We plotted the plating inefficiency 

obtained with these treatments as solid columns in panel A. We repeated this procedure for 

rifampicin (middle row) and vancomycin (bottom row), for kanamycin and 6-APA (Figure 4-figure 

supplement 3), and for ciprofloxacin and ofloxacin (Figure 4-figure supplement 4). Note that how 

generally growth reduction leads to an increase in the extinction probability depends on whether 

growth rate is dependent on death rate or not; see the main text and Figure  

4-figure supplement 2. We then used antibiotic-resistant strains and repeated these experiments 

(panel B). Please note that the MICs of these mutants were five to ten-fold higher than those of the 

WT strain. The rise of solid columns above white columns indicates an increase in the extinction 

probability. We performed at least two biological repeats for all the experiments and plotted the 

mean. The error bars represent one standard deviation from the repeats.  
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Figure 0-5 - figure 1 supplement 1 

We illustrated how we obtained Fig. 1A and 1B, using the results for rifampicin as an example. 

Antibiotic-susceptible, wild-type E. coli cells were spread on agar plates containing increasing 

concentrations of rifampicin. After 18 hours of incubation, the number of colony forming units 

(NCFU) per milliliter was determined; see panel A. By normalizing NCFU to that for an antibiotic-free 

plate (N0
CFU), we obtained the plating efficiency (=NCFU/N0

CFU); see panel B. We defined the lowest 

drug concentration at which the plating efficiency was zero as the MIC: MIC=10 µg/ml for 

rifampicin. We normalized the drug concentration to the MIC value; see panel C. We repeated this 

procedure for various antibiotics and plotted the results in Fig. 1A and 1B.  
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Figure 0-6 -figure 1 supplement 2 

We spread cells on agar plates containing various concentrations of bacteriostatic drugs, and after 18 

hours of incubation, measured the size of the colonies (using ImageJ software). At increasing 

concentrations, the size of the colonies decreased. The figure shows the sizes of the colonies 

normalized to the size on the plate without antibiotics. We performed at least two biological repeats 

for all the experiments and the error bars represent one standard deviation from the repeats. The 

grey line was obtained from a linear regression analysis of the whole data set: slope = −0.83, 

intercept = 0.95, R-squared = 0.80.  
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Figure 0-7 Figure 1-figure supplement 3 

For each bactericidal drug used (for which the results were shown in Fig. 1B), we picked a few 

colonies from an agar plate exhibiting the plating efficiency of ~0.5 (e.g., near 0.6x MIC) and plated 

them immediately on fresh agar plates containing various concentrations of the same drug. The data 

for ciprofloxacin, 6-APA, streptomycin, and ofloxacin were reported here. (The data for cefsulodin, 

vancomycin, kanamycin, and rifampicin were reported in Fig. 1C.)  
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Figure 0-8 Figure 1-figure supplement 4. 

We previously plotted plating efficiency for all the antibiotics tested in two panels (Fig. 1A-B). Here, 

we plot it for each antibiotic in separate panels.  



72 
 

 

  

 

 

 

 

Figure 0-9 Figure 2-figure supplement 1. 

We characterized how cells grew and formed micro-colonies at sub-MIC levels of bacteriostatic 

drugs (chloramphenicol, thiolutin, and tetracycline) at single-cell resolution. See Fig. 2 and its 

caption for details. The data for chloramphenicol were plotted in Fig. 2B. The data for tetracycline 

(0.7x MIC) and thiolutin (0.5x MIC) were plotted here. The data were replotted on a semilog scale 

(insets).  

In our plate assay (data shown in Fig. 1A), we plated cells on agar containing increasing 

concentrations of bacteriostatic drugs and, after 18 hours of incubation, counted the number of 

visible colonies. The lowest drug concentrations yielding no visible colonies were defined as the 

MIC. When we performed our microscope experiments at the MICs of bacteriostatic drugs, we 

observed that some cells still grew, albeit at very low rates, and micro-colonies expanded very 

slowly. After 18 hours, the colonies reached the size less than 200 µm (estimated from the 

microscope image). This is too small and difficult to detect with the naked eye, which was why we 

failed to notice in our plate assay. Also, at these concentrations of chloramphenicol and tetracycline, 
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we observed filamentation of some cells. Some of these filamentous cells divided and produced 

normal-looking daughter cells, which grew properly afterwards. There were also filamentous cells 

that did not resume normal growth within our observation window (~24 hrs).  

 

Figure 0-10 Figure 2-figure supplement 2. 

Previously, we developed a microfluidic chemostat for cell culture (28, 29). We cultured E. coli cells 

in this device. Our microfluidic chemostat has about one hundred microchambers. We inoculated 
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these chambers by loading single cells into them and then exposed them to 0.8x MIC of various 

drugs. Then, using time-lapse microscopy, we recorded how one cell in each chamber grew and 

formed a population. (There were chambers that were initially inoculated with multiple cells. We did 

not record cell growth in such chambers). By counting the number of cells at different times in each 

chamber, we determined the trajectory of population size for each population.      
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Figure 0-11 Figure 2-figure supplement 3. 

We show population dynamics of bacteria exposed to bactericidal drugs (0.8x MIC or 1.2x MIC). 

See Fig. 2C and 3A, and their captions for details.   
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Figure 0-12 Figure 2-figure supplement 4. 

As discussed in the main text, we analyzed single-cell-level image sequences, and counted the 

number of colonies that went extinct. Here, we plotted the probability of colony extinction (P0) at 

different drug concentrations (green circles: cefsulodin, pink squares: ofloxacin, and grey triangles: 

6-APA).   
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We determined the rates of cell growth λ and death ϕ at sub-MIC drug concentrations, by analyzing 

the time-lapse microscopy images of colony growth.Here, we described our determination 

procedure using the data from 0.8 × MIC of cefsulodin as an example. As shown in the Video 3, 

live cells continued to elongate and divide. Every now and then, these cells underwent lysis (i.e., cell 

death). We counted the number of live cells,n, and the number of dead cells, nD, in each colony. We 

then averaged them across ~20 colonies, which yielded a temporal trajectory for ⟨n(t)⟩ and another 

trajectory for ⟨nD(t)⟩. Equation A9 predicted that ⟨n⟩ increases exponentially over time, and this 

prediction was supported by a linear pattern in the temporal semi-log plot; see panel A (a linear 

regression analysis was performed, resulting in the blue line (slope = 0.0058, intercept = −0.556, R-

squared = 0.9971)). The slope of this linear increase is determined by λ−ϕ (See Equation A9). 

Equation A12 predicted a linear relation between ⟨n⟩ and ⟨nD⟩, and this prediction was supported 

by a linear pattern in panel B (a linear regression analysis was performed, resulting in the green line 
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(slope = 0.6770, intercept = −0.998, R-squared = 0.9896)). The slope of this linear pattern is equal 

toϕλ−ϕ(see Equation A12). Analyzing these slopes, we determined λ and ϕ to be 1.35/hr and 

0.54/hr. We repeated this procedure for various drug concentrations, as well as for other drugs. The 

results were plotted in Figure 2—figure supplement 6. linear pattern in panel B (a linear regression 

analysis was performed, resulting in the green line (slope = 0.6770, intercept = -0.998, R-squared  = 

0.9896)).  The slope is this linear line is equal to (see Eq. S12). Analyzing these slopes, we 

determined to be 1.35 /hr and 0.54 /hr.  We repeated this procedure for various drug 

concentrations, as well as for other drugs. The results were 864 plotted in Figure 2-figure 

supplement 6.  
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Figure 0-13 Figure 2-figure supplement 6 

Following the procedure described in Figure 2-figure supplement 5, we determined the rates of cell 

growth and death at different drug concentrations (green circles: cefsulodin, pink squares: ofloxacin, 

and grey triangles: 6-APA).   
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Figure 0-14 Figure 4-figure supplement 1. 

We cultured cells in either LB medium or N-C- medium supplemented with 2% of casamino acids 

(83). The doubling time was 18 mins and 33 min respectively.   
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Figure 0-15 Figure 4-figure supplement 2. 

We measured MICs of bactericidal drugs using exponentially-growing cultures and confirmed that at 

1.5× MICs, all growing cells were eradicated; i.e., survival fraction (SF) was equal to zero. We then 

stopped cell growth in cultures by depriving the cells of nutrients, added 1.5× MICs, and measured 

SF. SF was 1 for kanamycin and 6-APA (blue columns), indicating that they were not capable of 

killing non-growing cells. Other drugs (red columns) could kill non-growing cells, but with lower 

efficacy as SF was not zero. Lower susceptibility of non-growing bacteria to drugs has been 

previously documented (e.g., see (85)). We performed two biological repeats and plotted the 877 

mean. The error bars represent one standard deviation from the repeats.  
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Figure 0-16 Figure 4-figure supplement 3. 

In Figure 4-figure supplement 2, we found that kanamycin and 6-APA do not kill non-growing cells. 

Here, we show that the growth reduction strategy does not work for these two antibiotics. White 

columns indicate the plating inefficiency without the growth reduction treatment. The solid columns 

are with treatment. In the figure, overlapping columns were from the same drug concentrations, but 

their centers were shifted to visualize both white and solid columns.  Please see the main text and 

the caption of Fig. 4 for detail. We performed two biological repeats and plotted the mean. The 

error bars represent one standard deviation from the repeats.  
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Figure 0-17 Figure 4-figure supplement 4. 

A previous study showed bacteriostatic translation-inhibiting drugs and bactericidal quinolone drugs 

affect gene expression in a way to negate their effects (43). The figure shows that for ofloxacin or 

ciprofloxacin (quinolone drugs), the growth reduction strategy did not lead to a significant change in 

the extinction probability, consistent with the previous study. We performed two biological repeats 

and plotted the mean. The error bars represent one standard deviation from the repeats.  

Appendix 2  

To rule out heritable resistance as an explanation for heterogeneous colony formation (Fig. 1B), we 

performed two rounds of plating at sub-MIC drug concentrations (Fig. 1C and Figure 1-figure 

supplement 3). We picked a few colonies from the agar plate exhibiting a plating efficiency of ~0.5 

(e.g., near 0.6x MIC) and plated them immediately on fresh agar plates containing various 

concentrations of the same drug. The plating efficiency was similar or marginally lower on the 

second plating, possibly because exposure to the antibiotics on the first plate adversely affected the 
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cells and rendered them more susceptible to the antibiotics on the second plating. This observation 

rules out heritable resistance as an explanation for heterogeneous colony formation at sub-MIC drug 

concentrations. Of course, if we perform multiple rounds of plating, we might eventually select for 

antibiotic-resistant mutants. However, for each round, we collect ~105 cells from a previous plate 

and plate ~100 cells on a fresh plate. This procedure creates a bottleneck effect, which reduces 

genetic variation and effectively weakens selection pressure for antibiotic resistance. Therefore, we 

expect that the evolution of antibiotic resistance is slow.    

Appendix 3   

We characterized the fluctuations in inoculum size by determining standard deviation and percent 

variation; see Appendix-Table 1. The variation was ~10% or less. In Fig. 3D, which shows the 

extinction probability at various (average) inoculum size, the probability changes only gradually for 

two-fold increment in inoculum size (which is equivalent to a 100% increase). Therefore, we do not 

believe that these fluctuations in inoculum size have a significant effect on the results.   
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Appendix-Table 1  

Average 

inoculum size  

Standard 

deviation  

Percent 

variation  

11.4  1.49  13%   

58.4  3.7  6.3%  

  

135.8  7.8  7.8%  

     

 

Video 1: The growth of micro-colonies in the absence of a drug.   

We characterized how cells grew and formed micro-colonies on LB agar using time-lapse microscopy.  

An example image sequence is shown here. The time interval between each frame is 20 minutes. 

https://doi.org/10.7554/eLife.32976.014   

Video 2: The growth of micro-colonies with a bacteriostatic drug  

We characterized how cells grew and formed micro-colonies on LB agar using time-lapse microscopy.  

0.7x MIC of chloramphenicol was used. An example image sequence is shown here. The time interval 991 

between each frame is 19 minutes.  https://doi.org/10.7554/eLife.32976.015 

Video 3: The growth of micro-colonies with a bactericidal drug  

We characterized how cells grew and formed micro-colonies on LB agar using time-lapse microscopy. 994 

0.8x MIC of cefsulodin was used. An example image sequence is shown here. The time interval between 

each frame is 15 minutes.  https://doi.org/10.7554/eLife.32976.016

https://doi.org/10.7554/eLife.32976.014
https://doi.org/10.7554/eLife.32976.015
https://doi.org/10.7554/eLife.32976.016
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Chapter III: Mumps transmission in United States in the post-vaccine era: A systematic review 

Jessica Coates 

 

Abstract 

Despite a high two-dose coverage of measles-mumps-rubella (MMR) vaccine in the United States, a 

resurgence of mumps cases has been observed in university, close knit, mass gathering, and 

detention center settings since 2006. We aimed to utilize a systematic review with the following 

criteria to estimate differences in mumps transmission by setting in the United States after the 

resurgence in 2006. We searched the PubMed/MEDLINE database ending August 2021 to identify 

any observational studies reporting mumps cases in the United States after the licensure of the Jeryl 

Lynn mumps vaccine. We included interventions such as any mitigation strategies that encouraged 

isolation of sick patients, mask wearing, and vaccination. Results included in our analys is were self-

reported, or provider-reported estimates of mumps cases, vaccination coverage, and population size 

for the affected settings that allowed us to estimate the effective reproduction (Re) number for 

mumps in the United States. Two reviewers independently appraised 331 citations for inclusion. 

One reviewer independently appraised 97 full texts for inclusion and methodological quality.  We 

identified 14 articles describing 1,395 cases of mumps occurring after the licensure of the Jeryl Lynn 

mumps vaccine. Six cases occurring after the 2006 resurgence and were included in further 

quantitative analysis. Outbreaks after the resurgence took place in military barracks (1), an 

elementary school (1), and universities (4). Due to reporting bias and data unavailability, we were 

unable to estimate the mean effective Re value for mumps in the United States, but we did observe 

point estimates between 0.05 and 1.22. The lower Re values observed may be the consequence of 
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non-pharmaceutical interventions used in combination with vaccination campaigns to reduce the 

transmission of mumps, but further studies are necessary to verify the validity of that claim. 

Introduction 

The mumps virus, a single-stranded, negative-sense RNA virus belonging to the 

Paramyxovirus family, is the causative agent of mumps. Following a 15-to-24-day (median 19 days) 

incubation period, infection is characterized by unilateral or bilateral parotid swelling, fever, and 

headaches in up to 70% of cases 1. One-third of mumps infections are asymptomatic but in severe 

cases, orchitis, oophoritis, pancreatitis, aseptic meningitis and encephalitis can occur 2.  

Mumps is a moderately to highly contagious infection in humans 3.  Transmission results 

from a susceptible individual coming in contact with saliva or the respiratory droplets from the 

mouth, nose, or throat of an infectious individual 4,5. On average, individuals are infectious from two 

days before to five days after parotitis onset 6. Asymptomatic individuals can also contribute to the 

transmission of mumps; up to one-third of individuals infected exhibit no symptoms but are 

contagious 7. The risk for mumps infection increases with longer and closer contact highlighting the 

importance of understanding the role of epidemiologic setting in mumps transmission 8.  

Mumps is preventable through routine childhood vaccination with measles-mumps-rubella 

(MMR) vaccine which is available in most developed countries. A one-dose vaccination strategy was 

implemented in the United States in 1977 leading to a 99% reduction of mumps cases from a pre-

vaccine era incidence of 251/100,000 in 1968 to 2.5/100,000 cases in 1982 9. However, despite the 

early success of the mumps vaccination program, a resurgence of mumps cases was observed 

between 1983 and 1992 with a national reported peak of 12,848 cases in 1987, corresponding to an 

incidence rate of 5.4/100,000 that year 9. A two-dose vaccination strategy for MMR vaccine was 

implemented in 1989 in response to a major resurgence of measles cases.  Mumps activity decreased 

to an incidence of 0.1/100,000) until a series of outbreaks began in 2006 (incidence 2.2/100,000). 



88 
 

 

Sustained mumps outbreaks have continued to be reported in a variety of epidemiologic settings 

including close-knit communities10–12, universities13, mass gatherings14, and detention centers15. 

Most recent mumps outbreaks in the United States occurred in populations with high two 

dose vaccine coverage and in settings with high population density or prolonged person-to-person 

contact 9. Lower vaccine effectiveness has been reported in congregate exposure settings, such as 

household contacts and close-knit religious communities 16. Such densely populated environments 

with prolonged face-to-face contact can facilitate larger doses of mumps virus exposure during social 

interactions, which may overcome vaccine-mediated protection and result in secondary vaccine 

failure 17.  

Understanding how mumps transmission dynamics differ by setting can provide useful 

information for mumps outbreak control strategies. A systematic literature review can be a useful 

tool for guiding control strategies. Here, we investigate the MEDLINE database to estimate 

differences in mumps transmission by setting using the effective reproduction number derived from 

data reported in peer-reviewed studies. We first conducted a systematic literature search with 

consultation from Centers for Disease Control and Prevention epidemiologists to assemble 

manuscripts describing US mumps cases in the post-vaccine era (1968-2019). Then, we assembled a 

dataset describing the outbreak dynamics to complete a narrative synthesis comparing reports before 

and after the 2006 resurgence.  Using data extracted from the reports after the 2006 resurgence and 

deemed of low risk for bias, we established point estimates of the effective reproductive number 

(Re) for each outbreak of 0.05 and 1.22. However, we were unable to make conclusive statements 

about how mumps transmission varies by setting. To successfully investigate how mumps 

transmission differs by setting, additional investigations are needed.  
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Objective and Overview of Systematic Review 

The objective of the systematic review was to estimate differences in mumps transmission 

(Re) in the United States by setting after the 2006 resurgence.   

The interventions explored in the systematic review were any efforts to reduce mumps 

transmissions including previous vaccination, isolation of patients, vaccination campaigns, and 

wearing face masks. The population of interest was anyone exposed to mumps in the United States 

after the introduction of MMR vaccine. Participants were narrowed down to anyone exposed to 

mumps in the United States after 2006 for quantitative analysis. Our primary outcome measure was 

the potential for epidemic spread at a specific time t under the control measures in place calculated, 

or the effective reproduction number (Rt). The ability to calculate our outcome measure was based 

on population level reports of the affected population size and vaccine coverage.  

Methods 

 We included only epidemiologic studies that reported mumps outbreaks in the United States 

in the post vaccine era. These included descriptive observational studies and analytic observational 

studies. We defined descriptive observational studies as those concerned with characterizing the 

amount and distribution of health and disease within a population in the absence of a control group. 

Any observational studies including a control group (i.e., case control, cohort), were defined as 

analytic observational studies. Any other study design was excluded from the analysis. Limiting the 

review to observational studies was not ideal but practical due to the ethical concerns associated with 

conducting mumps transmission studies in humans.    

We included studies comprised of any participants that were exposed to a mumps outbreak 

in the United States after the licensure of the Jeryl Lynn vaccine (1967). Participants did not need to 

be born in or hold citizenship in the United States, but they must have been present in the United 

States when the outbreak took place. Because our focus was understanding differences in 
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transmission by setting, studies that only reported the location (e.g., state, country) of the 

participants and not the setting (e.g., clinic, school, work) were excluded. Additionally, we excluded 

participants that were pregnant or had a known co-infection. No exclusions were made by gender, 

age, sexual orientation, language, occupation, racial or ethnic group, or other characteristics.  

Studies reporting outcome measures needed to estimate the effective reproduction number 

were included. Examples of outcome measures included count population vaccine data, population 

vaccine coverage, and population size. If reports included an ambiguous measure, authors were not 

contacted for further clarification and the study was excluded from the analysis. 

Search methods for identification of studies 

We performed a MeSH (Medical SubHeadings) term search to identify studies that have 

reported mumps outbreaks in the United States. We searched the Boolean phrase: 

(Mumps [MeSH Terms]) AND (United States [MeSH Terms]). 

 Only studies published in English were included. No restrictions on journal of publication 

were imposed.  

Our search was purely limited to the Medline Embase database and ended in August 2021. 

We did not search any other electronic databases, relevant government websites (i.e., Centers for 

Disease Control and Prevention, National Institute of Health), hand-search, peer-reviewed primary 

literature sources provided by experts in the field, or cross references.US (population) originating 

from a single setting and detailing information on vaccine coverage (outcome 1) and size of the 

affected population (outcome 2) thereby enabling calculation of the effective reproduction (Re) 

number by setting. We selected the Re value as our outcome of interest because it is a standard 

measure of transmission dynamics when a population is not fully susceptible like in the instance of 

mumps.  

We applied the following exclusion criteria to categorize excluded articles. 
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1) Wrong patient population: the affected population was outside of the United 

States or occurred before the licensure of the Jeryl Lynn mumps vaccine 

2) Wrong outcomes: authors failed to report vaccine coverage and size of the 

affected population 

3) Wrong study design: articles were not primary literature sources 

4) Wrong setting: outbreak was not confined to single identifiable setting 

5) No full-text available 

 Citations were merged using Covidence 1.0 1818 to facilitate management. Two reviewers 

independently applied the inclusion criteria to all retrieved articles and records of mumps cases in an 

unmasked standardized manner, evaluated by title, abstract, and full text. Disagreements between 

reviewers were resolved by a senior reviewer. No efforts were made to address missing data. 

Characteristics of excluded articles are available on Github (link: 

https://github.com/jcoatesmicrobiologist/Mumps-Systematic-Review). Articles that did not 

mention mumps in the United States in the title or abstract were deemed irrelevant can also be 

found on Github and are detailed in table S2.  

 For each included study, all reviewers extracted identification information including country 

of outbreak, setting, author contact information, region of the country, and area type (rural or 

urban). Additionally, one reviewer extracted information on study design, population characteristics 

and interventions.  

 Threats to Internal Validity 

 The internal validity of outcomes based on observational data can be threatened by 

systematic bias. Observational studies of mumps transmission are particularly vulnerable to 

problems with the comparability of participants or populations in a study (selection bias), factors 

other than the intervention or exposure of interest that influence the effect estimate (performance 

bias or confounding), problems with measurement or classification of exposure or outcomes 

(detection bias), and missing information attrition bias or reporting bias) 19. To assess the risk of 
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systematic bias in the included studies, we utilized the Joanna Briggs Institute (JBI) checklists 20 for 

cohort, case control, and case series studies to critically appraise each article by answering a series of 

questions to evaluate the possibility for selection, performance, detection, attrition, or reporting bias 

specific to the study design.  

Measures of transmission dynamics 

The goal of our systematic review was to estimate transmission dynamics or the Re value for 

each outbreak described in the literature. The Re calculation is dependent upon the estimated 

number of susceptible individuals in the population. To estimate the number of susceptible 

individuals (S), two reviewers extracted population size (N), and dose dependent vaccination 

coverage (pn) for each study. We estimated the number of susceptible individuals using the equation: 

 
where N is the population size, p0, p1, and p2+ denote the fraction of the population that has 

been vaccinated with zero, one, or two or more doses, respectively, and v0, v1, and v2+ denote 

vaccine effectiveness of individuals with zero, one, or two or more vaccine doses, respectively. S is 

rounded to the nearest whole number. We assume unvaccinated individuals are fully susceptible to 

infection (v0= 0). We set vaccine effectiveness for individuals who have received one dose to v1 = 

0.78 and for those who have received two or more doses to v2+ = 0.88 6.  

To calculate the effective reproduction number and the standard errors (SE) for each 

outbreak, we used a similar approach to a previous study that compared differences in transmission 

by setting 21 that use the final epidemic size 
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where C is the number of cases in the outbreak, and S is the number of susceptible persons at the 

start of the outbreak. The final size method assumes a susceptible-infected-recovered infection with 

a closed, homogeneously mixing population.  

To investigate the feasibility of a meta-analysis, all eligible studies were summarized in 

Covidence to the best extent possible. A narrative synthesis was provided for all results, but we 

determined that a statistical meta-analysis was not appropriate for this review due to reporting bias 

and lack of available data. Had the studies been comparable and more completely reported, our 

meta-analysis would have measured the average effect size of the effective reproduction value for 

mumps in the United States.  

Where statistics were missing (e.g., number of participants per group, vaccine coverage, 

means and standard deviations or percentages), we excluded studies from future analysis and made 

no attempts to contact investigators for missing data.  

Results 
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Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow 
diagram of study selection. Outcomes of interest include population size, vaccine coverage, and the 
number of mumps cases.  



95 
 

 

To collect data for statistical analysis, we utilized a mumps specific Medical Subheadings 

(MeSH) term search strategy to identify manuscripts describing US mumps cases in the post-vaccine 

era (1968 - 2019). The results of our search strategy yielded 331 articles. After screening the titles 

and abstracts, we deemed 234 articles irrelevant or not related to mumps in the United States.  

Ninety-seven papers were deemed potentially relevant for further evaluation. Full text copies for 93 

of these citations were obtained. 

Of the 93 papers for which the full text was obtained, 73 were excluded for the following 

reasons: 38 were missing data necessary to estimate the effective reproduction number, 22 were 

secondary literature sources, 10 were reports of mumps cases not originating from a single setting 

and 3 were reports occurring before vaccine licensure.  

After these studies were excluded, the narrative synthesis was limited to 20 separate papers, 

comprising 22 separate reports of mumps cases originating from a single setting. Two reports 

described outbreaks in multiple settings 22,23. Four articles described the same outbreak: two reports 

described an outbreak in a rural Ohio middle school 24,25 and two reports described an outbreak in an 

Iowa University 26,27.  

Since incidence rates occurring during the first resurgence were reduced with administration 

of additional dose of MMR vaccination, studies occurring before the 2006 resurgence were excluded 

from the quantitative analysis to focus our quantitative efforts on understanding mumps 

transmission in two dose era. Quantitative analysis was limited to nine papers, comprising eleven 

separate reports of mumps cases originating from a single setting. Two reports described two 

settings 22,23.  
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Narrative Synthesis 

Detailed information about individual manuscripts may be found on Github in the Table of 

Included Articles (Table S3).  

Eighty-two percent (18) of the included studies were cohort studies. The remaining four 

studies included two case series reports 28,29 and two case-control studies 30,31. Sixteen of the author 

institutions were the Centers for Disease Control and Prevention. The remaining two author 

institutions were medical centers 32,33. Author institution was not reported for four studies 22,34,35.  

Together, the 20 articles reported 22 studies. No studies were missing population data. The 

population sizes ranged from 28 22 to 36,000 29. The median population size was 1066. All 22 studies 

took place in the United States. Most studies took place in the Midwest, Southeast, and Northwest. 

Ten studies took place in the Midwest. Four studies reported in three articles took place in the 

Southeast 22,31,36. Three studies took place in the Northeast 33,37,38. One study took place in each of the 

following regions: non-contiguous United States 39, Northwest 28, Rocky Mountains 32, Southwest 40 

and Pacific 29.  Area type (rural versus urban) was reported for twenty studies. 73% (16) of the 

included studies took place in rural areas. Four studies took place in exclusively urban settings 

28,33,34,37. The location of the outbreaks was usually an educational setting (universities or K-12 

schools). Other cases took place in a hospital 32–34, Greek Life social organizations 28, close-knit 

communities 35,39, military 22, and a summer camp 38.  

Participants ranged from newborns 32–34  to middle age 22. No studies included information 

on the elderly. Mean age for the population was only reported for one study 22 (military; mean age 24 

years, range 20 to 37 years). When age was reported, it was often reported in a format that made 

estimating the mean age impossible. For example, one study reported case data by age with bins 

(<14, >18) for students outside “typical” high school ages 36, and another reported age only as a 

binary outcome (>6 months or <6 months) 32.  
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Information on vaccination status was self-reported or reported by parents for individuals 

under eighteen for three studies. Two studies relied on information reported by parents 25. The 

remaining study relied on self-reporting surveys 30,34. Information on vaccination status was also 

obtained through reviewing school and medical records. Six studies relied on school records 

26,27,29,37,40,41 and four studies used medical records 22,32,33,38. Two studies used two methods to obtain 

vaccine data: Briss et.al, 36 used school and medical records, and Wharton et al. 31 used school record 

and self-reporting, to obtain vaccine data. One study utilized a combination of methods to report 

vaccine data including school records, medical records, immunization databases, and self-reporting 

30. One manuscript reporting two studies relied on electronic medical data 23.  Five studies reported 

over four manuscripts included information on vaccine status or an estimate of population vaccine 

coverage but did not provide information on how the values were obtained 22,28,35,39.  

Fourteen studies in thirteen manuscripts reported an attempt to assess the validity of 

vaccination records 22,23,26,31,33,34,36–41. Vaccination records were validated by comparing school 

immunization records to healthcare providers 31,36,40,41 or parental records 37. Schaffzin et al. 38 also 

relied on healthcare provider recorders to validate vaccine status but only validated a subset of the 

records 38. Eight studies did not report how vaccine data were validated 22,24,25,28–30,32,35,39. Maynard et 

al. 39, did not report how vaccine data were obtained but assumptions on the validity can be justified 

based on historical data suggesting a lack of vaccination in the area.     

 Clinical and laboratory diagnosis was the primary method for confirming mumps cases. Five 

studies, all before the second dose recommendation, relied solely on clinical diagnosis on the basis 

of parotid swelling 24,25,31,35,37. The remaining studies used a combination of clinical and laboratory 

diagnosis. Common laboratory diagnostic methods included detection of viral genomic material (i.e., 

RT-PCR) and detection of mumps specific IgM via enzyme-linked immunosorbent assays (ELISA) 

or immunofluorescence assays (IFA).  
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Seven studies reported in six manuscripts did not report information on interventions used 

to decrease the spread of mumps 24,25,38,40,41. The remaining studies utilized vaccination campaigns to 

reduce transmission. Three of the remaining studies utilized isolation of cases in addition to 

vaccination to reduce transmission 30,32,34. Contact tracing in addition to vaccination and case 

isolation was used in three studies reported over two manuscripts 22,35. Only one study utilized 

surgical masks, contact tracing, patient isolation, and vaccination to reduce spread of mumps 33.    

Outbreak year was reported for all the studies. Seven studies occurred before the second 

dose recommendation 24,25,31,35,37,39,41. Fifteen studies occurred after the second dose recommendation. 

Four studies occurred after the second dose recommendation but before the 2006 resurgence 

32,36,38,40. The remaining eleven studies occurred after the 2006 resurgence. Two studies described the 

same outbreak 26,27. Shah et al. 27, was excluded from further analysis because the manuscript lacked 

detailed information on vaccination coverage. 

Narrative Synthesis for studies after the 2006 resurgence 

The 10 studies conducted after the 2006 resurgence (reported over 9 manuscripts) were 

retained for risk of bias assessment and future quantitative analysis. Seven of these studies (reported 

over 6 manuscripts) were retrospective cohort studies 22,26,26,33,34. Two included studies were case 

series reports 28,29. One study was a case-control study 30.  

Two studies (reported in one manuscript) were affiliated with the Department of Preventive 

Medicine, Blanchfield Army Community Hospital in Fort Campbell Kentucky 22. The Centers for 

Disease Control and Prevention was the author institution for the remaining studies.  

The total population size and range did not differ significantly from the narrative synthesis 

including cases before the 2006 resurgence.  
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Most cases occurred in the Midwest. The most common location for studies was 

universities. Other cases took place in an elementary school 22, Greek life housing 28, hospitals 33,34, 

and the military 22.  

Three studies did not report their method for obtaining vaccine data. School records were 

the most common method for obtaining vaccine data. Other methods included self-reported surveys 

34 and medical records 22.     

All studies utilized laboratory diagnostic methods in line with the CSTE standards for 

detecting mumps. Epi-linkage to a confirmed case was also considered in detecting mumps cases.  

Three studies reported over two manuscripts 23,38  did not report intervention strategies used 

to control mumps transmission. The remaining studies all reported vaccination campaigns as a 

means for decreasing mumps spread. Two studies only reported vaccination strategies to reduce 

transmission 26,28. Three studies combined vaccination and patient isolation to control spread within 

the community 29,30,34. Studies reported by Downs et al22., used contact tracing in addition to 

vaccination as an intervention to decrease mumps transmission. Only one study reported more than 

three interventions; in addition to contact tracing, patient isolation, and vaccination, Gilroy et al. 33, 

reported the use of surgical masks to reduce transmission.  

Risk of Bias 

 Threats to Internal Validity 

Case series reports were deemed high risk for bias because of incomplete reporting of 

relevant demographic data and lack of reporting on the outcome of interventions. Due to the high 

risk for bias, these studies were excluded from future analysis 28,29. Ultimately five manuscripts 

reporting seven studies were deemed low risk for bias and included in point estimations of the 

effective reproduction number 22,23,26,30,34. University settings comprised four of the studies. 

Remaining studies occurred in a hospital 34, elementary 22, or military 22 setting. The lack of data 
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reported in settings other than universities limited our ability to perform sub-group analysis and 

determine how mumps transmission differs by setting.  

Estimating how transmission dynamics differ by setting 

The ‘effective reproduction number’ (Re; the average number of secondary cases per 

infectious case in a population made up of both susceptible and non-susceptible individuals) has 

been established as the most critical parameter for characterizing the transmission dynamics in 

populations where some immunity exists 42.42. As a first step to examine if heterogeneity existed in 

mumps transmission dynamics between different settings, we used the Becker method 4343 to 

estimate the Re value for each outbreak included in our dataset. The Re was calculated based on 3 

variables, the total population size of the outbreak (N), the total number of cases in the outbreak 

(C), and the number of susceptible persons at the start of the outbreak (S). Ten studies reported 

enough reliable data to estimate the Re value and were included in the analysis. 

Cases ranged from 1 22  to 259 26. Vaccine coverage ranged from 0.2% 26 to 19% 22, 1% 23 to 

91% 22, and 0% 22 to 99.5% 26 for zero, one, and two plus doses of MMR, respectively. Vaccine 

coverage was unknown for 0% 26 to 93% 34 of individuals. Due to the large percentage of unknown 

vaccination status in Bonebrake et al. 34, it would have been excluded from a meta-analysis.  The 

proportion of susceptible individuals ranged from 12% 23,26,30 to 29% 22. Point estimates for the 

effective reproduction number ranged from 0.05 22 to 1.22 23 (Table 1).    

Comparison of these values was deemed statistically incomparable because of a limited 

sample size, preventing meta-analysis. By not completing a meta-analysis, we are unable to make 

statistical conclusions about the nature of mumps transmission in the post-vaccine era or compare 

the differences in transmission by setting. However, preliminary evidence that heterogeneity in 

mumps transmission may be the result of combining non-pharmaceutical interventions (NPIs) with 

vaccination. The two outbreaks described in Downs et al 22. had significantly lower Re values than 
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those observed in the university setting despite having a lower two-dose vaccination coverage. Other 

unique characteristics included early detection of the initial case, a lower percentage of individuals 

with unknown vaccination, and required quarantines for infected and exposed individuals. Further 

studies are necessary to determine the validity of this claim.   

 

Table 1. Studies included in the systematic review 

 

  

Discussion 

By using the MEDLINE database, we investigated differences in transmission dynamics by 

setting for mumps outbreaks. While we were unable to estimate Re values by setting, our analysis led 

to three key findings: (1) the number of publications describing mumps cases in the United States 

available on PubMed/MEDLINE is too limited to estimate the differences in mumps transmission 

Title Setting N punknown p0 p1 p2+ Cases Susceptible Re

Risk factors for 

mumps at a university 

with a large mumps 

outbreak

University 19155 0.03 0.97 97 2299 1.04

Effectiveness of a 

Third Dose of MMR 

Vaccine for Mumps 

Outbreak Control

University 20496 0 0.002 0.003 0.995 259 2504 1.05

Public health 

response to imported 

mumps cases - Fort 

Campbell, Kentucky, 

2018

Elementary 

School

77 0.01 0.08 0.91 0 1 17 0.05

Public health 

response to imported 

mumps cases - Fort 

Campbell, Kentucky, 

2018

Military 28 0 0.19 0.81 0 1 8 0.11

Mumps vaccination 

coverage and vaccine 

effectiveness in a 

large outbreak among 

college students - 

Iowa, 2006

University 1550 0.12 0.003 0.01 0.87 46 193 1.13

Mumps vaccination 

coverage and vaccine 

effectiveness in a 

large outbreak among 

college students - 

Iowa, 2006

University 1199 0.19 0.008 0.17 0.19 63 178 1.22
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by setting, (2) point estimates for the effective reproduction number in the United States since the 

2006 resurgence range from 0.05 to 1.22, and (3) further research is needed to confirm the impact of 

NPIs on differences in mumps transmission by setting.  

Our finding that the data necessary to estimate an aggregate effective reproduction number 

by setting for mumps using the MEDLINE database were limited is not surprising. In a previous 

study, Winchester et al., 44 found that MEDLINE database search limits can inadvertently eliminate 

an important number of research articles. Additionally, mumps cases in the United States are 

primarily reported to the Centers for Disease Control and Prevention (CDC) and not published as 

primary literature articles.  A thorough literature search of multiple relevant databases (ex. Embase, 

CINAHL, Google Scholar) and relevant organizational websites (ex. Centers for Disease Control 

and Prevention, World Health Organization, National Foundation for Infectious Diseases, and 

National Institute of Allergy and Infectious Diseases) is necessary to assemble a large enough dataset 

from published studies.  

The large number of case series reports found on MEDLINE also limited our ability to 

build a dataset large enough for statistical analysis due to the potential for bias. A case series is a 

descriptive study that does not test a hypothesis but follows a group of patients who have a similar 

diagnosis or who are undergoing the same procedure over a certain period 45. As previously 

mentioned, cases of mumps are required to be reported to the CDC but the information necessary 

to estimate transmission dynamics by setting are not required to be reported to the CDC. The 

primary method for obtaining data needed to estimate the Re value for mumps is the Morbidity and 

Mortality Weekly Report (MMWR), a weekly publication composed mostly of epidemiological case 

reports because of the need to quickly disseminate public health information in the event of an 

outbreak. Since the CDC is considered a primary credible source for mumps data, there is a need for 

future efforts to improve the quality of case reports published in MMWR. Public health officials can 
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improve case series reports by including a clearly defined research question (inclusive of a study 

population, intervention, and primary outcome), case definition, and clearly defined methods for 

data collection with a description of the methodological limitations 46. The inclusion of these 

elements will allow investigators to assess the potential more accurately for bias in each report and 

potentially increase the number of usable studies.   

Despite the limited number of publications available, data from MEDLINE on mumps’ 

transmission in the United States allowed us to estimate Re values for multiple outbreaks in 

university settings and two outbreaks in Kansas stemming from an imported case. While our 

findings were not significantly different from Re values found in previous studies 47, they did provide 

interesting insight for future research. Given the success of the public health response in Downs et 

al. 22, it is worth investigating how NPIs  can be used in combination with vaccination campaigns to 

reduce the transmission of mumps in the United States.  

NPIs are actions like wearing a face mask and staying away from sick people that people and 

communities can take apart from getting vaccinated and taking medicine, to help slow the spread of 

illnesses 48. NPIs were found to significantly reduce the spread of disease during the 1918 influenza 

pandemic 48,49 and the COVID-19 pandemic 50. To the author’s knowledge, there is no formal study 

on the relationship between NPIs and mumps transmission. Given the continued transmission of 

mumps despite a highly effective vaccine and increased vaccine hesitancy 51,52, it is worth exploring 

the impact of NPIs on reducing mumps transmission. 

We attempted to utilize a systematic review to quantify the differences in mumps 

transmission by setting in the United States. However, limitations in the number of useable reports 

inhibited our ability to do so. Instead, we report the point estimates for six outbreaks. Our results 

suggest that NPIs may play a role in the differences in mumps transmission, but further analysis is 

necessary to determine the validity of that claim. Additionally, our work highlights the need for 
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improved reporting of mumps cases in the United States, which heavily influences the number of 

reliable studies to include in estimates of Re for mumps. 

Conclusions 

Implications for practice 

Given the limitations of the evidence, this review cannot draw conclusions about settings-

based differences in mumps transmission in the United States. Our search only yielded reports in 

university settings. Therefore, we cannot comment on mumps transmission outside of 

undergraduate students in university settings in the rural Midwest.  

Our results suggest a need for strategies to improve the internal validity of observational 

studies, with a focus on case series reports. Specifically, we find a need for improved reporting of 

key methodological, clinical, and statistical information concerning confounding factors, as well as 

more complete reporting of vaccination data at the population level. These improvements will 

support better estimation of Re in different settings, in part by informing analyses that account for 

time since vaccination and age at vaccination. 

Implications for research 

Future research could address the following questions raised by this review: 

• How does the effective reproduction number change between affected setting types 

(close-knit communities, mass gatherings, universities, and detention centers) and 

settings where mumps transmission is less frequent? 

• How effective is the current vaccine in close contact settings? 

• What practices, including NPIs, are best for reducing transmission for existing high-

risk settings? 
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Chapter IV: Discussion 

Jessica Coates 

 

Introduction 

Antibiotics and vaccines are considered two of the greatest medical discoveries during the 

20th century because of the dramatic reduction in deaths associated with infectious diseases (IDs) 

following their discovery. However, despite the early success of antibiotics and vaccines there has 

been a continued spread of infectious diseases within the United States. In 2020, three of the top ten 

leading causes of deaths in the United States were due to infectious diseases 1. While many efforts 

are underway to improve the effectiveness of vaccines and to design more potent antibiotics, there is 

an immediate need to address the public health burden caused by IDs. Without the design of 

strategies that address immediate public health needs, infectious diseases will continue to impact the 

economic well-being of the United States2,3 and the health of the American people. Data-driven 

approaches that incorporated within and/or between-host reproduction dynamics have been 

previously used to aid in the eradication of diseases like smallpox4  and have the potential to reduce 

the modern-day burden of infectious diseases likes mumps and bacterial infections caused by E. coli. 

For the purposes of this dissertation, I present data providing insight on within-host infectious 

disease replication in Chapter 2 by exploring stochastic bacterial population growth dynamics during 

treatment with bactericidal vs. bacteriostatic antibiotics. I also present data providing insight on 

between-host infectious dynamics in Chapter 3 by utilizing a systematic literature search to estimate 

the effective reproduction number for mumps outbreaks in the United States after the 2006 
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resurgence. In the final chapter of this work, I summarize the major observations of Chapters 2 and 

3 and provide recommendations for improving observational data reporting in microbiology and 

public health to ensure future investigators can accurately estimate the R value of infectious diseases 

impacting public health. 

Summary of Major Findings 

To explore the within-host dynamics of infectious disease reproduction, we utilized a 

combination of microbiology and biophysics approaches to characterize bacterial population 

dynamics when E. coli bacteria are exposed to increasing concentrations of bactericidal and 

bacteriostatic antibiotics.  Our experiments yielded unique results compared to previously conducted 

studies that suggested bacterial population dynamics under antibiotic stress were deterministic 5,6. 

Our results, however, suggested that bacterial eradication by bactericidal antibiotics is a stochastic, 

heterogeneous process. Specifically, we observed that at sub-MIC concentrations, the impact of 

bactericidal antibiotics on E. coli population dynamics differed from the impact of bacteriostatic 

antibiotics. Bactericidal antibiotics functioned in a heterogeneous, concentration dependent manner 

to kill bacterial cells while bacteriostatic antibiotics functioned in a homogenous, concentration 

independent manner to slow down the growth of bacterial cells. The heterogenous nature of 

bacterial killing observed under bactericidal stress was not associated with previously acquired 

resistance traits, which suggested instead that killing was a stochastic process. A simple stochastic 

model was able to predict stochastic clearance of bacterial populations as antibiotic concentration 

approached the MIC; this model further suggested that stochastic fluctuations would increase as 

drug concentration approached the MIC, allowing us to predict stochastic extinction of a large 

bacterial inoculum at near-MIC concentrations of drug. Further, based on a model-selected growth-

reduction approach to maximizing stochastic extinction, we used combinations of bactericidal and 

bacteriostatic antibiotics to promote stochastic population eradication even in genetically drug-
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resistant strains. This work contributes to the field by adding further evidence on the importance of 

considering population size when evaluating with-in host dynamics of infectious agent replication. 

By understanding the dynamics of small population sizes, future studies could be potentially 

developed to revitalize currently available antibiotics and address the current antibiotic public health 

crisis.  

The second part of this thesis focused on between-host dynamics of ID reproduction. Here 

we used a systematic literature review to estimate the effective reproduction number for Mumps 

outbreaks in the United States after reaching a high two dose measles, mumps, rubella (MMR) 

vaccine coverage. Our literature search yielded 5 articles describing 6 outbreaks and 496 cases of 

Mumps in the United States after 2006. Due to biases in the settings represented and limitations 

associated with a small dataset, we were unable to estimate the mean effective reproduction number 

for mumps in the United States, but we were able to calculate point estimates that lead to three 

major findings: (1) Re values for mumps in the United States range from 0.05 to 1.22. (2) Outbreak 

responses that utilized non-pharmaceutical interventions were associated with lower transmission, 

but future studies are needed to validate that claim. (3) There is a need for improvement to data 

reporting in public health to enable investigators to accurately estimate the effective reproduction 

value for diseases like mumps, COVID-19, and seasonal influenza that are primarily reported using 

observational data.      

Recommendations for future studies 

These results highlight the importance of high-quality data in drawing inferences about 

infectious disease dynamics. Our ability to describe and model antibiotic-associated population 

dynamics for E. coli in Chapter 2 was largely due to the benefits of utilizing experimental data. By 

utilizing experimental data, we could control for potential biases that may lead to an over or 

underestimation of the reproduction metric and accurately measure population-wide and colony-
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specific growth rates for E. coli exposed to bactericidal and bacteriostatic antibiotics. However, in 

Chapter 3, we were unable to estimate the mean Re value for mumps in part because of biases 

associated with using observational data to draw conclusions.  

Most data for infectious disease transmission are from observational studies, for ethical as 

well as practical reasons, and well-known issues exist for observational data of this kind.  

Observational data, or data obtained from a study in which investigators obtain outcome 

measurements solely from observing the population of interest without attempting to influence the 

outcome, is highly vulnerable to bias because of the inability to control for external factors and 

therefore is often avoided for drawing conclusions for guiding intervention strategies. However, in 

the instance of mumps and other infectious diseases – such as COVID-197, seasonal influenza8, and 

HIV9 – there is no other option than to utilize observational data to understand the real world 

effectiveness of prevention methods.  Therefore, given the importance of reducing infectious 

disease spread, it is necessary to improve observational data reporting by establishing a standardized 

reporting manner that allows investigators and policymakers to accurately assess the potential bias 

present in the data reported. To allow investigators and policymakers to accurately assess the 

potential bias present in observational data, future reports of observational data should include full 

descriptions of the affected population and the setting where disease spread occurred to account for 

all possible confounding factors that may impact the reliability of R value estimates. The ability to 

accurately estimate the R value for vaccinated populations relies on precise estimates for the number 

of susceptible individuals, the intensity of the exposure, and the number of cases.  Any future 

infectious disease observational study reports should include detailed reporting of confounding 

factors that impact the ability to accurately estimate the number of susceptible individuals, the 

intensity of exposure, and the number of cases in the affected population. By providing this 

information in reports, investigators and policymakers can accurately assess the reliability of 
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outcomes needed to design effective control and prevention strategies possibly leading to the 

eradication of detrimental infectious diseases.   

Despite the limitations in this work, we were able to highlight the importance of 

understanding within host and between host dynamics to successfully design public health strategies 

to prevent or control infectious agent replication. This phenomenon isn’t unique to work focused 

on bacteria and mumps but is also relevant to other diseases that cause a major impact on human 

health and public health, including malaria10 and influenza11. As the field progresses, there is a need 

to not only understand these dynamics better but to understand the link connecting within host 

dynamics and between host dynamics of infectious agent replication. Previous studies have 

attempted to use sophisticated quantitative models to establish the link between within host 

dynamics and between host dynamics but have failed to capture new information about these 

dynamics12. This work could potentially provide insight into how to reform studies dedicated to 

quantitatively linking the two different levels of transmission by showcasing the importance of 

considering stochasticity for within host dynamics and intervention mediated methods for increasing 

susceptibility rather than relying on traditional deterministic approaches and focusing on vaccine 

campaigns to control outbreaks.  

The goal of the studies described in this dissertation was to utilize statistical approaches to 

understand within and between host dynamics in the transmission of infectious diseases. These 

studies provide novel insight into the nature of bacterial replication under antibiotic stress and 

mumps transmission in highly vaccinated populations. Through this work, we demonstrated the 

stochastic nature of bacterial replication under antibiotic stress and the importance of considering 

small populations in infection dynamics. Additionally, this work highlights the importance of 

understanding the impact of vaccine-mediated versus intervention-based heterogeneity in 

susceptibility to mumps and transmission in population with a high two dose vaccine coverage. 
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Results from these studies lay the foundation for future research on between and within host 

dynamics of infectious disease transmission and provides insight for the design of future public 

health control and prevention strategies. 
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