
Distribution Agreement 
 
In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory 
University, I hereby grant to Emory University and its agents the non-exclusive license to 
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or 
hereafter now, including display on the World Wide Web. I understand that I may select some 
access restrictions as part of the online submission of this thesis. I retain all ownership rights to 
the copyright of the thesis. I also retain the right to use in future works (such as articles or books) 
all or part of this thesis. 
 
Sriveena Chittamuri Mar 28, 2019 
  



Using Hierarchical Random Graphs (HRGs) to Model Brain Networks 
 
  

by 
  

Sriveena Chittamuri 
 
 
 
  

Dr. Shella Keilholz 
Adviser 

 
 
  

   Department of Physics 
  
 
 
 
  

Dr.Shella Keilholz 
Adviser 

 
 
  

Dr.Stefan Boettcher 
Committee Member 

 
 
  

Dr.Ilya Nemenman 
Committee Member 

 
 
 

2019 
  



Using Hierarchical Random Graphs (HRGs) to Model Brain Networks  
 

By 
  

Veena Chittamuri 
 
  

Dr.Shella Keilholz 
 

Adviser 
  
  
  
  

An abstract of 
a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 
of the requirements of the degree of 
Bachelor of Sciences with Honors 

 
 

Department of Physics 
  

2019 
  



  
Abstract 

 
  

By Sriveena Chittamuri 
 

The human cerebral cortex is functionally segregated with coactivating regions. These areas have             
been shown in literature to be organized across hierarchies from local to global networks ​11​.              
Using fMRI to characterize ​whole brain activity, previous studies have shown the utility of              
functional connectivity graphs that represent the cross-correlation matrix of the fMRI activity at             
different brain regions as a measure to study network hierarchy ​13​.​.​However, functional           
connectivity estimates are known to be noisy- often requiring long timeseries to converge to a               
final value. We propose the utility of sampling the functional connectivity (FC) matrices from              
fMRIs and modelling the data as hierarchical random graphs (HRGs) that represent real data as               
dendrograms, since the hierarchical organization is theoretically independent of the noise. The            
HRG approach models the structure of the brain by clustering more connected brain regions              
together across increasing scales.We show that the random noise that exists in each individual              
scan as compared to the group average does not translate into this hierarchical representation and               
thus it can meaningfully predict missing edges from the ground truth more accurately than              
classical statistical methods can. By validating the use of HRGs through harnessing the             
hierarchical nature of brain networks to make predictions between FC matrices with known             
differences, we argue that this is a powerful approach to modelling the brain network since it can                 
be translated to study unknown differences in varying populations including healthy versus            
disease brain studies.  
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1. INTRODUCTION 

 

1.1 Functional Architecture of the Brain 

 

The brain is known to have specialized cortical regions that perform functions            

through segregated (localized) and integrated (distributed) processes ​7​. The brain,         

therefore, can be viewed as adhering to two principles of functional organization:            

functional segregation and functional adherence. Functional segregation refers to spatial          

localization of neurons that perform similar roles, while adherence refers to the processes             

that involve cross-communication between these regions ​2​. Neuroscience research is         

primarily focused on studying these two organizational structures in order to discover the             

complex processes that govern cognition.  

The human cerebral cortex, in particular, has been explored in the recent years to              

to reveal that its functionality can be described by distinct, yet intertwined, networks ​9​. A              

set of structurally segregated neurons have similar functions, and a few sets of these              

neurons coactivate, and so on to create the several large-scale brain regions, that scale              

upwards.  

Functional neuroimaging has been imperative in the past decade in establishing           

these as the principle organizations of the brain ​2​. Functional Magnetic Resonance           
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Imaging (fMRIs) has been the primary and critical tool in isolating and analyzing             

different segments of the brain that change their activation based on a given stimulus or               

action. Unlike EEGs or MEGs, fMRI is an especially useful tool because it provides              

detailed whole brain scope of activity, with regional specificity. fMRI is sensitive to             

changes in the blood oxygen level dependent (BOLD) signals, which are indirectly            

dependent on neural activity ​4​. fMRI’s allow for ROI(region of interest) analysis, where            

changes in the BOLD signals at individual regions are studied. The average time signal (               

of changes in the BOLD signal) at these ROI’s are observed and analyzed in both task                

and rest studies. Task based studies have given insight on the role of different regions of                

the brain, and allowed for thorough documentation of the functional segregation of the             

brain. However, until the past decade, little was known about the interactions between             

different regions of the brain, paving the way for resting state studies.  

Resting state studies are performed with no explicit presence of stimuli or            

activity, and reveal details about the interactions between the different ROI, giving deep             

insight into the functional architecture of the brain. From resting state fMRIs, the average              

dependence (often a Pearson correlation) between each pair of ROI’s is found from the              

time series, and a functional connectivity (FC) is created. These FC matrices are the              

primary tool in resting state whole brain analysis for various different applications in             

neuroscience ​10​. 

 

1.2 Functional Connectivity 
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As mentioned, functional connectivity (FC) graphs describe the correlation         

between ROI’s, and the FC values refer to the quantification of the operational             

interactions of multiple spatially-separated regions of the brain ​4​. Functional connectivity          

is agnostic, and so the value of the correlation describes a directionalless connection             

between two edges, where a higher values indicates a stronger correlation between the             

two segments of the brain. In terms of the fMRI collection, a higher FC value refers to a                  

higher correspondence of the BOLD signal at these two regions at a given period of time.                

A positive correlation value refers to additive interactions between regions, where regions            

are activated, while a negative correlation refers to suppressive interactions between           

ROIs.  

Similarly, this approach of studying fMRI’s is also prevalent in studies involving            

neural diseases. Specifically, studies involving Parkinson’s and alzheimer's have revealed          

functional connectivity differences in the brain of patients with these disorders ​14,15​.           

Therefore there is a deep necessity for developing a tool to study these differences.              

However, the approach of using FC matrices to study human disease as well as cognition               

has its own shortcomings including the effects of noise surrounding the fMRI as well as               

the need for large amounts of data.  

 

1.3 Motivation for the Experiment 

 

 Resting State fMRI measures whole brain data in low frequency (<0.1Hz) BOLD            

signals but is a noisy measurement, accumulating scanner and nuisance noise. The noise             
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is attributed to illegitimate signals interfering with the BOLD signal from ventricles and             

white matter, as well as head motion. Raw data is often corrected for this noise, but the                 

noise impacts the functional connectivity matrix and can produce spurious connections           

between ROI​11​. In order to settle this issue, FC matrices are thresholded to ensure              

accuracy across the dataset​11​. However, the thresholding can lead to individual           

differences between the FCs including missing edges. So, proportional thresholding is           

often done to equalize the density of the edges in the dataset​11​. Another approach to               

resolve the issue is to perform longer scans or over a large enough population to gain                

enough data to make up for these differences. This can be both expensive and even               

impossible in situations that require data from people with rare disorders. Therefore, there             

is a strong necessity to identify the differences in FC in different populations even with               

noisy data and to do so with minimal amount of data present. Here, we present an                

approach to studying FC matrices that is unaffected by the noise in the RS-fMRI and               

requires far shorter segments of fMRI scans.  

 

1.4 Networks and Hierarchies  

 

Different segments of the brain coactivate together to perform specific functions.           

This functional organization allows the brain to be modelled as a hierarchical random             

graph, where brain regions that are more functionally active are clustered in different             

levels ​9​. At the lowest levels, these are local networks- which are highly connected voxels              

or sets of neurons with the same function. These connected neurons are connected at a               
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higher level based on the region of the brain that they constitute (eg: amygdala, basal               

forebrain, and basal ganglia). These parts of the brain are then connected into regions              

with similar function (eg.cerebral nuclei), which are connected on a higher level and so              

on, with the top of the hierarchy constituting the entire grey matter of the brain. Figure 1                 

depicts the schematic of the brain(right of the figure) and it translated into a hierarchical               

structure (left of the figure) ​16​. Evidently, the architecture, or the functional connectivity            

of the brain, can be modelled through a dendrogram, where the highest level of              

organization describes global networks, and scales down to local, highly correlated           

networks. Each of these local networks, therefore, are tied together in the hierarchy,             

which accounts for the overlapping. Our argument here is that that functional            

connectivity graphs can be described using these dendrograms. There is evidence of this             

in literature ​9 ​but also in the clear clustering of the functional connectivity matrices (see              

figure 9), where correlations are grouped in boxes-suggesting segregated functionality.          

These dendrograms are used to build Hierarchical Random Graphs (HRGs) that describe            

this hierarchical organization of the brain, and therefore act as a strong representation of              

the FC data.  
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Figure 1: The left figure reveals a schematic of the different organizational levels of the brain. The                 
figure on the right reveals the same organization in the form of a dendrogram​16 

 
 

The integral property of HRGs is that they have naturally existing cliques, or             

clusters, that are inherent to this structure. The cerebral cortex, as mentioned, has similar              

clustering and so HRGs act as a powerful and accurate tool in modelling the data. The                

mathematical formalization of creating the HRGs and choosing the best possible one is             

detailed in the methods section and is in accordance to the paper by ​Aaron Clauset​,               

Cristopher Moore and M. E. J. Newman​1​. The method of producing a series of              

dendrograms from the network graph is called Monte Carlo Markov Chain (MCMC). The             

MCMC method utilizes a chain of transitions that swap out edge connections to create              

new dendrograms. The processes of choosing the best fitting hierarchical graph from the             

dendrograms is through minimizing the shannon entropy. Shannon entropy refers to the            

number of bits it takes to create each dendrogram, the fewer bits it takes to create a                 

dendrogram, the more likely the hierarchical random graph is to truly model the network              

because it requires the fewest stems to accurately generate the network. The paper by              

Clauset et al, recounts the pipeline to create the best fitting random hierarchical graph              

from a network graph in order to give insight into various network phenomena including              
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clustering coefficients, right-skewed distributions, and predicting missing edges. Here,         

we present a similar approach of creating an HRG but by generalizing it to take in several                 

different graphs. 

In order to reveal the strength of using HRGs to describe the functional             

connectivity matrices and give powerful insight into the differences in FC, we test our              

algorithm by predicting known missing edges and comparing it to a conventional method             

of finding difference in FCs. Provided the algorithm’s validity, it can be generalized to              

study differences in a variety of experiments, including disease and task based studies.  

 

 

2. METHODS 

 

2.1 Experimental Paradigm  

 

In order to validate the MCMC algorithm and motivate using HRGs to model             

brain networks, a missing edges experiment is performed. The accuracy of the missing             

edges experiment is intended to provide support for generalizing the use of this method to               

model FC graphs to reveal differences between the fMRI data in different populations. 

 

2.1.1 Preliminary Test 

Firstly, the algorithm is run on a simple 6x6 matrix. Noise is added to the               

matrix (random edges are changed to equal 1 and others are removed) and then              
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sampled 10 times. A 3D matrix of all the sampled graphs is then fed into the                

MCMC algorithm with 1000 iterations (transitions in the MCMC chain) where           

the Markov chain is initiated. The best fitting hierarchical graph is created, from             

which the probability graph is generated.  

Another validation test is done on an artificial 66x66 matrix that has clear             

clustering across the matrix. Then 20% noise is added to the data, where edges are               

randomly swapped and added. Then, 10 samples for this is fed to the MCMC              

algorithm to generate a probability matrix.  

 

2.1.2 Optimizing Parameters 

Firstly, FC matrices are oversampled at a certain threshold in order to            

construct a set of graphs that we feed into generating HRGs for the given network               

data. Then using the MCMC algorithm we estimate the HRG that best represents             

the network data. The FC matrix is first separated in to two networks for the               

positive FC and the negative FC edges. These are separated because the positive             

and negative correlation values represent additive and suppressive activity         

respectively. It, therefore, benefits to run them as separate graphs since the            

algorithm is better equipped to handle them as such in its predictions. In order to               

ensure that only positive and then only negative edges are extracted, the matrix is              

multiplied by +1 or -1 (for positive and negative edges respectively). The            

sampling function (described in detail in section 2.3) extracts all the edges above             

a certain positive threshold. When the negative edges experiment is run, the entire             
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matrix is multiplied by -1 so that the negative edges will be extracted rather than               

the positive ones. The multiplied FC is sampled 10 times (10 different graphs are              

generated) and processed by the algorithm. This sub experiment is done for an             

individual graph (session 10).  

In order to find the optimal thresholding value and the sample size, first             

the sample size is held constant while the sample parameters are changed. The             

three different parameters sweeped include: 20%, 25%, 30%, i.e. the FC values            

are multiplied by 1.2, 1.3, and 1.4 in order to increase their probability of being               

selected by the sampling function (explained in detail in section 2.3). This            

parameter is set and a leave one out cross validation approach is done, where 9 of                

the samples ( session 1-9) are run together to represent the gold standard, and the               

remaining graph (session 10) acts as the predicted graph. The difference between            

the predicted sample and the nine is found for each different parameter, and then              

the three are correlated to the global gold-standard FC ( the mean of all 10               

samples) to decide the optimal parameter. In this part of the experiment, only the              

positive edges are extracted.  

Then, the optimal scanning parameter is kept constant while the sample           

size is altered. The three sample sizes explored are 10, 15, and 20. In each               

instance, the probability graph for the first nine sessions is produced and the last              

sample acts as the prediction set and has its own probability graph. The prediction              

set is subtracted from the nine in order to observe the number of difference              

between the two to choose the optimal parameter.  
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2.1.3 Analysis on Real Data 

The missing edges experiment is done on resting state data of different            

sessions from the same subject. 9 of the 10 samples are combined to represent the               

gold standard. Since the dataset is large enough, we work under the assumption             

that all of the existing edges are present in these 9 graphs and so it can be cross                  

validated to test the accuracy of the algorithm.  

Resting state time series data from one subject from the Midnight Scan            

Club (MSC) Project is preprocessed and projected into atlas space. The RS-fMRI            

is not functionally segregated and so this is an important step in extracting the              

functional connectivity. It also ensures that the role of each of the different             

segments (ROIs) is known, which is advantageous for further analysis of the data.             

Then, a functional connectivity matrix is created for each of the 10 sessions of the               

data collection. The functional connectivity matrix is merely a correlation graph           

of the correlation between each ROI(edge) of the brain. This acts as the network              

graph given to the MCMC algorithm. Providing it with multiple graphs from the             

same subject or same experiment results in a probability matrix with high            

accuracy. In order to predict the missing edges, a leave one out cross validation              

approach is used again. Nine of the functional connectivity graphs are then            

sampled and fed (according to the optimized parameters) into the algorithm to            

find the probability of each edge existing. This is then compared to the one              

predicting set that receives its own probability graph. The MCMC method is            
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compared to a brute force (referred to as the conventional) method of finding the              

p values from a one sample student t-test statistic that observes the difference             

between an individual sample and the average of the rest of the graphs. The t-test               

gives a p value for each edge of the prediction graph existing in the training set. A                 

high p value suggests a higher probability of it existing in the set, and this               

constitutes a missing edge. The two are then cross validated. If the missing edges              

predicted by the MCMC algorithm are edges with higher functional connectivity           

than those predicted by the conventional method, it suggests that the algorithm            

succeeds in accurately predicting missing edges since these are the ones with high             

connectivity with other edges in the graph. This processes is then repeated for all              

10 permutations of the leave one out method for both the MCMC and the              

conventional method and cross validated to account for any variation in individual            

data and any possible outliers. Figure 2 shows the general pipeline of the             

experimental design for the real dataset.  
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 ​Figure 2: Pipeline of the experiment on real data for an individual sample.  
 In the case of the nine graphs, a 3D matrix with each sample sampled 10  
 times into binary graphs is sent to the algorithm 
 

2.2 Dataset And Processing  

 

The data is obtained from the Openneuro database. The resting state data is part of               

the Midnight Scan Club (MSC) Project which collected data from ten different subjects             

for five hours. Each subject is scanned for 30 minute scans over ten different sessions.               

Each of these sessions acts as an individual sample in this experiment. The MSC provides               
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derivatives of the raw dataset of the RS-fMRI data which includes the minimally             

preprocessed, motion-sensored, and confound regressed resting state data in         

CIFTI(cortical: fs_LR32K;subcortical: Talarich) space. Resting State fMRI explains the         

functional architecture of the brain by measuring spontaneous, low frequency (< 0.1Hz)            

BOLD signals ​3​. Bold signal preprocessing requires correction for slice-dependent time          

shifts as well as intensity differences. It also needs to be corrected for noise due to head                 

movements as well as nuisance signals from white matter and ventricles. Following that,             

spatial smoothing and low pass filtering for low frequencies is done to cancel out the               

noise due to non-neuronal signals. These are the pre-processing steps done on the dataset              

when they are extracted from the project. At this stage the resting state time series are                

then projected onto an atlas space so that they are grouped in accordance to their               

functional segregation ​3​. The timeseries of each session is averaged to a Desikan-Killiany            

atlas ​12​. Then, we further pre-processed the data using the following processing pipeline:            

z-scoring each time series, then band passing filtering the signal from 0.01 to 0.25 Hz,               

then global signal regression using a linear regression model, and finally, applying a final              

z-score step. These steps were selected in accordance with Cabral et al. ​1 The correlation              

is extracted for each sample. This is the functional connectivity matrix of each session              

and acts as an individual sample in our experiment.  

 

2.3 Sampling Function 
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Thresholding the connectivity matrix is an important step in theoretical graph           

analysis, and there is increasing evidence that proportional thresholding is a better tool             

for doing so than absolute thresholding ​11​. Proportional thresholding choses edges to           

represent the graph based on their probability of existing- so edges with a higher              

probability are more likely to be chosen to be in the sample than edges with lower                

probabilities ​11​. When working with functional connectivity matrices, the thresholding         

function is meant to grab edges with higher FC more often than edges with lower FC                

since these on average have a higher probability of being spurious and thus introduce a               

higher degree of randomness to the generated network ​11​. 

Each FC in the experiment is sampled before being fed into the MCMC             

algorithm. The sampling function choses an edge to exist in the sampled graph based on               

its probability. So an edge with a higher probability has a higher chance of being               

sampled. The function randomly generates a floating point number between 0 and 1, and              

if the FC has a probability greater than that value, the edge is sampled and set to equal 1.                   

In this way, the function generates a binary matrix with edges with high FC existing in                

the sampled graph. 

In terms of choosing an optimal scanning parameter, the goal is to sweep the area               

of different values and choose one that samples the most number of edges with high               

probability while still producing accurate probability graphs. So, multiplying the FC           

matrix with 1.2, 1.25, and 1.3, as described in section 2.1.2, increases the probability of               

an edge being selected by 20%, 25%, or 30%.  
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Since the sampling method only samples when a value is greater than a floating              

point number between 0 and 1, it is only able to sample positive edges. For the positive                 

and negative edges graph sub-experiment, the FC matrix is first multiplied by -1, so that               

the edges that are positive are now negative and vice versa. Additionally, for this              

sub-experiment, no sampling threshold parameter is added to the matrix, so the            

probability of an edge being sampled is equal to its functional connectivity. The real              

dataset is also processed by separating the positive and the negative FC edges in order to                

increase the predictive accuracy of the algorithm. 

 

 

2.4 The Algorithm  

 

In order to predict the existence of connections between two edges, the hierarchal             

property of the network of the fMRI data is exploited using the Monte Carlo Markov               

Chain (MCMC) methods to sample the data. The algorithm then produces the probability             

of the existence of an edge in the network.  

Firstly, from the sampled FC graphs, the algorithm produces an initial           

dendrogram. The dendrogram (see figure 1) is essentially a tree, where each node             

represents a hierarchical network. The tree goes from global connectedness to local. Each             

node represents clusters of edges that have high connectivity. So, at the lowest level, are               

several highly connected edges.  
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Each edge of a graph ​G ​(the functional connectivity matrix) is represented by the              

variable ​n. ​A dendrogram ​D ​is constructed with ​n ​leaves. Each ​n​-1 internal nodes of D is                 

associated with the group of nodes it is descended from. Each node ​r has a probability                p
r

associated with it. ​represents the probability of there existing a connection between      p
r

          

2 specific nodes. Then, {D, } defines the hierarchical random graph. The probability      p
r

        

of each node is averaged over all given graph Gs, to produce a dendrogram D.p
r

    

However, there are several different possible dendrograms that can be created           

given a set of graphs {​G ​}, so in order to find the best hierarchical random graph, the                 

likelihood L ​with which the algorithm generates the dendrogram is studied. This is under              

the assumption that every hierarchical random graph is equally as likely to be produced.              

This ​L ​is then maximized - the space is sampled for all models with probability               

proportional to ​L, in order to find the hierarchical graph that best fits the given set of                  

functional connectivity matrices.  

​is the number of edges in ​G whose endpoints have ​r ​as their lowest commonEr                 

ancestor in ​D ​, and and represent the number of leaves to the left and right of the    Lr  Rr             

subroots at ​r.​ The likelihood of producing a dendrogram given a set of graphs G is  

 (1)(D) (1 )L =  ∏
 

DεG

∏
 

rεD

p
r

Er − p
r

L R −Er r r  

 

Different dendrograms have different likelihood values. The goal is to maximize           

the likelihood in order to discover the best fitting hierarchical graph (see figure 3). We do                
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so by sampling several graphs and finding the average probability of each edge and using               

that in the likelihood function.  

 

 
Figure 3: ​The left random hierarchical graph has a likelihood of 0.00165 and the right has a                 
likelihood of 0.0433 according to equation (1). The left one is clearly the best fitting               
hierarchical graph 
When a dendrogram is fixed with the probabilities { } that maximize equation (1), the        p

r
       

 is thenp
r

 

(2) <p
r

=  Er

L R  r r

>  

which is the fraction of potential edges between the two subtrees of r that actually exists.                

The is found for an edge in one graph, and then averaged over all graphs G given in  p
r

                 

order to find the average set of maximized probabilities{< } to work with . The        p
r

>        

likelihood at this maximum is then 

(3)(D) [p (1 ) ]L =  ∏
 

DεG

∏
 

rεD

r

p
r − p

r

(1−p )r  
L Rr r  
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,where refers to the average of the probabilities over all the graphs. The logarithm of  p
r

              

this function is easier to work with 

 (4)og L(D) − R h(p )l =  ∑
 

DεG

∑
 

rεD

Lr r r
 

where 

  (5)(p ) logp (1 ) log(1 )h
r

=  − p −  − p − p  

is the Gibbs Shannon Entropy Function. Equation (4) is then maximized when is close            p
r

  

to 0, or the entropy is minimized. The shannon entropy refers to the the number of bits                 

required to encode something. So, the best fitting hierarchical graph is one in which the               

entropy is minimized and where the connections between two edges is most common.  

The Markov chain Monte Carlo (MCMC) method is used to sample the            

dendrograms D of the graphs G with the probability proportional to their likelihood L(D).              

This method is used to sample the surrounding space to find the best fitting dendrogram.               

The majority of the code follows this. The Markov chain is created by first allowing a                

new dendrogram ​D’ to be created. This is done so by selecting a node ​n ​uniformly at                 

random, which has three subtrees ​s, t, and u ​(see figure 4) ​with ​s ​and ​t descendending                 

from its daughter and ​u ​from its sibling, and then selecting one of the two configurations                

to switch uniformly at random. These transitions are ​ergodic​: any set of finite             

dendrograms can be connected through a finite number of these transitions. This then             

generates ​D'​, then in order to verify which of the dendrograms to carry on the chain with,                 

the Metropolis-Hastings rule is used. ​D’ ​is chosen if  

 (6)logL logL(D ) logL(D)Δ =  ′ −   
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is nonnegative ( ​D’ ​is at least as likely to occur as ​D)​. Otherwise ​D’ ​is accepted with the                   

probability  

exp(log ) = ​L(D’)/L(D)​ (7)LΔ  

If ​D’ is not accepted then ​D ​is continued in the chain. The Markov Chain converges                

relatively quickly with the likelihood reaching a plateau at around O(n^2). 

 
Figure 4: The first represents a dendrogram D, while the following two are two different D'                
generated with different transitions in accordance to the Monte Carlo Chain 
 

In order to predict the missing connections, the Markov chain is initiated with a              

random dendrogram and ran until it equilibrates, and generates the best random            

hierarchical graph. For each pair of edges ​i, j that do not have a known connection, we                 

calculate the mean probability ​<p ​
ij

> that they are connected by averaging over the              

corresponding probability ​p​
ij​

1 ​in each of the sampled dendrograms ​1​. ​Then, a probability            

graph is generated where each edge has an associated probability of it existing in the               

network.  

 

 

3. RESULTS 
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3.1 Preliminary Test of the Algorithm 
 
 

The original 6x6 matrix generated to test the MCMC algorithm can be seen in              

figure 5. Figure 6 represents the probability graph generated by the MCMC algorithm. It              

is clear that the edges with the highest probability (red) are edges present in the original                

graph. This validates the performance of the algorithm on a small dataset.  

 
The second test is performed on the 66x66 matrix and can be seen in figure 7. The figure 

reveals that the probability graph in the bottom right retains the same clusters as in the 

original FC matrix provided to the algorithm. This is done for five different runs and 

overlaid in the figure on the bottom right of figure 7 to reveal the accuracy of the 

algorithm 
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Figure 7: Second validation test. Top Left: Original  
artificial FC, Top Right: FC with noise added, Bottom  
Left: The probability graph generated, Bottom Right:  
Average of all 5 templates.  
 
3.2 Positive and Negative Edges 
 
 

In order to show the differences between the positively and negatively correlated 

edges in the FC graphs, a separate sampling is done on both. Figure 8 and 9 show the two 

different probability graphs produced when sampled separately.  
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Figure 8: The probability graph generated  
by the MCMC algorithm only on the  
negatively correlated edges of one sample 
 

 

Figure 9: The probability graph generated  
by the MCMC algorithm only on the  
positively correlated edges of one sample 
 
 
 
3.3 Functional Connectivity Graphs 
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The functional connectivity matrix for one of the samples is visible in figure 10.              

The FC of the others looks fairly similar but varies in some edge connections (figure 11).                

The diagonals are all ones because of self connections. Figure 12 then is the average of                

all 10 of the graphs. This is the FC graph that the final results are plotted against. 

 
         Figure 10: ​Session 10 FC 
 

 
 

Figure 11: All functional connectivity matrices 
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  Figure 12: The average of the 10 FC. The FC values  
  that the probability data is plotted against. 
 
 

3.4 Scanning Parameters 
 

The distribution of all the edges in the mean FC graph can be seen in figure 13.  

 
Figure 13: The distribution of all the edges plotted with respect to their FC values. The                
self-connections are removed from this plot.  
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In order to ensure that the sampling function collects the edges with the highest              

FC values, three different scanning thresholds are tested. Figure 14 shows the three             

different parameters: 20%, 25%, 30%. The FC values are multiplied by 1.2, 1.25 and 1.3               

in order to increase their probability of being selected by the sampling function. In this               

part of the experiment, only the positive edges are extracted.  

 
Figure 14: The scanning threshold parameters plotted against the distribution of all FC values.              
The equation used to set up the probability of being sampled: FC*k, where k = 1.2, 1.25, and                  
1.3 
 

Figure 15 and 16 show the three different probability graphs generated for each             

scanning parameter. Based on the figures alone, it appears that the 25% threshold has the               

most structural clustering.  
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Figure 15: The sweep of the different  
sampling coefficients. Each  probability  
graph is generated from running 10  
samples of 9 different RSFC sessions.  
Top: 20% threshold, middle: 25%, 
Bottom: 30% 
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   Figure 16: The sweep of the different  
   sampling coefficients. Each  probability  
   graph is generated from the FC of  
   session 10. 
   Top: 20% threshold, middle: 25%, 

              Bottom: 30% 
 
 

The predicted probability graph of session 10 (figure 16) is subtracted from the             

gold standard (figure 15) to count the number of differences. The higher the number, the               

more different edges that the sampling function is able to grab. The 20% sampling              

revealed 4550 edges with non-zero probabilities, while the 25% produced 4555 and the             
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30% produced 4554. When the probability graph of the nine are correlated with the              

original FC values (the mean FC of the 10 samples (figure 12)), the correlation values for                

the 20%, 25%, and 30% were 66.423, 72.059, and 65.976. The 25% sampling threshold is               

set as the optimal parameter.  

Once the sampling threshold is set at 25, the number of samples for each FC is                

sweeped. The first is set at 10, then 15, then 20. Figure 17 and 18 reveal the gold standard                   

and the prediction graphs at each parameter. Again, the differences between the two are              

counted. The lower the number, the better the algorithm is at predicting missing edges              

since there is less variance between the average probability graph and the individual one.              

There are 4555 different edges with the 10 samples and 20 samples, but 4448 with the 15                 

samples and so the sample size in the algorithm is set to 15.  
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                                                            Figure 17: The probability  

        graphs of the gold standard at 
        different sample size 
       Top: 10 samples, middle: 15,  
       Bottom: 20 
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   Figure 18: ​The probability  
   graphs of the predicted graph at 
   different sample sizes 
   Top: 10 samples, middle: 15,  
   Bottom: 20 
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3.5 Comparing the two algorithms 
 
 

In order to verify that the MCMC is better at predicting truly missing edges, the               

algorithm is compared to a brute force method of performing a one sample t-test on the                

mean of 9 sessions and the remaining (prediction) session. The t-test produces a matrix              

where each edge has an associated p-value of it existing in the average of the 9 sessions.                 

These p-values are thresholded above 0.95 ( alpha = 0.95). Figure 19 shows all the edges                

predicted as missing according to the conventional method ( edges with p values > 0.95).               

This can be compared to figure 20, which shows all of the predicted missing edges from                

the MCMC algorithm.  

 

 

Figure 19: The predicted missing edges                   Figure 20: The predicting missing edges  
 across all permutations in accordance to                across all permutations through the MCMC 
the convention method.                                             Method 
 

Then, the probability graph from the individual session is subtracted from the            

gold-standard probability graph. The differences between the two are then sorted in order             



  34 
 

of decreasing probability. The same number of edges as in the thresholded p-values are              

extracted from the sorted data. These represent the predicted missing edges based on the              

conventional method and the MCMC algorithm respectfully. These edges are then plotted            

against the original FC values. Figure 21 reveals that the edges that the MCMC algorithm               

predicted are ones with higher functional connectivity, while those predicted by the            

conventional method have FCs 0.0-0.2 range. Evidently, the MCMC algorithm is better at             

predicting edges that truly exist since these are the ones with the highest correlation. 

 

       Figure 21: The FC values of the predicted missing edges based on the 
                   MCMC algorithm ( x-axis = 2) and the conventional method  
                  (x axis =1) 
 

Figure 21 is the graph for one permutation of the data, where the gold standard               

includes sessions 2-10 and the prediction graph is session 1. 71.4% of the edges predicted               

by the MCMC algorithm have a functional connectivity of greater than 0.4, while 0% of               

the conventional method predicts edges with the same FC. 

 This process is run through all permutations of nine versus one. Across all             

permutations, the MCMC algorithm predicts missing edges with higher functional          
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connectivities than the conventional method. On average, 61.6% of the predicted edges            

(across all permutations) have functional connectivities that are greater than 0.4, while            

the convention method has 0% of the predicted edges with this high of an FC value,                

suggesting that the conventional method predicts missing edges randomly and that the            

differences are due to random variability, rather than statistically relevant edges. The            

mean FC values predicted by the MCMC method is 0.0038, while that of the              

conventional method is 3.41e-05. The standard deviation of the predicted missing edge’s            

FC’s for the MCMC method and the conventional method were 0.046 and 0.00076             

respectively. Figure 22, is the MCMC method and the conventional approach’s predicted            

missing edges plotted against the FC of the individual for the same dataset. 

 

Figure 22: The MCMC method vs conventional method on one permutation.  
The missing edges plotted against the FC of the mean of an individual sample 
 

 
4. DISCUSSION 

 

4.1 Functional Connectivity Matrices 
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The FC matrices show a clear clustering of the ROI. The distinct boxes and the 

symmetry of the graphs not only validate our preprocessing and correlation methods but 

also the fact that organization of the brain is in distinct cliques which can be observed in                 

the FC matrices. These unique groupings are also consistent over all the sessions of the               

data, reconfirming that the functional segregation of the brain is indistinct, and unique             

cliques ​16​, and thus allows us to use the HRG method.  

 

4.2 Positive and Negative Edges  

 

One of the problems with the sampling function is that it only grabs the positive               

edges. Consequently, we compare the two probability graphs generated when only           

positive and negative edges are sampled separately in order to observe the differences             

between the two. Figures 8 and 9 reveal that there is an inherent structural difference               

between the networks that govern negative and positive correlations. This is because the             

negative correlation values in the FC matrix refer to supressive processes between the             

regions of the interest. The positive edges graph (figure 9), despite its structural             

groupings, does not have the same all-square organization that figure 8 has. This could be               

because the mechanisms that govern additive relations between these edges- mechanisms           

that cause these ROIs to activate at the same time- are perhaps more complex in their                

organization. At the very least, the organization of the positively correlated edges are             

different from that of the negatively correlated ones. We chose to go forth with              

performing the rest of the experiment by separating the positive and negative edges since              
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the positive graph is more highly correlated with the mean FC ( correlation value of 0.523                

for the positive edges graph versus -0.37 for the negative edges graph).  

 

4.3 Samling Thresholds 

 

The issue of finding the optimal sampling threshold is a complicated one that             

needs to be addressed to ensure that the sampled graphs are accurate representations of              

the network as a whole while still providing optimal data to produce the HRGs from. This                

means that the sampling function should grab edges with higher FC since these are the               

ones with highest probability of existing. And so, a proportional thresholding method is             

used. To further ensure that only the top percent of a given distribution of edges is                

sampled, the three different thresholds are tested. When the matrix is multiplied by 1.25              

after being fisher transformed, it has the highest correlation with the original FC values,              

indicating that it is the closest in extracting the relevant edges.  

When searching for the optimal sampling size for this experiment, it is clear that              

15 samples produced the probability graph with the fewest differences, indicating that it             

produced probability graphs closest to the global standard and so 15 is chosen as the               

optimal sample size.  

However, all three graphs generated with all the different thresholds revealed           

probability graphs that looked similar, and with similar correlations to the original FC.             

This suggests the robustness of the algorithm: there is minimal differences between the             

probability graphs generated with the different sampling thresholds and sample sizes and            
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so the algorithm is able to converge to the most likely HRG as long as the graph is                  

oversampled, irrespective of the actual amount of oversampling.  

 

4.4 Comparing the Methods 

 

4.4.1 Missing Edges  

Figures 19 and 20 reveal the edges that the two methods predict as missing              

from the individual predicted sample. It is clear based on the figures that the              

conventional method predicts missing edges randomly. Essentially, here, the noise          

is randomly distributed and so when the edges are predicted as missing, they are              

predicted at random ( without structure).  

The MCMC algorithm however, predicts edges with structural        

segregations. There is a clear structural organization of the edges that it predicts             

as missing. This is because by using HRGs, we are better able to separate the               

noise and the data. The algorithm, through its test of the likelihood of the HRG it                

produces, predicts missing edges based on the probability that it should exist due             

to its relation to the surrounding edges. The noise surrounding the data, therefore             

does not impact the hierarchical structure of the data. Moreover, the sampling            

function choses edges with high functional connectivity under the assumptions          

that the lower FC values suggest spurious connections. Hence, since the algorithm            

predicts missing edges based on this hierarchy, and thresholds it while sampling            

for the hierarchy,  it is unaffected by noise unlike the convention method.  
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4.4.2 Predicting Missing Edges  

 

The missing edges plotted against their FC reveal that the MCMC method            

predicts missing edges with functional connectivity greater than 0.4, on average,           

61.6% of the time, while the conventional method predicts missing edges with the             

same functional connectivity 0% of the time. The mean FC of the predicted edges              

is roughly 0.0038 for the MCMC method, and 3.41e^-5 for the conventional            

method, while the standard deviation for the MCMC and the conventional method            

is 0.046 and 0.00076 respectively. Despite the difference between individual          

samples, the MCMC predicts missing edges with significantly higher functional          

connectivity in the mean FC than the conventional method. The low mean FC             

value for the MCMC method is attributed to the outliers in some individual             

graphs that have a large difference between two “top” edges. Nonetheless, the            

mean FC predicted by significantly greater than that of the conventional method.            

This, again, is attributed to the separation of noise and data in the HRG space that                

does not exist in conventional methods.  

When the missing edges are plotted against the individual FC matrix, the            

validity of the MCMC algorithm is further emphasized since it predicts edges            

with low FC values in the individual, i.e. edges that do not exist in the individual                

matrix, but should exist due to their high FC value in the mean. Whereas, the               

conventional method predicts edges as missing based on the random differences           
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between the individual and the mean, and so it extracts edges that have a low FC                

value in both the mean and the individual since it only accounts for relative              

differences.  

 

5. CONCLUSION 

The issue of noisy fMRIs is a significant and daunting one in neuroscience. Most              

conventional methods of studying differences between fMRIs in different populations          

assume that the noise is randomly distributed. However, this produces wide variability            

when predicting these differences, and leads to compounding of the differences as the             

number of ROI increase and the data available decreases. To tackle this issue, we argue               

that brain networks should be studied in HRG space - or modelled as hierarchical              

graphs. The structural segregation and overlapping network of these segregated regions           

is a known and accepted property of the human cerebral cortex. So, creating HRGs out               

of the FC data from fMRIs in order to study the differences between different              

populations not only minimizes the need for large amounts of data from these             

populations, but also consequently makes it more cost effective. This is especially            

important when it comes to studying diseases when large amounts of data for people              

with neurological disorders are unavailable or costly to collect. A method that can             

provide detailed insight into these brain structures with less data is an appealing feat.  

Here, we prove that the MCMC algorithm can harness the hierarchical structure            

of the brain and accurately predict missing edges. Therefore, it is clear that the HRG               

method accurately models the brain network while being unaffected by gaussian noise in             
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most FC data. This method can now be used to study the differences between disease               

brains and healthy brains, where instead of comparing 9 samples to 1, we can study the                

differences between brains with neurological diseases. This can also be translated to            

studying differences in task vs rest studies. The scope of the algorithm is vast and               

important, and through the missing edges experiment, we prove that it is also feasible.  
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