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Abstracts 

Handling Tied Events in Cox Proportional Hazard Regression Modeling 

By Huaying Dong 

Background: Tied survival times are quite common in real-life survival analysis as survival time is usually 

measured discretely. One of the assumptions of the Cox proportional hazard model is that there are no tied 

survival times. However, the violation of the assumption does not mean the Cox proportional hazard model 

should be discarded.  

Application: There are four methods that have been developed to handle ties. The exact and discrete 

methods provide the gold standard, but they are computationally intensive especially when the percentage 

of ties is high. Early recognition of these computational difficulties led to the development of Breslow’s 

and Efron’s procedures. Breslow’s approximation performs well when the percentage of tied observations 

is not too high; Efron’s approximation, on the other hand, almost always gives results very close to the 

exact method, and it performs well even when the percentage of tied observations is high.  

Discussion: In general, Breslow’s approximation is recommended when the number of ties is not extensive. 

When the percentage of ties is high, Efron’s approximation could be used as a good substitute of the exact 

method or discrete method. When computation time is not a concern and accuracy is required, the exact 

method or the discrete method is appropriate. 

Key words: Cox proportional model, partial likelihood function, tied survival times 
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Chapter 1 Background 

1.1 Partial Likelihood 

In survival analysis, one of the topics of interest is the quantification of the heterogeneity that may exist 

among groups when the outcome is time to an event of interest. For example, researchers may be interested 

in the difference in survival rate between female and male smokers, or the difference in divorce rate between 

people who have at least a college degree and people who did not finish college. Cox [1972] proposed a 

proportional hazard model to address this problem and gave the hazard function below: 

 ℎ(𝑡|𝑧𝑖) = ℎ0(𝑡)exp(𝑧𝑖𝛽) (1) 

where  

𝑧𝑖 is the vector of covariates associated with the individual whose failure time is 𝑡𝑖, 

ℎ(𝑡|𝑧𝑖) is the hazard rate at time t of an individual with covariate 𝑧𝑖, 

ℎ0(𝑡) is the baseline hazard function which only depend on time t, 

exp(𝑧𝑖𝛽) is the covariate-related function. 

This model is called “proportional” since the hazard ratio is proportional: 

 
ℎ(𝑡|𝑧𝑖)
ℎ(𝑡|𝑧𝑗)

= exp(𝑧𝑖 − 𝑧𝑗)𝛽 (2) 

and independent of time t. To estimate the covariates, instead of the full likelihood function, Cox derived 

an alternative expression, which he called “partial likelihood”. Anderson [1993] showed that the estimation 

of the covariates in the partial likelihood function is the same as that in the full likelihood function. The 

expression of the partial likelihood is:  
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 𝐿(𝛽) = ∏ 𝐿𝑖
𝐷
𝑖=1 = ∏

exp(𝑧𝑖𝛽)

∑ exp(𝑧𝑗𝛽)𝑗∈𝑅𝑖

𝐷
𝑖=1  (3) 

where 

𝑡1 < 𝑡2 < ⋯ < 𝑡𝐷 denote the ordered event times, 

𝑧𝑖 is the vector of covariates associated with the individual whose failure time is 𝑡𝑖, 

𝑅𝑖  is the risk set at time 𝑡𝑖. 

It can be seen from the partial likelihood function that only the uncensored observations are taken into 

account; the censored observations do not affect the denominator.  

 

1.2 Tied Event Times 

In the presence of tied event times, an alternate formula for partial likelihood is needed for two reasons.  

First, one of the assumptions that Cox made for the partial likelihood is that there are no tied event times 

among the observed survival times. In (3) it is clear that the ordering of events matters. If individuals i, j 

and k have the same survival time, it is not possible to tell which one happens at first, which one is second 

or third. For example, if i happens first, the risk set should include j and k. Thus the risk set depends on 

which one happens at first. This will in turn change the denominator of the partial likelihood.  

The second reason is that the occurrence of ties will make the formula more complicated and will increase 

the computing time significantly. With the development of an integral representation of the likelihood, it is 

much easier to evaluate numerically (DeLong, Guirguis, and So, 1994). However, computation of the exact 

likelihood when large numbers of events occur at the same time can take a lot of computing time (Allison, 

2010). Early recognition of these computational difficulties led to the development of approximate methods. 
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1.3 Approaches dealing with tied event times  

The exact method (Kalbfleisch and Prentice, 2002; DeLong, Guirguis, and So 1994) and discrete method 

(Cox, 1972), regarding time as continuous and discrete, respectively, provide the best results, but these 

methods are computationally intensive, requiring more computing time. Breslow’s approximation [1974] 

usually generates better results when the percentage of ties is not small. Efron’s approximation [1977] 

generates better results even when the percentage of ties is high. 

 

1.4 Software Options 

1.4.1 SAS 

When there are no ties, all the four methods result in the same likelihood and yield identical estimates. In 

SAS, the default, TIES=BRESLOW, is the most efficient method when there are no ties. When ties are not 

extensive, EFRON and BRESLOW methods provide satisfactory approximations to the EXACT method 

for the continuous time-scale model [Allison, 2010]. The EXACT method can take a considerable amount 

of computer resources. In general, Efron’s approximation gives results that are much closer to the EXACT 

method results than Breslow’s approximation does. If the time scale is genuinely discrete, the DISCRETE 

method should be used. The DISCRETE method is also required in the analysis of case-control studies 

when there is more than one case in a matched set [J. Mandrekar, 2004].  

1.4.2 R 

In coxph function, there are three possible choices for handling tied event times. Although almost all 

computer routines use the BRESLOW approximation as the default as it is the easiest to program, in R 

EFRON is the default option [Therneau, 2000]. Using the "exact partial likelihood" approach the Cox partial 

likelihood is equivalent to that for matched logistic regression. The clogit function uses the coxph code to 

do the fit [Therneau, 2000]. It is technically appropriate when the time scale is discrete and has only a few 
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unique values, and some packages refer to this as the DISCRETE option. There is also an "exact marginal 

likelihood" due to Prentice [1973] which is not implemented here. The calculation of the exact partial 

likelihood is numerically intense. For example, if there are 300 subjects at risk at a certain timepoint, of 

which 30 had an event, then the code needs to compute sums over all 𝐶30
300 different possible subsets of size 

30. Although there is an efficient recursive algorithm for this problem, the computation can be extremely 

long. With (start, stop) data it is much worse since the recursion needs to start a new for each unique start 

time [Therneau, 2000]. 

1.4.3 STATA 

There are four options in STATA for handling tied event times in calculating the Cox partial likelihood: 

BRESLOW, EFRON, EXACTM, and EXACTP. If there are no ties in the datasets, the results are identical, 

no matter which option is selected [StataCorp, 2013]. The default option is the Breslow method since it is 

fast when there are not so many ties. But when there are so many ties in the dataset, Breslow’s 

approximation will not be accurate since there are too many observations in the risk sets [StataCorp, 2013]. 

The Breslow method is an approximation of the exact marginal likelihood. Efron’s approximation is a more 

accurate approximation of the exact marginal likelihood than Breslow’s but the computational time is 

longer [StataCorp, 2013]. For exact methods we can use the EXACTP option (for the exact partial 

likelihood) or the EXACTM option (for the exact marginal likelihood) in the stcox or cox command. The 

exact methods are slower than Efron’s approximation when the sample size is small, but the difference in 

the computation time diminishes when samples become larger [StataCorp, 2013]. 

 

1.5 Objectives and Significance of the Problem 

In this thesis, we compare the performance of these four methods of handling ties, based on two real datasets, 

with different percentages of ties, in terms of the estimates of coefficients, standard error of coefficients, fit 

statistics and computation time. SAS Version 9.4 is used in all the analyses. By comparing the existing four 
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methods, a better understanding of handling tied event times may be achieved, and appropriate choices may 

be made when facing different types of datasets. The goal is to improve accuracy and efficiency of the data 

analysis. 
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Chapter 2 Exact & Discrete Method 

The mainly difference between exact and discrete method is the way time is treated – whether as continuous 

or discrete. 

Cox [1972] presumed that the events really occurs at exactly the same time (time is really discrete). For 

example, when two or more events appear to happen at the same time, it is presumed that there is no 

underlying ordering. The exact method takes each event into account, thus it fits the model very well but it 

takes a rather long time as a result of permutations. 

Kalbfleisch and Prentice’s [2002] presume that time is truly continuous; that is, there is a true but unknown 

ordering for the tied event times. The assumption is that ties are merely the result of the imprecise 

measurement of time). This is a generalization of the discrete model that Cox came up. The partial 

likelihood function for discrete method is: 

 L(β) = ∏
exp[(∑ 𝑧𝑗𝑗∈𝐷𝑖

)𝛽]

∑ exp(𝑠𝑞
∗

𝑞∈𝑄𝑖
𝛽)

𝐷
𝑖=1  (4) 

Where 

𝑄𝑖 denotes the set of all subsets of 𝑑𝑖 individuals who could be selected from the risk set 𝑅𝑖. 𝑄𝑖 includes 

all the subsets of 𝑑𝑖 failures at time ti. 

𝑠𝑞
∗ = ∑ 𝑧𝑞𝑗

𝑑𝑖
𝑗=1 , which denotes the sum of covariate values for subset q. 
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Chapter 3 Approximation 

3.1 Breslow’s Approach 

Breslow [1975] came up with an approximation of the partial likelihood, and it is commonly used as default 

in major statistical software, such as SAS and Stata. Breslow assumed that the underlying survival 

distribution is continuous, with the hazard ℎ𝑖  being constant in each interval (𝑡𝑖−1, 𝑡𝑖). Moreover, he 

regarded the withdrawals or censored observations that lies within the interval (𝑡𝑖−1, 𝑡𝑖) as occurring at 

timepoint 𝑡𝑖. In this way, he obtained the estimation of 𝛽 and ℎ0(𝑡) simultaneously. This method multiplies 

the summation of all the discrete events at each time point and use it as the denominator rather than that in 

the previous partial likelihood formula. The partial likelihood function is: 

 L(β) = ∏
exp[(∑ 𝑧𝑗𝑗∈𝐷𝑖

)𝛽]

[∑ exp(𝑧𝑗𝑗∈𝑅𝑖
𝛽)]𝑑𝑖

𝐷
𝑖=1  (5) 

Where  

𝑧𝑗 is the covariate for the 𝑗th individual, 

𝑑𝑖 is the number of failures at 𝑡𝑖, 

ⅅ𝑖 is the set of all individuals who fails at time 𝑡𝑖.  

Breslow states that when there are no ties, his likelihood function generates the same results for 𝛽, compared 

to those of Cox [1972] and Kalbfleisch and Prentice [1973], and when the ties exist, his method will be an 

approximation of those discrete likelihoods. 

 

3.2 Efron’s Approach 

Efron [1977] puts forward an approximation which is more precise than Breslow’s. He points out that real 

censored datasets are often discrete, where have failures lie between intervals rather than their exact times. 
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He also assumes that the hazard ratio is constant within each time interval and no changes other than those 

due to failures in risk set 𝑅(𝑡) occur within such interval. The partial likelihood function is: 

 L(β) = ∏
exp[(∑ 𝑧𝑗𝑗∈𝐷𝑖

)𝛽]

∏ [∑ exp(𝑧𝑗𝑗∈𝑅𝑖
𝛽)−

𝑙−1

𝑑𝑖
∑ exp(𝑧𝑗𝑗∈𝐷𝑖

𝛽)]
𝑑𝑖
𝑙=1

𝐷
𝑖=1  (6) 

Where  

𝑧𝑗 is the covariate for the 𝑗th individual, 

𝑑𝑖 is the number of failures at 𝑡𝑖, 

ⅅ𝑖 is the set of all individuals who fails at time 𝑡𝑖.  

Efron’s approximation is closer to the correct partial likelihood based on a discrete hazard model than 

Breslow’s likelihood. When the number of ties is small, Efron’s and Breslow’s likelihoods are quite close 

(K. Dietz, M. Gail, K. Krickeberg, J. Samet, A. Tsiatis). In many applied settings, there will be little or no 

practical difference between the estimators from the two approximations, so Breslow’s approximation is 

more commonly used (Hosmer, D. W., Lemeshow, S., May, S., 2008). 
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Chapter 4 Applications & Discussion 

4.1 Divorce Dataset 

The divorce dataset is based on a longitudinal survey conducted in the U.S.. The unit of observation is the 

couple and the event of interest is divorce, with interview and widowhood treated as censored events. There 

are three covariates: education of the husband and two indicators of the couple's ethnicity: whether the 

husband is black and whether the couple is mixed. The variables are: id (a couple of number), heduc 

(education of the husband, coded 0 when less than 12 years, 1 when 12 to 15 years and 2 when 16 or more 

years), heblack (coded 1 if the husband is black and 0 otherwise), mixed (coded 1 if the husband and wife 

have different ethnicity (defined as black or other), 0 otherwise), years (duration of marriage, from the date 

of wedding to divorce or censoring (due to widowhood or interview)), div (the failure indicator, coded 1 

for divorce and 0 for censoring).  

The dataset has 3771 couples, 1032 of which are failures (divorce). Of the event times, 24.5% are ties. The 

Kaplan-Meier curve looks well (Fig 1). 

 

 

 

 

 

 

 

 

 



10 
 

Fig 1 Kaplan Meier curve for the original divorce dataset 

 

 

We apply the four methods using PROC PHREG in SAS. Table 1 shows that all of the four methods 

generate almost the same results. The percentage of ties is 24.5%, which is relatively small. Efron’s 

approximation has the same results with the exact method, while Breslow’s approximation seems to 

underestimate the results of the exact method. The discrete method tends to provide higher parameter 

estimates and standard errors than those of the exact method. The discrepancy is due largely to the fact that 

completely different models are being estimated. The exact method uses Cox proportional hazard model, 

while the discrete method uses the logit model. The logit coefficients will usually be larger [Allison 2010]. 

Table 2 shows that the hazard ratios and confidence intervals are all the same among the four methods for 

all of the covariates. Since all of the confidence intervals don’t include 1, they are significant. 

Table 3 shows the fit statistics of the four methods. Since Akaike’s Information Criterion (AIC) is based 

on the Kullback-Leibler information measure of discrepancy between the true distribution of the response 
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variable and the distribution specified by the model, better models are identified with smaller AIC. The 

Schwarz’s Bayesian Criterion (SBC), also known as the Bayesian Information Criterion (BIC), is an 

increasing function of the model’s residual sum of squares and the number of effects. Unexplained 

variations in the response variable and the number of effects increase the value of the SBC. As a result, a 

lower SBC implies either fewer explanatory variables, better fit, or both. SBC penalizes free parameters 

more strongly than AIC. Table 3 shows that the exact and discrete methods provide the better results than 

Breslow’s and Efron’s approximations when the percentage of ties is not high.  

Table 4 shows the computation time for  the four methods. Real Time is the actual, real world, time that the 

step takes to run and will be the same as if you timed it with a stopwatch. CPU Time is the amount of time 

the step utilises CPU resources. and we can see that Breslow’s and discrete methods are faster than the 

exact and Efron’s methods. 

 

Table 1 Parameter estimate, standard error and p-value of covariates for the original divorce dataset 

 

Method Parameter 

Estimate 

for heduc 

SE for 

heduc 

p-value 

for heduc 

Parameter 

Estimate 

for heblack 

SE for 

heblack 

p-value 

for 

heblack 

Parameter 

Estimate 

for mixed 

SE for 

mixed 

p-value 

for 

mixed 

Exact 0.09427 0.04718 0.0457 0.18376 0.07974 0.0212 0.22948 0.07929 0.0038 

Breslow 0.09424 0.04718 0.0458 0.18373 0.07974 0.0212 0.22945 0.07929 0.0038 

Efron 0.09427 0.04718 0.0457 0.18376 0.07974 0.0212 0.22948 0.07929 0.0038 

Discrete 0.09425 0.04718 0.0457 0.18377 0.07975 0.0212 0.22948 0.07929 0.0038 

 

 

Table 2 Hazard ratio for the original divorce dataset 

 

Method Exact Breslow Efron Discrete 

Hazard Ratio for 

heduc 

1.099  

(1.002, 1.205) 

1.099 

(1.002, 1.205) 

1.099 

(1.002, 1.205) 

1.099 

(1.002, 1.205) 

Hazard Ratio for 

heblack 

1.202 

(1.028, 1.405) 

1.202 

(1.028, 1.405) 

1.202 

(1.028, 1.405) 

1.202 

(1.028, 1.405) 

Hazard Ratio for 

mixed 

1.258 

(1.077, 1.469) 

1.258 

(1.077, 1.469) 

1.258 

(1.077, 1.469) 

1.258 

(1.077, 1.469) 
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Table 3 Fit statistics for the original divorce dataset 

 

Method Exact Breslow Efron Discrete 

-2LOG L 15428.346 15669.975 15669.803 15428.347 

AIC 15434.346 15675.975 15675.803 15434.347 

SBC 15449.164 15690.793 15690.621 15449.165 

 

 

Table 4 Computation time for the original divorce dataset 

 

Method Exact Breslow Efron Discrete 

Real time 0.45 0.43 0.48 0.43 

CPU 0.23 0.15 0.14 0.14 

 

 

Since there are few ties in the divorce dataset, we recode survival time to increase the number of  ties. 

Considering the range of the variable ‘years’ is 0 to 75, we divide the years into seven intervals and create 

a new variable ‘decade’ as survival time: 0-10, 11-20, 22-30, 31-40, 41-50, 51-60, 61 or more. Using 

‘decade’ as survival time leads to 99.9% of ties. Fig 2 shows the Kaplan-Meier curve using the recoded 

survival time. A less smooth (i.e., step) function results, which is expected. 
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Fig 2 Kaplan Meier curve for the recoded divorce dataset 

 

 

 

Comparing the results in the following tables, we can find the performance of Efron’s approximation is 

better than Breslow’s approximation and the discrete method. As is shown in Table 5, the parameter 

estimates and standard errors of the covariates for Efron’s approximation and the exact method are very 

close, and those for the discrete method are a little bit larger. But statistics generated from Breslow’s 

approximation are not very close to those from other methods.  

Table 6 also shares the same performance for those methods, with Breslow’s hazard ratio being a little bit 

lower than the others and Efron’s and the exact method are almost the same.  

For the fit statistics in Table 7, the exact method and discrete method have the lowest values, while 

Breslow’s and Efron’s are much higher. And Efron’s is still lower than Breslow’s, which demonstrates the 

advantage of Efron’s approximation when there are many ties.  
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Table 8 shows the computation time. It appears that Breslow’s approximation uses the least time and the 

discrete method requires a lot of time. All of these tables demonstrate the superiority of Efron’s 

approximation to Breslow’s approximation when the percentage of ties is high. 

Table 5 Parameter estimate, standard error and p-value of covariates for the recoded divorce dataset 

 

Method Parameter 

Estimate 

for heduc 

SE for 

heduc 

p-value 

for heduc 

Parameter 

Estimate 

for heblack 

SE for 

heblack 

p-value 

for 

heblack 

Parameter 

Estimate 

for mixed 

SE for 

mixed 

p-value 

for 

mixed 

Exact 0.05272 0.04745 0.2666 0.08199 0.07925 0.3009 0.24457 0.07893 0.0019 

Breslow 0.04793 0.04754 0.3133 0.07675 0.07913 0.3320 0.22357 0.07880 0.0046 

Efron 0.05254 0.04739 0.2676 0.08172 0.07913 0.3018 0.24380 0.07881 0.0020 

Discrete 0.05680 0.05164 0.2713 0.09178 0.08664 0.2895 0.26708 0.08660 0.0020 

 

 

Table 6 Hazard ratio and confidence interval for the recoded divorce dataset 

 

Method Exact Breslow Efron Discrete 

Hazard Ratio for 

heduc 

1.054 

(0.961, 1.157) 

1.049 

(0.956, 1.152) 

1.054 

(0.961, 1.157) 

1.058 

(0.957, 1.171) 

Hazard Ratio for 

heblack 

1.085 

(0.929, 1.268) 

1.080 

(0.925, 1.261) 

1.085 

(0.929, 1.267) 

1.096 

(0.925, 1.299) 

Hazard Ratio for 

mixed 

1.277 

(1.094, 1.491) 

1.251 

(1.072, 1.459) 

1.276 

(1.093, 1.489) 

1.306 

(1.102, 1.548) 
 

 

Table 7 Fit statistics for the recoded divorce dataset 

 

Method Exact Breslow Efron Discrete 

-2LOG L 5831.605 16131.515 15964.364 5831.447 

AIC 5837.605 16137.515 15970.364 5837.447 

SBC 5852.422 16152.332 15985.181 5852.264 

 

 

Table 8 Computation time for the recoded divorce dataset 

 

Method Exact Breslow Efron Discrete 

Real time 0.39 0.26 0.46 2.01 

CPU 0.06 0.03 0.17 1.68 
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4.2 Readmission Dataset 

The readmission data set consists of patients who underwent coronary artery bypass graft surgery at a single 

U.S multi-hospital institution from July 2014 to May 2017. The outcome of interest was time to hospital 

readmission after discharge (days). The exposure of interest was sex (i.e., female or male). 

The dataset has 5710 observations, 527 of which are failures (readmission) and 97.5% of ties. Figure 3 

shows the Kaplan-Meier curve. 

 

 

Fig 3 Kaplan Meier curve for readmission dataset 

 

We examine this data set in the same manner that we did previously. One point we need to specify here is 

that since the event time is regarded as continuous in this dataset, the exact method is the gold standard 

here.  
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Table 9 shows the parameter estimates and standard errors for the covariate timetoreadmit and we can see 

the Efron’s approximation for the estimation of the covariate is the closest to the exact method when the 

percentage of ties is high enough, and also the standard error is the smallest among all the methods. In 

contrast, Breslow’s method performs less euqually well. 

In Table 10 we can see that hazard ratio calculated using Efron’s procedure is the same as the exact method, 

while the other methods produce hazard ratios that a little bit different from the exact method. Efron’s 

method also provides the narrowest confidence interval, which indicates good precision. 

For the fit statistics in Table 11, we can see that the exact method still has the best performance of goodness-

of-fit, and the discrete method also performs well.  

Table 12 shows that Efron’s method has the shortest computation time and Breslow’s method is also much 

faster than the exact and discrete methods. 

 

Table 9 Parameter estimate and standard error of covariates for readmission dataset 

 

Method Parameter 

Estimate for 

timetoreadmit 

Standard 

Error for 

timetoreadmit 

p-value 

Exact -0.02050  0.09639 0.8316 

Breslow -0.01717  0.09612 0.8582 

Efron -0.02039  0.09613 0.8320 

Discrete -0.01785  0.09802 0.8555 

   

 

Table 10 Hazard ratio and 95% Wald Confidence Interval for readmission dataset 

 

Method Exact Breslow Efron Discrete 

Hazard Ratio 0.980 0.983 0.980 0.982 

95% Wald 

Confidence 

Interval 

(0.811, 1.183) (0.814, 1.187) (0.812, 1.183) (0.811, 1.190) 
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Table 11 Fit statistics for readmission dataset 

 

Method Exact Breslow Efron Discrete 

-2LOG L 5606.026 7362.298 7344.467 5606.038 

AIC 5608.026 7364.298 7346.467 5608.038 

BIC 5612.293 7368.565 7351.034 5612.305 

 

 

Table 12 Computation time for readmission dataset 

 

Method Exact Breslow Efron Discrete 

Real time 0.50 0.40 0.42 0.46 

CPU 0.21 0.15 0.15 0.25 
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Chapter 5 Conclusion & Recommendation 

The divorce dataset and the readmission dataset demonstrate difference in performance among the different 

methods for handling tied survival times, when the percentage of ties varies. For the original divorce dataset, 

the four methods generate similar results. The Exact method can take a considerable amount of computer 

resources. Breslow’s approximation performs well when ties are not extensive, in terms of the accuracy and 

efficiency of the estimates of 𝛽 and computation time. Efron’s approximation also provides satisfactory 

approximations for the continuous time-scale model. When there are extensively percentage of ties, such 

as the recoded divorce dataset and the recoded readmission dataset, the performance of Breslow’s 

approximation deteriorates while Efron’s continues to do better, as can be seen in the parameter estimates, 

fit statistics and calculation time. 

In general, Efron’s approximation gives results that are much closer to the exact method results than 

Breslow’s approximation does. If the time scale is genuinely discrete, we should use the discrete method. 

If there are no ties, all four methods result in the same likelihood and yield identical estimates. The default, 

TIES=BRESLOW, is the most efficient method when there are no ties. 
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