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Abstract

Analysis of Outcomes Subject to Induced Dependent Censoring: Medical Cost and

Successive Durations

By Jing Qian

In medical studies for chronic diseases, survival time, the usual primary outcome of
interest, may not be adequate to assess the treatment or covariate effects on the disease
process. To conduct a more comprehensive evaluation, secondary outcomes capturing
other features of the disease process are often assessed simultaneously. Typical examples
include the lifetime medical cost and successive durations in disease process. Analysis of
secondary outcomes is complicated by induced dependent censoring and identifiability
issue, arising from the incomplete follow-up data in clinical trials. In this dissertation,
two novel statistical methods accommodating the features of these secondary outcomes
are proposed.

The first method focuses on the analysis of censored lifetime medical cost. Currently
available approaches are incapable of addressing lifetime medical cost distribution for
a defined group. To this end, we propose a copula-based semiparametric regression
model, which parameterizes the association of the bivariate error term on time and
cost scales through a normal copula function, leaving the marginal error distributions
completely unspecified. We develop estimation procedure for the regression coefficients
and the normal copula association parameter. The resulting estimators are shown to
be consistent and asymptotically normal. Simulation studies and a lung cancer data
analysis are conducted to evaluate the finite sample performance of the method.

The second approach is motivated by a colon cancer study where patients progress
through cancer-free and cancer-recurrence states. Scientific interests lie in the successive
durations in this bi-state progressive disease process. For the one-sample problem with
incomplete follow-up data, recent investigations have focused on nonparametric infer-
ence. However, in many practical situations, the distribution of the second duration is
nonparametrically nowhere identifiable. To address this issue, we suggest a semiparamet-
ric model that postulates normal copula for the association between the two durations,
while leaving the marginals unspecified. Motivated by the colon cancer data, we allow
our model to accommodate the situation where the second duration has a probability
mass at zero. We propose an inference procedure and study the asymptotic properties of
the resulting estimators. Finite sample performance of the proposed method is evaluated
via the simulation studies and illustrated with colon cancer study.
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Chapter 1

Introduction

In medical studies for chronical diseases, survival time is typically the primary outcome

of interest. However, such an outcome is inadequate to assess the treatment or covariate

effects on the disease process. To make more comprehensive evaluation, a few secondary

outcomes capturing other features of the disease process are often assessed simultane-

ously. Typical examples include the lifetime medical cost, quality-adjusted survival times

and sojourn times in successive disease states. Information on these secondary outcomes

is important for health care evaluation and health policy administration, and thus has

broad social and economic impact. However, analysis of these secondary outcomes has

been a statistical challenge. The main difficulty arises from the incomplete follow-up

data, which are typically inevitable in clinical trials.

The goal of this dissertation research is to develop statistical methods which are suit-

able for the aforementioned secondary outcomes. We focus on two types of secondary

outcomes: the lifetime medical cost and the successive durations in disease progression.

In this chapter, two motivating examples are presented first, and then the statistical

challenges of analyzing these secondary outcomes are pointed out. After this, we give a
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literature review on statistical methods for censored medical cost and successive dura-

tions in disease progression. Finally, the organization of this dissertation is outlined.

1.1 Motivating Examples

The first example, which motivates our research for the lifetime medical cost, is a lung

cancer clinical trial conducted by the Southwest Oncology Group (SWOG). Our inves-

tigation on the successive durations in disease progression is motivated by the second

example, a national intergroup colon cancer clinical trial.

1.1.1 SWOG Lung Cancer Clinical Trial

Lung cancer is the leading cause of cancer-related death for both men and women in

the United States. Based on the estimation from the National Cancer Institute (NCI),

215 020 people will be diagnosed with and 161 840 men and women will die of cancer of

the lung in 2008 (Ries et al. 2007). The estimated national direct medical cost for lung

cancer is $ 4.68 billion annually (Brown, Lipscomb, and Snyder 2001). The randomized

lung cancer two-arm clinical trial conducted by the Southwest Oncology Group (SWOG)

was designed to compare paclitaxel plus carboplatin versus vinorelbine plus cisplatin

treatments for patients with advanced non-small-cell lung cancer (Kelly et al. 2001).

From April 1996 through January 1998, 444 patients from 108 sites were enrolled in the

trial. Of these, 36 (8.11%) were ineligible. For the 408 eligible patients, 206 patients were

randomly assigned to receive paclitaxel plus carboplatin treatment and the remaining

202 patients received vinorelbine plus cisplatin treatment.

Whereas survival time was the primary outcome, one secondary endpoint was resource

utilization which consisted of supportive care medications, blood products, medical pro-
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cedures, protocol and non-protocol related treatments, and medical care inpatient days

or outpatient visits. Cost was assigned to each resource using national databases with

adjustment to 1998 US dollars following the medical care component of the Consumer

Price Index. The cost data were collected every 3 months during the first 6 months, and

every 6 months thereafter, up to 24 months.

One important research question here is: How does the lifetime medical cost influenced

by the baseline characteristics of patients? The lifetime medical cost here means the

accumulated cost of medical care for persons with lung cancer from the time of enrollment

until death. A further question that can be asked is: Given the baseline characteristic

information of a group of patients, can we estimate the distribution of their lifetime

medical cost? The method we develop in Chapter 2 is motivated by answering these

questions.

1.1.2 A National Intergroup Colon Cancer Clinical Trial

As a cause of death due to cancer, colon cancer is second only to lung cancer in the

United States. In approximately 80% of the patients with colon cancer in the United

States, the diagnosis is made at a sufficiently early stage when all apparent diseased

tissue can be surgically removed. Those who have regional nodal involvement that is

clinically completely resected are referred to as having Duke’s Stage C disease (Dukes

1932). Unfortunately, about one-half of these patients have residual cancer existing

in an occult and probably microscopic stage, which leads to recurrence of disease and

death within 5 years. A national intergroup trial was conducted in 1980’s to evaluate the

effect of the drugs levamisole and fluorouracil, as adjuvant therapy for resected colorectal

carcinoma (Moertel et al. 1990).

In this trial, 929 eligible patients with Stage C disease were randomized to three study
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arms. Of those, 315, 310 and 304 patients received observation, levamisole alone, and

levamisole combined with fluorouracil treatments, respectively. The patient enrollment

was begun in March 1984 and was completed in October 1987. The dataset available on

the Mayo Clinic website contains much richer long-term information than that used in

the original report by Moertel et al. (1990), with a maximum follow up of more than 8

years. By the end of the study, 177 patients in the observation arm had cancer recurrence,

among whom 155 died; 172 patients in the levamisole alone arm had cancer recurrence,

among whom 151 died; while in the levamisole plus fluorouracil arm 119 patients had

cancer recurrence, among whom 108 died. In addition, 38 of the 929 patients in the

trial died without cancer recurrence. Among those, 13, 10 and 15 patients belonged

to observation, levamisole alone, and levamisole combined with fluorouracil treatments,

respectively.

Moertel et al. (1990) demonstrated that therapy with levamisole plus fluorouracil

produced an unequivocal advantage over observation, and delayed the time to cancer

recurrence as well as time to death since randomization. On the other hand, therapy

with levamisole alone produced no detectable effect. Another important issue which was

not addressed by Moertel et al. (1990) is whether or not the therapy with levamisole plus

fluorouracil has any benefit on survival after cancer recurrence. To answer this question,

we need to estimate the distribution of the sojourn time between cancer recurrence and

death. The method we develop in Chapter 3 will be able to answer this question.
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1.2 Statistical Challenges

1.2.1 Induced Dependent Censoring

In clinical trials or observational studies, due to the limited time of study duration, it

is inevitable that some patients are not followed until the endpoint of interest. This

phenomenon is referred to as “censoring”, which is well known for survival time data.

For those censored individuals, their secondary outcomes are not fully observed. The

censoring on secondary outcome is induced from the censoring on time.

Statistical methods for handling censoring in survival data have been well developed.

As to the secondary outcomes, for example, censored medical costs, we consider cost-

to-event as opposed to time-to-event. It may be presumed that standard survival anal-

ysis methods, such as the Kaplan–Meier estimator (Kaplan and Meier 1958), log-rank

test(Mantel 1966) and Cox proportional hazard regression (Cox 1972) could be applied

straightforward to medical cost problems. Actually, this strategy had been attempted

by some medical researchers before (see Quesenberry et al. (1989), Hiatt et al. (1990),

Dudley et al. (1993), and Fenn et al. (1995) ). Unfortunately, the strategy is generally

invalid. The main problem is the requirement in standard survival analysis techniques

that the time of death and the corresponding time of censoring must be independent.

On medical cost scale, the total cost at the time of event (e.g. death) and the total

cost at the time of censoring correspond to the event time and the censoring time in

standard survival analysis, respectively. However, the total cost at the time of death

is not independent of the total cost at the time of censoring, even if the time of death

and time of censoring are themselves independent. This induced informative censoring

feature of cost data could be demonstrated by a simple example.

Example 1.1. Let T and C be the survival time and censoring times respectively, due



6

to random censorship on time scale, we have C ⊥T , where ⊥ represents independence.

Then on the medical cost scale, the counterparts to T and C are N(T ) and N(C),

respectively. However, N(T ) and N(C) are correlated because N(·) is a random process in

general. In other words, N(T )⊥N(C) if N(·) is a deterministic function, which means

everyone has the same cost accumulation pattern. Unfortunately, cost accumulation

patterns vary among individuals in practice.

The induced informative censoring characteristic of medical cost data precludes the

straightforward application of standard survival analysis approaches on censored medical

costs. Otherwise, biased estimation of mean medical cost would occur. This point has

already been noticed by Gelber et al. (1989) and Glasziou et al. (1990) in the context of

quality adjusted survival time (Cox et al. 1992), and by Lin et al. (1997), Hallstrom and

Sullivan (1998), Lipscomb et al. (1998) and Diehr et al. (1999) in medical cost studies. As

Lin et al. (1997) indicated in their paper, “A subject who has high costs per month will

usually have high total costs at both the time of death and time of censoring, whereas a

subject with low costs per month will tend to have low total costs at both times. Thus,

the total cost at the time of death tends to be positively correlated with the total cost

at the time of censoring. This likely violation of the independent censoring assumption

implies that censored costs should not be analyzed by standard survival methods.”

In the colon cancer clinical trial example we described above, after the surgery, a

patient potentially progresses over cancer-free and cancer-relapse states before reaching

death. A bi-state progressive disease process is a reasonable model for this kind of chronic

diseases. The two successive durations in this bi-state progressive disease process are

time to cancer relapse as well as time between cancer relapse and death. let T1 and T2

be the two durations in order, and C be the censoring time. Note that the censoring

mechanism affects on the two successive durations serially. The censoring time on the
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first duration is C, and the censoring time on the second duration, which is induced by

T1, is (C − T1)+ ≡ max{(C − T1), 0}. Because T1 and T2 are typically dependent, T2

and its induced censoring time (C − T1)+ would be dependent, even if C is independent

of {T1, T2}.

1.2.2 Identifiability Issue

Clinical studies, in general, have a limited duration, which is typically shorter than

the longest survival time. Thus, the cost accumulation process beyond the end of the

study is simply unobservable due to the administrative censoring. As pointed by Huang

(2002), if a certain portion of the study population would incur zero cost within the

study duration and survive beyond the study duration, then their lifetime medical cost

is completely unknown. In fact, it is not uncommon to observe zero cost accumulation for

an appreciable proportion of participants during a study. Subsequently, the distribution

of lifetime medical cost could be nowhere identifiable in a one-sample nonparametric

setting.

Similar issue of identifiability exists for the bi-state progressive disease process. The

typical finite study duration means that the maximum support point of the censoring

time, τC ≡ sup{t : Pr(C ≤ t) < 1}, is finite. Thus, if the maximum support point of

the first duration T1 is greater than the maximum support point of the censoring time

C, the distribution of T2 given T1 > τC is not identifiable. Consequently, the marginal

distribution of T2 is nonparametrically nowhere identifiable in this situation.
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1.3 Literature Review

1.3.1 Medical Cost

Cost assessment has become an important component in health care evaluation and

gained much attention in recent years. For instance, health policy makers may be con-

cerned about the cost of providing health care for patients with acquired immunode-

ficiency syndrome (AIDS) in the whole country and its economic impact, in order to

draw out a sensible budget plan for AIDS therapy. As another example, to make com-

prehensive evaluation on alternative treatments on certain disease when one treatment

has a demonstrated health benefit over another yet is more expensive, cost-effectiveness

analysis is usually being adopted. Health care providers and insurance company may

also be desirable to quantify the variation in medical costs between individuals due to

patients’ characteristics, in order to construct an accurate probabilistic decision model.

Despite the tremendous interests in and increasing demands for the evaluation of

medical costs, appropriate statistical methods which capture the underlying properties

of medical cost data are not straightforward to develop. The main challenges of analyzing

cost data come from three aspects. Besides the induced dependent censoring and nowhere

identifiable issue we discussed earlier, medical costs data also tend to have a highly right-

skewed distribution.

A few modeling techniques have been successfully developed in recent years, accom-

modating the aforementioned features of lifetime medical cost data. Meanwhile, Some

other statistical methods dealing with similar mark variables subject to induced infor-

mative censoring have also been formulated.

In one-sample case, Lin et al. (1997) proposed nonparametric estimators with discrete

censoring time distribution, but the application of their methods is limited by the re-
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quirement of discrete censoring pattern. Zhao and Tsiatis (1997) developed a consistent

estimator for the distribution of quality adjusted survival time, by adopting the inverse

probability of censoring weighting (IPCW) idea (Horvitz and Thompson 1952; Koul

et al. 1981; Robins and Rotnitzky 1992; Robins et al. 1994). One drawback of Zhao and

Tsiatis’s Estimator is that the statistical properties of the estimator are established in

a pointwise situation, whether the properties still hold in a uniform fashion is unclear.

Therefore, the estimator may not be appropriate in developing two-sample test proce-

dure. Bang and Tsiatis (2000) proposed simple IPCW based estimator and efficiency

improved estimator to estimate the mean value of censored medical cost. Strawderman

(2000) considered a general framework of stopped longitudinal process, which contains

specific problems from the analysis of quality adjusted survival data to recurrent event

data to lifetime medical cost data.

For two-sample comparison, by generalizing the weighted log-rank test for survival

times and taking the strategy of IPCW, Zhao and Tsiatis (2001) proposed a method for

comparing the survival functions of quality-adjusted lifetime from two treatments. The

method could also be applied to medical cost data.

In regard to the regression analysis of lifetime medical cost distribution, Lin (2000a)

proposed linear regression procedures for censored medical cost. The requirement that

the covariates are all discrete with a finite number of values limits the practical applica-

tion of the method. Lin (2000b) developed a proportional means regression model, which

specified that the mean function for the cumulative medical cost over time, conditioning

on a set of covariates, was equal to an arbitrary baseline mean function multiplied by

an exponential regression function. The continuous observation of the whole cost accu-

mulative process and the completely random censoring mechanism are required by this

model. The rigorous requirements on censorship and data structure limit the application
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of this method. This model is also restrictive in that it imposes common proportionate

covariate effects over time, and would not be appropriate in some cases. The interpre-

tation of the covariate effects is also not straightforward. Lin (2003) extended the prior

work of Lin (2000a) and Lin (2000b) to more flexible and versatile generalized linear

model framework. Bang and Tsiatis (2002) proposed the median regression method for

censored cost data. It requires completely random censoring mechanism, which restricts

the application of this model. A hazard regression model was developed by Jain and

Strawderman (2002).

Handling appropriately both the highly positively skewed and induced informative

censoring troubles with multifarious paths, the aforementioned modeling approaches take

a common way to avoid the nowhere identifiability issue of the marginal distribution of

lifetime medical costs. Actually, they all impose an artificial time limit to ensure the

potential censoring time has positive support beyond this time limit. In this way, the

target of the analysis becomes time-restricted medical cost instead of lifetime medical

cost. Since the time limit is artificial and the covariates may impact survival time as

well, attempt to interpret time-restricted results in terms of lifetime medical cost, as

desired, is inappropriate. More seriously, it may result in the improper acceptance or

rejection of certain treatments which yield benefits as well as costs over the patient’s

lifetime.

One way to overcome the non-identifiability issue is to consider the joint distribution

of lifetime medical cost with survival time, as proposed by Huang and Louis (1998)

in the one-sample nonparametric setting. Huang (2002) extended this strategy and

developed the calibration regression model, which postulates linear covariate effects on

possibly transformed lifetime medical cost and survival time. This model is appealing

since its parameters are meaningful for lifetime medical cost. Unfortunately, it is still
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impossible to quantify the covariate effect in terms of difference in dollar amount as

desired unless the transformation on cost scale is linear. This is due to the fact that

marginal distribution of lifetime medical cost with a set of given covariate values is

still not identifiable under the model. Recently, Huang and Berry (2006) developed

semiparametric estimation procedures in one-sample scenario, by constructing copula-

based models that parameterize the association between survival time and cost but leave

the marginals unspecified. Through parametrization of the copula function, the marginal

identifiability of the lifetime medical cost is achievable.

1.3.2 Successive Durations

A bi-state progressive process is a reasonable model for the course of many chronic

diseases. Examples are numerous. In a colon caner study, after surgery a participant

potentially progresses over disease-free and relapse states before reaching death. The

development of AIDS consists of HIV incubation period and clinical AIDS period.

In the one-sample problem with incomplete follow-up data, nonparametric estima-

tion approaches have been developed by several recent investigations. By considering

a discrete censoring mechanism, Visser (1996) derived a nonparametric maximum like-

lihood estimator of the bivariate survival function of two successive durations. With

continuous censoring variable, Wang and Wells (1998) developed a product-limit esti-

mator for the second duration variable and an estimator for the joint survival function,

and Lin, Sun, and Ying (1999) proposed a nonparametric approach for the joint and

conditional marginal distributions of the successive durations. This bi-state successive

duration problem is unique in its serial censoring; that is, the censoring mechanism bears

on the two successive durations serially. It is characteristically different from the esti-

mation of bivariate distribution studied by Dabrowska (1988), Prentice and Cai (1992),
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and van der Laan (1997) among others, where the censoring is parallel.

Let Tk, k = 1, 2, be the two durations in order, and C be the censoring time. Under

serial censoring, the censoring time on the first duration is C, and the censoring time

on the second duration, which is induced by T1, is (C − T1)+ ≡ max{(C − T1), 0}. One

prominent issue with serial censoring is the induced dependent censoring for the second

duration. The dependence between T2 and its induced censoring time (C − T1)+ would

arise from that between T1 and T2, even if C is independent of {T1, T2}. In addition,

identifiability of the distribution of T2 is an even more thorny issue. As we discussed in

Section 1.2.2, the marginal distribution of T2 is nonparametrically nowhere identifiable

in this situation. Therefore, it is not surprising that those aforementioned nonparametric

approaches for successive durations have only limited successes in estimating the distri-

bution of T2. They either require that the maximum support point of the first duration

T1 is no greater than the maximum support point of the censoring time C, or turn to its

joint distribution with T1; the joint distribution is identifiable to a certain extent. Note

that these two issues are omnipresent with the broad class of mark estimation problems

as addressed in Huang and Louis (1998). A mark is a random variable associated with

an event such that its observation is contingent upon the occurrence of the event. In

this bi-state process problem, each of the two durations may be viewed as a mark of the

terminating event of the second duration.

Furthermore, all these nonparametric approaches with the exception of Visser (1996)

require the assumption that the censoring time C is completely independent of {T1, T2}.

That means, individuals being followed at a given time t would have the same probability

of being censored within [t, t+dt) regardless of whether the first duration has completed

and, if so, when. Lin, Sun, and Ying (1999) pointed out that this could be a practical

limitation. On the other hand, the approach of Visser (1996) has its own limitation with
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the requirement of a discrete time scale.

1.4 Outline

In chapter 2, we present a copula-based semiparametric regression model for censored

lifetime medical cost. One of the major challenges of analyzing lifetime medical cost is

that the censoring pattern on the cost scale is typically induced to be dependent. More-

over, the lifetime medical cost distribution is potentially nowhere identifiable. Currently

available approaches either bypass these issues by estimating time-restricted medical cost

or address the joint distribution of cost and survival time instead. Neither is capable

of addressing lifetime medical cost distribution for a defined group. To this end, we

propose a copula-based semiparametric regression model under which the marginal life-

time medical cost distribution for given covariates becomes identifiable. The proposed

model assumes that both lifetime medical cost and survival time, on possibly transformed

scales, linearly relate to the covariates. Furthermore, it parameterizes the association

of the bivariate error term through a normal copula function, leaving the marginal er-

ror distributions completely unspecified. While the regression coefficients on survival

time are estimated using the standard method for the accelerated failure time model,

we propose a procedure to estimate the regression coefficients on lifetime medical cost

and the normal copula association parameter simultaneously. The resulting estimators

are shown to be consistent and asymptotically normal. Simulation studies show that the

proposed method is fairly robust under copula misspecification. The proposed method

is applied to a lung cancer clinical trial.

In chapter 3, we present a semiparametric inference procedure for the successive du-

rations in this bi-state progressive disease process. The study is motivated by a colon
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cancer clinical trial where patients progress through disease-free and relapse states. Sci-

entific interests lie in the successive durations in this bi-state progressive disease process.

For the one-sample problem with incomplete follow-up data, recent investigations have

focused on nonparametric inference. However, in many practical situations, the distri-

bution of the second duration is nonparametrically nowhere identifiable. Furthermore,

most existing approaches require a rather restrictive censoring mechanism and have dif-

ficulty in predicting the process with given history. To address these issues, we suggest a

semiparametric model that postulates normal copula for the association between the two

durations, while leaving the marginals unspecified. We propose an inference procedure

for estimation and establish the asymptotic properties of the proposed estimators. Finite

sample performance of the proposed method is evaluated by the simulation studies and

illustrated with the data from a colon cancer study.

In Chapter 4, we summarize results in this dissertation and discuss topics for future

research.



15

Chapter 2

Copula-based Semiparametric

Regression Model for Censored

Lifetime Medical Cost

In this chapter, we propose a copula-based semiparametric regression model for censored

lifetime medical cost, to strengthen the calibration regression model. In the one-sample

problem, Huang and Berry (2006) showed that the distribution of lifetime medical cost

becomes marginally identifiable upon reasonable copula parameterization between the

cost and survival time. Following this line, we suggest a regression method for marginal

estimation and inference of lifetime medical cost, by imposing a normal copula structure

on the bivariate error in the calibration regression model. This approach targets the

situation when the survival time has only a potentially small probability to exceed the

study duration.

The rest of the chapter is structured as follows. In Section 2.1 we introduce the

semiparametric copula regression model for lifetime medical cost subject to censoring.
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In Section 2.2 we develop an inference procedure for regression coefficients as well as

the association parameter in normal copula model, and we also study the asymptotic

properties for the resultant estimators. In Section 2.3 we evaluate the finite-sample

performance of the proposed method through simulations, followed by an application to

a lung cancer clinical trial. Further discussion is given in Section 2.4. Technical details

of the large-sample study on the proposed inference procedure are collected in Section

2.5.

2.1 A Copula-based Semiparametric Regression

Model

Consider a sample of n subjects who are followed up to the occurrence of death or being

censored, whichever comes first. For the ith individual, let Ti represent survival time,

Ui be lifetime medical cost, and Zi be a p × 1 covariate vector. The censoring time Ci

operates on Ti so that Ti, Ui and Ci are not directly observed but through the following

variables:

Xi ≡ Ti ∧ Ci, Yi ≡ Ui · I(Ti ≤ Ci), ∆i ≡ I(Ti ≤ Ci),

where ∧ is the minimization operator and I(·) is the indicator function. The observed

data consist of i.i.d. observations {Xi, Yi,∆i,Zi}, i = 1, . . . , n. This data structure

is basic and common to various data-collection scenarios involving a mark of interest

(Huang and Louis 1998). A mark refers to a random variable associated with an event

such that its observation is contingent upon the occurrence of the event; the methodology

developed here for medical cost may be applied to other marks of interest. Certainly

there are applications where the cost accumulation process may be fully or partially
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observed in addition. The method developed here neither depends on nor makes full

use of such additional data; see further discussion in Section 5. For the censorship, we

assume a conditional independence censoring mechanism:

(Ti, Ui) is independent of Ci, given covariates Zi. (2.1)

The proposed copula-based semiparametric regression model postulates that Zi lin-

early relates to GT (Ti) and GU(Ui), for known increasing (e.g., logarithmic) transforma-

tions GT (.) and GU(.),

 GT (Ti)

GU(Ui)

 =

 αT0

βT0

 Zi + εi, i = 1, . . . , n, (2.2)

where α0 and β0 are p × 1 vectors of regression coefficients, and εi = (εti, ε
u
i )
T is the

bivariate error term. Furthermore, the bivariate error term εi follows the normal copula

model (e.g. Huang and Berry 2006),

 HT (εti)

HU(εui )

 ∼ BVN(ρ0),

for unspecified monotone increasing transformations HT (.) and HU(.), where BVN(ρ0)

is the standard bivariate normal distribution with correlation coefficient ρ0. As seen,

this proposed model strengthens the calibration regression model of Huang (2002) with

the normal copula structure on the bivariate error term. Apparently, this model is fairly

flexible. Similar to the one-sample result of Huang and Berry (2006), the copula param-

eterization results in the marginal identifiability of the εui distribution. This modeling

strategy is practically useful when survival time exceeds the study duration with only
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a small probability, e.g., the lung cancer clinical trial in Section 2.3.3. In such a cir-

cumstance, the adopted copula structure is largely testable except for the small tail

portion.

Copula modeling has been investigated before for multivariate failure time data, where

there are correlated failure times and each failure time has its own censoring. In that

setting, marginal estimation is generally straightforward, and adopting a copula model

facilitates efficiency gain (e.g., Glidden 2000). In contrast, copula modeling in our setting

leads to marginal identifiability and estimation.

2.2 Inference Procedure

2.2.1 A Compound Procedure

This proposed model is a compound one of calibration regression model and the normal

copula model. Thus, one may use the calibration regression procedure established by

Huang (2002) to obtain estimators for regression coefficients on time and cost scales.

First, the estimation of α0 is a standard problem under the accelerated failure time

(AFT) model. Define counting process Ni(t;α) ≡ I(εxi (α) ≤ t)∆i and at-risk process

Ri(t;α) ≡ I(εxi (α) ≥ t), where εxi (α) ≡ GT (Xi) − αTZi. A rank-based approach is

adopted here in which a weighted log-rank test Ψ1,n(α) (Tsiatis 1990; Wei, Ying, and

Lin 1990) is constructed based on εxi (α). The estimating function takes the form

Ψ1,n(α) ≡ n−1

n∑
i=1

∫ +∞

−∞
ϕ1,n(s;α)

[
Zi −

∑n
j=1 Zj Rj(s;α)∑n
j=1 Rj(s;α)

]
dNi(s;α) , (2.3)

where ϕ1,n(t;α) is a data-dependent weight function. Weights ϕ1,n(t;α) = 1 and

ϕ1,n(t;α) = n−1 ·
∑n

i=1 I(εxi (α) ≥ t) correspond to the log-rank and Gehan (1965)
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estimating functions, respectively. Then, for given α0, the estimation of β0 can be ob-

tained by generalizing the weighted log-rank estimating function to the marked point

process framework, i.e.,

Υ2,n(α,β) ≡ n−1

n∑
i=1

∫ +∞

−∞
ϕ2,n(s;α,β)

[
Zi −

∑n
j=1 Zj Rj(s;α)∑n
j=1 Rj(s;α)

]
dN2i(s;α,β) ,

where ϕ2,n(t;α,β) is a weight function similar to ϕ1,n(t;α); N2i(t;α,β) ≡ Ni(t;α) ·

ξ(Yi − βTZi) is the mark process, which has a random jump size rather than constant

1; and ξ(·) is a known continuous and strictly monotone function. After obtaining the

estimator α̂0 for α0 as a root of Ψ1,n(α), we can then solve Υ2,n(α̂0,β) to find the

estimator β̂0 for β0.

The inference procedure of Huang and Berry (2006) for normal copula model could

then be applied to the residuals of survival time and lifetime medical cost, for the es-

timation of the normal copula association parameter and further the marginal baseline

distribution of lifetime medical cost. Here, we briefly describe the inference procedure of

Huang and Berry (2006) for normal copula model (3.1) in the one-sample case (i.e., α0

and β0 are known). The idea is to estimate the association parameter ρ0 in the bivariate

normal copula first, and then the marginal distribution of the baseline cost distribution,

Fεu(·), can be achieved. Let εyi (β) ≡ GU(Yi) − βTZi. By normal distribution theory,

model (3.1) is equivalent to

HU{εyi (β0)} | {Xi,Zi,∆i = 1} ∼ Normal (ρ0HT{εxi (α0)}, 1− ρ2
0),

which implies the following linear transformation model,

(1− ρ2
0)−1/2HU{εyi (β0)}

∣∣ {Xi,Zi,∆i = 1} ∼ θ0HT{εxi (α0)}+ ε, (2.4)
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where θ = ρ(1− ρ2)−1/2, and ε is a standard normal error. Let Wi(α) ≡ HT{εxi (α)}. By

invoking pairwise comparisons, we obtain the following identity that is free of transfor-

mation HU(·):

Pr
(
εyi (β0) ≥ εyj (β0) | Xi, Xj,Zi,Zj,∆i = 1,∆j = 1

)
= Φ2(θ0Wij(α0)) for i 6= j,

(2.5)

where Wij(α) ≡ Wi(α) −Wj(α), and Φ2(·) is the cumulative distribution function of

a normal distribution with mean 0 and variance 2. Given α0 and β0, an estimating

function for θ0 based on identity (2.5) is:

Υ3,n(θ) ≡ n−2

n∑
i,j=1

∆i∆j Ŵij(α0)
[
I{εyi (β0) ≥ εyj (β0)} − Φ2(θ Ŵij(α0))

]
, (2.6)

where Ŵi(α0) ≡ ĤT (εxi (α0)) = Φ−1{F̂εt(εxi (α0))}, and F̂εt(t) is the Kaplan-Meier esti-

mator of Fεt(t). Write the estimator θ̂0 for θ0 as the root of Υ3,n(θ), an estimator of ρ0

is obtained as ρ̂0 = θ̂0(1 + θ̂2
0)−

1
2 . Now, we can estimate the marginal distribution Fεu(·)

by taking advantage of ρ̂0 and ĤT (εxi (α0)). From identity (2.4), we can estimate the

probability Pr {HU(εyi (β0)) ≤ s
∣∣Xi,Zi,∆i = 1}. By some simple algebra, the estimator

ĤU(·) for the transformation function HU(·) can be obtained. Noting the one-to-one

mapping relationship between HU(·) and Fεu(·), i.e., HU(·) = Φ−1{Fεu(·)}, we can then

obtain the estimated marginal distribution F̂εu(·) by reassigning the probability mass of

ĤU(·) through that one-to-one mapping. The detailed procedures refer to Section 3.2 in

Huang and Berry (2006).

This compound procedure, as referred to, is very straightforward and easy to be

conducted. However, it does not take advantage of the copula model in the estimation

of the cost regression coefficients. In the following, we will develop a new estimation

procedure which potentially achieves better efficiency.
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2.2.2 Proposed New Estimation Procedure

We still start with the estimation of α0, which is a standard problem under the AFT

model on the time scale and can be solved by using the weighted log-rank estimation

function (2.3) described above.

Applying the Kaplan-Meier estimation procedure to {εxi (α),∆i}, i = 1, . . . , n, gives

the estimator 1 − F̂T (t ;α). If α0 is known, F̂T (t ;α0) is the Kaplan-Meier estimator

of the distribution function of εti(α0), i.e., Pr{εti(α0) ≤ t}. Obviously α0 is unknown.

Nonetheless, one may use F̂T (t ; α̃) instead, where α̃ is an estimator ofα0. This estimator

will be needed in later estimation.

For the estimation of β0 and ρ0, we extend the result in Huang and Berry (2006).

Following the notations introduced in Section 2.2.2, we still use the identities (2.4) and

(2.5) to motivate our new estimation procedure.

Given F̂T (t ; α̃), HT (t) can be estimated by ĤT (t; α̃) ≡ Φ−1{F̂T (t ; α̃)}. To avoid

technical difficulties arising from the unboundedness of Φ−1(·) at 0 and 1 and from the

tail instability of F̂T (t ; α̃), we only consider individuals with εxi (α̃) bounded away from

its lower and upper limits. For technical purposes of asymptotic study, we adopt a

smooth function of εxi (α) with bounded derivative, denoted by ι(εxi (α)), to approximate

this selection. Write ∆◦i (α) ≡ ∆i ·ι(εxi (α)), Ŵi(α) ≡ ĤT{εxi (α)} and Ŵij(α) ≡ Ŵi(α)−

Ŵj(α). We propose to estimate β0 and θ0 simultaneously by adopting the following

estimating function based on pairwise comparisons:

Ψ2,n (α,β, θ) ≡ n−2

n∑
i,j=1

∆◦i (α)∆◦j(α)

 Ŵij(α)

Zij

[I{εyi (β) ≥ εyj (β)} − Φ2(θ Ŵij(α))
]
.

(2.7)

As shown later, Ψ2,n (α0,β0, θ0) is centered around 0 asymptotically.
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Combining Ψ2,n (α,β, θ) with the aforementioned log-rank estimating function Ψ1,n(α),

we obtain following estimating function for (αT ,βT , θ)T :

Ψn(α,β, θ) ≡
{
Ψ1,n(α)T , Ψ2,n(α,β, θ)T

}T
(2.8)

After obtaining the estimator α̂0 from Ψ1,n(α) = 0, we can then find the estimator

(β̂
T

0 , θ̂0)T for (βT0 , θ0)T as a zero-crossing of Ψ2,n(α̂0,β, θ). Since ρ = θ(1 + θ2)1/2, an

estimator of ρ0 is obtained as ρ̂0 = θ̂0(1 + θ̂2
0)−1/2. Note that Ψ2,n(α̂0,β, θ) is not a

monotone random field (cf. Fygenson and Ritov 1994) in the domain of (βT , θ)T , i.e.,

Rp+1. Multiple zero-crossings may exist. We resolve this issue by defining the estimators

as the zero-crossing closest to the estimator from the compound procedure. The latter

is a consistent estimator.

Given the estimators for regression coefficients α0, β0 and copula association param-

eter ρ0, we can obtain the estimation of the marginal error distribution on cost scale

F̂εU (.) by following the estimation procedure developed in Huang and Berry (2006, Sec-

tion 3.2). Furthermore, given specific covariate values Z = z, we may estimate the

marginal distribution of lifetime medical cost for the group defined by z, say, F̂U(.|z)

and the corresponding mean and median of lifetime medical cost.

2.2.3 Asymptotic Properties

The consistency and asymptotic normality of the estimators (α̂T0 , β̂
T

0 , θ̂0)T are established

in Theorems 2.1 and 2.2, with detailed proof collected in Appendices 2.5.1 and 2.5.2. In

the following theorems, we assume that the censoring mechanism (2.1) and regression

model (2.2) hold, and that observations {Xi, Yi,∆i,Zi}, i = 1, . . . , n, are i.i.d.. For

the convenience of expression, we write η ≡ (αT ,βT , θ)T , η0 ≡ (α0
T ,β0

T , θ0)T and
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η̂0 ≡ (α̂T0 , β̂
T

0 , θ̂0)T .

Theorem 2.1. Suppose that regularity conditions C1-C6 in Appendix 2.5.1 hold. There

exists a zero-crossing of Ψn(η), say η̂0, that converges to η0 in probability.

Theorem 2.2. Under the regularity conditions C1-C6 in Appendix 2.5.1, n1/2(η̂0 − η0)

is asymptotically normal with mean 0.

In terms of the interval estimation for η0, we have two approaches available in general.

One is to derive the influence curves of its maps from the distribution of {Xi, Yi,∆i,Zi}.

However, the derivation is algebraically complex. An alternative is through resampling.

Here, we adopt nonparametric bootstrap method, which may be justified similarly to

Huang and Berry (2006) upon establishing the Hadamard-differentiability of the mapping

from the distribution of {X, Y,Z,∆} to η̂0 (Gill 1989, Theorem 5; van der Vaart and

Wellner 1996, Section 3.9.3).

2.3 Numerical Studies

To evaluate the proposed inference procedures with small and moderate samples, we

conducted extensive simulation studies. The performance of our proposed estimation

procedure and the compound procedure described at the beginning of Section 3 were

compared under the normal copula model. We then investigated the robustness of pro-

posed procedure under misspecification of the error copula. Finally, we applied this

procedure to the estimation of lifetime medical cost with data from a lung cancer clin-

ical trial. In our numerical studies, we set ∆◦i (α) in estimating function (2.7) equal to

∆i.

One challenge to implement the proposed estimation procedure is to find a consistent

zero-crossing of nonsmooth estimating function Ψ1,n(α). As suggested by Lin, Wei,
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and Ying (1998) and Jin, Lin, Wei, and Ying (2003), this root-finding problem can be

transformed to a minimization problem, which can be solved via the linear programming

technique.

Similarly, Ψ2,n(α̂0,β, θ) is also a nonsmooth estimating function in β. But the lin-

ear programming techniques may no longer be applicable. One way to overcome this

difficulty is to approximate the discontinuous estimating function with a smooth func-

tion. Specifically, we propose to use the sigmoid function s(x) ≡ 1/(1 + exp(−x)) to

approximate the indicator function in (2.7). For large |x|, s(x) is a good approximation

to I(x ≥ 0). However, for x around zero, this approximation is not accurate enough.

As indicated by Ma and Huang (2005) recently, an effective way to improve the accu-

racy is by introducing a sequence of positive numbers σk converging to 0, and using

sk(x) = s(x/σk) to approximate I(x ≥ 0). We use the following iteration algorithm to

find the estimator for β0 and θ0. We first choose the initial value σ0 = 1/
√
n, where n

is the sample size, and find an initial estimators β̂
(0)

0 and θ̂
(0)
0 from the resulting contin-

uous estimating function by using the Newton-Raphson type algorithm. By updating

σk = 0.5×σk−1(k = 1, 2 . . . , ) in the kth iteration, we may obtain the corresponding esti-

mators β̂
(k)

0 and θ̂
(k)
0 . The iteration stops when β̂

(k)

0 and θ̂
(k)
0 converge. In our simulations,

this iteration algorithm performs well.

2.3.1 Monte-Carlo Simulations Under Normal Copula Model

A number of settings were investigated under moderate censoring, with single- and

double-covariate. Both the transformation GT (.) on survival time and the transformation

GU(.) on lifetime medical cost in (2.2) were specified as logarithm. The marginal baseline

distributions of survival time and lifetime medical cost were set as either the standard

lognormal distribution or the standard exponential distribution. Given the baseline
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marginal distributions Fεt(.) and Fεu(.), the corresponding random samples were gen-

erated by marginally transforming random samples from the standard bivariate normal

distribution; that is, εti = F−1
εt {Φ(Si)} and εui = F−1

εu {Φ(Vi)}, where (Si, Vi) ∼ BN(ρ0).

In each case, various association levels with ρ0 = 0.8, 0.4, 0,−0.4,−0.8 were considered,

corresponding to strong positive, moderate positive, independent, moderate negative and

strong negative associations between the two outcomes. Note that different associations

as considered would only impact the estimation of β0 and ρ0, but not that of α0.

For comparison, we investigated the performance of both the proposed copula-based

semiparametric estimation procedure and the compound procedure. Both the Gehan

weight function and log-rank weight function were considered for the estimating function

(2.3) for α0, the regression coefficients on survival time. In the compound procedure, we

adopted the same weight functions in the two estimating functions with the calibration

regression model, following the suggestion of Huang (2002). Two sets of simulations are

reported.

With a single covariate, the first set involved four different combinations of the

marginal baseline distributions on time scale and cost scale, either the standard expo-

nential or the standard lognormal. The covariate Z was uniformly distributed in [−1, 1].

We set α0 = 1 and β0 = 1; other values for (α0, β0) were also considered, resulting in

similar results. The follow-up time T was subject to right censoring. The censoring time

C, which was independent of T and Z, followed an exponential distribution with rate

0.19 but curtailed at 2.2 or with rate 0.12 but curtailed at 3.3, according to exponential

or lognormal baseline distribution on time scale. Thus, the top 15% of T was censored

and the overall censoring rate was approximately 25%. The sample size was set to 100.

Table 2.1 presents the simulation results for the first set, with ρ0 = 0, 0.4 and 0.8.

Results for ρ0 = −0.4 and −0.8, which were not shown here, exhibited features similar
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to the results for ρ0 = 0.4 and 0.8, respectively. Each scenario was simulated with 1000

replications. The nonparametric bootstrap with size 100 was used to obtain estimated

standard deviation and 95% Wald-type confidence interval. As shown, the proposed

estimator for β0 from copula-based semiparametric estimation procedure is essentially

unbiased and the estimated standard deviation tracks the empirical standard deviation

well. The coverage probability of 95% Wald-type confidence interval is fairly accurate.

By comparing the empirical standard deviation of the calibration regression estimator

for β0 with that of the copula-based semiparametric estimator for β0, we could find that

the latter one is more efficient in most cases. This might be expected since we imposed

a parametric normal copula structure for the two outcomes in the copula-based semi-

parametric regression model. With stronger association, we observed more efficiency

gain. At the same time, the magnitude of efficiency gain does depend on the marginal

distributions. For example, with exponential baseline distribution on time scale and

lognormal baseline distribution on cost scale, the efficiency gain is bigger as compared

to the case when the baseline distributions on both time scale and cost scale are log-

normal. With Gehan weighted and log-rank weighted estimator α̂0, the performances

of the resultant copula-based semiparametric estimators for β0 are quite similar. For

calibration regression, the results based on log-rank weight show better efficiency than

their counterparts based on Gehan weight. In the following, we will only present the

results based on log-rank weight.

Table 2.2 reports the simulation results for the estimation of ρ0 = 0, 0.4 and 0.8 in

the first set. Four different scenarios with exponential or lognormal baseline distribu-

tion on time scale or cost scale are demonstrated. The corresponding mean and median

of marginal lifetime medical cost distribution for the specific group with the covari-

ate value 0.5 are also presented. As shown, the proposed copula-based semiparametric
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estimator for ρ0 is essentially unbiased. The proposed mean estimator is essentially

unbiased when the marginal baseline distribution on cost scale is exponential. With a

long-tailed marginal distribution on cost scale, such as lognormal, especially in the case

of a strong positive association between lifetime medical cost and survival time, the bias

of the proposed mean estimator is relatively large. This might be expected since the

mean is sensitive to a long tail, which is largely censored under a strong positive asso-

ciation. The performance of the proposed median estimator is satisfactory under both

types of baseline distributions on cost scale. The estimated standard deviation tracks

the empirical standard deviation well, and 95% Wald-type confidence intervals achieve

reasonably accurate coverage probability except for those of µ̂ in the case of lognormal

baseline distribution on cost scale and strong positive association. The lower coverage

phenomena here are mainly caused by the skewness the cost distribution. The efficiency

gain of copula-based semiparametric estimators over the estimators based on compound

procedure is similar to our findings from regression coefficients estimation in Table 2.1

above.

The second set mimicked a two-arm clinical trial, with two independent covariates.

The first covariate took values of 1 and −1 with equal probabilities, and the second

one followed a uniform distribution in [−1, 1]. We set (αT0 ,β
T
0 )T = (1, 1, 1, 1). The

standard exponential baseline distribution on time scale and the standard lognormal

baseline distribution on cost scale were specified. The censoring time, independent of

the covariates, had an exponentially distribution with rate 0.18 but curtailed at 3.5.

Thus, the top 15% of survival time was censored and the overall censoring rate was 25%.

Sample size 100 was studied.

Table 2.3 presents the simulation summaries for the second set with ρ0 = 0, 0.4 and

0.8, where each scenario was simulated with 1,000 replications. Simulation results of
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ρ0 = −0.4 and −0.8 are similar to those of ρ0 = 0.4 and 0.8 respectively, and thus are

omitted. As shown, the proposed estimators are virtually unbiased, the nonparametric

bootstrap based standard deviation estimation procedure behaves well and the coverage

probability of their Wald-type confidence interval is fairly accurate. By comparing the

empirical standard deviation of the calibration regression estimator for β0 with those

of the copula-based semiparametric estimator for β0, we could find that the latter has

modest efficiency gain over the former when the two outcomes are weakly associated;

with stronger association, efficiency gain is more significant.

2.3.2 Monte-Carlo Simulations Under Nonnormal Copulas

We considered Clayton’s and Frank’s families (Shih and Louis 1995). Copulas in these

two families generally differ from normal copulas except when survival time and lifetime

medical cost are independent. We adopted the same simulation scenarios as described

in the second set above except for the copula. These two nonnormal copula families as

well as normal copula are all governed by a single parameter, which has a one-to-one

mapping with the association measure Kendall’s tau within each family. For comparison,

corresponding to each nonzero ρ value considered in the three sets above, we chose a

nonnormal copula with the same Kendall’s tau. Only positive association was considered

for Claytons copula, given its limitation in accommodating negative association. The

results are presented in Table 2.4, including the mean and median of marginal lifetime

medical cost distribution for the group with covariates (Z1, Z2) = (1, 0.5). The results

with Frank’s copula corresponding to ρ0 = −0.4 and −0.8 are omitted, since they are

similar to those from Frank’s copula corresponding to ρ0 = 0.4 and 0.8 respectively.

As shown, the proposed copula-based semiparametric estimator for β0 is fairly robust

against misspecified copula structure. Nonetheless, with Clayton’s family, the bias for the
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Table 2.3: Simulation Summary Statistics With Double Covariates, Marginal Exponential
Baseline Distribution on Time Scale and Marginal Lognormal Baseline Distribution on
Cost Scale

Calibration Regression Copula-based Semiparametric

α̂01 α̂02 β̂01 β̂02 β̂01 β̂02

ρ0 = 0.8

B 3 15 -1 11 -5 13

D 126 208 136 234 113 189

D̂ 129 218 135 240 125 202

C 94.5 95.2 94.1 95.3 95.1 96.1

ρ0 = 0.4

B -4 9 -7 8

D 130 217 127 206

D̂ 129 222 129 217

C 93.7 94.3 94.4 95.5

ρ0 = 0

B -5 6 -6 6

D 127 211 131 214

D̂ 128 215 133 221

C 94.0 94.6 94.4 95.0

NOTE: (α̂01, α̂02) and (β̂01, β̂02) are estimators for regression coefficients on time scale and cost scale,
respectively. ρ0 is the association parameter of the baseline distribution under normal copula. The
symbols B, D, D̂ and C have the same meanings as those in Table 2.1.
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mean estimator is large, while the performance of the median estimator is reasonable. As

to Frank’s family, the performances of both mean and median estimators are satisfactory.

2.3.3 Application to a Lung Cancer Trial

Lung cancer is the most common cancer in terms of mortality for both men and women

in the United States. It is estimated to cost society $ 4.7 billion annually in direct med-

ical cost (Brown, Lipscomb, and Snyder 2001). Treating lung cancer with the minimum

economic burden possible is important. Our study was motivated by the analysis of

lifetime medical cost in a trial conducted by the Southwest Oncology Group (SWOG).

This randomized SWOG trial was designed to compare paclitaxel plus carboplatin ver-

sus vinorelbine plus cisplatin treatments for patients with advanced non-small-cell lung

cancer (Kelly et al. 2001). Whereas survival time was the primary outcome, one sec-

ondary endpoint was resource utilization which consisted of supportive care medications,

blood products, medical procedures, protocol and non-protocol related treatments, and

medical care inpatient days or outpatient visits. Cost was assigned to each resource

using national databases with adjustment to 1998 US dollars following the medical care

component of the Consumer Price Index.

The cost data were collected every 3 months during the first half year, and every

half year after that, until the 2 year study duration was reached. Participants with

insufficient documentation or no follow-up for cost data collection were excluded, and

183 (49.7%) of the remaining 368 participants in the current analysis were randomized

to receive paclitaxel plus carboplatin treatment. The median follow-up time was 6.7

months and 31.0% participants were censored. The survival rate at 24 months among all

participants was estimated to be 20.5%. With the natural logarithmic transformation

on both survival time and lifetime medical cost, we fitted the proposed copula-based
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Table 2.4: Simulation Summary Statistics With Proposed Methods, Double Covariates,
Marginal Exponential Baseline Distribution on Time Scale and Marginal Lognormal
Baseline Distribution on Cost Scale

Compound Procedure Proposed Procedure

α̂01 α̂02 β̂01 β̂02 µ̂ ν̂ β̂01 β̂02 µ̂ ν̂

Clayton’s copula corresponding to ρ0 = 0.8

B 1 10 -3 2 -322 13 -19 -10 -630 -95

D 134 210 127 223 2182 1136 111 194 1762 1055

D̂ 130 219 125 228 2244 1229 113 203 1833 1112

C 93.2 95.3 93.9 94.3 87.1 92.7 95.3 96.0 84.9 93.2

Clayton’s copula corresponding to ρ0 = 0.4

B -1 0 -315 62 -13 -5 -455 -13

D 119 206 2045 1178 118 209 1996 1189

D̂ 120 209 2052 1241 123 211 1966 1228

C 94.9 94.9 88.5 94.7 95.3 94.8 87.3 92.6

Frank’s copula corresponding to ρ0 = 0.8

B -2 6 301 93 -7 -7 126 24

D 140 235 2573 1284 114 190 2157 1111

D̂ 137 242 2647 1409 116 205 2151 1213

C 93.6 94.4 92.0 92.8 95.3 96.7 92.1 94.3

Frank’s copula corresponding to ρ0 = 0.4

B 0 1 182 106 -4 -8 161 85

D 129 215 2338 1282 124 214 2365 1286

D̂ 129 221 2317 1377 128 216 2259 1345

C 94.7 94.4 92.2 94.7 95.4 94.7 91.2 94.0

NOTE: (α̂01, α̂02) and (β̂01, β̂02) are estimators for regression coefficients on time scale and cost scale,
respectively. ρ0 is the normal copula association parameter. µ̂ and ν̂ are estimators for the mean and
median of marginal lifetime medical cost distribution for the defined group with covariates
(Z1, Z2) = (1, 0.5). The symbols B, D, D̂ and C have the same meanings as those in Table 2.1.
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semiparametric regression model (2.2) to the dataset. Three covariates of interest here

were the treatment indicator, lactate dehydrogenase (LDH) normality indicator, and age

at enrollment. If a patient’s LDH is less than or equal to the upper limit of the normal

range for serum LDH, then it has a normal LDH; otherwise, it has an abnormal LDH.

The number of patients with normal LDH is 223, corresponding to 60.6% of the 368

participants. The median age of patients is at 62.0 years with the range from 32.3 to

83.8. Huang (2002) analyzed the same dataset using the calibration regression model.

We repeated the analysis for comparison purposes. In regard to estimation of standard

error, we used the nonparametric bootstrap method with a bootstrap size of 500. The

corresponding 95% Wald-type confidence intervals were also constructed.

Table 2.5 shows the analysis results based on the proposed method and the calibra-

tion regression. The results based on calibration regression are very similar to those in

Huang (2002). There was little difference in survival time between the two treatments.

However, paclitaxel plus carboplatin led to significantly higher lifetime medical cost.

Based on the copula-based semiparametric estimator, lifetime medical cost of paclitaxel

plus carboplatin was exp(0.285) = 1.330 times as much as vinorelbine plus cisplatin

after adjustment for LDH and age. The result is consistent with that of the calibration

regression estimator. In contrast, patients with normal LDH level tended to have better

survival time but similar lifetime medical cost, compared with those with abnormal LDH

level. Finally, age showed little effect on both outcomes. By comparing the estimation

of standard error, we could find that those of the semiparamatric copula estimators were

smaller than their counterparts of calibration regression estimators. This finding was

similar to that from the simulation studies, where the semiparamatric copula estimators

were shown to be more efficient than their calibration regression counterparts in most

cases.
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Table 2.5: Analysis Results of the SWOG Lung Cancer Data

Estimation results for regression coefficients

tx LDH Age

Estimator for α0

Estimate .0222 .6330 -.0059

SE .1378 .1454 .0070

95%CI (-.2479, .2923) (.3480, .9179) (-.0195, .0078)

Calibration regression estimator for β0

Estimate .3379 .1399 -.0054

SE .1161 .1237 .0060

95%CI (.1104, .5654) (-.1025, .3823) (-.0172, .0064)

Copula-based semiparametric estimator for β0

Estimate .2850 .1794 -.0015

SE .1052 .1076 .0050

95%CI (.0789, .4911) (-.0313, .3903) (-.0114, .0084)

NOTE: tx: treatment indicator, with Vinorelbine plus Cisplatin as the reference; LDH: lactate
dehydrogenase normality indicator; SE : the estimated standard deviation; 95%CI : the 95% Wald-type
confidence interval.



36

The sempiparametric copula estimator for ρ0 was 0.775, with 95% confidence interval

(0.714, 0.836), showing a strong association between the baseline distribution of lifetime

medical cost and survival time. Based on the proposed model, the marginal lifetime

medical cost distribution for any specific group could be estimated. As an example, we

considered a group of patients of age 62 (the median age of all participants), who had

normal LDH and received paclitaxel plus carboplatin treatment. Figure 2.1 displays

the estimated marginal survival function of lifetime medical cost for this specific group,

using copula-based semiparametric estimators. The estimated mean lifetime medical

cost of this group was $61 435, with 95% confidence interval (50 522, 72 349), whereas

the estimated median cost is $52 493, with 95% confidence interval (44 895, 60 092). The

substantial difference between the mean and median indicated highly positive skewness

of this distribution.

2.4 Discussion

We have proposed a copula-based semiparametric regression model for lifetime medical

cost with incomplete follow-up data. This conceptually simple regression model is semi-

parametric in the sense that the marginal error distribution of both lifetime medical cost

and survival time are completely unspecified. As opposed to time-restricted quantities

with artificial limits which are often considered in the literature, our proposed model is

targeting at underlying distribution of interest. Also, the inference procedure accommo-

dates the conditional independence censoring mechanism, a relatively weak censorship

assumption.

The proposed copula-based semiparametric regression model strikes a balance be-

tween model identifiability and robustness. The calibration regression model in Huang
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Figure 2.1: Southwest Oncology Group study. Estimated survival function of lifetime medical
cost for a group of age 62, who had normal LDH and received the paclitaxel plus carboplatin
therapy, along with pointwise 95% Wald-type confidence intervals.
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(2002) is more robust, but we do not have the identifiability of lifetime medical cost dis-

tribution. On the other hand, it is generally undesirable to use a method which requires

many assumptions. Through parameterizing the association between two marginal er-

ror distributions by normal copula function but leaving the marginal error distributions

completely unspecified, we are able to identify and estimate the marginal distribution of

lifetime medical cost. This copula-based semiparametric regression model is practically

most useful in medical studies where only a small portion of patients survive beyond

the study duration. In such a situation, the selected normal copula structure is largely

testable except for the small tail portion (Huang and Berry 2006) and can serve the

purpose of appropriately characterizing the association structure as well as leading to

the identifiability of the marginal distribution of lifetime medical cost.

The copula-based semiparametric inference procedure offered is computationally easy

and is shown to yield consistent and asymptotically normal estimators. Our simulation

study shows that the proposed method performs well in samples of moderate size. Com-

pared to the compound procedure, the copula-based semiparametric approach is more

efficient in most cases, when the two outcomes are associated. Nevertheless, as we have

illustrated in simulation study, the efficiency gain of the copula-based semiparametric

approach is modest under certain baseline distribution, even when the two outcomes are

strongly associated. As shown in our simulation studies, the estimation of regression

coefficients from the copula-based semiparametric regression model is not quite sensitive

to the misspecification of the error copula structure. The inference procedure appears to

be quite robust with Frank’s family but less robust with Clayton’s family. These results

suggest the importance of model checking in practice. Goodness-of-fit test under the

proposed copula-based semiparametric regression model for censored lifetime medical

cost is under development. The basic idea is along the same line as the goodness-of-fit
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test proposed by Huang and Berry (2006) in the one-sample problem.

Our proposed model only requires and exploits uncensored lifetime medical cost in

addition to the standard survival data, and thus can be applied to a wide range of cost

data collection schemes. In practice, additional data might be available. For example,

the cost accumulation process was observed at scheduled visits in the study we discussed

in Section 2.3.3, or one may observe accumulated cost at censoring time for each cen-

sored individual. In this case, potentially, there is room for efficiency improvement by

taking advantage of the additional data. Unfortunately, for this purpose, it seems nec-

essary to model the stochastic cost accumulation process. This task would be difficult

if not impossible, given that it is already challenging to model the highly skewed cost

distribution.

2.5 Proofs

2.5.1 Consistency

Suppose the semiparametric copula model (2.2) and the censoring mechanism (2.1) hold.

The following regularity conditions are adopted:

C1. The parameter space of (αT ,βT , θ)T , say, A × B × Θ is compact and the true

parameter (αT0 ,β
T
0 , θ0)T is an interior point of A× B ×Θ.

C2. The covariates Z are bounded.

C3. Censoring time C has a bounded density function.

C4. E [ |X|r ] <∞ for some r > 0.

C5. The error density fεt , fεu and their derivatives f ′εt , f ′εu are bounded, respectively,

and
∫

(f ′εt(s)/fεt(s))2fεt(s) ds <∞,
∫

(f ′εu(s)/fεu(s))2fεu(s) ds <∞, respectively.
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C6. The partial derivative matrix ∂Ψ2 (α,β, θ) /∂(αT ,βT , θ)T evaluated at (αT0 ,β
T
0 , θ0)T

is not singular, where Ψ2 (α,β, θ) is a deterministic function defined in Lemma 2.2.

To show the consistency of the estimator, we may first prove the uniform consistency

of the estimating function Ψn(α,β, θ) in (2.8). To this end, we need the following

Lemmas 2.1 and 2.2. We will use ‖ · ‖ to denote the Euclidean norm in Rk.

Lemma 2.1. Let δn be any positive sequence converging to 0, and F̂T (t ;α) be the

Kaplan-Meier type estimator of the residual εx(α). Suppose for some τb <∞, Pr{εx(α0)

> τb} > 0. Under conditions C1-C5, F̂T (t ;α) converges to FT (t ;α0) uniformly in t ≤ τb

and ‖α−α0‖ ≤ δn, almost surely.

Proof. First, we claim that F̂T (t ;α0) converges uniformly to FT (t ;α0) on t ≤ τb almost

surely. By considering the Kaplan-Meier estimator F̂T (t ;α0) of the residual εx(α0) as

a functional of the empirical distribution of the data {εxi (α0),∆i}, i = 1, . . . , n, we may

study the uniform consistency of F̂T (t ;α) by using empirical process theory.

Notice that the Nelson-Aalen estimator Λ̂(t;α0) based on the data {εxi (α0),∆i}, i =

1, . . . , n is defined as

Λ̂(t;α0) ≡
∫ t

−∞

d
∑n

i=1Ni(s;α0)∑n
i=1Ri(s;α0)

=

∫ t

−∞

d Ên [I{εx(α0) ≤ s}∆]

Ên [I{εx(α0) ≥ s]
, (2.9)

where Ni(t;α) and Ri(t;α) are defined before the equation (2.3) and Ên represents

sample empirical mean based on n independent and identically distributed samples.

The Kaplan-Mier estimator F̂T (t ;α0) is related to the Nelson-Aalen estimator Λ̂(t;α0)

by the formula

1− F̂T (t ;α0) =πt
−∞ [1− dΛ̂(s;α0)], (2.10)

where the symbol π represents the product integration (Gill and Johansen 1990). Now
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we follow the idea of Gill (1994, Section 6) to prove the uniform consistency of F̂T (t ;α).

From equation (2.9), we may find that the Nelson-Aalen estimator Λ̂(t;α0) is a func-

tional of two empirical processes, F(n)
1 ≡ Ên [I{εx(α0) ≤ s}∆] and F(n)

2 ≡ Ên [I{εx(α0) ≥ s}].

Define the corresponding theoretical parts to be F1 ≡ E [I{εx(α0) ≤ s}∆] and F2 ≡

E [I{εx(α0) ≥ s], which are the expectation of F(n)
1 and F(n)

2 . The Glivenko-Cantelli

Theorem (e.g. van der Vaart (1998), P. 266) ensures the uniform convergence for both

F(n)
1 and F(n)

2 .

Based on equation (2.9) and (2.10), we can write

1− F̂T (t ;α) =πt
−∞

(
1− d F(n)

1

F(n)
2

)
, (2.11)

which can be considered as the composition of three mappings

(F(n)
1 ,F(n)

2 ) 7→

(
F(n)

1 ,
1

F(n)
2

)
7→
∫ (

1

F(n)
2

)
d F(n)

1 7→ π
(

1− d

(∫ (
1

F(n)
2

)
d F(n)

1

))
.

If we consider the mappings as applying to functions on the interval (−∞, τb], we can

see that the first mapping is supremum norm continuous at pairs of functions since F(n)
2

is uniformly bounded away from zero on (−∞, τb]. The second mapping, which is an

ordinary integration, is supremum norm continuous at functions of uniformly bounded

variation. The same result can be established for the third mapping, the product in-

tegration, due to Theorem 7 in Gill and Johansen (1990). Thus, the mapping from

(F(n)
1 , F(n)

2 ) to 1− F̂T (t ;α) is supremum norm continuous. Applied to the expectation of

(F(n)
1 ,F(n)

2 ), i.e., (F1, F2) on the interval (−∞, τb], the mappings yields the limit function

of 1− F̂T (t ;α0), say, 1− FT (t ;α0). The Glivenko-Cantelli properties of (F(n)
1 ,F(n)

2 ) and

the supremun norm continuity of the mappings therefore give us the uniform convergence

of the Kaplan-Meier estimator F̂T (t ;α0) to its limit function FT (t ;α0).
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Let FT (t,α) be the limit function of F̂T (t,α). Then, under Conditions C1 -C5 and

from theorem 2 of Yang (1997), we have

sup
t≤τb, ‖α−α0‖≤Kn−r

∣∣∣F̂T (t,α) − FT (t,α) − F̂T (t,α0) + FT (t,α0)
∣∣∣ = o(n−1/2−r/2+ε)

(2.12)

almost surely, for every r ∈ [0, 1), K > 0 and ε > 0, given that α ∈ A. By the continuity

of FT (t,α) in α around α0 and the triangle inequality, we have

sup
t≤τb, ‖α−α0‖≤δn

|F̂T (t ;α)− FT (t ;α0)| → 0, almost surely.

Besides τb above, suppose for some τa > −∞, Pr (εx(α0) < τa) > 0. Since ĤT (t;α) ≡

Φ−1{F̂T (t ;α)} and HT (t;α) ≡ Φ−1{FT (t ;α)}, and the mapping FT (t ;α0) 7→ HT (t ;α0)

on the interval t ∈ [τa, τb] is bounded, continuous and monotone, the following is an

immediate consequence of Lemma 2.1.

Corollary 2.1. Let δn be any positive sequence converging to 0. Under conditions C1-

C5, ĤT (t;α) converges to HT (t;α0) uniformly in t ∈ [τa, τb] and ‖α−α0‖ ≤ δn, almost

surely.

Let Ψ∗2,n (α,β, θ) be the same as Ψ2,n (α,β, θ) as defined in (2.7) except that Ŵij(α)

is replaced by Wij(α). Lemma 2.2 below states the uniform consistency of Ψ∗2,n (α,β, θ).

Lemma 2.2. Under conditions C1-C4, there exists deterministic function Ψ2 (α,β, θ)

such that Ψ∗2,n (α,β, θ) uniformly converges to Ψ2 (α,β, θ) in A×B×Θ, in probability.
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Proof. Note that

Ψ∗2,n (α,β, θ) ≡ n−2

n∑
i,j=1

∆◦i (α)∆◦j(α)

 Wij(α)

Zij

[I{εyi (β) ≥ εyj (β)} − Φ2(θWij(α))
]

= SI
n(α,β) − SII

n (α, θ) ,

where SI
n(α,β) ≡ n−2

∑n
i,j=1 ∆◦i (α)∆◦j(α)

 Wij(α)

Zij

 I{εyi (β) ≥ εyj (β)} and SII
n (α, θ) ≡

n−2
∑n

i,j=1 ∆◦i (α)∆◦j(α)

 Wij(α)

Zij

Φ2(θWij(α)). In the following, we show that both

SI
n(α,β) and SII

n (α, θ) converge uniformly to their limit functions.

By algebra, we can write SI
n(α,β) as a functional of four empirical processes

SI
n(α,β)

= n−1

n∑
i=1

∆◦i (α)

n−1

 Wi(α)

Zi

 n∑
j=1

∆◦j(α)I{εyj (β) ≤ εyi (β)}

−n−1

n∑
j=1

∆◦j(α)

 Wj(α)

Zj

 I{εyj (β) ≤ εyi (β)}



=

∫ ∞
−∞

n−1

n∑
i=1

∆◦i (α)

 Wi(α)

Zi

 I{εyi (β) ≥ s}

 d

[
n−1

n∑
j=1

∆◦j(α)I{εyj (β) ≤ s}

]

−
∫ ∞
−∞

[
n−1

n∑
i=1

∆◦i (α)I{εyi (β) ≥ s}

]
d

n−1

n∑
j=1

∆◦j(α)

 Wj(α)

Zj

 I{εyj (β) ≤ s}


=

∫ ∞
−∞

A(n)
1 d A(n)

2 −
∫ ∞
−∞

A(n)
3 d A(n)

4 ,
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where A(n)
1 ≡ Ên

∆◦(α)

 W (α)

Z

 I{εy(β) ≥ s}

, A(n)
2 ≡ Ên [∆◦(α)I{εy(β) ≤ s}],

A(n)
3 ≡ Ên [∆◦(α)I{εy(β) ≥ s}], A(n)

4 ≡ Ên

∆◦(α)

 W (α)

Z

 I{εy(β) ≤ s}

, and

Ên(X) denotes the empirical average. Define the corresponding theoretical parts of

A(n)
1 to A(n)

4 as A1 to A4, respectively. Consider F ≡ {I{Y −bTZ ≤ t} : b ∈ Rp, t ∈ R},

where (Y, ZT )T ∈ Y × Z ≡ R × Rp has distribution P , for arbitrary P . Since F is

the Vapnik-C̆ervonenkis class with index p + 3 (Kosorok 2008, Lemma 9.12), F is P-

Glivenko-Cantelli for any P . Thus, ∆◦(α), I{εy(β) ≤ s} and I{εy(β) ≥ s} are all

P-Glivenko-Cantelli. From condition C2, Z is P-Glivenko-Cantelli. Under condition C1

and C2, {∆◦(α)W (α),α ∈ A} is a collection of measurable functions with integrable

envelope function and is indexed by a compact metric space A, thus ∆◦(α)W (α) is

P-Glivenko-Cantelli (van der Vaart 1998, p. 272). Based on Glivenko-Cantelli preser-

vation theorem for production (Theorem 9.26 and Corollary 9.27 of Kosorok (2008)),

the uniform convergence of A(n)
1 to A(n)

4 holds. Furthermore, the uniform convergence

of stochastic integral like
∫∞
−∞ A(n)

1 dA(n)
2 can be established in an argument similar to

Lemma 3 of Gill (1989). Thus, we obtain the uniform convergence of SI
n(α,β).

Next, we need to show the uniform convergence of SII
n (α, θ). Let V represent the

random vector (∆◦(α),W,ZT )T and Vi, i = 1, . . . , n denote n independent and iden-

tically distributed replicates of the random vector V. Writing the kernel function as

h(Vi,Vj,α, θ) ≡ ∆◦i (α)∆◦j(α)

 Wij(α)

Zij

 (Φ2(θWij(α))− 1/2) and by the fact that

h(Vi,Vj,α, θ) is symmetric with respect to the data arguments (VT
i ,V

T
j )T , we obtain

a U -statistic UII
n (α, θ) ≡ n−2

∑n
i,j=1 h(Vi,Vj,α, θ). It is easy to see that UII

n (α, θ)

is equal to SII
n (α, θ). Let UII(α, θ) ≡ E{UII

n (α, θ)} = E{SII
n (α, θ)}, under assump-
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tions C1 and C2 above, the strong law of large number for U -statistics (e.g. Serfling

1980, Theorem 5.4.A) ensures the pointwise convergence of UII
n (α, θ) to UII(α, θ), i.e.,∥∥UII

n (α, θ)−UII(α, θ)
∥∥ P→ 0, ∀ α ∈ A, θ ∈ Θ. It is well known that pointwise conver-

gence and equicontinuity imply uniform convergence to a continuous function on a com-

pact set (e.g. Rudin 1976, Exercise 7.16). The generalization of this result to stochastic

situations has been well studied by some scholars in Econometric area, e.g., Honoré and

Powell (1994). We take the Theorem 1 in Honoré and Powell (1994) to show the uniform

convergence of UII
n (α, θ) to UII(α, θ). Basically, we need to check whether the three as-

sumptions of the theorem are all satisfied. Under our assumption C1, the parameter space

A × Θ is compact. It is easy to see that the U -statistic kernel function h(Vi,Vj,α, θ)

is measurable in (VT
i ,V

T
j )T for each α ∈ A, θ ∈ Θ and this kernel function is a con-

tinuous with respect to α ∈ A, θ ∈ Θ on the support of (VT
i ,V

T
j )T . One can also find

that |h(Vi,Vj,α, θ)| ≤

∣∣∣∣∣∣∣
 2K0

Zij


∣∣∣∣∣∣∣ for all α ∈ A, θ ∈ Θ, and E

∣∣∣∣∣∣∣
 2K0

Zij


∣∣∣∣∣∣∣ < ∞

due to our assumption C1 and C2, where K0 ≡ max (|HT{τa}| , |HT{τb}|). Thus, all

three assumptions of the Theorem 1 in Honoré and Powell (1994) are satisfied and we

have showed the uniform convergence of SII
n (α, θ). Combining the uniform convergence

results for SI
n(α,β) and SII

n (α, θ), we have proved the Lemma 2.2.

Theorem 2.3. Let δn be any positive sequence converging to 0. Under conditions C1-

C5, there exists deterministic function Ψ (α0,β, θ) such that Ψn (α,β, θ) converges to

Ψ (α0,β, θ) uniformly in ‖α−α0‖ ≤ δn and B ×Θ, in probability.

Proof. The uniform consistency of Ψ1,n(α) has been established by Ying (1993). For

Ψ2,n(α,β, θ), we first note the inequality that ‖Ψ2,n (α,β, θ)−Ψ2 (α0,β, θ)‖ ≤∥∥Ψ2,n (α,β, θ)−Ψ∗2,n (α0,β, θ)
∥∥ +

∥∥Ψ∗2,n (α0,β, θ) − Ψ2 (α0,β, θ)
∥∥. Based on Lemma
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2.2, the uniform convergence of Ψ2,n (α,β, θ) will hold given that

sup
‖α−α0‖≤δn,β∈B, θ∈Θ

∣∣Ψ2,n (α,β, θ) − Ψ∗2,n (α0,β, θ)
∣∣ P→ 0, as n→∞.

The latter can be shown by using corollary 2.1. Thus the uniform convergence of

Ψn (α,β, θ) holds. If we write Ψ1(α0) as the limiting function of Ψ1,n(α) for ‖α−α0‖ ≤

δn, then Ψ (α0,β, θ) =
{

Ψ1(α0)T , Ψ2 (α0,β, θ)
T
}T

.

We need an additional regularity condition C6 to prove Theorem 2.1.

C6. The partial derivative matrix ∂Ψ2 (α,β, θ) /∂(αT ,βT , θ)T evaluated at (αT0 ,β
T
0 , θ0)T

is not singular.

Proof of Theorem 2.1. Note that the limit function Ψ2 (α0,β, θ) has a zero-crossing

at (αT0 ,β
T
0 , θ0)T , according to the equality (2.5). Also, it has been established that

Ψ1(α0) = 0 (Tsiatis 1990; Ying 1993). Thus, Ψ (α0,β0, θ0) = 0. Given this fact and the

condition C6, there exists a neighborhood of (αT ,βT , θ)T where Ψ (α,β, θ) has a unique

zero-crossing at (αT0 ,β
T
0 , θ0)T . Thus, the uniform convergence of the estimating function

Ψn (α,β, θ) implies that there exists one zero-crossing of Ψn (α,β, θ) converging to

(αT0 ,β
T
0 , θ0)T in probability. �

2.5.2 Asymptotic Normality

We now show the asymptotic normality of (α̂T0 , β̂
T

0 , θ̂0 )T . First, we show the asymptotic

normality of Ψn(α0,β0, θ0), then we show the asymptotic linearity of the estimating

function Ψn(α,β, θ) around a small neighborhood of (αT0 ,β
T
0 , θ0)T .

Theorem 2.4. Under conditions C1-C5, n1/2Ψn(α0,β0, θ0) is asymptotically normal

with mean 0.
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Proof. Note that Ψn(α0,β0, θ0) =
{
Ψ1,n(α0)T , Ψ2,n(α0,β0, θ0)T

}T
is a statistic based

on i.i.d. sample {Xi, Yi,∆i,Zi}, i = 1, . . . , n. In the following, we show that Ψn(α0,β0, θ0)

is a plug-in estimator in the mapping from the distribution of {X, Y,Z,∆} to Ψ(α0,β0, θ0),

then we establish the asymptotic normality of Ψn(α0,β0, θ0) by using the functional

delta method (van der Vaart and Wellner 1996, Section 3.9). Define FXY Z∆(t, u, z, δ) ≡

Pr(X ≤ t, Y ≤ u, Z ≤ z, ∆ ≤ δ), FXZ∆(t, z, δ) ≡ FXY Z∆(t,∞, z, δ), FXZ,∆=1(t, z) ≡

Pr(X ≤ t, ∞, Z ≤ z, ∆ = 1), FXZ(t, z) ≡ FXY Z∆(t,∞, z,∞) and FXY Z,∆◦(α0)=1(t, u, z) ≡

Pr(X ≤ t, Y ≤ u, Z ≤ z, ∆◦(α0) = 1). Write their respective empirical counterparts as

F̂XY Z∆, F̂XZ∆, F̂XZ,∆=1, F̂XZ and F̂XY,Z,∆◦(α0)=1. In addition, let

FWY Z,∆◦(α0)=1(w, u, z) ≡ Pr(W (α0) ≤ w, Y ≤ u, Z ≤ z, ∆◦(α0) = 1),

F̂WY Z,∆◦(α0)=1(w, u, z) ≡ n−1

n∑
i=1

I(Ŵi(α0) ≤ w, Yi ≤ u, Zi ≤ z, ∆◦i (α0) = 1)

Thus,

FWY Z,∆◦(α0)=1(w, u, z) = FXY Z,∆◦(α0)=1{G−1
T (H−1

T (w) +αT0 z), u, z},

F̂WY Z,∆◦(α0)=1(w, u, z) = F̂XY,Z,∆◦(α0)=1{G−1
T (Ĥ−1

T (w) +αT0 z), u, z}.

We may reexpress Ψ1,n(α0) and Ψ2,n(α0,β0, θ0) as the functionals of empirical func-

tions. Notice that εx(α0) = GT (X) − αT0 Z and εy(β0) = GU(Y ) − βT0 Z with known

increasing transformation GT (·) and GU(·) respectively, we have

Ψ1,n(α0) =

∫
ζn (εxi (α0);α0)

[
z1 −

∫
z2 I{εx2(α0) ≥ εx1(α0)} dF̂XZ(t2, z2)∫
I{εx2(α0) ≥ εx1(α0)} dF̂XZ(t2, z2)

]
dF̂XZ,∆=1(t1, z1),



48

and its theoretical counterpart is

Ψ1(α0) =

∫
ζn (εxi (α0);α0)

[
z1 −

∫
z2 I{εx2(α0) ≥ εx1(α0)} dFXZ(t2, z2)∫
I{εx2(α0) ≥ εx1(α0)} dFXZ(t2, z2)

]
dFXZ,∆=1(t1, z1).

As for Ψ2,n(α0,β0, θ0), similarly we have

Ψ2,n(α0,β0, θ0) =

∫ ∫  w12

z12

 [I{εy1(β0) ≥ εy2(β0)} − Φ2(θ0w12)]

· dF̂WY Z,∆◦(α0)=1(w1, u1, z1)dF̂WY Z,∆◦(α0)=1(w2, u2, z2),

where w12 ≡ w1 − w2 and z12 ≡ z1 − z2, its theoretical counterpart is

Ψ2 (α0,β0, θ0) ≡
∫ ∫  w12

z12

 [I{εy1(β0) ≥ εy2(β0)} − Φ2(θ0w12)]

· dFWY Z,∆◦(α0)=1(w1, u1, z1)dFWY Z,∆◦(α0)=1(w2, u2, z2)

= E

∆◦1(α0)∆◦2(α0)

 W12

Z12

 [I{εy1(β0) ≥ εy2(β0)} − Φ2(θ0W12)]


Thus, we have shown that Ψn(α0,β0, θ0) is a plug-in estimator in the mapping from the

distribution of {X, Y,Z,∆} to Ψ(α0,β0, θ0). The map FXY Z∆ 7→ Ψ(α0,β0, θ0) can be

further decomposed as

FXY Z∆ 7→



FXZ

FXZ,∆=1


FXZ∆ 7→ Fεt on (−∞, τb ] 7→ HT on [ τa, τb ] 7→ H−1

T on [HT (τa), HT (τb)]

FXY Z,∆◦(α0)=1
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7→ Ψ1(α0)

7→ G−1
T on [HT (τa) +αT0 Z, HT (τb) +αT0 Z]

 7→ FWY Z,∆◦(α0)=1 7→ Ψ2 (α0,β0, θ0)



7→ Ψ (α0,β0, θ0) .

We then show the Hadamard-differentiability of the map FXY Z∆ 7→ Ψ(α0,β0, θ0) in ap-

propriate spaces of univariate and bivariate cadlag functions endowed with supnorm, see-

ing Neuhaus (1971) and van der Vaart and Wellner (1996, Section 3.9) for example. It is

obvious that the maps FXY Z∆ 7→ {FXZ, FXZ,∆=1}, FXY Z∆ 7→ {FXZ∆, FXY Z,∆◦(α0)=1} and

{Ψ1(α0),Ψ2 (α0,β0, θ0)} 7→ Ψ (α0,β0, θ0) are Hadamard-differentiable. The Hadamard-

differentiability of the maps FXZ∆ 7→ Fεt on (−∞, τb ], Fεt on (−∞, τb ] 7→ HT on [ τa, τb ],

HT on [ τa, τb ] 7→ H−1
T on [HT (τa), HT (τb) ], H−1

T on [HT (τa), HT (τb) ] 7→ G−1
T on [HT (τa) +

αT0 Z, HT (τb) + αT0 Z ] and {G−1
T on [HT (τa) + αT0 Z, HT (τb) + αT0 Z ], FXY Z,∆◦=1} 7→

FWY Z,∆◦(α0)=1 follows the results in van der Vaart and Wellner (1996, Section 3.9)

directly. In terms of the map {FXZ, FXZ,∆=1} 7→ Ψ1(α0), we can see from equal-

ity (2.5.2) that this map is further decomposed into the inner and outer integrations.

The inner one is linear and continuous, and hence Hadamard-differentiable, whereas

the Hadamard-differentiability of the outer one follows the Lemma 5.1 of Gill et al.

(1995). The remaining piece of the decomposed maps, FWY Z,∆◦(α0)=1 7→ Ψ2 (α0,β0, θ0),

can be shown to be Hadamard-differentiable, by using similar argument as that of the

map {FXZ, FXZ,∆=1} 7→ Ψ1(α0). The chain rule of the Hadamard-differentiability

(e.g. van der Vaart and Wellner 1996, Lemma 3.9.3) now results in the Hadamard-

differentiability of the mapping from FXY Z∆ to Ψ (α0,β0, θ0). By the functional delta
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method then, the asymptotic normality of the empirical distribution F̂XY Z∆ yields that

of Ψ2 (α0,β0, θ0).

Theorem below establish the asymptotic linearity of Ψn(α,β, θ) around a small neigh-

borhood of (αT0 ,β
T
0 , θ0)T .

Theorem 2.5. Define η ≡ (αT ,βT , θ)T , under conditions C1-C5, for any positive se-

quence δn → 0 in probability,

sup
‖η−η0‖≤δn

‖Ψn(η)−Ψn(η0)−Ψ(η)‖ = op(n
−1/2 ∨ ‖η − η0‖). (2.13)

To prove Theorem 2.5, we prove the following Lemma first.

Lemma 2.3. Under conditions C1-C5, for η in a small neighborhood around η0, the

expectation of I{εyi (β) ≥ εyj (β)} conditioning on Xi, Xj,Zi,Zj,∆i = 1,∆j = 1, i, j =

1, . . . , n, is equal to Φ2(θ0Wij(α0)) +Op(‖β − β0‖).

Proof. Since εyi (β) = εyi (β0)−(β−β0)TZi, we may have fεy
i (β)(s) = fεu(s+(β−β0)TZi),

where fεy
i (β) is the conditional density function of εyi (β) and fεu is the density function of

εyi (β) the true error term εu on cost scale. Noting that εyi (β) and εyj (β) are independent

conditioning on Xi, Xj,Zi,Zj,∆i = 1,∆j = 1, we could have the following expression of
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the conditional density function of εyij(β) ≡ εyi (β)− εyj (β),

fεy
ij(β)(t)

=

∫ ∞
−∞

fεy
j (β)(s) · fεy

i (β)(s+ t) ds

=

∫ ∞
−∞

fεu(s+ (β − β0)TZj) · fεu(s+ t+ (β − β0)TZi) ds

=

∫ ∞
−∞

{[
fεu(s) + f ′εu(s+ λ1(β − β0)TZj) (β − β0)TZj

]
·
[
fεu(s+ t) + f ′εu(s+ t+ λ2(β − β0)TZi) (β − β0)TZi

]}
ds

=

∫ ∞
−∞

[
fεu(s)fεu(s+ t) + fεu(s+ t)f ′εu(s+ λ1(β − β0)TZj) (β − β0)TZj

+ fεu(s)f ′εu(s+ t+ λ2(β − β0)TZi) (β − β0)TZi

+ f ′εu(s+ λ1(β − β0)TZj) (β − β0)TZjf
′
εu(s+ t+ λ2(β − β0)TZi) (β − β0)TZi

]
ds,

where f ′εu is the first order derivative of fεu and λ1 , λ2 ∈ (0, 1). Thus, we have

Pr
{
εyi (β0) ≥ εyj (β0) | ·

}
= 1−

∫ 0

−∞
fεy

ij(β)(t) dt

= 1−
∫ 0

−∞

∫ ∞
−∞

fεu(s)fεu(s+ t) ds dt

− (β − β0)TZj ·
∫ 0

−∞

∫ ∞
−∞

fεu(s+ t)f ′εu(s+ λ1(β − β0)TZj)ds dt

− (β − β0)TZi ·
∫ 0

−∞

∫ ∞
−∞

fεu(s)f ′εu(s+ t+ λ2(β − β0)TZi)ds dt

− (β − β0)TZj(β − β0)TZi

∫ 0

−∞

∫ ∞
−∞

f ′εu(s+ λ1(β − β0)TZj)

· f ′εu(s+ t+ λ2(β − β0)TZi) ds dt
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From the equality (2.5) in Section 2.2, we have the following expression for the conditional

expectation of I{εyi (β0) ≥ εyj (β0)},

Pr
{
εyi (β0) ≥ εyj (β0) | ·

}
= 1−

∫ 0

−∞
fεy

ij(β0)(t)dt (2.14)

= 1−
∫ 0

−∞

∫ ∞
−∞

fεu(s)fεu(s+ t) ds dt = Φ2(θ0Wij(α0)).

Since both fεu and f ′εu are bounded under Condition C5, we have

∫ 0

−∞

∫ ∞
−∞

fεu(s+ t)f ′εu(s+ λ1(β − β0)TZj)ds dt (2.15)

=

∫ ∞
−∞

Fεu(s) · f ′εu(s+ λ1(β − β0)TZj) ds

=

∫ ∞
−∞

Fεu(s− λ1(β − β0)TZj) dfεu(s)

=

[
Fεu(s− λ1(β − β0)TZj) · fεu(s)

]∣∣∣∣∞
−∞
−
∫ ∞
−∞

fεu(s+ λ1(β − β0)TZj) · fεu(s) ds

= 1 · fεu(+∞)−
∫ ∞
−∞

fεu(s+ λ1(β − β0)TZj) · fεu(s) ds

where Fεu is the cumulative distribution function of εu. Since fεu is bounded, if we define

K1 ≡ sup
s
{fεu(s)}, we would have

0 ≤
∫ ∞
−∞

fεu(s+ λ1(β − β0)TZj) · fεu(s) ds ≤ K1

∫ ∞
−∞

fεu(s) ds = K1.

Thus, the equality (2.15) is finite. Similarly, we can show that both the integral
∫ 0

−∞

∫∞
−∞

fεu(s)f ′εu(s + t)ds dt and
∫ 0

−∞

∫∞
−∞ f

′
εu(s)f ′εu(s + t) ds dt are finite. Putting these re-

sults together with equality (2.14), we would find that the conditional expectation of

I{εyi (β) ≥ εyj (β)} is equal to Φ2(θ0Wij(α0)) +Op(‖β − β0‖).
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Now, we prove the Theorem 2.5.

Proof of Theorem 2.5. . Note that Ψn = (ΨT
1,n,Ψ

T
2,n)T . The asymptotic linearity of

Ψ1,n(α) has already established by Ying (1993). All we need to show is the asymp-

totic linearity of Ψ2,n(η). Write Ψ2,n(η) ≡ Tn(α,β) + Un(α, θ), where Tn(α,β) ≡

n−2
∑n

i,j=1 ∆◦i (α)∆◦j(α)
(
Ŵij(α),ZT

ij

)T
I{εyi (β) ≥ εyj (β)} and Un(α, θ) ≡ n−2

∑n
i,j=1

∆◦i (α)∆◦j(α)
(
Wij(α),ZT

ij

)T
Φ2(θ Ŵij(α)). In the following, we first show the asymp-

totic linearity of Ŵi(α) around α0. Then we show the asymptotic linearity of Tn(α,β)

and Un(α, θ) in order to obtain the asymptotic linearity of Ψ2,n(η).

From (2.12), we have the asymptotic linearity of F̂T (t,α) around α0. Since Ŵi(α) =

ĤT (εxi (α)) = Φ−1(F̂T (εxi (α);α)), we may consider ĤT (t;α0) = Φ−1(F̂T (t;α0)) on t ∈

[τa, τb], where the function Φ−1(·) is defined over the interval s ⊂ (0, 1) and s is bounded

away from both 0 and 1. By using standard Taylor expansion and putting together

(2.12) and uniform consistency result in Lemma 2.1, we can establish the asymptotic

linearity of Ŵi(α) around α0, i.e.,

sup
‖α−α0‖≤δn

∥∥∥Ŵi(α) − Ŵi(α0)− Wi(α) + Wi(α0)
∥∥∥ = op(n

−1/2 ∨ ‖α−α0‖), (2.16)

for any positive sequence δn → 0 in probability.

Define T∗n(α,β) ≡ E[Tn(α,β) | X1, ..., Xn,Z1, ...,Zn] as the conditional expectation

of Tn(α,β) given Xi,Zi, i = 1, ..., n. With Xi,Zi, i = 1, ..., n treated as constants,

Tn(α,β) is indeed a weighted log-rank type estimating function. Under Conditions

C1 –C5, when fixing α = α0, we can obtain the asymptotic linearity of Tn(α0,β) in a

small neighborhood around β0 by following Theorems 1 and 2 in Lai and Ying (1988)
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or Theorem 2 in Ying (1993), i.e., for any positive sequences δn → 0 in probability,

sup
‖β−β0‖≤δn

‖Tn(α0,β)−Tn(α0,β0)−T∗n(α0,β) + T∗n(α0,β0)‖ = op(n
−1/2 ∨ ‖β−β0‖).

(2.17)

Using the similar argument in the proof of Lemma 2.2, we can show that Tn(α0,β)

converges to T∗n(α0,β) uniformly in β. Combining the asymptotic linearity result of

Ŵi(α) with the uniform consistency result of Tn(α0,β), and by the Taylor expansion

of ∆◦i (α)Wi(α) around ∆◦i (α0)Wi(α0), we can obtain that for any positive sequences

δ1,n → 0 and δ2,n → 0 in probability,

sup
‖α−α0‖≤δ1,n, ‖β−β0‖≤δ2,n

‖Tn(α,β)−Tn(α0,β)−T∗n(α,β) + T∗n(α0,β)‖

= op(n
−1/2 ∨ ‖α−α0‖). (2.18)

Combing equation (2.17) with equation (2.18) we obtain that under conditions C1 –C5,

sup
‖α−α0‖≤δ1,n, ‖β−β0‖≤δ2,n

‖Tn(α,β)−Tn(α0,β0)−T∗n(α,β) + T∗n(α0,β0)‖

op(n
−1/2 ∨ ‖(αT ,βT )T − (αT0 ,β

T
0 )T‖). (2.19)

Define T(α,β) ≡ E[Tn(α,β)]. Write T∗n(α,β)−T∗n(α0,β0)−T(α,β) + T(α0,β0)

≡ (I) + (II), where

(I) = T∗n(α,β)−T∗n(α0,β0)

− n−2

n∑
i,j=1

{
∆◦i (α)∆◦j(α)

(
Wij(α),ZT

ij

)T
E
[
I{εyi (β) ≥ εyj (β)} | Xi, Xj,Zi,Zj

]}

+ n−2

n∑
i,j=1

{
∆◦i (α0)∆◦j(α0)

(
Wij(α0),ZT

ij

)T
E
[
I{εyi (β0) ≥ εyj (β0)} | Xi, Xj,Zi,Zj

]}
,
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(II) = n−2

n∑
i,j=1

{
∆◦i (α)∆◦j(α)

(
Wij(α),ZT

ij

)T
E
[
I{εyi (β) ≥ εyj (β)} | Xi, Xj,Zi,Zj

]}

− n−2

n∑
i,j=1

{
∆◦i (α0)∆◦j(α0)

(
Wij(α0),ZT

ij

)T
E
[
I{εyi (β0) ≥ εyj (β0)} | Xi, Xj,

Zi,Zj]

}
−T(α,β) + T(α0,β0).

Under condition C5, the conditional density function of εyij(β) ≡ εyi (β) − εyj (β) given

Xi, Xj,Zi,Zj,∆i = 1,∆j = 1 is bounded. Then we can show by Taylor expansion

that E
[
I{εyi (β) ≥ εyj (β)} | Xi, Xj,Zi,Zj

]
= E

[
I{εyi (β0) ≥ εyj (β0)} | Xi, Xj,Zi,Zj

]
+

Op(‖β − β0‖), uniformly in β. Combining this result with the asymptotic linearity

result of Ŵi(α), we have

sup
‖α−α0‖≤δ1,n, ‖β−β0‖≤δ2,n

|(I)|

≤
∣∣E [I{εyi (β0) ≥ εyj (β0)} | Xi, Xj,Zi,Zj

] ∣∣ sup
‖α−α0‖≤δ1,n

∣∣∣∆◦i (α)∆◦j(α)Ŵij(α)

− ∆◦i (α0)∆◦j(α0)Ŵij(α0)−∆◦i (α)∆◦j(α)Wij(α) + ∆◦i (α0)∆◦j(α0)Wij(α0)
∣∣∣

+ sup
‖α−α0‖≤δ1,n

∣∣∣∆◦i (α)∆◦j(α)Ŵij(α)−∆◦i (α)∆◦j(α)Wij(α)
∣∣∣ sup
‖β−β0‖≤δ2,n

∣∣∣∣
E
[
I{εyi (β) ≥ εyj (β)} | Xi, Xj,Zi,Zj

]
− E

[
I{εyi (β0) ≥ εyj (β0)} | Xi, Xj,Zi,Zj

] ∣∣∣∣
= op(n

−1/2 ∨ ‖(αT ,βT )T − (αT0 ,β
T
0 )T‖). (2.20)

The expression (II) involves continuous functions with bounded derivatives, by Taylor

expansion and uniform consistency results, it is easy to show that sup‖α−α0‖≤δ1,n, ‖β−β0‖≤δ2,n

|(II)| = op(n
−1/2 ∨ ‖(αT ,βT )T − (αT0 ,β

T
0 )T‖), which combing with (2.20) leads to the

result that under conditions C1 –C5, for any positive sequences δ1,n → 0 and δ2,n → 0 in
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probability,

sup
‖α−α0‖≤δ1,n, ‖β−β0‖≤δ2,n

‖T∗n(α,β)−T∗n(α0,β0)−T(α,β) + T(α0,β0)‖

= op(n
−1/2 ∨ ‖(αT ,βT )T − (αT0 ,β

T
0 )T‖). (2.21)

From equalities (2.19) and (2.21), we have shown the asymptotic linearity of Tn(α,β).

Note that Un(α, θ) is a continuous function of Ŵij(α) with bounded derivatives. By

using the asymptotic linearity result of Ŵi(α) and the Taylor expansion, we can show the

asymptotic linearity of Un(α, θ). Then we can readily establish the asymptotic linearity

of Ψ2,n(η) and hence the asymptotic linearity of Ψn(η), i.e., the equality (2.13).

Proof of Theorem 2.2. The asymptotically normality of (α̂T0 , β̂
T

0 , θ̂0 )T can be obtained

from Theorems 2.4 and 2.5 by fairly standard arguments. �
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Chapter 3

Semiparametric Inference for

Successive Durations

A bi-state progressive process is a reasonable model for the course of many chronic dis-

eases. As an example, a national intergroup trial was conducted in 1980’s to evaluate the

effect of the drugs levamisole and fluorouracil, as adjuvant therapy for resected colorec-

tal carcinoma (Moertel et al. 1990). In this colon cancer trial, 929 eligible patients with

Stage C disease were randomized to three study arms, including observation, levamisole

alone, and levamisole combined with fluorouracil treatments. During the study, 468

patients experienced cancer recurrence, and 414 of them died by the end of the study;

additionally, 38 patients died without cancer recurrence. Such disease progression can

be described by a bi-state progression process with cancer-free and recurrence states,

where the duration of the recurrence state may be 0. While time to cancer recurrence

and time to death can be addressed by standard statistical methods, time between re-

currence and death, i.e., the duration of the recurrence state is also of scientific interest

but its estimation with incomplete follow-up data is a challenge. In this chapter, we
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address the estimation with such a time-between-events outcome.

Let Tk, k = 1, 2, be the two durations in order, and C be the censoring time. As

we discussed in Chapter 1, under serial censoring, the second duration T2 is subject to

induced dependent censoring, and the marginal distribution of T2 is nonparametrically

nowhere identifiable. Current available nonparametric approaches have limitations in

both estimation and prediction.

Apparently, all these issues could be resolved with a fully parametric approach. But

the price is model flexibility. Confronted with similar issues in problems with a univariate

mark such as lifetime medical cost, Huang and Berry (2006) proposed a semiparametric

copula modeling (Sklar 1959) strategy to strike a balance between model flexibility and

identifiability. A parametric form is taken for the association structure between time to

the event and the mark, while their marginal distributions are left unspecified. Upon

viewing the second duration as a mark of the initiating event of the second duration,

the modeling strategy of Huang and Berry (2006) may be adopted. However, there exist

two significant complications. First, the second duration as a mark is subject to further

censoring even upon the occurrence of the associated event. Second, the second duration

may be 0, corresponding to the situation of reaching death without cancer recurrence in

the colon cancer example. Thus, it is necessary to accommodate the situation that T2

has a probability mass at 0.

In Section 3.1, we introduce this semiparametric model for the bi-state progressive

process, along with a more realistic censoring mechanism. An inference procedure is

proposed in Section 3.2 and asymptotic properties of the resulting estimators are estab-

lished in Section 3.3. Section 3.4 gives numerical results for simulation studies and the

application to a colon cancer trial. Section 3.5 concludes with discussion. All the proofs

are collected in Section 3.6.
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3.1 Semiparametric Modeling

With the copula modeling strategy, we parameterize the copula function of the two

durations but leave their marginal distributions unspecified. This is particularly desirable

when the marginal distributions might be of interest. In the following, we present a

normal copula model first and then impose a realistic censoring mechanism.

3.1.1 Normal copula model

There are various copula families; see Shih and Louis (1995), Genest, Ghoudi, and

Rivest (1995), and the references therein. In this paper, we specifically study the normal

copula (cf. Klaassen and Wellner, 1997; Huang and Berry, 2006). However, continuous

marginal distributions are typically assumed with copula modeling. To allow for the

generality of the marginals, we specify the normal copula model as follows: there exist

increasing transformations Gk(·), k = 1, 2, such that

Pr{T1 ≤ t1, T2 ≤ t2} = Φ2{G1(t1), G2(t2), ρ0}, t1, t2 ≥ 0, (3.1)

where Φ2(·, ·, ρ0) is the cumulative distribution function of standard bivariate normal

distribution with correlation coefficient ρ0. Write marginal distributions Fk(t) ≡ Pr(Tk ≤

t), k = 1, 2. It is easy to see that

Gk(·) = Φ−1{Fk(·)}, k = 1, 2, (3.2)

satisfy (3.1), where Φ(·) is the cumulative distribution function of standard univariate

normal distribution. Clearly, the marginal distributions of Tk, k = 1, 2, are completely

unspecified. In the colon cancer trial, a non-negligible portion of patients were observed
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dying free of cancer recurrence, which means the second durations T2 for those patients

equal 0. The normal copula model (3.1) is able to accommodate the situation where

T2 has a probability mass at 0. In the following, we focus on the situation that T1

has a completely continuous distribution, and T2 has a probability mass at 0 and is

continuously distributed beyond 0.

By normal distribution theory, normal copula model (3.1) implies

Pr{T2 ≤ t2
∣∣T1} = Φ

{
−θ0G1(T1) + (1− ρ2

0)−1/2G2(t2)
}
, t2 ≥ 0, (3.3)

with Gk(·), k = 1, 2, defined as in (3.2) and θ0 ≡ ρ0(1−ρ2
0)−1/2. Thus, copula model (3.1)

may be alternatively viewed as a regression model for T2 with T1 as the covariate; see

Cook and Lawless (1997) for regression analysis of T2 given T1 under different regression

models.

Remark 3.1. In the special case where the probability mass of T2 at 0 is 0, the model

(3.3) would reduce to the following linear transformation model (Cheng, Wei, and Ying

1995) with standard normal error ε:

(1− ρ2
0)−1/2G2(T2)

∣∣T1 ∼ θ0G1(T1) + ε, (3.4)

That is, upon an unspecified increasing transformation, T2 is linearly related to G1(T1)

with a standard normal error.
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3.1.2 A realistic censoring mechanism

To accommodate a realistic censoring mechanism, we reformulate the serial censoring.

Let Ck be the censoring time of Tk in the sense that

Xk ≡ Tk ∧ Ck, ∆k ≡ I(Tk ≤ Ck), k = 1, 2.

Since the second duration is not observable when the first one is censored, the serial

censoring has the following constraint on C2:

C2 = 0 if T1 > C1.

For the purpose of identifiability, we assume that Pr{C2 = 0 |T1 ≤ C1} = 0. We take

the viewpoint that T2 is a mark of the initiating event of the second duration, i.e., the

transition between the two durations. Consequently, the censoring mechanism imposed

consists of two nested components. One is on this marked point process, and the other

is on the mark T2 after its associated event has occurred:


C1 ⊥ {T1, T2}

C2 ⊥ T2

∣∣ (T1, T1 ≤ C1)

, (3.5)

where ⊥ represents independence. The dependence of the process history is allowed and

unspecified, which is more general and realistic than the censoring mechanism required

in Wang and Wells (1998) and Lin, Sun, and Ying (1999).
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3.2 Proposed Estimation Procedure

Suppose that the data consist of {Xki,∆ki : k = 1, 2}, i = 1, · · · , n, as n iid replicates

of {Xk,∆k : k = 1, 2}. Among the three parameters with normal copula model (3.1),

F1(.) can be readily estimated. However, the estimation of F2(·) and ρ0 is not as obvious

and indeed challenging. Throughout this article, our attention is restricted to situations

with ρ0 ∈ (−1, 1).

The current application of bivariate copula modeling is different from those studied

by Klaassen and Wellner (1997), Genest, Ghoudi, and Rivest (1995), and Shih and Louis

(1995), where both marginal distributions can be easily estimated and the association

parameter is the focus of interest. This problem is similar to that of Huang and Berry

(2006), however, with the complication that the mark, i.e., T2, is still subject to censoring

after the occurrence of the transition between the two states.

Given that C1 ⊥ {T1, T2} in censoring mechanism (3.5), it follows that,

Pr{T2 ≤ t2
∣∣Z,∆1 = 1} = Φ {−θ0Z +H0(t2)} , t2 ≥ 0, (3.6)

where H0(·) ≡ (1−ρ2
0)−1/2G2(·) and Z ≡ G1(X1). Note that H0(·) and θ0 are determined

by F2(·) and ρ0, and vice versa. In the following, we propose an inference procedure for

estimation by utilizing the martingale structure associated with survival data.

Using counting process notation for the second duration, we write N(t) = ∆2I(X2 ≤

t,∆1 = 1), Y (t) = I(X2 ≥ t,∆1 = 1) and M2(t) = N(t) − Y (0)Φ{− θZ + H(0)} −∫
s∈(0,t]

Y (s) dΛ{− θZ +H(s)}, where Λ(·) is the cumulative hazard function of standard

normal distribution. Since M2(t) is the martingale process associated with the counting

process N(t), we have E{M2(t)|Z} = 0. Note that Z in model (3.6) is not directly

observed. Nevertheless, it can be estimated. Let F̂1(·) be the Kaplan–Meier estimator
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of F1(·) using data {X1i,∆1i}, i = 1, · · · , n. A natural estimator for Z = G1(X1) is

Ẑ ≡ Φ−1{F̂1(X1)}.

Define τ1 = inf{t : Pr(X1 > t) = 0}. To avoid technical difficulties arising from the

unboundedness of Φ−1(·) at 0 and 1 and from the tail instability of F̂1(·), we only

consider individuals with X1 ∈ [a, b] where 0 < a < b < τ1 for constants a and b. Write

∆ab = I(a ≤ X1 ≤ b) and τ2 as a constant satisfying regularity condition 1 stated in

section ??. Then, we construct the following estimating equations for {H0(·), θ0}:

n∑
i=1

∆ab
i Ẑi

[
Ni(τ2)− Yi(0)Φ

{
− θẐi +H(0)

}
−
∫
t∈(0,τ2]

Yi(t) dΛ
{
− θẐi +H(t)

}]
= 0

(3.7)
n∑
i=1

∆ab
i

[
Ni(t)− Yi(0)Φ

{
− θẐi +H(0)

}
−
∫
s∈(0,t]

Yi(s) dΛ
{
− θẐi +H(s)

}]
= 0 (t ≥ 0).

(3.8)

To motivate these equations, with H(·) given, (3.7) may be used to estimate θ. On the

other hand, (3.8) is an estimating equation for H(·) with given θ.

Based on Remark 3.1, in the special case where the probability mass of T2 at 0 is

0 and G1(·) is given, the model (3.6) is a linear transformation model with indepen-

dent censoring since the censoring mechanism (3.5) implies C2 ⊥ T2

∣∣ (X1,∆1 = 1). In

this case, our proposed estimating equations (3.7) and (3.8) reduce to those for linear

transformation model developed by Chen, Jin, and Ying (2002). Compared with the

estimation of linear transformation model in Chen, Jin, and Ying (2002), our estimation

problem has some unique features. First, T2 in our set-up has a probability mass at 0,

and a probit model is induced for T2 = 0. Specially, the induced model (3.3) implies
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that I(T2 > 0) follows a probit model (McCullagh and Nelder 1989) conditioning on T1,

Pr{T2 = 0
∣∣T1} = Φ

{
−θ0G1(T1) + (1− ρ2

0)−1/2G2(0)
}
. (3.9)

Second, Chen et al. (2002) emphasizes on the estimator of the regression parameters

(e.g., θ0 in our setup), while in our case the emphasis is on the estimation of the marginal

distribution of T2.

We denote {Ĥ(·), θ̂} as the solution of (3.7) and (3.8), where Ĥ(·) jumps only at ob-

served failure times 0, t1, ..., tK , and propose an iterative algorithm to compute {Ĥ(·), θ̂}.

Step 1. Set m = 0 and obtain the initial value for θ̂, denoted by θ̂(0), as estimate from the

probit model

Pr{T2 = 0
∣∣ (Z, ∆1 = 1)} = Φ {−θ0Z +H(0)} .

Step 2. Find H(m)(·) and a new estimate for θ0, denoted by θ̂(m+1) as follows. First, obtain

H(m)(0) by solving

n∑
i=1

∆ab
i

[
Ni(0)− Yi(0)Φ

{
− θ(m)Ẑi +H(0)

}]
= 0.

Then, obtain H(m)(tk), for k = 1, 2, ..., K, by sequentially solving the equation

n∑
i=1

∆ab
i Yi(tk) Λ

{
− θ(m)Ẑi +H(tk)

}
=

n∑
i=1

∆ab
i [Ni(tk)−Ni(tk−)

+ Yi(tk) Λ
{
− θ(m)Ẑi +H(tk−)

}]
.

Next, obtain θ̂(m+1) by solving (3.7) with H = H(m).

Step 3. Update m to m+ 1.
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Step 4. Repeat Step 2 and Step 3 until a predetermined convergence criterion is met.

Note that the estimating equations (3.7) and (3.8) alone will not guarantee a unique

zero-crossing. By using the the probit model for T2 = 0 as in our algorithm, we have a

consistent initial estimate for θ0, which provides guidance for us to find the zero-crossing

close to the truth. After obtaining {Ĥ(·), θ̂} as an estimator of {H0(·), θ0}, we can get

an estimator for {F2(·), ρ0}:

F̂2(·) = Φ

{(
1 + θ̂ 2

)−1/2

Ĥ(·)
}
, ρ̂ = θ̂

(
1 + θ̂ 2

)−1/2

. (3.10)

In terms of the interval estimation for {F2(·), ρ0}, we have two approaches available

in general. One is to derive their influence functions as maps from the distribution of

{X1, X2,∆1,∆2}. However, the derivation is algebraically complex. An alternative is

through resampling. We adopt nonparametric bootstrap here to obtain the estimated

standard error. Then, the Wald-type confidence interval will be constructed.

3.3 Asymptotic Study

In this section, we establish the asymptotic properties of the proposed estimators.

We assume the following regularity conditions.

Condition 1. Let τ2 be a constant such that Pr(T2 > τ2) > 0 and Pr(C2 > τ2) > 0.

Condition 2. The partial derivative D1(t) derived in (3.21) is uniformly bounded away

from 0 and finite for t ∈ [0, τ2]. The partial derivative D2 derived in (3.22) is bounded

away from 0 and finite.

The uniform consistency and weak convergence of Kaplan-Meier estimator F̂1(·) are

well known. We have the following theorems for the asymptotic properties of the pro-
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posed estimators.

Theorem 3.1. Suppose that the regularity conditions C1-C2 hold. There exists a neigh-

borhood of θ0 within which θ̂ is unique, and θ̂ → θ0 and supt∈[0,τ2] ‖Ĥ(t) −H0(t)‖ → 0,

in probability. Furthermore, ρ̂→ ρ0 and supt∈[0,τ2] ‖F̂2(t)− F2(t)‖ → 0, in probability.

Theorem 3.2. Under the regularity conditions C1-C2, n1/2(θ̂ − θ0) is asymptotically

normal with mean 0, and n1/2{Ĥ(t)−H0(t)} weakly converges to a Gaussian process for

t ∈ [0, τ2]. Thus, n1/2(ρ̂ − ρ0) is asymptotically normal with mean 0, and n1/2{F̂2(t) −

F2(t)} weakly converges to a Gaussian process for t ∈ [0, τ2].

3.4 Numerical Studies

Simulations were carried out to assess the finite-sample performance of both the estima-

tor of the joint distribution function F12(t1, t2) and the estimator of marginal distribution

function of T2.

3.4.1 Simulation Under Normal Copula Model

We consider the general situation where T2 has a probability mass at 0. To generate

the successive durations (T1, T2), we first generate (S1, S2) from bivariate normal copula

with standard exponential margins. Then, let T1 = S1 and T2 = (S2−QS2(0.05)) ·I(S2 >

QS2(0.05)), where QS2(τ) is the τ -th quantile of S2. Thus, T2 has a probability mass of

0.05 at t = 0. Various association levels with ρ0 = 0.8, 0.4, 0,−0.4,−0.8 were considered,

corresponding to strong positive, moderate positive, independent, moderate negative

and strong negative associations between the two durations. The follow-up time was

subject to right censoring by censoring time C, which is independent of {T1, T2} and
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has an exponential distribution with rate 0.2 but truncated at 2. Thus, any event with

T1 > 2, along with associated T2 is censored, corresponding to the top 13.5% of T1; thus,

the marginal distribution of T2 is nonparametrically nowhere identifiable. The overall

censoring rate for T1 and T2 are 24.3% and 46.1% -52.9% respectively. The sample size

was 200 and the replication time was 1000.

Table 3.1 presents the findings of the simulation for ρ0 and the marginal distribution

F2(t2). The nonparametric bootstrap with size 200 was used to obtain estimated stan-

dard deviation and 95% Wald-type confidence interval. As seen, The proposed estimator

for ρ0 is virtually unbiased and the coverage probability of its Wald-type confidence in-

terval is fairly accurate. The proposed estimator for marginal distribution F2(t2) is

essentially unbiased and the empirical coverage probability of its Wald-type confidence

interval is very close to its nominal level in general. When T1 and T2 have strong negative

association, i.e., ρ0 = −0.8, the coverage probability of Wald-type confidence interval

for F̂2(t2) at t2 = F−1
2 (0.05) is much lower than its nominal level, which is due to the

round-off error in computation when we have limited observations for T2 = 0 under

sample size 200. The coverage probability of Wald-type confidence interval for F̂2(t2)

at t2 = F−1
2 (0.05) is close to its nominal level when we increases the sample size to

400. When T1 and T2 have strong positive association, i.e., ρ0 = 0.8, moderate bias

is observed for F̂2(t2) at t2 = F−1
2 (0.8) and the corresponding coverage probability of

Wald-type confidence interval is lower than its nominal level. This is mainly due to the

heavy censoring on the tail parts of both T1 and T2. In our simulation setting, the upper

13.5% of T1 is censored, and the associated T2, which is also censored, occurs mostly

in the upper tail when ρ0 = 0.8. For comparison purpose, Table 3.1 also includes the

näıve Kaplan-Meier estimator of F2(t2). The näıve Kaplan-Meier estimator is generally

biased except for the special case of ρ0 = 0, where the näıve Kaplan-Meier estimator is
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consistent and efficient.

Table 3.2 summarize the simulation results for the joint distribution F12(t1, t2). The

performance of the estimator for the joint distribution F12(t1, t2) is similar to that of the

marginal distribution F2(t2).

3.4.2 Simulation With Misspecified Copula Model

We considered Clayton’s and Frank’s families (Shih and Louis 1995). Copulas in these

two families generally differ from normal copulas except when survival time and lifetime

medical cost are independent. We adopted the same simulation scenario as described

above except for the copula. For comparison, corresponding to each nonzero ρ0 value

considered in the three sets above, we chose a nonnormal copula with the same Kendall’s

tau. Only positive association was considered for Claytons copula, given its limitation in

accommodating negative association. The results are presented in Table 3.3. For Clay-

ton’s family, the proposed estimator for the marginal distribution F2(t2) has moderate

bias at the upper tail, especially when T1 and T2 are strong associated. In contrast,

the proposed inference procedure seems to be rather robust with Frank’s family. These

simulation findings suggest that the model checking is important in practice.

3.4.3 Application to a Colon Cancer Study

As a cause of death due to cancer, colon cancer is second only to lung cancer in the

United States. In approximately 80% of the patients with colon cancer in the United

States, the diagnosis is made at a sufficiently early stage when all apparent diseased

tissue can be surgically removed. Those who have regional nodal involvement that is

clinically completely resected are referred to as having Duke’s Stage C disease (Dukes
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Table 3.1: Simulation Summary Statistics for ρ0 and the Marginal Distribution F2(t2)
Under Normal Copulas

F̂2 at the τ -th percentile of F2

Method ρ̂ τ = 0.05 0.20 0.40 0.60 0.80

ρ0 = 0.8

Proposed (a) -6, 42 2, 16 0, 30 2, 37 2, 45 -22, 59

(b) 94.1 93.3 94.0 95.1 94.2 86.6

NKM (a) 0, 16 43, 36 101, 42 152, 41 147, 42

ρ0 = 0.4

Proposed (a) -5, 101 1, 16 1, 32 2, 42 0, 49 -7, 54

(b) 92.1 94.1 94.2 95.1 93.5 92.5

NKM (a) -4, 15 23, 34 50, 42 64, 44 62, 43

ρ0 = 0

Proposed (a) 6, 115 1, 18 -2, 35 -4, 43 -7, 46 -10, 48

(b) 94.1 92.6 93.1 95.2 94.1 92.6

NKM (a) -12,14 -12, 33 -9, 41 -8, 44 -5, 45

ρ0 = −0.4

Proposed (a) 9, 103 0, 22 -1, 38 -4, 45 -8, 45 -6, 39

(b) 94.0 91.9 93.1 93.2 94.0 94.4

NKM (a) -25,11 -50, 30 -65, 41 -68, 45 -56, 44

ρ0 = −0.8

Proposed (a) 7, 42 -6, 30 -2, 36 -2, 41 -4, 39 -4, 32

(b) 95.6 77.2 94.8 94.4 94.8 94.7

NKM (a) -41, 5 -103,24 -125,38 -116,45 -85, 43

NOTE: (a): bias (×103), empirical standard deviation (×103); (b): empirical coverage (%) of the 95%
Wald-type confidence interval; NKM: naive Kaplan-Meier estimator.
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1932). Unfortunately, about one-half of these patients have residual cancer existing

in an occult and probably microscopic stage, which leads to recurrence of disease and

death within 5 years. A national intergroup trial was conducted in 1980’s to evaluate the

effect of the drugs levamisole and fluorouracil, as adjuvant therapy for resected colorectal

carcinoma (Moertel et al. 1990).

In this trial, 929 eligible patients with Stage C disease were randomized to three study

arms. Of those, 315, 310 and 304 patients received observation, levamisole alone, and

levamisole combined with fluorouracil treatments, respectively. The patient enrollment

was begun in March 1984 and was completed in October 1987. The dataset available on

the Mayo Clinic website contains much richer long-term information than that used in

the original report by Moertel et al. (1990), with a maximum follow up of more than 8

years. By the end of the study, 177 patients in the observation arm had cancer recurrence,

among whom 155 died; 172 patients in the levamisole alone arm had cancer recurrence,

among whom 151 died; while in the levamisole plus fluorouracil arm 119 patients had

cancer recurrence, among whom 108 died. In addition, 38 of the 929 patients in the

trial died without cancer recurrence. Among those, 13, 10 and 15 patients belonged

to observation, levamisole alone, and levamisole combined with fluorouracil treatments,

respectively.

Figure 3.1 (a) and (b) show the Kaplan-Meier estimates for the cumulative distribution

function (CDF) of time to cancer recurrence and time to death since randomization for

each of the three treatment groups. As for the comparison between the observation

group and levamisole alone group, the p-values of the log-rank statistics are 0.756 and

0.812 for cancer recurrence and death, respectively, suggesting that levamisole alone

produced no detectable effect. If we compare the the observation group and levamisole

plus fluorouracil treatment group, we can see that the p-values of the log-rank statistics
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Figure 3.1: Estimated cumulative distribution function (CDF) of T1, T2 and T1 + T2 for each
of the three treatment groups in colon cancer study: (a) Kaplan-Meier estimates for the CDF
of time to cancer recurrence (T1), (b) Kaplan-Meier estimates for the CDF of time to death
since randomization (T1 + T2), (c) proposed estimates for the CDF of time between cancer
recurrence and death (T2).
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are 2.06 × 10−5 and 1.6 × 10−3 for cancer recurrence and death, respectively, which

demonstrated that therapy with levamisole plus fluorouracil produced an unequivocal

advantage over observation, and delayed the time to cancer recurrence as well as time

to death since randomization.

Under our proposed normal copula model for successive durations, T1 is the time to

cancer recurrence since randomization and T2 is the time between cancer recurrence and

death. For the 38 patients who died without cancer recurrence, T1 is set to be the time to

death since randomization and T2 = 0. Table 3.4 presents the estimates for the marginal

distribution F2(t2) for t2 = 0, 6, 12, ..., 36 months and ρ0 in each treatment group. What

are also presented are the corresponding 95% Wald-type confidence intervals based on

nonparametric bootstrap with size 200. As seen, the estimates for the marginal distri-

bution F2(t2) of the levamisole plus fluorouracil treatment group are significantly higher

than those of the observation group for t2 = 0, 6, 12, ..., 30 months. In all the three

groups, T1 and T2 are positively correlated. Figure 3.1 (c) displays the proposed esti-

mates for the CDF of the time between cancer recurrence and death, which indicates

that the patients who received levamisole plus fluorouracil treatment died faster after

cancer recurrence compared to those in the observation group. This suggests that the

treatment with levamisole plus fluorouracil may no longer be beneficial on survival after

cancer recurrence.

We also compared the performance of näıve estimates and proposed estimates of cu-

mulative distribution function of time between cancer recurrence and death (T2) for each

of the three treatment groups in colon cancer study. The näıve estimator is obtained by

using Kaplan-Meier estimate and ignoring the fact of induced dependent censoring. Fig-

ure 3.2 suggests that the näıve estimates are consistently higher than proposed estimates

in all three groups.
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Table 3.4: Estimate (95% Wald-type confidence interval) of the marginal distribution of
T2 and ρ0 in each treatment group.

t2 (in months) Observation Levamisole Levamisole + Fluorouracil

0 .057 (.021, .093) .037 (.011, .064) .082 (.027, .138)

6 .215 (.149, .281) .206 (.145, .267) .266 (.158, .373)

12 .374 (.283, .466) .446 (.357, .535) .472 (.328, .616)

18 .510 (.412, .607) .540 (.445, .636) .628 (.468, .788)

24 .625 (.525, .725) .668 (.575, .762) .760 (.610, .911)

30 .747 (.656, .838) .732 (.635, .828) .803 (.657, .949)

36 .829 (.757, .900) .762 (.667, .865) .836 (.698, .974)

ρ0 .330 (.126, .534) .368 (.166, .569) .376 (.071, .682)
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Figure 3.2: Comparison of näıve estimates and proposed estimates of cumulative distribution
function of the time between cancer recurrence and death (T2) for each of the three treatment
groups in colon cancer study.



77

3.5 Discussion

We have proposed a copula-based semiparametric model for successive durations with

incomplete follow-up data. This semiparametric model postulates normal copula for the

association between the two durations, while leaving the marginals unspecified. Mo-

tivated by the colon cancer data example used in our paper, we allow our model to

accommodate the situation where the second duration has a probability mass at 0. Un-

der a relatively weak censorship assumption, we propose an inference procedure for the

estimation of semiparametric model when the second duration has a probability mass at

0. Along the same line, we can extend the semiparametric model and the inference pro-

cedure further to allow multiple probability mass at different time points of the second

duration.

The proposed copula-based semiparametric model strikes a balance between model

identifiability and robustness. The nonparametric approach such as is more robust, but

we do not have the identifiability of the marginal distribution of the second duration.

On the other hand, it is generally undesirable to use a method which requires many

assumptions. Through parameterizing the association between the two durations but

leaving the marginals unspecified, we are able to identify and estimate the marginal

distribution of the second duration.

The copula-based semiparametric inference procedure offered is computationally easy.

The resulting estimators are shown to be consistent or uniformly consistent, and are

shown to be asymptotically normal or weakly converge to a tight Gaussian process. Our

simulation study shows that the proposed method performs well in samples of moderate

size. As shown in our simulation studies, the inference procedure appears to be quite

robust with Frank’s family but less robust with Clayton’s family. These results suggest

the importance of model checking in practice. Graphical model checking procedure
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and goodness-of-fit test for the proposed copula-based semiparametric model is under

development.

In addition to estimation, of scientific interest is prediction with given history of the

bi-state process. For instance, a colon cancer patient might like to know his survival

probabilities given occurrence and timing of his cancer relapse. A generalization of the

proposed semiparametric model for one-sample problem to a regression analysis set-up

is meaningful and desirable.

3.6 Proofs

3.6.1 Consistency and Uniform Consistency

Proof of Theorem 3.1. We first prove the consistency of θ̂ and the uniform consistency of

Ĥ(t), by dividing the proof into six steps. In Step A1 to A5, we consider the estimating

equations

Ψn(θ,H) = n−1

n∑
i=1

∆ab
i Zi

[
Ni(τ2)− Yi(0)Φ {− θZi +H(0)}

−
∫
t∈(0,τ2]

Yi(t) dΛ {− θZi +H(t)}
]

= 0 (3.11)

Un(t;H, θ) = n−1

n∑
i=1

∆ab
i

[
Ni(t)− Yi(0)Φ {− θZi +H(0)}

−
∫
s∈(0,t]

Yi(s) dΛ {− θZi +H(s)}
]

= 0 (t ≥ 0),(3.12)

which have Zi instead of Ẑi as in (3.7) and (3.8). Let θ̂Z and ĤZ(t) be the solution of

(3.11) and (3.12); the subscript Z is used to differentiate them from θ̂ and Ĥ(t). We show

the consistency of θ̂Z and uniform consistency of ĤZ(t) through Step A1 to Step A5. In
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Step A6, we show that our arguments in Step A1 to Step A5 still can be used when we

consider the original estimating equations (3.7) and (3.8), to establish the consistency

of θ̂ and uniform consistency of Ĥ(t).

Step A1: In this step, we show the uniform consistency of Ψn(θ,H) and Un(t;H, θ),

i.e., supθ∈B(θ0),H∈H|Ψn(θ,H)−Ψ(θ,H)| → 0 and supt∈[0,τ2], θ∈B(θ0),H∈H|Un(t;H, θ)−U(t;H,

θ)| → 0 in probability. Here Ψ(θ,H) = E[∆abZ N(τ2)]−E[∆abY (0)Φ{− θZ +H(0)}]−∫
t∈(0,τ2]

E[∆abZ Y (t) dΛ{−θZ+H(t)}], U(t;H, θ) = E[∆abN(t)]−E[∆abY (0) Φ{− θZ+

H(0)}] −
∫
s∈(0,t]

E[∆abY (s) dΛ {−θZ +H(s)}], B(θ0) is a neighborhood of θ0 and H is

the collection of bounded nondecreasing cadlag functions on [0, τ2] with jumps of order

O(n−1) in size.

Let λ(·) be the hazard function of the standard normal distribution and λ̇(·) be the

derivative of λ(·). With standard empirical process arguments, we can show that both

the class {∆ab
i Ni(t), t ∈ [0, τ2]} and {∆ab

i Yi(t)λ {−θZi +H(t)} , t ∈ (0, τ2], θ ∈ B(θ0), H ∈

H} are Glivenko-Cantelli (van der Vaart and Wellner 1996). It is easy to show that

supθ∈B(θ0),H(0)∈H |Un(0;H, θ)−U(0;H, θ)| → 0 in probability. For t ∈ (0, τ2] and H ∈ H,

note that

n−1

n∑
i=1

Yi(t)dΛ{−θZi +H(t)} = n−1

n∑
i=1

Yi(t)λ{−θZi +H∗(t)}dH(t) (3.13)

= n−1

n∑
i=1

Yi(t)λ{−θZi +H(t)}dH(t) + rn(t),

whereH(t−; θ) < H∗(t; θ) < H(t; θ), dH(t; θ) = H(t; θ)−H(t−; θ), rn(t) = n−1
∑n

i=1 Yi(t)

λ̇{−θZi + H∗∗(t)}{H∗(t) − H(t)}dH(t) and H∗(t) < H∗∗(t) < H(t). Since dH(t; θ) is

of the order O(n−1) almost surely, the fact that λ̇{−θZi + H∗∗(t; θ)} has a finite upper

bound uniformly in t ∈ (0, τ2], θ ∈ B(θ0) implies that rn(t) = O(n−2) almost surely.
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Thus,

sup
t∈(0,τ2],θ∈B(θ0),H∈H

|Un(t;H, θ)− U(t;H, θ)| (3.14)

= sup
t∈(0,τ2],θ∈B(θ0),H∈H

∣∣∣∣∣n−1

n∑
i=1

∆ab
i

[
Ni(t)− Yi(0)Φ {− θZi +H(0)}

−
∫
s∈(0,t]

∆ab
i Yi(s)λ {−θZi +H(s)} dH(s)

]
− E

(
∆ab
[
N(t)− Y (0)Φ{− θZ

+H(0)}
])

+

∫
s∈(0,t]

E
[
∆abY (s)λ {−θZ +H(s)}

]
dH(s)

∣∣∣∣+Op(n
−2)

≤ sup
t∈(0,τ2]

∣∣∣∣∣n−1

n∑
i=1

∆ab
i Ni(t)− E

[
∆abN(t)

]∣∣∣∣∣+ sup
θ∈B(θ0),H∈H

∣∣∣∣∣n−1

n∑
i=1

∆ab
i Yi(0)Φ{− θZi

+H(0)} − E
[
∆abY (0)Φ {− θZ +H(0)}

] ∣∣∣∣+

∫
s∈(0,t]

sups∈(0,τ2],θ∈B(θ0),H∈H

∣∣∣∣∣n−1

n∑
i=1

∆ab
i Yi(s)λ {−θZi +H(s)} − E

[
∆abY (s)λ {−θZ +H(s)}

] ∣∣∣∣dH(s) +Op(n
−2)→ 0.

Therefore, supt∈[0,τ2],θ∈B(θ0),H∈H|Un(t;H, θ)−U(t;H, θ)| → 0 in probability. Similarly, we

can show that supθ∈B(θ0),H∈H|Ψn(θ,H)−Ψ(θ,H)| → 0 in probability.

Step A2: For a given θ ∈ B(θ0), we define ĤZ(t; θ) and H̃Z(t; θ) as the solutions of

the equations Un(t;H, θ) = 0 and U(t;H, θ) = 0, respectively. In this step, we show that

supt∈[0,τ2], θ∈B(θ0)|ĤZ(t; θ)− H̃Z(t; θ)| → 0 in probability.

Given any fixed θ ∈ B(θ0), the size of N(t) for all t > 0 is less than or equal to 1

almost surely since T2 is continuous beyond t = 0. Thus, for t ∈ (0, τ2], ĤZ(t; θ) satisfies

the property

∣∣∣∣∣n−1

n∑
i=1

Yi(t)dΛ{−θZi + ĤZ(t; θ)}

∣∣∣∣∣ ≤ n−1, almost surely.
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Following the equality (3.13), we can see that dĤZ(t; θ) = ĤZ(t; θ) − ĤZ(t−; θ) is uni-

formly bounded in t ∈ (0, τ2] and is of the order O(n−1) almost surely. Thus, ĤZ(t; θ)

belongs to H.

In Step A1, we have established that supt∈[0,τ2],θ∈B(θ0),H∈H|Un(t;H, θ)− U(t;H, θ)| →

0 in probability. Given the fact that Un(0; ĤZ , θ) = 0 and U(0; ĤZ , θ) = 0 for θ ∈

B(θ0), it is straightforward to establish supθ∈B(θ0)|ĤZ(0; θ)−H̃Z(0; θ)| → 0 in probability.

Since ĤZ(t; θ) ∈ H, U(t; ĤZ , θ) = op(1), uniformly in t ∈ (0, τ2] and θ ∈ B(θ0). Then

U(t; ĤZ , θ) = 0 suggests that

U(t; ĤZ , θ)− U(t; ĤZ , θ)

=

∫
s∈(0,t]

E
(

∆abY (s) d
[
Λ
{
−θZ + ĤZ(s; θ)

}
− Λ

{
−θZ + H̃Z(s, θ)

}])
+ E

(
∆abY (0)

[
Φ{− θZ + Ĥ(0; θ)} − Φ{− θZ + H̃(0; θ)}

])
=

∫
s∈(0,t]

E
(

∆abY (s) d
[
Λ
{
−θZ + ĤZ(s; θ)

}
− Λ

{
−θZ + H̃Z(s, θ)

}])
+ op(1)

= op(1), (3.15)

where the expectations E[∆abY (0)Φ{− θZ+Ĥ(0; θ)} and E[∆abY (t)dΛ{−θZ+ĤZ(t; θ)}]

in (3.15) are defined as E[∆abY (0)Φ{− θZ + H(0)} and E[∆abY (t)dΛ{−θZ + H(t)}]

evaluated at H(t) = ĤZ(t; θ), t ≥ 0. Application of the mean value theorem to (3.15)

leads to

∫
s∈(0,t]

{
ĤZ(s−; θ)− H̃Z(s; θ)

}
E
[
∆abY (s) dλ {−θZ +HZ(s; θ)}

]
(3.16)

+

∫
s∈(0,t]

E
[
∆abY (s)λ {−θZ +HZ(s; θ)}

]
d
{
ĤZ(s; θ)− H̃Z(s; θ)

}
= op(1),

where HZ(t; θ) lies between ĤZ(t; θ) and H̃Z(t; θ).
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Let F = {f : (0, τ2] 7→ R, f is cadlag on (0, τ2)}, and consider a map from F to F

for f ∈ F , i.e., φ{f(t)} =
∫
s∈(0,t]

f(s−)A1(θ, ds)+
∫
s∈(0,t]

A2(θ, s) d f(s), where A1(θ, t) =∫
s∈(0,t]

E[∆abY (s)dλ{−θZ + HZ(s; θ)}] and A2(θ, t) = E[∆abY (s)λ{−θZ + HZ(s; θ)}].

Then it is implied in (3.16) that

φ
{
ĤZ − H̃Z

}
(t; θ) = op(1). (3.17)

With the product integration theory (Andersen et al., 1993, Section II.6) and similar

arguments as in Peng and Huang (2007), there exists an inverse of φ, say, φ−1, which

has a close form. For g(t) ∈ F ,

φ−1{g(t)} =

∫
s∈(0,t]

I(s,t]A
−1
2 (θ, s) d g(s) + op(1), (3.18)

where I(s,t] =πu∈(s,t]

{
1− A−1

2 (θ, u)A1(θ, du)
}

, and π is the product integral notation.

From (3.17), g(t) = 0 for t ∈ (0, τ2]. therefore, (3.18) implies supt∈(0,τ2], θ∈B(θ0)|ĤZ(t; θ)−

H̃Z(t; θ)| → 0 in probability, which combined with supθ∈B(θ0)|ĤZ(0; θ) − H̃Z(0; θ)| → 0

in probability completes the proof in this step.

Step A3: Here we show that (∂/∂θ)ĤZ(t; θ) and (∂/∂θ)Ψn{θ, ĤZ(·; θ)} at θ = θ0

converge to (∂/∂θ)H̃Z(t; θ) and (∂/∂θ)Ψ{θ, H̃Z(·; θ)} at θ = θ0 respectively, both of

which are bounded away from 0 and are finite for t ∈ [0, τ2]. The deduction here is

inspired by Step A3 of Chen et al. (2002).

Let Φ̇(·) be the derivative of Φ(·), the cumulative distribution function of the standard

normal distribution. When t = 0, (∂/∂θ)ĤZ(0; θ) = E[∆abY (0)ZΦ̇{−θ0Z + H0(0)}]/

E[∆abY (0)Φ̇{−θ0Z+H0(0)}], which is bounded away from 0 and finite under the probit

model.

For t ∈ (0, τ2] and θ ∈ B(θ0), differentiating U(t; ĤZ , θ) = 0 with respect to θ, we
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have that

∫
s∈(0,t]

E

(
∆abY (s) d

[
λ
{
−θZ + H̃Z(s; θ)

}{
−Z +

∂H̃Z(s; θ)

∂θ

}])
= 0. (3.19)

Define

B1(t) = E
[
∆abY (t)λ{−θ0Z +H0(t)}

]
, B2(t) = E

[
∆abY (t)λ̇{−θ0Z +H0(t)}

]
,

B3(t) = E
[
∆abZY (t)λ̇{−θ0Z +H0(t)}

]
, B4(t) = E

[
∆abZY (t)λ{−θ0Z +H0(t)}

]
W (t) =

∫
s∈(0,t]

B1(s)−1B3(s)dH0(s) B(s, t) = exp

{∫
u∈[s,t]

B2(u)

B1(u)
dH0(u)

}
.

By some algebra,

{
∂H̃Z(t; θ)

∂θ

∣∣∣∣∣
θ=θ0

}
+

∫
s∈(0,t]

B1(s)−1B2(s)

{
∂H̃Z(s; θ)

∂θ

∣∣∣∣∣
θ=θ0

}
dH0(s)

=

{
∂H̃Z(0; θ)

∂θ

∣∣∣∣∣
θ=θ0

}
−W (t), (3.20)

which is a Volterra integral equation, and the unique solution of which (Andersen et al.

1993) is

∂H̃Z(t; θ)

∂θ

∣∣∣∣∣
θ=θ0

= −
∫
s∈(0,t]

B(s, t)−1dW (s) +B(0, t)−1 ∂H̃Z(0; θ)

∂θ

∣∣∣∣∣
θ=θ0

= D1(t). (3.21)

Under regularity condition 2, (∂/∂θ)H̃Z(t; θ) at θ = θ0 is bounded away from 0 and is

finite for t ∈ [0, τ2]. To derive the expression of (∂/∂θ)ĤZ(t; θ) at θ = θ0, we replace the

expectation E and H̃Z(t; θ) in (3.19) by the summation notation n−1
∑n

i=1 and ĤZ(t; θ)

respectively. By the uniform consistency of ĤZ(t, θ0) in Step A2 and the Glivenko-

Cantelli theorem, we have a stochastic Volterra integral equation for {∂ĤZ(t, θ)/∂θ}|θ=θ0 ,
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which takes a similar form as equation (3.20). With the production integration theory,

its unique solution (Andersen et al. 1993) takes the form

∂ĤZ(t; θ)

∂θ

∣∣∣∣∣
θ=θ0

=
∂H̃Z(t; θ)

∂θ

∣∣∣∣∣
θ=θ0

+ op(1) = D1(t) + op(1).

By Glivenko-Cantelli theorem and similar as Step A3 of Chen et al. (2002), we can

write

∂Ψn{θ, ĤZ(·; θ)}
∂θ

∣∣∣∣∣
θ=θ0

= −n−1

n∑
i=1

∆ab
i Zi

[
λ
{
−θ0Zi + ĤZ(X2i; θ0)

}{
−Zi +

∂ĤZ(X2i; θ)

∂θ

∣∣∣∣∣
θ=θ0

}
+ Yi(0)

·
(

Φ̇
{
−θ0Zi + ĤZ(0; θ0)

}
− λ

{
−θ0Zi + ĤZ(0; θ0)

}){
−Zi +

∂ĤZ(0; θ)

∂θ

∣∣∣∣∣
θ=θ0

}]

=

∫
t∈(0,τ2]

E
[{

∆abZ +B4(X2)B(t,X2)−1B−1
1 (t)

}
Zλ̇{−θ0Z +H0(t)}Y (t)

]
dH0(t)

+

(
E

[
∆abY (0)ZΦ̇{−θ0Z +H0(0)}Φ{−θ0Z +H0(0)}

1− Φ{−θ0Z +H0(0)}

]
−B4(X2)B(0, X2)−1

)

·
E
[
∆abY (0)ZΦ̇{−θ0Z +H0(0)}

]
E
[
∆abY (0)Φ̇{−θ0Z +H0(0)}

] − E [∆abY (0)Z2Φ̇{−θ0Z +H0(0)}
1− Φ{−θ0Z +H0(0)}

· Φ{−θ0Z +H0(0)}
]

+ op(1)

=
∂Ψ{θ, H̃Z(·; θ)}

∂θ

∣∣∣∣∣
θ=θ0

+ op(1)

= D2 + op(1), (3.22)

which is bounded away from 0 and is finite by regularity condition 2.
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Step A4: Here we show the consistency of θ̂Z , which is the solution to Ψn{θ, ĤZ(·; θ)} =

0. In Step A1, we have shown that supθ∈B(θ0),H∈H|Ψn(θ,H)−Ψ(θ,H)| → 0 in probability.

Since ĤZ(·; θ) ∈ H, we have

supθ∈B(θ0)

∣∣∣Ψn{θ, ĤZ(·; θ)} −Ψ{θ, ĤZ(·; θ)}
∣∣∣→ 0 in probability.

In Step A2, we have shown that supt∈[0,τ2], θ∈B(θ0)|ĤZ(t; θ)− H̃Z(t; θ)| → 0 in probability.

Note that

Ψ{θ, ĤZ(·; θ)} −Ψ{θ, H̃Z(·; θ)} =

∫
t∈(0,τ2]

E
(

∆abZY (t)d
[
Λ{−θZ + ĤZ(t; θ)} − Λ{−θZ

+ H̃Z(t; θ)}
])

+ E
(

∆abZY (0)
[
Φ{−θZ + ĤZ(0; θ)} − Φ{−θZ + H̃Z(0; θ)}

])
.

By applying the mean value theorem, we can easily show that

supθ∈B(θ0)

∣∣∣Ψ{θ, ĤZ(·; θ)} −Ψ{θ, H̃Z(·; θ)}
∣∣∣→ 0 in probability.

Also, we have shown in Step A3 that (∂/∂θ)Ψ{θ, H̃Z(·; θ)} at θ = θ0 is bounded away

from 0. Thus, Ψ{θ, H̃Z(·; θ)} has a unique zero crossing in B(θ0), and θ̂Z → θ0 in

probability.

Step A5: Here we show the uniform consistency of ĤZ(t; θ̂Z) for t ∈ [0, τ2].

When sample size n is large enough, θ̂Z must be in the neighborhood B(θ0), therefore,

∣∣∣ĤZ(t, θ̂Z)− H̃(t, θ̂Z)
∣∣∣ ≤ sup

t∈[0,τ2], θ∈B(θ0)

∣∣∣ĤZ(t, θ)− H̃Z(t, θ)
∣∣∣ , (3.23)

where the right hand side converges to 0 in probability based on Step A2. Since the

partial derivative of H̃Z(t; θ) with respect to θ at θ = θ0 is bounded away from 0 and
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finite under regularity condition 2, by Taylor expansion as well as the consistency of

θ̂Z as established in Step A4, we can show that supt∈[0,τ2]|H̃Z(t; θ̂Z) − H̃Z(t; θ0)| → 0

in probability. Then the uniform consistency of ĤZ(t) = ĤZ(t, θ̂Z) follows from the

inequality (3.23) and the triangular inequality

∣∣∣ĤZ(t, θ̂Z)−H0(t)
∣∣∣ =

∣∣∣ĤZ(t, θ̂Z)− H̃Z(t, θ0)
∣∣∣

≤
∣∣∣ĤZ(t, θ̂Z)− H̃Z(t, θ̂Z)

∣∣∣+
∣∣∣H̃Z(t, θ̂Z)− H̃Z(t, θ0)

∣∣∣ .
Step A6: In Step A1 to Step A5, we have established the consistency of θ̂Z and

the uniform consistency ĤZ(t; θ̂Z) for t ∈ [0, τ2] with Zi, which is the true value of the

estimated covariate Ẑi. In this step, we show that our arguments in Step A1 to Step A5

still hold when we have the estimated covariate Ẑi in the estimating equations.

First, we can show that supx∈[a,b] |Φ−1{F̂1(x)}−Φ−1{F1(x)}| → 0 in probability, which

follows the well established uniform consistency result of the Kaplan-Meier estimator

F̂1(·).

When Zi is replaced by Ẑi, instead of having the equations Ψn(θ,H) = 0 and

Un(t;H, θ) = 0 as in (3.11) and (3.12) for θ ∈ B(θ0), we will have Ψn(θ,H) = op(1)

and Un(t;H, θ) = op(1), which is based on supx∈[a,b] |Φ−1{F̂1(x)} − Φ−1{F1(x)}| → 0 in

probability. Then the arguments in Step A1 to A5 still hold, which lead to the consis-

tency of θ̂ and the uniform consistency Ĥ(t; θ̂) for t ∈ [0, τ2].

With the results in Step A6, it is straightforward to show that ρ̂→ ρ0 and supt∈[0,τ2] |F̂2(t)−

F2(t)| → 0, in probability, since the mappings θ 7→ ρ and {θ,H(·)} 7→ F2(·) are both

continuous and (uniformly) bounded based on the equalities in (3.10). This completes

the proof of Theorem 3.1.
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3.6.2 Asymptotic Normality and Weak Convergence

Proof of Theorem 3.2. Let Ψ∗n(θ,H) and U∗n(t;H, θ) be n−1 times the left hand side of

(3.7) and (3.8) respectively. Note that the difference between (∂/∂θ)Ψ∗n{θ, Ĥ(·; θ)} at

θ = θ0 and (∂/∂θ)Ψn{θ, ĤZ(·; θ)} at θ = θ0 is op(1). Thus, the expression of the former

partial derivative follows the latter one, which has been derived in Step A3. We divide

the proof of asymptotic normality of θ̂ and weak convergence of Ĥ(t) into four steps. The

asymptotic normality of ρ̂ and weak convergence of F̂2(t) then follow straightforward.

Step B1: We show that U∗n(t;H0, θ0) can be expressed asymptotically as the sum-

mation of n independent and identically distributed influence functions and is Donsker.

U∗n(t;H0, θ0)

= n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i dM2i(s) + n−1

n∑
i=1

∆ab
i [Ni(0)− Yi(0)Φ {− θ0Zi +H0(0)}]

+ n−1

n∑
i=1

∆ab
i Yi(0)

[
Φ {− θ0Zi +H0(0)} − Φ

{
− θ0Ẑi +H0(0)

}]

+ n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i Yi(s)d

[
Λ {−θ0Zi +H0(s)} − Λ

{
−θ0Ẑi +H0(s)

}]
.

where dM2(t) = dN(t)− Y (t)λ{−θ0Z + H0(t)}dH0(t). Since {∆ab
i Ni(t), t ∈ [0, τ2]} and

{∆ab
i λ{−θ0Zi+H0(t)}, t ∈ [0, τ2]} are Donsker classes, it follows that {

∫
s∈(0,t]

∆ab
i dM2i(s), t ∈

[0, τ2]} is a Donsker class. It is obvious that {∆ab
i [Ni(0) − Yi(0)Φ{− θ0Zi + H0(0)}]} is

Donsker.

Define M1(t) = I(X1 ≤ t,∆1 = 1) −
∫
u∈(0,t]

I(X1 ≥ u)dΛT1(u), where ΛT1(t) is the

cumulative hazard function of T1. It follows from the martingale integral representation
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for F̂1 − F1 (Gill 1980, page 36-37) that

Φ−1{F̂1(x)} − Φ−1{F1(x)} (3.24)

= Φ̇−1{F1(x)}{F̂1(x)− F1(x)) + op(n
−1/2)

= Φ̇−1{F1(x)}{1− F1(x)}
n∑
i=1

∫
s∈(0,x)

{1− F̂1(s−)}
{1− F1(s)}

∑n
j=1 I(X1j ≥ s)

dM1i(s)

+op(n
−1/2)

= Φ̇−1{F1(x)}{1− F1(x)}n−1

n∑
i=1

∫
s∈(0,x)

1

π(s)
dM1i(s) + op(n

−1/2),

for any x ∈ [a, b], where Φ̇−1(·) is the derivative of Φ−1(·) and π(s) = limn→∞ n−1
∑n

i=1

I(X1i ≥ s).

It then follows that

n−1

n∑
i=1

∆ab
i Yi(0)

[
Φ {− θ0Zi +H0(0)} − Φ

{
− θ0Ẑi +H0(0)

}]
= n−1

n∑
i=1

∆ab
i Yi(0)θ0(Ẑi − Zi)Φ̇ {−θ0Z

∗
i +H0(s)}

= n−1

n∑
k=1

∫
s∈(0,∞)

q(s)

π(s)
dM1k(s) + op(n

−1/2), (3.25)

where Z∗i lies between Zi and Ẑi, and

q(s) = lim
n→∞

n−1

n∑
i=1

∆ab
i θ0Yi(0)Φ̇{−θ0Zi+H0(0)} Φ̇−1{F1(X1i)}{1−F1(X1i)}I(X1i ≥ s)+op(1).
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Similarly,

n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i Yi(s)d

[
Λ {−θ0Zi +H0(s)} − Λ

{
−θ0Ẑi +H0(s)

}]
= n−1

n∑
k=1

∫
s∈(0,∞)

r(s, t)

π(s)
dM1k(s) + op(n

−1/2), (3.26)

where

r(s, t) = lim
n→∞

n−1

n∑
i=1

∆ab
i θ0Φ̇−1{F1(X1i)}{1− F1(X1i)}I(X1i ≥ s)

·
∫
u∈(0,t]

Yi(u)dΛ{−θ0Zi +H0(u)}] + op(1),

Since {I(X1i ≤ s,∆1i = 1), s ∈ [0, τ1]} and {I(X1i ≥ s), s ∈ [0, τ1]} are Donsker classes, it

follows that
∫
s∈(0,∞)

{q(s)/π(s)} dM1i(s) and
∫
s∈(0,∞)

{r(s, t)/π(s)} dM1i(s) are Donsker.

Thus, U∗n(t;H0, θ0) is Donsker.

Step B2: We show the weak convergence of n1/2{Ĥ(t, θ0)−H0(t)}. First, we can show

that n1/2{Ĥ(0, θ0)−H0(0)} = (E[Y (0)Φ̇{−θ0Z+H0(0)}])−1 n1/2U∗n(0;H0, θ0)+op(n
−1/2),

which converges to mean 0 normal distribution based on Step B1. With the uniform
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convergence of Ĥ(t, θ0) and the fact that U∗n(t; Ĥ, θ0} = 0, for t ∈ (0, τ2], we can write

U∗n(t; Ĥ, θ0)− U∗n(t;H0, θ0)−
{
U∗n(0; Ĥ, θ0)− U∗n(0;H0, θ0)

}
= n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i Yi(s) d

[
Λ
{
−θ0Ẑi + Ĥ(s; θ0)

}
− Λ

{
−θ0Ẑi +H0(s)

}]

= n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i Yi(s) d

[
λ {−θ0Zi +H0(s)}

{
Ĥ(s; θ0)−H0(s)

}]
+ op(n

−1/2)

= n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i Yi(s)λ {−θ0Zi +H0(s)} d

{
Ĥ(s; θ0)−H0(s)

}
+n−1

n∑
i=1

∫
s∈(0,t]

∆ab
i Yi(s)λ̇ {−θ0Zi +H0(s)}

{
Ĥ(s−; θ0)−H0(s)

}
dH0(s)

+ op(n
−1/2).

Applying the Glivenko-Cantelli theorem to each item on the right-hand side of the above

equation, we obtain that

−n1/2
{
U∗n(t;H0, θ0)− U∗n(0;H0, θ0)

}
(3.27)

= n1/2

∫
s∈(0,t]

[
B1(s)d

{
Ĥ(s; θ0)−H0(s)

}
+B2(s)

{
Ĥ(s−; θ0)−H0(s)

}
dH0(s)

]
+ op(1).

Let F = {f : [0, τ2] 7→ R, f is cadlag on (0, τ2)}, and consider a map from F to F for

f ∈ F , i.e., ϕ{f(t)} =
∫
s∈(0,t]

B1(s)df(s) +
∫
s∈(0,t]

B2(s)f(s−)dH0(s). Then it is implied

in (3.27) that

ϕ
[
n1/2

{
Ĥ(t; θ0)−H0(t)

}]
= −n1/2

{
U∗n(t;H0, θ0)− U∗n(0;H0, θ0)

}
. (3.28)

By the product integration theory (Andersen et al., 1993, Section II.6) and similar ar-
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guments as in Peng and Huang (2007), there exists an inverse of ϕ, say, ϕ−1, which has

a close form. For g(t) ∈ F ,

ϕ−1{g(t)} =

∫
s∈(0,t]

J(s,t]B
−1
1 (s) d g(s) + g(0)J[0,t], (3.29)

where J(s,t] = πu∈(s,t]

{
1−B−1

1 (u)B2(u)dH0(u)
}

= B(s, t)−1, and π is the prod-

uct integral notation. In Step B1, we have shown that U∗n(t;H0, θ0) is Donsker, and

−n1/2{U∗n(t;H0, θ0) − U∗n(0;H0, θ0)} converges weakly to a tight Gaussian process G(t)

with covariance Σ(s, t) = E[ι(s)ι(t)], where ι(t) =
∫
s∈(0,t]

∆ab dM2(s)+
∫
s∈(0,∞)

{r(s, t)/π(s)}

dM1(s). Combined with (3.28), the continuous mapping theorem then suggests that

n1/2{Ĥ(t; θ0)−H0(t)} converges weakly to ϕ−1{G(t)}, which is also a Gaussian process

in F since ϕ−1 is a linear map.

Step B3: We show that Ψ∗n{θ0, Ĥ(·, θ0)} can be expressed asymptotically as the

summation of n independent and identically distributed influence functions.

Ψ∗n{θ0, Ĥ(·, θ0)} = I + II + III, (3.30)

where

I = n−1

n∑
i=1

∆ab
i (Ẑi − Zi)

[
Ni(τ2)− Yi(0)Φ

{
−θ0Ẑi + Ĥ(0; θ0)

}
−
∫
t∈(0,τ2]

Yi(t) dΛ
{
−θ0Ẑi + Ĥ(t; θ0)

}]
,
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II = n−1

n∑
i=1

∆ab
i Zi

[
Ni(τ2)− Yi(0)Φ

{
−θ0Zi + Ĥ(0; θ0)

}
−
∫
t∈(0,τ2]

Yi(t) dΛ
{
−θ0Zi + Ĥ(t; θ0)

}]
,

and

III = n−1

n∑
i=1

∆ab
i ZiYi(0)

[
Φ
{
−θ0Zi + Ĥ(0; θ0)

}
− Φ

{
−θ0Ẑi + Ĥ(0; θ0)

}]

+ n−1

n∑
i=1

∫
t∈(0,τ2]

∆ab
i ZiYi(t)d

[
Λ
{
−θ0Zi + Ĥ(t; θ0)

}
− Λ

{
−θ0Ẑi + Ĥ(t; θ0)

}]
.

It follows from the martingale integral representation for Φ−1{F̂1(x)} − Φ−1{F1(x)} in

(3.24) that I in (3.30) can be written as

I = n−1

n∑
k=1

∫ ∞
0

v(t)

π(t)
dM1k(t) + op(n

−1/2),

where

v(t) = lim
n→∞

n−1

n∑
i=1

∆ab
i

[
Ni(0)− Yi(0)Φ{−θ0Zi +H0(0)}+

∫
t∈(0,τ2]

dM2i(t)

]
· Φ̇−1{F1(X1i)}{1− F1(X1i)}I(X1i ≥ t) + op(1).

The martingale properties associated with X2 implies that v(t)→ 0 in probability, and

thus I = op(n
−1/2).
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Based on the results in Step B2, we can write

II = n−1

n∑
i=1

∫
t∈(0,τ2]

∆ab
i ZidM2i(t)− n−1

n∑
i=1

∫
t∈(0,τ2]

∆ab
i ZiYi(t) d

[
Λ
{
−θ0Zi + Ĥ(t; θ0)

}
− Λ {−θ0Zi +H0(t)}

]
+ n−1

n∑
i=1

∆ab
i Zi

[
Ni(0)− Yi(0)Φ

{
−θ0Zi + Ĥ0(t; θ0)

}]

= n−1

n∑
i=1

∫
t∈(0,τ2]

∆ab
i ZidM2i(t)− n−1

n∑
i=1

∆ab
i Zi

[
Λ
{
−θ0Zi + Ĥ(X2i; θ0)

}
− Λ {−θ0Zi +H0(X2i)}

]
+ n−1

n∑
i=1

∆ab
i ZiYi(0)

[
Λ
{
−θ0Zi + Ĥ(0; θ0)

}

− Λ {−θ0Zi +H0(0)}
]

+ n−1

n∑
i=1

∆ab
i Zi

[
Ni(0)− Yi(0)Φ

{
−θ0Zi + Ĥ0(0; θ0)

}]

= n−1

n∑
i=1

(∫
t∈(0,τ2]

∆ab
i ZidM2i(t) − ϕ−1

{∫
t∈(0,τ2]

∆ab
i w(t)dM2i(t)

}

−ϕ−1

{∫
s∈(0,∞)

r(s, τ2)B4(X2)

π(s)
dM1i(s)

}
+ ∆ab

i Zi[Ni(0)− Yi(0)Φ{−θ0Zi

+H0(0)}] +
E[∆abZY (0)(λ{−θ0Z +H0(0)} − Φ̇{−θ0Z +H0(0)})]

E[∆abY (0)Φ̇{−θ0Z +H0(0)}]
∆ab
i

[
Ni(0)

−Yi(0)Φ{−θ0Zi +H0(0)}+

∫
s∈(0,∞)

q(s)

π(s)
dM1i(s)

])
+ op(n

−1/2),

where w(t) = limn→∞ n−1
∑n

i=1 ∆ab
i Ziλ{−θ0Zi+H0(X2i)}I(X2i ≥ t). Since {∆ab

i ZiNi(t), t ∈

[0, τ2]} and {∆ab
i Ziλ{−θ0Zi + H0(t)}, t ∈ [0, τ2]} are Donsker classes, it follows that

{
∫
s∈(0,t]

∆ab
i ZidM2i(s), t ∈ [0, τ2]} and {

∫
t∈(0,τ2]

∆ab
i w(t)dM2i(t)} are Donsker. Following

the arguments in Step B1 and B2,
∫
s∈(0,∞)

{r(s, τ2)B4(X2)/π(s)} dM1i(s) and
∫
s∈(0,∞)

{q(s)

/π(s)} dM1i(s) are also Donsker. Since ϕ−1 is a linear map, II is Donsker.

Similarly to (3.26), we can write

III = n−1

n∑
k=1

∫ ∞
0

ζ(t)

π(t)
dM1k(t) + op(n

−1/2),
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where

ζ(t) = lim
n→∞

n−1

n∑
i=1

∆ab
i θ0Zi

[
Yi(0)Φ̇{−θ0Zi +H0(0)}+

∫
s∈(0,t]

Yi(s)dΛ{−θ0Zi +H0(s)}
]

· Φ̇−1{F1(X1i)}{1− F1(X1i)}I(X1i ≥ t) + op(1).

Using the arguments in Step B1, we can show that
∫
t∈(0,∞)

{ζ(t)/π(t)} dM1i(t) is a

Donsker class. Therefore, by Donsker theorem, n1/2Ψ∗n{θ0, Ĥ(·; θ0)} = n1/2(I + II + III)

converges to a normal distribution with mean 0.

Step B4: Finally, we show the asymptotic normality of θ̂ and the weak convergence

of Ĥ(t, θ̂). Because of the consistency of θ̂ and Ψ∗n{θ̂, Ĥ(·; θ̂)} = 0. we can write

n1/2
(
θ̂ − θ0

)
= −n1/2

[
∂Ψ∗n{θ, Ĥ(·; θ)}

∂θ

∣∣∣∣∣
θ=θ0

]
Ψ∗n{θ0, Ĥ(·; θ0)}+ op(1), (3.31)

which converge to a normal distribution with mean 0, based on the results in Step B3.

Then, by combining the result of (∂/∂θ)Ĥ(t; θ) at θ = θ0 in Step A3 with equations

(3.31), we can write

n1/2{Ĥ(t, θ̂)−H0(t)}

= n1/2{Ĥ(t, θ̂)− Ĥ(t, θ0)}+ n1/2{Ĥ(t, θ0)−H0(t)}

=
∂Ĥ(t, θ)

∂θ

∣∣∣∣∣
θ=θ0

n1/2
(
θ̂ − θ0

)
+ n1/2{Ĥ(t, θ0)−H0(t)}+ op(1)

= −D1 n
1/2

[
∂Ψ∗n{θ, Ĥ(·; θ)}

∂θ

∣∣∣∣∣
θ=θ0

]
Ψ∗n{θ0, Ĥ(·; θ0)}+ n1/2{Ĥ(t, θ0)−H0(t)}+ op(1)

= −D1D2n
1/2Ψ∗n{θ0, Ĥ(·; θ0)}+ ϕ−1

[
−n1/2{U∗n(t;H0, θ0)− U∗n(0;H0, θ0)}

]
+ op(1).
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Based on the results in Steps B1 to B3 and Donsker theorem, n1/2{Ĥ(t, θ̂) − H0(t)}

converges weakly to a tight Gaussian process.

With the results in Step B4, it is straightforward to show that n1/2(ρ̂ − ρ0) is asymp-

totically normal with mean 0, and n1/2{F̂2(t) − F2(t)} weakly converges to a Gaussian

process for t ∈ [0, τ2], since the mappings θ 7→ ρ and {θ,H(·)} 7→ F2(·) are both con-

tinuous and (uniformly) bounded based on the equalities in (3.10). This completes the

proof of Theorem 3.2.
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Chapter 4

Summary and Future Research

4.1 Summary

This dissertation focuses on semiparametric methods to analyze biomedical outcomes

subject to induced dependent censoring. Typical examples of such outcomes include the

lifetime medical cost and the sojourn times in successive disease progression, which are

both important for health care evaluation, health policy and management. However,

analysis of these outcomes is complicated by induced dependent censoring and the issue

of identifiability, which arise from the incomplete follow-up data in clinical trials. The

statistical methods developed in this dissertation deal with these issues in appropriate

ways, and provide us with practically useful tools in the study of these outcomes of

interest.

First, we develop a copula-based semiparametric model for lifetime medical cost with

incomplete follow-up data. This conceptually simple regression model is semiparamet-

ric in the sense that the marginal error distribution of both lifetime medical cost and

survival time are completely unspecified. This model is appealing because its parame-
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ters are identifiable from incomplete follow-up data and have meaningful interpretation

in terms of lifetime medical cost as well. Under this model, we can also quantify the

covariate effect in terms of difference in dollar amount as desired. The proposed copula-

based semiparametric regression model strikes a balance between model identifiability

and robustness. We develop an inference procedure which is computationally easy and we

prove that the resulting estimators are consistent and asymptotically normal. Simulation

studies show that the proposed method performs well in samples of moderate size. The

proposed method is applied to a SWOG lung cancer clinical trial. Our proposed model

only requires and exploits uncensored lifetime medical cost in addition to the standard

survival data, and thus can be applied to a wide range of cost data collection schemes.

This copula-based semiparametric regression model is practically most useful in medical

studies where only a small portion of patients survive beyond the study duration.

Next, we propose a semiparametric inference procedure for the successive durations

in this bi-state progressive disease process. We suggest a semiparametric model that

postulates normal copula for the association between the two durations, while leaving

the marginals unspecified. Motivated by the colon cancer data example where some

patients reach death without cancer recurrence, we allow our model to accommodate the

situation that the second duration has a probability mass at 0. With normal distribution

theory, the proposed normal copula model can be written as a regression model for

the second duration with the first duration as the covariate. By using the martingale

features associated with the data, we proposed an inference procedure for estimation.

In the special case when the probability mass of the second duration at zero is zero,

our inference procedure reduces to that for the linear transformation model developed

in Chen et al. (2002). The proposed estimation procedure is computationally easy. We

provide rigorous proof of the asymptotic properties of the resulting estimators, which
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are shown to be consistent or uniformly consistent and to be asymptotically normal or

weakly converge to a tight Gaussian process. Simulation studies show that the proposed

method performs well in samples of moderate size. We apply the proposed method to

the motivating example of a national intergroup colon cancer clinical trial.

4.2 Future Research

In this section, we present several topics which are worth investigating in future research

on censored medical cost and successive durations.

In Chapter 2, we propose a copula-based semiparametric model for lifetime medical

cost, which is useful for a wide range of cost data collection schemes. However, this ap-

proach for lifetime medical cost has its limitation in certain practical situations. First, we

achieve the marginal identifiability of lifetime medical cost distribution through model-

ing. This modeling strategy may not be desirable when a large portion of patients survive

beyond the study duration. Second, additional data might be available in practice. For

example, the cost accumulation process was observed at scheduled visits in the study we

discussed in Section 2.3.3, or one may observe accumulated cost at censoring time for

each censored individual. In those cases, the ignorance of the accumulated medical cost

up to the time of censoring, as our method for lifetime medical cost, seems undesirable,

especially when the censoring rate is heavy.

Some of the available approaches for censored medical cost such as Bang and Tsiatis

(2000), could take advantage of the information of the accumulated medical cost up

to the time of censoring for censored individuals. However, the target of the analysis

is time-restricted medical cost. As we have discussed in Chapter 1, in the analysis of

time-restricted medical cost, an artificial time limit is imposed to ensure the potential
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censoring time has positive support beyond this time limit. Since the time limit is

artificial and the covariates may impact survival time as well, attempt to interpret time-

restricted results in terms of lifetime medical cost, as desired, is inappropriate.

To make appropriate cost and cost-effectiveness analysis, it is desirable to consider new

measurements of medical cost. One future research direction is to develop the quantile

inference for censored medical cost, which balances the pros and cons of time-restricted

medical cost and lifetime medical cost approaches. In the medical cost context, it is hard

to alleviate the problem of bias in estimating the mean lifetime medical cost, because the

cost data distribution is usually highly skewed to the right and the medical studies have a

limited duration. Therefore, it is helpful to consider the quantile-restricted medical cost

U{QT (τ)} (0 < τ < 1), which is the accumulative medical cost up to a certain quantile

of survival time. This quantity is of scientific interest in both one-sample inference and

two-sample comparison. By targeting at the quantile-restricted medical cost, we may

be able to use the accumulated cost at censoring time for each censored individual, and

avoid the difficulty of interpretability of time-restricted medical cost.

In Chapter 3, we propose a copula-based semiparametric model for successive dura-

tions with incomplete follow-up data. The model is useful to estimate the distribution of

the sojourn time between successive events (e.g., cancer recurrence and death) in prac-

tice. As evident from the colon cancer example, it is often of scientific interest to compare

the sojourn time distributions among different treatment groups. Our proposed estima-

tors and their variance estimates enable such comparison at a set of fixed time points,

however, they are not able to compare the entire distributions of different groups. One

future research direction is to develop log-rank-type tests along the line of the proposed

semiparametric model for the bi-state progressive disease process.

In addition to estimation of the the sojourn time distribution, of scientific interest is
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prediction with given history of the bi-state process. For example, it might be desirable

to know a colon cancer patient’s survival probabilities given occurrence and timing of

his cancer relapse. On a continuous time scale the existing nonparametric approaches

do not provide a reliable estimator of the second duration distribution given the first

duration. Future research is worth investigating to develop the inference procedure for

prediction under our proposed semiparametric model for the bi-state progressive disease

process.



101

Bibliography

Andersen, P. K., Borgan, O., Borgan, O., Borgan, O., Gill, R. D., and Keiding, N.

(1993), Statistical Models Based on Counting Processes, Springer-Verlag Inc.

Bang, H. and Tsiatis, A. A. (2000), “Estimating Medical Costs with Censored Data,”

Biometrika, 87, 329–343.

— (2002), “Median Regression with Censored Cost Data,” Biometrics, 58, 643–649.

Brown, M., Lipscomb, J., and Snyder, C. (2001), “The Burden of Illness of Cancer:

Economic Cost and Quality of Life,” Annual Review of Public Health, 22, 91–113.

Chen, K., Jin, Z., and Ying, Z. (2002), “Semiparametric Analysis of Transformation

Models with Censored Data,” Biometrika, 89, 659–668.

Cheng, S. C., Wei, L. J., and Ying, Z. (1995), “Analysis of Transformation Models with

Censored Data,” Biometrika, 82, 835–845.

Cook, R. J. and Lawless, J. F. (1997), “Marginal Analysis of Recurrent Events and a

Terminating Event,” Statistics in Medicine, 16, 911–924.

Cox, D. R. (1972), “Regression Models and Life-tables (with Discussion),” Journal of

the Royal Statistical Society, Series B: Methodological, 34, 187–220.



102

Cox, D. R., Fitzpatrick, R., Fletcher, A. E., Gore, S. M., Spiegelhalter, D. J., and Jones,

D. R. (1992), “Quality-of-life Assessment: Can We Keep It Simple? (Disc: P375-

393),” Journal of the Royal Statistical Society, Series A: Statistics in Society, 155,

353–375.

Dabrowska, D. M. (1988), “Kaplan-Meier Estimate on the Plane,” The Annals of Statis-

tics, 16, 1475–1489.

Diehr, P., Yanez, D., Ash, A., Hornbrook, M., and Lin, D. Y. (1999), “Methods for

Analyzing Health Care Utilization and Costs,” Annual Review of Public Health, 20,

125–144.

Dudley, R. A., Harrell, F. E., Smith, L. E., Mark, D. B., and Califf, R. M. (1993),

“Comparison of analytic models for estimating the effect of clinical factors on the

cost of coronary artery bypass graft surgery,” Journal of Clinical Epidemiology, 46,

261–271.

Dukes, C. (1932), “The Classification of Cancer of the Rectum,” Journal of Pathological

Bacteriology, 35, 323.

Fenn, P., McGuire, A., Phillips, V., Backhouse, M., and Jones, D. (1995), “The Analysis

of Censored Treatment Cost Data in Economic Evaluation,” Medical Care, 33, 851–

863.

Fygenson, M. and Ritov, Y. (1994), “Monotone estimating equations for censored data,”

The Annals of Statistics, 22, 732–746.

Gehan, E. A. (1965), “A generalized Wilcoxon test for comparing arbitrarily singly-

censored samples,” Biometrika, 52, 203–223.



103

Gelber, R. D., Gelman, R. S., and Goldhirsch, A. (1989), “A Quality-of-life-oriented

Endpoint for Comparing Therapies,” Biometrics, 45, 781–795.

Genest, C., Ghoudi, K., and Rivest, L.-P. (1995), “A Semiparametric Estimation Proce-

dure of Dependence Parameters in Multivariate Families of Distributions,” Biometrika,

82, 543–552.

Gill, R. D. (1980), Censoring and Stochastic Integrals, Mathematical Centre Tract No.

124, Amsterdam: Mathematisch Centrum.

— (1989), “Non- and Semi-parametric Maximum Likelihood Estimators and the Von

Mises Method (Part 1) (C/R: P124-128),” Scandinavian Journal of Statistics, 16, 97–

124.

— (1994), “Lectures on Survival Analysis,” in Lectures on Probability Theory, ed. P.

Bernard, Berlin Heidelerg: Springer-Verlag, 115-241.

Gill, R. D. and Johansen, S. (1990), “A Survey of Product-integration with a View

toward Application in Survival Analysis,” The Annals of Statistics, 18, 1501–1555.

Gill, R. D., van der Laan, M. J., and Wellner, J. A. (1995), “Inefficient Estimators of the

Bivariate Survival Function for Three Models,” Annales de l’Institut Henri Poincaré:
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