

Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an

advanced degree from Emory University, I hereby grant to Emory University and its agents the

non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole

or in part in all forms of media, now or hereafter known, including display on the world wide

web. I understand that I may select some access restrictions as part of the online submission of

this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or

dissertation. I also retain the right to use in future works (such as articles or books) all or part of

this thesis or dissertation.

Signature:

_____________________________ ______________

 Zhifan Sang Date

Evaluating Scalable Markov Chain Monte Carlo Algorithms for Big Data Problems

By

Zhifan Sang

Master of Science in Public Health

Department of Biostatistics and Bioinformatics

Qi Long, Ph.D.

Committee Chair

Suprateek Kundu, Ph.D.

Committee Member

Extending and Evaluating Scalable Markov chain Monte Carlo Algorithms for Big Data

Problems

By

Zhifan Sang

B.S., Nankai University, 2014

Thesis Committee Chair:

Qi Long, Ph.D.

An abstract of

A thesis submitted to the Faculty of the

Rollins School of Public Health of Emory University

in partial fulfillment of the requirements for the degree of

Master of Science in Public Health

in Department of Biostatistics and Bioinformatics

2016

Abstract

Evaluating Scalable Markov Chain Monte Carlo Algorithms for Big Data Problems

By Zhifan Sang

Advances in technology have led to generation of enormous amounts of data in many fields

including medicine, presenting challenges in data analysis. The reason could be processor,

memory, or disk storage bottlenecks in computational environments. These challenges are

particularly pronounced for Bayesian analysis, which often entails the use of Markov chain Monte

Carlo (MCMC) in computation. As such, a number of scalable MCMC algorithms have been

developed to alleviate the computational challenges in three main directions. The first direction is

to accelerate expensive gradient computation at each MCMC iteration. The second direction is to

parallelize computation at each MCMC iteration, requiring potentially expensive communication

within each iteration. The third direction is to divide a data set into small subsets and run

independent MCMC for each subset before combining them. This work focuses on scalable

MCMC algorithms developed in the third direction. We conduct simulation studies to evaluate and

compare several parallel MCMC algorithms. Examples of scalable MCMC are shown for Bayesian

linear regression and other regressions.

Evaluating Scalable Markov chain Monte Carlo Algorithms for Big Data Problems

By

Zhifan Sang

B.S., Nankai University, 2014

Thesis Committee Chair:

Qi Long, Ph.D.

A thesis submitted to the Faculty of the

Rollins School of Public Health of Emory University

in partial fulfillment of the requirements for the degree of

Master of Science in Public Health

in Department of Biostatistics and Bioinformatics

2016

Table of Contents

1. Introduction ... 1

1.1 Background ... 1

1.2 Current Approaches .. 1

1.2.1 Nonparallel Accelerating Approach .. 1

1.2.2 Communication-Intense Parallel Approach .. 2

1.2.3 Communication-Free Parallel Approach ... 3

1.3 General Comparisons ... 6

2. Analysis of MCMC Algorithms and Computational Challenges 9

2.1 Overview .. 9

2.2 Algorithms in Nonparallel Accelerating Approach ... 10

2.3 Communication-Intense Parallel Algorithms ... 10

2.4 Communication-Free Parallel Algorithms... 11

3. Simulation Study .. 13

3.1 Goals .. 13

3.2 Simulation Settings .. 14

3.3 Performance Metrics ... 15

3.4 Results ... 16

4. Discussion .. 24

References .. 25

 1

1. Introduction

1.1 Background

Big data often refer to large and complex data sets which cannot be appropriately processed by

traditional data processing applications. The volume, velocity, and variety of data significantly

increase because of the modern technology of data collecting, processing and storing. For

example, business, medical, governmental and web data sets with millions of entries or thousands

of attributes can be quite large and hard to manipulate and analyze.

There are challenges in conducting Bayesian inference, one of the popular analytical tools, on big

data. Traditionally, Bayesian inference can produce efficient and robust results in parameter

estimations in various models. Complex posteriors in Bayesian inference are commonly

approximated by Markov chain Monte Carlo approach (MCMC). MCMC is a powerful

simulation algorithm highly used in Bayesian inference to approximate an intractable posterior

function by random sampling, which is useful for computing integrals or optimizing functions in

large-dimensional spaces. In the context of statistics and machine learning, it translates into

parameter estimation, prediction, and model selection. One of the challenges of Bayesian

computation is that the examination of all the data is required to evaluate a new hypothesis

regarding parameters or latent variables in the coherent procedure of inference. For instance, it is

necessary to evaluate the target posterior density for each proposed parameter update based on

whole dataset iteratively when we perform Metropolis-Hastings (MH).

Regular MCMC algorithms store all the data into the memory and disk. In other words, the

method may fail frequently when the data sets and the temporarily generated data are larger than

or equal to the volume of memory or disk, which is common in big data settings. Even if all data

can be fitted in the hardware framework, standard MCMC methods are still too computationally

expensive to be used for inferences on large datasets, which contain a large number of

observations or a large number of parameters.

1.2 Current Approaches

There has been considerable interest in developing scalable MCMC algorithms for big data

problems, which mostly falls into three main groups.

1.2.1 Nonparallel Accelerating Approach

 The first strategy uses approximation methods like stochastic gradient process based on data or

data subsets in order to accelerate the expensive gradient calculations in Monte Claro (Wang, X.,

Dunson, D. B. ,2013). This stagey can be implemented for a number of MCMC methods,

namely Metropolis-Hastings (MH) Algorithm, Langevin Monte Carlo(LMC), and Hamiltonian

Monte Carlo (HMC) (Neal, 2010; Welling and Teh, 2011; Ahn et al., 2012). It only requires a

single machine, but the resulting parameter estimates can be unstable or even biased. There are

mainly three related methods, which can scale up Metropolis-Hastings approach.

One method is the Firefly Monte Carlo (FlyMC) (Maclaurin and Adams, 2014). FlyMC is an

exact MCMC procedure utilizing only a subset of the data at each iteration, and it keeps the full-

data posterior invariant. The main idea of FlyMC is using a set of binary auxiliary variable to

 2

control whether or not the data points are included in the calculation at each iteration. To ensure

the validity of FlyMC, lower bounds for each likelihood term are used.

Another method is the Austerity framework (Korattikara et al., 2014). This method uses

approximate accept and reject steps to accelerate Metropolis-Hasting algorithm. It is known to

lead to biased result, since it samples from an approximate posterior distribution. Although it

yields a bias estimate calculating from the biased posterior, it can obtain a lower mean square

error (MSE) of Monte Claro estimator using the accept and reject steps. Under same situation,

this method can collect more samples with the same computation cost.

The third method is the Metropolis-Hastings with subsampled likelihoods (MHSubLhd)

(Bardenet et al., 2014). This method uses concentration inequalities to approximate the

Metropolis-Hastings test, which evaluates the likelihood ratio and determines whether to accept

proposed parameter values or not (Angelino, E., et al, 2016). It calculates the exact confidence

intervals for the Monte Claro approximated parameter estimates, and quantifies the precision of

the parameter estimates through concentration inequalities.

As for the differences among the aforementioned three methods, the FlyMC produces exact

Monte Claro estimates whereas other methods produces approximated estimates. The downside

of the FlyMC is the difficulty to find an appropriate lower bound on the likelihood. The Austerity

method obtains an approximate confidence interval of parameter estimates, whereas the

MHSubLhd obtains an exact confidence interval with some prior knowledge on the data.

However, the MHSubLhd method could make a wrong accept/reject decision since the

assumptions of the data and the predetermined boundary constraint could be inappropriate.

1.2.2 Communication-Intense Parallel Approach

The second strategy is to parallelize computation of likelihood function within each MCMC

iteration. At each iteration, this approach conducts separate computation for mini batches, but

requires intensive communications.

There are two computation schemes to achieve parallelism within each iteration. One scheme

uses a multi-machine computation environment, and the other uses multi-core processing units.

The first scheme takes advantage of a multi-machine computation environment. Because of

conditional independence of the partial likelihood function, we can conduct the calculation

independently for predetermined data subsets stored on different machines and then combine the

results from all machines in a central machine (master node) to obtain the full likelihood. As

such, computational challenges associated with disk storage and memory are alleviated in this

implementation. However, the communication among machines is needed to obtain the full

likelihood function of interest, incurring communication cost that can be expensive.

The second scheme is to divide the workload among multiple cores on one chip. This local

parallelism can be achieved by using a multi-core central processing unit (CPU), or a massively

parallel graphics processing unit (GPU). While this scheme is relatively efficient and cheap, it

has two major limitations. First, it cannot handle an oversized dataset that exceeds the limitation

of random-access memory (RAM) or disk storage. Second, it may encounter difficulty in multi-

threaded programming, which is needed for multi-core computation. For instance, GPU

 3

programming with CODA code is difficult to abstract to high-level programming since it requires

low-level memory management.

1.2.3 Communication-Free Parallel Approach

A third approach is motivated by the independent product equation (Wang and Dunson, 2013).

The key idea is to divide a dataset into independent subsets, for which parallel computation can

be used. Although MCMC is sequential by nature, it can be parallelized by running separated

MCMC chains on different data subsets first. The main challenge is how to combine posterior

samples obtained from separated MCMC on data subsets such that the combined posterior

samples converge to the true posterior distribution in a precise fashion. To this end, a number of

communication-free parallel MCMC algorithms have been developed. This approach solves both

limited memory/disk problem by taking advantage of scalable memory, disk, and processor

power produced by multi-machine systems. Meanwhile, the data are divided into multiple

machine so that they can run the analysis separately and combine the result in the very last step.

This parallel scheme is often known as the embarrassingly parallel method. The embarrassingly

parallel procedure reduces the network traffic among machine to minimum and hence reduces

communication cost.

To fix ideas, suppose there are 𝑁 independent data points denoted by 𝒙, and the parameter of

interest is denoted by 𝜃. The goal is to estimate the posterior distribution of 𝜃

𝑝(𝜃|𝒙) ∝ 𝑝(𝜃)𝑝(𝒙|𝜃)
Suppose the original data are split into S data subsets and let 𝑥𝑠 denote the 𝑠𝑡ℎ subset.

𝑝(𝜃|𝒙) ∝ 𝑝(𝜃)∏𝑝(𝒙𝒔|𝜃) =∏𝑝(𝜃)
1
𝑆𝑝(𝒙𝒔|𝜃)

𝑆

𝑠=1

𝑆

𝑠=1

.

The subposterior 𝑝(𝜃|𝑥𝑠) can be represented by

𝑝(𝜃|𝒙𝒔) ∝ 𝑝(𝜃)
1
𝑆𝑝 .

It follows that 𝑝(𝜃|𝒙) ∝ ∏ 𝑝(𝜃|𝒙𝒔)
𝑆
𝑠=1 , which is the basis for combining subposterior samples.

The communication-free MCMC algorithms can be further divided into to three groups, namely

parametric methods, nonparametric methods and semi-parametric methods.

The parametric methods recombine subposterior samples to approximate the full posterior if the

sample follows a normal distribution. The central limit theory for Bayesian statistics, Bernstein-

von Mises Theorem, guarantees the validity of this method. Given certain regularity conditions

and the data realized from unique true parameter 𝜃0, the posterior can be approximated by

𝑁(𝜃0 , 𝐼
−1(𝜃0)) (𝐼(𝜃) is the Fisher Information).

For instance, Neiswanger et al. (2013) assume a Normal distribution and combine subposteriors

by the product of Gaussian to obtain approximated full posterior. Let �̂�𝑠 and Σ̂𝑠 denote the

sample mean and sample variance of the sth data subset. The distribution of each posterior can be

approximated by 𝑁(�̂�𝑠, Σ̂𝑠).

The full posterior can then be calculated by multiplying these subposterior estimates

𝑝1…𝑝𝑆(𝜃) ∝ 𝑝(𝜃|𝒙).

𝑝1…𝑝𝑆̂ (𝜃) = 𝑝1̂…𝑝�̂�(𝜃) ∝ 𝑁(𝜃|�̂�𝑆, �̂�𝑆), 𝑤ℎ𝑒𝑟𝑒

 4

 Σ̂ = (∑Σ̂𝑠

𝑆

𝑠=1

)

−1

, �̂� = Σ̂ (∑Σ̂𝑠
−1

𝑆

𝑠=1

�̂�𝑠) (∗)

A similar approach is proposed by Scott et al.(2013), which combines samples using averaging

(known as the consensus Monte Carlo). Let 𝜃𝑠𝑗be the jth sample from subposterior s, and 𝑊𝑠 be

the subposterior weight for subposterior s. The 𝑗𝑡ℎ draw from consensus approximation of the

posterior can be calculated by:

𝜃𝑗 = (∑𝑊𝑠

𝑆

𝑠=1

)

−1

∑𝑊𝑠𝜃𝑠𝑗

𝑆

𝑠=1

, 𝑤ℎ𝑒𝑟𝑒 𝑊𝑠 = 𝑉𝑎𝑟(𝜃|𝑥𝑠)

The approaches of Scott and Neiswanger are fast and easy to converge if the model is close to

Gaussian. However, these two approaches do not perform well on non-Gaussian data since their

prediction are based on the normal assumption.

One extension of the consensus Monte Carlo approach is using averaging to relax the aggregation

restriction; see Rabinovich et al.(2015). Let 𝐹(𝜃1, … , 𝜃𝑆) be the aggregation function, 𝜃1, … , 𝜃𝑆

be draws from each subposterior. We have:

𝐹(𝜃1, … , 𝜃𝑆) = (∑𝑊𝑠

𝑆

𝑠=1

)

−1

∑𝑊𝑠𝜃𝑠

𝑆

𝑠=1

However, this improved method needs to add an optimization step, increasing computational

costs.

If the subposteriors cannot be approximated by Gaussian because the distribution is far away

from a normal distribution or the sample size is not large enough, the aforementioned parametric

methods are questionable. An alternative strategy is to use nonparametric methods such as the

one suggested by Neiwanger et al.(2013), where a kernel density estimator is used to approximate

the full posterior. Let 𝑥1, … , 𝑥𝑁 be p-dimension sample from density 𝑓. The kernel density of 𝑓

at point x is:

𝑓(𝑥) =
1

𝑁
∑𝐾𝐻(𝑥 − 𝑥𝑖),

𝑁

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝐾𝐻(𝑥) = |𝐻|−
1
2𝐾 (𝐻−

1
2𝑥) , 𝐻 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑝𝑜𝑠𝑡𝑖𝑣𝑖𝑒 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

The kernel function can be chosen from Gaussian or Non-Gaussian. To determine the accuracy

of a kernel density estimate, we have to take bandwidth into account since it controls the

estimate’s smoothing.

To illustrate the idea of kernel function in nonparametric methods, Neiswanger et al. (2013)

proposes an approach using Gaussian kernel with a diagonal bandwidth matrix ℎ2𝐼 to estimate the

subposterior. The approximated estimation is given by:

�̂�𝑠(𝜃) =
1

𝑀
∑ 𝑁(𝜃|𝜃𝑚𝑠, ℎ

2𝐼),

𝑀

𝑚=1

𝑤ℎ𝑒𝑟𝑒 {𝜃𝑚𝑠}𝑚=1
𝑀 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑠𝑢𝑏𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑠,𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑢𝑏𝑠𝑒𝑡.

The posterior is the product of estimated subposteriors:

 5

𝑝(𝜃|𝑥) =∏�̂�𝑠

𝑆

𝑠=1

(𝜃) =
1

𝑀𝑆
∏ ∑ 𝑁(𝜃|𝜃𝑚𝑠, ℎ

2𝐼)

𝑀

𝑚=1

𝑆

𝑠=1

.

These algorithms yield good performance for non-Gaussian models, but their limitation is the

poor performance of the kernel density estimation for high dimension data, also known as the

curse of dimensionality.

To accelerate the convergence of the nonparametric method Neiswanger et al. propose a

semiparametric estimator for each subposterior.

p̂s = 𝑓𝑠(𝜃)�̂�(𝜃),where 𝑓𝑠(𝜃) = 𝑁(𝜃|�̂�𝑠, Σ̂𝑠), 𝑟(𝜃) =
𝑝𝑠(𝜃)

𝑓𝑠(𝜃)
 .

The r̂(θ) represents the nonparametric estimator of r(θ).

Given the Gaussian kernel for 𝑟(𝜃) suggested by Neiswanger et al. (2013), we can derive

𝑝𝑠(𝜃) =
1

𝑀
∑

𝑁(𝜃|𝜃𝑚,𝑠, ℎ
2𝐼)𝑁(𝜃|�̂�𝑠, Σ̂𝑠)

𝑓𝑠(𝜃𝑚,𝑠)

𝑀

𝑚=1

=
1

𝑀
∑

𝑁(𝜃|𝜃𝑚,𝑠, ℎ
2𝐼)𝑁(𝜃|�̂�𝑠, Σ̂𝑠)

𝑁(𝜃𝑚,𝑠|�̂�𝑠, Σ̂𝑠)

𝑀

𝑚=1

 .

Full posterior 𝑝(𝜃|𝑥) can be estimated by the product of subposterior estimates

Σ𝐿 = (
𝑆

ℎ
𝐼 + Σ̂−1)

−1

, 𝜇𝐿 = Σ𝐿 (
𝑆

ℎ
𝐼𝜃𝐿 + Σ̂−1�̂�) , 𝑤ℎ𝑒𝑟𝑒 �̂� 𝑎𝑛𝑑 Σ̂ 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 (∗).

This method combines the parametric component and nonparametric method. If ℎ approaches

zero, the semiparametric estimator �̂� 𝑎𝑛𝑑 Σ̂ approach the corresponding nonparametric

estimators. Except for solving the slow convergence problem of nonparametric methods, this

semiparametric method is not well studied in terms of the balance between accuracy and speed.

Wang and Dunsin (2013) argued that methods proposed by Neiswanger et. al (2013) may suffer

from the curse of dimensionality in the number of subsets; degeneration of tail distribution; mode

misspecification and support inconsistency. These aforementioned aspects need further

investigation to determine their validation.

To avoid some of the drawbacks of Neiswanger et. al (2013), Wang and Dunson(2013) proposed

an alternative approach of using multi-tiered Gibbs sampler to simulate posterior from the

Weierstrass transform’s product. In this way, the parameters are simulated from the controlled

kernel, and there is only one-time parameter simulation. In this sampling approach, the simulated

subposteriors are combined into a normal proposal on 𝜃, which is accepted with a probability

depending on the subposterior simulations.

More recently, Wang and Dunson (2015) proposed to use random partition trees to parallelize

MCMC(PART). This method is distribution-free, and it is easy to resample from the raw data. In

addition, the PART algorithm can be easily and potentially adopted to multiple scales, which

Neiswanger et. al (2013) could not achieve. Thus, the PART method using similar

embarrassingly parallel MCMC baseline scheme to avoid the limited approximation accuracy and

resampling difficulties that Neiswanger et. al (2013) has.

 6

Another alternative to parametric/nonparametric combination approaches is utilizing barycenters

of subposteriors without introducing kernel or tuning parameters. Srivastava et al (2015) uses

Wasserstein barycenter of subposteriors in the combination step along with the same

embarrassingly parallel MCMC scheme. The result of Wasserstein posterior(WASP) have good

properties such as atomic form, straightforward estimation. This method is scalable, and it does

not require specifying the associated probability density functions, which requires examination on

the data.

Instead of implementing single layer of parallel MCMC chains, Martino, L., et al (2015) propose

orthogonal parallel MCMC(O-MCMC) to employ multiple parallel MCMC chains with

additional layer of MCMC techniques. Generally the O-MCMC scheme consists of vertical

parallel MCMC chains sharing information by horizontal MCMC methods. To be specific, the

horizontal MCMC employ independent proposal on the parameter 𝜃 while the vertical chains are

based on random-walk proposals. Additional algorithms like parallel simulated annealing is

utilized in the O-MCMC optimization. The study shows that the O-MCMC implementation

reduce the computation cost of parallel Metropolis chains approach.

There are some approaches to accelerate the accept/reject step by modifying the mechanism of

rejection in MCMC. For instance, Quiroz, M. (2015) utilizes the procedure of delayed

acceptance in the MH algorithm to speed up the MCMC. The acceptance decision is processed in

two stage in this method. The first stage evaluates conditional likelihood of interested parameter

only from a random subsample. The second stage evaluates the likelihood using the full sample,

and this stage is executed only the proposed posterior density accepted in the first stage. Hence,

the computation is highly reduced because of the early rejection of proposals (Payne and Mallick,

2014). Beside the basic delayed acceptance procedure, Quiroz, M. (2015) also incorporates

auxiliary information about the full sample while only evaluating based on data subset.

Banterle, M., et al. (2014) also modify the accept/reject step to reduce the computational cost by

multiple acceptance steps. Divide-and-conquer strategy is employed to conduct multiple

acceptance procedure. The prior and likelihood product can be decomposed into product

components, some of which are cheaper with regards of computational cost. The components are

compared with uniform random variate sequentially, and stop after first rejection to avoid further

time consumption.

1.3 General Comparisons

We compare aforementioned three approaches with regard of their methodology and

performances over different settings. Tables 1 and Table 2 present a summary of parallel MCMC

algorithms and a summary of nonparallel MCMC algorithms, respectively.

Most of the methods are designed to be parallel MCMC algorithms, which reduce the

computation cost to accommodate the rapid increasing data volume. The Scott, S. L. et al.

(2013) address the practical idea of parallel MCMC implementation, which was followed by the

statistical introduction of embarrassingly parallel MCMC (Neiswanger et. al, 2013). Most recent

related works treat the two papers as start point or baseline comparison standard as the scheme

and methodology of the embarrassing parallel MCMC is intuitive, straightforward, and practical.

Multiple alternatives for embarrassingly parallel MCMC are developed to address its limitations

as well as providing new methods to generate and sample posteriors (Wang,X. et al, 2013, 2015,

Minsker, S. et al., 2014, Srivastava, S.,et al.,2015). There are packages in Matlab, R, Python

developed to implement these methods in different settings.

 7

 Table 1: Comparison of Parallel MCMC Algorithms

Other novel techniques like delayed acceptance, multiple try, random walk have been adopted to

accelerate the updating process of MCMC (Quiroz, M. ,2015, Martino, L., et al,2015, Banterle,

M., et al. ,2014).

There are some recent works on nonparallel optimization of MCMC methods to obtain better

performance (Maclaurin and Adams, 2014, Korattikara et al., 2014, Banterle et al. 2014).

Although the scalability of these methods are not as promising as the parallel algorithms, the

ideas still counts as it is practical and useful in single-thread computation, and can be potentially

used together with other methods.

Author Algorithm Method Posterior

Sampling

Package Language

Parallel

Neiswanger,

W., Wang,

C., & Xing,

E. (2013)

Simple Average
Average of

subset

Approxim

ate

parallelMC

MCcombine

R Yes

MC Consensus

parametric

Bernstein-von

Mises

Approxim

ate
R Yes

MC Consensus

nonparametric

Independent

Metropolis

Gibbs(IMG)

sampler

Approxim

ate
R Yes

Semiparametric

Consensus
Combine

Asymptoti

cally exact
R Yes

Minsker,

S.,et al., &

Dunson, D.

B. (2014)

Median Subset

Posterior
geometric

median

Approxim

ate
Mposterior R Yes

Wang, X.,

Dunson, D.

B. (2013)

Weierstrass

Sampler

Weierstrass

transformatio

n

Approxim

ate
Weierstrass R Yes

Luengo,

D.,et al.

(2014)

Combine partial

MMSE

estimators

Combine

partial

 MMSE

estimators

Approxim

ate
N/A N/A Yes

Martino,

L.,et al.

 (2015)
Orthogonal

parallel MCMC

Multiple Try

Metropolis,

Block

Independent

Metropolis,

Simulated

Annealing

Approxim

ate
N/A N/A yes

Wang, X.,

 & Dunson,

D. B.(2015).
Random

Partition Tree

Embarrassing

ly parallel

MCMC,

random

partition tree

Approxim

ate
github Matlab yes

Srivastava,

S.,&

Dunson, D.

B. (2015).

WASP
Wasserstein

posterior

Approxim

ate
N/A N/A yes

 8

Table2: Comparison of Nonparallel MCMC Algorithms

Quiroz, M.

(2015)
Delayed

Acceptance and

Data Subsample

delayed

acceptance

,auxiliary

information

Approxim

ate
obtained python yes

Quiroz, M et

al. (2015) Data

Subsamping

and the

Difference

Estimator

highly

efficient

difference

estimator,

Pseudo-

marginal

MCMC

Approxim

ate
N/A N/A yes

Nishihara,

R.,et al.

 (2014)
Generalized

Elliptical Slice

Sampling

parallelism,

slice

sampling,

elliptical slice

sampling

Approxim

ate
N/A N/A yes

Scott, S. L.

et al. (2013) consensus

Monte Carlo

Average of

subset

 posterior

sample

Approxim

ate

parallelMC

MCcombine
R yes

Author Algorithm Method Posterior

Sampling

Package Lang Parallel

Maclaurin,

D., et al.

(2014)

FireFly query subset Exact FireFly Python No

Banterle,

M., (2014)

Delayed

acceptance

decomposition,

prefectching

Delayed

acceptance

,Likelihood

decompositio

n,

prefectching

Approxim

ate

N/A N/A No

Angelino,

E. et al.

(2014)

prefectching Fetching

,speculative

execution to

parallelize

MCMC.

Approxim

ate

fetching python No

 9

2. Analysis of MCMC Algorithms and Computational Challenges

2.1 Overview

In Bayesian inference, we rely on the posterior 𝑝(𝜃|𝒙) ∝ 𝑝(𝒙|𝜃)𝑝(𝜃). In many applications, the

posterior is intractable and we have to rely on approximations. A standard approach is to use MCMC

where we construct a Markov chain with stationary distribution
𝑝(𝜃|𝑥), 𝜃 = 𝜃1, 𝜃2, 𝜃3, … 𝑤ℎ𝑒𝑟𝑒 𝑝(𝜃𝑖|𝜃𝑖−1 … 𝜃1) = 𝑝(𝜃𝑡|𝜃𝑡−1) .

Calculate posterior expectations using a Monte Carlo estimate (unbiased)

𝐸𝑝(𝜃|𝒙)[𝑓] ≈
1

𝑇
∑𝑓(𝜃𝑡).

𝑇

𝑡=1

The data points 𝒙 = {𝑥1, . . . , 𝑥𝑁} are conditional independent given θ we can write the posterior as

𝑝(𝜃|𝒙) ∝ 𝑝(𝜃)𝑝(𝒙|𝜃) = 𝑝(𝜃)∏ 𝑝(𝑥𝑖|𝜃).

𝑁

𝑖=1

If the data set is large (N ≫ 1), evaluating 𝑝(𝒙|𝜃) or 𝛻𝑝(𝒙|𝜃) is the computational bottleneck for most

standard MCMC methods, including but not limited to Metropolis-Hastings (MH) Algorithm, Langevin

Monte Carlo (LMC) and Hamiltonian Monte Carlo (HMC).

Here we focus on the Metropolis-Hastings algorithm and its computational challenge in big data settings.

The MH algorithm uses the full joint density function and independent proposal distributions for each

parameter of interest to generate posterior samples accordingly.

Algorithm 1 Metropolis-Hastings Algorithm

Initialize 𝜃(0)~𝑞(𝜃)
for iteration i = 1,2, … do

 Propose: 𝜃𝑐𝑜𝑛𝑑~𝑞(𝜃(𝑖)|𝜃(𝑖−1), 𝒙)
 Acceptance Probability:

 𝛼(𝜃𝑐𝑜𝑛𝑑|𝜃(𝑖−1)) = min{1,
𝑞(𝜃(𝑖−1)|𝜃𝑐𝑜𝑛𝑑)𝑝(𝜃𝑐𝑜𝑛𝑑|𝒙)

𝑞(𝜃𝑐𝑜𝑛𝑑|𝜃(𝑖−1))𝑝(𝜃(𝑖−1)|𝒙)
}

 𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑢; 0,1)
 if 𝑢 < 𝛼 then

 Accept the proposal: 𝜃(𝑖) ← 𝜃𝑐𝑜𝑛𝑑

 else

 Reject the proposal: 𝜃(𝑖) ← 𝜃(𝑖−1)
 end if

end for

The first step of the Algorithm 1 initializes the sample for each random variable by prior distribution or

other choices. The main iteration loop of MH algorithm consists of three parts: (1) generate proposal

sample 𝜃𝑐𝑜𝑛𝑑 from proposal distribution; (2) evaluate the posterior distribution and calculate the

 10

acceptance rate 𝛼; (3) reject the proposal sample with probability of 1 − 𝛼, or accept it with probability

𝛼.

The computation challenge mainly lies in the second part of the main loop iteration. In this part,

evaluating the posterior density 𝑝(𝜃𝑐𝑜𝑛𝑑|𝒙) could be time consuming and memory consuming since it

uses all the data in the computation. To alleviate this part of tremendous computation, the approaches

introduced in chapter 1 have their technical solutions with regard of algorithm implementations.

2.2 Algorithms in Nonparallel Accelerating Approach

Nonparallel accelerate approach reduce the size of data used in the posterior evaluation by only using data

subsets. In this way, the computational cost is reduced while compromising the accuracy of the full

posterior.

For instance, the Firefly Monte Carlo algorithm use rejection sampling to avoid using all data in

evaluating the posterior density(Algorithm 2, Maclaurin, D., & Adams, R. P. 2014). The actual sample

used in evaluating the likelihood is constraint by auxiliary variable and lower bound of likelihood for each

data points.

Algorithm 2 Firefly Monte Carlo

Set 𝜃0 by initial distribution

for i=1 to numberOfMarkovChain do

 for j=1 to N*T do

 𝑛~𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑟𝑔𝑒𝑟(1, 𝑁)

 𝑧𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 −
𝐵𝑛(𝜃𝑖−1)

𝐿
− 𝐿𝑛(𝜃𝑖−1))

 end for

 𝜃′ ← 𝜃𝑖−1 + 𝜂 𝑤ℎ𝑒𝑟𝑒 𝜂 ~ 𝑁(0, 𝜖2𝐼𝐷)
 𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)

 if
𝑗𝑜𝑖𝑛𝑡𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃′;{𝑧𝑛}𝑛=1

𝑁)

𝑗𝑜𝑖𝑛𝑡𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃;{𝑧𝑛}𝑛=1
𝑁)

> 𝑢 then

 𝜃𝑖 ← 𝜃′
 else

 𝜃𝑖 ← 𝜃𝑖−1

 end if

end for

function jointPosterior(𝜃; {𝑧𝑛}𝑛=1
𝑁)

 𝑃 ← 𝑝(𝜃)∏ 𝐵𝑛(𝜃)
𝑁
𝑛=1

 for each n a.s. 𝑧𝑛 = 1 do

 𝑃 ← 𝑃 × (
𝐿𝑛

𝐵𝑛(𝜃)
− 1)

 end for

 return P

end functions

2.3 Communication-Intense Parallel Algorithms

 11

Communication intense approach parallel the computation of evaluating the conditional posterior within

each MCMC iterations. Specifically, the conditional posterior distribution calculation

𝑝(𝜃)∏ 𝑝(𝑥𝑖|𝜃)
𝑁
𝑖=1 could be calculated simultaneously on multiple machines. Each node (machine) only

takes a data subset in the calculation, which reduce the time and memory cost by having multiple

machines working on separated portion of the evaluation.

This approach could be implemented easily in the parallel computing environment because of the

independent assumption on conditional probabilities. However, this method has poor performance in real

network settings since the data flow in the network slows the whole process down significantly.

2.4 Communication-Free Parallel Algorithms

The communication free approach obtains the subposterior sample from data subset first, and combine the

subposterior samples to obtain the full posterior samples. This approach avoids redundant

communication over network and expensive and intensive computation within single machine. The

difference within communication-free parallel algorithms is the techniques used in the combination step.

The simplest way of combination is to draw the posterior sample from the average of all subposterior

samples. Since only sample average calculation is involved in this case, the algorithm is fast and scalable.

However, this method usually overestimate the variance of the posterior, and it can hardly recover the true

posterior distribution except for simple statistics like sample mean.

For instance, Algorithm 3 is asymptotically exact, embarrassingly parallel MCMC algorithm utilizes the

communication free approach (Neiswanger, W., et al, 2013). It obtains the posterior samples from

nonparametric density product estimate by combining subposterior samples.

Algorithm 3 Asymptotically Exact Sampling via Nonparametric Density Product Estimation

Input: Subposterior samples {𝜃𝑡1
1 }𝑡1=1

𝑇 ~𝑝1(𝜃),… , {𝜃𝑡𝑀
𝑀 }

𝑡𝑀 =1

𝑇
~𝑝𝑀(𝜃)

Output: Full posterior samples {𝜃𝑖}𝑖
𝑇~𝑝1…𝑝𝑀(𝜃|𝑥

𝑁)

Set ℎ ← 1

Generate t= {𝑡1 , … , 𝑡𝑀}
𝑖𝑖𝑑
← 𝑈𝑛𝑖𝑓({1,2,… , 𝑇})

Set c ← 𝑡

Generate 𝜃1~𝑁(𝜃�̅� ,
ℎ

𝑀
𝐼𝑑)

for I =2 to T do

 for m=1 to M do

 Set 𝑡 ← 𝑐

 Generate 𝑡𝑚~ 𝑈𝑛𝑖𝑓({1,2,… , 𝑇})
 Set ℎ ← 𝑖−1/(4+𝑑)
 Generate 𝑢~𝑈𝑛𝑖𝑓([0,1])
 if 𝑢 < 𝑤𝑡/𝑤𝑐 then

 Generate 𝜃𝑡~𝑁(𝜃�̅� ,
ℎ

𝑀
𝐼𝑑)

 Set 𝑐 ← 𝑡
 else

 Generate 𝜃𝑡~𝑁(𝜃�̅� ,
ℎ

𝑀
𝐼𝑑)

 12

 end if

 end for

end for

Another way to implement communication free approach is using Weierstrass refinement sampling.

Algorithm 5 and Algorithm 6 show how to implement Weiserstrass sampling in the parallel MCMC

process (Wang, X., Dunson, D. B. ,2013). Algorithm 5 assumes that we have the approximated density

estimate of the parameter, so we can obtain the initial parameter by evaluating the approximated density

functions. By contrast, Algorithm 6 illustrates how it samples sequentially with rejection when we do not

have prior approximated density.

Algorithm 5 Weierstrass Refinement Sampling

Input 𝐻𝑖 𝑓𝑜𝑟 𝑖 = 1,2…𝑚
for k=1 to N dos

 𝜃𝑘~𝑓(𝜃)
end for
for k=1 to N do

 Sample 𝑡𝑖
(𝑘)

= (𝑡𝑖1
(𝑘)
, … , 𝑡𝑖𝑝

(𝑘)
)
𝑇
~𝑑𝑁(𝑡𝑖|𝜃𝑘, 𝐻𝑖) ∙ 𝑓𝑖(𝑡𝑖)

 𝑇𝑖 ← 𝑇𝑖 ∪ {𝑡𝑖
(𝑘)
}

end for
for k=1 to N do

 𝜃~𝑁 (𝑚−1∑ 𝑡𝑖
(𝑘)𝑚

𝑖=1 , (∑ 𝐻𝑖
−1𝑚

𝑖=1)
−1
)

 𝑀𝐶𝑀𝐶 ← 𝑀𝐶𝑀𝐶 ∪ {𝜃} #MCMC is the set of posterior samples with initial value of ∅

end for

return MCMC

Algorithm 6 Weierstrass Sequential Rejection Sampling

Input 𝑁0 ℎ𝑗𝑓𝑜𝑟 𝑗 = 1,2…𝑝

Set ℎ𝑖𝑗 = √𝑚ℎ𝑗, 𝐶𝑗 = 0, 𝑗 = 0,… , 𝑝 − 1

for j=1 to p do

 for t=1 to 𝑁0 do

 Sample 𝜃𝑖𝑗
(𝑡)
~𝑓�̂�(𝜃𝑗|𝜃1

∗ , … , 𝜃𝑗−1
∗)

 𝑇𝑖 ← 𝑇𝑖 ∪ {𝜃𝑖𝑗
(𝑡)
}

 end for

 Calculate 𝜃𝑗
∗ by combining 𝜃𝑖𝑗

(𝑡)
, 𝑖 = 1,2,… ,𝑚 via Weierstrass rejection sampling

 Calculate 𝐶𝑗−1 as 𝐶𝑗−1 = ∫∏ 𝑓�̂�(𝜃𝑗|𝜃1
∗ , … , 𝜃𝑗−1

∗)𝑑𝜃𝑗
𝑚
𝑖=1

 𝑀𝐶𝑀𝐶 ← 𝑀𝐶𝑀𝐶 ∪ {(𝜃𝑗
∗, 𝐶𝑗−1)} #MCMC is posterior samples with initial value of ∅

end for

 13

return MCMC

More sophisticatedly, the geometric median of subposterior sample distribution can be used to generate

the full posterior samples (Minsker, S., et al, 2014). The Algorithm 7 define a function that can obtain the

geometric median of a discrete measure, and iteratively use the function to evaluate weights and the final

posterior density.

Algorithm 7 Approximating the Median-Posterior Distribution

Function geometricMedian(Q)

 # Weiszfeld’s algorithm in evaluating the geometric median of probability distributions
 Input discrete measure 𝑄1, … , 𝑄𝑚

 Input the kernel 𝑘(∙,∙): 𝑅𝑝 × 𝑅𝑝 → 𝑅

 Input threshold 𝜀 > 0

 Set 𝑤𝑗
(0)

=
1

𝑚
, 𝑗 = 1,… ,𝑚; 𝑄∗

(0)
=

1

𝑚
∑ 𝑄𝑗
𝑚
𝑗=1 ; t=0

 Do
 for j=1 to m do

 𝑤𝑗
(𝑡+1)

=
||𝑄∗

(𝑡)
−𝑄𝑗||

𝐹𝑘

−1

∑ ||𝑄∗
(𝑡)
−𝑄𝑗||

𝑚
𝑖=1

𝐹𝑘

−1

 𝑄∗
(𝑡+1)

= ∑ 𝑤𝑗
(𝑡+1)

𝑄𝑗
𝑚
𝑗=1

 until ||𝑄∗
(𝑡) − 𝑄𝑗||

𝐹𝑘

≤ 𝜀

 return 𝑤∗ = (𝑤1
(𝑡+1

, … , 𝑤𝑚
(𝑡+1)

)

Input samples {𝑍𝑗,𝑖 }𝑖=1
𝑁𝑗

~Π𝑛,𝑚 (∙ |𝐺𝑗), 𝑗 = 1,… ,𝑚

Do

 𝑄𝑗 =
1

𝑁𝑗
∑ 𝛿𝑍𝑗,𝑖
𝑁𝑗

𝑖=1
 , 𝑗 = 1,… ,𝑚

 apply function geometricMedian to 𝑄1, … , 𝑄𝑚 return 𝑤∗ = (𝑤∗,1, … , 𝑤∗,𝑚)
 for j = 1 to m do

 �̅�𝑗 = 𝑤∗,𝑗𝐼 {𝑤∗,𝑗 ≥
1

2𝑚
}

 define 𝑤𝑗
∗̂ =

�̅�𝑗

∑ 𝑤𝑖̅̅̅̅
𝑚
𝑖=1

 end for

end do

return Π̂𝑛,𝑔
𝑠𝑡 = ∑ 𝑤𝑖

∗̂𝑄𝑖
𝑚
1=1

3. Simulation Study

3.1 Goals

 14

In this section, we focus on communication-free parallel MCMC methods since it can handle huge

volume of data efficiently. The performances of related methods discussed above are compared in

identical simulation settings, and the main goal is to evaluate the quality of posterior samples as well as

running time.

3.2 Simulation Settings

In the simulation study, we consider the data setup using a multivariate regression setting. We assume

that 𝑿 comes from multivariate normal distribution 𝑀𝑉𝑁(𝝁, 𝚺), the parameter of interest is denoted by

𝛽 = (𝟏, 𝟏,… , 𝟏)𝒑, the random error is denoted by 𝜀𝑖~𝑁(0,1), 𝑖 = 1,… , 𝑁. The response variable 𝒀 is

generated using regression model as follows:
𝒀𝑛×1 = 𝑿𝑛×𝑝 𝜷𝑝×1 + 𝜺𝑁×1 .

We consider fitting the following multiple linear regression model using Bayesian approach. For 𝑖 =
1, . . . , 𝑛, the decomposed model is:

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2 𝑥𝑖2 + …+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁(0, 𝜎2)

𝒚 ∼ 𝑁(𝑿𝜷, 𝜎2𝑰𝑛 x 𝑛)
with likelihood

𝑝(𝒚│𝛽, 𝜎2) = (2𝜋𝜎2)−
𝑛
2exp [−1/((2𝜎2)(𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷).

The standard priors for linear regression parameters are non-informative multivariate normal for 𝛽 and

inverse-gamma for 𝜎2

β∼N(𝜇0,𝜏2𝑰𝑝×𝑝) and 𝜎2 ∼Inv-gamma(𝑐0, 𝑑0) ,

where 𝜏2is set to be large, and 𝑐0, 𝑑0are set to be small, 𝜇0is set to be 0. Assuming the calculation

consists of S subposterior samples, the parameter estimate �̂� is obtained from the posterior distribution

which can be calculated as below.

𝑝(β|𝒙) ∝ 𝑝(β)∏𝑝([𝒙, 𝒚]𝒔|β) =∏𝑝(β)
1
𝑆𝑝([𝒙, 𝒚]𝒔|β).

𝑆

𝑠=1

𝑆

𝑠=1

For comparison purposes, we use MCMCpack to generate posterior of linear regression coefficients with

Gaussian errors using Gibbs sampling. We use multivariate Gaussian prior on the beta vector and an

inverse Gamma prior on the conditional error variance. The estimate result from of the standard MCMC

is set to be the golden standard. Other combined parallel MCMC results are compared to the golden

standard based on standard MCMC.

In section 1.2, we discuss three groups of approaches to obtain the full posterior samples of high volume

of data. The approaches in section 1.2.2 and 1.2.3 involve parallel computing on data subsets. In order to

compare the performance among each categories with emphasis on communication-free methods, we

choose one method from section 1.2.1, one method from section 1.2.2, and four methods from section

1.2.3 for the simulations. The methods we use in the simulation are Firefly method, communication-

intense parallel method, Embarrassingly Parallel method, parallel Weierstrass Sampling method, parallel

Random Partition Trees method, Parallel Predictive Prefetching method.

The simulation study compares different parallel MCMC algorithms in terms of their performance as the

following scenarios change: sample size, number of sample subsets, dimension of sample, the property of

generated sample (correlation matrix parameter, standard deviation). The number of iterations and the

 15

Figure 1: Pipeline of Parallel/Nonparallel MCMC Simulations

number of the burn-in are predetermined by preliminary attempts. The effective sample size is calculated

using full posterior sample in order to compare performance of different approaches.

In all simulations, the number of MCMC iterations and the number of burn-in are predetermined by

preliminary experiments. The sample size N is chosen from 50 thousands, 1 million or 10 million. The

number of MC datasets (K) is 500. The number of data subsets (M) are 1, 10, 20 and 50, and we fix p to

5.

All the examples are coded in R and Matlab. The Bayesian linear regression examples are run on a

cluster composed of 4-cores (Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz) nodes, using up to 8 nodes

for a total of 32 cores, and make use of Open-MPI and R package “parallel” for communications among

cores. The standard MCMC example is run on a one core (Intel(R) Xeon(R) CPU E5-2670 v3 @

2.30GHz) on a single machine.

The basic workflow of the simulation is summarized in Figure1. First we generate data with different

correlation parameters and sample size. In parallel MCMC cases, we split the data, calculate subposteriors

of data subsets, and combine them using one of the combinations techniques to obtain full posteriors. In

other cases, we conduct the MCMC algorithms on the full data and obtain the posteriors. The last step is

to examine and compare the summary statistics of full posteriors obtained from previous steps.

3.3 Performance Metrics

The statistical inference measures of the parallel MCMC algorithms we implemented are listed below:

 Bias of ith parameter posterior �̂�𝑖:𝐵𝑖𝑎𝑠𝑖 =
1

𝑆
∑ (�̂�𝑖𝑠 − 𝛽𝑖)
𝑆
𝑠=1

 Mean standard error(SE) of �̂�𝑖: 𝑆𝐸𝑖 =
∑ 𝑆𝐸𝑖𝑠
𝑆
𝑠=1

𝑆
=

∑ √�̂�𝑖
2𝑆

𝑠=1

𝑆

 Monte Carlo standard deviation (SD) of �̂�𝑖 : 𝑆𝐷𝑖 =
√∑ (�̂�𝑖𝑘−𝛽𝑖̅̅ ̅)

2𝐾
𝑘=1

√𝐾

 Mean Square Error(MSE) of ith parameter posterior �̂�𝑖:𝑀𝑆𝐸𝑖 =
1

𝐾
∑ (�̂�𝑖𝑘 − 𝛽𝑖)

2𝐾
𝑘=1 , where �̂�𝑖𝑗 is

the parameter estimates for parameter i from jth MC dataset.

 16

 Coverage rate(𝐶𝑅𝑖): The probability of 95% confidence interval for �̂�𝑖 that contains true value

The running performance of algorithms we implement is measured by the following metrics:

 Effective sample size (ESS)

 Running time

Subposterior sample average (sample average), Consensus Monte Carlo Algorithm for correlated

parameters (consensusMCcov), Consensus Monte Carlo Algorithm for independent parameters

 (consensusMCindep), parallel Weierstrass Sampling method, parallel Random Partition Trees method

(PART) are used in the simulation.

3.4 Results

Table 3 and Figure 2-6 summarize the simulation results from the experiment. In general, The MC

consensus algorithms generally perform quite well in low dimensional scenarios (p=5), as it has relatively

low bias and standard error as well as largest confidence interval coverage rate. The Weierstrass sampling

method has good performance regarding bias and SE, which is better than PART, and close to MC

consensus method in this case. The PART method have less promising result compared with other

methods since it has larger bias and standard error with less effective sample size. This shortage can be

explained by the compromise made to boost the speed of algorithm.

For the small sample scenario (N=50,000), standard MCMC method utilizing all the sample generally has

the best performance, and it is set to be golden standard for comparison purpose. As the number of subset

increases, biases of all the parallel MCMC methods increases gradually; the SE,SD and MSE remain

similar level. As the correlation parameter 𝜌 increases, the bias of all methods increases, and the biases of

PART method increase significantly. The bias, SE, SD of sample average, MC consensus methods are

similar. When the number of subsample is large, Weistrass method achieve the lowest bias and SE. The

SD is the standard to which we compare SE, and the values of SD and SE are very similar in value. The

ESS of all methods except for PART are close to the posterior sample size 10,000 while the PART

method has a significantly small ESS of 300-500. The MSE of MC consensus, sample average, and

Weistrass method are generally small and close to the MSE of standard MCMC method, while PART has

a relatively high MSE.

As for the 95% coverage rate, consensus MC and sample average almost always has coverage rate of 1,

whereas PART and Weierstrass have relatively reasonable coverage rate (around 0.95). The standard

MCMC also has a 95% CR coverage rate near 0.95. Since it is hard to estimate the distribution of sample

using simple methods like MC consensus and sample average, even though it is easy to obtain the mean

estimates. These consensus MC methods tend to overestimate the variance of posteriors.

For the large sample scenario (N=1,000,000), the ascending trend of bias with increasing number of data

subset is also observed. As the correlation parameter 𝜌 increases, the bias of all methods increases, and

the biases of PART method increase significantly. We observed the performance of MC consensus

(Consensus Monte Carlo Algorithm), sample average and Weierstrass have similar performance with

regard of SD, SE, MSE as they have in small sample scenario.

As for the running performance, sample average method has the shortest average running time. This

method simply takes the average of all subposteriors in the combination step, which uses a relatively

 17

small amount of computation resources. PART method generally have the second shortest average

running time. The Weierstrass has the longest average running time in general, which is more than 10

times slower than sample average and PART method. The original MCMC actually runs faster than

Weierstrass method in small sample size case (N=50,000), but it runs significantly slower than parallel

MCMC methods when sample size is large (N=1,000,000). The standard MCMC takes a long time to

calculate posterior likelihood of large amount of sample, which is the major time cost. By contrast, other

MCMC algorithms with embarrassingly parallel scheme utilize multiple machines to run the likelihood

calculation on data subsets simultaneously. This approaches usually save a considerable amount of time,

while the time consumption of combination step is relatively small in large sample scenarios.

 18

 Figure 2: Simulation Result Comparison of Parallel MCMC (Bias)

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters)

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees

1
8

 19

 Figure 3: Simulation Result Comparison of Parallel MCMC (SE and SD)

Original: Single Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov:

Consensus Monte Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for

independent parameters) , parallel Weierstrass Sampling method, PART: parallel Random Partition Trees

1
9

 20

Figure 4: Simulation Result Comparison of Parallel MCMC (MSE)

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters)

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees

2
0

 21

Figure 5: Simulation Result Comparison of Parallel MCMC (ESS)

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters)

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees

2
1

 22

Figure 6: Simulation Result Comparison of Parallel MCMC (CR coverage rate)

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters)

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees

2
2

 23

Original: Single chain full-data posterior sample, sample average :Subposterior sample average,

consensusMCcov: Consensus Monte Carlo Algorithm (for correlated parameters),

consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters)

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees

Table 3: Simulation Running Time of Parallel MCMC (combination stage only)

 24

4. Discussion

Since embarrassingly parallel MCMC is a natural fit for handling data with large number of observations,

it is often used in scalable Bayesian computation for big data problems. Our numerical results

demonstrate that the MC consensus embarrassingly parallel algorithms almost always yield the best

performance in a Bayesian linear regression problem for low-dimensional data. Other methods all have

strengths and limitations in this experiment. The PART method achieves fast running time with cost of

accuracy and robustness. The Weierstrass method takes relatively longer time to finish iteration with

reliable result.

This comparison results apply to other Bayesian problem since the same embarrassingly parallel schema

is used to calculate subposteriors for each data subset. The only difference among these methods in

experiments is that they use different approaches for combining subposteriors. The strength and

weakness of these methods are likely remain unchanged in other scenarios as long as the sample size is

constant. For instance, the PART method may still have high speed and low accuracy in logistical

regression or other Bayesian problem. However, the assumption of normality may influence the

performance of the methods since some methods highly rely on the assumption while other do not.

Although the non-parallel algorithms accelerates the updating process of MCMC, it is not as promising as

the parallel methods since it fails to take advantage of the efficient distributed computing system. Single-

thread methods still cannot handle data that are too large to store in the storage or memory in single

machine.

Researchers often address communication intense method rather than implement the method in related

papers. The cost of frequent network communication could significantly deteriorate the performance of

the MCMC procedure. The real performances of communication intense method need further

investigations.

In parallel with the existing parallel MCMC methods, other optimization approaches can also be adopted

to scale up MCMC algorithms. One possible approach is combining some of the nonparallel technique

with parallel technique in distributed settings. For instance, researcher can split the sample into data

subsets and use firefly algorithm to obtain subposteriors from each subset simultaneously, and combine

them by embarrassingly parallel method. This proposed approach could achieve further computation cost

reduction, while the accuracy of the model may be compromised. The balance between accuracy and

computation performance should always be considered before implementing these types of combined

approaches.

 25

References

[1] Big data. In Wikipedia. Retrieved March 5, 2016, from

https://en.wikipedia.org/wiki/Big_data

[2] Maclaurin, D., & Adams, R. P. (2014). Firefly Monte Carlo: Exact MCMC with Subsets of

Data. arXiv preprint arXiv:1403.5693.

[3] Neiswanger, W., Wang, C., & Xing, E. (2013). Asymptotically exact, embarrassingly parallel

MCMC. arXiv preprint arXiv:1311.4780.

[4] Wang, X., Dunson, D. B. (2013). Parallelizing MCMC via Weierstrass sampler. arXiv

preprint arXiv:1312.4605.

[5] Minsker, S., Srivastava, S., Lin, L., & Dunson, D. B. (2014). Robust and scalable Bayes via a

median of subset posterior measures. arXiv preprint arXiv:1403.2660.

[6] Wang, X., Guo, F., Heller, K. A., & Dunson, D. B. (2015). Parallelizing MCMC with

Random Partition Trees. arXiv preprint arXiv:1506.03164.

[7] Baker, J., Fearnhead, P., & Fox, E. (2015). Computational Statistics for Big Data.

[8] Martino, L., Elvira, V., Luengo, D., Corander, J., & Louzada, F. (2015). Orthogonal parallel

MCMC methods for sampling and optimization. arXiv preprint arXiv:1507.08577.

[9] Angelino, E. L. (2014). Accelerating Markov chain Monte Carlo via parallel predictive

prefetching.

[10] Quiroz, M., Villani, M., & Kohn, R. (2015). Scalable MCMC for Large Data Problems using

Data Subsampling and the Difference Estimator. arXiv preprint arXiv:1507.02971.

[11] Srivastava, S., Cevher, V., Tran-Dinh, Q., & Dunson, D. B. (2015). WASP: Scalable Bayes

via barycenters of subset posteriors. In Proceedings of the Eighteenth International Conference on

Artificial Intelligence and Statistics (pp. 912-920).

[12] Luengo, D., Martino, L., Elvira, V., & Bugallo, M. (2014). Efficient Combination of Partial

Monte Carlo Estimators. viXra, Oct.

[13] Angelino, E., Kohler, E., Waterland, A., Seltzer, M., & Adams, R. P. (2014). Accelerating

MCMC via parallel predictive prefetching. arXiv preprint arXiv:1403.7265.

[14] Banterle, M., Grazian, C., & Robert, C. P. (2014). Accelerating Metropolis-Hastings

algorithms: delayed acceptance with prefetching. arXiv preprint arXiv:1406.2660.

[15] Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H., George, E., & McCulloch, R.

(2013, October). Bayes and big data: The consensus Monte Carlo algorithm. In EFaBBayes 250

conference (Vol. 16).

[16] Nishihara, R., Murray, I., & Adams, R. P. (2014). Parallel MCMC with generalized elliptical

slice sampling. The Journal of Machine Learning Research, 15(1), 2087-2112.

[17] Quiroz, M. (2015). Speeding up MCMC by delayed acceptance and data subsampling. arXiv

preprint arXiv:1507.06110.

[18] Neal, R. M. (2010). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain

Monte Carlo (eds S. Brooks, A. Gelman, G. Jones and X.-L Meng). Boca Raton: Chapman and

Hall-CRC Press.

[19] Welling, M. and Teh, Y. (2011). Bayesian learning via stochastic gradient Langevin

dynamics, Proceedings of the 28th International Conference on Machine Learning (ICML), pp.

681- 688.

[20] Ahn, S., Korattikara, A. and Welling, M. (2012). Bayesian posterior sampling via stochas-

tic gradient fisher scoring. Proceedings of the 29th International Conference on Machine

Learning, pp. 1591-1598.

[21] Bardenet, R., Doucet, A., & Holmes, C. (2014). Towards scaling up Markov chain Monte

Carlo: an adaptive subsampling approach. In International Conference on Machine Learning

(ICML) (pp. 405-413).

 26

[22] Angelino, E., Johnson, M. J., & Adams, R. P. (2016). Patterns of Scalable Bayesian

Inference. arXiv preprint arXiv:1602.05221.

