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Abstract 
 

Evaluating Scalable Markov Chain Monte Carlo Algorithms for Big Data Problems 

 

By Zhifan Sang 

 

 

 

 

Advances in technology have led to generation of enormous amounts of data in many fields 

including medicine, presenting challenges in data analysis.  The reason could be processor, 

memory, or disk storage bottlenecks in computational environments. These challenges are 

particularly pronounced for Bayesian analysis, which often entails the use of Markov chain Monte 

Carlo (MCMC) in computation.  As such, a number of scalable MCMC algorithms have been 

developed to alleviate the computational challenges in three main directions. The first direction is 

to accelerate expensive gradient computation at each MCMC iteration. The second direction is to 

parallelize computation at each MCMC iteration, requiring potentially expensive communication 

within each iteration. The third direction is to divide a data set into small subsets and run 

independent MCMC for each subset before combining them. This work focuses on scalable 

MCMC algorithms developed in the third direction. We conduct simulation studies to evaluate and 

compare several parallel MCMC algorithms. Examples of scalable MCMC are shown for Bayesian 

linear regression and other regressions. 
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1. Introduction 
 

1.1 Background 
 
Big data often refer to large and complex data sets which cannot be appropriately processed by 

traditional data processing applications.  The volume, velocity, and variety of data significantly 

increase because of the modern technology of data collecting, processing and storing.   For 

example, business, medical, governmental and web data sets with millions of entries or thousands 

of attributes can be quite large and hard to manipulate and analyze.   

 

There are challenges in conducting Bayesian inference, one of the popular analytical tools, on big 

data.  Traditionally, Bayesian inference can produce efficient and robust results in parameter 

estimations in various models.  Complex posteriors in Bayesian inference are commonly 

approximated by Markov chain Monte Carlo approach (MCMC).  MCMC is a powerful 

simulation algorithm highly used in Bayesian inference to approximate an intractable posterior 

function by random sampling, which is useful for computing integrals or optimizing functions in 

large-dimensional spaces.   In the context of statistics and machine learning, it translates into 

parameter estimation, prediction, and model selection.   One of the challenges of Bayesian 

computation is that the examination of all the data is required to evaluate a new hypothesis 

regarding parameters or latent variables in the coherent procedure of inference. For instance, it is 

necessary to evaluate the target posterior density for each proposed parameter update based on 

whole dataset iteratively when we perform Metropolis-Hastings (MH).   

 

Regular MCMC algorithms store all the data into the memory and disk.  In other words, the 

method may fail frequently when the data sets and the temporarily generated data are larger than 

or equal to the volume of memory or disk, which is common in big data settings.   Even if all data 

can be fitted in the hardware framework, standard MCMC methods are still too computationally 

expensive to be used for inferences on large datasets, which contain a large number of 

observations or a large number of parameters.  

 

1.2 Current Approaches 
 

There has been considerable interest in developing scalable MCMC algorithms for big data 

problems, which mostly falls into three main groups. 

 

1.2.1 Nonparallel Accelerating Approach 
 

 The first strategy uses approximation methods like stochastic gradient process based on data or 

data subsets in order to accelerate the expensive gradient calculations in Monte Claro (Wang, X., 

Dunson, D. B. ,2013).  This stagey can be implemented for a number of  MCMC methods, 

namely Metropolis-Hastings (MH) Algorithm, Langevin Monte Carlo(LMC), and Hamiltonian 

Monte Carlo (HMC) (Neal, 2010; Welling and Teh, 2011; Ahn et al., 2012 ).  It only requires a 

single machine, but the resulting parameter estimates can be unstable or even biased.  There are 

mainly three related methods, which can scale up Metropolis-Hastings approach. 

 

One method is the Firefly Monte Carlo (FlyMC) (Maclaurin and Adams, 2014).   FlyMC is an 

exact MCMC procedure utilizing only a subset of the data at each iteration, and it keeps the full-

data posterior invariant.  The main idea of FlyMC is using a set of binary auxiliary variable to 
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control whether or not the data points are included in the calculation at each iteration.  To ensure 

the validity of FlyMC, lower bounds for each likelihood term are used.   

 

Another method is the Austerity framework (Korattikara et al., 2014).  This method uses 

approximate accept and reject steps to accelerate Metropolis-Hasting algorithm. It is known to 

lead to biased result, since it samples from an approximate posterior distribution.  Although it 

yields a bias estimate calculating from the biased posterior, it can obtain a lower mean square 

error (MSE) of Monte Claro estimator using the accept and reject steps.  Under same situation, 

this method can collect more samples with the same computation cost. 

 

The third method is the Metropolis-Hastings with subsampled likelihoods (MHSubLhd) 

(Bardenet et al., 2014).   This method uses concentration inequalities to approximate the 

Metropolis-Hastings test, which evaluates the likelihood ratio and determines whether to accept 

proposed parameter values or not (Angelino, E., et al, 2016).  It calculates the exact confidence 

intervals for the Monte Claro approximated parameter estimates, and quantifies the precision of 

the parameter estimates through concentration inequalities.  

 

As for the differences among the aforementioned three methods, the FlyMC produces exact 

Monte Claro estimates whereas other methods produces approximated estimates.  The downside 

of the FlyMC is the difficulty to find an appropriate lower bound on the likelihood.  The Austerity 

method obtains an approximate confidence interval of parameter estimates, whereas the 

MHSubLhd obtains an exact confidence interval with some prior knowledge on the data.    

However, the MHSubLhd method could make a wrong accept/reject decision since the 

assumptions of the data and the predetermined boundary constraint could be inappropriate. 

 

 

 

1.2.2 Communication-Intense Parallel Approach  
 

The second strategy is to parallelize computation of likelihood function within each MCMC 

iteration.  At each iteration, this approach conducts separate computation for mini batches, but 

requires intensive communications. 

 

There are two computation schemes to achieve parallelism within each iteration.  One scheme 

uses a multi-machine computation environment, and the other uses multi-core processing units. 

 

The first scheme takes advantage of a multi-machine computation environment. Because of 

conditional independence of the partial likelihood function, we can conduct the calculation 

independently for predetermined data subsets stored on different machines and then combine the 

results from all machines in a central machine (master node) to obtain the full likelihood.  As 

such, computational challenges associated with disk storage and memory are alleviated in this 

implementation.  However, the communication among machines is needed to obtain the full 

likelihood function of interest, incurring communication cost that can be expensive.   

 

The second scheme is to divide the workload among multiple cores on one chip.  This local 

parallelism can be achieved by using a multi-core central processing unit (CPU), or a massively 

parallel graphics processing unit (GPU).  While this scheme is relatively efficient and cheap, it 

has two major limitations.  First, it cannot handle an oversized dataset that exceeds the limitation 

of random-access memory (RAM) or disk storage.  Second, it may encounter difficulty in multi-

threaded programming, which is needed for multi-core computation.   For instance, GPU 
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programming with CODA code is difficult to abstract to high-level programming since it requires 

low-level memory management. 

 

1.2.3 Communication-Free Parallel Approach 
 

A third approach is motivated by the independent product equation (Wang and Dunson, 2013). 

The key idea is to divide a dataset into independent subsets, for which parallel computation can 

be used.  Although MCMC is sequential by nature, it can be parallelized by running separated 

MCMC chains on different data subsets first.  The main challenge is how to combine posterior 

samples obtained from separated MCMC on data subsets such that the combined posterior 

samples converge to the true posterior distribution in a precise fashion.  To this end, a number of 

communication-free parallel MCMC algorithms have been developed.  This approach solves both 

limited memory/disk problem by taking advantage of scalable memory, disk, and processor 

power produced by multi-machine systems.  Meanwhile, the data are divided into multiple 

machine so that they can run the analysis separately and combine the result in the very last step.  

This parallel scheme is often known as the embarrassingly parallel method.  The embarrassingly 

parallel procedure reduces the network traffic among machine to minimum and hence reduces 

communication cost. 

 

To fix ideas, suppose there are 𝑁 independent data points denoted by 𝒙, and the parameter of 

interest is denoted by 𝜃.  The goal is to estimate the posterior distribution of  𝜃 

𝑝(𝜃|𝒙) ∝ 𝑝(𝜃)𝑝(𝒙|𝜃) 
Suppose the original data are split into S data subsets and let 𝑥𝑠  denote the 𝑠𝑡ℎ subset.   

𝑝(𝜃|𝒙) ∝ 𝑝(𝜃)∏𝑝(𝒙𝒔|𝜃) =∏𝑝(𝜃)
1
𝑆𝑝(𝒙𝒔|𝜃)

𝑆

𝑠=1

𝑆

𝑠=1

. 

The subposterior 𝑝(𝜃|𝑥𝑠) can be represented by 

𝑝(𝜃|𝒙𝒔) ∝  𝑝(𝜃)
1
𝑆𝑝 . 

It follows that 𝑝(𝜃|𝒙) ∝  ∏ 𝑝(𝜃|𝒙𝒔)
𝑆
𝑠=1 , which is the basis for combining subposterior samples.  

 

The communication-free MCMC algorithms can be further divided into to three groups, namely 

parametric methods, nonparametric methods and semi-parametric methods. 

 

The parametric methods recombine subposterior samples to approximate the full posterior if the 

sample follows a normal distribution.  The central limit theory for Bayesian statistics, Bernstein-

von Mises Theorem, guarantees the validity of this method.  Given certain regularity conditions 

and the data realized from unique true parameter 𝜃0, the posterior can be approximated by 

𝑁(𝜃0 , 𝐼
−1(𝜃0)) (𝐼(𝜃) is the Fisher Information).   

 

For instance, Neiswanger et al. (2013) assume a Normal distribution and combine subposteriors 

by the product of Gaussian to obtain approximated full posterior.  Let �̂�𝑠 and Σ̂𝑠 denote the 

sample mean and sample variance of the sth  data subset. The distribution of each posterior can be 

approximated by 𝑁(�̂�𝑠, Σ̂𝑠).   
 

The full posterior can then be calculated by multiplying these subposterior estimates 

𝑝1…𝑝𝑆(𝜃) ∝ 𝑝(𝜃|𝒙).  

𝑝1…𝑝𝑆̂ (𝜃) = 𝑝1̂…𝑝�̂�(𝜃) ∝ 𝑁(𝜃|�̂�𝑆, �̂�𝑆),    𝑤ℎ𝑒𝑟𝑒 
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                          Σ̂ = (∑Σ̂𝑠

𝑆

𝑠=1

 )

−1

,         �̂� = Σ̂ (∑Σ̂𝑠
−1

𝑆

𝑠=1

�̂�𝑠 )                                                     (∗) 

 

A similar approach is proposed by Scott et al.(2013), which combines samples using averaging 

(known as the consensus Monte Carlo).  Let 𝜃𝑠𝑗be the jth sample from subposterior s, and 𝑊𝑠 be 

the subposterior weight for subposterior s.   The  𝑗𝑡ℎ draw from consensus approximation of the 

posterior can be calculated by: 

𝜃𝑗 = (∑𝑊𝑠

𝑆

𝑠=1

)

−1

∑𝑊𝑠𝜃𝑠𝑗

𝑆

𝑠=1

, 𝑤ℎ𝑒𝑟𝑒 𝑊𝑠 = 𝑉𝑎𝑟(𝜃|𝑥𝑠) 

 

The approaches of Scott and Neiswanger are fast and easy to converge if the model is close to 

Gaussian.  However, these two approaches do not perform well on non-Gaussian data since their 

prediction are based on the normal assumption. 

 

One extension of the consensus Monte Carlo approach is using averaging to relax the aggregation 

restriction; see Rabinovich et al.(2015).  Let 𝐹(𝜃1, … , 𝜃𝑆) be the aggregation function, 𝜃1, … , 𝜃𝑆 

be draws from each subposterior. We have: 

𝐹(𝜃1, … , 𝜃𝑆) = (∑𝑊𝑠

𝑆

𝑠=1

)

−1

∑𝑊𝑠𝜃𝑠

𝑆

𝑠=1

 

However, this improved method needs to add an optimization step, increasing computational 

costs. 

 

If the subposteriors cannot be approximated by Gaussian because the distribution is far away 

from a normal distribution or the sample size is not large enough, the aforementioned parametric 

methods are questionable.  An alternative strategy is to use nonparametric methods such as the 

one suggested by Neiwanger et al.(2013), where a kernel density estimator is used to approximate 

the full posterior.  Let 𝑥1, … , 𝑥𝑁 be p-dimension sample from density 𝑓.  The kernel density of 𝑓 

at point x is:  

𝑓(𝑥) =
1

𝑁
∑𝐾𝐻(𝑥 − 𝑥𝑖),

𝑁

𝑖=1

         

𝑤ℎ𝑒𝑟𝑒 𝐾𝐻(𝑥) = |𝐻|−
1
2𝐾 (𝐻−

1
2𝑥) , 𝐻 𝑖𝑠 𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑝𝑜𝑠𝑡𝑖𝑣𝑖𝑒 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

 

The kernel function can be chosen from Gaussian or Non-Gaussian.  To determine the accuracy 

of a kernel density estimate, we have to take bandwidth into account since it controls the 

estimate’s smoothing.   

 

To illustrate the idea of kernel function in nonparametric methods, Neiswanger et al. (2013) 

proposes an approach using Gaussian kernel with a diagonal bandwidth matrix ℎ2𝐼 to estimate the 

subposterior.  The approximated estimation is given by: 

�̂�𝑠(𝜃) =
1

𝑀
∑ 𝑁(𝜃|𝜃𝑚𝑠, ℎ

2𝐼),

𝑀

𝑚=1

      

𝑤ℎ𝑒𝑟𝑒 {𝜃𝑚𝑠}𝑚=1
𝑀  𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑠𝑢𝑏𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑠,𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑢𝑏𝑠𝑒𝑡. 

 

The posterior is  the product of estimated subposteriors: 
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𝑝(𝜃|𝑥) =∏�̂�𝑠

𝑆

𝑠=1

(𝜃) =
1

𝑀𝑆
∏ ∑ 𝑁(𝜃|𝜃𝑚𝑠, ℎ

2𝐼)

𝑀

𝑚=1

𝑆

𝑠=1

. 

 

These algorithms yield good performance for non-Gaussian models, but their limitation is the 

poor performance of the kernel density estimation for high dimension data, also known as the 

curse of dimensionality.  

 

To accelerate the convergence of the nonparametric method Neiswanger et al. propose a 

semiparametric estimator for each subposterior. 

 

p̂s = 𝑓𝑠(𝜃)�̂�(𝜃),where 𝑓𝑠(𝜃) = 𝑁(𝜃|�̂�𝑠, Σ̂𝑠), 𝑟(𝜃) =
𝑝𝑠(𝜃)

𝑓𝑠(𝜃)
 .   

The r̂(θ) represents the nonparametric estimator of  r(θ). 
 

Given the Gaussian kernel for 𝑟(𝜃) suggested by Neiswanger et al. (2013), we can derive 

𝑝𝑠(𝜃) =
1

𝑀
∑

𝑁(𝜃|𝜃𝑚,𝑠, ℎ
2𝐼)𝑁(𝜃|�̂�𝑠, Σ̂𝑠)

𝑓𝑠(𝜃𝑚,𝑠)

𝑀

𝑚=1

=
1

𝑀
∑

𝑁(𝜃|𝜃𝑚,𝑠, ℎ
2𝐼)𝑁(𝜃|�̂�𝑠, Σ̂𝑠)

𝑁(𝜃𝑚,𝑠|�̂�𝑠, Σ̂𝑠)

𝑀

𝑚=1

 . 

 

Full posterior 𝑝(𝜃|𝑥)  can be estimated by the product of subposterior estimates 

 

Σ𝐿 = (
𝑆

ℎ
𝐼 + Σ̂−1)

−1

,          𝜇𝐿 = Σ𝐿 (
𝑆

ℎ
𝐼𝜃𝐿 + Σ̂−1�̂�) , 𝑤ℎ𝑒𝑟𝑒 �̂� 𝑎𝑛𝑑 Σ̂ 𝑎𝑟𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 (∗).   

 

This method combines the parametric component and nonparametric method.  If ℎ approaches 

zero, the semiparametric estimator �̂� 𝑎𝑛𝑑 Σ̂ approach the corresponding nonparametric 

estimators.   Except for solving the slow convergence problem of nonparametric methods, this 

semiparametric method is not well studied in terms of the balance between accuracy and speed.   

 

Wang and Dunsin (2013) argued that methods proposed by Neiswanger et. al (2013) may suffer 

from the curse of dimensionality in the number of subsets; degeneration of tail distribution; mode 

misspecification and support inconsistency.  These aforementioned aspects need further 

investigation to determine their validation.  

 

To avoid some of the drawbacks of Neiswanger et. al (2013), Wang and Dunson(2013) proposed 

an alternative approach of using multi-tiered Gibbs sampler to simulate posterior from the 

Weierstrass transform’s product.   In this way, the parameters are simulated from the controlled 

kernel, and there is only one-time parameter simulation. In this sampling approach, the simulated 

subposteriors are combined into a normal proposal on 𝜃, which is accepted with a probability 

depending on the subposterior simulations. 
 

More recently, Wang and Dunson (2015) proposed to use random partition trees to parallelize 

MCMC(PART).  This method is distribution-free, and it is easy to resample from the raw data.  In 

addition, the PART algorithm can be easily and potentially adopted to multiple scales, which 

Neiswanger et. al (2013) could not achieve.  Thus, the PART method using similar 

embarrassingly parallel MCMC baseline scheme to avoid the limited approximation accuracy and 

resampling difficulties that Neiswanger et. al (2013) has.      
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Another alternative to parametric/nonparametric combination approaches is utilizing barycenters 

of subposteriors without introducing kernel or tuning parameters.   Srivastava et al (2015) uses 

Wasserstein  barycenter of subposteriors in the combination step along with the same 

embarrassingly parallel MCMC scheme.  The result of Wasserstein posterior(WASP) have good 

properties such as atomic form, straightforward estimation.  This method is scalable, and it does 

not require specifying the associated probability density functions, which requires examination on 

the data. 

 

Instead of implementing single layer of parallel MCMC chains, Martino, L., et al (2015) propose 

orthogonal parallel MCMC(O-MCMC) to employ multiple parallel MCMC chains with 

additional layer of MCMC techniques.  Generally the O-MCMC scheme consists of vertical 

parallel MCMC chains sharing information by horizontal MCMC methods.  To be specific, the 

horizontal MCMC employ independent proposal on the parameter 𝜃 while the vertical chains are 

based on random-walk proposals.  Additional algorithms like parallel simulated annealing is 

utilized in the O-MCMC optimization.  The study shows that the O-MCMC implementation 

reduce the computation cost of parallel Metropolis chains approach.  

 

There are some approaches to accelerate the accept/reject step by modifying the mechanism of 

rejection in MCMC.  For instance, Quiroz, M. (2015) utilizes the procedure of delayed 

acceptance in the MH algorithm to speed up the MCMC.  The acceptance decision is processed in 

two stage in this method.  The first stage evaluates conditional likelihood of interested parameter 

only from a random subsample.  The second stage evaluates the likelihood using the full sample, 

and this stage is executed only the proposed posterior density accepted in the first stage.  Hence, 

the computation is highly reduced because of the early rejection of proposals (Payne and Mallick, 

2014).  Beside the basic delayed acceptance procedure, Quiroz, M. (2015) also incorporates 

auxiliary information about the full sample while only evaluating based on data subset.   

  

Banterle, M., et al. (2014) also modify the accept/reject step to reduce the computational cost by 

multiple acceptance steps. Divide-and-conquer strategy is employed to conduct multiple 

acceptance procedure.  The prior and likelihood product can be decomposed into product 

components, some of which are cheaper with regards of computational cost.  The components are 

compared with uniform random variate sequentially, and stop after first rejection to avoid further 

time consumption.     

 

1.3 General Comparisons  
  

We compare aforementioned three approaches with regard of their methodology and 

performances over different settings.  Tables 1 and Table 2 present a summary of parallel MCMC 

algorithms and a summary of nonparallel MCMC algorithms, respectively.  

 

Most of the methods are designed to be parallel MCMC algorithms, which reduce the 

computation cost to accommodate the rapid increasing data volume.   The Scott, S. L. et al. 

(2013) address the practical idea of parallel MCMC implementation, which was followed by the 

statistical introduction of embarrassingly parallel MCMC (Neiswanger et. al, 2013).   Most recent 

related works treat the two papers as start point or baseline comparison standard as the scheme 

and methodology of the embarrassing parallel MCMC is intuitive, straightforward, and practical.   

Multiple alternatives for embarrassingly parallel MCMC are developed to address its limitations 

as well as providing new methods to generate and sample posteriors (Wang,X. et al, 2013, 2015, 

Minsker, S. et al., 2014, Srivastava, S.,et al.,2015).  There are packages in Matlab, R, Python 

developed to implement these methods in different settings. 
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 Table 1: Comparison of Parallel MCMC Algorithms  

 

Other novel techniques like delayed acceptance, multiple try, random walk have been adopted to 

accelerate the updating process of MCMC (Quiroz, M. ,2015, Martino, L., et al,2015, Banterle, 

M., et al. ,2014). 

 

There are some recent works on nonparallel optimization of MCMC methods to obtain better 

performance (Maclaurin and Adams, 2014, Korattikara et al., 2014, Banterle et al. 2014).  

Although the scalability of these methods are not as promising as the parallel algorithms, the 

ideas still counts as it is practical and useful in single-thread computation, and can be potentially 

used together with other methods.  

  

 

Author Algorithm Method Posterior 

Sampling 

Package Language 

 
Parallel 

 

Neiswanger, 

W., Wang, 

C., & Xing, 

E. (2013) 

Simple Average 
Average of 

subset 

Approxim

ate 

parallelMC

MCcombine 

R Yes 

MC Consensus 

parametric 

Bernstein-von 

Mises 

 

Approxim

ate 
R Yes 

MC Consensus 

nonparametric 

Independent 

Metropolis  

Gibbs(IMG) 

sampler 

Approxim

ate 
R Yes 

Semiparametric 

Consensus 
Combine 

Asymptoti

cally exact 
R Yes 

Minsker, 

S.,et al., &  

Dunson, D. 

B. (2014) 

Median Subset 

Posterior 
geometric 

median 

Approxim

ate 
Mposterior R Yes 

Wang, X.,  

Dunson, D. 

B. (2013) 

Weierstrass 

Sampler 

Weierstrass 

transformatio

n 

Approxim

ate 
Weierstrass R Yes 

Luengo, 

D.,et al. 

(2014) 

Combine partial 

MMSE 

estimators 

Combine 

partial 

 MMSE 

estimators 

Approxim

ate 
N/A N/A Yes 

Martino, 

L.,et al. 

 (2015) 
Orthogonal 

parallel MCMC 

Multiple Try 

Metropolis,  

Block 

Independent 

Metropolis, 

Simulated 

Annealing 

Approxim

ate 
N/A N/A yes 

Wang, X., 

 & Dunson, 

D. B.(2015). 
Random 

Partition Tree 

Embarrassing

ly parallel 

MCMC, 

random 

partition tree 

Approxim

ate 
github Matlab yes 

Srivastava, 

S.,&  

Dunson, D. 

B. (2015). 

WASP 
Wasserstein 

posterior 

Approxim

ate 
N/A N/A yes 
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Table2: Comparison of Nonparallel MCMC Algorithms 

Quiroz, M. 

(2015) 
Delayed 

Acceptance and 

Data Subsample 

delayed 

acceptance  

,auxiliary 

information 

Approxim

ate 
obtained python yes 

Quiroz, M et 

al. (2015) Data 

Subsamping 

and the 

Difference 

Estimator 

highly 

efficient 

difference 

estimator, 

Pseudo-

marginal 

MCMC 

Approxim

ate 
N/A N/A yes 

Nishihara, 

R.,et al. 

 (2014) 
Generalized 

Elliptical Slice 

Sampling 

parallelism, 

slice 

sampling, 

elliptical slice 

sampling 

Approxim

ate 
N/A N/A yes 

Scott, S. L. 

et al. (2013) consensus 

Monte Carlo 

Average of 

subset 

 posterior 

sample 

Approxim

ate 

parallelMC

MCcombine 
R yes 

 

    

   
Author  Algorithm Method Posterior 

Sampling 

Package  Lang Parallel 

Maclaurin, 

D., et al. 

(2014) 

FireFly query subset  Exact FireFly Python No 

Banterle, 

M., (2014) 

Delayed 

acceptance 

decomposition, 

prefectching 

Delayed 

acceptance 

,Likelihood 

decompositio

n, 

prefectching 

Approxim

ate 

N/A N/A No 

Angelino, 

E. et al. 

(2014) 

prefectching Fetching 

,speculative 

execution to 

parallelize 

MCMC. 

Approxim

ate 

fetching python No 
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2. Analysis of MCMC Algorithms and Computational Challenges  
 

2.1 Overview 
 

In Bayesian inference, we rely on the posterior 𝑝(𝜃|𝒙) ∝  𝑝(𝒙|𝜃)𝑝(𝜃).  In many applications, the 

posterior is intractable and we have to rely on approximations.  A standard approach is to use MCMC 

where we construct a Markov chain with stationary distribution  
𝑝(𝜃|𝑥), 𝜃 = 𝜃1, 𝜃2, 𝜃3, …  𝑤ℎ𝑒𝑟𝑒 𝑝(𝜃𝑖|𝜃𝑖−1  … 𝜃1) =  𝑝(𝜃𝑡|𝜃𝑡−1) . 

Calculate posterior expectations using a Monte Carlo estimate (unbiased)  

𝐸𝑝(𝜃|𝒙)[𝑓] ≈
1

𝑇
∑𝑓(𝜃𝑡).

𝑇

𝑡=1

 

 

The data points 𝒙 =  {𝑥1, . . . , 𝑥𝑁} are conditional independent given θ we can write the posterior as  

𝑝(𝜃|𝒙) ∝  𝑝(𝜃)𝑝(𝒙|𝜃) =  𝑝(𝜃)∏ 𝑝(𝑥𝑖|𝜃).

𝑁

𝑖=1

  

If the data set is large (N ≫ 1), evaluating 𝑝(𝒙|𝜃) or 𝛻𝑝(𝒙|𝜃) is the computational bottleneck for most 

standard MCMC methods, including but not limited to Metropolis-Hastings (MH) Algorithm, Langevin 

Monte Carlo (LMC) and Hamiltonian Monte Carlo (HMC).  

Here we focus on the Metropolis-Hastings algorithm and its computational challenge in big data settings.  

The MH algorithm uses the full joint density function and independent proposal distributions for each 

parameter of interest to generate posterior samples accordingly.   

Algorithm 1 Metropolis-Hastings Algorithm 

Initialize 𝜃(0)~𝑞(𝜃) 
for iteration i = 1,2, … do 

      Propose: 𝜃𝑐𝑜𝑛𝑑~𝑞(𝜃(𝑖)|𝜃(𝑖−1), 𝒙) 
      Acceptance Probability: 

                 𝛼(𝜃𝑐𝑜𝑛𝑑|𝜃(𝑖−1)) = min{1,
𝑞(𝜃(𝑖−1)|𝜃𝑐𝑜𝑛𝑑)𝑝(𝜃𝑐𝑜𝑛𝑑|𝒙)

𝑞(𝜃𝑐𝑜𝑛𝑑|𝜃(𝑖−1))𝑝(𝜃(𝑖−1)|𝒙)
} 

       𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑢; 0,1) 
       if 𝑢 < 𝛼 then 

           Accept the proposal: 𝜃(𝑖) ← 𝜃𝑐𝑜𝑛𝑑 

       else  

            Reject the proposal: 𝜃(𝑖) ← 𝜃(𝑖−1)      
        end if 

end for 

 

The first step of the Algorithm 1 initializes the sample for each random variable by prior distribution or 

other choices.  The main iteration loop of MH algorithm consists of three parts: (1) generate proposal 

sample 𝜃𝑐𝑜𝑛𝑑 from proposal distribution; (2) evaluate the posterior distribution and calculate the 
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acceptance rate  𝛼; (3) reject the proposal sample with probability of 1 − 𝛼,  or accept it with probability 

𝛼.  

The computation challenge mainly lies in the second part of the main loop iteration. In this part, 

evaluating the posterior density 𝑝(𝜃𝑐𝑜𝑛𝑑|𝒙) could be time consuming and memory consuming since it 

uses all the data in the computation.  To alleviate this part of tremendous computation, the approaches 

introduced in chapter 1 have their technical solutions with regard of algorithm implementations. 

2.2 Algorithms in Nonparallel Accelerating Approach 
 
Nonparallel accelerate approach reduce the size of data used in the posterior evaluation by only using data 

subsets.  In this way, the computational cost is reduced while compromising the accuracy of the full 

posterior.   

For instance, the Firefly Monte Carlo algorithm use rejection sampling to avoid using all data in 

evaluating the posterior density(Algorithm 2, Maclaurin, D., & Adams, R. P. 2014).   The actual sample 

used in evaluating the likelihood is constraint by auxiliary variable and lower bound of likelihood for each 

data points.   

 
Algorithm 2 Firefly Monte Carlo  

Set 𝜃0 by initial distribution 

for i=1 to numberOfMarkovChain do 

    for j=1 to N*T do 

        𝑛~𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡𝑒𝑟𝑔𝑒𝑟(1, 𝑁) 

        𝑧𝑛~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 −
𝐵𝑛(𝜃𝑖−1 )

𝐿
− 𝐿𝑛(𝜃𝑖−1)) 

    end for 

    𝜃′ ← 𝜃𝑖−1 + 𝜂 𝑤ℎ𝑒𝑟𝑒 𝜂 ~ 𝑁(0, 𝜖2𝐼𝐷)  
    𝑢~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  

    if 
𝑗𝑜𝑖𝑛𝑡𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃′;{𝑧𝑛}𝑛=1

𝑁 )

𝑗𝑜𝑖𝑛𝑡𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃;{𝑧𝑛}𝑛=1
𝑁 )

> 𝑢 then 

        𝜃𝑖 ← 𝜃′ 
    else 

        𝜃𝑖 ← 𝜃𝑖−1 

    end if 

end for 

function jointPosterior(𝜃; {𝑧𝑛}𝑛=1
𝑁 ) 

    𝑃 ← 𝑝(𝜃)∏ 𝐵𝑛(𝜃)
𝑁
𝑛=1      

    for each n a.s. 𝑧𝑛 = 1 do 

        𝑃 ← 𝑃 × (
𝐿𝑛

𝐵𝑛(𝜃)
− 1) 

    end for 

    return P 

end functions 

 

2.3 Communication-Intense Parallel Algorithms 
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Communication intense approach parallel the computation of evaluating the conditional posterior within 

each MCMC iterations.  Specifically, the conditional posterior distribution calculation 

𝑝(𝜃)∏  𝑝(𝑥𝑖|𝜃)
𝑁
𝑖=1  could be calculated simultaneously on multiple machines.  Each node (machine) only 

takes a data subset in the calculation, which reduce the time and memory cost by having multiple 

machines working on separated portion of the evaluation.  
 

This approach could be implemented easily in the parallel computing environment because of the 

independent assumption on conditional probabilities.  However, this method has poor performance in real 

network settings since the data flow in the network slows the whole process down significantly.   

 

2.4 Communication-Free Parallel Algorithms 
 
The communication free approach obtains the subposterior sample from data subset first, and combine the 

subposterior samples to obtain the full posterior samples.  This approach avoids redundant 

communication over network and expensive and intensive computation within single machine.  The 

difference within communication-free parallel algorithms is the techniques used in the combination step. 

 

The simplest way of combination is to draw the posterior sample from the average of all subposterior 

samples.  Since only sample average calculation is involved in this case, the algorithm is fast and scalable.  

However, this method usually overestimate the variance of the posterior, and it can hardly recover the true 

posterior distribution except for simple statistics like sample mean.   

 

For instance, Algorithm 3 is asymptotically exact, embarrassingly parallel MCMC algorithm utilizes the 

communication free approach (Neiswanger, W., et al, 2013).  It obtains the posterior samples from 

nonparametric density product estimate by combining subposterior samples. 

   
Algorithm 3 Asymptotically Exact Sampling via Nonparametric Density Product Estimation  

Input: Subposterior samples {𝜃𝑡1
1 }𝑡1=1

𝑇 ~𝑝1(𝜃),… , {𝜃𝑡𝑀
𝑀 }

𝑡𝑀 =1

𝑇
~𝑝𝑀(𝜃) 

Output: Full posterior samples {𝜃𝑖}𝑖
𝑇~𝑝1…𝑝𝑀(𝜃|𝑥

𝑁)  

Set ℎ ← 1 

Generate t= {𝑡1 , … , 𝑡𝑀}
𝑖𝑖𝑑
← 𝑈𝑛𝑖𝑓({1,2,… , 𝑇}) 

Set c ← 𝑡 

Generate 𝜃1~𝑁(𝜃�̅� ,
ℎ

𝑀
𝐼𝑑) 

for I =2 to T do 

    for m=1 to M do 

        Set 𝑡 ← 𝑐 

        Generate 𝑡𝑚~ 𝑈𝑛𝑖𝑓({1,2,… , 𝑇}) 
        Set ℎ ← 𝑖−1/(4+𝑑) 
        Generate 𝑢~𝑈𝑛𝑖𝑓([0,1]) 
        if 𝑢 < 𝑤𝑡/𝑤𝑐  then 

            Generate 𝜃𝑡~𝑁(𝜃�̅� ,
ℎ

𝑀
𝐼𝑑)  

             Set 𝑐 ← 𝑡 
        else  

              Generate 𝜃𝑡~𝑁(𝜃�̅� ,
ℎ

𝑀
𝐼𝑑) 
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        end if 

    end for 

end for 

 
Another way to implement communication free approach is using Weierstrass refinement sampling.  

Algorithm 5 and Algorithm 6 show how to implement Weiserstrass sampling in the parallel MCMC 

process (Wang, X., Dunson, D. B. ,2013).  Algorithm 5 assumes that we have the approximated density 

estimate of the parameter, so we can obtain the initial parameter by evaluating the approximated density 

functions.  By contrast, Algorithm 6 illustrates how it samples sequentially with rejection when we do not 

have prior approximated density. 

 
Algorithm 5 Weierstrass Refinement Sampling  

Input 𝐻𝑖 𝑓𝑜𝑟 𝑖 = 1,2…𝑚  
for k=1 to N dos 

    𝜃𝑘~𝑓(𝜃)  
end for 
for k=1 to N do 

    Sample 𝑡𝑖
(𝑘)

= (𝑡𝑖1
(𝑘)
, … , 𝑡𝑖𝑝

(𝑘)
)
𝑇
~𝑑𝑁(𝑡𝑖|𝜃𝑘, 𝐻𝑖) ∙ 𝑓𝑖(𝑡𝑖) 

     𝑇𝑖 ← 𝑇𝑖 ∪ {𝑡𝑖
(𝑘)
}  

end for 
for k=1 to N do 

    𝜃~𝑁 (𝑚−1∑ 𝑡𝑖
(𝑘)𝑚

𝑖=1 , (∑ 𝐻𝑖
−1𝑚

𝑖=1 )
−1
) 

    𝑀𝐶𝑀𝐶 ← 𝑀𝐶𝑀𝐶 ∪ {𝜃}   #MCMC is the set of posterior samples with initial value of ∅ 

end for  

return MCMC  

 
Algorithm 6 Weierstrass Sequential Rejection Sampling  

Input 𝑁0 ℎ𝑗𝑓𝑜𝑟 𝑗 = 1,2…𝑝  

Set ℎ𝑖𝑗 = √𝑚ℎ𝑗, 𝐶𝑗 = 0, 𝑗 = 0,… , 𝑝 − 1 

for j=1 to p do 

    for t=1 to 𝑁0 do 

        Sample 𝜃𝑖𝑗
(𝑡)
~𝑓�̂�(𝜃𝑗|𝜃1

∗ , … , 𝜃𝑗−1
∗ ) 

        𝑇𝑖 ← 𝑇𝑖 ∪ {𝜃𝑖𝑗
(𝑡)
}  

     end for 

     Calculate 𝜃𝑗
∗ by combining 𝜃𝑖𝑗

(𝑡)
, 𝑖 = 1,2,… ,𝑚 via Weierstrass rejection sampling 

     Calculate 𝐶𝑗−1 as 𝐶𝑗−1 = ∫∏ 𝑓�̂�(𝜃𝑗|𝜃1
∗ , … , 𝜃𝑗−1

∗ )𝑑𝜃𝑗
𝑚
𝑖=1  

    𝑀𝐶𝑀𝐶 ← 𝑀𝐶𝑀𝐶 ∪ {(𝜃𝑗
∗, 𝐶𝑗−1)}   #MCMC is posterior samples with initial value of ∅ 

end for  
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return MCMC  

More sophisticatedly, the geometric median of subposterior sample distribution can be used to generate 

the full posterior samples (Minsker, S., et al, 2014). The Algorithm 7 define a function that can obtain the 

geometric median of a discrete measure, and iteratively use the function to evaluate weights and the final 

posterior density. 

 
Algorithm 7 Approximating the Median-Posterior Distribution 

Function geometricMedian(Q) 

    # Weiszfeld’s algorithm in evaluating the geometric median of probability distributions 
    Input discrete measure 𝑄1, … , 𝑄𝑚 

    Input the kernel 𝑘(∙,∙): 𝑅𝑝 × 𝑅𝑝 → 𝑅 

    Input threshold 𝜀 > 0 

    Set 𝑤𝑗
(0)

=
1

𝑚
, 𝑗 = 1,… ,𝑚; 𝑄∗

(0)
=

1

𝑚
∑ 𝑄𝑗
𝑚
𝑗=1 ;  t=0 

    Do  
        for j=1 to m do 

            𝑤𝑗
(𝑡+1)

=
||𝑄∗

(𝑡)
−𝑄𝑗||

𝐹𝑘

−1

∑ ||𝑄∗
(𝑡)
−𝑄𝑗||

𝑚
𝑖=1

𝐹𝑘

−1 

           𝑄∗
(𝑡+1)

= ∑ 𝑤𝑗
(𝑡+1)

𝑄𝑗
𝑚
𝑗=1  

    until ||𝑄∗
(𝑡) − 𝑄𝑗||

𝐹𝑘

≤ 𝜀 

    return 𝑤∗ = (𝑤1
(𝑡+1

, … , 𝑤𝑚
(𝑡+1)

 ) 

Input samples {𝑍𝑗,𝑖 }𝑖=1
𝑁𝑗

~Π𝑛,𝑚 (∙ |𝐺𝑗), 𝑗 = 1,… ,𝑚  

Do  

    𝑄𝑗 =
1

𝑁𝑗
∑ 𝛿𝑍𝑗,𝑖
𝑁𝑗

𝑖=1
 , 𝑗 = 1,… ,𝑚 

    apply function geometricMedian to 𝑄1, … , 𝑄𝑚 return 𝑤∗ = (𝑤∗,1, … , 𝑤∗,𝑚) 
    for j = 1 to m do 

        �̅�𝑗 = 𝑤∗,𝑗𝐼 {𝑤∗,𝑗 ≥
1

2𝑚
} 

        define 𝑤𝑗
∗̂ =

�̅�𝑗

∑ 𝑤𝑖̅̅̅̅
𝑚
𝑖=1

 

    end for 

end do 

return Π̂𝑛,𝑔
𝑠𝑡 = ∑ 𝑤𝑖

∗̂𝑄𝑖
𝑚
1=1  

 

3. Simulation Study 
 

3.1 Goals 
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In this section, we focus on communication-free parallel MCMC methods since it can handle huge 

volume of data efficiently.  The performances of related methods discussed above are compared in 

identical simulation settings, and the main goal is to evaluate the quality of posterior samples as well as 

running time. 

 

3.2 Simulation Settings 
 
In the simulation study, we consider the data setup using a multivariate regression setting.  We assume 

that 𝑿 comes from multivariate normal distribution 𝑀𝑉𝑁(𝝁, 𝚺), the parameter of interest is denoted by 

𝛽 = (𝟏, 𝟏,… , 𝟏)𝒑, the random error is denoted by 𝜀𝑖~𝑁(0,1), 𝑖 = 1,… , 𝑁.  The response variable 𝒀 is 

generated using regression model as follows: 
𝒀𝑛×1 = 𝑿𝑛×𝑝 𝜷𝑝×1 + 𝜺𝑁×1 .  

 

We consider fitting the following multiple linear regression model using Bayesian approach. For 𝑖 =
1, . . . , 𝑛, the decomposed model is: 

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2 𝑥𝑖2 + …+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖,   𝜀𝑖 ∼  𝑁(0, 𝜎2) 

𝒚 ∼  𝑁(𝑿𝜷, 𝜎2𝑰𝑛 x 𝑛) 
with likelihood 

𝑝(𝒚│𝛽, 𝜎2 ) = (2𝜋𝜎2 )−
𝑛
2exp [−1/((2𝜎2 )(𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷). 

 

The standard priors for linear regression parameters are non-informative multivariate normal for 𝛽 and 

inverse-gamma for  𝜎2  

 

β∼N(𝜇0,𝜏2𝑰𝑝×𝑝)  and  𝜎2 ∼Inv-gamma(𝑐0, 𝑑0) , 

where 𝜏2is set to be large, and 𝑐0, 𝑑0are set to be small, 𝜇0is set to be 0.  Assuming the calculation 

consists of S subposterior samples, the parameter estimate �̂� is obtained from the posterior distribution 

which can be calculated as below. 

𝑝(β|𝒙) ∝ 𝑝(β)∏𝑝([𝒙, 𝒚]𝒔|β) =∏𝑝(β)
1
𝑆𝑝([𝒙, 𝒚]𝒔|β).

𝑆

𝑠=1

𝑆

𝑠=1

 

 

For comparison purposes, we use MCMCpack to generate posterior of linear regression coefficients with 

Gaussian errors using Gibbs sampling. We use multivariate Gaussian prior on the beta vector and an 

inverse Gamma prior on the conditional error variance.   The estimate result from of the standard MCMC 

is set to be the golden standard.  Other combined parallel MCMC results are compared to the golden 

standard based on standard MCMC.  

 

In section 1.2, we discuss three groups of approaches to obtain the full posterior samples of high volume 

of data.  The approaches in section 1.2.2 and 1.2.3 involve parallel computing on data subsets.  In order to 

compare the performance among each categories with emphasis on communication-free methods, we 

choose one method from section 1.2.1, one method from section 1.2.2, and four methods from section 

1.2.3 for the simulations.  The methods we use in the simulation are Firefly method, communication-

intense parallel method, Embarrassingly Parallel method, parallel Weierstrass Sampling method, parallel 

Random Partition Trees method, Parallel Predictive Prefetching method. 

 

 

The simulation study compares different parallel MCMC algorithms in terms of their performance as the 

following scenarios change: sample size, number of sample subsets, dimension of sample, the property of 

generated sample (correlation matrix parameter, standard deviation).  The number of iterations and the 
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Figure 1: Pipeline of Parallel/Nonparallel MCMC Simulations 

number of the burn-in are predetermined by preliminary attempts. The effective sample size is calculated 

using full posterior sample in order to compare performance of different approaches. 

 

In all simulations, the number of MCMC iterations and the number of burn-in are predetermined by 

preliminary experiments.  The sample size N is chosen from 50 thousands, 1 million or 10 million.  The 

number of MC datasets (K) is 500. The number of data subsets (M) are 1, 10, 20 and 50, and we fix p to 

5.  

 

All the examples are coded in R and Matlab.  The Bayesian linear regression examples are run on a 

cluster composed of 4-cores (Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz) nodes, using up to 8 nodes 

for a total of 32 cores, and make use of Open-MPI and R package “parallel” for communications among 

cores. The standard MCMC example is run on a one core (Intel(R) Xeon(R) CPU E5-2670 v3 @ 

2.30GHz) on a single machine. 

 

The basic workflow of the simulation is summarized in Figure1.  First we generate data with different 

correlation parameters and sample size. In parallel MCMC cases, we split the data, calculate subposteriors 

of data subsets, and combine them using one of the combinations techniques to obtain full posteriors.  In 

other cases, we conduct the MCMC algorithms on the full data and obtain the posteriors.  The last step is 

to examine and compare the summary statistics of full posteriors obtained from previous steps.   

 

 
    

3.3 Performance Metrics 
 
The statistical inference measures of the parallel MCMC algorithms we implemented are listed below: 

 Bias of ith parameter  posterior �̂�𝑖:𝐵𝑖𝑎𝑠𝑖 =
1

𝑆
∑ (�̂�𝑖𝑠 − 𝛽𝑖)
𝑆
𝑠=1  

 Mean standard error(SE) of �̂�𝑖: 𝑆𝐸𝑖 =
∑ 𝑆𝐸𝑖𝑠
𝑆
𝑠=1

𝑆
=

∑ √�̂�𝑖
2𝑆

𝑠=1

𝑆
  

 Monte Carlo standard deviation (SD) of �̂�𝑖 : 𝑆𝐷𝑖 =
√∑ (�̂�𝑖𝑘−𝛽𝑖̅̅ ̅)

2𝐾
𝑘=1

√𝐾
 

 Mean Square Error(MSE)  of ith parameter  posterior �̂�𝑖:𝑀𝑆𝐸𝑖 =
1

𝐾
∑ (�̂�𝑖𝑘 − 𝛽𝑖)

2𝐾
𝑘=1 , where �̂�𝑖𝑗 is 

the parameter estimates for parameter i from jth MC dataset. 
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 Coverage rate(𝐶𝑅𝑖 ): The probability of 95% confidence interval for �̂�𝑖 that contains true value 
 

 

The running performance of algorithms we implement is measured by the following metrics: 

 

 Effective sample size (ESS) 

 Running time  

 

 

Subposterior sample average (sample average), Consensus Monte Carlo Algorithm for correlated 

parameters (consensusMCcov), Consensus Monte Carlo Algorithm for independent parameters 

 (consensusMCindep), parallel Weierstrass Sampling method, parallel Random Partition Trees method 

(PART) are used in the simulation.  

 

3.4 Results 
 
Table 3 and Figure 2-6 summarize the simulation results from the experiment. In general, The MC 

consensus algorithms generally perform quite well in low dimensional scenarios (p=5), as it has relatively 

low bias and standard error as well as largest confidence interval coverage rate. The Weierstrass sampling 

method has good performance regarding bias and SE, which is better than PART, and close to MC 

consensus method in this case. The PART method have less promising result compared with other 

methods since it has larger bias and standard error with less effective sample size.  This shortage can be 

explained by the compromise made to boost the speed of algorithm.    

 

For the small sample scenario (N=50,000), standard MCMC method utilizing all the sample generally has 

the best performance, and it is set to be golden standard for comparison purpose.  As the number of subset 

increases, biases of all the parallel MCMC methods increases gradually; the SE,SD and MSE remain 

similar level.  As the correlation parameter 𝜌 increases, the bias of all methods increases, and the biases of 

PART method increase significantly.   The bias, SE, SD of sample average, MC consensus methods are 

similar.  When the number of subsample is large, Weistrass method achieve the lowest bias and SE.  The 

SD is the standard to which we compare SE, and the values of SD and SE are very similar in value.  The 

ESS of all methods except for PART are close to the posterior sample size 10,000 while the PART 

method has a significantly small ESS of 300-500.   The MSE of MC consensus, sample average, and 

Weistrass method are generally small and close to the MSE of standard MCMC method, while PART has 

a relatively high MSE. 

 

As for the 95% coverage rate, consensus MC and sample average almost always has coverage rate of 1, 

whereas PART and Weierstrass have relatively reasonable coverage rate (around 0.95).  The standard 

MCMC also has a 95% CR coverage rate near 0.95.  Since it is hard to estimate the distribution of sample 

using simple methods like MC consensus and sample average, even though it is easy to obtain the mean 

estimates.  These consensus MC methods tend to overestimate the variance of posteriors. 

 

For the large sample scenario (N=1,000,000), the ascending trend of bias with increasing number of data 

subset is also observed.  As the correlation parameter 𝜌 increases, the bias of all methods increases, and 

the biases of PART method increase significantly.  We observed the performance of MC consensus 

(Consensus Monte Carlo Algorithm), sample average and Weierstrass have similar performance with 

regard of SD, SE, MSE as they have in small sample scenario.  

 

As for the running performance, sample average method has the shortest average running time.  This 

method simply takes the average of all subposteriors in the combination step, which uses a relatively 
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small amount of computation resources.  PART method generally have the second shortest average 

running time.  The Weierstrass has the longest average running time in general, which is more than 10 

times slower than sample average and PART method.  The original MCMC actually runs faster than 

Weierstrass method in small sample size case (N=50,000), but it runs significantly slower than parallel 

MCMC methods when sample size is large (N=1,000,000).  The standard MCMC takes a long time to 

calculate posterior likelihood of large amount of sample, which is the major time cost.  By contrast, other 

MCMC algorithms with embarrassingly parallel scheme utilize multiple machines to run the likelihood 

calculation on data subsets simultaneously.  This approaches usually save a considerable amount of time, 

while the time consumption of combination step is relatively small in large sample scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18 

 

                                        Figure 2: Simulation Result Comparison of Parallel MCMC (Bias) 

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte 

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters) 

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees 
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                                       Figure 3: Simulation Result Comparison of Parallel MCMC (SE and SD) 

Original: Single Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: 

Consensus Monte Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for 

independent parameters) , parallel Weierstrass Sampling method, PART: parallel Random Partition Trees 
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Figure 4: Simulation Result Comparison of Parallel MCMC (MSE) 

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte 

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters) 

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees 
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Figure 5: Simulation Result Comparison of Parallel MCMC (ESS) 

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte 

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters) 

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees 

2
1
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Figure 6: Simulation Result Comparison of Parallel MCMC (CR coverage rate) 

Original: Single chain full-data posterior sample, sample average :Subposterior sample average, consensusMCcov: Consensus Monte 

Carlo Algorithm (for correlated parameters), consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters) 

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees 
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Original: Single chain full-data posterior sample, sample average :Subposterior sample average, 

consensusMCcov: Consensus Monte Carlo Algorithm (for correlated parameters), 

consensusMCindep: Consensus Monte Carlo Algorithm (for independent parameters) 

, parallel Weierstrass Sampling method, PART: parallel Random Partition Trees 

 

Table 3: Simulation Running Time of Parallel MCMC (combination stage only) 
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4. Discussion  
 
Since embarrassingly parallel MCMC is a natural fit for handling data with large number of observations, 

it is often used in scalable Bayesian computation for big data problems.  Our numerical results 

demonstrate that the MC consensus embarrassingly parallel algorithms almost always yield the best 

performance in a Bayesian linear regression problem for low-dimensional data.  Other methods all have 

strengths and limitations in this experiment.  The PART method achieves fast running time with cost of 

accuracy and robustness.  The Weierstrass method takes relatively longer time to finish iteration with 

reliable result.   

 

This comparison results apply to other Bayesian problem since the same embarrassingly parallel schema 

is used to calculate subposteriors for each data subset.  The only difference among these methods in 

experiments is that they use different approaches for combining subposteriors.  The strength and 

weakness of these methods are likely remain unchanged in other scenarios as long as the sample size is 

constant.  For instance, the PART method may still have high speed and low accuracy in logistical 

regression or other Bayesian problem.  However, the assumption of normality may influence the 

performance of the methods since some methods highly rely on the assumption while other do not.  

 

Although the non-parallel algorithms accelerates the updating process of MCMC, it is not as promising as 

the parallel methods since it fails to take advantage of the efficient distributed computing system.  Single-

thread methods still cannot handle data that are too large to store in the storage or memory in single 

machine.   

 

Researchers often address communication intense method rather than implement the method in related 

papers.  The cost of frequent network communication could significantly deteriorate the performance of 

the MCMC procedure. The real performances of communication intense method need further 

investigations.   

 

In parallel with the existing parallel MCMC methods, other optimization approaches can also be adopted 

to scale up MCMC algorithms.  One possible approach is combining some of the nonparallel technique 

with parallel technique in distributed settings.  For instance, researcher can split the sample into data 

subsets and use firefly algorithm to obtain subposteriors from each subset simultaneously, and combine 

them by embarrassingly parallel method.  This proposed approach could achieve further computation cost 

reduction, while the accuracy of the model may be compromised.  The balance between accuracy and 

computation performance should always be considered before implementing these types of combined 

approaches. 
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